
MySQL Summit

Configuration, best practices and tracking the ugly duckling

Mike Frank

Product Management Director

MySQL

Mar 23, 2023

Top 10 tips for MySQL
Performance Tuning

Agenda

Agenda

Importing the data
1. Use MySQL Shell Utility
2. Speeding up import

Schema Design
3. Primary Keys
4. Indexes
5. Parallel Index Creation

Configuration
6. The right config for the

workload

Memory
7. Consumption
8. Linux memory allocator

All about queries
9. Workload
10.Ugly duckling

Top Ten Tips

Copyright © 2023, Oracle and/or its affiliates

4 Copyright © 2023, Oracle and/or its affiliates

Importing Data
at speed of light !

6 Copyright © 2023, Oracle and/or its affiliates

Importing Data

For logical dumps, MySQL Shell Dump & Load Utility should be preferred over the old and single
threaded mysqldump !

MySQL Shell Dump & Load can dump a full instance, one or multiple schemas or tables. You can also
add a where clause.

This tool dumps and load the data in parallel !

The data can be stored on filesystem, OCI Object Storage, S3 and Azure Blob Storage.

JS > util.dumpInstance("/opt/dump/", {threads: 32})

7 Copyright © 2023, Oracle and/or its affiliates

Importing Data (2)

The dump can be imported into MySQL using util.loadDump().
loadDump() is the method used to load dumps created by:
• util.dumpInstance()
• util.dumpSchemas()
• util.dumpTables()

JS > util.loadDump("/opt/dump/", {threads: 32})

8 Copyright © 2023, Oracle and/or its affiliates

9 Copyright © 2023, Oracle and/or its affiliates

Importing Data – High Speed

We can speed up the process even more ! During an initial load, & the durability is not a problem, if there is
a crash, the process can be restarted. Therefore, if the durability is not important, we can reduce it to speed
up the loading even more.
We can disable binary logs, disable redo logs and tune InnoDB by altering a few settings.
Pay attention that disabling and enabling binary logs require a restart of MySQL.

start mysqld with --disable-log-bin

MySQL > ALTER INSTANCE DISABLE INNODB REDO_LOG;
MySQL > set global innodb_extend_and_initialize=OFF;
MySQL > set global innodb_max_dirty_pages_pct=10;
MySQL > set global innodb_max_dirty_pages_pct_lwm=10;

10 Copyright © 2023, Oracle and/or its affiliates

Importing Data – High Speed (2)

We can speed up the process even more ! During an initial load, the durability is not a problem, if there is a
crash, the process can be restarted. Therefore, if the durability is not important, we can reduce it to speed
up the loading even more.
We can disable binary logs, disable redo logs and tune some InnoDB settings.
Pay attention that disabling and enabling binary logs require a restart of MySQL.

MySQL > ALTER INSTANCE DISABLE INNODB REDO_LOG;
MySQL > set global innodb_extend_and_initialize=OFF;
MySQL > set global innodb_max_dirty_pages_pct=10;
MySQL > set global innodb_max_dirty_pages_pct_lwm=10;

2802 chunks (194.70M rows, 64.75 GB) for 1 tables in 1 schemas
were loaded in 4 min 51 sec (avg throughput 222.51 MB/s)

primary keys
indexes, not too little, not too much

Schema
Design

Copyright © 2023, Oracle and/or its affiliates11

12 Copyright © 2023, Oracle and/or its affiliates

For InnoDB, a Primary Key is required and a good one is even better !
Primary Keys

Copyright © 2023, Oracle and/or its affiliates13

For InnoDB, a Primary Key is required and a good one is even better !

Some theory
InnoDB stores data in table spaces. The records are stored and sorted using the clustered index (PK).

Primary Keys

Copyright © 2023, Oracle and/or its affiliates14

For InnoDB, a Primary Key is required and a good one is even better !

Some theory
InnoDB stores data in table spaces. The records are stored and sorted using the clustered index (PK).

All secondary indexes also contain the primary key as the right-most column in the index (even if this is not
exposed). That means when a secondary index is used to retrieve a record, two indexes are used: first the
secondary one pointing to the primary key that will be used to finally retrieve the record.

Primary Keys

Copyright © 2023, Oracle and/or its affiliates15

The primary key impact how the values are inserted and the size of the secondary indexes.
A non sequential PK can lead to many random IOPS.

InnoDB Primary Key (2)

Copyright © 2023, Oracle and/or its affiliates16

The primary key impact how the values are inserted and the size of the secondary indexes.
A non sequential PK can lead to many random IOPS.

