
JSON Data
Improvements
in MySQL 8.0
Dave Stokes
@Stoker
David.Stokes@percona.com

MySQL Summit

Dave Stokes
Percona

JSON Data Improvements
in MySQL 8.0

©2023 Percona | Confidential | Internal use only

JSON Data Improvements in MySQL 8.0

The JSON data type was introduced in MySQL 5.7 and was dramatically improved in version 8.0.

Chief among these changes was the introduction of JSON_TABLE(), which temporarily transforms JSON data
into structured data for processing with SQL commands such as window functions.

And you also gain the ability to test JSON data for required fields, range checks, and data type checks to
ensure that bad data does not make it into your database instance.

These and other MySQL 8.0 JSON features will be covered in this session.

3

©2023 Percona | Confidential | Internal use only

Technology Evangelist at Percona
Long time open source advocate
Author

About me

4@Stoker David.Stokes@Percona.com

©2023 Percona | Confidential | Internal use only

Differences - SQL versus NoSQL

5

©2023 Percona | Confidential | Internal use only

1. Normalized data - Database normalization is the
process of structuring a relational database in
accordance with a series of so-called normal
forms in order to reduce data redundancy and
improve data integrity.

2. Present the data to the user as relations with
logical connection between different tables.

3. Provide relational operators to manipulate the
data in tabular form.

4. Strict Data Types enforce ‘rigor’ on data.

5. Data decisions upfront.

Traditional
Relational
Databases

6

©2023 Percona | Confidential | Internal use only

NoSQL
JSON
Databases

1. Freeform & Flexible - data stored in key/value pairs.

2. No rigor on data.

3. Many different formats in same schema.

4. Data decisions on output.

7

©2023 Percona | Confidential | Internal use only

Quiz Time!

SQL >CREATE TABLE q1 (question1 INT, question2 CHAR(5));
SQL >insert into q1 values (1,'Southern California Linux Expo 20x');
ERROR: 1406: Data too long for column 'question2' at row 1
SQL > insert into q1 values ('1oo','SCaLE');
ERROR: 1265: Data truncated for column 'question1' at row 1

8

What is in table q1?

SQL > select * from q1;
Empty set (0.0009 sec)

©2023 Percona | Confidential | Internal use only

~ 10 years ago

NoSQL vendors
claimed JSON
solved many
problems with
Structured Query
Language (SQL)!

Then they
announced they
were going to
support relational
features like
transactions.

Somewhat
succeeded.9

Relational Databases
Added JSON support

So, What is JSON?

©2023 Percona | Confidential | Internal use only

JSON (JavaScript Object Notation, pronounced /ˈdʒeɪsən/;
also /ˈdʒeɪˌsɒn/) is an open standard file format and data
interchange format that uses human-readable text to store and
transmit data objects consisting of attribute–value pairs and
arrays (or other serializable values). It is a common data
format with diverse uses in electronic data interchange,
including that of web applications with servers.

JavaScript Object Notation -
https://en.wikipedia.org/wiki/JSON

11

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Server_(computing)

©2023 Percona | Confidential | Internal use only

{
 “id”: 12345,
 “name”: “A. Programmer”,
 “age”: 21,
 “languages”: [“PHP”,”GO”]
}

The difference between how Developers and
DBAs view data

12

 CREATE TABLE staff (
id INTEGER AUTO_INCREMENT,

 name CHAR(100) NOT NULL,
 department INT UNSIGNED NOT NULL,
 languages CHAR(255)
);

Relational Model

©2023 Percona | Confidential | Internal use only

Dr. Edgar F. Codd

14

©2023 Percona | Confidential | Internal use only

Structured Query Language

 Only Programming language from the 1970s still heavily used

 It introduced the concept of accessing many records with one single
command

 Data divvied up into logical groupings - customer, product, order, etc.

 Originally designed to minimize data duplication
(disk drives were slow and expen$ive in 1970s/80s)

 particularly useful in handling structured data, i.e. data incorporating
relations among entities and variables

15

©2023 Percona | Confidential | Internal use only

So why
didn’t JSON
Document
Databases
Replace
Relational
Systems?

