
Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

MySQL 5.7:
Performance Improvements in Optimizer

Olav Sandstå
Senior Principal Engineer
MySQL Optimizer Team, Oracle
April 25, 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Program Agenda

3

Improvements in optimizer

• Cost model

• New optimizations

Understanding query performance
• Explain extensions

• Optimizer trace

Tools for improving query plans

• New hints

• Query rewrite plugin

1

2

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

MySQL Optimizer

Table/index info
(data dictionary)

Statistics
(storage engines)

t2 t3

t1

Table
scan

Range
scan

Ref
access

JOIN

JOIN

SELECT a, b
FROM t1
 JOIN t2
 ON t1.a = t2.b
 JOIN t3
 ON t2.b = t3.c
WHERE t2.d > 20
 AND t2.d < 30;

4

MySQL Server

Cost based
optimizations

Heuristics

Cost Model

O
p

ti
m

iz
er

Pa
rs

er

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Cost model improvements:

• Cost model for WHERE conditions
(condition filtering effect)

– Improved JOIN order

• Improved index statistics

– Better index selection, better join order

• Configurable “cost constants”

New optimizations:

• Merging of derived tables

• Optimization of IN queries

• Union ALL optimization

5

Optimizer Performance Improvements in MySQL 5.7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Condition Filtering Effect

Goal: Low-fanout tables should be early in the join order

MySQL 5.6: MySQL 5.7:

Fanout= #rows read by access metod Fanout= #rows read by access method * condition filter effect

Cost Model for Query Conditions

6

SELECT office_name

FROM office JOIN employee ON office.id = employee.office

WHERE employee.name = “John” AND age > 21 AND

 hire_date BETWEEN “2014-01-01” AND “2014-06-01”;

t1 t2 t1

co
n

d
it

io
n

 f
ilt

er

t2

In 5.6 we do not
consider the
entire WHERE
condition when
calculating fanout

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Filter estimate based on what is
available:

1. Range estimate

2. Index statistics

3. Guesstimate

= 0.1

<=,<,>,>= 1/3

BETWEEN 1/9

NOT <op> 1 – SEL(<op>)

AND P(A and B) = P(A) * P(B)

OR P(A or B) = P(A) + P(B) – P(A and B)

… …

How to Calculate Condition Filter Effect

SELECT office_name

FROM office JOIN employee ON office.id = employee.office

WHERE employee.name = “John” AND age > 21 AND

 hire_date BETWEEN “2014-01-01” AND “2014-06-01”;

7

0.11
(guesstimate)

0.1
(guesstimate)

0.89
(range)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

SELECT office_name

FROM office JOIN employee ON office.id = employee.office

WHERE employee.name = “John” AND age > 21 AND

 hire_date BETWEEN “2014-01-01” AND “2014-06-01”;

Table Type Possible keys Key Ref Rows Filtered Extra

office ALL PRIMARY NULL NULL 100 100.00 NULL

employee ref office office office.id 99 100.00 Using where

Example: Two Table JOIN in MySQL 5.7

Explain for 5.6:

Explain for 5.7:

Table Type Possible keys Key Ref Rows Filtered Extra

employee ALL NULL NULL NULL 9991 1.23 NULL

office eq_ref PRIMARY PRIMARY employee.office 1 100.00 Using where

JOIN ORDER
HAS CHANGED!

Condition
filter estimate

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Disable Condition Filtering

• In case of performance regressions:

SET optimizer_switch=`condition_fanout_filter=OFF`;

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

• Replaced hard-coded “cost
constants” with configurable “cost
constants”

• Stored in “mysql” database:

– server_cost

– engine_cost

• “Cost constants” are changed by
updating these tables

Configurable Cost Model

server_
cost

engine_
cost

Cost
model

Optimizer

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Name Default value

row_evalute_cost 0.2

key_compare_cost 0.1

memory_temptable_create_cost 2.0

memory_temptable_row_cost 0.2

disk_temptable_create_cost 40.0

disk_temptable_row_cost 1.0

memory_block_read_cost 1.0

io_block_read_cost 1.0

Online update of cost constants:

