MySQL NDB Cluster API Developer Guide

MySQL NDB Cluster API Developer Guide

This is the MySQL NDB Cluster API Developer Guide, which provides information about developing applications
using MySQL NDB Cluster as a data store. Application interfaces covered in this Guide include the low-level C
++-language NDB API (see Chapter 2, The NDB API), the C-language MGM API for communicating with and
controlling NDB Cluster management servers (see Chapter 3, The MGM API), and the MySQL NDB Cluster
Connector for Java, which is a collection of Java APIs for writing applications against NDB Cluster, including
JDBC, JPA, and ClusterJ (see Chapter 4, MySQL NDB Cluster Connector for Java).

MySQL NDB Cluster 8.0 (and later) also provides support for applications written using Node. | s. See Chapter 5,
MySQL NoSQL Connector for JavaScript, for more information.

This Guide includes concepts, terminology, class and function references, practical examples, common problems,
and tips for using these APlIs in applications.

For information about NDB internals that may be of interest to developers working with NDB, see MySQL NDB
Cluster Internals Manual.

The information presented in this guide is current for recent releases of MySQL NDB Cluster 8.0 up to and
including NDB Cluster 8.0.35, as well as the NDB Cluster 8.2 (8.2.0) Innovation release. Due to significant
functional and other changes in NDB Cluster and its underlying APIs, you should not expect this information to
apply to versions of the NDB Cluster software prior to NDB Cluster 7.5. Users of older NDB Cluster releases
should upgrade to the latest available release of NDB Cluster 8.0, which is the most recent GA release series, or
to the NDB Cluster 8.2 Innovation release.

For more information about NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0. For information about
NDB Cluster 8.2, see What is New in MySQL NDB Cluster 8.2.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information—NDB APIs. If you are using the NDB APIs with a Commercial release of MySQL NDB
Cluster, see the MySQL NDB Cluster 8.0 Commercial Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using the NDB APIs with a Community release of MySQL NDB Cluster, see the MySQL NDB
Cluster 8.0 Community Release License Information User Manual for licensing information, including licensing
information relating to third-party software that may be included in this Community release.

Document generated on: 2024-02-22 (revision: 77890)

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.2/en/mysql-cluster-what-is-new.html
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiie ettt e e et ettt e e e e e e e eebanaaeees vii
1 NDB Cluster APIS: OVerview and CONCEPLSc..uuiiiiuiieeiiiiiiee et e ettt e et e e et e e et e eeniaaeees 1
1.1 NDB Cluster APl Overview: INTrodUCTIONiiiiiiiiiiiiiii e 1
1.1.1 NDB Cluster API Overview: The NDB APl ... 1
1.1.2 NDB Cluster API Overview: The MGM APccoouiiiiiiiiii e 2

1.2 NDB Cluster API Overview: Version Compatibilityccooooiiiiiiiiiiii 2
1.3 NDB Cluster APl Overview: TermMiNOIOQYcuuuuiiiiiriieiiiieee e 3
1.4 The NDB Transaction and Scanning AP ... 4
1.4.1 COre NDB API ClIaSSESuiiiiiiieiiiii ettt ettt e e e 5
1.4.2 Application Program BasSICSccuuuiieiiiiiieiiii ettt 5
1.4.3 Review Of NDB CIUStEr CONCEPLScvvvrenieiiiiiieieii ettt e 12
1.4.4 The Adaptive Send AIGOMtRM ... e 14

1.5 Application-level Partitioningo...ueeeeii e 15
1.6 Using NADINTErpret@dCOUEciiiiiieeeii ettt et e e e e e eees 15
2 THE NDB AP oottt e e e e e ettt bt e e e e e e e e e bt e e e e e e e eraraanas 23
2.1 Getting Started With the NDB AP ... 24
2.1.1 Compiling and Linking NDB API Programscoocueuuiieiiiiineeiiieeeeiie e 24
2.1.2 Connecting t0 the CIUSTEYuuiiiiii e e 27
2.1.3 Mapping MySQL Database Object Names and Types to NDBccccvuiveeeennnnn. 28

2.2 The NDB API Class HIEIaraChyccouuuiiiiiiiiieiiiiie ettt 33
2.3 NDB API Classes, Interfaces, and SITUCIUIESuveeiiiiiiieiiiiiieeiii e 34
2.3.1 The COIUMN CIASS ...uuuiiiiiiiii ettt ettt e et e eeeeb e e ent e aeens 34
2.3.2 The DAtafile ClaSSccuuiiiiiiiiiii et 51
2.3.3 The DiCtioNaAry ClASSccceuuuiiiiiiiieieii ettt e e eeea e eees 56
2.3.4 The EIeMENt SIUCTUIEcoiiiiieieii e 74
2.3.5 THE EVENE CIASS ..cevtuiiiiiiiiee ettt ettt ettt et e e et e e e e eeaans 74
2.3.6 The FOreignKey ClasSccuuuiiiiiiiiiiiii e e 85
2.3.7 The HasShMAaP CIASSccuuuiiiiiiiiiiiiiii ettt et 92
2.3.8 THE INAEX CIASS ...eeiiiiiiiii ettt e e et e eeeaans 95
2.3.9 The LogfileGroup CIaSSuiiiiiiiieiiiiie ettt 102
2.3.10 TRE LISt ClASS ...uuiiieiiieieiii ettt ettt e 105
2.3.11 THE NAD ClASS ...eunieiiiiiieeeeit et 106
2.3.12 The Ndb_cluster_connection CIaSssScouuiiiiiiiiiiiiiiee e 129
2.3.13 The NADBBIOD CIaSSccvuiiiiiiiiiie e 140
2.3.14 The NADDICHONAIY CIASSuiiiiiiiieiiiiiiee et 151
2.3.15 The NADEIOr SIHUCIUIE ... 157
2.3.16 The NABEVENtOPEeration CIASSicieiuiiiieiiiiieeeiii et e eens 160
2.3.17 The NdbINdexOperation CIASScceuutuiiiiiiiieeiiii et eeees 170
2.3.18 The NdbIndexScanOperation Classcoveieiiiieiiiiieieir e 172
2.3.19 The NdbinterpretedCode CIaSSoieiiiiiiieiiiiieeei et 178
2.3.20 The NADOPEration ClASSc.uuieiiiiiieeiiii e 204
2.3.21 The NADRECALL ClASSccuuiieiiiiiiieiii ettt 242
2.3.22 The NADRecord INErfaceocoviiiiiiiiii e 249
2.3.23 The NADSCanFilter ClasSoiiiiiiiieeiiii e 250
2.3.24 The NdbScanOperation CIASScouuuuieiiiiiieieii ettt 260
2.3.25 The NADTransaction CIASScccuuuuiiiiiiiieiiii et 272
2.3.26 The ODJECE ClIASS ..cevuuieiiiiii ettt 291
2.3.27 The Table CIasSioiiiiiieie e e 295
2.3.28 The TableSpace ClasSoieiiiiiiiiiiiiie et 321
2.3.29 The UNdofile CIaSSciieiiieieii e 326

2.4 NDB API Errors and Error Handlingccoouuiiiiiiiiee e 330
2.4.1 Handling NDB API EITOIS ...couuiiiiiiiiieiei ettt ettt e e s 331
2.4.2 NDB Error Codes: DY TYPE ...ttt 334
2.4.3 NDB Error Codes: Single LiStNGovieeuiiiiiiiiiieeeii e 400
2.4.4 NDB Error ClassifiCatiONSieieiitieiiiiiieeiii ettt e e e eens 473

MySQL NDB Cluster API Developer Guide

2.5 NDB API EXAMPIESoiineiiiieii et e e e e e e e e e e e 474
2.5.1 Basic NDB APl EXGMPIESuciiiiiiiii e e e e e 475
2.5.2 NDB API Example Using Synchronous Transactionsccceeevvveiiinieinneeinnnnns 481
2.5.3 NDB API Example Using Synchronous Transactions and Multiple Clusters 486
2.5.4 NDB API Example: Handling Errors and Retrying Transactions 491
2.5.5 NDB API Basic Scanning EXampleccccouiiiiiiiiiiiiiiie e e e e 495
2.5.6 NDB API Example: Using Secondary Indexes in SCanscccoeevvvevinieeiineennnnn. 508
2.5.7 NDB API Example: Using NdbRecord with Hash Indexescccoccevevinnennnnn. 511
2.5.8 NDB API Example Comparing RecAttr and NdbRecordccooevviiiiineinnnn. 517
2.5.9 NDB API Event Handling EXamPpleccooiiiiiiiiiicci e eee e e e 562
2.5.10 NDB API Example: Basic BLOB Handlingccooieiiiiiiiiiiiin e 566
2.5.11 NDB API Example: Handling BLOB Columns and Values Using NdbRecord 573
2.5.12 NDB API Simple Array EXamplecooouiiiiiiiiii e 582
2.5.13 NDB API Simple Array Example Using Adapterccoociiiiiiiieiiii e 587
2.5.14 TImestamp2 EXAMPIE ...oouniiii et 592
2.5.15 Common Files for NDB APl Array EXamplesccocciieiiiiiiiiiieiie e, 596

I I L= 1 Y = PP 605

1 I8 R (] Y o B O] g 0= o £ SR 605

3.2 MGM API FUNCHON LIStNGS ..oovuiiiiieii et e e e e e e e e e e e e aaeees 607
3.2.1 LOg EVENE FUNCLIONS ...uuiiiiicii e e e e e e e e e e eees 607
3.2.2 MGM API Error Handling FUNCHONScovviiiiiic e 610
3.2.3 Management Server Handle FUNCLONScccccuiiiiiiiiiiii e 612
3.2.4 Management Server Connection FUNCLONScccouiiiiiieiiiiecii e 613
3.2.5 Cluster Status FUNCHONSuuiiiiiiiie et e e eeanns 619
3.2.6 Functions for Starting & Stopping NOAEScovviiiiiiiiiieee e, 621
G T A 10153 (=Y g o o T T £ o N 627
3.2.8 BACKUP FUNCHIONS .. ceuiiiiiciii et e e e e e e e e et e e e e e ean s 629
3.2.9 Single-User Mode FUNCLONSoiiiiiiiiicii e e e e e 632
3.2.10 TLS FUNCLONS ..uiiiiiii et e et e e e e e e e e e et e e e e et s 633

3.3 MGM AP DAA TYPES eetuuietetiieetiiii e ettt e e ettt e e e et e e e et e e e et e e e et e e e e et e e aeatneeaeannnes 637

3.4 MGM API DAta SITUCTUIESceiieieiiieiee ettt et e et e et e e e eneees 646

3.5 MGM AP EITOIS .ttt et e e et e e et e e e e e ees 653

3.6 MGM AP EXAMPIES ..ottt e e e e e e et e e et e et e e e aans 655
3.6.1 Basic MGM API Event Logging EXamplecooiiiiiiiiiciiiicec e 655
3.6.2 MGM API Event Handling with Multiple CIUStErSccccoeviiiiiiiiiei e, 657

4 MySQL NDB Cluster ConNECIOr fOr JAVAccuuuiiiiiiiiiieiie et e e e e e e e e 661

4.1 MySQL NDB Cluster Connector for Java: OVEIVIEWccceuuieeiiieiiiieeiiieeeiieeeiieeaieeeaenns 661
4.1.1 MySQL NDB Cluster Connector for Java Architectureccoeeeviviiineeinneennnn. 661
4.1.2 Java and NDB ClIUSLENuuuiiiiiiiii et e e e 661
4.1.3 The ClusterJ API and Data Object Modelcooviiiiiiiiiiiiiiie e, 662

4.2 Using MySQL NDB Cluster Connector fOr JAVAcc.oveviiiieiiiieiiii e e eee e e 664
4.2.1 Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java 664
A O £ o [O 11 1] (Y o P 667
4.2.3 Using Connector/J with NDB CIUSTENcciiiiiiiiiciii e e 675

4.3 Clusterd APl REFEIENCEcooviiiiiiii e 675
4.3.1 COM.MYSLCIUSIEI] .. eeeiii e e e e e e e e e e e aaas 675
4.3.2 com.mysql.CIUSEEr}.anNOtALIONccvuuieiiieiii e e e e ea e 721
4.3.3 COM.MYSALCIUSIEI.QUETY .oniiiiieei e e e e e e e e e e eees 728
4.3.4 Constant field VAIUESuiiiiiii i 734

4.4 MySQL NDB Cluster Connector for Java: Limitations and Known ISSUes 735

5 MySQL NoSQL Connector for JAVASCIIPL ...c..uiiiiiiiiie e e e e e e e e eaes 737

5.1 MySQL NoSQL Connector for JavaScript OVEIVIEWcccuiveiiieiiiieiiii e eie e e 737

5.2 Installing the JavaScript CONNECIONciuuiiii e e e e e e e 737

5.3 Connector for JavaScript APl DOCUMENAtIONcovvunieiiiiii e e e 739
ST 201 R =7 1 (o] o PP 739
5,302 CONEEXL it 739
TR TR T ©0] 01V =T 4 (=] PP PTPPPR 741

LT T =t o = TN 742

MySQL NDB Cluster API Developer Guide

LR ST /17 o o [PR 742

IR N SRS T= 21T I PP 745

5.3.7 SESSIONFACIOIY ...uiiitiiiii et e e e e e e e e e e 746

5.3.8 TableMapping and FieldMappingcoceuieiiiieiii e e e e e 746

RSN B - 1o] (] 1Y =1 = To £ - PSP 747

TR B0 K0 B I = [Vo 1o I PP 748

5.4 Using the MySQL JavaScript Connector: EXamplescccoovviiiiiiiiiieiiii e 749
5.4.1 Requirements for the EXamPpPlescoeviiiiiiiiiice e 749

5.4.2 Example: FINAING ROWSuiiiiiiiiiicii e e e e e e e e eanaeees 753

5.4.3 INSEIING ROWS ...iiiiiiiiiiiii et e e e e e e e e et e e e e eeaas 754

5.4.4 DEIEUING ROWS ...ouuiiiiiiiii ettt e e e e e e e e e e e e e e et e e eaneeaanaes 756

6 ndbmemcache—Memcache API for NDB Cluster (NO LONGER SUPPORTED)cccoeevvvnnies 759
0 = ST 761

Vi

Preface and Legal Notices

This is the MySQL NDB Cluster API Developer Guide, which provides information about developing
applications using MySQL NDB Cluster as a data store. Application interfaces covered in this Guide
include the low-level C++-language NDB API (see Chapter 2, The NDB API), the C-language MGM API
for communicating with and controlling NDB Cluster management servers (see Chapter 3, The MGM
API), and the MySQL NDB Cluster Connector for Java, which is a collection of Java APIs for writing
applications against NDB Cluster, including JDBC, JPA, and ClusterJ (see Chapter 4, MySQL NDB
Cluster Connector for Java).

MySQL NDB Cluster 8.0 also provides support for applications written using Node. j s. See Chapter 5,
MySQL NoSQL Connector for JavaScript, for more information.

This Guide includes concepts, terminology, class and function references, practical examples, common
problems, and tips for using these APIs in applications.

For information about NDB internals that may be of interest to developers working with NDB, see
MySQL NDB Cluster Internals Manual.

The information presented in this guide is current for recent releases of MySQL NDB Cluster 8.0 up to
and including NDB Cluster 8.0.35, as well as the NDB Cluster 8.3 (8.3.0) Innovation release. Due to
significant functional and other changes in NDB Cluster and its underlying APIs, you should not expect
this information to apply to versions of the NDB Cluster software prior to NDB Cluster 7.5. Users of
older NDB Cluster releases should upgrade to the latest available release of NDB Cluster 8.0, which is
the most recent GA release series, or to the NDB Cluster 8.3 Innovation release.

For more information about NDB Cluster 8.0, see What is New in MySQL NDB Cluster 8.0. For
information about NDB Cluster 8.3, see https://dev.mysqgl.com/doc/refman/8.3/en/mysql-cluster-what-is-
new.html.

For legal information, see the Legal Notices.

Licensing information—MySQL NDB Cluster 8.0. This product may include third-party software,
used under license. If you are using a Commercial release of MySQL NDB Cluster 8.0, see the MySQL
NDB Cluster 8.0 Commercial Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL NDB Cluster 8.0, see the MySQL NDB
Cluster 8.0 Community Release License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 8.3. This product may include third-party software,
used under license. If you are using a Commercial release of MySQL NDB Cluster 8.3, see the MySQL
NDB Cluster 8.3 Commercial Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL NDB Cluster 8.3, see the MySQL NDB
Cluster 8.3 Community Release License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this Community release.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any

Vii

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-what-is-new.html
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.3-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.3-gpl-en.pdf

Legal Notices

form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software,” "commercial computer software
documentation,” or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

viii

Documentation Accessibility

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another

publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/

or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://lwww.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 NDB Cluster APIs: Overview and Concepts

Table of Contents

1.1 NDB Cluster APl OVerview: INtrOUCTIONviiiiiiieiiiiie ettt eens 1
1.1.1 NDB Cluster APl Overview: The NDB APccoouuiiiiiiiiii e 1
1.1.2 NDB Cluster API Overview: The MGM AP ..o 2

1.2 NDB Cluster APl Overview: Version Compatibilityccooveiiiiiiiiiii e, 2

1.3 NDB Cluster APl Overview: TErMINOIOGYcouuuuieiiiiiieeiiire et et e e 3

1.4 The NDB Transaction and Scanning APl ... e 4
1.4.1 COre NDB AP ClaSSESuuiiiiiiiieiiiii ettt ettt e e e e e s 5
1.4.2 Application Program BaSICSccuuuiiiiiiiiiiiiiie et 5
1.4.3 Review Of NDB CIUSIEr CONCEPLScevvunieiiiiiieeeeiie e ettt e e 12
1.4.4 The Adaptive Send AIGOMTNIM ... oo e e 14

1.5 Application-level Partitioningco.uuioeiieii e 15

1.6 USing NADINTErPret@dCOUE ittt e e ettt e e e e et e e e eat e eeees 15

This chapter provides a general overview of essential NDB Cluster, NDB API, and MGM API concepts,
terminology, and programming constructs.

For an overview of Java APIs that can be used with NDB Cluster, see Section 4.1, “MySQL NDB Cluster
Connector for Java: Overview”.

For information about writing JavaScript applications using Node.js with MySQL, see Chapter 5, MySQL NoSQL
Connector for JavaScript.

1.1 NDB Cluster API Overview: Introduction

This section introduces the NDB Transaction and Scanning APIs as well as the NDB Management (MGM) API for
use in building applications to run on NDB Cluster. It also discusses the general theory and principles involved in
developing such applications.

1.1.1 NDB Cluster API Overview: The NDB API

The NDB API is an object-oriented application programming interface for NDB Cluster that implements
indexes, scans, transactions, and event handling. NDB transactions are ACID-compliant in that

they provide a means to group operations in such a way that they succeed (commit) or fail as a unit
(rollback). It is also possible to perform operations in a “no-commit” or deferred mode, to be committed
at a later time.

NDB scans are conceptually rather similar to the SQL cursors implemented in MySQL and other
common enterprise-level database management systems. These provide high-speed row processing
for record retrieval purposes. (NDB Cluster naturally supports set processing just as does MySQL in
its non-Cluster distributions. This can be accomplished through the usual MySQL APIs discussed in
the MySQL Manual and elsewhere.) The NDB API supports both table scans and row scans; the latter
can be performed using either unique or ordered indexes. Event detection and handling is discussed
in Section 2.3.16, “The NdbEventOperation Class”, as well as Section 2.5.9, “NDB API Event Handling
Example”.

In addition, the NDB API provides object-oriented error-handling facilities in order to provide a means
of recovering gracefully from failed operations and other problems. (See Section 2.5.4, “NDB API
Example: Handling Errors and Retrying Transactions”, for a detailed example.)

The NDB API provides a number of classes implementing the functionality described above. The
most important of these include the Ndb, Ndb_cl ust er _connecti on, NdbTr ansacti on, and
NdbOper at i on classes. These model (respectively) database connections, cluster connections,

NDB Cluster API Overview: The MGM API

transactions, and operations. These classes and their subclasses are listed in Section 2.3, “NDB API
Classes, Interfaces, and Structures”. Error conditions in the NDB API are handled using NdbEr r or .

