
Sakila Sample Database

Table of Contents
1 Preface and Legal Notices .. 1
2 Introduction ... 3
3 History .. 3
4 Installation ... 4
5 Structure ... 5

5.1 Tables .. 6
5.2 Views ... 12
5.3 Stored Procedures .. 13
5.4 Stored Functions .. 15
5.5 Triggers .. 17

6 Usage Examples ... 17
7 Known Issues ... 19
8 Acknowledgments .. 20
9 License for the Sakila Sample Database .. 20
10 Note for Authors .. 20
11 Sakila Change History ... 20

This document describes Sakila sample database installation, structure, usage, and history.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-03-11 (revision: 78035)

1 Preface and Legal Notices

This document describes Sakila sample database installation, structure, usage, and history.

Legal Notices

Copyright © 2007, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

1

http://forums.mysql.com

Sakila Sample Database

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

2

Sakila Sample Database

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

2 Introduction

The Sakila sample database was initially developed by Mike Hillyer, a former member of the MySQL AB
documentation team. It is intended to provide a standard schema that can be used for examples in books,
tutorials, articles, samples, and so forth. The Sakila sample database also serves to highlight features of
MySQL such as Views, Stored Procedures, and Triggers.

Additional information on the Sakila sample database and its usage can be found through the MySQL
forums.

The Sakila sample database is the result of support and feedback from the MySQL user community and
feedback and user input is always appreciated. Please direct all feedback using the http://www.mysql.com/
company/contact/. For bug reports, use MySQL Bugs.

3 History

The Sakila sample database was designed as a replacement to the world sample database, also
provided by Oracle.

The world sample database provides a set of tables containing information on the countries and cities of
the world and is useful for basic queries, but lacks structures for testing MySQL-specific functionality and
features found in MySQL 5 and higher.

Development of the Sakila sample database began in early 2005. Early designs were based on the
database used in the Dell whitepaper Three Approaches to MySQL Applications on Dell PowerEdge
Servers.

Where Dell's sample database was designed to represent an online DVD store, the Sakila sample
database is designed to represent a DVD rental store. The Sakila sample database still borrows film and
actor names from the Dell sample database.

Development was accomplished using MySQL Query Browser for schema design, with the tables being
populated by a combination of MySQL Query Browser and custom scripts, in addition to contributor efforts
(see Section 8, “Acknowledgments”).

After the basic schema was completed, various views, stored routines, and triggers were added to the
schema; then the sample data was populated. After a series of review versions, the first official version of
the Sakila sample database was released in March 2006.

3

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://forums.mysql.com/list.php?121
http://forums.mysql.com/list.php?121
http://bugs.mysql.com
https://dev.mysql.com/doc/world-setup/en/
http://www.dell.com/downloads/global/solutions/mysql_apps.pdf
http://www.dell.com/downloads/global/solutions/mysql_apps.pdf

Sakila Sample Database

4 Installation

The Sakila sample database is available from https://dev.mysql.com/doc/index-other.html. A downloadable
archive is available in compressed tar file or Zip format. The archive contains three files: sakila-
schema.sql, sakila-data.sql, and sakila.mwb.

Note

Sakila contains MySQL version specific comments, in that the sakila schema and
data depends on the version of your MySQL server. For example, MySQL server
5.7.5 added support for spatial data indexing to InnoDB, so the address table will
include a spatial-aware location column for MySQL 5.7.5 and higher.

The sakila-schema.sql file contains all the CREATE statements required to create the structure of the
Sakila database including tables, views, stored procedures, and triggers.

The sakila-data.sql file contains the INSERT statements required to populate the structure created by
the sakila-schema.sql file, along with definitions for triggers that must be created after the initial data
load.

The sakila.mwb file is a MySQL Workbench data model that you can open within MySQL Workbench to
examine the database structure. For more information, see MySQL Workbench.

To install the Sakila sample database, follow these steps:

1. Extract the installation archive to a temporary location such as C:\temp\ or /tmp/. When you unpack
the archive, it creates a directory named sakila-db that contains the sakila-schema.sql and
sakila-data.sql files.

2. Connect to the MySQL server using the mysql command-line client with the following command:

$> mysql -u root -p

Enter your password when prompted. A non-root account can be used, provided that the account has
privileges to create new databases.

3. Execute the sakila-schema.sql script to create the database structure, and execute the sakila-
data.sql script to populate the database structure, by using the following commands:

mysql> SOURCE C:/temp/sakila-db/sakila-schema.sql;
mysql> SOURCE C:/temp/sakila-db/sakila-data.sql;

Replace the paths to the sakila-schema.sql and sakila-data.sql files with the actual paths on
your system.

Note

On Windows, use slashes rather than backslashes when executing the SOURCE
command.

