
Copyright © 2016, Oracle and/or its affiliates. All rights reserved. Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Manyi Lu

Director
MySQL Optimizer Team, Oracle
April, 2016

MySQL 5.7 & JSON: New
Opportunities for Developers

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Why JSON Support in MySQL?

• Seemless integration of relational and schema-less data

• Leverage existing database infrastructure for new applications

• Provide a native JSON datatype

• Provide a set of built-in JSON functions

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Agenda

4

 JSON data type

 JSON functions

 Indexing JSON data

 A real life example

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE employees (data JSON);
INSERT INTO employees VALUES
 ('{"id": 1, "name": "Jane"}'),
 ('{"id": 2, "name": "Joe"}');
SELECT * FROM employees;
+-------------------------------------+
| data |
+-------------------------------------+
| {"id": 1, "name": "Jane"} |
| {"id": 2, "name": "Joe"} |
+-------------------------------------+

• Validation on INSERT

• No reparsing on SELECT

• Optimized for read

• Dictionary of sorted
keys

• Can compare JSON/SQL

• Can convert JSON/SQL

• Supports all native
JSON datatypes

• Also supports date,
time, timestamp etc.

5

The New JSON Datatype

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Agenda

6

 JSON data type

 JSON functions

 Indexing JSON data

 A real life example

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

JSON Functions

• Info

– JSON_VALID()

– JSON_TYPE()

– JSON_KEYS()

– JSON_LENGTH()

– JSON_DEPTH()

– JSON_CONTAINS_PATH()

– JSON_CONTAINS()

7

• Modify

– JSON_REMOVE()

– JSON_ARRAY_APPEND()

– JSON_SET()

– JSON_INSERT()

– JSON_ARRAY_INSERT()

– JSON_REPLACE()

• Create

– JSON_MERGE()

– JSON_ARRAY()

– JSON_OBJECT()

• Get data

– JSON_EXTRACT()

– JSON_SEARCH()

• Helper

– JSON_QUOTE()

– JSON_UNQUOTE()

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Inlined JSON Path Expressions

• SELECT * FROM employees WHERE data->'$.id'= 2;

• ALTER … ADD COLUMN id INT AS (data->'$.id') …

• CREATE VIEW .. AS SELECT data->'$.id', data->'$.name' FROM …

SELECT * FROM employees WHERE data->”$.name” = “Jane";

Is a short hand for

SELECT * FROM employees WHERE JSON_EXTRACT(data, “$.name”) = “Jane”;

 [[database.]table.]column->”$<path spec>”

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Agenda

9

 JSON data type

 JSON functions

 Indexing JSON data

 A real life example

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Generated Columns

• Column generated from the expression

• VIRTUAL: computed when read, not stored, indexable

• STORED: computed when inserted/updated, stored in SE, indexable

• Useful for:
– Functional index

– Materialized cache for complex conditions

– Simplify query expression

CREATE TABLE order_lines
 (orderno integer,
 lineno integer,
 price decimal(10,2),
 qty integer,
 sum_price decimal(10,2) GENERATED ALWAYS AS (qty * price) STORED);

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Functional Index

• Online index creation

• Composite index on a mix of ordinary, virtual and stored columns

CREATE TABLE order_lines
 (orderno integer,
 lineno integer,
 price decimal(10,2),
 qty integer,
 sum_price decimal(10,2) GENERATED ALWAYS AS (qty * price) VIRTUAL);

ALTER TABLE order_lines ADD INDEX idx (sum_price);

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Indexing JSON data

• Use Functional Indexes,

• STORED and VIRTUAL types are supported

12

CREATE TABLE employees (data JSON);

ALTER TABLE employees
ADD COLUMN name VARCHAR(30) AS (JSON_UNQUOTE(data->”$.name”)) VIRTUAL,
ADD INDEX name_idx (name);

• Functional index approach

• Use inlined JSON path or JSON_EXTRACT to specify field to be indexed

• Support both virtual and stored generated columns

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Generated column: STORED vs VIRTUAL

Pros Cons

STORED

• Fast retrieval

• Require table rebuild at
creation

• Update table data at
INSERT/UPDATE

• Require more storage space

VIRTUAL

• Metadata change only,
instant

• Faster INSERT/UPDATE,
no change to table

• Compute when read, slower
retrival

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Indexing Generated Column: STORED vs VIRTUAL

Pros Cons

STORED

• Primary & secondary
index

• B-TREE, Full text, R-TREE
• Independent of SE
• Online operation

• Duplication of data in
base table and index

VIRTUAL

• Less storage
• Online operation

• Secondary index only
• B-TREE only
• Require SE support

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Agenda

15

 JSON data type

 JSON functions

 Indexing JSON data

 A real life example

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Using Real Life Data

• Via SF OpenData

• 206K JSON objects
representing subdivision
parcels.