Note

@ NDB API applications access the NDB Cluster's data store directly, without
requiring a MySQL Server as an intermediary. This means that such
applications are not bound by the MySQL privilege system; any NDB API
application has read and write access to any NDB table stored in the same NDB
Cluster at any time without restriction.

1.1.2 NDB Cluster API Overview: The MGM API

The NDB Cluster Management API, also known as the MGM API, is a C-language programming
interface intended to provide administrative services for the cluster. These include starting and stopping
NDB Cluster nodes, handling NDB Cluster logging, backups, and restoration from backups, as well as
various other management tasks. A conceptual overview of the MGM API and its uses can be found in
Chapter 3, The MGM API.

The MGM API's principal structures model the states of individual modes (ndb_ngm node_st at e),
the state of the NDB Cluster as a whole (ndb_ngm cl ust er _st at e), and management server
response messages (ndb_ngm r epl y). See Section 3.4, “MGM API Data Structures”, for detailed
descriptions of these.

1.2 NDB Cluster API Overview: Version Compatibility

The NDB API is now fairly mature, and has undergone few major changes in recent releases. Where
they have occurred, such changes are indicated in the documentation of the affected objects and
methods.

The API version of an NDB API application is determined by the version of | i bndbcl i ent the
application uses to provide NDB API functionality. Because it is necessary to support rolling upgrades,
we perform basic testing across a number of versions (7.5 through 8.2) with regard to both older API
versions connecting to data nodes of newer versions, and newer API versions connecting to data
nodes of older versions. We no longer perform such testing with releases prior to NDB 7.5, since these
are no longer maintained or supported in production.

In addition, in NDB 8.0, some compatibility has been dropped with API versions prior to 7.5, but is
retained with versions 7.5 and 7.6.

When new a new feature is added to NDB, this is generally done in such a way that the new
functionality includes checking that the data nodes which are currently connected are running versions
which support the feature. This is done to guard against accidental use of the new feature during a
rolling upgrade before the cluster is fully upgraded to the version adding support for it.

In the event that an application employing a newer version of the NDB API is run against an older
cluster which does not support a newer feature used by the application, the application raises error
code 4003 Function not inplenmented yet when trying to make use of the feature. Other errors
are possible depending on the new functionality involved (see Section 2.4.2, “NDB Error Codes: by

Type").

When an application using an older version of | i bndbcl i ent connects to a cluster running a newer
version of NDB, the data nodes should support older API calls, but there other considerations as well.

In particular, if the schema on the cluster makes use of newer features not supported by the older API
version does not support, it is possible that operations may be less than optimal or give rise to errors.
Some examples are listed here:

» There are tables in the cluster using the JSON data type, which is unknown to NDB prior to version
7.5

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.3/en/json.html

NDB Cluster APl Overview: Terminology

e The cluster uses one or more fully replicated tables, which are not supported in NDB prior to version
7.5

» The cluster includes tables using generated columns, which are unsupported in NDB prior to version
7.5

When upgrading a cluster online (that is, by using a rolling restart), existing table schemas are
preserved, thus avoiding activation of new schema features too early. This is not the case when the
upgrad recreates the schema and restores all data, when the new version may by default use new
schema features. For this reason, it is best practice to test with specific schemas, operations, and
versions prior upgrading a production system to catch any problems that may arise when connecting
an older application or SQL node to a cluster running a newer version of NDB.

For information about general requirements for compiling NDB APl and MGM API applications, see
Section 2.1.1.1, “General Requirements”.

1.3 NDB Cluster API Overview: Terminology

This section provides a glossary of terms which are unique to the NDB and MGM APIs, or that have a specialized
meaning when applied in the context of either or both of these APIs.

The terms in the following list are useful to an understanding of NDB Cluster, the NDB API, or have a
specialized meaning when used in one of these:

Backup. A complete copy of all NDB Cluster data, transactions and logs, saved to disk.
Restore. Return the cluster to a previous state, as stored in a backup.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. When working with the NDB storage engine, there are two sorts of checkpoints which work
together in order to ensure that a consistent view of the cluster's data is maintained. These two types,
local checkpoints and global checkpoints, are described in the next few paragraphs:

Local checkpoint (LCP). This is a checkpoint that is specific to a single node; however, LCPs take
place for all nodes in the cluster more or less concurrently. An LCP involves saving all of a node's data
to disk, and so usually occurs every few minutes, depending upon the amount of data stored by the
node.

More detailed information about LCPs and their behavior can be found in the MySQL Manual; see in
particular Defining NDB Cluster Data Nodes.

Global checkpoint (GCP). A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the REDO log is flushed to disk.

A related term is GCI, which stands for “Global Checkpoint ID”. This marks the point in the REDO log
where a GCP took place.

Node. A component of NDB Cluster. 3 node types are supported:

» A management (MGM) node is an instance of ndb_ngnd, the NDB Cluster management server
daemon.

» A data node an instance of ndbd, the NDB Cluster data storage daemon, and stores NDB Cluster
data. This may also be an instance of ndbnt d, a multithreaded version of ndbd.

* An API nodeis an application that accesses NDB Cluster data. SQL node refers to a mysql d
(MySQL Server) process that is connected to the NDB Cluster as an API node.

For more information about these node types, please refer to Section 1.4.3, “Review of NDB Cluster
Concepts”, or to NDB Cluster Programs, in the MySQL Manual.

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbd-definition.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-mgmd.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndbmtd.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndbd.html
https://dev.mysql.com/doc/refman/8.3/en/mysqld.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs.html

The NDB Transaction and Scanning API

Node failure. An NDB Cluster is not solely dependent upon the functioning of any single node
making up the cluster, which can continue to run even when one node fails.

Node restart. The process of restarting an NDB Cluster node which has stopped on its own or
been stopped deliberately. This can be done for several different reasons, listed here:

» Restarting a node which has shut down on its own. (This is known as forced shutdown or node
failure; the other cases discussed here involve manually shutting down the node and restarting it).

» To update the node's configuration.

» As part of a software or hardware upgrade.

In order to defragment the node's Dat aMenory.

Initial node restart. The process of starting an NDB Cluster node with its file system having
been removed. This is sometimes used in the course of software upgrades and in other special
circumstances.

System crash (system failure). This can occur when so many data nodes have failed that the
NDB Cluster's state can no longer be guaranteed.

System restart. The process of restarting an NDB Cluster and reinitializing its state from disk logs
and checkpoints. This is required after any shutdown of the cluster, planned or unplanned.

Fragment. Contains a portion of a database table. In the NDB storage engine, a table is broken up
into and stored as a number of subsets, usually referred to as fragments. A fragment is sometimes also
called a partition.

Fragment replica. Under the NDB storage engine, each table fragment has number of fragment
replicas in order to provide redundancy.

Transporter. A protocol providing data transfer across a network. The NDB API supports three
different types of transporter connections: TCP/IP (local), TCP/IP (remote), and SHM. TCP/IP is, of
course, the familiar network protocol that underlies HTTP, FTP, and so forth, on the Internet. SHM
stands for Unix-style shared memory segments.

NDB. This originally stood for “Network DataBase”. It now refers to the MySQL storage engine
(named NDB or NDBCLUSTER) used to enable the NDB Cluster distributed database system.

ACC (Access Manager). An NDB kernel block that handles hash indexes of primary keys
providing speedy access to the records. For more information, see The DBACC Block.

TUP (Tuple Manager). This NDB kernel block handles storage of tuples (records) and contains
the filtering engine used to filter out records and attributes when performing reads or updates. See The
DBTUP Block, for more information.

TC (Transaction Coordinator). Handles coordination of transactions and timeouts in the NDB
kernel (see The DBTC Block). Provides interfaces to the NDB API for performing indexes and scan
operations.

For more information, see NDB Kernel Blocks, elsewhere in this Guide..

See also NDB Cluster Overview, in the MySQL Manual.

1.4 The NDB Transaction and Scanning API

This section discusses the high-level architecture of the NDB API, and introduces the NDB classes which are of
greatest use and interest to the developer. It also covers most important NDB API concepts, including a review of
NDB Cluster Concepts.

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbacc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-overview.html

Core NDB API Classes

1.4.1 Core NDB API Classes

The NDB API is an NDB Cluster application interface that implements transactions. It consists of the
following fundamental classes:

« Ndb_cl ust er _connecti on represents a connection to a cluster.

» Ndb is the main class, and represents a connection to a database.

* NdbDi cti onary provides meta-information about tables and attributes.

e NdbTransact i on represents a transaction.

* NdbOper at i on represents an operation using a primary key.

* NdbScanQOper at i on represents an operation performing a full table scan.

* Ndbl ndexOper at i on represents an operation using a unique hash index.

» Ndbl ndexScanQper at i on represents an operation performing a scan using an ordered index.

* NdbRecAt t r represents an attribute value.

In addition, the NDB API defines an NdbEr r or structure, which contains the specification for an error.

It is also possible to receive events triggered when data in the database is changed. This is
accomplished through the NdbEvent Oper at i on class.

The NDB event notification API is not supported prior to MySQL 5.1.

For more information about these classes as well as some additional auxiliary classes not listed here,
see Section 2.3, “NDB API Classes, Interfaces, and Structures”.

1.4.2 Application Program Basics

The main structure of an application program is as follows:
1. Connectto a cluster using the Ndb_cl ust er _connect i on object.
2. Initiate a database connection by constructing and initialising one or more Ndb objects.

3. Identify the tables, columns, and indexes on which you wish to operate, using NdbDi cti onary
and one or more of its subclasses.

4. Define and execute transactions using the NdbTr ansact i on class.

5. Delete Ndb objects.

6. Terminate the connection to the cluster (terminate an instance of Ndb_cl ust er _connecti on).
1.4.2.1 Using Transactions

The procedure for using transactions is as follows:

1. Start a transaction (instantiate an NdbTr ansact i on object).

2. Add and define operations associated with the transaction using instances of one or more of the
NdbOper at i on, NdbScanQOper at i on, Ndbl ndexOper at i on, and Ndbl ndexScanQOper ati on
classes.

3. Execute the transaction (call NdbTr ansact i on: : execut e()).

Application Program Basics

4. The operation can be of two different types—Commi t or NoConmi t :

« If the operation is of type NoConmi t , then the application program requests that the operation
portion of a transaction be executed, but without actually committing the transaction. Following
the execution of a NoComri t operation, the program can continue to define additional
transaction operations for later execution.

NoConmi t operations can also be rolled back by the application.

« If the operation is of type Conmi t , then the transaction is immediately committed. The transaction
must be closed after it has been committed (even if the commit fails), and no further operations
can be added to or defined for this transaction.

See NdbTransaction::ExecType.
1.4.2.2 Synchronous Transactions

Synchronous transactions are defined and executed as follows:

1. Begin (create) the transaction, which is referenced by an NdbTr ansact i on object typically created
using Ndb: : start Transact i on() . At this point, the transaction is merely being defined; it is not
yet sent to the NDB kernel.

2. Define operations and add them to the transaction, using one or more of the following, along with
the appropriate methods of the respectiveNdbOper at i on class (or possibly one or more of its
subclasses):

* NdbTransacti on: : get NdbQper ati on()

« NdbTransacti on: : get NdbScanOper ati on()

« NdbTransacti on: : get Ndbl ndexOper ati on()

¢ NdbTransacti on: : get Ndbl ndexScanQOper ati on()

At this point, the transaction has still not yet been sent to the NDB kernel.
3. Execute the transaction, using the NdbTr ansact i on: : execut e() method.
4. Close the transaction by calling Ndb: : cl oseTransacti on().

For an example of this process, see Section 2.5.2, “NDB API Example Using Synchronous
Transactions”.

To execute several synchronous transactions in parallel, you can either use multiple Ndb objects in
several threads, or start multiple application programs.

1.4.2.3 Operations
An NdbTr ansact i on consists of a list of operations, each of which is represented by an instance of
NdbOper at i on, NdbScanOper at i on, Ndbl ndexQper at i on, or Ndbl ndexScanOper at i on (that
is, of NdbOper at i on or one of its child classes).
See NDB Access Types, for general information about NDB Cluster access operation types.

NDB Access Types

The data node process has a number of simple constructs which are used to access the data in an
NDB Cluster. We have created a very simple benchmark to check the performance of each of these.

There are four access methods:

Application Program Basics

e Primary key access. This is access of a record through its primary key. In the simplest case, only
one record is accessed at a time, which means that the full cost of setting up a number of TCP/IP
messages and a number of costs for context switching are borne by this single request. In the case
where multiple primary key accesses are sent in one batch, those accesses share the cost of setting
up the necessary TCP/IP messages and context switches. If the TCP/IP messages are for different
destinations, additional TCP/IP messages need to be set up.

» Unique key access. Unique key accesses are similar to primary key accesses, except that a
unique key access is executed as a read on an index table followed by a primary key access on the
table. However, only one request is sent from the MySQL Server, and the read of the index table is
handled by the data node. Such requests also benefit from batching.

» Full table scan. When no indexes exist for a lookup on a table, a full table scan is performed.
This is sent as a single request to the ndbd process, which then divides the table scan into a set of
parallel scans on all NDB data node processes.

e Range scan using ordered index. = When an ordered index is used, it performs a scan in the
same manner as the full table scan, except that it scans only those records which are in the range
used by the query transmitted by the MySQL server (SQL node). All partitions are scanned in parallel
when all bound index attributes include all attributes in the partitioning key.

Single-row operations

After the operation is created using NdbTransaction::getNdbOperation() or
NdbTransaction::getNdbindexOperation(), it is defined in the following three steps:

1. Specify the standard operation type using NdbOper at i on: : readTupl e() .

2. Specify search conditions using NdbQper at i on: : equal ().

3. Specify attribute actions using NdbOper at i on: : get Val ue() .

Here are two brief examples illustrating this process. For the sake of brevity, we omit error handling.

This first example uses an NdbOper at i on:

/1 1. Retrieve table object
nmyTabl e= nyDi ct - >get Tabl e(" MYTABLENAMVE") ;

/1 2. Create an NdbOperation on this table
myQper ati on= nyTransact i on- >get NdbQper at i on(nyTabl e) ;

/1 3. Define the operation's type and | ock node
myQper at i on- >r eadTupl e(NdbOper ati on: : LM Read) ;

/1 4. Specify search conditions
nmyQper at i on- >equal ("ATTRL", i);

// 5. Performattribute retrieval
myRecAttr= nyQperati on->get Val ue("ATTR2", NULL);

For additional examples of this sort, see Section 2.5.2, “NDB AP| Example Using Synchronous
Transactions”.

The second example uses an Ndbl ndexQper at i on:

/1 1. Retrieve index object
nyl ndex= nyDi ct - >get | ndex(" MYl NDEX", "MYTABLENAME");

/1 2. Create
nyOper ati on= nyTransacti on- >get Ndbl ndexOper at i on(nyl ndex) ;

/1 3. Define type of operation and | ock node
nmyOper at i on- >r eadTupl e(NdbOper ati on: : LM Read) ;

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndbd.html

Application Program Basics

/1 4. Specify Search Conditions
myQper at i on- >equal ("ATTRL", i);

/1 5. Attribute Actions
myRecAttr = nyQperation->get Val ue("ATTR2", NULL);

Another example of this second type can be found in Section 2.5.6, “NDB API Example: Using
Secondary Indexes in Scans”.

We now discuss in somewhat greater detail each step involved in the creation and use of synchronous
transactions.

1. Define single row operation type. The following operation types are supported:
* NdbOperation::insertTupl e(): Inserts a nonexisting tuple.
« NdbOperation::witeTupl e(): Updates a tuple if one exists, otherwise inserts a new tuple.
« NdbQper ation: : updat eTupl e() : Updates an existing tuple.
 NdbQper ation: : del et eTupl e() : Deletes an existing tuple.
« NdbQperation: :readTupl e() : Reads an existing tuple using the specified lock mode.

All of these operations operate on the unique tuple key. When Ndbl ndexOper at i on is used, then
each of these operations operates on a defined unique hash index.

then you need to call NdbTr ansact i on: : get NdbQper ati on() or

Note
@ If you want to define multiple operations within the same transaction,
NdbTr ansacti on: : get Ndbl ndexQper at i on() for each operation.

2. Specify Search Conditions. The search condition is used to select tuples. Search conditions
are set using NdbOper at i on: : equal ().

3. Specify Attribute Actions. Next, it is necessary to determine which attributes should be read or
updated. It is important to remember that:

» Deletes can neither read nor set values, but only delete them.
< Reads can only read values.

< Updates can only set values. Normally the attribute is identified by name, but it is also possible to
use the attribute's identity to determine the attribute.

NdbQOper at i on: : get Val ue() returns an NdbRecAt t r object containing the value as read. To
obtain the actual value, one of two methods can be used; the application can either

« Use its own memory (passed through a pointer aVal ue) to NdbQper ati on: : get Val ue(), or
¢ receive the attribute value in an NdbRecAt t r object allocated by the NDB API.

The NdbRecAt t r object is released when Ndb: : cl oseTransacti on() is called. For

this reason, the application cannot reference this object following any subsequent call to

Ndb: : cl oseTransacti on() . Attempting to read data from an NdbRecAt t r object before calling
NdbTr ansacti on: : execut e() yields an undefined result.

Scan Operations

Scans are roughly the equivalent of SQL cursors, providing a means to perform high-speed row
processing. A scan can be performed on either a table (using an NdbScanQOper at i on) or an ordered
index (by means of an Ndbl ndexScanQper at i on).

Application Program Basics

Scan operations have the following characteristics:

» They can perform read operations which may be shared, exclusive, or dirty.
* They can potentially work with multiple rows.

» They can be used to update or delete multiple rows.

» They can operate on several nodes in parallel.

After the operation is created using NdbTr ansact i on: : get NdbScanQOper ati on() or
NdbTr ansacti on: : get Ndbl ndexScanQOper ati on(), itis carried out as follows:

1. Define the standard operation type, using NdbScanQper ati on: : readTupl es().

deadlocks which may occur when performing simultaneous, identical scans

Note
@ See NdbScanOperation::readTuples(), for additional information about
with exclusive locks.

2. Specify search conditions, using NdbScanFi | t er, Ndbl ndexScanQper ati on: : set Bound() ,
or both.

3. Specify attribute actions using NdbOper at i on: : get Val ue() .
4. Execute the transaction using NdbTr ansact i on: : execut e().
5. Traverse the result set by means of successive calls to NdbScanOper ati on: : next Resul t ().

Here are two brief examples illustrating this process. Once again, in order to keep things relatively
short and simple, we forego any error handling.

This first example performs a table scan using an NdbScanQOper at i on:

// 1. Retrieve a table object
nmyTabl e= nyDi ct - >get Tabl e(" MYTABLENAMVE") ;

/]l 2. Create a scan operation (NdbScanOperation) on this table
myQper ati on= nmyTransact i on- >get NdbScanOper ati on(myTabl e) ;

/1 3. Define the operation's type and | ock node
myQper at i on- >r eadTupl es(NdbQper ati on: : LM Read) ;

/1 4. Specify search conditions
NdbScanFi | t er sf(myOperation);
sf. begi n(NdbScanFilter:: OR);

sf.eq(0, i); /! Return rows with colum O equal to i or
sf.eq(1, i+1); // colum 1 equal to (i+1)
sf.end();

/1 5. Retrieve attributes
myRecAttr= nyQOperati on->get Val ue("ATTR2", NULL);

The second example uses an Ndbl ndexScanOper at i on to perform an index scan:

/1 1. Retrieve index object
nyl ndex= nyDi ct - >get | ndex (" MYORDEREDI NDEX", " MYTABLENAME") ;

/1 2. Create an operation (Ndbl ndexScanQperati on obj ect)
nyOper ati on= nyTransacti on- >get Ndbl ndexScanOper at i on(nyl ndex) ;

/1 3. Define type of operation and | ock node
nmyOper at i on- >r eadTupl es(NdbOper ati on: : LM Read) ;

/1 4. Specify search conditions

Application Program Basics

/1l Al rows with ATTRL between i and (i +1)
myQper at i on- >set Bound(" ATTR1", Ndbl ndexScanOper ati on: : BoundGE, i);
myQper at i on- >set Bound(" ATTR1", Ndbl ndexScanOper ati on: : BoundLE, i +1);

/1l 5. Retrieve attributes
myRecAttr = MyQperati on->get Val ue(" ATTR2", NULL);

Some additional discussion of each step required to perform a scan follows:

1. Define Scan Operation Type. Itis important to remember that only a single operation
is supported for each scan operation (NdbScanQper ati on: : readTupl es() or
Ndbl ndexScanQper ati on: : readTupl es()).

then you need to call NdbTr ansact i on: : get NdbScanOper ati on()
or NdbTr ansact i on: : get Ndbl ndexScanQOper ati on() separately for

Note
@ If you want to define multiple scan operations within the same transaction,
each operation.