4. Confirm that the sample database is installed correctly. Execute the following statements. You should
see output similar to that shown here.

mysql> USE sakila;
Database changed

mysql> SHOW FULL TABLES;

4

https://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/workbench/en/

Sakila Sample Database

+----------------------------+------------+
| Tables_in_sakila | Table_type |
+----------------------------+------------+
actor	BASE TABLE
actor_info	VIEW
address	BASE TABLE
category	BASE TABLE
city	BASE TABLE
country	BASE TABLE
customer	BASE TABLE
customer_list	VIEW
film	BASE TABLE
film_actor	BASE TABLE
film_category	BASE TABLE
film_list	VIEW
film_text	BASE TABLE
inventory	BASE TABLE
language	BASE TABLE
nicer_but_slower_film_list	VIEW
payment	BASE TABLE
rental	BASE TABLE
sales_by_film_category	VIEW
sales_by_store	VIEW
staff	BASE TABLE
staff_list	VIEW
store	BASE TABLE
+----------------------------+------------+
23 rows in set (0.01 sec)

mysql> SELECT COUNT(*) FROM film;
+----------+
| COUNT(*) |
+----------+
| 1000 |
+----------+
1 row in set (0.00 sec)

mysql> SELECT COUNT(*) FROM film_text;
+----------+
| COUNT(*) |
+----------+
| 1000 |
+----------+
1 row in set (0.00 sec)

5 Structure

The following diagram provides an overview of Sakila sample database structure. The diagram source file
(for use with MySQL Workbench) is included in the Sakila distribution and is named sakila.mwb.

5

Sakila Sample Database

Figure 1 The Sakila Schema

5.1 Tables

The following sections describe the tables that make up the Sakila sample database, in alphabetic order.

5.1.1 The actor Table

The actor table lists information for all actors.

The actor table is joined to the film table by means of the film_actor table.

Columns

• actor_id: A surrogate primary key used to uniquely identify each actor in the table.

• first_name: The actor first name.

• last_name: The actor last name.

• last_update: When the row was created or most recently updated.

5.1.2 The address Table

The address table contains address information for customers, staff, and stores.

6

Sakila Sample Database

The address table primary key appears as a foreign key in the customer, staff, and store tables.

Columns

• address_id: A surrogate primary key used to uniquely identify each address in the table.

• address: The first line of an address.

• address2: An optional second line of an address.

• district: The region of an address, this may be a state, province, prefecture, etc.

• city_id: A foreign key pointing to the city table.

• postal_code: The postal code or ZIP code of the address (where applicable).

• phone: The telephone number for the address.

• last_update: When the row was created or most recently updated.

• location: A Geometry column with a spatial index on it.

Note

The spatial location column is supported as of MySQL 5.7.5. This column is
added only when executing the Sakila SQL files against MySQL server 5.7.5 and
higher. Additionally, SPATIAL KEY idx_location is also added.

5.1.3 The category Table

The category table lists the categories that can be assigned to a film.

The category table is joined to the film table by means of the film_category table.

Columns

• category_id: A surrogate primary key used to uniquely identify each category in the table.

• name: The name of the category.

• last_update: When the row was created or most recently updated.

5.1.4 The city Table

The city table contains a list of cities.

The city table is referred to by a foreign key in the address table and refers to the country table using
a foreign key.

Columns

• city_id: A surrogate primary key used to uniquely identify each city in the table.

• city: The name of the city.

• country_id: A foreign key identifying the country that the city belongs to.

• last_update: When the row was created or most recently updated.

7

Sakila Sample Database

5.1.5 The country Table

The country table contains a list of countries.

The country table is referred to by a foreign key in the city table.

Columns

• country_id: A surrogate primary key used to uniquely identify each country in the table.

• country: The name of the country.

• last_update: When the row was created or most recently updated.

5.1.6 The customer Table

The customer table contains a list of all customers.

The customer table is referred to in the payment and rental tables and refers to the address and
store tables using foreign keys.

Columns

• customer_id: A surrogate primary key used to uniquely identify each customer in the table.

• store_id: A foreign key identifying the customer “home store.” Customers are not limited to renting
only from this store, but this is the store at which they generally shop.

• first_name: The customer first name.

• last_name: The customer last name.

• email: The customer email address.

• address_id: A foreign key identifying the customer address in the address table.

• active: Indicates whether the customer is an active customer. Setting this to FALSE serves as an
alternative to deleting a customer outright. Most queries should have a WHERE active = TRUE clause.

• create_date: The date the customer was added to the system. This date is automatically set using a
trigger during an INSERT.

• last_update: When the row was created or most recently updated.

5.1.7 The film Table

The film table is a list of all films potentially in stock in the stores. The actual in-stock copies of each film
are represented in the inventory table.

The film table refers to the language table and is referred to by the film_category, film_actor,
and inventory tables.

Columns

• film_id: A surrogate primary key used to uniquely identify each film in the table.

• title: The title of the film.

• description: A short description or plot summary of the film.

8

Sakila Sample Database

• release_year: The year in which the movie was released.

• language_id: A foreign key pointing at the language table; identifies the language of the film.

• original_language_id: A foreign key pointing at the language table; identifies the original
language of the film. Used when a film has been dubbed into a new language.

• rental_duration: The length of the rental period, in days.

