MySQL Summit

Top 10 tips tor MySQL
Performance Tuning

Configuration, best practices and tracking the ugly duckling

Mike Frank Urvashi Oswal
Product Management Director Principal Member Technical Staff
MySQL MySQL

= Agenda

Top Ten Tips

Agenda

Importing the data
1. Use MySQL Shell Utility
2. Speeding up import

Schema Design
3. Primary Keys
4. Indexes

5. Parallel Index Creation

Copyright © 2023, Oracle and/or its affiliates

Configuration

6. The right config for the
workload

Memory
7. Consumption

8. Linux memory allocator

All about queries

9. Workload
10. Ugly duckling

Using Machine Learning to
Solve #4 —

Autopilot Indexing

A

Importing Data
at speed of light !

Importing Data

For logical dumps, SOL Dump & Load Utility should be preferred over the old and single
threaded mysqgldump !

SQL Dump & Load can dump a full instance, one or multiple schemas or tables. You can also
add a where clause.

This tool dumps and load the data in parallel !

The data can be stored on filesystem, Object Storage, S3 and Azure Blob Storage.

> util.dumpInstance (" /opt/dump/", { : 32})

Importing Data (2)

The dump can be imported into ~ SOL using util.loadDump().
loadDump() is the method used to load dumps created by:

« util.dumplnstance()

« uti.dumpSchemas()

« util.dumpTables()

> util.loadDump (" /opt/dump/", { : 32})

Importing Data - High Speed

We can speed up the process even more | During an initial load, & the SNIEINIASIENICIERY, if there
IS a crash, the process can be restarted. Therefore, if the durability is not important, we can reduce it to
speed up the loading even more.

We can disable binary logs, disable redo logs and tune DB by altering a few settings.
Pay attention that disabling and enabling binary logs require a restart of ~ SOL.

start mysqld with

MySQL > ALTER INSTANCE DISABLE INNODB REDO_LOG;
MySQL > set global innodb_extend_and_initialize=OFF;
MySQL > set global innodb_max_dirty_pages_pct=10;
MySQL > set global innodb_max_dirty_pages_pct_lwm=

Schema
Design

primary keys
iIndexes, not too little, not too much

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

Primary Keys
For DB, a Primary Key is required and a good one is even better |

Some theory
DB stores data in table spaces.

The records are stored and sorted using the clustered index (PK).

All secondary indexes also contain the primary key as the right-most column in the index (even if this is not
exposed). That means when a secondary index is used to retrieve a record, two indexes are used: first the
secondary one pointing to the primary key that will be used to finally retrieve the record.

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

InnoDB Primary Key - Non-sequential = many pages accessed

The primary key impact how the values are inserted and the size of the secondary indexes.
A non sequential PK can lead to many random |OPS.

Also, it's more and more common to use e paZ§
application that generates completely 128
random primary keys e
384

...that means if the Primary Key is not s
sequential, 576
640

704

DB will have to heavily re-balance all the o

pages on inserts.

egend (] = 1 page):
Min LSN < > Max LSN

_1e2s2877 | I 28012831

— a page was touched. Lots of IOPs here.

InnoDB Primary Key — Sequential Key — Few Page accessed

If we compare the same load (inserts) when using an auto_increment integer as Primary Key,
we can see that only the latest pages are recently touched:

Start Page
0

64
128
192

256 | |
320

384
448

2% Pink Blocks — a page was touched. Much better.

640 Far fewer |OPs.
704

768

Legend (] = 1 page):
Min LSN = > Max LSN

28018134 [N 39170596

Generated with from @jeremycole

https://github.com/jeremycole/innodb_ruby

InnoDB Primary Key ? No Key !

Another common mistake when using DB is to not define any Primary Key.

When no primary key is defined, the first unique not null key is used.
And if none is available, DB will create an hidden primary key (6 bytes).

The problem with such key is that you don’t have any control of it and worse, this value is
global to all tables without primary keys and can be a contention problem if you perform
multiple simultaneous writes on such tables (dict_sys->mutex).

And if you plan for High Availability, tables without Primary Key are NOT supported !