2. Specify Search Conditions. The search condition is used to select tuples. If no search
condition is specified, the scan will return all rows in the table. The search condition
can be an NdbScanFi | t er (which can be used on both NdbScanOper at i on and
Ndbl ndexScanQper at i on) or bounds (which can be used only on index scans - see
Ndbl ndexScanQper at i on: : set Bound()). An index scan can use both NdbScanFi | t er and
bounds.

actually returned. However, when using bounds, only rows within the bounds

Note
@ When NdbScanFilter is used, each row is examined, whether or not it is
will be examined.

3. Specify Attribute Actions. Next, it is necessary to define which attributes should be read.
As with transaction attributes, scan attributes are defined by name, but it is also possible
to use the attributes' identities to define attributes as well. As discussed elsewhere in this
document (see Section 1.4.2.2, “Synchronous Transactions”), the value read is returned by the
NdbOper at i on: : get Val ue() method as an NdbRecAt t r object.

Using Scans to Update or Delete Rows

Scanning can also be used to update or delete rows. This is performed as follows:
1. Scanning with exclusive locks using NdbQper at i on: : LM _Excl usi ve.

2. (When iterating through the result set:) For each row, optionally
calling either NdbScanQOper at i on: : updat eCurrent Tupl e() or
NdbScanQOper ati on: : del et eCurrent Tupl e() .

3. (If performing NdbScanQOper at i on: : updat eCur r ent Tupl e() :) Setting new values for records
simply by using NdbOper ati on: : set Val ue() . NdbOper ati on: : equal () should not be called
in such cases, as the primary key is retrieved from the scan.

Important

NdbTr ansacti on: : execut e() is made, just as with single row operations.
NdbTransacti on: : execut e() also must be called before any locks are

A The update or delete is not actually performed until the next call to
released; for more information, see Lock Handling with Scans.

Features Specific to Index Scans. When performing an index scan, it is possible to scan only a
subset of a table using Ndbl ndexScanQper at i on: : set Bound() . In addition, result sets can be

10

Application Program Basics

sorted in either ascending or descending order, using Ndbl ndexScanQper at i on: : readTupl es().
Note that rows are returned unordered by default unless sor t ed is settotr ue.

It is also important to note that, when using Ndbl ndexScanQper at i on: : BoundEQ (see
NdblndexScanOperation::BoundType) with a partition key, only fragments containing rows

will actually be scanned. Finally, when performing a sorted scan, any value passed as the

Ndbl ndexScanQper ati on: : readTupl es() method's par al | el argument will be ignored and
maximum parallelism will be used instead. In other words, all fragments which it is possible to scan are
scanned simultaneously and in parallel in such cases.

Lock Handling with Scans

Performing scans on either a table or an index has the potential to return a great many
records; however, Ndb locks only a predetermined number of rows per fragment at a time.
The number of rows locked per fragment is controlled by the batch parameter passed to
NdbScanQOper ati on: : readTupl es().

In order to enable the application to handle how locks are released,

NdbScanQper ati on: : next Resul t () has a Boolean parameter f et chAl | owed. If
NdbScanQper ati on: : next Resul t () is called with f et chAl | owed equal to f al se, then no
locks may be released as result of the function call. Otherwise the locks for the current batch may be
released.

This next example shows a scan delete that handles locks in an efficient manner. For the sake of
brevity, we omit error-handling.

i nt check;

/'l Quter loop for each batch of rows
whi | e((check = MyScanOper ati on->next Result(true)) == 0)

{
do

/1 Inner loop for each row within the batch
MyScanOper at i on- >del et eCurrent Tupl e() ;

}
whi | e((check = MyScanOper ati on->next Result (fal se)) == 0);

/1 When there are no nore rows in the batch, execute all defined del etes
M/ Tr ansact i on- >execut e(NoConmi t) ;

}

For a more complete example of a scan, see Section 2.5.5, “NDB API Basic Scanning Example”.

Error Handling

Errors can occur either when operations making up a transaction are being defined, or when the
transaction is actually being executed. Catching and handling either sort of error requires testing the
value returned by NdbTr ansact i on: : execut e(), and then, if an error is indicated (that is, if this
value is equal to - 1), using the following two methods in order to identify the error's type and location:

* NdbTransacti on:: get NdbError Operati on() returns a reference to the operation causing the
most recent error.

 NdbTransacti on:: get NdbErrorLi ne() yields the method number of the erroneous method in
the operation, starting with 1.

This short example illustrates how to detect an error and to use these two methods to identify it:

theTransacti on = t heNdb->start Transacti on();
theOperation = theTransacti on->get NdbOper ati on(" TEST_TABLE") ;
i f(theOperation == NULL)

goto error;

11

Review of NDB Cluster Concepts

t heQper at i on- >r eadTupl e(NdbOper ati on: : LM Read) ;

t heQper ati on- >set Val ue("ATTR 1", atl);

t heQper ati on- >set Val ue("ATTR 2", atl); // FError occurs here
t heQper ati on- >set Val ue("ATTR 3", atl);

t heQper ati on- >set Val ue("ATTR 4", atl);

i f(theTransaction->execute(Commit) == -1)
{
errorLine = theTransacti on->get NdbErr or Li ne() ;
error Qperati on = theTransacti on- >get NdbErr or Operati on();

}

Here, err or Li ne is 3, as the error occurred in the third method called on the NdbOper at i on object
(in this case, t heOper at i on). If the result of NdbTr ansact i on: : get NdbErr or Li ne() is 0,

then the error occurred when the operations were executed. In this example, er r or Oper ati onis a

pointer to the objectt heOper ati on. The NdbTr ansacti on: : get NdbEr r or () method returns an
NdbEr r or object providing information about the error.

Note
@ Transactions are not automatically closed when an error occurs. You must call
Ndb: : cl oseTransacti on() or NdbTransacti on: : cl ose() to close the
transaction.
See Ndb::closeTransaction(), and NdbTransaction::close().

One recommended way to handle a transaction failure (that is, when an error is reported) is as shown
here:

1. Roll back the transaction by calling NdbTr ansact i on: : execut e() with a special ExecType
value for the t ype parameter.

See NdbTransaction::execute() and NdbTransaction::ExecType, for more information about how
this is done.

2. Close the transaction by calling NdbTr ansacti on: : cl ose().
3. If the error was temporary, attempt to restart the transaction.
Several errors can occur when a transaction contains multiple operations which are simultaneously

executed. In this case the application must go through all operations and query each of their NdbEr r or
objects to find out what really happened.

Important

A Errors can occur even when a commit is reported as successful. In
order to handle such situations, the NDB API provides an additional
NdbTransacti on: : conmi t St at us() method to check the transaction's
commit status.

See NdbTransaction::commitStatus().

1.4.3 Review of NDB Cluster Concepts

This section covers the NDB Kernel, and discusses NDB Cluster transaction handling and transaction
coordinators. It also describes NDB record structures and concurrency issues.

The NDB Kernel is the collection of data nodes belonging to an NDB Cluster. The application
programmer can for most purposes view the set of all storage nodes as a single entity. Each data node
is made up of three main components:

* TC: The transaction coordinator.

12

Review of NDB Cluster Concepts

e ACC: The index storage component.
» TUP: The data storage component.

When an application executes a transaction, it connects to one transaction coordinator on one data
node. Usually, the programmer does not need to specify which TC should be used, but in some cases
where performance is important, the programmer can provide “hints” to use a certain TC. (If the node
with the desired transaction coordinator is down, then another TC will automatically take its place.)

Each data node has an ACC and a TUP which store the indexes and data portions of the database
table fragment. Even though a single TC is responsible for the transaction, several ACCs and TUPs on
other data nodes might be involved in that transaction's execution.

1.4.3.1 Selecting a Transaction Coordinator

The default method is to select the transaction coordinator (TC) determined to be the "nearest" data
node, using a heuristic for proximity based on the type of transporter connection. In order of nearest to
most distant, these are:

1. SHM
2. TCP/IP (localhost)
3. TCP/IP (remote host)

If there are several connections available with the same proximity, one is selected for each transaction
in a round-robin fashion. Optionally, you may set the method for TC selection to round-robin mode,
where each new set of transactions is placed on the next data node. The pool of connections from
which this selection is made consists of all available connections.

As noted in Section 1.4.3, “Review of NDB Cluster Concepts”, the application programmer can provide
hints to the NDB API as to which transaction coordinator should be uses. This is done by providing

a table and a partition key (usually the primary key). If the primary key is the partition key, then the
transaction is placed on the node where the primary fragment replica of that record resides. Note that
this is only a hint; the system can be reconfigured at any time, in which case the NDB API chooses a
transaction coordinator without using the hint. For more information, see Column::getPartitionKey(),
and Ndb::startTransaction().

The application programmer can specify the partition key from SQL by using the following construct:

CREATE TABLE ... ENG NE=NDB PARTI TI ON BY KEY (attribute_|ist);

For additional information, see Partitioning, and in particular KEY Partitioning, in the MySQL Manual.

1.4.3.2 NDB Record Structure

The NDB storage engine used by NDB Cluster is a relational database engine storing records in tables
as with other relational database systems. Table rows represent records as tuples of relational data.
When a new table is created, its attribute schema is specified for the table as a whole, and thus each
table row has the same structure. Again, this is typical of relational databases, and NDB is no different
in this regard.

Primary Keys. Each record has from 1 up to 32 attributes which belong to the primary key of the
table.

Transactions. Transactions are committed first to main memory, and then to disk, after a global
checkpoint (GCP) is issued. Since all data are (in most NDB Cluster configurations) synchronously
replicated and stored on multiple data nodes, the system can handle processor failures without loss of
data. However, in the case of a system-wide failure, all transactions (committed or not) occurring since
the most recent GCP are lost.

13

https://dev.mysql.com/doc/refman/8.3/en/partitioning.html
https://dev.mysql.com/doc/refman/8.3/en/partitioning-key.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html

The Adaptive Send Algorithm

Concurrency Control.
NDB uses pessimistic concurrency control based on locking. If a requested lock (implicit and depending
on database operation) cannot be attained within a specified time, then a timeout error results.

Concurrent transactions as requested by parallel application programs and thread-based applications
can sometimes deadlock when they try to access the same information simultaneously. Thus,
applications need to be written in a manner such that timeout errors occurring due to such deadlocks
are handled gracefully. This generally means that the transaction encountering a timeout should be
rolled back and restarted.

Hints and Performance.

Placing the transaction coordinator in close proximity to the actual data used in the transaction can
in many cases improve performance significantly. This is particularly true for systems using TCP/
IP. For example, a Solaris system using a single 500 MHz processor has a cost model for TCP/IP
communication which can be represented by the formula

[30 microseconds] + ([100 nanoseconds] * [nunber of bytes])

This means that if we can ensure that we use “popular” links we increase buffering and thus drastically
reduce the costs of communication.

A simple example would be an application that uses many simple updates where a transaction needs
to update one record. This record has a 32-bit primary key which also serves as the partitioning key.
Then the keyDat a is used as the address of the integer of the primary key and keyLen is 4.

1.4.4 The Adaptive Send Algorithm

Discusses the mechanics of transaction handling and transmission in NDB Cluster and the NDB API, and the
objects used to implement these.

When transactions are sent using NdbTr ansact i on: : execut e(), they are not immediately
transferred to the NDB Kernel. Instead, transactions are kept in a special send list (buffer) in the Ndb
object to which they belong. The adaptive send algorithm decides when transactions should actually be
transferred to the NDB kernel.

The NDB API is designed as a multithreaded interface, and so it is often desirable to transfer database
operations from more than one thread at a time. The NDB API keeps track of which Ndb objects are
active in transferring information to the NDB kernel and the expected number of threads to interact
with the NDB kernel. Note that a given instance of Ndb should be used in at most one thread; different
threads should not share the same Ndb object.

There are four conditions leading to the transfer of database operations from Ndb object buffers to the
NDB kernel:

1. The NDB Transporter (TCP/IP or shared memory) decides that a buffer is full and sends it off. The
buffer size is implementation-dependent and may change between NDB Cluster releases. When
TCP/IP is the transporter, the buffer size is usually around 64 KB. Since each Ndb object provides a
single buffer per data node, the notion of a “full” buffer is local to each data node.

2. The accumulation of statistical data on transferred information may force sending of buffers to all
storage nodes (that is, when all the buffers become full).

3. Every 10 milliseconds, a special transmission thread checks whether or not any send activity has
occurred. If not, then the thread will force transmission to all nodes. This means that 20 ms is the
maximum amount of time that database operations are kept waiting before being dispatched. A 10-
millisecond limit is likely in future releases of NDB Cluster; checks more frequent than this require
additional support from the operating system.

4. For methods that are affected by the adaptive send algorithm (such as
NdbTransacti on: : execut e()), thereis af or ce parameter that overrides its default behavior

14

Application-level partitioning

in this regard and forces immediate transmission to all nodes. See the individual NDB API class
listings for more information.

The conditions listed above are subject to change in future releases of NDB Cluster.

1.5 Application-level partitioning

There is no restriction against instantiating multiple Ndb_cl ust er _connect i on objects representing
connections to different management servers in a single application, nor against using these for
creating multiple instances of the Ndb class. Such Ndb_cl ust er _connect i on objects (and the Ndb
instances based on them) are not required even to connect to the same cluster.

For example, it is entirely possible to perform application-level partitioning of data in such a manner
that data meeting one set of criteria are “handed off” to one cluster using an Ndb object that makes
use of an Ndb_cl ust er _connect i on object representing a connection to that cluster, while data not
meeting those criteria (or perhaps a different set of criteria) can be sent to a different cluster through a
different instance of Ndb that makes use of an Ndb_cl ust er _connect i on “pointing” to the second
cluster.

It is possible to extend this scenario to develop a single application that accesses an arbitrary number
of clusters. However, in doing so, the following conditions and requirements must be kept in mind:

» A cluster management server (ndb_ngnd) can connect to one and only one cluster without being
restarted and reconfigured, as it must read the data telling it which data nodes make up the cluster
from a configuration file (confi g. i ni).

« An Ndb_cl ust er _connect i on object “belongs” to a single management server whose host name
or IP address is used in instantiating this object (passed as the connecti on_stri ng argument to
its constructor); once the object is created, it cannot be used to initiate a connection to a different
management server.

(See Ndb_cluster_connection Class Constructor.)

» An Ndb object making use of this connection (Ndb_cl ust er _connect i on) cannot be re-used to
connect to a different cluster management server (and thus to a different collection of data nodes
making up a cluster). Any given instance of Ndb is bound to a specific Ndb_cl ust er _connecti on
when created, and that Ndb_cl ust er _connect i on is in turn bound to a single and unique
management server when it is instantiated.

(See Ndb Class Constructor.)

» The bindings previously described persist for the lifetimes of the Ndb and
Ndb_cl ust er _connect i on objects in question.

Therefore, it is imperative in designing and implementing any application that accesses multiple
clusters in a single session, that a separate set of Ndb_cl ust er _connect i on and Ndb objects be
instantiated for connecting to each cluster management server, and that no confusion arises as to
which of these is used to access which NDB Cluster.

It is also important to keep in mind that no direct “sharing” of data or data nodes between different
clusters is possible. A data node can belong to one and only one cluster, and any movement of data
between clusters must be accomplished on the application level.

For examples demonstrating how connections to two different clusters can be made and used in a
single application, see Section 2.5.3, “NDB API Example Using Synchronous Transactions and Multiple
Clusters”, and Section 3.6.2, “MGM API Event Handling with Multiple Clusters”.

1.6 Using NdbiInterpretedCode

The next few sections provide information about performing different types of operations with
Ndbl nt er pr et edCode methods, including resource usage.

15

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-mgmd.html

NdblinterpretedCode Methods for Loading Values into Registers

» NdblinterpretedCode Methods for Loading Values into Registers
» NdblinterpretedCode Methods for Copying Values Between Registers and Table Columns
* NdbinterpretedCode Register Arithmetic Methods

* NdbinterpretedCode: Labels and Branching

» Register-Based NdblinterpretedCode Branch Operations

» Column-Based NdbinterpretedCode Branch Operations
 Pattern-Based NdblinterpretedCode Branch Operations

* NdblinterpretedCode Bitwise Comparison Operations

* NdbinterpretedCode Result Handling Methods

* NdbinterpretedCode Convenience Methods

» Using Subroutines with NdblinterpretedCode

* NdbinterpretedCode Utility Methods

NdbinterpretedCode Methods for Loading Values into Registers

The methods described in this section are used to load constant values into Ndbl nt er pr et edCode
program registers. The space required by each of these methods is shown in the following table:

Table 1.1 NdbInterpretedCode methods used to load constant values into NdblinterpretedCode
program registers, with required buffer and request message space.

Method Buffer (words) Request message
(words)

| oad_const _nul | () 1

| oad_const _ul6()

1

1 1
| oad_const _u32() 2 2

3 3

| oad_const _u64()

NdbinterpretedCode Methods for Copying Values Between Registers and
Table Columns

Ndbl nt er pr et edCode provides two methods for copying values between a column in the current
table row and a program register. The read_att r () method is used to copy a table column value
into a program register; write_attr () isused to copy a value from a program register into a table
column. Both of these methods require that the table being operated on was specified when creating
the Ndbl nt er pr et edCode object for which they are called.

The space required by each of these methods is shown in the following table:

Table 1.2 NdbInterpretedCode methods used to copy values between registers and table
columns, with required buffer and request message space.

Method Buffer (words) Request message
(words)

read_attr() 1 1

wite attr() 1 1

16

NdblinterpretedCode Register Arithmetic Methods

For more information, see NdblinterpretedCode::read_attr(), and NdblinterpretedCode::write_attr().

NdbinterpretedCode Register Arithmetic Methods

Ndbl nt er pr et edCode provides two methods for performing arithmetic operations on registers. Using
add_reg(), you can load the sum of two registers into another register; sub_reg() lets you load the
difference of two registers into another register.

The space required by each of these methods is shown in the following table:

Table 1.3 NdbInterpretedCode methods used to perform arithmetic operations on registers, with
required buffer and request message space.

Method Buffer (words) Request message
(words)

add_reg() 1 1

sub_reg() 1 1

For mroe information, see NdblinterpretedCode::add_reg(), and NdblinterpretedCode::sub_reg().

NdblinterpretedCode: Labels and Branching

The Ndbl nt er pr et edCode class lets you define labels within interpreted programs and provides
a number of methods for performing jumps to these labels based on any of the following types of
conditions:

» Comparison between two register values

» Comparison between a column value and a given constant

» Whether or not a column value matches a given pattern

To define a label, use the def | abel () method.

To perform an unconditional jump to a label, use the br anch_| abel () method.

To perform a jump to a given label based on a comparison of register values, use one of the
branch_*() methods (branch_ge(), branch_gt(), branch_le(),branch_It(),
branch_eq(), branch_ne(), branch_ne _null (), orbranch_eq_null ()). See Register-Based
NdblinterpretedCode Branch Operations.

To perform a jump to a given label based on a comparison of table column values, use one of the
branch_col _*() methods (br anch_col _ge(), branch_col gt (), branch_col _|e(),
branch_col _It (), branch_col _eq(), branch_col _ne(), branch_col _ne_null (), or
branch_col _eq_nul |l ()). See Column-Based NdblnterpretedCode Branch Operations.

To perform a jump based on pattern-matching of a table column value, use one of the methods
branch_col _I'i ke() orbranch_col _notlike(). See Pattern-Based NdbinterpretedCode Branch
Operations.

Register-Based NdbiInterpretedCode Branch Operations

Most of these are used to branch based on the results of register-to-register comparisons. There
are also two methods used to compare a register value with NULL. All of these methods require as a
parameter a label defined using the def _| abel () method.