InnoDB Primary Key (2)

Copyright © 2023, Oracle and/or its affiliates17

Also, it's more and more common to use
application that generates complete random
primary keys

...that means if the Primary Key is not
sequential,

InnoDB will have to heavily re-balance all the
pages on inserts.

If we compare the same load (inserts) when using an auto_increment integer as Primary Key,
we can see that only the latest pages are recently touched:

InnoDB Primary Key (3)

Copyright © 2023, Oracle and/or its affiliates18

Generated with https://github.com/jeremycole/innodb_ruby from @jeremycole

https://github.com/jeremycole/innodb_ruby

Another common mistake when using InnoDB is to not define any Primary Key.
InnoDB Primary Key ? No Key !

Copyright © 2023, Oracle and/or its affiliates19

Another common mistake when using InnoDB is to not define any Primary Key.

When no primary key is defined, the first unique not null key is used.

And if none is available, InnoDB will create an hidden primary key (6 bytes).

InnoDB Primary Key ? No Key !

Copyright © 2023, Oracle and/or its affiliates20

Another common mistake when using InnoDB is to not define any Primary Key.

When no primary key is defined, the first unique not null key is used.

And if none is available, InnoDB will create an hidden primary key (6 bytes).

The problem with such key is that you don’t have any control of it and worse, this value is global to all tables
without primary keys and can be a contention problem if you perform multiple simultaneous writes on such
tables (dict_sys->mutex).

And if you plan for High Availability, tables without Primary Key are not supported !

InnoDB Primary Key ? No Key !

Copyright © 2023, Oracle and/or its affiliates21

To identify those tables, run the following SQL statement, which is to lookup for
GEN_CLUST_INDEX:

SELECT i.TABLE_ID,
t.NAME

FROM INFORMATION_SCHEMA.INNODB_INDEXES i
JOIN

INFORMATION_SCHEMA.INNODB_TABLES t ON (i.TABLE_ID = t.TABLE_ID)
WHERE

i.NAME='GEN_CLUST_INDEX';

InnoDB Primary Key ? No Key ! (2)

Copyright © 2023, Oracle and/or its affiliates22

see https://elephantdolphin.blogspot.com/2021/08/finding-your-hidden-innodb-primary.html

https://elephantdolphin.blogspot.com/2021/08/finding-your-hidden-innodb-primary.html

InnoDB Primary Key ? No Key ! (2)

Copyright © 2023, Oracle and/or its affiliates23

+----------+----------------------+
| TABLE_ID | NAME |
+----------+----------------------+
1198	slack/some_table
1472	test/default_test
1492	test/t1
2018	world/orders
2019	world/sales
2459	dbt3/time_statistics
+----------+----------------------+

24 Copyright © 2023, Oracle and/or its affiliates

InnoDB GIPK mode

Since MySQL 8.0.30, MySQL supports generated invisible primary keys when running in GIPK mode !

GIPK mode is controlled by the sql_generate_invisible_primary_key server system variable.

25 Copyright © 2023, Oracle and/or its affiliates

InnoDB GIPK mode

Since MySQL 8.0.30, MySQL supports generated invisible primary keys when running in GIPK mode !

GIPK mode is controlled by the sql_generate_invisible_primary_key server system variable.

When MySQL is running in GIPK mode, a primary key is added to a table by the server, the column and key
name is always my_row_id.

InnoDB Primary Key ? No Key ! (2)

Copyright © 2023, Oracle and/or its affiliates26

MySQL > SELECT @@sql_generate_invisible_primary_key;
+--------------------------------------+
| @@sql_generate_invisible_primary_key |
+--------------------------------------+
| 1 |
+--------------------------------------+
MySQL > CREATE TABLE devlive (name varchar(20), beers int unsigned);
MySQL > INSERT INTO devlive VALUES ('kenny', 0), ('lefred',1);
MySQL > SELECT * FROM devlive;
+--------+-------+
| name | beers |
+--------+-------+
| kenny | 0 |
| lefred | 1 |
+---------+------+

InnoDB Primary Key ? No Key ! (2)

Copyright © 2023, Oracle and/or its affiliates27

MySQL > SHOW CREATE TABLE devlive\G
*************************** 1. row ***************************
Table: devlive
Create Table: CREATE TABLE `devlive` (
`my_row_id` bigint unsigned NOT NULL AUTO_INCREMENT /*!80023 INVISIBLE */,
`name` varchar(20) DEFAULT NULL,
`beers` int unsigned DEFAULT NULL,
PRIMARY KEY (`my_row_id`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

InnoDB Primary Key ? No Key ! (2)