• rental_rate: The cost to rent the film for the period specified in the rental_duration column.

• length: The duration of the film, in minutes.

• replacement_cost: The amount charged to the customer if the film is not returned or is returned in a
damaged state.

• rating: The rating assigned to the film. Can be one of: G, PG, PG-13, R, or NC-17.

• special_features: Lists which common special features are included on the DVD. Can be zero or
more of: Trailers, Commentaries, Deleted Scenes, Behind the Scenes.

• last_update: When the row was created or most recently updated.

5.1.8 The film_actor Table

The film_actor table is used to support a many-to-many relationship between films and actors. For each
actor in a given film, there will be one row in the film_actor table listing the actor and film.

The film_actor table refers to the film and actor tables using foreign keys.

Columns:

• actor_id: A foreign key identifying the actor.

• film_id: A foreign key identifying the film.

• last_update: When the row was created or most recently updated.

5.1.9 The film_category Table

The film_category table is used to support a many-to-many relationship between films and categories.
For each category applied to a film, there will be one row in the film_category table listing the category
and film.

The film_category table refers to the film and category tables using foreign keys.

Columns:

• film_id: A foreign key identifying the film.

• category_id: A foreign key identifying the category.

• last_update: When the row was created or most recently updated.

5.1.10 The film_text Table

The film_text table contains the film_id, title and description columns of the film table,
with the contents of the table kept in synchrony with the film table by means of triggers on film table
INSERT, UPDATE and DELETE operations (see Section 5.5, “Triggers”).

9

Sakila Sample Database

Before MySQL server 5.6.10, the film_text table was the only table in the Sakila sample database that
used the MyISAM storage engine. This is because full-text search is used for titles and descriptions of films
listed in the film table. MyISAM was used because full-text search support with InnoDB was not available
until MySQL server 5.6.10.

Columns

• film_id: A surrogate primary key used to uniquely identify each film in the table.

• title: The title of the film.

• description: A short description or plot summary of the film.

The contents of the film_text table should never be modified directly. All changes should be made to
the film table instead.

5.1.11 The inventory Table

The inventory table contains one row for each copy of a given film in a given store.

The inventory table refers to the film and store tables using foreign keys and is referred to by the
rental table.

Columns

• inventory_id: A surrogate primary key used to uniquely identify each item in inventory.

• film_id: A foreign key pointing to the film this item represents.

• store_id: A foreign key pointing to the store stocking this item.

• last_update: When the row was created or most recently updated.

5.1.12 The language Table

The language table is a lookup table listing the possible languages that films can have for their language
and original language values.

The language table is referred to by the film table.

Columns

• language_id: A surrogate primary key used to uniquely identify each language.

• name: The English name of the language.

• last_update: When the row was created or most recently updated.

5.1.13 The payment Table

The payment table records each payment made by a customer, with information such as the amount and
the rental being paid for (when applicable).

The payment table refers to the customer, rental, and staff tables.

Columns

• payment_id: A surrogate primary key used to uniquely identify each payment.

10

Sakila Sample Database

• customer_id: The customer whose balance the payment is being applied to. This is a foreign key
reference to the customer table.

• staff_id: The staff member who processed the payment. This is a foreign key reference to the staff
table.

• rental_id: The rental that the payment is being applied to. This is optional because some payments
are for outstanding fees and may not be directly related to a rental.

• amount: The amount of the payment.

• payment_date: The date the payment was processed.

• last_update: When the row was created or most recently updated.

5.1.14 The rental Table

The rental table contains one row for each rental of each inventory item with information about who
rented what item, when it was rented, and when it was returned.

The rental table refers to the inventory, customer, and staff tables and is referred to by the
payment table.

Columns

• rental_id: A surrogate primary key that uniquely identifies the rental.

• rental_date: The date and time that the item was rented.

• inventory_id: The item being rented.

• customer_id: The customer renting the item.

• return_date: The date and time the item was returned.

• staff_id: The staff member who processed the rental.

• last_update: When the row was created or most recently updated.

5.1.15 The staff Table

The staff table lists all staff members, including information for email address, login information, and
picture.

The staff table refers to the store and address tables using foreign keys, and is referred to by the
rental, payment, and store tables.

Columns

• staff_id: A surrogate primary key that uniquely identifies the staff member.

• first_name: The first name of the staff member.

• last_name: The last name of the staff member.

• address_id: A foreign key to the staff member address in the address table.

• picture: A BLOB containing a photograph of the employee.

• email: The staff member email address.

11

Sakila Sample Database

• store_id: The staff member “home store.” The employee can work at other stores but is generally
assigned to the store listed.

• active: Whether this is an active employee. If employees leave, their rows are not deleted from this
table; instead, this column is set to FALSE.

• username: The user name used by the staff member to access the rental system.

• password: The password used by the staff member to access the rental system. The password should
be stored as a hash using the SHA2() function.

• last_update: When the row was created or most recently updated.

5.1.16 The store Table

The store table lists all stores in the system. All inventory is assigned to specific stores, and staff and
customers are assigned a “home store”.