These methods can be thought of as performing the following logic:

if(register_valuel condition register_val ue2)

17

Column-Based NdblnterpretedCode Branch Operations

goto Label
The space required by each of these methods is shown in the following table:

Table 1.4 Register-based NdblinterpretedCode branch methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)

branch_ge()

branch_gt ()

branch_I e()

branch_|t()

branch_eq()

branch_ne()

branch_ne_nul I ()

PlRrlr|RrPrRrR|R
[H) PSRN PN I N BTSN SN

branch_eq_nul I ()

Column-Based NdblinterpretedCode Branch Operations

The methods described in this section are used to perform branching based on a comparison between
a table column value and a given constant value. Each of these methods expects the attribute ID of the
column whose value is to be tested rather than a reference to a Col unm object.

These methods, with the exception of br anch_col _eq_nul | () and branch_col _ne_nul I (), can
be thought of as performing the following logic:

i f (constant _val ue condi tion col um_val ue)
goto Label

In each case (once again excepting br anch_col _eq_nul | () and branch_col _ne_nul | ()), the
arbitrary constant is the first parameter passed to the method.

The space requirements for each of these methods is shown in the following table, where L represents
the length of the constant value:

Table 1.5 Column-based NdbinterpretedCode branch methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)

branch_col _eq_nul I () 2 2

branch_col _ne_null () 2 2

branch_col _eq() 2 2+CEIL(L / 8)
branch_col ne() 2 2+CEIL(L / 8)
branch_col |t () 2 2+CEIL(L / 8)
branch_col _I| e() 2 2+CEIL(L / 8)
branch_col gt () 2 2+CEIL(L / 8)
branch_col ge() 2 2+CEIL(L / 8)

Note
@ The expression CEI L(L / 8) isthe number of whole 8-byte words required to

hold the constant value to be compared.

18

Pattern-Based NdblinterpretedCode Branch Operations

Pattern-Based NdbinterpretedCode Branch Operations

The Ndbl nt er pr et edCode class provides two methods which can be used to branch based on
a comparison between a column containing character data (that is, a CHAR, VARCHAR, Bl NARY, or
VARBI NARY column) and a regular expression pattern.

The pattern syntax supported by the regular expression is the same as that supported by the MySQL
Server's LI KE and NOT LI KE operators, including the _ and %metacharacters. For more information
about these, see String Comparison Functions and Operators.

Note
@ This is the same regular expression pattern syntax that is supported by
NdbScanFi | t er ; see NdbScanFilter::cmp(), for more information.

The table being operated upon must be supplied when the Ndbl nt er pr et edCode object is
instantiated. The regular expression pattern should be in plain CHAR format, even if the column is
actually a VARCHAR (in other words, there should be no leading length bytes).

These functions behave as shown here:

if (colum_val ue [NOT] LIKE pattern)
goto Label;

The space requirements for these methods are shown in the following table, where L represents the
length of the constant value:

Table 1.6 Pattern-based NdbinterpretedCode branch methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)
branch_col |ike() 2 2+CEIL(L / 8)
branch_col _notlike() 2 2+CEIL(L / 8)
Note
@ The expression CEI L(L / 8) is the number of whole 8-byte words required to

hold the constant value to be compared.

NdbinterpretedCode Bitwise Comparison Operations

These instructions are used to branch based on the result of a logical AND comparison between a Bl T
column value and a bitmask pattern.

Use of these methods requires that the table being operated upon was supplied when the

Ndbl nt er pr et edCode object was constructed. The mask value should be the same size as the bit
column being compared. Bl T values are passed into and out of the NDB API as 32-bit words with bits
set in order from the least significant bit to the most significant bit. The endianness of the platform on
which the instructions are executed controls which byte contains the least significant bits. On x86, this
is the first byte (byte 0); on SPARC and PPC, it is the last byte.

The buffer length and the request length for each of the methods listed here each requires an amount
of space equal to 2 words plus the column width rounded (up) to the nearest whole word:

e branch_col _and_nmask_eq_mask()
* branch_col _and_mask_ne_mask()

 branch_col and _mask_eq_zero()

19

https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/mathematical-functions.html#function_ceil
https://dev.mysql.com/doc/refman/8.3/en/mathematical-functions.html#function_ceil

NdblinterpretedCode Result Handling Methods

e branch_col _and_mask_ne_zero()

NdbinterpretedCode Result Handling Methods

The methods described in this section are used to tell the interpreter that processing of the current row
is complete, and—in the case of scans—whether or not to include this row in the results of the scan.

The space requirements for these methods are shown in the following table, where L represents the
length of the constant value:

Table 1.7 NdbInterpretedCode result handling methods, with required buffer and request
message space.

Method Buffer (words) Request message
(words)

interpret_exit_ok() 1 1

interpret_exit_nok() 1 1

interpret_exit _last _row() 1 1

NdbinterpretedCode Convenience Methods

The methods described in this section can be used to insert multiple instructions (using specific
registers) into an interpreted program.

registers 6 and 7, replacing any existing contents of register 6 with the original
column value and any existing contents of register 7 with the modified column
value. The table itself must be previously defined when instantiating the

Important
A In addition to updating the table column, these methods use interpreter
Ndbl nt er pr et edCode object for which the method is invoked.

The space requirements for these methods are shown in the following table, where L represents the
length of the constant value:

Table 1.8 NdbInterpretedCode convenience methods, with required buffer and request message
space.

Method Buffer (words) Request message
(words)

add_val () 4 1;if tﬂ-,e supplied3\£alue
>=27":2;if>=2":3

sub_val () 4 1;if tlrge supplieds\éalue
>=27:2;if>=27":3

Using Subroutines with NdbiInterpretedCode

Ndbl nt er pr et edCode supports subroutines which can be invoked from within interpreted programs,
with each subroutine being identified by a unique number. Subroutines can be defined only following all
main program instructions.

Important
A Numbers used to identify subroutines must be contiguous; however, they do not
have to be in any particular order.

» The beginning of a subroutine is indicated by invoking the def _sub() method,;

20

NdblinterpretedCode Utility Methods

ret sub() terminates the subroutine; all instructions following the call to def _sub() belong to the
subroutine until it is terminated using this method.

A subroutine is called using the cal | _sub() method.

Once the subroutine has completed, the program resumes execution with the instruction immediately
following the one which invoked the subroutine. Subroutines can also be invoked from other
subroutines; currently, the maximum subroutine stack depth is 32.

NdbinterpretedCode Utility Methods

Some additional utility methods supplied by Ndbl nt er pr et edCode are listed here:

copy() : Copies an existing interpreted program by performing a deep copy on the associated
Ndbl nt er pr et edCode object.

finalise():Prepares an interpreted program by resolving all branching instructions and
subroutine calls.

get Tabl e() : Get a reference to the table for which the Ndbl nt er pr et edCode object was defined.
get NdbEr r or () : Get the most recent error associated with this Ndbl nt er pr et edCode object.

get Wor dsUsed() : Obtain the number of words used from the buffer.

21

22

Chapter 2 The NDB API

Table of Contents

2.1 Getting Started With the NDB APouiiiiii e e e e an s 24
2.1.1 Compiling and Linking NDB API Programsc.coeeeuieeiieeiieeineeeneeeieesaeesanneeaneeanns 24
2.1.2 Connecting t0 the CIUSLEEiiiiiii e e e e e eean s 27
2.1.3 Mapping MySQL Database Object Names and Types to NDBcccoevvvvviiiiiiieennnes 28

2.2 The NDB API Class HI€raraChyciuuuiiiiiiiei i e e e e e e e e e e e e ean s 33

2.3 NDB API Classes, Interfaces, and StrUCLUIESviiiiiiiieiiiiiiieceiin e 34
2.3.1 ThE COlUMN ClIASS ...vuuiiiiiiiiei ettt e e et e e et e e e e et e e e eete e eeeees 34
2.3.2 The DAtafile ClaSScccuuuiieiiiii et e e e et e e b s 51
A T B I 1= od T = YA O = L 56
2.3.4 The EIEMENE SIUCKUIEciiiiii e e e e e e e e e e 74
2.3.5 THE EVENL ClIASS ..ottt ettt ettt ettt e e et e e e et e e e et e e e eaanns 74
2.3.6 The FOreignKeY ClasScuuuiiiiiiiii e e et e e e et e e e e e e et s e et n e e e e e e et e e eaaaeanaes 85
A T A I 1= o o T 11 o T G - T 92
2.3.8 THE INAEX ClASS . eeviieiiiiiie et e et e et e e et e e aae e e eannns 95
2.3.9 The LogfileGrouR ClassSciuiiiiiii e e e e e e e e ean s 102
2.3.10 THE LISt ClASS ..tuuiiiiitiieeeiit ettt e et e et e e e e e et e et 105
P22 B0 R I L= o | T2 T PP 106
2.3.12 The Ndb_cluster_connNECtioN CIASSieiuuiiiiiiieiiieeie e e e e e e e 129
2.3.13 The NADBBIOD CIASScuuniiiiiiiiei e eeees 140
P22 T 7 I U= NN o [o] o 1 o g =T YA G = 1 151
2.3.15 The NADEIOr SITUCLUIEuiiiiii et 157
2.3.16 The NAbEVENtOPEration ClassSc..uiviiuiiiii i e e r e e e e e e e eeen 160
2.3.17 The NdbINdeXOPEration CIASSicvvuuiieiiiii et e e e e e e e e e eanaeeeen 170
2.3.18 The NdbINndexScanOperation ClIaSScc.uieiiuiiiiiieeieee e e e e e e e e 172
2.3.19 The NdbInterpretedCode CIasScvuuiiiiiiiiiii e e e e e e 178
2.3.20 The NAbOPEration ClASSc..uuiiiiiiiiiieiie e e e e e e e e e e e e anaeeeen 204
2.3.21 The NADRECALLT CIASS .. .ieevunieiiiii ettt ettt e e et e e e eaees 242
2.3.22 The NABRECOrd INTEIFACEuuiiiiiiiiiei e e 249
2.3.23 The NADSCANFIEr CIASScccuuuiiiiiiiiiee et e e e eeera e eees 250
2.3.24 The NdbScanOperation ClassScicvuiiiiiiiiii e e e e eans 260
2.3.25 The NADTransaction ClasScoouuuuiiiiiiiieiii e e eeees 272
A I G T I 1= @] 1Yo 0 - TS 291
2.3.27 The Table ClasSu i ettt e e et e e eaa e eees 295
2.3.28 The TableSPace ClassSciuuiiiiieii i e e e e e e e e e ean s 321
2.3.29 The UNdOfile ClasSiiieiiiiiiiiii et et 326

2.4 NDB API Errors and Error HandliNgc...oovuiiiiiii e e e e e e e e e e 330
2.4.1 Handling NDB AP EITOIS ...uiiiuiiiieeii i ee e e e e e e e e e e e et s e e e e et s e e e e e eeeanas 331
2.4.2 NDB EIr0or COUES: DY TY P civuiiiiiiiiiii ittt ee et e e e e e e e e e e e e e e et eeaaneeeanaees 334
2.4.3 NDB Error Codes: SiNgle LIStNGovvuniiiiiiiir e e e e e e eans 400
2.4.4 NDB Error ClasSifiCatiONSuiiiiiiiieiiiii e e e e e eeees 473

2.5 NDB API EXGMPIES .. .ciiieiiicei ettt e e e e e e e e aa 474
2.5.1 BasiC NDB APl EXAMPIES ...uuuiiiiiiiii ittt e e e e e e e e e e et e e e e an e eeen 475
2.5.2 NDB API Example Using Synchronous TranSactionscceceuuveveinieeeneeinieriineennneens 481
2.5.3 NDB API Example Using Synchronous Transactions and Multiple Clusters 486
2.5.4 NDB API Example: Handling Errors and Retrying Transactionscccceevvviveevnneennnn. 491
2.5.5 NDB API Basic Scanning EXampleccoiiiiiiiiiiiii e e 495
2.5.6 NDB API Example: Using Secondary Indexes in SCaNSccoevevvviiiiieviineviiieeeieeennnn 508
2.5.7 NDB API Example: Using NdbRecord with Hash Indexesccccoccovvviiiiiiiiiciineennns 511
2.5.8 NDB API Example Comparing RecAttr and NdbRecordcccoooviiiviiiiiiiicii e, 517
2.5.9 NDB API Event Handling EXampPlecooeuiiiiiiiiiiie e ee e e e e e e e e 562
2.5.10 NDB API Example: Basic BLOB HaNdliNgccceuiiiiiiiiiieeis e ee e e 566
2.5.11 NDB API Example: Handling BLOB Columns and Values Using NdbRecord 573

Getting Started with the NDB API

2.5.12 NDB API Simple Array EXamPIEcoouiiiiiiieii e e e e
2.5.13 NDB API Simple Array Example USiNg Adapterccccoiiiiiiieiiiieiiiece e
2.5.14 TIMEStamMP2 EXAMPIE ...ooniiiiii e e et e e et e e e e e e e e
2.5.15 Common Files for NDB APl Array EXamplesccooviiiiiiiiiiiie e

This chapter contains information about the NDB API, which is used to write applications that access data in the
NDB storage engine.

2.1 Getting Started with the NDB API

This section discusses preparations necessary for writing and compiling an NDB API application.

2.1.1 Compiling and Linking NDB API Programs

This section provides information on compiling and linking NDB API applications, including
requirements and compiler and linker options.

2.1.1.1 General Requirements

To use the NDB API with MySQL, you must have the | i bndbcl i ent client library and its associated
header files installed alongside the regular MySQL client libraries and headers underi nstal | _dir/

I i b. These are automatically installed when you build MySQL using - DW TH_NDBCLUSTER=ON or use

a MySQL binary package that supports the NDB storage engine.
This Guide is targeted for use with MySQL NDB Cluster 7.5 and later.

C and C++ language support. The following table provides information about minimum C and
C++ language requirements for compiling MGM API applications, NDB API applications, and the
I i bndbcl i ent library against supported versions of NDB Cluster.

Table 2.1 Language support requirements

NDB Cluster MGM API NDB API header files |'i bndbcl i ent
Version

75,76 Cc99? c++08 " C99 or C++98 C++03 ¢
8.0,8.19,8.2 C++11°¢ C++11 C++11 c++03"

8.3 and later C99 C++11 C99 or C++11 C++1719

& GCC 4.5; Clang (any version)
® GCC 4.8.1; Clang 3.3
© GCC 4.3; Clang (any version)

9 NDB Cluster 8.1 was a MySQL NDB Cluster Innovation release which is no longer available; it was superseded by the NDB

Cluster 8.2 Innovation release.

®GCC 4.8.1; Clang 3.3

In these versions, this is the same as the level of C++ language support required to compile the MySQL server.
9Gce 8; Clang 5

For information about building MySQL and NDB Cluster from source, see Installing MySQL from

Source. For information about building MySQL applications against the MySQL C API, see Building C

API Client Programs.

2.1.1.2 Compiler Options

Header Files. In order to compile source files that use the NDB API, you must ensure that the
necessary header files can be found. Header files specific to the NDB and MGM APIs are installed in
the following subdirectories of the MySQL i ncl ude directory, respectively:

e i ncl ude/ nysql / st or age/ ndb/ ndbapi

e i nclude/ nysql / st or age/ ndb/ ngmapi

24

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.3/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.3/en/source-installation.html
https://dev.mysql.com/doc/refman/8.3/en/source-installation.html
https://dev.mysql.com/doc/c-api/8.3/en/c-api-building-clients.html
https://dev.mysql.com/doc/c-api/8.3/en/c-api-building-clients.html

Compiling and Linking NDB API Programs

Compiler Flags. The MySQL-specific compiler flags needed can be determined using the
nysgl _confi g utility that is part of the MySQL installation;

$> nysql _config --cfl ags
-1 /usr/local/nmysql/include/nysql -Weturn-type -Wrigraphs -W-W or nat
-\i gn- conpare -Winused -nctpu=pentiumd -narch=penti umt

This sets the include path for the MySQL header files but not for those specific to the NDB API. The - -
i ncl ude option to mysql _conf i g returns the generic include path switch:

$> nysql _config --include
-1 /usr/local /mysql /i ncl ude/ nysql

It is necessary to add the subdirectory paths explicitly, so that adding all the needed compile flags to
the CXXFLAGS shell variable should look something like this:

CFLAGS="$CFLAGS " nysql _config --cflags’

CFLAGS="$CFLAGS " nysql _config --include /storage/ndb
CFLAGS="$CFLAGS " nysql _config --include’/storage/ ndb/ ndbapi
CFLAGS="$CFLAGS " nysql _config --include’/storage/ ndb/ ngnapi

Tip

; If you do not intend to use the NDB Cluster management functions, the last line
in the previous example can be omitted. However, if you are interested in the
management functions only, and do not want or need to access NDB Cluster
data except from MySQL, then you can omit the line referencing the ndbapi
directory.

2.1.1.3 Linker Options

NDB API applications must be linked against both the MySQL and NDB client libraries. The NDB client
library also requires some functions from the nyst ri ngs library, so this must be linked in as well.

The necessary linker flags for the MySQL client library are returned by nysql config --11i bs. For
multithreaded applications you should use the - - | i bs_r instead:

$> nysql _config --libs_r

-L/usr/local /nmysqgl/lib/nysqgl -lnmysqglclient_r -1z -Ipthread -Icrypt

-lnsl -Im-Ipthread -L/usr/lib -lssl -lcrypto

It is now necessary only to add - | ndbcl i ent to LD FLAGS, as shown here:

LDFLAGS="$LDFLAGS " nysql _config --libs_r"
LDFLAGS="$LDFLAGS - I ndbcl i ent"

2.1.1.4 Using Autotools

It is often faster and simpler to use GNU autotools than to write your own makefiles. In this section,
we provide an aut oconf macro W TH_MYSQL that can be used to add a - - wi t h- nysql option to
a configure file, and that automatically sets the correct compiler and linker flags for given MySQL
installation.

All of the examples in this chapter include a common nysqgl . m4 file defining W TH_MYSQL. A typical
complete example consists of the actual source file and the following helper files:

e aci ncl ude
e configure.in
e Makefile. md

aut omake also requires that you provide READVE, NEWS, AUTHORS, and Changelog files; however,
these can be left empty.

25

https://dev.mysql.com/doc/refman/8.3/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-config.html#option_mysql_config_include
https://dev.mysql.com/doc/refman/8.3/en/mysql-config.html#option_mysql_config_include
https://dev.mysql.com/doc/refman/8.3/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-config.html

Compiling and Linking NDB API Programs

To create all necessary build files, run the following:

acl ocal

aut oconf

aut omake -a -c

configure --w th-nmysql =/ nmysql / prefix/path

Normally, this needs to be done only once, after which nake will accommodate any file changes.

Example 1-1: acinclude.m4.

m4_i ncl ude([../nysql.md])

Example 1-2: configure.in.