16

©2023 Percona | Confidential | Internal use only

QUIZ 2

SQL > create table q2 (foo JSON);
Query OK, 0 rows affected (0.0096 sec)
SQL > insert into q2 values ('{ "A" : 1, "A": "a", "A": [1,2]}');
Query OK, 1 row affected (0.0080 sec)

17

 SQL > select * from q2;
+---------------+
| foo |
+---------------+
| {"A": [1, 2]} |
+---------------+
1 row in set (0.0005 sec)

The answer

©2023 Percona | Confidential | Internal use only

UTF8MB4!
Do not have to change
tables to add new field -
DDL operations can be
expensive with a RDMS
Documents not rows
Data too easily
duplicated, gets
outdated
Many-to-many
relationships are very
hard to manage
Nested Objects
May not meet systemic
data usage needs
Consistency-ish.

JSON is
free form

18

No rigor applied to data :
 email
 eMail
 e-mail
 electronicMail
 electonicMail

Easy to abandon old data

Agile style practices are
not optimized for
database operations

What is the biggest
priority - development
ease or using data?

©2023 Percona | Confidential | Internal use only

MySQL added a JSON datatype with MySQL 5.7 - 2015

 Data stored in a binary blob
 Sorted by key
 ~1gb payload

MySQL & JSON

19

©2023 Percona | Confidential | Internal use only 20

Confession:

You could store a JSON document in a
database BEFORE there was a JSON data

➔ Document was stored in a TEXT field

➔ To search you use REGEX

➔ Hard to extract just one or a few components of the string

➔ Expensive to read, process and rewrite the entire revised
string

©2023 Percona | Confidential | Internal use only

CREATE TABLE ato (id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY, data JSON);

INSERT INTO ato (data) VALUES ('{"Name": "Dave", "Answer": 42}');

MySQL JSON Example

21

 SELECT id, data FROM ato\G
*************************** 1. row ***************************
 id: 1
data: {"Name": "Dave", "Answer": 42}
1 row in set (0.0012 sec)

©2023 Percona | Confidential | Internal use only

SELECT data->>'$.Answer' FROM ato\G
*************************** 1. row ***************************
data->>'$.Answer': 42
1 row in set (0.0008 sec)

MySQL

22

©2023 Percona | Confidential | Internal use only

SELECT data->'$.Name' FROM ato;
+----------------+
| data->'$.Name' |
+----------------+
| "Dave" |
+----------------+
1 row in set (0.0010 sec)

SELECT data->>'$.Name' FROM ato;
+-----------------+
| data->>'$.Name' |
+-----------------+

| Dave | → strips the “‘s
+-----------------+
1 row in set (0.0010 sec)

-> versus ->>

23

JSON Functions

©2023 Percona | Confidential | Internal use only

MySQL’s JSON Functions - 12.18.1 of Manual

25

Name Description
-> Return value from JSON column after evaluating path; equivalent to JSON_EXTRACT().
->> Return value from JSON column after evaluating path and unquoting the result; equivalent to JSON_UNQUOTE(JSON_EXTRACT()).
JSON_ARRAY() Create JSON array
JSON_ARRAY_APPEND() Append data to JSON document
JSON_ARRAY_INSERT() Insert into JSON array
JSON_CONTAINS() Whether JSON document contains specific object at path
JSON_CONTAINS_PATH() Whether JSON document contains any data at path
JSON_DEPTH() Maximum depth of JSON document
JSON_EXTRACT() Return data from JSON document
JSON_INSERT() Insert data into JSON document
JSON_KEYS() Array of keys from JSON document
JSON_LENGTH() Number of elements in JSON document
JSON_MERGE() Merge JSON documents, preserving duplicate keys. Deprecated synonym for JSON_MERGE_PRESERVE()
JSON_MERGE_PATCH() Merge JSON documents, replacing values of duplicate keys
JSON_MERGE_PRESERVE() Merge JSON documents, preserving duplicate keys
JSON_OBJECT() Create JSON object
JSON_OVERLAPS() Compares two JSON documents, returns TRUE (1) if these have any key-value pairs or array elements in common, otherwise FALSE (0)
JSON_PRETTY() Print a JSON document in human-readable format
JSON_QUOTE() Quote JSON document
JSON_REMOVE() Remove data from JSON document
JSON_REPLACE() Replace values in JSON document
JSON_SCHEMA_VALID() Validate JSON document against JSON schema; returns TRUE/1 if document validates against schema, or FALSE/0 if it does not
JSON_SCHEMA_VALIDATION_REPORT() Validate JSON document against JSON schema; returns report in JSON format on outcome on validation including success or
failure and reasons for failure
JSON_SEARCH() Path to value within JSON document
JSON_SET() Insert data into JSON document
JSON_STORAGE_FREE() Freed space within binary representation of JSON column value following partial update
JSON_STORAGE_SIZE() Space used for storage of binary representation of a JSON document
JSON_TABLE() Return data from a JSON expression as a relational table
JSON_TYPE() Type of JSON value
JSON_UNQUOTE() Unquote JSON value
JSON_VALID() Whether JSON value is valid
JSON_VALUE() Extract value from JSON document at location pointed to by path provided; return this value as VARCHAR(512) or specified type 8.0.21
MEMBER OF() Returns true (1) if first operand matches any element of JSON array passed as second operand, otherwise returns false (0) 8.0.17