The store table refers to the staff and address tables using foreign keys and is referred to by the
staff, customer, and inventory tables.

Columns

• store_id: A surrogate primary key that uniquely identifies the store.

• manager_staff_id: A foreign key identifying the manager of this store.

• address_id: A foreign key identifying the address of this store.

• last_update: When the row was created or most recently updated.

5.2 Views

The following sections describe the views that are included with the Sakila sample database, in alphabetic
order.

5.2.1 The actor_info View

The actor_info view provides a list of all actors, including the films in which they have performed,
broken down by category.

The staff_list view incorporates data from the film, actor, category, film_actor, and
film_category tables.

5.2.2 The customer_list View

The customer_list view provides a list of customers, with first name and last name concatenated
together and address information combined into a single view.

The customer_list view incorporates data from the customer, address, city, and country tables.

5.2.3 The film_list View

The film_list view contains a formatted view of the film table, with a comma-separated list of actors
for each film.

The film_list view incorporates data from the film, category, film_category, actor, and
film_actor tables.

12

Sakila Sample Database

5.2.4 The nicer_but_slower_film_list View

The nicer_but_slower_film_list view contains a formatted view of the film table, with a comma-
separated list of the film's actors.

The nicer_but_slower_film_list view differs from the film_list view in the list of actors. The
lettercase of the actor names is adjusted so that the first letter of each name is capitalized, rather than
having the name in all-caps.

As indicated in its name, the nicer_but_slower_film_list view performs additional processing and
therefore takes longer to return data than the film_list view.

The nicer_but_slower_film_list view incorporates data from the film, category,
film_category, actor, and film_actor tables.

5.2.5 The sales_by_film_category View

The sales_by_film_category view provides a list of total sales, broken down by individual film
category.

Because a film can be listed in multiple categories, it is not advisable to calculate aggregate sales by
totalling the rows of this view.

The sales_by_film_category view incorporates data from the category, payment, rental,
inventory, film, film_category, and category tables.

5.2.6 The sales_by_store View

The sales_by_store view provides a list of total sales, broken down by store.

The view returns the store location, manager name, and total sales.

The sales_by_store view incorporates data from the city, country, payment, rental, inventory,
store, address, and staff tables.

5.2.7 The staff_list View

The staff_list view provides a list of all staff members, including address and store information.

The staff_list view incorporates data from the staff and address tables.

5.3 Stored Procedures

The following sections describe the stored procedures included with the Sakila sample database, in
alphabetic order.

All parameters listed are IN parameters unless listed otherwise.

5.3.1 The film_in_stock Stored Procedure

Description

The film_in_stock stored procedure determines whether any copies of a given film are in stock at a
given store.

Parameters

• p_film_id: The ID of the film to be checked, from the film_id column of the film table.

13

Sakila Sample Database

• p_store_id: The ID of the store to check for, from the store_id column of the store table.

• p_film_count: An OUT parameter that returns a count of the copies of the film in stock.

Return Values

This procedure produces a table of inventory ID numbers for the copies of the film in stock, and returns (in
the p_film_count parameter) a count that indicates the number of rows in that table.

Sample Usage

mysql> CALL film_in_stock(1,1,@count);
+--------------+
| inventory_id |
+--------------+
| 1 |
| 2 |
| 3 |
| 4 |
+--------------+
4 rows in set (0.01 sec)

Query OK, 1 row affected (0.01 sec)

mysql> SELECT @count;
+--------+
| @count |
+--------+
| 4 |
+--------+
1 row in set (0.00 sec)

5.3.2 The film_not_in_stock Stored Procedure

Description

The film_not_in_stock stored procedure determines whether there are any copies of a given film not
in stock (rented out) at a given store.

Parameters

• p_film_id: The ID of the film to be checked, from the film_id column of the film table.

• p_store_id: The ID of the store to check for, from the store_id column of the store table.

• p_film_count: An OUT parameter that returns a count of the copies of the film not in stock.

Return Values

This procedure produces a table of inventory ID numbers for the copies of the film not in stock, and returns
(in the p_film_count parameter) a count that indicates the number of rows in that table.

Sample Usage

mysql> CALL film_not_in_stock(2,2,@count);
+--------------+
| inventory_id |
+--------------+
| 9 |
+--------------+
1 row in set (0.01 sec)

Query OK, 1 row affected (0.01 sec)

14

Sakila Sample Database

mysql> SELECT @count;
+--------+
| @count |
+--------+
| 1 |
+--------+
1 row in set (0.00 sec)

5.3.3 The rewards_report Stored Procedure

Description

The rewards_report stored procedure generates a customizable list of the top customers for the
previous month.

Parameters

• min_monthly_purchases: The minimum number of purchases or rentals a customer needed to make
in the last month to qualify.

• min_dollar_amount_purchased: The minimum dollar amount a customer needed to spend in the
last month to qualify.

• count_rewardees: An OUT parameter that returns a count of the customers who met the qualifications
specified.