Copyright © 2023, Oracle and/or its affiliates28

MySQL > SHOW CREATE TABLE devlive\G
*************************** 1. row ***************************
Table: devlive
Create Table: CREATE TABLE `devlive` (
`my_row_id` bigint unsigned NOT NULL AUTO_INCREMENT /*!80023 INVISIBLE */,
`name` varchar(20) DEFAULT NULL,
`beers` int unsigned DEFAULT NULL,
PRIMARY KEY (`my_row_id`)
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8mb4
COLLATE=utf8mb4_0900_ai_ci

MySQL > SELECT *, my_row_id FROM devlive;
+--------+-------+-----------+
| name | beers | my_row_id |
+--------+-------+-----------+
| kenny | 0 | 1 |
| lefred | 1 | 2 |
+--------+-------+-----------+

It's also possible to hide it completely (for some legacy application that could rely
on informantion_schema and SHOW CREATE TABLE):

InnoDB GIPK mode - example (3)

Copyright © 2023, Oracle and/or its affiliates29

MySQL > SET show_gipk_in_create_table_and_information_schema = 0;
MySQL > SHOW CREATE TABLE devlive\G
*************************** 1. row ***************************
Table: devlive
Create Table: CREATE TABLE `devlive` (
`name` varchar(20) DEFAULT NULL,
`beers` int unsigned DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci

30 Copyright © 2023, Oracle and/or its affiliates

31 Copyright © 2023, Oracle and/or its affiliates

Indexes, not too little, not too much - unused indexes

Having to maintain indexes that are not used can be costly and increase unnecessary iops.
Using sys Schema and innodb_index_stats it's possible to identify those unused indexes:

select database_name, table_name, t1.index_name,
format_bytes(stat_value * @@innodb_page_size) size
from mysql.innodb_index_stats t1
join sys.schema_unused_indexes t2 on
object_schema=database_name
and object_name=table_name and
t2.index_name=t1.index_name
where stat_name='size' order by stat_value desc;

Indexes, not too little, not too much - unused indexes

Copyright © 2023, Oracle and/or its affiliates32

select database_name, table_name, t1.index_name,
format_bytes(stat_value * @@innodb_page_size) size
from mysql.innodb_index_stats t1
join sys.schema_unused_indexes t2 on object_schema=database_name
and object_name=table_name and t2.index_name=t1.index_name
where stat_name='size' and database_name="employees" order by stat_value
desc;
+---------------+--------------+---------------------+-----------+
| database_name | table_name | index_name | size |
+---------------+--------------+---------------------+-----------+
employees	employees	hash_bin_names2	9.52 MiB
employees	employees	month_year_hire_idx	6.52 MiB
employees	dept_emp	dept_no	5.52 MiB
employees	dept_manager	dept_no	16.00 KiB
+---------------+--------------+---------------------+-----------+
4 rows in set (0.0252 sec)

Drop Unused

And this is the same behaviour for duplicate indexes.
There is no reason to keep maintaining them:

Indexes, not too little, not too much - unused indexes

Copyright © 2023, Oracle and/or its affiliates33

select t2.*, format_bytes(stat_value * @@innodb_page_size) size
from mysql.innodb_index_stats t1
join sys.schema_redundant_indexes t2
on table_schema=database_name and t2.table_name=t1.table_name
and t2.redundant_index_name=t1.index_name
where stat_name='size' order by stat_value desc\G

Duplicate Indexes

Copyright © 2023, Oracle and/or its affiliates34

*************************** 1. row ***************************
table_schema: world
table_name: city
redundant_index_name: part_of_name
redundant_index_columns: Name
redundant_index_non_unique: 1
dominant_index_name: name_idx
dominant_index_columns: Name
dominant_index_non_unique: 1
subpart_exists: 1
sql_drop_index: ALTER TABLE `world`.`city` DROP INDEX `part_of_name`
size: 112.00 KiB
*************************** 2. row ***************************
table_schema: world
table_name: countrylanguage
redundant_index_name: CountryCode
redundant_index_columns: CountryCode
redundant_index_non_unique: 1
dominant_index_name: PRIMARY
dominant_index_columns: CountryCode,Language
dominant_index_non_unique: 0
subpart_exists: 0
sql_drop_index: ALTER TABLE `world`.`countrylanguage` DROP INDEX `CountryCode`
size: 64.00 KiB
2 rows in set (0.0330 sec)

Do not take recommendations at face value, check before deleting an index.

Do not delete an index immediately, but first set it as INVISIBLE for some time. Once in a while this index
might be used, like for a monthly report.

Don't forget !