InnoDB Primary Key ? No Key !
To identify those tables, run the following SQL statement, to lookup GEN_CLUST_INDEX:

SELECT i.TABLE_ID,
t.NAME
FROM INFORMATION_SCHEMA.INNODB_INDEXES i
JOIN
INFORMATION_SCHEMA.INNODB_TABLES t ON (i.TABLE_ID = t.TABLE_ID)

WHERE
1.NAME="GEN_CLUST_INDEX}

see

https://elephantdolphin.blogspot.com/2021/08/finding-your-hidden-innodb-primary.html

InnoDB Primary Key ? No Key ! (2)

+
|
n
|
|
|
|
|
|
n

TABLE 1D

NAME

slack/some table
test/default test
test/tl

world/orders
world/sales
dbt3/time statistics

InnoDB GIPK mode

Since SOL 8.0.30, SOL supports generated invisible primary keys when running in GIPK mode !
GIPK mode is controlled by the sgl_generate_invisible_primary_key server system variable.

When SOL is running in GIPK mode, a primary key is added to a table by the server, the column and key
name is always my_row_id.

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

Indexes, not too little, not too much - unused indexes

Having to maintain can be costly and increase unnecessary iops.
Using sys Schema and innodb_index_stats it's possible to identify those unused indexes:

select database name, table name, tl.index name,
format bytes(stat value * @@innodb page size) size
from mysql.innodb index stats tl

join sys.schema unused indexes t2 on

object schema=database name

and object name=table name and

t2.index name=tl.index name
where stat name='size' order by stat value desc;

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

Indexes, not too little, not too much - unused indexes

select database name, table name, tl.index name,

format bytes(stat value * @Rinnodb page size) size

from mysql.innodb index stats tl

join sys.schema unused indexes t2 on object schema=database name

and object name=table name and t2.index name=tl.index name

where stat name='size' and database name="employees" order by stat value

desc;

+ Drop Unused

| database name | table name index name |
+

employees	employees hash bin names2 MiB
employees	employees month year hire idx MiB
employees	dept emp dept no MiB
employees	dept manager dept no KiB
+

rows in set (sec)

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

Indexes, not too little, not too much - unused indexes
And this is the same behaviour for indexes.

There is no reason to keep maintaining them:

select t2.*, format bytes(stat value * @Rinnodb page size) size
from mysql.innodb index stats tl

join sys.schema redundant indexes t2

on table schema=database name and t2.table name=tl.table name
and t2.redundant index name=tl.index name

where stat name='size' order by stat value desc\G

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

Duplicate Indexes

kkhkkhkkkkkhkkkkkhkhkkkkhkhkkkkkkkxkx row *kkkkkkkkkkkkkhkkkkhkhkkkkkkkk

table schema: world

table name: city
redundant_index name: part of name
redundant_index columns: Name
redundant_index non unique: 1
dominant index name: name_idx
dominant index columns: Name
dominant_ index non_unique:
subpart_exists:

sql drop_index: ALTER TABLE "world . city DROP INDEX "part_of name’
size: KiB

hkhkhkhkhkhkkkkkkkkkkhkhkhkhkhkkkkkkkkx*kx row *kkkkkkkkkkkkkkhkkkhkhkkkhkkkkk

Drop the duplicate indexes

table schema: world
table name: countrylanguage
redundant index name: CountryCode Drop the du p] jcate indexes
redundant_index columns: CountryCode
redundant_index non unique: 1
dominant index name: PRIMARY
dominant index columns: CountryCode,Language
dominant_ index non_unique:
subpart_exists:
sql drop_index: ALTER TABLE "world . countrylanguage DROP INDEX "CountryCode"
size: KiB
rows in set (sec)

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

Don't forget !

Do not take recommendations at face value, check before deleting an index.

Do not delete an index immediately, but first for some time. Once in a while this index
might be used, like for a monthly report.

But when I add or remove an Index, can I estimate the time left ?