Return Values

This procedure produces a table of customers who met the qualifications specified. The table has the same
structure as the customer table. The procedure also returns (in the count_rewardees parameter) a
count that indicates the number of rows in that table.

Sample Usage

mysql> CALL rewards_report(7,20.00,@count);
...
| 598 | 1 | WADE | DELVALLE | WADE.DELVALLE@sakilacustomer.org | 604 | 1 | 2006-02-24 10:48:30 | 2006-02-15 04:57:20 |
| 599 | 2 | AUSTIN | CINTRON | AUSTIN.CINTRON@sakilacustomer.org | 605 | 1 | 2006-02-24 10:48:30 | 2006-02-15 04:57:20 |
...

42 rows in set (0.11 sec)

Query OK, 0 rows affected (0.67 sec)

mysql> SELECT @count;
+--------+
| @count |
+--------+
| 42 |
+--------+
1 row in set (0.00 sec)

5.4 Stored Functions

The following sections describe the stored functions included with the Sakila sample database.

5.4.1 The get_customer_balance Function

The get_customer_balance function returns the current amount owing on a specified customer's
account.

15

Sakila Sample Database

Parameters

• p_customer_id: The ID of the customer to check, from the customer_id column of the customer
table.

• p_effective_date: The cutoff date for items that will be applied to the balance. Any rentals,
payments, and so forth after this date are not counted.

Return Values

This function returns the amount owing on the customer's account.

Sample Usage

mysql> SELECT get_customer_balance(298,NOW());
+---------------------------------+
| get_customer_balance(298,NOW()) |
+---------------------------------+
| 22.00 |
+---------------------------------+
1 row in set (0.00 sec)

5.4.2 The inventory_held_by_customer Function

The inventory_held_by_customer function returns the customer_id of the customer who has
rented out the specified inventory item.

Parameters

• p_inventory_id: The ID of the inventory item to be checked.

Return Values

This function returns the customer_id of the customer who is currently renting the item, or NULL if the
item is in stock.

Sample Usage

mysql> SELECT inventory_held_by_customer(8);
+-------------------------------+
| inventory_held_by_customer(8) |
+-------------------------------+
| NULL |
+-------------------------------+
1 row in set (0.00 sec)

mysql> SELECT inventory_held_by_customer(9);
+-------------------------------+
| inventory_held_by_customer(9) |
+-------------------------------+
| 366 |
+-------------------------------+
1 row in set (0.00 sec)

5.4.3 The inventory_in_stock Function

The inventory_function function returns a boolean value indicating whether the inventory item
specified is in stock.

Parameters

• p_inventory_id: The ID of the inventory item to be checked.

16

Sakila Sample Database

Return Values

This function returns TRUE or FALSE to indicate whether the item specified is in stock.

Sample Usage

mysql> SELECT inventory_in_stock(9);
+-----------------------+
| inventory_in_stock(9) |
+-----------------------+
| 0 |
+-----------------------+
1 row in set (0.00 sec)

mysql> SELECT inventory_in_stock(8);
+-----------------------+
| inventory_in_stock(8) |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

5.5 Triggers

The following sections describe the triggers in the Sakila sample database.

5.5.1 The customer_create_date Trigger

The customer_create_date trigger sets the create_date column of the customer table to the
current time and date as rows are inserted.

5.5.2 The payment_date Trigger

The payment_date trigger sets the payment_date column of the payment table to the current time and
date as rows are inserted.

5.5.3 The rental_date Trigger

The rental_date trigger sets the rental_date column of the rental table to the current time and
date as rows are inserted.

5.5.4 The ins_film Trigger

The ins_film trigger duplicates all INSERT operations on the film table to the film_text table.

5.5.5 The upd_film Trigger

The upd_film trigger duplicates all UPDATE operations on the film table to the film_text table.

5.5.6 The del_film Trigger

The del_film trigger duplicates all DELETE operations on the film table to the film_text table.

6 Usage Examples

These are a few usage examples of how to perform common operations using the Sakila sample database.
While these operations are good candidates for stored procedures and views, such implementation is
intentionally left as an exercise to the user.

17

Sakila Sample Database

• Rent a DVD

• Return a DVD

• Find Overdue DVDs

Rent a DVD

To rent a DVD, first confirm that the given inventory item is in stock, and then insert a row into the rental
table. After the rental table is created, insert a row into the payment table. Depending on business rules,
you may also need to check whether the customer has an outstanding balance before processing the
rental.

mysql> SELECT inventory_in_stock(10);
+------------------------+
| inventory_in_stock(10) |
+------------------------+
| 1 |
+------------------------+
1 row in set (0.01 sec)

mysql> INSERT INTO rental(rental_date, inventory_id, customer_id, staff_id)
 VALUES(NOW(), 10, 3, 1);
Query OK, 1 row affected (0.00 sec)

mysql> SET @rentID = LAST_INSERT_ID(),
 @balance = get_customer_balance(3, NOW());
Query OK, 0 rows affected (0.14 sec)

mysql> SELECT @rentID, @balance;
+---------+----------+
| @rentID | @balance |
+---------+----------+
| 16050 | 4.99 |
+---------+----------+
1 row in set (0.00 sec)

mysql> INSERT INTO payment (customer_id, staff_id, rental_id, amount, payment_date)
 VALUES(3, 1, @rentID, @balance, NOW());
Query OK, 1 row affected (0.00 sec)