AC_| NI T(exanpl e, 1.0)

AM | NI T_AUTOVAKE(exanpl e, 1.0)
W TH_MYSQL()

AC_QUTPUT(Makefi | e)

Example 1-3: Makefile.am.

bi n_PROGRAMS = exanpl e
exanpl e_SOURCES = exanpl e. cc

Example 1-4: WITH_MYSQL source for inclusion in acinclude.m4.

dnl
dnl configure.in hel per macros
dnl

AC_DEFUN([W TH_MYSQL], [
AC_MSG_CHECKI NG(for nysql _confi g execut abl e)

AC ARG W TH(nysqgl, [--w th-mnmysql =PATH path to nysql _config binary or nysqgl prefix dir],
if test -x $withval -a -f $withval
t hen
MYSQL_CONFI G=$wi t hval
elif test -x $wi thval/bin/nmysql _config -a -f $w thval /bi n/nysqgl _config
t hen
MYSQL_CONFI G=$wi t hval / bi n/ nysqgl _config
fi
1. [
if test -x /usr/local/nysql/bin/nysqgl_config -a -f /usr/local/nysql/bin/nysqgl_config
t hen
MYSQL_CONFI G=/ usr /| ocal / mysqgl / bi n/ nmysql _config
elif test -x /usr/bin/nysqgl _config -a -f /usr/bin/nysql _config
t hen
MYSQL_CONFI G=/ usr/ bi n/ mysql _config
fi

1

if test "x$MYSQ_CONFIG' = "x"
t hen
AC_MSG_RESULT(not found)
exit 3
el se
AC_PROG_CC
AC_PROG_CXX

add regular MySQL C fl ags
ADDFLAGS="$MYSQL_CONFI G - -cf | ags"

add NDB APl specific C flags

| BASE=" $MYSQL_CONFI G - -i ncl ude®
ADDFLAGS="$ADDFLAGS $I BASE/ st or age/ ndb"
ADDFLAGS="$ADDFLAGS $I BASE/ st or age/ ndb/ ndbapi "
ADDFLAGS="$ADDFLAGS $I BASE/ st or age/ ndb/ ngrmapi "

CFLAGS="$CFLAGS $ADDFLAGS'
CXXFLAGS="$CXXFLAGS $ADDFLAGS"

[

26

Connecting to the Cluster

LDFLAGS="$LDFLAGS " $MYSQL_CONFI G --libs_r " -Indbclient"
LDFLAGS="$LDFLAGS " $MYSQL_CONFI G --libs_r " -Indbclient"

AC_MBG_RESULT($MYSQL_CONFI G)
fi
1)

2.1.2 Connecting to the Cluster
This section covers connecting an NDB API application to an NDB Cluster.
2.1.2.1 Include Files
NDB API applications require one or more of the following include files:
» Applications accessing NDB Cluster data using the NDB API must include the file NdbApi . hpp.

» Applications making use of the regular MySQL client API as well as the NDB API must also include
nysql . h (in addition to NdbApi . hpp).

» Applications that use NDB Cluster management functions from the MGM API need the include file
ngmapi . h

2.1.2.2 API Initialization and Cleanup
Before using the NDB API, it must first be initialized by calling the ndb_i ni t () function.

Once an NDB API application is complete, you can call ndb_end(0) to perform any necessary
cleanup. Keep in mind that, before you invoke this function, all Ndb_cl ust er _connecti on
objects created in your NDB API application must be cleaned up or destroyed; otherwise, threads
created when an Ndb_cl ust er _connect i on object's connect () method is invoked do not exit
properly, which causes errors on application termination. When an Ndb_cl ust er _connecti onis
created statically, you must not call ndb_end() in the same scope as the connection object. When
the connection object is created dynamically, you can destroy it using del et e() before calling

ndb_end().
Each of the functions ndb_init() and ndb_end() is defined in the file st or age/ ndb/ i ncl ude/
ndb_init.
Note
@ It should be possible to use f or k() in NDB API applications, but you must do
so prior to calling ndb_i ni t () ornmy_init () toavoid sharing of resources
such as files and connections between processes.

2.1.2.3 Establishing the Connection

To establish a connection to the server, you must create an instance of Ndb_cl ust er _connecti on,
whose constructor takes as its argument a cluster connection string. If no connection string is given,
| ocal host is assumed.

The cluster connection is not actually initiated until the Ndb_cl ust er _connecti on: : connect ()
method is called. When invoked without any arguments, the connection attempt is retried indefinitely,
once per second, until successful. No reporting is done until the connection has been made.

By default an APl node connects to the “nearest” data node. This is usually a data node running on the
same machine as the nearest, due to the fact that shared memory transport can be used instead of
the slower TCP/IP. This may lead to poor load distribution in some cases, so it is possible to enforce a
round-robin node connection scheme by calling the set _opti m zed_node_sel ecti on() method
with 0 as its argument prior to calling connect ().

27

Mapping MySQL Database Object Names and Types to NDB

connect () initiates a connection to an NDB Cluster management node only. To enable connections
with data nodes, usewai t _until| _ready() after calling connect ();wait_until _ready() waits
up to a given number of seconds for a connection to a data node to be established.

In the following example, initialization and connection are handled in the two functions
exanpl e_i nit () and exanpl e_end(), which are included in subsequent examples by means of
including the file exanpl e_connecti on. h.

Example 2-1: Connection example.
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <NdbApi . hpp>

#i ncl ude <nysql . h>

#i ncl ude <ngmapi . h>

Ndb_cl ust er _connecti on* connect _to_cl uster()
voi d di sconnect _from cl uster (Ndb_cl uster_connecti on *c)

Ndb_cl ust er _connecti on* connect _to_cl uster()
Ndb_cl ust er _connecti on* ¢

if(ndb_init())
exi t (EXI T_FAI LURE) ;

c= new Ndb_cl ust er _connecti on()
i f(c->connect (4, 5, 1))

fprintf(stderr, "Unable to connect to cluster within 30 seconds.\n\n")
exi t (EXI T_FAI LURE)
}

if(c->wait_until_ready(30, 0) < 0)

fprintf(stderr, "Cluster was not ready within 30 seconds.\n\n")
exi t (EXI T_FAI LURE)
}

return c;

}

voi d di sconnect _from cl uster (Ndb_cl uster_connecti on *c)
delete c

ndb_end(2)
}

int main(int argc, char* argv[])
Ndb_cl ust er _connecti on *ndb_connecti on= connect _to_cl uster()
printf("Connection Established.\n\n")
di sconnect _from cl ust er (ndb_connecti on)

return EXI T_SUCCESS
}

2.1.3 Mapping MySQL Database Object Names and Types to NDB

The next two sections discuss haming and other conventions followed by the NDB API with regard to
MySQL database objects, as well as handling of MySQL data types in NDB API applications.

2.1.3.1 MySQL Database Object Names in the NDB API

This section discusses mapping of MySQL database objects to the NDB API.

28

Mapping MySQL Database Object Names and Types to NDB

Databases and Schemas. Databases and schemas are not represented by objects as such in
the NDB API. Instead, they are modelled as attributes of Tabl e and | ndex objects. The value of the
dat abase attribute of one of these objects is always the same as the name of the MySQL database
to which the table or index belongs. The value of the schena attribute of a Tabl e or | ndex object is
always 'def ' (for “default”).

Tables. MySQL table names are directly mapped to NDB table names without modification.
Table names starting with 'NDB$' are reserved for internal use, as is the SYSTAB_0 table in the sys
database.

Indexes. There are two different type of NDB indexes:

» Hash indexes are unique, but not ordered.

» B-tree indexes are ordered, but permit duplicate values.

Names of unique indexes and primary keys are handled as follows:

» For a MySQL UNI QUE index, both a B-tree and a hash index are created. The B-tree index uses the
MySQL name for the index; the name for the hash index is generated by appending '$uni que' to the
index name.

e For a MySQL primary key only a B-tree index is created. This index is given the name PRI NVARY.
There is no extra hash; however, the uniqueness of the primary key is guaranteed by making the
MySQL key the internal primary key of the NDB table.

Column Names and Values. NDB column names are the same as their MySQL names.
2.1.3.2 NDB API Handling of MySQL Data Types

This section provides information about the way in which MySQL data types are represented in
NDBCLUSTER table columns and how these values can be accessed in NDB API applications.

Numeric data types. The MySQL TI NYI NT, SMALLI NT, I NT, and Bl G NT data types map to NDB
types having the same names and storage requirements as their MySQL counterparts.

The MySQL FLOAT and DOUBLE data types are mapped to NDB types having the same names and
storage requirements.

Data types used for character data. The storage space required for a MySQL CHAR column is
determined by the maximum number of characters and the column's character set. For most (but

not all) character sets, each character takes one byte of storage. When using ut f 8, each character
requires three bytes; ut f nb4 uses up to four bytes per character. You can find the maximum number
of bytes needed per character in a given character set by checking the Max| en column in the output of
SHOW CHARACTER SET.

An NDB VARCHAR column value maps to a MySQL VARCHAR, except that the first two bytes of the NDB
VARCHAR are reserved for the length of the string. A utility function like that shown here can make a
VARCHAR value ready for use in an NDB API application:

voi d make_ndb_varchar (char *buffer, char *str)
{

int len = strlen(str);

int hlen = (len > 255) ? 2 : 1

buffer[0] = len & Oxff;

if(len > 255)

buffer[1] = (len / 256);

strcpy(buffer+hlen, str);

}

You can use this function as shown here:

char nyVal [128+1]; // Size of nyVal (+1 for |ength)

29

https://dev.mysql.com/doc/refman/8.3/en/integer-types.html
https://dev.mysql.com/doc/refman/8.3/en/integer-types.html
https://dev.mysql.com/doc/refman/8.3/en/integer-types.html
https://dev.mysql.com/doc/refman/8.3/en/integer-types.html
https://dev.mysql.com/doc/refman/8.3/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.3/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.3/en/char.html

Mapping MySQL Database Object Names and Types to NDB

make_ndb_varchar(nyVal, "NDB is way cool!!");
myQper at i on- >set Val ue("nyVal ", nyVal)

See Section 2.5.12, “NDB API Simple Array Example”, for a complete example program that writes and
reads VARCHAR and VARBI NARY values to and from a table using the NDB API.

MySQL storage requirements for a VARCHAR or VARBI NARY column depend on whether the column is
stored in memory or on disk:

» For in-memory columns, the NDB storage engine supports variable-width columns with 4-byte
alignment. This means that (for example) a the string ' abcde' stored in a VARCHAR(50) column
using the | at i n1 character set requires 12 bytes—in this case, 2 bytes times 5 characters is 10,
rounded up to the next even multiple of 4 yields 12.

» For Disk Data columns, VARCHAR and VARBI NARY are stored as fixed-width columns. This means
that each of these types requires the same amount of storage as a CHAR of the same size.

types as a “blob column”, and its type as “blob”. NDB 7.5 and later also treats

Note
@ We refer throughout this Guide to a column of any of MySQL's TEXT or BLOB
MySQL JSON columns as blob columns.

Each row in an NDB Cluster BLOB or TEXT column is made up of two separate parts. One of these is
of fixed size (256 bytes), and is actually stored in the original table. The other consists of any data in
excess of 256 bytes, which is stored in a hidden blobs table whose rows are always 2000 bytes long.
This means that a record of si ze bytes in a TEXT or BLOB column requires

» 256 bytes, if si ze <= 256
e 256 + 2000 * ((size — 256) \ 2000) + 1) bytes otherwise

Temporal data types. Storage of temporal types in the NDB API depends on whether MySQL's
“old” types without fractional seconds or “new” types with fractional second support are used. Support
for fractional seconds was introduced in MySQL 5.6 as well as the NDB Cluster versions based on it—
that is, NDB 7.3 and NDB 7.4. These and later versions of the MySQL Server and NDB Cluster use the
new temporal types by default, can read and write data using the old temporal types, but cannot create
tables that use the old types. See Fractional Seconds in Time Values, for more information.

Because support for the old temporal types is expected be removed in a future release, you are
encouraged to migrate any tables using the old temporal types to the new versions of these types. You
can do this by executing a copying ALTER TABLE operation on any table that uses the old temporals,
or by backing up and restoring any such tables.

You can see whether a given table uses the old or new temporal types by checking the output of the
ndb_desc utility supplied with the NDB Cluster distribution. Consider a table created in a database
named t est, using the following statement, on a nysql d started without the - - cr eat e- ol d-

t enpor al s option:

CREATE TABLE t1 (
cl DATETI ME
c2 DATE
c3 TI Mg
c4 TI MESTAWP
c5 YEAR) ENG NE=NDB;

The relevant portion (the At t ri but es block) of the output of ndb_desc looks like this:
$> ndb_desc -dtest t1

-- Attributes --
cl Datetine2(0) NULL AT=FI XED ST=MEMORY

30

https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/blob.html
https://dev.mysql.com/doc/refman/8.3/en/blob.html
https://dev.mysql.com/doc/refman/8.3/en/json.html
https://dev.mysql.com/doc/refman/8.3/en/blob.html
https://dev.mysql.com/doc/refman/8.3/en/blob.html
https://dev.mysql.com/doc/refman/8.3/en/blob.html
https://dev.mysql.com/doc/refman/8.3/en/blob.html
https://dev.mysql.com/doc/refman/8.3/en/fractional-seconds.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-desc.html
https://dev.mysql.com/doc/refman/8.3/en/mysqld.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-desc.html

Mapping MySQL Database Object Names and Types to NDB

c2 Date NULL AT=FlI XED ST=MEMORY

c3 Time2(0) NULL AT=FI XED ST=MEMORY

c4 Tinmestanp2(0) NOT NULL AT=FI XED ST=MEMORY DEFAULT 0O
c5 Year NULL AT=Fl XED ST=MEMORY

The names of the new MySQL temporal types are suffixed with 2 (for example, Dat et i ne2) to set
them apart from the old versions of these types. Assume that we restart nysql d with - - cr eat e- ol d-
t enpor al s=0ONand then create a table t 2, also in the t est database, using this statement:

CREATE TABLE t2 (
cl DATETI ME,
c2 DATE,
c3 TI ME
c4 TI MESTAWP,
c5 YEAR) ENG NE=NDB;

The output from executing ndb_desc on this table as shown includes the At t ri but es block shown
here:

$> ndb_desc -dtest t2

-- Attributes --

cl Datetinme NULL AT=FI XED ST=MEMORY

c2 Date NULL AT=FlI XED ST=MEMORY

c3 Time NULL AT=FlI XED ST=MEMORY

c4 Tinmestanp NOT NULL AT=FI XED ST=MEMORY DEFAULT O
c5 Year NULL AT=FlI XED ST=MEMORY

The affected MySQL types are Tl ME, DATETI ME, and TI MESTAMP. The “new” versions of these types
are reflected in the NDB APl as Ti ne2, Dat et i ne2, and Ti nest anp2, respectively, each supporting
fractional seconds with up to 6 digits of precision. The new variants use big-endian encoding of integer
values which are then processed to determine the components of each temporal type.

For the fractional second part of each of these types, the precision affects the number of bytes needed,
as shown in the following table:

Table 2.2 Precision of NDB API new temporal types

Precision Bytes required Range

0 0 —

1 1 0-9

2 1 0-99

3 2 0-999

4 2 0-9999

5 3 0-99999
6 3 0-999999

The fractional part for each of the new temporal types is stored in big-endian format—that is, with the
highest order byte at the lowest address—using the necessary number of bytes.

The binary layouts of both the old and new versions of these types are described in the next few
paragraphs.

Ti me: The “old” version of this type is stored as a 24-bit signed i nt value stored in little-endian format
(lowest order byte in lowest order address). Byte 0 (bits 0-7) corresponds to hours, byte 2 (bits 8-15) to
minutes, and byte 2 (bits 16-23) to seconds according to this formula:

val ue = 10000 * hour

+ 100 * minute
+ second

Bit 23 serves as the sign bit; if this bit is set, the time value is considered negative.

31

https://dev.mysql.com/doc/refman/8.3/en/mysqld.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-desc.html
https://dev.mysql.com/doc/refman/8.3/en/time.html
https://dev.mysql.com/doc/refman/8.3/en/datetime.html
https://dev.mysql.com/doc/refman/8.3/en/datetime.html

Mapping MySQL Database Object Names and Types to NDB

Ti ne2: This is the “new” Tl ME type, and is stored as a 3-byte big-endian encoded value plus 0 to 3
bytes for the fractional part. The integer part is encoded as shown in the following table:

Table 2.3 Time2 encoding

Bits Meaning Range
23 Sign bit 0-1

22 Interval 0-1
22-13 Hour 1-1023
12-7 Minute 0-63
6-0 Second 0-63

Any fractional bytes in addition to this are handled as described previously.

Dat e: The representation for the MySQL DATE type is unchanged across NDB versions, and uses a 3-
byte unsigned integer stored in little-endian order. The encoding is as shown here:

Table 2.4 Date encoding

Bits Meaning Range
23-9 Year 0-32767
8-5 Month 0-15
4-0 Day 0-31

Dat et i me: The “old” MySQL DATETI VE type is represented by a 64-bit unsigned value stored in host
byte order, encoded using the following formula:

val ue = second
+ ninute * 102
+ hour * 10%
+ day * 10°
+ month * 108
+ year * 1010

Dat eTi me2: The “new” DATETI ME is encoded as a 5-byte big-endian with an optional fractional part
of 0 to 3 bytes, the fractional portion being handled as described previously. The high 5 bytes are

encoded as shown here:

Table 2.5 DateTime2 encoding

Bits Meaning Range
23 Sign bit 0-1

22 Interval 0-1
22-13 Hour 1-1023
12-7 Minute 0-63
6-0 Second 0-63

The Year Mont h bits are encoded as Year = YearMonth / 13 and Month = YearMonth % 13.

Ti mest anp: The “old” version of this type uses a 32-bit unsigned value representing seconds elapsed
since the Unix epoch, stored in host byte order.

Ti mest anp2: This is the “new” version of TI MESTAMP, and uses 4 bytes with big-endian eoncoding for
the integer potion (unsigned). The optional 3-byte fractional portion is encoded as exaplined earlier in
this section.

Additional information. More information about and examples uding data types as expressed
in the NDB API can be found in ndb/ src/ conmon/ uti | / NdbSqgl Uti | . cpp. In addition, see

The NDB API Class Hierarachy

Section 2.5.14, “Timestamp2 Example”, which provides an example of a simple NDB API application
that makes use of the Ti nest anp2 data type.

2.2 The NDB API Class Hierarachy

This section provides a hierarchical listing of all classes, interfaces, and structures exposed by the NDB

API.
e Ndb
e Key_part_ptr
e PartitionSpec
» NdbBl ob
 Ndb_cl uster_connecti on
* NdbDi ctionary
¢ Aut oG owSpeci fication
e Dictionary
o List
* El enent
e Col umm
e bj ect
* Datafile
* Event
* For ei gnKey
e HashMap
* I ndex
e Logfil eGoup
* Tabl e
e Tabl espace
e Undofile
e RecordSpecification
* NdbError
* NdbEvent Oper ati on
« Ndbl nt er pr et edCode
* NdbQOperation
¢ Ndbl ndexOper ati on

« NdbScanQper ati on

33

NDB API Classes, Interfaces, and Structures

¢ Ndbl ndexScanOper ati on
* | ndexBound
e ScanOpti ons
e Get Val ueSpec
e Set Val ueSpec

e OperationOptions

NdbRecAt t r

NdbRecor d

e NdbScanFil ter

e NdbTransacti on

2.3 NDB API Classes, Interfaces, and Structures

This section provides a detailed listing of all classes, interfaces, and stuctures defined in the NDB API.
Each listing includes the following information:

» Description and purpose of the class, interface, or structure.

» Pointers, where applicable, to parent and child classes.

» Detailed listings of all public members, including descriptions of all method parameters and type
values.

Class, interface, and structure descriptions are provided in alphabetical order. For a hierarchical listing,
see Section 2.2, “The NDB API Class Hierarachy”.

2.3.1 The Column Class

This section provides information about the Col unm class, which models a column in an NDBCLUSTER
table.

» Column Class Overview

» Column::ArrayType

» Column Constructor

e Column::equal()

e Column::getArrayType()

e Column::getAutolncrement()
e Column::getCharset()

» Column::getColumnNo()

» Column::getDefaultValue()
* Column::getinlineSize()

» Column::getLength()

34

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html

The Column Class

Column

Column:
Column:
Column:
Column:
Column:
Column:
Column:
Column;
Column:
Column:
Column:
Column:
Column:
Column:
Column:
Column:
Column:
Column;
Column:
Column:
Column:
Column:
Column:
Column:
Column:
Column:
Column:
Column;
Column:
Column:

Column:

:getName()
:getNullable()
:getPartitionKey()
:getPartSize()
:getPrecision()
:getPrimaryKey()
:getScale()
:getSize()
:getSizelnBytesForRecord()
:getStorageType()
:getStripeSize()
:getType()
:setArrayType()
:setAutolncrement()
:setAutolncrementlnitialValue()
:setCharset()
:setDefaultValue()
:setinlineSize
:setLength()
:setName()
:setNullable()
:setPartitionKey()
:setPartSize()
:setPrecision()
:setPrimaryKey()
:setScale()
:setStripeSize()
:setStorageType()
:setType()
:StorageType

‘Type

Class Overview

Parent class NdbDi cti onary

Child classes None

35

The Column Class

Description

Methods

Each instance of Col umm is characterized by its type, which is
determined by a number of type specifiers:

¢ Built-in type

¢ Array length or maximum length

< Precision and scale (currently not in use)

Character set (applicable only to columns using string data types)

« Inline and part sizes (applicable only to blob columns)

These types in general correspond to MySQL data types and their
variants. The data formats are same as in MySQL. The NDB API
provides no support for constructing such formats; however, they
are checked by the NDB kernel.