£
-

28 Copyright © 2023, Oracle and/or its affiliates

Monitoring an ALTER statements progress

select stmt.thread id, stmt.sql text, stage.event name as state,

stage.work completed, stage.work estimated,

lpad (concat (round (*stage.work_completed/stage.work_estimated,),"%s"),10,™ ")
as completed at,

lpad (format pico_time (stmt.timer wait), , " ") as started_ago,

lpad(format pico_time (stmt.timer wait/round (*stage.work completed/stage.work estimated,?2)*

),

, " ") as estimated full time,

lpad(format pico_time ((stmt.timer wait/round(*stage.work completed/stage.work estimated,?2)*
)

-stmt. timer wait), , " ") as estimated remaining time,
current allocated memory

from performance_schema.events_statements current stmt
inner join sys.memory by thread by current bytes mt

on mt.thread id = stmt.thread id

inner join performance_schema.events_stages_ current stage

on stage.thread id = stmt.thread id\G

Monitoring an ALTER statements progress
For example

select stmt.thread_id, stmt.sql_text, stage.event_name as state,
stage.work_completed, stage.work_estimated,
lpad(concat(round(100xstage.work_completed/stage.work_estimated, 2),"%"),10," ")
as completed_at,

lpad(format_pico_time(stmt.timer_wait), 10, " ") as started_ago,

lpad(format_pico_time(stmt.timer_wait/round(100xstage.work_completed/stage.work_estimated,2)x100),
10, " ") as estimated_full_time,

lpad(format_pico_time((stmt.timer_wait/round(100xstage.work_completed/stage.work_estimated,2)*100)
-stmt.timer_wait), 10, " ") as estimated_remaining_time,

current_allocated memory
from performance_schema.events_statements_current stmt
inner join sys.memory_by_thread_by_current_bytes mt
on mt.thread_id = stmt.thread_id
inner join performance_schema.events_stages_current stage
on stage.thread_id = stmt.thread_id\G
Kkkkkkkkkkkkkkkkkkkkkkkkkkk 1. FOW kkkkkkkkkkkkkkkkkkkkkkkkkkk
thread_1id: 5169
sql_text: alter table temperature_history add index time_idx(time_stamp)
state: stage/innodb/alter table (read PK and internal sort)
work_completed: 607064
work_estimated: 1303965

completed_at: 46.56%
started_ago: 4.30 min
estimated_full_time: 9.24 min
estimated remaining time: 4.94 min

memory: 3.78 MiB

30 Copyright © 2023, Oracle and/or its affiliates

Missing indexes
We also need to find which indexes might be

MySQL > select * from sys.schema tables with full table scans;

| object schema | object name rows full scanned || latency |

| students | Customers 12210858800 | 41.28 min |

31 Copyright © 2023, Oracle and/or its affiliates

Missing indexes
We also need to fing

MySQL > select * \ble scans;

+

| object schema latency

+

| students 41.28 min
+

Full Table scan

iR

= = F = 4 =

MySQL > select * from sys.statements_with_full_table_scans where db='students' and query
like '%customers%'\G

3K 2k 2k 2k ok 5k Kk K 2k 2k ok K K Kk Ak Kk Kk K Kk Kk ok Kk Kk Kk k ‘I row 3K 2k 2k 2k ok 5Kk 5Kk 2k 2k 2k ok Kk Kk K 2k kK K K Kk k kK Kk k

query: SELECT * FROM " Customers” WHERE "age >?

db: students

exec_count: 140

total_latency: 17.97s

no_index_used count: 137

no_good_index_used_count: O

no_index_used_pct: 100

rows_sent: 87220420

rows_examined: 12210858800

rows_sent_avg: 625003

rows_examined_avg: 2505942

first_seen: 23-01-27 14:34:12.66877

last_seen: 2023-02-23 17:44:477.738911

digest: 4396a7fc5d8f2cdc157b04bbd0543facaeaa5d4bb0ab02734b101ab5018a9b18

Looks like - Machine Learning could automate this process

Autopilot Indexing — demo

35 Copyright © 2023, Oracle and/or its affiliates

Index Creation is slow

Creating indexes is a very slow operation even on my powerfull server with
multiple cores ! Anything I can do ?

Since MySQL 8.0.27, you have the possibility to control the maximum of
parallel threads InnoDB can use to create seconday indexes !