Return a DVD

To return a DVD, update the rental table and set the return date. To do this, first identify the rental_id
to update based on the inventory_id of the item being returned. Depending on the situation, it may be
necessary to check the customer balance and perhaps process a payment for overdue fees by inserting a
row into the payment table.

mysql> SELECT rental_id
 FROM rental
 WHERE inventory_id = 10
 AND customer_id = 3
 AND return_date IS NULL
 INTO @rentID;
Query OK, 1 row affected (0.01 sec)

mysql> SELECT @rentID;
+---------+
| @rentID |
+---------+
| 16050 |
+---------+

18

Sakila Sample Database

1 row in set (0.00 sec)

mysql> UPDATE rental
 SET return_date = NOW()
 WHERE rental_id = @rentID;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT get_customer_balance(3, NOW());
+--------------------------------+
| get_customer_balance(3, NOW()) |
+--------------------------------+
| 0.00 |
+--------------------------------+
1 row in set (0.13 sec)

Find Overdue DVDs

Many DVD stores produce a daily list of overdue rentals so that customers can be contacted and asked to
return their overdue DVDs.

To create such a list, search the rental table for films with a return date that is NULL and where the rental
date is further in the past than the rental duration specified in the film table. If so, the film is overdue and
we should produce the name of the film along with the customer name and phone number.

mysql> SELECT CONCAT(customer.last_name, ', ', customer.first_name) AS customer,
 address.phone, film.title
 FROM rental INNER JOIN customer ON rental.customer_id = customer.customer_id
 INNER JOIN address ON customer.address_id = address.address_id
 INNER JOIN inventory ON rental.inventory_id = inventory.inventory_id
 INNER JOIN film ON inventory.film_id = film.film_id
 WHERE rental.return_date IS NULL
 AND rental_date + INTERVAL film.rental_duration DAY < CURRENT_DATE()
 ORDER BY title
 LIMIT 5;
+----------------+--------------+------------------+
| customer | phone | title |
+----------------+--------------+------------------+
OLVERA, DWAYNE	62127829280	ACADEMY DINOSAUR
HUEY, BRANDON	99883471275	ACE GOLDFINGER
OWENS, CARMEN	272234298332	AFFAIR PREJUDICE
HANNON, SETH	864392582257	AFRICAN EGG
COLE, TRACY	371490777743	ALI FOREVER
+----------------+--------------+------------------+
5 rows in set (0.10 sec)

7 Known Issues

The design of the Sakila sample database assumes that a staff member of a given store rents inventory
items to customers only from that store, not from other stores. This assumption is manifest in that the
rental, inventory, staff, and store tables have relationships that form a loop. A customer can have
only a single store, but a staff member is not similarly constrained. Were a staff member to rent items from
other stores, data in the rental table could become inconsistent.

The solution to this issue is left to the reader. Here are some possible approaches:

• Add a store_id column to the rental table and have foreign keys in the table also reference
that column to ensure that not only customer_id and inventory_id but also staff_id in the
inventory table have the same store.

• Add INSERT and UPDATE triggers on the rental table.

19

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Sakila Sample Database

8 Acknowledgments

The following individuals and organizations contributed to the initial development of the Sakila sample
database. This historical list is no longer updated.

• Roland Bouman: provided valuable feedback throughout the development process, contributed sample
views and stored procedures.

• Ronald Bradford: developed the first sample application for use with the Sakila sample database.

• Dave Jaffe: provided schema used in Dell whitepaper and secured permission to use parts thereof in
the Sakila sample database.

• Giuseppe Maxia: provided valuable feedback throughout the development process, populated some
of the sample data, provided some of the sample views and triggers.

For v1.0, he combined sakila and sakila-spatial by adding MySQL version specific comments within the
SQL files.

• Jay Pipes: provided some of the sample stored procedures.

• Zak Greant: provided advice and feedback on licensing.

In addition to the individuals mentioned previously, various other individuals at MySQL and in the MySQL
community have provided feedback during the course of development.

9 License for the Sakila Sample Database

The contents of the sakila-schema.sql and sakila-data.sql files are licensed under the New BSD
license.

Information on the New BSD license can be found at http://www.opensource.org/licenses/bsd-license.php
and http://en.wikipedia.org/wiki/BSD_License.

The additional materials included in the Sakila distribution, including this documentation, are not licensed
under an open license. Use of this documentation is subject to the terms described in Legal Notices.

For more information, please Contact http://www.mysql.com/about/contact/.

10 Note for Authors

When using the Sakila sample database for articles and books, it is strongly recommended that you
explicitly list the version of the Sakila sample database that is used in your examples. This way readers will
download the same version for their use and not encounter any differences in their results that may occur
from upgrades to the data or schema.