The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.6 Column class methods and descriptions

Method Description

Col um() Class constructor; there is also a copy
constructor

~Col um() Class destructor

equal () Compares Col urm objects

get ArrayType()

Gets the column's array type

get Aut ol ncr enent (

Shows whether the column is auto-
incrementing

get Char set ()

Get the character set used by a string (text)
column (not applicable to columns not
storing character data)

get Col unmNo()

Gets the column number

get Def aul t Val ue()

Returns the column's default value

getlnlineSize()

Gets the inline size of a blob column (not
applicable to other column types)

get Lengt h()

Gets the column's length

get Nane()

Gets the name of the column

get Nul I abl e()

Checks whether the column can be set to
NULL

getPartitionKey()

Checks whether the column is part of the
table's partitioning key

get Part Si ze()

Gets the part size of a blob column (not
applicable to other column types)

get Preci si on()

Gets the column's precision (used for
decimal types only)

get Pri mar yKey()

Check whether the column is part of the
table's primary key

get Scal e() Gets the column's scale (used for decimal
types only)
get Si ze() Gets the size of an element

36

The Column Class

Types

Method

Description

get Si zel nByt esFor

RBetsrtie)space required for a column by
NdbRecor d, according to the column's
type (added in NDB 7.4.7)

get Stri peSi ze()

Gets a BLOB column's stripe size (not
applicable to other column types)

get St or ageType()

Gets the storage type used by this column

get Type()

Gets the column's type (Type value)

set ArrayType()

Sets the column's ArrayType

set Aut ol ncr ement (

Sets the column's auto-increment flag

set Aut ol ncrenent |

Setsanvalitodhgrementing column's
starting value

set Char set ()

Sets the character set used by a column
containing character data (not applicable to
nontextual columns)

set Def aul t Val ue()

Sets the column's default value

setlnlineSize()

Sets the inline size for a blob column (not
applicable to columns not of blob types)

set Lengt h()

Sets the column's length

set Nane()

Sets the column's name

set Nul | abl e()

Toggles the column’s nullability

setPartitionKey()

Determines whether the column is part of
the table's partitioning key

setPart Si ze()

Sets the part size for a blob column (not
applicable to columns not of blob types)

set Preci sion()

Sets the column's precision (used for
decimal types only)

set Pri maryKey()

Determines whether the column is part of
the primary key

set Scal e()

Sets the column's scale (used for decimal
types only)

set St orageType()

Sets the storage type to be used by this
column

set StripeSi ze()

Sets the stripe size for a blob column (not
applicable to columns not of blob types)

set Type()

Sets the column's Type

These are the public types of the Col umm class:

Table 2.7 Column class types and descriptionse.

Type

Description

ArrayType

Specifies the column's internal storage
format

St or ageType

Determines whether the column is stored in
memory or on disk

Type

The column's data type. NDB columns have
the same data types as found in MySQL

37

The Column Class

The assignment (=) operator is overloaded for this class, so that it always performs a deep copy.

Important

means that they cannot be accessed by MySQL clients, and that they cannot be

A Columns created using this class cannot be seen by the MySQL Server. This
replicated. For these reasons, it is often preferable to avoid working with them.

In the NDB API, column names are handled in case-sensitive fashion. (This differs from the MySQL
C API.) To reduce the possibility for error, it is recommended that you name all columns consistently
using uppercase or lowercase.

As with other database objects, Col umm object creation and attribute changes to existing columns
done using the NDB API are not visible from MySQL. For example, if you change a column's data type
using Col umm: : set Type() , MySQL will regard the type of column as being unchanged. The only
exception to this rule with regard to columns is that you can change the name of an existing column
using Col umm: : set Nane() .

Column::ArrayType

This section provides information about the Ar r ay Type data type, which represents a column's internal attribute

format.

Description The attribute storage format can be either fixed or variable.
Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.8 Column object ArrayType data type values and
descriptions

Name Description

ArrayTypeFi xed stored as a fixed number of bytes

ArrayTypeShort Var |stored as a variable number of bytes; uses
1 byte overhead

ArrayTypeMedi unVarstored as a variable number of bytes; uses
2 bytes overhead

The fixed storage format is faster but also generally requires more space than the variable format.
The defaultis ArrayTypeShort Var for Var * types and Ar r ay TypeFi xed for others. The default is
usually sufficient.

Column Constructor

Description You can create a new Col urm or copy an existing one using the
class constructor.

A Col unm created using the NDB APl is not visible to a MySQL
server.

The NDB API handles column names in case-sensitive fashion. For
example, if you create a column named “myColumn”, you will not
be able to access it later using “Mycolumn” for the name. You can
reduce the possibility for error, by naming all columns consistently
using only uppercase or only lowercase.

Signature You can create either a new instance of the Col urm class, or by
copying an existing Col unm object. Both of these are shown here:

¢ Constructor for a new Col umm:

38

The Column Class

Column:

Column:

Column:

Column:

Parameters

Return value

Destructor

requal()

Description

Signature

Parameters

Return value
:getArrayType()
Description

Signature

Parameters

Return value
:getAutolncrement()

Description

Signature

Parameters
Return value
:getCharset()

Description

Col um
(

const char* nane = ""

)

e Copy constructor:

Col um
(

const Col umé& col um

)

When creating a new instance of Col urm, the constructor takes
a single argument, which is the name of the new column to be
created. The copy constructor also takes one parameter—in this
case, a reference to the Col unm instance to be copied.

A Col unm object.

The Col unm class destructor takes no arguments and returns
nothing (voi d).

This method is used to compare one Col unm with another to
determine whether the two Col unm objects are the same.

bool equal

(

const Col umé& col um
) const

equal () takes a single parameter, a reference to an instance of
Col um.

t r ue if the columns being compared are equal, otherwise f al se.

This method gets the column's array type.
ArrayType get ArrayType

(voi d

) const
None.

An ArrayType; see Column::ArrayType for possible values.

This method shows whether the column is an auto-increment
column.

bool get Aut ol ncr ement
(
voi d
) const

None.

TRUE if the column is an auto-increment column, FALSE if it is not.

This gets the character set used by a text column.

The Column Class

Signature

Parameters

Return value

Column::getColumnNo()

Description

Signature

Parameters

Return value
Column::getDefaultValue()

Description

Signature

Parameters

Return value
Column::getinlineSize()

Description

This method is applicable only to columns whose Type value is
Char, Var char, or Text .

The NDB API handles column names in case-sensitive fashion;
“myColumn” and “Mycolumn” are not considered to refer to the
same column. It is recommended that you minimize the possibility of
errors from using the wrong lettercase for column names by naming
all columns consistently using only uppercase or only lowercase.

CHARSET_| NFO* get Char set
(

voi d
) const

None.

A pointer to a CHARSET | NFO structure specifying both
character set and collation. This is the same as a MySQL
MY_CHARSET | NFOdata structure; for more information, see
mysql_get_character_set_info(),in the MySQL Manual.

This method gets the sequence number of a column within its
containing table or index. If the column is part of an index (such as
when returned by get Col urm()), it is mapped to its position within
that index, and not within the table containing the index.

i nt get Col unmNo
(
voi d
) const
None.

The column number as an integer.

Gets a column's default value data.

To determine whether a table has any columns with default values,
use Tabl e: : hasDef aul t Val ues().

const voi d* get Def aul t Val ue

(
unsigned int* len = 0
) const

| en holds either the length of the default value data, or O in the
event that the column is nullable or has no default value.

The default value data.

This method retrieves the inline size of a blob column—that is, the
number of initial bytes to store in the table's blob attribute. This part
is normally in main memory and can be indexed.

This method is applicable only to blob columns.

Beginning with NDB 8.0.29, you can also obtain this information in
the mysql client, by querying the ndbi nf o. bl obs table.

40

https://dev.mysql.com/doc/c-api/8.3/en/mysql-get-character-set-info.html
https://dev.mysql.com/doc/refman/8.3/en/mysql.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbinfo-blobs.html

The Column Class

Signature int getlnlineSize
(voi d
) const
Parameters None.
Return value The blob column's inline size, as an integer.

Column::getLength()

Description This method gets the length of a column. This is either the array
length for the column or—for a variable length array—the maximum
length.

Signature int getlLength

(
voi d
) const
Parameters None.
Return value The (maximum) array length of the column, as an integer.

Column::getName()
Description This method returns the name of the column for which it is called.

The NDB API handles column names in case-sensitive fashion.
For example, if you retrieve the name “myColumn” for a given
column, attempting to access this column using “Mycolumn” for
the name fails with an error such as Col unm is NULL or Tabl e
definition has undefined col umm. You can reduce the
possibility for error, by naming all columns consistently using only
uppercase or only lowercase.

Signature const char* get Name
(voi d
) const
Parameters None.
Return value The name of the column.

Column::getNullable()

Description This method is used to determine whether the column can be set to
NULL.
Signature bool get Nul | abl e
(
voi d
) const
Parameters None.
Return value A Boolean value: t r ue if the column can be set to NULL, otherwise
fal se.

Column::getPartitionKey()

Description This method is used to check whether the column is part of the
table's partitioning key.

41

The Column Class

Column:

Column:

Signature

Parameters

Return value

:getPartSize()

Description

Signature

Parameters

Return value

:getPrecision()

Description

Signature

Parameters

A partitioning key is a set of attributes used to distribute the tuples
onto the data nodes. This key a hashing function specific to the NDB
storage engine.

An example where this would be useful is an inventory tracking
application involving multiple warehouses and regions, where

it might be good to use the warehouse ID and district id as the
partition key. This would place all data for a specific district and
warehouse in the same storage node. Locally to each fragment the
full primary key will still be used with the hashing algorithm in such a
case.

For more information about partitioning, partitioning schemes, and
partitioning keys in MySQL, see Partitioning, in the MySQL Manual.

The only type of user-defined partitioning that is supported for use
with the NDB storage engine is key partitioning, including linear key
partitioning.

bool getPartitionKey

(
voi d
) const

None.

t r ue if the column is part of the partitioning key for the table,
otherwise f al se.

This method is used to get the blob part size of a BLOB column—
that is, the number of bytes that are stored in each tuple of the blob
table.

This method is applicable to BLOB columns only.

In NDB 8.0.29 and later, you can also obtain this information
in the mysql client or other MySQL client, by querying the
ndbi nf o. bl obs table.

int getPartSize
(
voi d
) const

None.

The column's part size, as an integer. In the case of a Ti nybl ob
column, this value is 0 (that is, only inline bytes are stored).

This method gets the precision of a column.
This method is applicable to decimal columns only.
i nt get Precision

(voi d

) const

None.

42

https://dev.mysql.com/doc/refman/8.3/en/partitioning.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.3/en/mysql.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbinfo-blobs.html

The Column Class

Column:

Column:

Column:

Column:

Return value

:getPrimaryKey()

Description

Signature

Parameters

Return value

:getScale()

Description

Signature

Parameters

Return value

:getSize()
Description

Signature

Parameters

Return value

The column's precision, as an integer. The precision is defined

as the number of significant digits; for more information, see the
discussion of the DECI MAL data type in Numeric Data Types, in the
MySQL Manual.

This method is used to determine whether the column is part of the
table's primary key.
bool get Pri maryKey
(
voi d
) const

None.

A Boolean value: t r ue if the column is part of the primary key of the
table to which this column belongs, otherwise f al se.

This method gets the scale used for a decimal column value.
This method is applicable to decimal columns only.
int getScal e

(

voi d
) const

None.

The decimal column's scale, as an integer. The scale of a decimal
column represents the number of digits that can be stored following
the decimal point. It is possible for this value to be 0. For more
information, see the discussion of the DECI VAL data type in
Numeric Data Types, in the MySQL Manual.

This function is used to obtain the size of a column.
int getSize

(
voi d
) const

None.

The column's size in bytes (an integer value).

:getSizelnBytesForRecord()

Description

Gets the space required for a given column by an NdbRecor d,
depending on the column's type, as follows:

* For a BLOB column, this value is the same as
si zeof (NdbRecor d*) , which is 4 or 8 bytes (the size of a
pointer; platform-dependent).

« For columns of all other types, it is the same as the value returned
by get Si ze().

This method was added in NDB NDB 7.4.7.

43

https://dev.mysql.com/doc/refman/8.3/en/numeric-types.html
https://dev.mysql.com/doc/refman/8.3/en/numeric-types.html

The Column Class

Column:

Column:

Column:

Column:

Column:

Signature

Parameters

Return value
:getStorageType()
Description

Signature

Parameters

Return value

:getStripeSize()

Description

Signature

Parameters

Return value

getType()
Description

Signature

Parameters

Return value

:setArrayType()
Description

Signature

Parameters

Return value

:setAutolncrement()

int getSizel nByt esFor Record
(

voi d
) const

None.

An integer (see Description).

This method obtains a column's storage type.
St or ageType get St or ageType
(

voi d
) const

None.

A St or ageType value; for more information about this type, see
Column::StorageType.

This method gets the stripe size of a blob column—that is, the
number of consecutive parts to store in each node group.

int getStripeSize
(
voi d
) const
None.

The column's stripe size, as an integer.

This method gets the column's data type.

Type get Type
(

voi d
) const

None.

The Type (data type) of the column. For a list of possible values,
see Column::Type.

Sets the array type for the column.

voi d set ArrayType

(
ArrayType type

)

A Col umm: : Arr ayType value. See Column::ArrayType, for more
information.

None.

44

The Column Class

Column:

Column:

Column:

Description

Signature

Parameters

Return value

Make the column auto-incrementing (or not).

voi d set Aut ol ncr enent

(
)

bool flag

A boolean value: TRUE to make the column auto-incrementing;
FALSE to remove this property of the column.

None.

:setAutolncrementinitialValue()

Description

Signature

Parameters

Return value

:setCharset()

Description

Signature

Parameters

Return value

:setDefaultValue()

Description

Signature

Parameters

Set the initial value for an auto-incrementing column.

voi d set Aut ol ncrenent | ni ti al Val ue

(
)

Ui nt 64 val ue

The initial value for the column (a 64-bit integer).

None.

This method can be used to set the character set and collation of a
Char, Var char, or Text column.

This method is applicable to Char, Var char, and Text columns
only.

Changes made to columns using this method are not visible to
MySQL.

voi d set Char set

(
CHARSET_I NFO* cs

)

This method takes one parameter. cs is a pointer to a
CHARSET _| NFOstructure. For additional information, see
Column::getCharset().

None.

This method sets a column value to its default, if it has one;
otherwise it sets the column to NULL.

To determine whether a table has any columns with default values,
use Tabl e: : hasDef aul t Val ues().

i nt setDefaultVal ue
(

const void* buf,
unsi gned int |en

)

This method takes 2 arguments: a value pointer buf ; and the length
| en of the data, as the number of significant bytes. For fixed size
types, this is the type size. For variable length types, the leading 1
or 2 bytes pointed to by buf f er also contain size information as
normal for the type.

45

The Column Class

Column:

Column:

Column:

Column:

Return value
:setinlineSize

Description

Signature

Parameters

Return value
:setLength()

Description

Signature

Parameters

Return value
:setName()

Description

Signature

Parameters

Return value

:setNullable()

0 on success, 1 on failure..

This method gets the inline size of a blob column—that is, the

number of initial bytes to store in the table's blob attribute. This
part is normally kept in main memory, and can be indexed and
interpreted.

This method is applicable to blob columns only.

Changes made to columns using this method are not visible

to MySQL. Beginning with NDB 8.0.30, you can change the
inline size of a blob column in the nysql client by setting

BLOB | NLI NE_SI ZE in a column comment as part of CREATE
TABLE or ALTER TABLE. See NDB_COLUMN Options, for more
information.

voi d setlnlineSize

(
int size

)
The integer si ze is the new inline size for the blob column.

None.

This method sets the length of a column. For a variable-length array,
this is the maximum length; otherwise it is the array length.

Changes made to columns using this method are not visible to
MySQL.

voi d setLength

(
int |ength

)

This method takes a single argument—the integer value | engt h is
the new length for the column.

None.

This method is used to set the name of a column.

set Nane() is the only Col unm method whose result is visible from
a MySQL Server. MySQL cannot see any other changes made to
existing columns using the NDB API.

voi d set Nanme

(

const char* nane

)

This method takes a single argument—the new name for the
column.

This method None.

46

https://dev.mysql.com/doc/refman/8.3/en/mysql.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options

The Column Class

Column:

Column:

Description

Signature

Parameters

Return value
:setPartitionKey()

Description

Signature

Parameters

Return value

:setPartSize()

Description

Signature

Parameters

Return value

This method toggles the nullability of a column.

Changes made to columns using this method are not visible to
MySQL.

voi d set Nul | abl e

(
)

bool null abl e

A Boolean value. Using t r ue makes it possible to insert NULLSs into
the column; if nul | abl e is f al se, then this method performs the
equivalent of changing the column to NOT NULL in MySQL.

None.

This method makes it possible to add a column to the partitioning
key of the table to which it belongs, or to remove the column from
the table's partitioning key.

Changes made to columns using this method are not visible to
MySQL.

For additional information, see Column::getPartitionKey().

voi d setPartitionKey

(
)

bool enabl e

The single parameter enabl e is a Boolean value. Passing t r ue to
this method makes the column part of the table's partitioning key; if
enabl e is f al se, then the column is removed from the partitioning
key.

None.

This method sets the blob part size of a blob column—that is, the
number of bytes to store in each tuple of the blob table.

This method is applicable to blob columns only.

Changes made to columns using this method are not visible to
MySQL. You can increase the blob part size of a blob column to the
maximum supported by NDB (13948) in nysql or another MySQL
client by setting the MAX_BLOB_PART_SI ZE option in a column
comment as part of a CREATE TABLE or ALTER TABLE statement.
See NDB_COLUMN Options.

voi d setPartSi ze

(
)

int size

The integer si ze is the number of bytes to store in the blob table.
Using zero for this value means only inline bytes can be stored, in
effect making the column's type Tl NYBLOB.

None.

47

https://dev.mysql.com/doc/refman/8.3/en/mysql.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options

The Column Class

Column:

Column:

Column:

Column:

:setPrecision()

Description

Signature

Parameters

Return value

:setPrimaryKey()

Description

Signature

Parameters

Return value

:setScale()

Description

Signature

Parameters

Return value
setStripeSize()

Description

This method can be used to set the precision of a decimal column.
This method is applicable to decimal columns only.

Changes made to columns using this method are not visible to
MySQL.

voi d set Preci sion

(
int precision

)

This method takes a single parameter—precision is an integer,

the value of the column's new precision. For additional information
about decimal precision and scale, see Column::getPrecision(), and
Column::getScale().

None.

This method is used to make a column part of the table's primary
key, or to remove it from the primary key.

Changes made to columns using this method are not visible to
MySQL.

voi d set Pri mar yKey

(

bool primary

)

This method takes a single Boolean value. Ifitis t r ue, then the
column becomes part of the table's primary key; if f al se, then the
column is removed from the primary key.

None.

This method can be used to set the scale of a decimal column.
This method is applicable to decimal columns only.

Changes made to columns using this method are not visible to
MySQL.

voi d set Scal e

(

int scale

)

This method takes a single parameter—the integer scal e is the
new scale for the decimal column. For additional information about
decimal precision and scale, see Column::getPrecision(), and
Column::getScale().

None.

This method sets the stripe size of a blob column—that is, the
number of consecutive parts to store in each node group.

48

The Column Class

Column:

Column:

Column:

Signature

Parameters

Return value
:setStorageType()
Description

Signature

Parameters

Return value
:setType()

Description

Signature

Parameters

Return value

:StorageType

This method is applicable to blob columns only.

Changes made to columns using this method are not visible to
MySQL.

voi d setStripeSize

(
)

int size
This method takes a single argument. The integer si ze is the new
stripe size for the column.

None.

Sets the storage type for the column.

voi d set St orageType
(

)

St or ageType type

A Col umm: : St or ageType value. See Column::StorageType, for
more information.