36 Copyright © 2023, Oracle and/or its affiliates O

Parallel Index Creation - example

MySQL > alter table booking

add index idx_2(flight_id, seat nger id):
Query OK, O rows affected|(9 min 0.6838 sec)

The default settings are:

innodb_ddl|_threads = 4
innodb_ddl_buffer_size = 1048576
innodb_parallel_read_threads = 4

The innodb_ddl_buffer_size is shared between all innodb_ddl_threads defined.
If you increase the amount of threads, we recommend that you also increase the buffer size.

Parallel Index Creation - example (2)
To find the best values for these variables, let's have a look at the amount of CPU cores:

MySQL > select count from information schema.INNODB METRICS

where name = 'cpu n';

So we have 16 cores to share.

As this machine has plenty of memory, we can allocate 1GB for the DB DDL buffer.

Parallel Index Creation - example (3)

MySQL > SET innodb_ddl_threads = §;
MySQL > SET innodb_parallel_read_threads = 8;
MySQL > SET innodb_ddI_buffer_size = 1048576000;

We can now retry the same index creation as previously:

MySQL > alter table booki ' rax—2(fght_id, seat, passenger_id);
Query OK, O rows affecteq (2 min 43.1862 sec)

Parallel Index Creation - example (4)

Best to run tests to define the optimal settings for your database, your hardware and data.

For example, here we got the best result setting the buffer size to 2GB
and both ddl threads and parallel read threads to 4.

It took 2 min 43 sec, much better than the initial 9 minutes !

For more information, go to

https://lefred.be/content/mysql-8-0-innodb-parallel-threads-for-online-ddl-operations/

41 Copyright © 2023, Oracle and/or its affiliates

Configuration
when MySQL is configured to match the workload

42 Copyright © 2023, Oracle and/or its affiliates

The secret #1 is the size of InnoDB Buffer Pool
It's important to have the working set in memory.

The size of the InnoDB Buffer Pool is important:

MySQL > SELECT format_bytes(@@innodb_buffer_pool_size) BufferPoolSize,
FORMAT(A.num * 100.0 / B.num,2) BufferPoolFullPct,

FORMAT(C.num * 100.0 / D.num,2) BufferPollDirtyPct

FROM

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_pages_data') A,

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_pages_total') B,

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_dirty') C,

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_total') D;

The secret #1 is the size of InnoDB Buffer Pool
It's important to have the working set in memory.

The size of the InnoDB Buffer Pool is important:

MySQL > SELECT format_bytes(@@innodb_buffer_pool_size) BufferPoolSize,

FORMAT(A.num * 100.0 / B.num,2) BufferPoolFullPct,
FORMAT(C.num * 100 0 /D num 2) BufferPollDirtvPct

pom it it e L e ittt L P +
FROM | BufferPoolSize | BufferPoolFullPct | BufferPollDirtyPct |
(SELECT Varl 4 __ e e o
WHERE variz | 128.00 MiB | 87.12 | 0.36 |

- fom e et e P +
(SELECT Var' 1 row in set (0.0012 sec)

WHERE variable_name = 'Innodb_butter_pool_pages_total’) B,

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_dirty') C,

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_total') D;

The secret #1 is the size of InnoDB Buffer Pool (2)

We can also verify the Ratio of pages requested and read from disk:

MySQL > SELECT FORMAT(A.num * 100 / B.num,2) DiskReadRatioPct
FROM

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_reads') A,

(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_read_requests') B;

Secret #2: InnoDB Redo Log

Too big or too small can affect perform

It's not recommended to oversize the Redo Log Capacity.

Redo Log files consume disk space and increases the recovery time in case of a restart
(innodb_fast_shutdown=1) or a sudden crash.

And it also slows down shutdown when innodb_fast _shutdown=0.

Secret #2: InnoDB Redo Log - Recommendations
During peak traffic time, you can get an estimation of the required amount for the Redo Log
Capacity by running the query below (all in one single line):

MySQL > SELECT VARIABLE_VALUE from performance_schema.global_status
WHERE VARIABLE_NAME='Innodb_redo_log_current_Isn' INTO @a;SELECT sleep(60)
INTO @garb ;SELECT VARIABLE_VALUE FROM performance_schema.global_status
WHERE VARIABLE_NAME='Innodb_redo_log_current_Isn' INTO @b;select
format_bytes(abs(@a - @b)) per_min, format_bytes(abs(@a - @b)*60) per_hour;
fomm e ——— fommmm————— +

| per min | per hour |

fomm e ——— fommmm————— +

| 21.18 MiB 1.24 GiB |

Secret #2: InnoDB Redo Log - Recommendations
During peak traffic time, you can get an estimation of the required amount for the Redo Log
Capacity by running the query below (all in one single line):

