Building Highly Available and Scalable Real-Time Services with MySQL Cluster

MySQL Sales Consulting
Director Philip Antoniades
April, 3rd, 2012
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Program Agenda

- Introduction
- The Current Web Environment
- New Database Requirements
- Cluster Benefits
- NDB Architecture
- Distributed Clusters
- High Availability Clustering
- Cluster Management
- Questions & Next Steps
40% DATA GROWTH PER YEAR

850M USERS

20M APPS PER DAY

1 TR VIDEO PLAYBACKS

$1TR BY 2014

$700BN IN 2011

2.1BN USERS

8X DATA GROWTH IN 5 YRS

70+ NEW DOMAINS EVERY 60 SECONDS

5.9BN MOBILE SUBS IN 2011

250m TWEETS PER DAY

2.1BN iOS & ANDROID APPS DOWNLOADED PER WEEK

370K CALL MINUTES EVERY 60 SECONDS

1 BILLION iOS & ANDROID APPS

$1TR VIDEO PLAYBACKS

20M APPS PER DAY

1 TR VIDEO PLAYBACKS

$700BN IN 2011
Only MySQL Can.....

blend the agility & innovation of the web....

craigslist

....with the trust & capability of the network.
Driving new Database Requirements

EXTREME WRITE SCALABILITY

REAL TIME USER EXPERIENCE

ROCK SOLID RELIABILITY

RAPID SERVICE INNOVATION
No Trade-Offs

Transactional Integrity
Complex Queries
Standards & Skillsets
MySQL Cluster – Users & Applications

Extreme Scalability, Availability and Affordability

- **Web**
 - High volume OLTP
 - eCommerce
 - User Profile Management
 - Session Management & Caching
 - Content Management
 - On-Line Gaming

- **Telecoms**
 - Subscriber Databases (HLR / HSS)
 - Service Delivery Platforms
 - VAS: VoIP, IPTV & VoD
 - Mobile Content Delivery
 - Mobile Payments
 - LTE Access

http://www.mysql.com/customers/cluster/
Key Benefits

| Scaling Reads & Writes | Auto-sharding + Multi-master
| Transactional, ACID-compliant relational database |
|------------------------|--|
| 99.999% Availability | Shared-nothing design, no Single Point of Failure
| On-Line operations: Scale, Upgrade Schema, etc. |
| Real-Time Responsiveness| High-load, real-time performance
| Predictable low latency, bounded access times |
| SQL & NoSQL APIs | Complex, relational queries + Key/Value Access
| MySQL, Memcached, C++, Java, JPA, HTTP / REST |
| Low TCO, Open platform | GPL & Commercial editions
| Commodity hardware, management & monitoring tools |
MySQL Cluster Architecture

Node Group 1

Node Group 2

Data Nodes

Application Nodes

Cluster Mgmt

Cluster Mgmt
MySQL Cluster - Extreme Resilience

Node Group 1
- Node 1
 - F1
 - F3
- Node 2
 - F3
 - F1

Node Group 2
- Node 3
 - F2
 - F4
- Node 4
 - F4
 - F2

Application Nodes
- JPA
- REST

Data Nodes
- Cluster Mgmt
- Cluster Mgmt

MySQL
Simplified Provisioning & Maintenance
User Privilege Consolidation

GRANT mrfoo

MySQL Cluster Data Nodes
MySQL 5.5 Server Integration

- Configure storage engine per-table
- Choose the right tool for the job
 - InnoDB: Foreign Keys, XA Transactions, Large Rows
 - MySQL Cluster: HA, High Write Rates, Real-Time
- Reduces Complexity, Simplifies DevOps
- Take advantage of MySQL 5.5
 - 3x higher performance
 - Improved partitioning, diagnostics, availability, etc.
Auto-Sharding with High Availability

- Transparent to the application
 - No need for application-layer sharding logic
 - Each node stores primary fragment for 1 partition and back-up for another
- Transparency maintained during failover, upgrades and scale-out
- No need to limit application to single-shard transactions
Multi-Site Clustering

- Split data nodes across data centers
 - Synchronous replication and auto-failover between sites
 - Improved heartbeating to handle network partitions
- Extends HA Options
- Active/Active with no need for conflict handling
Active/Active Geographic Replication

• Replicating complete clusters across data centers
 • DR & data locality
 • No passive resources
• Simplified Active / Active Replication
 • Eliminates requirement for application & schema changes
 • Transaction-level rollback
Handling Scheduled Maintenance
On-Line Operations

• Scale the cluster (add & remove nodes on-line)
• Repartition tables
• Upgrade / patch servers & OS
• Upgrade / patch MySQL Cluster
• Back-Up
• Evolve the schema on-line, in real-time
MySQL Cluster Manager

Reducing TCO and creating a more agile, highly available database environment

- Monitoring & Recovery
- Automated Management
- High Availability Operation
How Does MySQL Cluster Manager Help?

Example: Initiating upgrade from MySQL Cluster 7.0 to 7.2

Before MySQL Cluster Manager
- 1 x preliminary check of cluster state
- 8 x ssh commands per server
- 8 x per-process stop commands
- 4 x scp of configuration files (2 x mgmd & 2 x mysqld)
- 8 x per-process start commands
- 8 x checks for started and re-joined processes
- 8 x process completion verifications
- 1 x verify completion of the whole cluster.
- Excludes manual editing of each configuration file.

Total: 46 commands - 2.5 hours of attended operation

With MySQL Cluster Manager

upgrade cluster --package=7.1 mycluster;

Total: 1 Command - Unattended Operation

- **Results**
 - Reduces the overhead and complexity of managing database clusters
 - Reduces the risk of downtime resulting from administrator error
 - Automates best practices in database cluster management
Bootstrap single host Cluster

1. Download MCM from edelivery.oracle.com:
 - Package including Cluster
2. Unzip
3. Run agent, define, create & start Cluster!
 `$> bin\mcmd -bootstrap`

MySQL Cluster Manager 1.1.2 started
Connect to MySQL Cluster Manager by running "D:\Andrew\Documents\MySQL\mcm\bin\mcmd -a NOVA:1862"
Configuring default cluster 'mycluster'...
Starting default cluster 'mycluster'...
Cluster 'mycluster' started successfully
 ndb_mgmd NOVA:1186
 ndbd NOVA
 ndbd NOVA
 mysqld NOVA:3306
 mysqld NOVA:3307
 ndbapi *
Connect to the database by running "D:\Andrew\Documents\MySQL\mcm\cluster\bin\mysql" -h NOVA -P 3306 -u root

- Connect to Cluster & start using database

To bootstrap with Cluster 7.2 replace contents of mcm/cluster directory
http://www.clusterdb.com/mysql-cluster/mysql-cluster-manager-1-1-2-creating-a-cluster-is-now-trivial
When to Consider MySQL Cluster

- What are the consequences of downtime or failing to meet performance requirements?
- How much effort and $ is spent in developing and managing HA in your applications?
- Are you considering sharding your database to scale write performance? How does that impact your application and developers?
- Do your services need to be real-time?
- Will your services have unpredictable scalability demands, especially for writes?
- Do you want the flexibility to manage your data with more than just SQL?
Evaluate MySQL Cluster CGE

30-Day Trial

- Navigate to http://edelivery.oracle.com/ and step through (selecting “MySQL Database” as the Product Pack)

- Select MySQL Cluster Manager
Q&A
Hardware and Software
Engineered to Work Together