Copyright © 2023, Oracle and/or its affiliates35

Monitoring an ALTER statements progress

Copyright © 2023, Oracle and/or its affiliates36

select stmt.thread_id, stmt.sql_text, stage.event_name as state,

stage.work_completed, stage.work_estimated,

lpad(concat(round(100*stage.work_completed/stage.work_estimated, 2),"%"),10," ")

as completed_at,

lpad(format_pico_time(stmt.timer_wait), 10, " ") as started_ago,

lpad(format_pico_time(stmt.timer_wait/round(100*stage.work_completed/stage.work_estimated,2)*10
0),

10, " ") as estimated_full_time,

lpad(format_pico_time((stmt.timer_wait/round(100*stage.work_completed/stage.work_estimated,2)*1
00)

-stmt.timer_wait), 10, " ") as estimated_remaining_time,

current_allocated memory

from performance_schema.events_statements_current stmt

inner join sys.memory_by_thread_by_current_bytes mt

on mt.thread_id = stmt.thread_id

inner join performance_schema.events_stages_current stage

on stage.thread_id = stmt.thread_id\G

For example
Monitoring an ALTER statements progress

Copyright © 2023, Oracle and/or its affiliates37

We also need to find which indexes might be missing:

MySQL > select * from sys.schema_tables_with_full_table_scans;

+-----------------------------+-------------+-------------------+-----------+

| object_schema | object_name | rows_full_scanned | latency |

+-----------------------------+-------------+-------------------+-----------+

| students | Customers | 12210858800 | 41.28 min |

+-----------------------------+-------------+-------------------+-----------+

Missing indexes

Copyright © 2023, Oracle and/or its affiliates38

We also need to find which indexes might be missing:

MySQL > select * from sys.schema_tables_with_full_table_scans;

+-----------------------------+-------------+-------------------+-----------+

| object_schema | object_name | rows_full_scanned | latency |

+-----------------------------+-------------+-------------------+-----------+

| students | Customers | 12210858800 | 41.28 min |

+-----------------------------+-------------+-------------------+-----------+

Missing indexes

Copyright © 2023, Oracle and/or its affiliates39

We also need to find which indexes might be missing:

MySQL > select * from sys.schema_tables_with_full_table_scans;

+-----------------------------+-------------+-------------------+-----------+

| object_schema | object_name | rows_full_scanned | latency |

+-----------------------------+-------------+-------------------+-----------+

| students | Customers | 12210858800 | 41.28 min |

+-----------------------------+-------------+-------------------+-----------+

Missing indexes

Copyright © 2023, Oracle and/or its affiliates40

MySQL > select * from sys.statements_with_full_table_scans where db='students' and query
like '%customers%'\G
*************************** 1. row ***************************
query: SELECT * FROM `Customers` WHERE `age` > ?
db: students
exec_count: 140
total_latency: 17.97s
no_index_used_count: 137
no_good_index_used_count: 0
no_index_used_pct: 100
rows_sent: 87220420
rows_examined: 12210858800
rows_sent_avg: 623003
rows_examined_avg: 2505942
first_seen: 23-01-27 14:34:12.66877
last_seen: 2023-02-23 17:44:47.738911
digest: 4396a7fc5d8f2cdc157b04bbd0543facaeaa5d4bb0ab02734b101ab5018a9b18

41 Copyright © 2023, Oracle and/or its affiliates

Index Creation is slow

Copyright © 2023, Oracle and/or its affiliates42

43 Copyright © 2023, Oracle and/or its affiliates

Parallel Index Creation

The amount of parallel threads used by InnoDB is controlled by innodb_ddl_threads.

This new variable is coupled with another new variable: innodb_ddl_buffer_size.

If you have fast storage and multiple CPU cores,
tuning these variables can speed up secondary index creation.

44 Copyright © 2023, Oracle and/or its affiliates

Parallel Index Creation - example

MySQL > alter table booking
add index idx_2(flight_id, seat, passenger_id);
Query OK, 0 rows affected (9 min 0.6838 sec)

45 Copyright © 2023, Oracle and/or its affiliates

Parallel Index Creation - example

MySQL > alter table booking
add index idx_2(flight_id, seat, passenger_id);
Query OK, 0 rows affected (9 min 0.6838 sec)

The default settings are:

innodb_ddl_threads = 4
innodb_ddl_buffer_size = 1048576
innodb_parallel_read_threads = 4

46 Copyright © 2023, Oracle and/or its affiliates

Parallel Index Creation - example

MySQL > alter table booking
add index idx_2(flight_id, seat, passenger_id);
Query OK, 0 rows affected (9 min 0.6838 sec)

The default settings are:

innodb_ddl_threads = 4
innodb_ddl_buffer_size = 1048576
innodb_parallel_read_threads = 4

The innodb_ddl_buffer_size is shared between all innodb_ddl_threads defined.
If you increase the amount of threads, we recommend that you also increase the buffer size.