MySQL > SELECT VARIABLE_VALUE from performance_schema.global_status
WHERE VARIABLE_NAME='Innodb_redo_log_current_Isn' INTO @a;SELECT sleep(60)
INTO @garb ;SELECT VARIABLE_VALUE FROM performance_schema.global_status
Wigl==
format | MySQL > SET persist innodb_redo_log_capacity=1.24*1024*1024*1024;
| per_min | per_nour |

o +eemeee - +

| 21.18 MiB | 1.24 GiB |

+o——_——— - Fo——— - +

Optimal InnoDB Configuration to start

On a dedicated '//SOL Server,
the best is to let DB decide the size of the Buffer Pool and the Redo Log Capacity.

In my.cnf:
innodb_dedicated_server=1

See

https://dev.mysql.com/doc/refman/8.0/en/innodb-dedicated-server.html

Auto SHAPE selection ...

51 Copyright © 2023, Oracle and/or its affiliates

Memory Consumption
How much memory and how to limit it

52 Copyright © 2023, Oracle and/or its affiliates

Memory - InnoDB

The secret is to always run a production server with a warm Buffer Pool.

If you need to restart /1/SOL for any reason (maintenance, updgrade, crash), it's recommended to dump
the content of the DB Buffer Pool to disk and load it at startup:

innodb_buffer_pool_dump_at_shutdown="1
innodb_buffer_pool_load_at_startup=1

Memory - InnoDB (2)

We can get the InnoDB Buffer Pool memory allocation usage with the following query:

MySQL > SELECT * FROM sys.memory_global_by_current_bytes
WHERE event_name LIKE '‘'memory/innodb/buf_buf_pool'\G

K 2k 2k ok 2k 5k 2k 5k Ak ok Kk 2k ok 2k 5k %k ok Ak ok Kk %k ok %k ok Kk k k ’| row 2k 2k 2k ok 2k 5k 2k 5k %k ok Kk 2k ok %k 5k %k ok K ok Kk %k ok %k ok Kk ok ok
event_name: memory/innodb/buf_buf_pool

current_count: 1

current_alloc: 130.88 MiB

current_avg_alloc: 130.88 MiB

high_count: 1

high_alloc: 130.88 MiB

high_avg_alloc: 130.88 MiB

1 row in set (0.0010 sec)

Memory - MySQL
From Performance_Schema (and sys) we can get information about the Memory consumption
of V/SOL, this instrumentation has been extended in ///SQOL

SELECT * FROM sys.memory_global_total;

And you can have details related to the code area:

SELECT SUBSTRING_INDEX(event_name,'/',2) AS code_area,
format_bytes(SUM(current_alloc)) AS current_alloc

FROM sys.x$memory_global_by_current_bytes

GROUP BY SUBSTRING_INDEX(event_name,'/',2)

ORDER BY SUM(current_alloc) DESC;

_________________ +
total allocated |
_________________ +
4.28 GiB |
_________________ +

memory/innodb
memory/group rpl
memory/performance schema
memory/sql

memory/mysys
memory/temptable
memory/mysqglx

memory/vio

2.30 GiB
1024.00 MiB.
916.88 MiB
75.80 MiB
9.13 MiB
3.00 MiB
22.42 KiB
3.16 KiB

57 Copyright © 2023, Oracle and/or its affiliates

Memory: better allocation = better performance!

To have better performance choosing the right memory allocator (Linux) is important |

The default memory allocator in Linux distribution (glibc-malloc) doesn't perform well in
high concurrency environments and should be avoided !