• Imported from https://github.com/zemirco/sf-city-lots-json + small tweaks

16

CREATE TABLE features (
 id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
 feature JSON NOT NULL
);

https://github.com/zemirco/sf-city-lots-json
https://github.com/zemirco/sf-city-lots-json
https://github.com/zemirco/sf-city-lots-json
https://github.com/zemirco/sf-city-lots-json
https://github.com/zemirco/sf-city-lots-json
https://github.com/zemirco/sf-city-lots-json
https://github.com/zemirco/sf-city-lots-json

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 17

{

 "type":"Feature",

 "geometry":{

 "type":"Polygon",

 "coordinates":[

 [

 [-122.42200352825247,37.80848009696725,0],

 [-122.42207601332528,37.808835019815085,0],

 [-122.42110217434865,37.808803534992904,0],

 [-122.42106256906727,37.80860105681814,0],

 [-122.42200352825247,37.80848009696725,0]

]

]

 },

 "properties":{

 "TO_ST":"0",

 "BLKLOT":"0001001",

 "STREET":"UNKNOWN",

 "FROM_ST":"0",

 "LOT_NUM":"001",

 "ST_TYPE":null,

 "ODD_EVEN":"E",

 "BLOCK_NUM":"0001",

 "MAPBLKLOT":"0001001"

 }

}

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Naive Performance Comparison

18

as JSON type
SELECT DISTINCT
 feature->"$.type" as json_extract
FROM features;
+------------------+
| json_extract |
+------------------+
| "Feature" |
+-----------------+
1 row in set (1.25 sec)

Unindexed traversal of 206K documents

as TEXT type
SELECT DISTINCT
 feature->"$.type" as json_extract
FROM features;
+------------------+
| json_extract |
+------------------+
| "Feature" |
+------------------+
1 row in set (12.85 sec)

Explanation: Binary format of JSON type is very efficient at
searching. Storing as TEXT performs over 10x worse at traversal.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Create Index

19

ALTER TABLE features ADD feature_type VARCHAR(30) AS (feature->"$.type") VIRTUAL;
Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

ALTER TABLE features ADD INDEX (feature_type);
Query OK, 0 rows affected (0.73 sec)
Records: 0 Duplicates: 0 Warnings: 0

SELECT DISTINCT feature_type FROM features;
+-------------------+
| feature_type |
+-------------------+
| "Feature" |
+-------------------+
1 row in set (0.06 sec)

From table scan on 206K documents to index scan on 206K materialized values

Down from 1.25 sec to
0.06 sec

Creates index online. Does not
modify table rows.

Meta data change only (FAST).
Does not need to touch table.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

JSON Path Search
• Locate scalar values inside a document

• Provides a novice way to know the path. To retrieve via:
[[database.]table.]column->"$<path spec>"

20

SELECT JSON_SEARCH(feature,'one', 'MARKET')
AS extract_path FROM features
WHERE id = 121254;

+--------------------------------+
| extract_path |
+--------------------------------+
| "$.properties.STREET" |
+--------------------------------+
1 row in set (0.00 sec)

SELECT feature->"$.properties.STREET"
 AS property_street FROM features
WHERE id = 121254;

+-----------------------+
| property_street |
+-----------------------+
| "MARKET" |
+-----------------------+
1 row in set (0.00 sec)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

JSON Array Creation

21

SELECT JSON_ARRAY(id,
 feature->"$.properties.STREET",
 feature->"$.type") AS json_array
FROM features ORDER BY RAND() LIMIT 3;

+--+
| json_array |
+--+
| [65298, "10TH", "Feature"] |
| [122985, "08TH", "Feature"] |
| [172884, "CURTIS", "Feature"] |
+--+
3 rows in set (2.66 sec)

Evaluates a (possibly empty) list of
values and returns a JSON array
containing those values

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

What is on Our Roadmap?

• Advanced JSON functions, e.g. JSON table function

• Multi-value index for efficient queries against array fields

• In-place update of JSON documents

• Full text and GIS index on virtual columns

• Improved performance through condition pushdown

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 23