Configurable Cost Constants

UPDATE mysql.server_cost

SET cost_value=0.1

WHERE cost_name=“row_evaluate_cost”;

FLUSH OPTIMIZER_COSTS;

11

Tip 1:
All data fits in InnoDB buffer, set:
memory_block_read_cost = 0.5
io_block_read_cost = 0.5

Tip 2:
Working set larger than InnoDB
buffer, set:
memory_block_read_cost = 0.5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

MySQL 5.6:

• Derived table always materialized in
temporary table

MySQL 5.7:

• Merged into outer query or
materialized

• Derived table optimized as part of
outer query:
– Faster queries

• Derived tables and views are now
optimized the same way

Merging Derived Tables into Outer Query

SELECT * FROM (SELECT * FROM t1 WHERE …..) AS derived
WHERE …..

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

MySQL 5.6:

• Always materialize results of UNION
ALL in temporary tables

MySQL 5.7:

• Do not materialize in temporary
tables unless used for sorting, rows
are sent directly to client

• Client will receive the first row
faster, no need to wait until the last
query block is finished

• Less memory and disk consumption

Avoid Creating Temporary Table for UNION ALL

SELECT * FROM table_a UNION ALL SELECT * FROM table_b;

13

Customer
request

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Optimizations for IN Expressions

MySQL 5.6:

• IN queries with row value expressions can not use index scans or range scans even
though all the columns in the query are indexed

• Need to rewrite to de-normalized form:

 SELECT a, b FROM t1 WHERE (a = 0 AND b = 0) OR (a = 1 AND b = 1)

MySQL 5.7:

• IN queries with row value expressions executed using range scans

CREATE TABLE t1 (a INT, b INT, c INT, INDEX idx (a, b));

SELECT a, b FROM t1 WHERE (a, b) IN ((0, 0), (1, 1));

14

Customer
request

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

The table has 10 000 rows, 2 match the where condition

MySQL 5.6:

MySQL 5.7:

Table Type Possible keys Key Key_len Ref Rows Filtered Extra

t1 index idx idx 10 NULL 10000 100.00 Using where; Using index

Optimizations for IN Expressions

SELECT a, b FROM t1 WHERE (a, b) IN ((0, 0), (1, 1));

Table Type Possible keys Key Key_len Ref Rows Filtered Extra

t1 range idx idx 10 NULL 2 100.00 Using where; Using index

15

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Performance improvements: DBT-3 (SF10, CPU bound)

0

20

40

60

80

100

Q2 Q3 Q8 Q9 Q12 Q18 Q20

Ex
e

cu
ti

o
n

 t
im

e
 r

e
la

ti
ve

 t
o

 5
.6

 (
%

)

7 out of 22 queries get an improved query plan

MySQL 5.6

MySQL 5.7

16

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Program Agenda

17

Improvements in optimizer

• Cost model

• New optimizations

Understanding query performance
• Explain extensions

• Optimizer trace

Tools for improving query plans

• New hints

• Query rewrite plugin

1

2

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Understanding the Query Plan

Use EXPLAIN to print the final query plan:

EXPLAIN

18

id type table type possible keys key key len ref rows filtered Extra

1 SIMPLE t1 range PRIMARY,idx1 idx1 4 NULL 12 33.33 Using index condition

2 SIMPLE t2 ref idx2 idx2 4 t1.a 1 100.00 NULL

EXPLAIN SELECT * FROM t1 JOIN t2 ON t1.a = t2.a WHERE b > 10 AND c > 10;

Condition
filter effect

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Explain on a Running Query

• Shows query plan on connection <id>

• Useful for diagnostic on long running queries

• Plan isn’t available when query plan is under creation

• Applicable to SELECT/INSERT/DELETE/UPDATE

EXPLAIN [FORMAT=(JSON|TRADITIONAL)] FOR CONNECTION <id>;

19

New in
MySQL

5.7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Added in
MySQL 5.7

Understanding the Query Plan

• JSON format:

• Contains more information:

– Used index parts

– Pushed index conditions

– Cost estimates

– Data estimates

Structured EXPLAIN

EXPLAIN FORMAT=JSON
SELECT * FROM t1 WHERE b > 10 AND c > 10;
EXPLAIN
{
 "query_block": {
 "select_id": 1,
 "cost_info": {
 "query_cost": "17.81"
 },
 "table": {
 "table_name": "t1",
 "access_type": "range",
 "possible_keys": [
 "idx1"
],
 "key": "idx1",
 "used_key_parts": [
 "b"
],
 "key_length": "4",
 "rows_examined_per_scan": 12,
 "rows_produced_per_join": 3,
 "filtered": "33.33",
 "index_condition": "(`test`.`t1`.`b` > 10)",
 "cost_info": {
 "read_cost": "17.01",
 "eval_cost": "0.80",
 "prefix_cost": "17.81",
 "data_read_per_join": "63"
 },
 ………
 "attached_condition": "(`test`.`t1`.`c` > 10)"
 }
 }
}

EXPLAIN FORMAT=JSON SELECT …

20

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 21

Visual Explain in MySQL Work Bench

Understanding the Query Plan

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Optimizer Trace

• Trace of the main steps and decisions done
by the optimizer

Understand HOW a query is optimized

SET optimizer_trace=”enabled=on”;

SELECT * FROM t1 WHERE a > 10;

SELECT * FROM

 INFORMATION_SCHEMA.OPTIMIZER_TRACE;

"table": "`t1`",
"range_analysis": {
 "table_scan": {
 "rows": 54,
 "cost": 13.9
 },
 "best_covering_index_scan": {
 "index": ”idx",
 "cost": 11.903,
 "chosen": true
 },
 "analyzing_range_alternatives": {
 "range_scan_alternatives": [
 {
 "index": ”idx",
 "ranges": [
 "10 < a"
],
 "rowid_ordered": false,
 "using_mrr": false,
 "index_only": true,
 "rows": 12,
 "cost": 3.4314,
 "chosen": true
 }

22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Program Agenda

23

Improvements in optimizer

• Cost model

• New optimizations

Understanding query performance
• Explain extensions

• Optimizer trace

Tools for improving query plans

• New hints

• Query rewrite plugin

1

2

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Influencing the Optimizer

• Add indexes

• Use hints:

– Index hints: USE INDEX, FORCE INDEX, IGNORE INDEX

– Join order: STRAIGHT_JOIN

– Subquery strategy: /*+ SEMIJOIN(FirstMatch) */

– Join buffer strategy: /*+ BKA(table1) */

• Adjust optimizer_switch flags:

– set optimizer_switch=“condition_fanout_filter=OFF”

When the optimizer does not do what you want:

New hint syntax
and new hints
in MySQL 5.7

24

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Improved HINT support

• Introduced new hint syntax: /*+ . . . */

• Examples for new hints:

– Join buffer strategy (BNL/NO_BNL, BKA/NO_BKA)

– Semijoin and subquery strategy (SEMIJOIN/NO_SEMIJOIN, SUBQUERY)

–Multi-range read optimization (MRR/NO_MRR)

–Max execution time (MAX_EXECUTION_TIME)

• Hints apply at different scope levels: global, query block, table, index

• Most hints are in two forms:

– Enabling means optimizer should try to use it, but not forced to use it (eg. BKA)

– Disabling prevents optimizer from using it (eg. NO_BKA)

25

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hint Example: MAX_EXECUTION_TIME

SELECT /*+ MAX_EXECUTION_TIME(1) */ * FROM t1 a, t1 b, t1 c, t1 d, t1 e LIMIT 1;
ERROR 3024 (HY000): Query execution was interrupted, maximum statement execution time exceeded

SELECT /*+ MAX_EXECUTION_TIME(1000) */ * FROM t1 a, t1 b, t1 c, t1 d, t1 e LIMIT 1;
+---+----+---+----+---+----+---+-- -+---+----+
| a | b | a | b | a | b | a | b | a | b |
+---+----+---+----+---+----+---+----+---+----+
| 1 | 10 | 1 | 10 | 1 | 10 | 1 | 10 | 1 | 10 |
+---+----+---+----+---+----+---+----+---+----+
1 row in set (0,00 sec)