Fortunately we have 2 other choices:
» jemalloc (good for perf, but less RAM management efficiency)
« tcmalloc (recommended choice)

Memory: better allocation = better performance ! (2)

Install tcmalloc:
$ sudo yum -y install gperftools-libs

And in systemd service file you need to add:

$ sudo EDITOR=vi systemctl edit mysqld
[Service]
Environment="LD_PRELOAD=/usr/lib64 /libtcmalloc_minimal.s0.4"

Memory: better allocation = better performance ! (3)

Reload the service and restart ///SOL:
Memory Allocator: jemalloc vs tcmalloc:

$ sudo systemctl daemon-reload
$ sudo systemctl restart mysqld

Memory Allocator: jemalloc vs tcmalloc:

MySQL RAM VmSIZE (KB): RW_debugRAM_20H run10 1..2Kusr pool8G jemalloc/tcmalloc @48cores-HT [ext]

36250000.0 - %/ | v Y y | 1740 — mysqld -- VmSIZE

32500000.0 = mysqld -- VmDATA

28750000.0

25000000.0 JEMALLOC TCMALLOC
21250000.0
17500000.0
13750000.0 ‘ { | J | |
10000000.0 T — | T T — — T I T T | —

1914 19:21 19:27 19:34 19:41 19:47 19:54 17:52 17:58 18:05 18:12 18:18 18:25

VmSize: sum of all mapped memory
VmData: size of data, stack, and text segments

RAM Efficiency (lower is preferred)

MySQL RAM RSS (KB): RW_debugRAM_20H run10 1..2Kusr pool8G jemalloc/tcmalloc @48cores-HT [ext] - [VmMRSS]
27000000.0 — 550520

24500000.0 |
22000000.0

17000000.0
14500000.0

12000000.0 - T T T T
19:14 19:21 19:27 19:34 19:41 19:47 19:54 17:52 17:58 18:05 18:12 18:18 18:25

vmRSS: size of memory portions (Resident Set Size)

:172-%)5 = mysqld

62 Copyright © 2023, Oracle and/or its affiliates

63 Copyright © 2023, Oracle and/or its affiliates

All about queries
everything you need to know

about your queries

Know your workload! Overall

It's important to know what type of workload your database is performing.
Most of the time, people are surprised with the result !

MySQL > SELECT SUM(count read) "tot reads’,

CONCAT (ROUND ((SUM (count read) /SUM(count star))*100, 2),"%") “reads,
SUM (count write) "tot writes ,
CONCAT (ROUND ((SUM (count write)/sum(count star))*100, 2),"%") "writes’

FROM performance schema.table 1o walts summary by table
WHERE count star > 0 ;

- o Fom e ——— to——— +
| tot reads | reads | tot writes | writes |
- o Fom e ——— to——— +
| 16676217 | 99.11% | 149104 | 0.89% |

64 Copyright © 2023, Oracle and/or its affiliates

Know your workload ! (2) - Per schema

MySQL > SELECT object schema,
CONCAT(ROUND((SUM(count_read)/SUM(count_star))*100, 2),"s")
CONCAT(ROUND((SUM(count_write)/SUM(count_star))*100, 2),"s")
FROM performance schema.table 1o wailts summary by table
WHERE count star > 0 GROUP BY object schema;

- - 4 +
| object schema | reads | writes |
- - 4 +
| sys | 100.00% | 0.00%. |
| mydb | 100.00% | 0.00% |
| test | 100.00% | 0.00% |
| docstore | 100.00% | 0.00% |
| sbtest | 99.09% | 0.91% |

65 Copyright © 2023, Oracle and/or its affiliates

"reads ,

‘writes

Know your workload ! (3) - Per Table

And we can check the statistics per table:

MySQL > SELECT object schema, object name,

CONCAT (ROUND ((count read/count star)*100, 2),"%") "reads’,
CONCAT (ROUND ((count write/count star)*100, 2),"$") ‘writes’
FROM performance schema.table 1o walts summary by table

WHERE count star > 0 and object schema='sbtest' ;

+————— Fm—————— F————— o ——— +
| object schema | object name | reads | writes |
+————— Fm—————— F————— o ——— +
sbtest	sbtestl	99.07%	0.33%
sbtest	sbtest?	97.71%	2.29%
sbtest	sbtest3	97.71%	2.29%
sbtest	sbtest4	97.73%	2.27%
S S S S R —— -+

66 Copyright © 2023, Oracle and/or its affiliates

67 Copyright © 2023, Oracle and/or its affiliates

Finding the Ugly Duckling

We can define bad queries in two different categories:
« Queries called too often
« Queries that are too slow

« Full table scan

« Use filesort

« Use temporary tables

If there could be only one?