None.

This method sets the Type (data type) of a column.

set Type() resets all column attributes to their (type dependent)
default values; it should be the first method that you call when
changing the attributes of a given column.

Changes made to columns using this method are not visible to
MySQL.

voi d set Type
(
Type type

This method takes a single parameter—the new Col umm: : Type for
the column. The default is Unsi gned. For a listing of all permitted
values, see Column::Type.

None.

This section provides information about the St or ageType data type, which describes the storage type

used by a Col umm object.

Description

Enumeration values

The storage type used for a given column can be either in memory
or on disk. Columns stored on disk mean that less RAM is required
overall but such columns cannot be indexed, and are potentially
much slower to access. The default is St or ageTypeMenory.

Possible values are shown, along with descriptions, in the following
table:

49

The Column Class

Column::Type

Table 2.9 Column object StorageType data type values and
descriptions

Name Description

St or ageTypeMenor y | Store the column in memory

St orageTypeDi sk |Store the column on disk

This section provides information about the Type data type, which is used to describe a column's data

type.

Description

Enumeration values

Data types for Col urm objects are analogous to the data types
used by MySQL. The types Ti nyi nt, Ti nyi nt unsi gned,
Smal | i nt, Smal | unsi gned, Medi uni nt, Medi ununsi gned,
I nt, Unsi gned, Bi gi nt, Bi gunsi gned, Fl oat, and Doubl e
(that is, types Ti nyi nt through Doubl e in the order listed in the
Enumeration Values table) can be used in arrays.

Do not confuse Col unm: : Type with Obj ect : : Type.

Possible values are shown, along with descriptions, in the following
table:

Table 2.10 Column object Type data type values and
descriptions

Name Description

Undef i ned Undefined

Ti nyi nt 1-byte signed integer
Ti nyunsi gned 1-byte unsigned integer
Smal |'i nt 2-byte signed integer
Smal | unsi gned 2-byte unsigned integer
Medi um nt 3-byte signed integer
Medi unmunsi gned 3-byte unsigned integer
I nt 4-byte signed integer
Unsi gnhed 4-byte unsigned integer
Bi gi nt 8-byte signed integer

Bi gunsi gned 8-byte signed integer

FI oat 4-byte float

Doubl e 8-byte float

A ddeci nal Signed decimal as used prior to MySQL

5.0 (OBSOLETE)

A ddeci nal unsi gnegUnsigned decimal as used prior to MySQL
5.0 (OBSOLETE)

Deci nal Signed decimal as used by MySQL 5.0 and
later

Deci mal unsi gned |Unsigned decimal as used by MySQL 5.0
and later

Char A fixed-length array of 1-byte characters;

maximum length is 255 characters

50

The Datafile Class

Name Description

Var char A variable-length array of 1-byte
characters; maximum length is 255
characters

Bi nary A fixed-length array of 1-byte binary
characters; maximum length is 255
characters

Var bi nary A variable-length array of 1-byte binary
characters; maximum length is 255
characters

Dat et i ne An 8-byte date and time value, with a
precision of 1 second (DEPRECATED)

Dat et i ne2 An 8-byte date and time value, with
fractional seconds.

Dat e A 4-byte date value, with a precision of 1
day

Bl ob A binary large object; see Section 2.3.13,
“The NdbBlob Class”

Text A text blob

Bit A bit value; the length specifies the number

of bits

Longvar char

A 2-byte Var char

Longvar bi nary

A 2-byte Var bi nary

Ti me Time without date (DEPRECATED)

Ti me2 Time without date, with fractional seconds.
Year 1-byte year value in the range 1901-2155
(same as MySQL)

Ti mest anp Unix time (DEPRECATED)
Ti mest anp2 Unix time, with fractional seconds.

The NDB API provides access to time types with microseconds (T! Mg, DATETI ME, and Tl MESTAMP)
as Ti me2, Dat et i me2, and Ti mest anp2. (Ti ne, Dat et i e, and Ti mest anp are deprecated as of
the same version.) Use set Pr eci si on() to set up to 6 fractional digits (default 0). Data formats are
as in MySQL and must use the correct byte length.

Since NDB can compare any of these values as binary strings, it does not perform any checks on the
actual data.

2.3.2 The Datafile Class

This section provides information about the Dat af i | e class, which models an NDB Cluster data file.

Datafile Class Overview
Datafile Class Constructor
Datafile::getFileNo()
Datafile::getFree()
Datafile::getNode()
Datafile::getObjectld()

Datafile::getObjectStatus()

51

https://dev.mysql.com/doc/refman/8.3/en/time.html
https://dev.mysql.com/doc/refman/8.3/en/datetime.html
https://dev.mysql.com/doc/refman/8.3/en/datetime.html

The Datafile Class

Datafile::
Datafile::
Datafile::
Datafile::
Datafile::
Datafile:
Datafile::
Datafile::

Datafile::

getObjectVersion()
getPath()

getSize()
getTablespace()

getTablespaceld()

:setNode()

setPath()
setSize()

setTablespace()

Datafile Class Overview

Parent class
Child classes

Description

Methods

hj ect

None

The Dat af i | e class models an NDB Cluster data file, which is
used to store Disk Data table and column data.

Only unindexed column data can be stored on disk. Indexes and
indexed columns are stored in memory.

The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.11 Datafile class methods and descriptions

Name

Description

Dat afil e()

Class constructor

~Datafi | e()

Destructor

get Fi | eNo()

Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

get Free()

Gets the amount of free space in the data
file

get Node()

Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

get Obj ect 1 d()

Gets the data file's object ID

get Obj ect St at us()

Gets the data file's object status

get Obj ect Ver si on(

Gets the data file's object version

get Pat h()

Gets the file system path to the data file

get Si ze()

Gets the size of the data file

get Tabl espace()

Gets the name of the tablespace to which
the data file belongs

get Tabl espacel d()

Gets the ID of the tablespace to which the
data file belongs

set Node()

Removed in NDB 7.5.0 (Bug #47960, Bug
#11756088)

set Pat h()

Sets the name and location of the data file
on the file system

52

The Datafile Class

Types
Datafile Class Constructor

Description

Signature

Parameters

Return value
Datafile::getFileNo()

Description

Signature

Parameters

Return value
Datafile::getFree()

Description

Signature

Parameters

Return value

Datafile::getNode()

Description

Signature

Name Description

set Si ze() Sets the data file's size

set Tabl espace() Sets the tablespace to which the data file
belongs

The Dat af i | e class defines no public types.

This method creates a new instance of Dat af i | e, or a copy of an
existing one.

To create a new instance:

Dat afil e
(

voi d

)

To create a copy of an existing Dat af i | e instance:

Dat afil e
(

)

const Datafile& datafile

New instance: None. Copy constructor: a reference to the
Dat af i | e instance to be copied.

A Dat af i | e object.

This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Ui nt32 getFi |l eNo
(
voi d
) const
None.

The file number, as an unsigned 32-bit integer.

This method gets the free space available in the data file.

Ui nt 64 get Free
(

voi d
) const

None.

The number of bytes free in the data file, as an unsigned 64-bit
integer.

This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

Ui nt 32 get Node
(

53

The Datafile Class

Datafile:

Datafile:

Datafile:

Datafile:

Datafile:

Parameters

Return value

:getObjectld()

Description

Signature

Parameters

Return value

:getObjectStatus()

Description

Signature

Parameters

Return value

:getObjectVersion()

Description

Signature

Parameters
Return value
:getPath()
Description

Signature

Parameters

Return value

:getSize()
Description

Signature

voi d
) const

None.

The node ID as an unsigned 32-bit integer.

This method is used to obtain the object ID of the data file.
virtual int getObjectld

(voi d

) const
None.

The datafile's object ID, as an integer.

This method is used to obtain the data file's object status.
virtual Object::Status get Cbject Status
(
voi d
) const

None.

The data file's St at us. See Object::Status.

This method retrieves the data file's object version (see NDB
Schema Object Versions).

virtual int getQbjectVersion
(
voi d
) const

None.

The data file's object version, as an integer.

This method returns the file system path to the data file.

const char* getPath

(
voi d
) const

None.

The path to the data file on the data node's file system, a string
(character pointer).

This method gets the size of the data file in bytes.

Ui nt 64 get Size
(

voi d

54

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Datafile Class

Datafile:

Datafile:

Datafile:

Datafile:

Parameters

Return value
:getTablespace()

Description

Signature

Parameters

Return value
:getTablespaceld()

Description

Signature

Parameters

Return value

:setNode()

Description

Signature

Parameters

Return value

:setPath()

Description

Signature

Parameters

) const
None.

The size of the data file, in bytes, as an unsigned 64-bit integer.

This method can be used to obtain the name of the tablespace to
which the data file belongs.

You can also access the associated tablespace's ID directly. See
Datafile::getTablespaceld().

const char* get Tabl espace
(
voi d
) const

None.

The name of the associated tablespace (as a character pointer).

This method gets the ID of the tablespace to which the data file
belongs.

You can also access the name of the associated tablespace directly.

See Datafile::getTablespace().
Ui nt 32 get Tabl espacel d

(voi d

) const
None.

This method returns the tablespace ID as an unsigned 32-bit
integer.

This method did not work as intended, and was removed in NDB
7.5.0 (Bug #47960, Bug #11756088).

voi d set Node
(

)

Ui nt 32 nodel d

The nodel d of the node on which the data file is to be located (an
unsigned 32-bit integer value).

None.

This method sets the path to the data file on the data node's file
system.

const char* setPath

(
voi d
) const

The path to the file, a string (as a character pointer).

55

The Dictionary Class

Datafile:

Datafile:

2.3.3 The Dictionary Class

Return value
:setSize()
Description

Signature

Parameters

Return value
:setTablespace()
Description

Signatures

Parameters

Return value

None.

This method sets the size of the data file.

voi d setSize

(
Ui nt 64 size

)

This method takes a single parameter—the desired si ze in bytes
for the data file, as an unsigned 64-bit integer.

None.

This method is used to associate the data file with a tablespace.

set Tabl espace() can be invoked in either of the two ways listed
here:

1. Using the name of the tablespace, as shown here:

voi d set Tabl espace

(

const char* nane

)

2. Using a reference to a Tabl espace object.
voi d set Tabl espace
(
const cl ass Tabl espace& t abl espace

)

This method takes a single parameter, which can be either one of
the following:

« The name of the tablespace (as a character pointer).

* Areference t abl espace to the corresponding Tabl espace
object.

None.

This section provides information about the Di ct i onary class.

* Dictionary Class Overview

« Dictionary Class Constructor

* Dictionary::beginSchemaTrans()
« Dictionary::createDatafile()

* Dictionary::createEvent()
 Dictionary::createForeignKey()
« Dictionary::createHashMap()

* Dictionary::createlndex()

56

The Dictionary Class

Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary:
Dictionary::
Dictionary::
Dictionary::
Dictionary::
Dictionary::

Dictionary::

createLogfileGroup()
createRecord()
createTable()
createTablespace()
createUndofile()
dropDatafile()
dropEvent()
dropForeignKey()
droplindex()
dropLogfileGroup()
dropTable()
dropTablespace()
dropUndofile()
endSchemaTrans()
getDatafile()
getDefaultHashMap()
getEvent()
getForeignKey()
getHashMap()
getindex()
getLogfileGroup()
getNdbError()
getTable()
getTablespace()
getUndofile()
hasSchemaTrans()
initDefaultHashMap()

invalidatelndex()

sinvalidate Table()

listEvents()
listindexes()
listObjects()
prepareHashMap()
releaseEvent()

releaseRecord()

57

The Dictionary Class

Dictionary Class Overview

« Dictionary::removeCachedTable()

* Dictionary::removeCachedIndex()

Parent class
Child classes

Description

Methods

NdbDi cti onary

Li st

This is used for defining and retrieving data object metadata. It also

includes methods for creating and dropping database objects.

The following table lists

the public methods of this class and the

purpose or use of each method:

Table 2.12 Dictionary class methods and descriptions

Name

Description

Di ctionary()

Class constructor method

~Di cti onary()

Destructor method

begi nSchemaTr ans(

Begins a schema transaction

createbDatafil e()

Creates a data file

creat eEvent ()

Creates an event

cr eat eFor ei gnKey/(

Creates a foreign key

creat eHashMap()

Creates a hash map

creat el ndex()

Creates an index

createLogfil eG ou

Cheates a log file group

creat eRecord()

Creates an Ndbr ecor d object

creat eTabl e()

Creates a table

creat eTabl espace(

Creates a tablespace

creat eUndofil e()

Creates an undo file

dropDat afil e()

Drops a data file

dr opEvent ()

Drops an event

dr opFor ei gnKey()

Drops a foreign key

dr opl ndex()

Drops an index

dropLogfil eG oup(

Drops a log file group

dropTabl e()

Drops a table

dropTabl espace()

Drops a tablespace

dropUndofil e()

Drops an undo file

endSchenaTr ans()

Ends (commits and closes) a schema
transaction

getDatafil e()

Gets the data file having the given name

get Def aul t HashMap

(Gets a table's default hash map

get Event ()

Gets the event having the given name

get For ei gnKey()

Gets the foreign key having the given
name or reference

get HashMap()

Gets the hash map given its name or

associated table

58

The Dictionary Class

Types

Dictionary Class Constructor

Description

Signature

Parameters

Return value

Name

Description

get I ndex()

Gets the index having the given name

get Logfil eGoup()

Gets the log file group having the given
name

get NdbEr ror ()

Retrieves the latest error

get Tabl e()

Gets the table having the given name

get Tabl espace()

Gets the tablespace having the given name

get Undofi | e()

Gets the undo file having the given name

hasSchemaTr ans()

Tells whether a schema transaction
currently exists

i ni t Def aul t HashMa

Dijtializes a atble' default hash map

i nval i dat eTabl e()

Invalidates a table object

listObjects()

Fetches a list of the objects in the
dictionary

I'istlndexes()

Fetches a list of the indexes defined on a
given table

listEvents()

Fetches a list of the events defined in the
dictionary

pr epar eHashMap()

Creates or retrieves a hash map that can
be updated

rel easeEvent ()

Deletes an event returned earlier by
get Event ()

removeCachedTabl e

RRemoves a table from the local cache

renpveCachedl ndex

Removes an index from the local cache

Database objects such as tables and indexes created using the
Di ctionary::create*() methods cannot be seen by the
MySQL Server. This means that they cannot be accessed by
MySQL clients, and that they cannot be replicated. For these
reasons, it is often preferable to avoid working with them.

The Di cti onary class does not have any methods for working
directly with columns. You must use Col umm class methods for this
purpose—see Section 2.3.1, “The Column Class”, for details.

See Section 2.3.10, “The List Class”, and Section 2.3.4, “The

Element Structure”.

This method creates a new instance of the Di cti onary class.

Both the constructor and destructor for this class are protected
methods, rather than public.

protected Dictionary

(
Ndb& ndb

)
An Ndb object.

A Dictionary object.

59

The Dictionary Class

Destructor

Dictionary::beginSchemaTrans()

Description

Signature

Parameters
Return value
Dictionary::createDatafile()

Description

The destructor takes no parameters and returns nothing:

protected ~Dictionary

(
voi d

)

Starts a schema transaction. An error occurs if a transaction

is already active, or if the kernel metadata is locked. You can
determine whether a schema transaction already exists using the
hasSchemaTr ans() method.

A metadata operation occurs whenever data objects are created,
altered, or dropped; such an operation can create additional
suboperations in the NDB kernel.

The Ndb object and its associated Di ct i onary support one
schema transaction at a time. By default, each metadata operation
is executed separately; that is, for each operation, a schema
transaction is started implicitly, the operation (including any
suboperations) is executed, and the transaction is closed.

It is also possible to begin and end a schema transaction explicitly,
and execute a set of user-defined operations atomically within

its boundaries. In this case, all operations within the schema
transaction either succeed, or are aborted and rolled back, as a unit.
This is done by following the steps listed here:

1. To begin the schema transaction, call begi nSchemaTr ans() .
2. Execute the desired operations (such as cr eat eTabl e()).
3. End the schema transaction by calling endSchenmaTr ans.

Each operation is sent to the NDB kernel, which parses and saves
it. A parse failure results in a rollback to the previous user operation
before returning, at which point the user can either continue with or
abort the entire transaction.

After all operations have been submitted, endSchenmaTr ans()
processes and commits them. In the event of an error, the
transaction is immediately aborted.

If the user exits before calling endSchemaTr ans() , the NDB
kernel aborts the transaction. If the user exits before the call to
endSchenmaTr ans() returns, the kernel continues with the request,
and its completion status is reported in the cluster log.

i nt begi nSchemaTr ans

(
voi d

)

None.

Returns 0 on success, -1 on error.

This method creates a new data file, given a Dat af i | e object.

60

The Dictionary Class

Signature

Parameters

Return value
Dictionary::createEvent()

Description

Signature

Parameters

Return value
Dictionary::createForeignKey()

Description

Signature

Parameters

Return value
Dictionary::createHashMap()

Description

Signature

Parameters

Return value
Dictionary::createlndex()

Description

int createDatafile

(
const Datafile& dFile

)

A single argument—a reference to an instance of Dat af i | e—is
required.

0 on success, - 1 on failure.

Creates an event, given a reference to an Event object.

You should keep in mind that the NDB API does not track allocated
event objects, which means that the user must delete the Event
that was obtained using cr eat eEvent (), after this object is no
longer required.

i nt createEvent

(

const Event & event

)
A reference event to an Event object.

0 on success, - 1 on failure.

Creates a For ei gnKey object, given a reference to this object and
an (bj ect ID.

i nt createForei gnKey
(
const Forei gnKey&,
oj ect | d* 0,
int flags 0

)

A reference to the For ei gnKey object, and an Obj ect ID. An
optional value f | ags, if used, allows the creation of the foreign key
without performing any foreign key checks. If set, its value must be
Creat eFK NoVeri fy (1).

0 on success.

Creates a HashMap.

i nt createHashMap

(
const HashMap& hashmap,

Qojectld* id =0
)

A reference to the hash map, and, optionally, an ID to be assigned
to it.

Returns 0 on success; on failure, returns -1 and sets an error.

This method creates an index given an instance of | ndex and
possibly an optional instance of Tabl e.

61

The Dictionary Class

Dictionary::createLogfileGroup()

Signature

int createl ndex

(

const | ndex& i ndex

)

int createl ndex

(

const | ndex& i ndex,

const Tabl e& tabl e

)

Parameters

Return value

Description

Signature

Parameters

Return value

Dictionary::createRecord()

Description

Signature

This method can be invoked with or without a reference to a table
object:

Required: A reference to an | ndex object. Optional: A reference to
a Tabl e object.

0 on success, - 1 on failure.

This method creates a new log file group, given an instance of
Logfil eG oup.

int createlLogfil eG oup

(
const LogfileG oup& | Goup

)

A single argument, a reference to a Logf i | eGr oup object, is
required.

0 on success, - 1 on failure.

This method is used to create an NdbRecor d object for use in table
or index scanning operations.

The signature of this method depends on whether the resulting
NdbRecord is to be used in table or index operations:

To create an NdbRecor d for use in table operations, use the
following:

NdbRecor d* creat eRecord
(
const Tabl e* table,
const RecordSpeci fication* recSpec,
Ui nt 32 | engt h,
Ui nt32 el Si ze
)

To create an NdbRecor d for use in index operations, you can use
either of the following:

NdbRecor d* creat eRecord
(
const | ndex* index,
const Tabl e* tabl e,
const RecordSpecification* recSpec,
Ui nt 32 | engt h,
Uint32 el Size

or

NdbRecor d* creat eRecord

62

The Dictionary Class

Parameters

Return value

Example
Dictionary::createTable()

Description

Signature

Parameters

Return value
Dictionary::createTablespace()

Description

Signature

Parameters

Return value

Dictionary::createUndofile()

const | ndex* index,

const RecordSpeci fication* recSpec
Uint32 | ength

Ui nt32 el Si ze

)
Di ctionary::createRecord() takes the following parameters:

« If this NdbRecor d is to be used with an index, a pointer to the
corresponding | ndex object. If the NdbRecor d is to be used with
a table, this parameter is omitted. (See Section 2.3.8, “The Index
Class”.)

