
MySQL Summit

● Nicolai Plum – Senior Database Engineer
● Booking.com

Reliable Operations and Rapid 
Development with MySQL



Reliable Operations and 
Rapid Development with MySQL

Nicolai Plum
MySQL Database Engineering - Booking.com



Booking.com



100M
monthly active 
app users

155,000
destinations around the world

Car hire available in 140+
countries and pre-booked taxis in 

over 500 cities across 120+
countries

232M+
verified guest 
reviews and 

24/7
customer service 

in44
languages and 
dialects

Since 2010, 
Booking.com has 
welcomed

4.5B+ 
guest arrivals

28M
total reported 
listings 
worldwide

6.6M
options in homes, 
apartments and 
other unique places 
to stay

30
different types of 
places to stay,
including homes, 
apartments, B&Bs, 
hostels, farm stays, 
bungalows, even 
boats, igloos and 
treehouses

140 offices in 70 countries over

5,000 employees in Amsterdam



MySQL for 18+ years: What?
● Core transaction processing
● FinTech, Payments & Billing
● Front-end content
● Partner and Customer Support
● Internal tools and controlplanes



MySQL: Why?
● Good Replication Model (scale-out reads)
● Fast (Connect, Point select, Range select)
● Data durability (InnoDB is extremely solid)
● Easy to manage
● Open license



MySQL: How?

Replace Break/Fix
with

Preventative Maintenance



Relentless automation
● Monitoring, connected to self-healing
● Auto provisioning (CLONE plugin)
● Auto maintenance (upgrade, patch, replace)
● Auto grants & service discovery group config
● Autoscaling replica count



MySQL Group Replication



Group Replication 
● Single Primary
● Paxos Single Leader
● Latest version (also of group protocol)
● Across failure domain (region or AZ)
● Minimise Storage & Network Latency



What about the data?
● Schema changes must be fast
● Avoid DBAs blocking developers

● ORMs want to manage schema
● Hibernate, Flyway, Django

● Developers are not DB Architects
●… and may not want to be



Guidance + Tools
● Design guidance (docs & training)
● Must be approachable and digestible

● Automated interface – GUI or CI/CD
● Must cover all cases, or you get outages
● pt-osc or similar is necessary because ONLINE 

DDL blocks replication
● Online DDL is not Instant DDL
● Frequent failure mode of “do it all” ORMs.



Better ALTER
● You run tests, but do you report DB changes 

explicitly?
● Copy table, or schema, to blank database
● Automated hints for good table design
● Try ALTER, report results
● Give developers a playground that looks like 

production systems



Testing: Algorithm=INSTANT
nicolai@db [nicolai]> SHOW CREATE TABLE example\G
*************************** 1. row ***************************

Table: example
Create Table: CREATE TABLE `example` (
`id` int unsigned NOT NULL AUTO_INCREMENT,
`val` varchar(200) NOT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Nicolai@db [nicolai]> ALTER TABLE example MODIFY val VARCHAR(400) NOT 
NULL, ALGORITHM=INSTANT;
ERROR 1846 (0A000): ALGORITHM=INSTANT is not supported. Reason: Need 
to rebuild the table to change column type. Try 
ALGORITHM=COPY/INPLACE.



Avoiding ALTER
● ”Schemaless” isn’t
● Programs = Algorithms + Data Structures
● Schema just moves elsewhere

● The dumber the query, the slower it is
● Need a data model that is 

fast and flexible



Relational + Document
● Put required data in relational columns
● And index it as needed

● Put optional data into JSON
● Avoid virtual columns that you index
● Because then the indexed element has to be 

there for efficiency and you just removed optional
● Fix your code instead



Replace ENUM with side table
for equal speed 

● ENUM
CREATE TABLE product (… vegetable_name ENUM ('carrot', 
'turnip', 'tomato', 'onion’), …)
● Side table
CREATE TABLE product (… vegetable_id tinyint COMMENT 
see vegetable table, …)
CREATE table vegetable ( id tinyint, vegetable_name
name VARCHAR(32), ...)
SELECT ... v.name ... FROM poduct p 
JOIN vegetable v ON p.vegetable_id = v.id
WHERE...



Can you 10x this?
● Design the schema for growth
● Running out of space in ID columns is painful
● Especially AUTO_INCREMENT

● Can you still alter a 10x size table?
● Need space to rebuild it
● Improve data model to avoid very large tables



Can you audit this?
● Someone will ask you to prove all changes 

are authorized
● Collect schemas and track differences
● Correlate with change tickets
● Well-defined change format is better than free-

form code diffs
● Compensating control
● Reduce audit work to exceptions only



nicolai.plum@booking.com
https://jobs.booking.com/careers

?

mailto:nicolai.plum@booking.com


MySQL Summit

Session ID – MS03

Please rate this session.