If you should optimize only one query, the best candidate should be
the query that consumes the most of the execution time (seen as latency in PFS, aka "response time").

sys Schema contains all the necessary info to find that Ugly Duckling:

SELECT schema name, format pico time (total latency) tot lat,

exec count, format pico time (total latency/exec count) latency per call,
query sample text

FROM sys.xS$Sstatements with runtimes in 95th percentile AS tl

JOIN performance schema.events statements summary by digest AS t2

ON t2.digest=tl.digest

WHERE schema name NOT in ('performance schema', 'sys')

ORDER BY (total latency/exec count) desc LIMIT 1\G

If there could be only one? And we have the biggest loser.

%k %k %k 2k ok ok ok ok ok ok ok ok 2k 2k 2k %k ok ok ok ok ok ok ok ok k k k 1. row %k %k %k 2k 5k 5k ok ok ok ok ok 2k 2k %k %k %k %k ok ok ok ok ok ok ok ok k k

schema_name: piday

tot_lat: 4.29 h

exec_count: 5

latency_per_call: 51.57 min

query_sample_text: select a.device_id, max(a.value) as "max temp
min(a.value) as mintemp , avg(a.value) as "avgtemp ,
max(b.value) as “max humidity ', min(b.value) as “ min humidity -,
avg(b.value) as "avg humidity

from temperature_history a

join humidity_history b on b.device_id=a.device_id

where date(a.time_stamp) = date(now())

and date(b.time_stamp)=date(now()) group by device_id

Oh, so now you want that —

AUTOMATED
Using Machine Learning

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

7

72

Workload-aware ML-powered automation

INCREASES PRODUCTIVITY AND HELPS ELIMINATE HUMAN ERRORS | CAPABILITIES FOR ANALYTICS AND OLTP

(InLA) Autopilot indexing
Auto Parallel Load

Auto Provisioning
Auto Shape Prediction A e Placem_ent
Auto Encoding

Auto Schema Inference Auto Unload
Adaptive Data Sampling st CaniressioT
Adaptive Data Flow

Autopilot

Data-driven
Query-driven
ML automation

Auto Scheduling
Auto Change Propagation
Auto Query Time Estimation

ACUDIBEANEED T Auto Query Plan Improvement
Automate® Adaptive Query Execution
Auto Thread Pooling

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

MySQL Autopilot Indexing (Limited Availability)

RECOMMENDS SECONDARY INDEXES FOR OLTP WORKLOADS

Queries DMLs Queries_ : DMLs _

|
CREATE / T |

[[
[

¢

Col. v Cols r
Rows IOSII [rows [L I | NI
N C T .-
Base | || || “ Base | “ || || | ----

tables ||| || || l----

tables | || | |

« Create & Drop suggestions S VG
« Considers both query and DML perf 7/

73 MySQL Summit Copyright © 2024, Oracle and/or its affiliates ' by . 2 / 1 by i) X

74

Autopilot Indexing

Workload—aware machine learning recommendations for adding and removing table indexes 7

Considers both query and DML performance (index maintenance cost)
Recommends CREATE and DROP of indexes

Generates DDLs for index creation/drop

Provides performance prediction (per query and total workload)
Provides storage prediction

Provides explanation for the recommendations

MySQL Summit Copyright © 2024, Oracle and/or its affiliates

75

Why ML-based automation?

¢ ® @

Works for individual workloads ML models are adaptable Various optimization targets
« No guess work « Ever-changing cloud env « Throughput
* Interpretable « New server releases Latency

e Storage

MySQL Summit Copyright © 2024, Oracle and/or its affiliates O

Autopilot Indexing console

MySQL HeatWave ®
ORACLE

HeatWave Cluster MySQL DB System Username X
Query Editor Manage Data in HeatWave Data Imports Autopilot Index Advisor R Autopilot Index A... admin Disconnect

Apply Recommendations Show Affected Queries Refresh

A A

Index ID acommendation < Schema Name ¢ Table Name Indexed Columns Performance Impact