MySQL supports two aggregate JSON functions JSON_ARRAYAGG() and JSON_OBJECTAGG(). JSONPRETTY() for pretty printing. And You can see how much storage space a
given JSON value takes up, and how much space remains for additional storage, using JSON_STORAGE_SIZE() and JSON_STORAGE_FREE()

https://dev.mysql.com/doc/refman/8.0/en/json-utility-functions.html#function_json-storage-size
https://dev.mysql.com/doc/refman/8.0/en/json-utility-functions.html#function_json-storage-free

©2023 Percona | Confidential | Internal use only

Generated Column - Extract Data to be Indexed

ALTER TABLE ato ADD COLUMN h CHAR(25) GENERATED ALWAYS as (data->"$.Name");

CREATE INDEX h_index on ato(h);
Query OK, 0 rows affected (0.0324 sec)

Records: 0 Duplicates: 0 Warnings: 0
explain format=tree select data->>"$.Name" FROM ato WHERE h = 'Dave'\G
*************************** 1. row ***************************
EXPLAIN: -> Filter: (ato.h = 'Dave') (cost=0.35 rows=1)
 -> Index lookup on ato using h_index (h='Dave') (cost=0.35 rows=1)

1 row in set (0.0011 sec)

26

©2023 Percona | Confidential | Internal use only

mysql> CREATE TABLE s (id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
 -> name CHAR(20) NOT NULL,
 -> j JSON,
 -> INDEX nbrs((CAST(j->'$.nbr' AS UNSIGNED ARRAY)))
 ->);

mysql> SELECT * FROM s;
+----+-------+---------------------+
| id | name | j |
+----+-------+---------------------+
1	Moe	{"nbr": [1, 7, 45]}
2	Larry	{"nbr": [2, 7, 55]}
3	Curly	{"nbr": [5, 8, 45]}
4	Shemp	{"nbr": [3, 6, 51]}
+----+-------+---------------------+

Multi-Valued Indexes - Great for Arrays

27

Previously you were
limited to a 1:1
index:row limit!

©2023 Percona | Confidential | Internal use only

mysql> SELECT * FROM s WHERE 7 MEMBER OF (j->"$.nbr");
+----+-------+---------------------+
| id | name | j |
+----+-------+---------------------+
| 1 | Moe | {"nbr": [1, 7, 45]} |
| 2 | Larry | {"nbr": [2, 7, 55]} |
+----+-------+--------------------

MEMBER OF(), JSON_CONTAINS() & JSON_OVERLAP()

Using Multi-value Indexed Field

28

©2023 Percona | Confidential | Internal use only

mysql> select country_name, IndyYear from countryinfo,
json_table(doc,"$"

columns (country_name char(20) path "$.Name",
 IndyYear int path "$.IndepYear")

) as stuff
where IndyYear > 1992;
+----------------+----------+
| country_name | IndyYear |
+----------------+----------+
Czech Republic	1993
Eritrea	1993
Palau	1994
Slovakia	1993
+----------------+----------+
4 rows in set, 67 warnings (0.00 sec)

JSON Table - Unstructured data temporarily structured

29

Now the JSON data
can be process with
SQL!