26

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hint Example: SEMIJOIN

EXPLAIN SELECT * FROM t1 WHERE t1.a IN (SELECT a FROM t2);

id Select_type Table Type Possible_keys Key Key_len Ref Rows Extra

1 simple t2 index a a 4 null 3 Using where; LooseScan

1 simple t1 ref a a 4 test.t2.a 1 Using index

EXPLAIN SELECT * FROM t1 WHERE t1.a IN (SELECT /*+ NO_SEMIJOIN() */ a FROM t2);

id Select_type Table Type Possible_keys Key Key_len Ref Rows Extra

1 primary t1 index null a 4 null 4 Using where; Using index

2 dependent
subquery

t2 index_
subquery

a a 4 func 1 Using index

No hint, optimizer chooses semi-join algorithm loosescan:

Semi-join disabled with hint, subquery is executed for each row of outer table:

27

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hint Example: SEMIJOIN

EXPLAIN SELECT /*+ SEMIJOIN(@subq MATERIALIZATION) */ * FROM t1
WHERE t1.a IN
 (SELECT /*+ QB_NAME(subq) */ a FROM t2);

id Select_type Table Type Possible_keys Key Key_len Ref Rows Extra

1 simple t1 index a a 4 null 4 Using where; Using index

1 simple <subquery2> eq_ref <auto_key> <auto_key> 4 test.t1.a 1 null

2 materialized t2 index a a 4 null 3 Using index

Hint on a particular algorithm, in this case semi-join materialization

28

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Query Rewrite Plugin

• Problem:

–Optimizer choses a suboptimal query plan

– User can change the query plan by adding hints or rewrite the query

– However, database application code can not be changed

• Solution:

–Query rewrite plugin

• Rewrite problematic queries without having to change application code

– Add hints

–Modify join order

• Rewrite rules are defined in a database table

29

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 30

How Rewrite Plugin works

SELECT *
FROM t1 JOIN t2
ON t1.keycol = t2.keycol
WHERE col1 = 42 AND col2 = 2;

SELECT *
FROM t1 JOIN t2
ON t1.keycol = t2.keycol
WHERE col1 = ? AND col2 =?;

SELECT *
FROM t2 STRAIGHT_JOIN t1
FORCE INDEX (col1)
ON t1.keycol = t2.keycol
WHERE col1 = ? AND col2 =?;

SELECT *
FROM t2 STRAIGHT_JOIN t1
FORCE INDEX (col1)
ON t1.keycol = t2.keycol
WHERE col1 = 42 AND col2 = 2;

Problematic query:

Rewritten query:

Pattern for matching:

Replacement rule:

Wrong join order
Wrong index

Query rewrite plugin

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

1. Install query rewrite plugin:

 mysql –u root –p < install_rewriter.sql

2. Insert pattern and replacement rule into query_rewrite.rewrite_rules
table:

3. Reload the new rules into the plugin:

 mysql> CALL query_rewrite.flush_rewrite_rules();

How to use Query Rewrite Plugin

pattern replacement enabled

SELECT * FROM t1 JOIN t2
ON t1.keycol = t2.keycol
WHERE col1 = ? AND col2 =?;

SELECT * FROM t2 STRAIGHT_JOIN t1
FORCE INDEX (col1) ON t1.keycol = t2.keycol
WHERE col1 = ? AND col2 =?;

Y

31

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Performance impact:

• Designed for rewriting problematic
queries only!

• ~ Zero cost for queries not to be
rewritten

– Statement digest computed for
performance schema anyway

• Cost of queries to be rewritten is
insignificant compared to
performance gain

Benefits:

• Queries can be rewritten without
having to change application code

• Easy to test out alternative rewrites
of queries

• Easy to temporarily disable rewrite
rules to check if the rewrite still is
needed

Query Rewrite Plugin

32

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What is on the Optimizer Roadmap?

• Common table expressions (WITH RECURSIVE)

• Window functions

• Improved prepared statement support / Query plan caching

• Cost model:

– better support for different hardware: data in memory and SSD

• Statistics:

– Histograms

33