To find the best values for these variables, let's have a look at the amount of CPU cores:

MySQL > select count from information_schema.INNODB_METRICS

where name = 'cpu_n';

+-------+

| count |

+-------+

| 16 |

+-------+

So we have 16 cores to share.

As this machine has plenty of memory, we can allocate 1GB for the InnoDB DDL buffer.

Parallel Index Creation - example (2)

Copyright © 2023, Oracle and/or its affiliates47

MySQL > SET innodb_ddl_threads = 8;
MySQL > SET innodb_parallel_read_threads = 8;
MySQL > SET innodb_ddl_buffer_size = 1048576000;

Parallel Index Creation - example (3)

Copyright © 2023, Oracle and/or its affiliates48

MySQL > SET innodb_ddl_threads = 8;
MySQL > SET innodb_parallel_read_threads = 8;
MySQL > SET innodb_ddl_buffer_size = 1048576000;

Parallel Index Creation - example (3)

Copyright © 2023, Oracle and/or its affiliates49

We can now retry the same index creation as previously:

MySQL > alter table booking add index idx_2(flight_id, seat, passenger_id);
Query OK, 0 rows affected (2 min 43.1862 sec)

Best to run tests to define the optimal settings for your database, your hardware and data.

For example, here we got the best result setting the buffer size to 2GB
and both ddl threads and parallel read threads to 4.

It took 2 min 43 sec, much better than the initial 9 minutes !

For more information, go to
https://lefred.be/content/mysql-8-0-innodb-parallel-threads-for-online-ddl-operations/

Parallel Index Creation - example (4)

Copyright © 2023, Oracle and/or its affiliates50

https://lefred.be/content/mysql-8-0-innodb-parallel-threads-for-online-ddl-operations/

Configuration
when MySQL is configured to match the workload

Copyright © 2023, Oracle and/or its affiliates51

52 Copyright © 2023, Oracle and/or its affiliates

It's important to have the working set in memory.
The size of the InnoDB Buffer Pool is important:

MySQL > SELECT format_bytes(@@innodb_buffer_pool_size) BufferPoolSize,
FORMAT(A.num * 100.0 / B.num,2) BufferPoolFullPct,
FORMAT(C.num * 100.0 / D.num,2) BufferPollDirtyPct
FROM
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_pages_data') A,
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_pages_total') B,
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_dirty') C,
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_total') D;

The secret #1 is the size of InnoDB Buffer Pool

Copyright © 2023, Oracle and/or its affiliates53

It's important to have the working set in memory.
The size of the InnoDB Buffer Pool is important:

MySQL > SELECT format_bytes(@@innodb_buffer_pool_size) BufferPoolSize,
FORMAT(A.num * 100.0 / B.num,2) BufferPoolFullPct,
FORMAT(C.num * 100.0 / D.num,2) BufferPollDirtyPct
FROM
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_pages_data') A,
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_pages_total') B,
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_dirty') C,
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name='Innodb_buffer_pool_pages_total') D;

The secret #1 is the size of InnoDB Buffer Pool

Copyright © 2023, Oracle and/or its affiliates54

+----------------+-------------------+--------------------+
| BufferPoolSize | BufferPoolFullPct | BufferPollDirtyPct |
+----------------+-------------------+--------------------+
| 128.00 MiB | 87.12 | 0.36 |
+----------------+-------------------+--------------------+
1 row in set (0.0012 sec)

We can also verify the Ratio of pages requested and read from disk:

MySQL > SELECT FORMAT(A.num * 100 / B.num,2) DiskReadRatioPct
FROM
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_reads') A,
(SELECT variable_value num FROM performance_schema.global_status
WHERE variable_name = 'Innodb_buffer_pool_read_requests') B;
+------------------+
| DiskReadRatioPct |
+------------------+
| 3.53 |
+------------------+

The secret #1 is the size of InnoDB Buffer Pool (2)

Copyright © 2023, Oracle and/or its affiliates55

Too big or too small can affect perform

It's not recommended to oversize the Redo Log Capacity.

Redo Log files consume disk space and increases the recovery time in case of a restart
(innodb_fast_shutdown=1) or a sudden crash.

And it also slows down shutdown when innodb_fast_shutdown=0.