11 Sakila Change History

This section describes changes made in each version of the Sakila sample database.

• Version 1.5

• Version 1.4

• Version 1.3

20

http://www.opensource.org/licenses/bsd-license.php
http://en.wikipedia.org/wiki/BSD_License
http://www.mysql.com/about/contact/

Sakila Sample Database

• Version 1.2

• Version 1.1

• Version 1.0

• Version 0.9

• Version 0.8

• Version 0.7

• Version 0.6

• Version 0.5

• Version 0.4

• Version 0.3

• Version 0.2

Version 1.5

• Fixed MySQL Bug #112552: Accented characters were missing from the address fields.

Version 1.4

• Fixed MySQL Bug #112131: Made the film_text.film_id field unsigned to match the other film_id
definitions.

• Films without an actor were not returned by the film_list and nicer_but_slower_film_list views.

Version 1.3

• Fixed MySQL Bug #106951: Accented characters were missing from the city and country fields; their
values were updated using the world database. In addition, the acute accent character itself was also
missing.

• Fixed MySQL Bug #107158: Removed five rows in the payment table that had a null rental_id value.

Version 1.2

• Database objects now use utf8mb4 rather than utf8. This change caused a Specified key was
too long; max key length is 767 bytes error in MySQL 5.6 for the film.title column,
which was declared as VARCHAR(255). The actual maximum title length is 27 characters, so the column
was redeclared as VARCHAR(128) to avoid exceeding the maximum key length.

• sakila-schema.sql and sakila-data.sql include a SET NAMES utf8mb4 statement.

• sakila-data.sql was converted from DOS (CRLF) line endings to Unix (LF) line endings.

• The address.location column is a GEOMETRY column that has a SPATIAL index. As of MySQL
8.0.3, SPATIAL indexes are ignored unless the index spatial column has an SRID attribute. The
location column was changed to include an SRID 0 attribute for MySQL 8.0.3 and higher.

• The staff.password column was declared as VARCHAR(40) BINARY. This is use of BINARY as
shorthand in a character column declaration for specifying a _bin collation, which is deprecated as of

21

Sakila Sample Database

MySQL 8.0.17. The column was redeclared as what BINARY is shorthand for, that is, VARCHAR(40)
CHARACTER SET utf8mb4 COLLATE utf8mb4_bin.

• In the rewards_report() stored procedure, the min_dollar_amount_purchased parameter was
declared as DECIMAL(10,2) UNSIGNED. Use of UNSIGNED with DECIMAL is deprecated as of MySQL
8.0.17. The parameter was redeclared without UNSIGNED.

• The film_in_stock() and film_not_in_stock() stored procedures used the FOUND_ROWS()
function, which is deprecated as of MySQL 8.0.17. In each procedure, the FOUND_ROWS() query was
replaced by a query that uses COUNT(*) with the same FROM and WHERE clauses as its associated
query. This is more expensive than using FOUND_ROWS() but produces the same result.

• The film_text table uses MyISAM rather than InnoDB prior to MySQL 5.6.10 to avoid table-creation
failure in older versions. (However, we still recommend upgrading to MySQL 5.6.10 or higher.)

• The sakila.mwb file for MySQL Workbench was updated per the preceding changes.

Version 1.1

• Removed all MyISAM references. The film_text table, and its FULLTEXT definition, now uses
InnoDB. If you use an older MySQL server version (5.6.10 and lower), we recommend upgrading
MySQL. If you cannot upgrade, change the ENGINE value for the film_text table to MyISAM in the
sakila-schema.sql SQL file.

Version 1.0

• Merged sakila-schema.sql and sakila-spatial-schema.sql into a single file by using MySQL
version-specific comments.

Spatial data, such as address.location, is inserted into the sakila database as of MySQL server
5.7.5 (when spatial indexing support was added to InnoDB). Also, InnoDB full-text search is used as of
MySQL server 5.6.10, when before MyISAM was used.

Version 0.9

• Added an additional copy of the Sakila example database that includes spatial data with the geometry
data type. This is available as a separate download, and requires MySQL server 5.7.5 or later. To use
this database, load the sakila-spatial-schema.sql file rather than the sakila-schema.sql file.

• Modified GROUP BY clause of the nicer_but_slower_film_list and film_list view definitions
to be compatible with ONLY_FULL_GROUP_BY SQL mode, which is enabled by default as of MySQL
5.7.5.

Version 0.8

• Corrected upd_film trigger definition to include changes to film_id values.

• Added actor_info view.

• Changed error handler for inventory_held_by_customer function. Function now has an exit handler
for NOT FOUND instead of the more cryptic 1329.

• Added template for new BSD license to schema and data files.

• Added READS SQL DATA to the stored procedures and functions where appropriate to support loading
on MySQL 5.1.

22

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_only_full_group_by

Sakila Sample Database

• Fixed date-range issue in the rewards_report procedure (thanks Goplat).