©2023 Percona | Confidential | Internal use only

mysql> SELECT name,
 Info->>"$.Population",
 Pop FROM city2,
 JSON_TABLE(Info,"$" COLUMNS
 (Pop INT PATH "$.Population"
 DEFAULT '999'
 ON ERROR DEFAULT
 '987' ON EMPTY))
 AS x1;
+-------+-----------------------+------+
| name | Info->>"$.Population" | Pop |
+-------+-----------------------+------+
alpha	100	100
beta	fish	999
delta	15	15
gamma	NULL	987
+-------+-----------------------+------+
4 rows in set, 1 warning (0.00 sec)

JSON Table - Handle missing data

30

Add Rigor To Your JSON Data

©2023 Percona | Confidential | Internal use only

JSON-Schem
a.org’s work
shown in
MySQL - Use
a template to
define
properties
of a Key &
their Values

The document properties
are checked against this
template and rejected if
they do not pass muster!

set @s='{"type": "object",
 "properties": {
 "myage": {
 "type" : "number",
 "minimum": 28,
 "maximum": 99
 }
 }
}';

32

And here is our test
document where we use
a value for 'myage' what
is between the minimum
and the maximum.

set @d='{ "myage": 33}';

©2023 Percona | Confidential | Internal use only

Test

Now we use JSON_SCHEMA_VALID() to test if the test
document passes the validation test, with 1 or true as a
pass and 0 or false as a fail.

select JSON_SCHEMA_VALID(@s,@d);
+--------------------------+
| JSON_SCHEMA_VALID(@s,@d) |
+--------------------------+
| 1 |
+--------------------------+
1 row in set (0.00 sec)

33

©2023 Percona | Confidential | Internal use only

CREATE TABLE `testx` (
 `col` JSON,
 CONSTRAINT `myage_inRange`
 CHECK (JSON_SCHEMA_VALID('{"type": "object",
 "properties": {
 "myage": {
 "type" : "number",
 "minimum": 28,
 "maximum": 99
 }
 },"required": ["myage"]
 }', `col`) = 1)
);

REQUIRED Fields & Constraint Check

34

insert into testx values('{"myage":27}');
ERROR 3819 (HY000):
Check constraint 'myage_inRange' is
violated.
insert into testx values('{"myage":97}');
Query OK, 1 row affected (0.02 sec)

©2023 Percona | Confidential | Internal use only35

JSON_SCHEMA_VALIDATION_REPORT(schema,document)

Validates a JSON document against a JSON schema.The schema must be a valid
JSON object, and the document must be a valid JSON document. Provided that
these conditions are met, the function returns a report, as a JSON document, on the
outcome of the validation. If the JSON document is considered valid according to
the JSON Schema, the function returns a JSON object with one property valid
having the value "true".

 If the JSON document fails validation, the function returns a JSON object which
includes the properties listed here:

○ valid: Always "false" for a failed schema validation
○ reason: A human-readable string containing the reason for the failure
○ schema-location: A JSON pointer URI fragment identifier indicating where in

the JSON schema the validation failed (see Note following this list)
○ document-location: A JSON pointer URI fragment identifier indicating where

in the JSON document the validation failed (see Note following this list)
○ schema-failed-keyword: A string containing the name of the keyword or

property in the JSON schema that was violated

https://dev.mysql.com/doc/refman/8.0/en/json-validation-functions.html#function_json-schema-validation-report

©2023 Percona | Confidential | Internal use only36

Simple Example 1 -- the exemplar, the new document, and the test

set @s='{"type": "object",
 "properties": {
 "myage": {
 "type" : "number",
 "minimum": 28,
 "maximum": 99
 }
 }
}';

set @d='{ "myage": 33}'

select JSON_SCHEMA_VALID(@s,@d);
+--------------------------+

| JSON_SCHEMA_VALID(@s,@d) |

+--------------------------+

| 1 |
+--------------------------+

1 row in set (0.00 sec)