Secret #2: InnoDB Redo Log

Copyright © 2023, Oracle and/or its affiliates56

During peak traffic time, you can get an estimation of the required amount for the Redo Log
Capacity by running the query below (all in one single line):

MySQL > SELECT VARIABLE_VALUE from performance_schema.global_status
WHERE VARIABLE_NAME='Innodb_redo_log_current_lsn' INTO @a;SELECT sleep(60)
INTO @garb ;SELECT VARIABLE_VALUE FROM performance_schema.global_status
WHERE VARIABLE_NAME='Innodb_redo_log_current_lsn' INTO @b;select
format_bytes(abs(@a - @b)) per_min, format_bytes(abs(@a - @b)*60) per_hour;
+-----------+----------+

| per_min | per_hour |

+-----------+----------+

| 21.18 MiB | 1.24 GiB |

+-----------+----------+

Secret #2: InnoDB Redo Log - Recommendations

Copyright © 2023, Oracle and/or its affiliates57

During peak traffic time, you can get an estimation of the required amount for the Redo Log
Capacity by running the query below (all in one single line):

MySQL > SELECT VARIABLE_VALUE from performance_schema.global_status
WHERE VARIABLE_NAME='Innodb_redo_log_current_lsn' INTO @a;SELECT sleep(60)
INTO @garb ;SELECT VARIABLE_VALUE FROM performance_schema.global_status
WHERE VARIABLE_NAME='Innodb_redo_log_current_lsn' INTO @b;select
format_bytes(abs(@a - @b)) per_min, format_bytes(abs(@a - @b)*60) per_hour;
+-----------+----------+
| per_min | per_hour |
+-----------+----------+
| 21.18 MiB | 1.24 GiB |
+-----------+----------+

Secret #2: InnoDB Redo Log - Recommendations

Copyright © 2023, Oracle and/or its affiliates58

MySQL > SET persist innodb_redo_log_capacity=1.24*1024*1024*1024;

59 Copyright © 2023, Oracle and/or its affiliates

Optimal InnoDB Configuration to start

On a dedicated MySQL Server,
the best is to let InnoDB decide the size of the Buffer Pool and the Redo Log Capacity.

In my.cnf:
innodb_dedicated_server=1

See https://dev.mysql.com/doc/refman/8.0/en/innodb-dedicated-server.html

https://dev.mysql.com/doc/refman/8.0/en/innodb-dedicated-server.html

60 Copyright © 2023, Oracle and/or its affiliates

61 Copyright © 2023, Oracle and/or its affiliates

Memory Consumption
How much memory and how to limit it

62 Copyright © 2023, Oracle and/or its affiliates

Memory - InnoDB

The secret is to always run a production server with a warm Buffer Pool.

If you need to restart MySQL for any reason (maintenance, updgrade, crash), it's recommended to dump
the content of the InnoDB Buffer Pool to disk and load it at startup:

innodb_buffer_pool_dump_at_shutdown=1
innodb_buffer_pool_load_at_startup=1

We can get the InnoDB Buffer Pool memory allocation usage with the following query:

MySQL > SELECT * FROM sys.memory_global_by_current_bytes
WHERE event_name LIKE 'memory/innodb/buf_buf_pool'\G
*************************** 1. row ***************************
event_name: memory/innodb/buf_buf_pool
current_count: 1
current_alloc: 130.88 MiB
current_avg_alloc: 130.88 MiB
high_count: 1
high_alloc: 130.88 MiB
high_avg_alloc: 130.88 MiB
1 row in set (0.0010 sec)

Memory - InnoDB (2)

Copyright © 2023, Oracle and/or its affiliates63

From Performance_Schema (and sys) we can get information about the Memory consumption
of MySQL, this instrumentation has been extended in MySQL 8.0:

SELECT * FROM sys.memory_global_total;

And you can have details related to the code area:

SELECT SUBSTRING_INDEX(event_name,'/',2) AS code_area,
format_bytes(SUM(current_alloc)) AS current_alloc
FROM sys.x$memory_global_by_current_bytes
GROUP BY SUBSTRING_INDEX(event_name,'/',2)
ORDER BY SUM(current_alloc) DESC;

Memory - MySQL

Copyright © 2023, Oracle and/or its affiliates64

+-----------------+

| total_allocated |

+-----------------+

| 4.28 GiB |

+-----------------+

+---------------------------+---------------+

| code_area | current_alloc |

+---------------------------+---------------+

| memory/innodb | 2.30 GiB |

| memory/group_rpl | 1024.00 MiB. |

| memory/performance_schema | 916.88 MiB |

| memory/sql | 75.80 MiB |

| memory/mysys | 9.13 MiB |

| memory/temptable | 3.00 MiB |

| memory/mysqlx | 22.42 KiB |

| memory/vio | 3.16 KiB |

+---------------------------+---------------+

Copyright © 2023, Oracle and/or its affiliates65

66 Copyright © 2023, Oracle and/or its affiliates

Memory - Connections Tracking and Limiting

To avoid bad surprises (like swapping), it's possible to track and limit the memory consumption of the
connections.