Version 0.7

• Fixed bug in sales_by_store view that caused the same manager to be listed for every store.

• Fixed bug in inventory_held_by_customer function that caused function to return multiple rows.

• Moved rental_date trigger to sakila-data.sql file to prevent it from interfering with data loading.

Version 0.6

• Added film_in_stock stored procedure.

• Added film_not_in_stock stored procedure.

• Added inventory_help_by_customer stored function.

• Added inventory__in_stock stored function.

• Optimized data file for loading (multiple-row INSERT statements, transactions). (Thanks Giuseppe)

• Fixed error in payment table loading script that caused infinitely increasing payment amounts.

Version 0.5

• Added sales_by_store and sales_by_film_category views, submitted by Jay Pipes.

• Added rewards_report stored procedure, submitted by Jay Pipes.

• Added get_customer_balance stored procedure.

• Added sakila-data.sql file to load data into sample database.

Version 0.4

• Added password column to staff table (VARCHAR(40) BINARY DEFAULT NULL).

Version 0.3

• Changed address.district to VARCHAR(20).

• Changed customer.first_name to VARCHAR(45).

• Changed customer.last_name to VARCHAR(45).

• Changed customer.email to VARCHAR(50).

• Added payment.rental_id column (an INT NULL column).

• Foreign key added for payment.rental_id to rental.rental_id.

• rental.rental_id added, INT Auto_Increment, made into surrogate primary key, old primary key
changed to UNIQUE key.

Version 0.2

• All tables have a last_update TIMESTAMP column with traditional behavior (DEFAULT
CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP).

23

Sakila Sample Database

• actor_id is now a SMALLINT.

• address_id is now a SMALLINT.

• category_id is now a TINYINT.

• city_id is now a SMALLINT.

• country_id is now a SMALLINT.

• customer_id is now a SMALLINT.

• first_name, last_name for customer table are now CHAR instead of VARCHAR.

• customer table now has email CHAR(50).

• create_date on customer table is now DATETIME (to accommodate last_update TIMESTAMP).

• customer table has a new ON INSERT trigger that enforces create_date column being set to NOW().

• film_id is now SMALLINT.

• film.description now has DEFAULT NULL.

• film.release_year added with type YEAR.

• film.language_id and film.original_language_id added along with language table. For
foreign films that may have been subtitled. original_language_id can be NULL, language_id is
NOT NULL.

• film.length is now SMALLINT.

• film.category_id column removed.

• New table: film_category; allows for multiple categories per film.

• film_text.category_id column removed.

• inventory_id is now MEDIUMINT.

• payment_id is now SMALLINT.

• payment.payment_date is now DATETIME.

• Trigger added to payment table to enforce that payment_date is set to NOW() upon INSERT.

• rental.rent_date is now rental.rental_date and is now DATETIME.

• Trigger added to rental table to enforce that rental_date is set to NOW() upon INSERT.

• staff_id is now TINYINT.

• staff.email added (VARCHAR(50)).

• staff.username added (VARCHAR(16)).

• store_id is now TINYINT.

• film_list view updated to handle new film_category table.

24

Sakila Sample Database

• nicer_but_slower_film_list view updated to handle new film_category table.

25

26

	Sakila Sample Database
	Table of Contents
	1 Preface and Legal Notices
	2 Introduction
	3 History
	4 Installation
	5 Structure
	5.1 Tables
	5.1.1 The actor Table
	5.1.2 The address Table
	5.1.3 The category Table
	5.1.4 The city Table
	5.1.5 The country Table
	5.1.6 The customer Table
	5.1.7 The film Table
	5.1.8 The film_actor Table
	5.1.9 The film_category Table
	5.1.10 The film_text Table
	5.1.11 The inventory Table
	5.1.12 The language Table
	5.1.13 The payment Table
	5.1.14 The rental Table
	5.1.15 The staff Table
	5.1.16 The store Table

	5.2 Views
	5.2.1 The actor_info View
	5.2.2 The customer_list View
	5.2.3 The film_list View
	5.2.4 The nicer_but_slower_film_list View
	5.2.5 The sales_by_film_category View
	5.2.6 The sales_by_store View
	5.2.7 The staff_list View

	5.3 Stored Procedures
	5.3.1 The film_in_stock Stored Procedure
	5.3.2 The film_not_in_stock Stored Procedure
	5.3.3 The rewards_report Stored Procedure

	5.4 Stored Functions
	5.4.1 The get_customer_balance Function
	5.4.2 The inventory_held_by_customer Function
	5.4.3 The inventory_in_stock Function

	5.5 Triggers
	5.5.1 The customer_create_date Trigger
	5.5.2 The payment_date Trigger
	5.5.3 The rental_date Trigger
	5.5.4 The ins_film Trigger
	5.5.5 The upd_film Trigger
	5.5.6 The del_film Trigger

	6 Usage Examples
	7 Known Issues
	8 Acknowledgments
	9 License for the Sakila Sample Database
	10 Note for Authors
	11 Sakila Change History