~

bb_seats_sf7 airport_distance d_ap_idO, d_distance Missing Index ~ Low

bb_seats_sf7 flight f_arrive_ap_id, f_depart_ap_id, f_depart_time Missing Index A HIGH
bb_seats_sf7 flight f_status Unused Index

bb_seats_sf7 flight f_status Duplicate Index|

1. Create & Drop suggestions

2. Explanations for suggestions

61 - 0 @ '38 7 MiB @ . High performance impact

M Index D3

OF Low performance impact
28.6M8 - B Index D2

57.2

Estimated total speedup © Estimated storage impact @

Drop

40f4 1000.0 GiB » ey

Create Total

Selected recommendations @ Total DB System data storage @ -
Performance/storage tradeoff plot C

[E] introduction 8 MysaL 232 HeatWave Clusters B Workspaces £ HeatWave AutoML | Performance

MySQL Summit Copyright © 2024, Oracle and/or 1ts affiliates

Autopilot Indexing console

MySQL HeatWave Queries most affected by the selected recommendations
ORACLE

Query Text Index ID Reason

Query Editor Manage Data in HeatWave Data Imports Autopilot Index Advisor SELECT * FROM " airport_d... Covering Index

_ SELECT: Ei D e E-AISIDIS Secondary Index
Apply Recommendations Show Affected Queries Refresh _]

A

Index ID Recommendation Schema Name ¢ Table Name Index«

bb_seats_sf7 airport_distance d_ap_

bb_seats_sf7 flight f_arriv
bb_seats_sf7 flight f_statt

bb_seats_sf7 flight f_statt

3. Query perf improvement estimates Query Details

Query text

SELECT “F_ID" , "F_AL ID" , “F_SEATS_LEFT" , F_DEPART AP_ID" ,
4 S - “F_DEPART TIME" , “F_ARRIVE AP_ID" , “F_ARRIVE_TIME , “AL_NAME" ,
. torage est”nate AL_IATTRO0 , "AL_IATTRO1' FROM "flight’ , “airline’ WHERE)
| " AP_ID" = ? AND “F_DEPART TIME® >= ? AND “F_DEPART TIME® <= ? AND
= “AL_ID" AND “F_ARRIVE_AP_ID" IN (...)

Index ID Number of executions
3 3863

61.80 % ® -38.7MiB®
Current execution time (ms) Estimated speedup

Estimated total speedup © Estimated storage impact © 15.411 10.0x

Reason for recommendation
Secondary Index

40f4 1000.0 GiB

Selected recommendations @ Total DB System data storage @

[E] Introduction 8 MysaL 242 HeatWave Clusters ER Workspaces £} HeatWave AutoML

77
MySQL Summit Copyright © 2024, Oracle and/or its affiliates

78

Results

THROUGHPUT AT PAR OR BETTER EVEN ON BENCHMARKS WHICH ARE TUNED

Throughput (request/s)

MySQL Summit

Throughput Tuned Benchmark Autopilot Indexing
25000
20000 =
15000 ||
10000 |
5000 — —— — — —
0
BREESES SMALLBANK SF7 SEATS SF7 EPINIONS SF350 AUCTIONMARK SF8
Benchmark

Autopilot recommends indexes whose performance is at par or better than manually tuned benchmarks

In some cases, Autopilot recommends fewer indexes which saves storage

Copyright © 2024, Oracle and/or its affiliates O

MySQL Autopilot Indexing Demo

Workload Throughput

MySQL HeatWave ®
175 ORACLE

150 H / g L 7 - - o N o "

HeatWave Cluster MySQL DB System Username

. : Disconnect
- Autopilot Index A admin

125 Query Editor Manage Data in HeatWave Data Imports Autopilot Index Advisor

100 Show Affected Queries Refresh

Throughput (requests/second)

No recommendations found

200 300 400 There are either no tables in your DB system, or insufficient activity in the workload.
Time (s)

Workload Mix

Transaction count in each 100

LY 2t e
2:‘333“’ \ﬁ:‘a‘\o‘\ \)\Siome‘ \)‘faa{\oﬂ
0 pes! C pesf

Transaction name E] Introduction @ MySQL 3& HeatWave Clusters E Workspaces g HeatWave AutoML M Performance

79 MySQC O

v//////%

S

Thank you!