To enable it you need to set global_connection_memory_tracking to 1:

MySQL > SET global global_connection_memory_tracking=1;

67 Copyright © 2023, Oracle and/or its affiliates

Memory - Connections Tracking and Limiting

To avoid bad surprises (like swapping), it's possible to track and limit the memory consumption of the
connections.

To enable it you need to set global_connection_memory_tracking to 1:

MySQL > SET global global_connection_memory_tracking=1;

You can limit the connection memory limit:

MySQL > SET <GLOBAL/SESSION> connection_memory_limit=2200000;
MySQL > SET GLOBAL global_connection_memory_limit=536870912000;

68 Copyright © 2023, Oracle and/or its affiliates

Memory - Connections Tracking and Limiting (2)

To know the Global Connection Consumption Memory:
MySQL > SELECT format_bytes(variable_value) global_connection_memory

FROM performance_schema.global_status

WHERE variable_name='Global_connection_memory';

+--------------------------+

| global_connection_memory |

+--------------------------+

| 16.22 MiB |

+--------------------------+

69 Copyright © 2023, Oracle and/or its affiliates

Memory - Connections Tracking and Limiting (3)

If the limit it reached, the user will be disconnected with the following error:

ERROR: 4081 (HY000): Connection closed. Global connection memory limit 16777216
bytes exceeded. Consumed 16949968 bytes.

This limitation doesn't appy to users with CONNECTION_ADMIN privilege.

70 Copyright © 2023, Oracle and/or its affiliates

71 Copyright © 2023, Oracle and/or its affiliates

Memory: better allocation = better performance !

To have better performance choosing the right memory allocator (Linux) is important !

The default memory allocator in Linux distribution (glibc-malloc) doesn't perform well in high
concurrency environments and should be avoided !

Fortunately we have 2 other choices:
• jemalloc (good for perf, but less RAM management efficiency)
• tcmalloc (recommended choice)

72 Copyright © 2023, Oracle and/or its affiliates

Memory: better allocation = better performance ! (2)

Install tcmalloc:
$ sudo yum -y install gperftools-libs

And in systemd service file you need to add:

$ sudo EDITOR=vi systemctl edit mysqld
[Service]
Environment="LD_PRELOAD=/usr/lib64/libtcmalloc_minimal.so.4"

73 Copyright © 2023, Oracle and/or its affiliates

Memory: better allocation = better performance ! (3)

Reload the service and restart MySQL:
Memory Allocator: jemalloc vs tcmalloc:

$ sudo systemctl daemon-reload
$ sudo systemctl restart mysqld

74 Copyright © 2023, Oracle and/or its affiliates

Memory Allocator: jemalloc vs tcmalloc:

TCMALLOCJEMALLOC

JEMALLOC TCMALLOC

RAM Efficiency (lower is preferred)

75 Copyright © 2023, Oracle and/or its affiliates

76 Copyright © 2023, Oracle and/or its affiliates

All about queries

everything you need to know
about your queries

77 Copyright © 2023, Oracle and/or its affiliates

Know your workload !

It's important to know what type of workload your database is performing.
Most of the time, people are surprised with the result !

MySQL > SELECT SUM(count_read) `tot reads`,

CONCAT(ROUND((SUM(count_read)/SUM(count_star))*100, 2),"%") `reads`,

SUM(count_write) `tot writes`,

CONCAT(ROUND((SUM(count_write)/sum(count_star))*100, 2),"%") `writes`

FROM performance_schema.table_io_waits_summary_by_table

WHERE count_star > 0 ;

+-----------+--------+------------+--------+

| tot reads | reads | tot writes | writes |

+-----------+--------+------------+--------+

| 16676217 | 99.11% | 149104 | 0.89% |

+----------------+-----------+-----------------+------------+

78 Copyright © 2023, Oracle and/or its affiliates

Know your workload ! (2)

MySQL > SELECT object_schema,

CONCAT(ROUND((SUM(count_read)/SUM(count_star))*100, 2),"%") `reads`,

CONCAT(ROUND((SUM(count_write)/SUM(count_star))*100, 2),"%") `writes`

FROM performance_schema.table_io_waits_summary_by_table

WHERE count_star > 0 GROUP BY object_schema;

+-----------------------------+---------+--------+

| object_schema | reads | writes |

+-----------------------------+---------+--------+

| sys | 100.00% | 0.00%. |

| mydb | 100.00% | 0.00% |

| test | 100.00% | 0.00% |

| docstore | 100.00% | 0.00% |

| sbtest | 99.09% | 0.91% |

+-----------------------------+---------+--------+

79 Copyright © 2023, Oracle and/or its affiliates

Know your workload ! (3)

And we can check the statistics per table:
MySQL > SELECT object_schema, object_name,