©2023 Percona | Confidential | Internal use only37

Simple Example 2 -- the exemplar, the new document, and the test

set @s='{"type": "object",
 "properties": {
 "myage": {
 "type" : "number",
 "minimum": 28,
 "maximum": 99
 }
 }
}';

set @d='{ "myage": “foo”}'

select JSON_SCHEMA_VALID(@s,@d);
+--------------------------+

| JSON_SCHEMA_VALID(@s,@d) |

+--------------------------+

| 0 |
+--------------------------+

1 row in set (0.00 sec)

©2023 Percona | Confidential | Internal use only38

Simple Example 3 -- the exemplar, the new document, and the test

set @s='{"type": "object",
 "properties": {
 "myage": {
 "type" : "number",
 "minimum": 28,
 "maximum": 99
 }
 }
}';

set @d='{ "myage": 16}'

select JSON_SCHEMA_VALID(@s,@d);
+--------------------------+

| JSON_SCHEMA_VALID(@s,@d) |

+--------------------------+

| 0 |
+--------------------------+

1 row in set (0.00 sec)

©2023 Percona | Confidential | Internal use only

select
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d))\G
*************************** 1. row ***************************
JSON_PRETTY(JSON_SCHEMA_VALIDATION_REPORT(@s,@d)): {
 "valid": false,
 "reason": "The JSON document location '#/myage' failed requirement
'minimum' at JSON Schema location '#/properties/myage'",
 "schema-location": "#/properties/myage",
 "document-location": "#/myage",
 "schema-failed-keyword": "minimum"
}

JSON_SCHEMA_VALIDATION_REPORT()

39

©2023 Percona | Confidential | Internal use only

CREATE TABLE `testx` (
 `col` JSON,
 CONSTRAINT `myage_inRange`
 CHECK (JSON_SCHEMA_VALID('{"type": "object",
 "properties": {
 "myage": {
 "type" : "number",
 "minimum": 28,
 "maximum": 99
 }
 },"required": ["myage"]
 }', `col`) = 1)
);

REQUIRE Fields

40

insert into testx values('{"myage":27}');
ERROR 3819 (HY000):
Check constraint 'myage_inRange' is
violated.
insert into testx values('{"myage":97}');
Query OK, 1 row affected (0.02 sec)

Recommendations
(from the PostgreSQL manual)

©2023 Percona | Confidential | Internal use only

Representing data as JSON can be considerably more flexible than the traditional
relational data model, which is compelling in environments where requirements are
fluid.
It is quite possible for both approaches to co-exist and complement each other within
the same application.
However, even for applications where maximal flexibility is desired, it is still
recommended that JSON documents have a somewhat fixed structure.
The structure is typically unenforced (though enforcing some business rules
declaratively is possible), but having a predictable structure makes it easier to write
queries that usefully summarize a set of “documents” (datums) in a table.

42

©2023 Percona | Confidential | Internal use only

JSON data is subject to the same concurrency-control considerations as any other
data type when stored in a table.
Although storing large documents is practicable, keep in mind that any update acquires
a row-level lock on the whole row.
Consider limiting JSON documents to a manageable size in order to decrease lock
contention among updating transactions.
Ideally, JSON documents should each represent an atomic datum that business rules
dictate cannot reasonably be further subdivided into smaller datums that could be
modified independently.

43

Wrap up!

©2023 Percona | Confidential | Internal use only

For speed use relational columns.
PLAN your schemas by how you want to use the data.
Use JSON_TABLE() to temporarily make unstructured
data structured for use with SQL.
Use generated columns to materialize JSON data into
structured columns.
Do not use JSON as a ‘junk drawer’ or an excuse for
your lack of planning.
DO NOT overly embed data in your JSON document -
the more complex the path the higher the probability
of an oops! Complication is not your friend down the
road.
And do not use JSON to break general normalization
rules or ‘reinvent the wheel’.

45

Use JSON in
your
relational
tables!

©2023 Percona | Confidential | Internal use only

Percona Live - https://www.percona.com/live/conferences

May 22–24 at the Denver Marriott Tech Center!

Thank You!
David.Stokes@Percona.com
@Stoker
Speakerdeck.com/StokerPercona/slides

MySQL Summit

Session ID – MS16

Please rate this session.