CONCAT(ROUND((count_read/count_star)*100, 2),"%") `reads`,

CONCAT(ROUND((count_write/count_star)*100, 2),"%") `writes`

FROM performance_schema.table_io_waits_summary_by_table

WHERE count_star > 0 and object_schema='sbtest' ;

+---------------+-------------+--------+--------+

| object_schema | object_name | reads | writes |

+---------------+-------------+--------+--------+

| sbtest | sbtest1 | 99.67% | 0.33% |

| sbtest | sbtest2 | 97.71% | 2.29% |

| sbtest | sbtest3 | 97.71% | 2.29% |

| sbtest | sbtest4 | 97.73% | 2.27% |

+---------------------+-------------------+------------+-----------+

80 Copyright © 2023, Oracle and/or its affiliates

Query Response time

Query response time is the only metric anyone truly cares about [...]
because query response time is the only metric we experience.
When a query takes 7.5 seconds to execute, we experience 7.5 seconds of impatience.

That same query might examine a million rows,
but we don't experience a million rows examined. Our time is precious.(*)

Daniel Nichter, Efficient MySQL Performance
- Best Practices and Techniques, O'Reilly, 2021

81 Copyright © 2023, Oracle and/or its affiliates

82 Copyright © 2023, Oracle and/or its affiliates

Finding the Ugly Duckling

We can define bad queries in two different categories:
• Queries called too often
• Queries that are too slow

• Full table scan
• Use filesort
• Use temporary tables

83 Copyright © 2023, Oracle and/or its affiliates

If there could be only one?

If you should optimize only one query, the best candidate should be
the query that consumes the most of the execution time (seen as latency in PFS, aka "response time").

sys Schema contains all the necessary info to find that Ugly Duckling:

SELECT schema_name, format_pico_time(total_latency) tot_lat,

exec_count, format_pico_time(total_latency/exec_count) latency_per_call,

query_sample_text

FROM sys.x$statements_with_runtimes_in_95th_percentile AS t1

JOIN performance_schema.events_statements_summary_by_digest AS t2

ON t2.digest=t1.digest

WHERE schema_name NOT in ('performance_schema', 'sys')

ORDER BY (total_latency/exec_count) desc LIMIT 1\G

84 Copyright © 2023, Oracle and/or its affiliates

If there could be only one? And we have the biggest loser.

*************************** 1. row ***************************
schema_name: piday
tot_lat: 4.29 h
exec_count: 5
latency_per_call: 51.51 min
query_sample_text: select a.device_id, max(a.value) as `max temp`,
min(a.value) as `min temp`, avg(a.value) as `avg temp`,
max(b.value) as `max humidity`, min(b.value) as `min humidity`,
avg(b.value) as `avg humidity`
from temperature_history a
join humidity_history b on b.device_id=a.device_id
where date(a.time_stamp) = date(now())
and date(b.time_stamp)=date(now()) group by device_id

85 Copyright © 2023, Oracle and/or its affiliates

More info about Queries

Sys Schema contains all the required information in these tables :
• statements_with_full_table_scans
• statements_with_runtimes_in_95th_percentile
• statements_with_sorting
• statements_with_temp_tables

And since MySQL 8.0 you can join the
table performance_schema.events_statements_summary_by_digest to have a sample you can use.

86 Copyright © 2023, Oracle and/or its affiliates

87 Copyright © 2023, Oracle and/or its affiliates

Compare you QEP over time

Today's reality may not be tomorrow’s.
SO - save the Query Execution Plan (EXPLAIN) of your queries and compare them over time, upgrades, ...

JS> qep-get ()
Enter the query (end it with ';*): select emp_no, first_name, last_name,
> hire_ date
> from employees
> where last _name like 'de%' limit 10;
The cost of the query is 30170.15
Do you want to have EXPLAIN output? (y/N) n
Do you want to have EXPLAIN in JSON format output? (Y/N) n
Do you want to have EXPLAIN in TREE format output? (y/N) y

•> Limit: 10 row(s) (cost=30170.15 rows=10)
•> Filter: (employees. Last _name like 'de%*) (cost=30170.15 rows=33261)

•> Table scan on employees (cost=30170.15 rows=299379)
Do you want to have EXPLAIN ANALYZE output? (y/N) n
The schema 'ba' is missing, do you wanna create it? (y/N) y
Do you want to save the QEP? (y/N) y

88 Copyright © 2023, Oracle and/or its affiliates

Compare you QEP over time (2)

Mike Frank
mike.frank@oracle.com

Copyright © 2023, Oracle and/or its affiliates

Session ID – MS19

Please rate this session.

Copyright © 2023, Oracle and/or its affiliates