« A pointer to a Tabl e object representing the table to be scanned.
If the Ndbr ecor d produced is to be used with an index, then
this optionally specifies the table containing that index. (See
Section 2.3.27, “The Table Class”.)

* A RecordSpecification used to describe a column.
e The | engt h of the record.
e The size of the elements making up this record.

An NdbRecor d for use in operations involving the given table or
index.

See Section 2.3.22, “The NdbRecord Interface”.

Creates a table given an instance of Tabl e.

Tables created using this method cannot be seen by the MySQL
Server, cannot be updated by MySQL clients, and cannot be
replicated.

int createTable

(
)

const Tabl e& tabl e

An instance of Tabl e. See Section 2.3.27, “The Table Class”, for
more information.

0 on success, - 1 on failure.

This method creates a new tablespace, given a Tabl espace
object.

i nt createTabl espace

(
)

const Tabl espace& t Space

This method requires a single argument—a reference to an instance
of Tabl espace.

0 on success, - 1 on failure.

63

The Dictionary Class

Description

Signature

Parameters

Return value
Dictionary::dropDatafile()
Description

Signature

Parameters

Return value
Dictionary::dropEvent()
Description

Signature

Parameters

Return value
Dictionary::dropForeignKey()

Description

Signature

Parameters
Return value
Dictionary::dropindex()

Description

This method creates a new undo file, given an Undof i | e object.

int createUndofile

(

const Undofile& uFile

)

This method requires one argument: a reference to an instance of
Undofil e.

0 on success, - 1 on failure.

This method drops a data file, given a Dat af i | e object.

int dropDatafile

(
const Datafile& dFile

)

A single argument—a reference to an instance of Dat af i | e—is
required.

0 on success, - 1 on failure.

This method drops an event, given a reference to an Event object.

int dropEvent

(

const char* nane,
i nt force = 0

)
This method takes two parameters:
« The nane of the event to be dropped, as a string.

e By default, dr opEvent () fails if the event specified does not
exist. You can override this behavior by passing any nonzero
value for the (optional) f or ce argument; in this case no check is
made as to whether there actually is such an event, and an error
is returned only if the event exists but it was for whatever reason
not possible to drop it.

0 on success, - 1 on failure.

This method drops a foreign key, given a reference to an
For ei gnKey object to be dropped.

i nt dropForei gnKey
(
const Forei gnKey&
)
A reference to the For ei gnKey to be dropped.

0 on success.

This method drops an index given an instance of | ndex, and
possibly an optional instance of Tabl e.

64

The Dictionary Class

Signature

Parameters

Return value
Dictionary::dropLogfileGroup()

Description

Signature

Parameters

Return value
Dictionary::dropTable()

Description

Signature

Parameters

Return value
Dictionary::dropTablespace()
Description

Signature

i nt dropl ndex

(
)

const | ndex& i ndex

i nt dropl ndex

(

const | ndex& i ndex,
const Tabl e& tabl e

)
This method takes two parameters, one of which is optional:
« Required: A reference to an | ndex object.
e : Areference to a Tabl e object.

0 on success, - 1 on failure.

Given an instance of Logfi | eG oup, this method drops the
corresponding log file group.

int dropLogfil eG oup
(

)

const Logfil eG oup& | G oup

A single argument, a reference to a Logf i | eGr oup object, is
required.

0 on success, - 1 on failure.

Drops a table given an instance of Tabl e.

This method drops all foreign key constraints on the t abl e that is
being dropped, whether the dropped table acts as a parent table,
child table, or both.

Prior to NDB 8.0, an NDB table dropped using this method persisted
in the MySQL data dictionary but could not be dropped using DROP

TABLE in the nysql client. In NDB 8.0, such “orphan” tables can be
dropped using DROP TABLE. (Bug #29125206, Bug #93672)

int dropTabl e
(

)

const Tabl e& tabl e
An instance of Tabl e. See Section 2.3.27, “The Table Class”, for
more information.

0 on success, - 1 on failure.

This method drops a tablespace, given a Tabl espace object.

i nt dropTabl espace

(
)

const Tabl espace& t Space

65

https://dev.mysql.com/doc/refman/8.3/en/drop-table.html
https://dev.mysql.com/doc/refman/8.3/en/drop-table.html
https://dev.mysql.com/doc/refman/8.3/en/mysql.html

The Dictionary Class

Parameters

Return value
Dictionary::dropUndofile()
Description

Signature

Parameters

Return value
Dictionary::endSchemaTrans()

Description

Signature

Parameters

Return value

Dictionary::getDatafile()

Description

Signature

This method requires a single argument—a reference to an instance
of Tabl espace.

0 on success, - 1 on failure.

This method drops an undo file, given an Undof i | e object.

int dropUndofile
(

const Undofile& uFile

)

This method requires one argument: a reference to an instance of
Undofil e.

0 on success, - 1 on failure.

Ends a schema transaction begun with begi nSchenaTr ans() ;
causes operations to be processed and either committed, or aborted
and rolled back. This method combines transaction execution and
closing; separate methods for these tasks are not required (or
implemented). This method may be called successfully even if no
schema transaction is currently active.

As with many other NDB API methods, it is entirely possible for
endSchenmaTr ans() to overwrite any current error code. For this
reason, you should first check for and save any error code that may
have resulted from a previous, failed operation.

i nt endSchemaTr ans

Uint32 flags = 0
)

The flags determines how the completed transaction is handled. The
default is 0, which causes the transaction to be committed.

Dictionary::SchemaTransFlag. You can also use with
endSchemaTr ans() either of the SchemaTr ansFl ag values
shown here:

e SchemaTr ansAbort (= 1): Causes the transaction to be aborted

e SchemaTr ansBackgr ound (= 2): Causes the transaction to
execute in the background; the result is written to the cluster log,
while the application continues without waiting for a response.

Returns 0 on success; in the event of an error, returns -1 and sets
an NdbEr r or error code.

This method is used to retrieve a Dat af i | e object, given the node
ID of the data node where a data file is located and the path to the
data file on that node's file system.

Datafile getDatafile

(
Ui nt 32 nodel d,

66

The Dictionary Class

Parameters

Return value

Dictionary::getDefaultHashMap()
Description

Signature

Return value
Dictionary::getEvent()

Description

Signature

Parameters

Return value

Dictionary::getForeignKey()

Description

const char* path

)
This method must be invoked using two arguments, as shown here:

* The 32-bit unsigned integer nodel d of the data node where the
data file is located

e The pat h to the data file on the node's file system (string as
character pointer)

A Dat af i | e object—see Section 2.3.2, “The Datafile Class”, for
details.

Get a table's default hash map.

i nt get Def aul t HashMap

(
HashMap& dst,
Ui nt32 fragnents

)
or

i nt get Def aul t HashMap

(
HashMapé& dst,
U nt 32 bucket s,
Uint32 fragnents

)

Returns 0 on success; on failure, returns -1 and sets an error.

This method is used to obtain a new Event object representing an
event, given the event's name.

get Event () allocates memory each time it is successfully called.
You should keep in mind that successive invocations of this method
using the same event name return multiple, distinct objects.

The NDB API does not track allocated event objects, which

means that the user must clean up each Event created using

get Event () with del et e, after the object is no longer required.
Beginning with NDB 8.0.30, you can do this with r el easeEvent ()
instead.

const Event* get Event

(

const char* event Nane

)
The event Nane, a string (character pointer).

A pointer to an Event object. See Section 2.3.5, “The Event Class”,
for more information.

This method is used to obtain a new For ei gnKey object
representing an event, given a reference to the foreign key and its
name.

67

The Dictionary Class

Signature

Parameters

Return value
Dictionary::getHashMap()

Description

Signatures

Parameters

Return value
Dictionary::getindex()

Description

Signature

Parameters

Return value

Dictionary::getLogfileGroup()

Description

Signature

Parameters

i nt get For ei gnKey

(
For ei gnKey& dst,
const char* nane

)

A reference to the foreign key and its nane, a string (character
pointer).

A pointer to a For ei gnKey object.

Gets a hash map by name or by table.

i nt get HashMap

(
HashMap& dst,
const char* nane

)

or

i nt get Hashiap

(
HashMap& dst,
const Tabl e* table

)
A reference to the hash map and either a name or a Tabl e.

Returns 0 on success; on failure, returns -1 and sets an error.

This method retrieves a pointer to an index, given the name of the
index and the name of the table to which the table belongs.

const | ndex* getl ndex

(

const char* i Nane,
const char* tNane
) const

Two parameters are required:

e The name of the index (i Nane)

e The name of the table to which the index belongs (t Nane)

Both of these are string values, represented by character pointers.

A pointer to an | ndex. See Section 2.3.8, “The Index Class”, for
information about this object.

This method gets a Logf i | eG oup object, given the name of the
log file group.

Logfil eG oup getLogfil eG oup
(

const char* nane

)

The nane of the log file group.

68

The Dictionary Class

Return value

Dictionary::getNdbError()
Description

Signature

Parameters

Return value
Dictionary::getTable()

Description

Signature

Parameters

Return value

Dictionary::getTablespace()

Description

Signatures

Parameters

Return value

Dictionary::getUndofile()

Description

Signature

An instance of Logfi | eG oup; see Section 2.3.9, “The
LogfileGroup Class”, for more information.

This method retrieves the most recent NDB API error.
const struct NdbError& get NdbError
(
voi d
) const

None.

A reference to an NdbEr r or object.

This method can be used to access a Tabl e whose name is
already known.

const Tabl e* get Tabl e

(

const char* nane
) const

The nane of the table.

A pointer to the table, or NULL if there is no table with the nane
supplied.

Given either the name or ID of a tablespace, this method returns the
corresponding Tabl espace object.

This method can be invoked in either of the following two ways:

» Using the tablespace name:

Tabl espace get Tabl espace
(
const char* nane

)
¢ Using the tablespace ID:

Tabl espace get Tabl espace

Uint32 id
)

Either one of the following:
« The nane of the tablespace, a string (as a character pointer)
e The unsigned 32-bit integer i d of the tablespace

A Tabl espace object, as discussed in Section 2.3.28, “The
Tablespace Class”.

This method gets an Undof i | e object, given the ID of the node
where an undo file is located and the file system path to the file.

Undofi |l e getUndofile

69

The Dictionary Class

Parameters

Return value

Dictionary::hasSchemaTrans()
Description

Signature

Parameters

Return value

Dictionary::initDefaultHashMap()
Description

Signature

Parameters

Return value
Dictionary::invalidatelndex()
Description

Signature

(
U nt 32 nodel d,

const char* path

)

This method requires the following two arguments:

* The nodel d of the data node where the undo file is located; this

value is passed as a 32-bit unsigned integer

e The pat h to the undo file on the node's file system (string as
character pointer)

An instance of Undof i | e. For more information, see
Section 2.3.29, “The Undofile Class”.

Tells whether an NDB API schema transaction is ongoing.

bool hasSchemaTr ans

(
voi d
) const

None.

Returns boolean TRUE if a schema transaction is in progress,
otherwise FALSE.

Initialize a default hash map for a table.

int initDefaultHashMap

(
HashMap& dst,

Ui nt32 fragnents
)

or

i nt initDefaultHashMap

(
HashMap& dst,
Ui nt 32 bucket s,
Uint32 fragnents

)

A reference to the hash map and the number of fragments.
Optionally the number of buckets.

Returns 0 on success; on failure, returns -1 and sets an error.

This method is used to invalidate a cached index object.

The index invalidated by this method can be referenced either as an
| ndex object (using a pointer), or by index name and table name,

as shown here:

voi d inval i dat el ndex

(
const char* indexNaneg,
const char* tabl eNanme

)

70

The Dictionary Class

voi d inval i dat el ndex

(

const | ndex* index

)

Parameters The names of the index to be removed from the cache and the table
to which it belongs (i ndexNane and t abl eNane, respectively), or a
pointer to the corresponding | ndex object.

Return value None.
Dictionary::invalidateTable()

Description This method is used to invalidate a cached table object.

Signature voi d invalidateTabl e
(

const char* nane

)

Itis also possibloe to use a Tabl e object rather than the name of
the table, as shown here:

voi d invalidateTabl e

(

const Table* table

)

Parameters The nane of the table to be removed from the table cache, or a
pointer to the corresponding Tabl e object.

Return value None.

Dictionary::listEvents()

Description This method returns a list of all events defined within the dictionary.
Signature int |istEvents

(List& |ist

)
Parameters A reference to an empty Li st. In NDB 8.0.29 and later, use

cl ear () to empty a previously used Li st for reuse.
Return value 0 on success; - 1 on failure.
Dictionary::listindexes()

Description This method is used to obtain a Li st of all the indexes on a table,
given the table's name.

Signature int listlndexes
(
Li st & l'ist,
const char* table
) const
Parameters l'i stlndexes() takes two arguments, both of which are required:

« Areference to an empty Li st that, following the call to this
method, contains the indexes. In NDB 8.0.29 and later, use
cl ear () to empty a previously used Li st for reuse.

* The name of the t abl e whose indexes are to be listed

Return value 0 on success, - 1 on failure.

71

The Dictionary Class

Dictionary::listObjects()

Description

Signature

Parameters

Return value
Dictionary::prepareHashMap()

Description

Signatures

This method is used to obtain a list of objects in the dictionary. It is
possible to get all of the objects in the dictionary, or to restrict the list
to objects of a single type.

This method has two signatures:

int listOojects
(

List& l'ist,
bj ect:: Type type = bject:: TypeUndefi ned
) const

and

int |istObjects
(

Li st & l'ist,

oj ect:: Type type,

bool fullyQualified
) const

A reference to an empty Li st object is required—this is the list that
contains the dictionary's objects after | i st Obj ect s() is called.
(See Section 2.3.10, “The List Class”.) An optional second argument
t ype may be used to restrict the list to only those objects of the
given type—that is, of the specified Obj ect : : Type. Ift ype is not
given, then the list contains all of the dictionary's objects.

You can also specify whether or not the object names in the | i st
are fully qualified (that is, whether the object name includes the
database, schema, and possibly the table name). If you specify
ful l yQualified, then you must also specify the t ype.

In NDB 8.0.29 and later, you can call cl ear () to empty a
previously used Li st for reuse.

Note
@ Setting ful | yQual i fi edtofal se causes

|istObjects() toreturn objects that use
fully qualified names.

0 on success, - 1 on failure.

Creates or retrieves a hash map suitable for alteration.
Requires a schema transaction to be in progress; see
Dictionary::beginSchemaTrans(), for more information.

Either of the following:

e int prepareHashMap
(
const Tabl e& ol dTabl e,
Tabl e& newTabl e

)

e int prepareHashMap
(
const Tabl e& ol dTabl e,
Tabl e& newTabl e,
U nt 32 buckets

72

The Dictionary Class

Parameters

Return value
Dictionary::releaseEvent()

Description

Signature

Parameters

Return value

)

References to the old and new tables. Optionally, a number of
buckets.

Returns 0 on success; on failure, returns -1 and sets an error.

This method is used to free an Event after it is no longer needed.
Typically this is an event returned by get Event () .

voi d rel easeEvent
(
const Event* event
)
The Event to be cleaned up.

None.

This method was added in NDB 8.0.30.

Dictionary::releaseRecord()

Description

Signature

Parameters
Return value

Example
Dictionary::removeCachedTable()

Description

Signature

Parameters

Return value

Dictionary::removeCachedIndex()

Description

Signature

Parameters

This method is used to free an NdbRecor d after it is no longer
needed.

voi d rel easeRecord

(
NdbRecor d* record

)
The NdbRecor d to be cleaned up.

None.

See Section 2.3.22, “The NdbRecord Interface”.

This method removes the table, specified by name, from the local
cache.

voi d renmoveCachedTabl e

(

const char* table

)
The name of the t abl e to be removed from the cache.

None.

This method removes the specified index from the local cache,
given the name of the index and that of the table in which it is
contained.

voi d renpveCachedl ndex

(

const char* index
const char* table

)
The r enoveCachedl ndex() method requires two arguments:

* The name of the i ndex to be removed from the cache

The Element Structure

2.3.4 The Element Structure

2.3.5 The Event Class

Return value

This section provides information about the El enent structure.

Parent class

Description

Attributes

* The name of the t abl e in which the index is found

None.

Li st

The El enent structure models an element of a list; it is used to
store an object in a Li st populated by the Di cti onary methods
listCbjects(),listlndexes(),andlistEvents().

An El enent has the attributes shown in the following table:

Table 2.13 Name, type, initial value, and description of Element

structure attributes

Attribute Type Initial Value Description
id unsi gned |0 The object's ID
i nt

=

type oj ect ::

Ypeect : : TypeUndet

Theedbject's type—
see Object::Type for
possible values

n

state |Cbject::

Chf ect : : St at eUnd

5T henelject's state—
see Object::State for
possible values

n

store |bject::

5Cbf ect : : St oreUnd

Hfl oweble object
is stored—see
Object::Store for
possible values

dat abagehar * 0 The database in which
the object is found

schemma |char * 0 The schema in which
the object is found

name char* 0 The object's name

This section provides information about the Event class.

» Event Class Overview

» Event::addEventColumn()
» Event::addEventColumns()
» Event::addTableEvent()

» Event Constructor

» Event::EventDurability

» Event::EventReport

» Event::getDurability()

» Event::getEventColumn()

74

The Event Class

Event:
Event::
Event:
Event:
Event:
Event:
Event:
Event::
Event:
Event:
Event:
Event:
Event:
Event:

Event:

:getName()

getNoOfEventColumns()

:getObjectStatus()
:getObjectVersion()
:getObjectld()
:getReport()
:getTable()

getTableEvent()

:getTableName()
:mergeEvents()
:setDurability()
:setReport()
:setName()
:setTable()

:TableEvent

Event Class Overview

Parent class
Child classes
Description

Methods

NdbDi cti onary

None

This class represents a database event in an NDB Cluster.

The following table lists the public methods of the Event class and
the purpose or use of each method:

Table 2.14 Event class methods and descriptions

Name

Description

Event ()

Class constructor

~Event ()

Destructor

addEvent Col um()

Adds a column on which events should be
detected

addEvent Col ums()

Adds multiple columns on which events
should be detected

addTabl eEvent ()

Adds the type of event that should be
detected

getDurability()

Gets the event's durability

get Event Col umm()

Gets a column for which an event is
defined

get Name()

Gets the event's name

get NoOf Event Col um

NGéts the number of columns for which an
event is defined

get Obj ect 1 d()

Gets the event's object ID

get Obj ect St at us()

Gets the event's object status

75

The Event Class

Name Description

get Obj ect Ver si on()Gets the event's object version

get Report () Gets the event's reporting options
get Tabl e() Gets the Tabl e object on which the event
is defined

get Tabl eEvent () Checks whether an event is to be detected

get Tabl eNane() Gets the name of the table on which the
event is defined

nmer geEvent s() Sets the event's merge flag

setDurability() Sets the event's durability

set Nane() Sets the event's name

set Report () The the event's reporting options

set Tabl e() Sets the Tabl e object on which the event
is defined

Improved Event API (NDB 7.4 and later). NDB 7.4 introduces
an epoch-driven Event API that supercedes the earlier GCI-

based model. The new version of the API also simplifies error
detection and handling. These changes are realized in the NDB
API by implementing a number of new methods for Ndb and
NdbEvent Oper at i on, deprecating several other methods of both
classes, and adding new type values to Tabl eEvent .

Some of the new methods directly replace or stand in for deprecated
methods, but not all of the deprecated methods map to new ones,
some of which are entirely new. Old (deprecated) methods are
shown in the first column of the following table, and new methods in
the second column; old methods corresponding to new methods are
shown in the same row.

Table 2.15 Deprecated and new Event APl methods in the NDB
API, NDB 7.4

Old Method New Method
NdbEvent OQper at i on]NdjeE\Evein©demet(i)on: : get Event Type2
NdbEvent Oper at i on{NdfeE\@ht(Pper at i on: : get Epoch

NdbEvent Oper at i on]Ndfet Lge teldit @ g) QueuedEpoch()

NdbEvent Oper at i on]Nosé&meser un()
NdbEvent Oper ati on: : get Event Type2()

NdbEvent Qper at i on]Noas;Riseor ()
NdbEvent Qper ati on: : get Event Type2

NdbEvent Oper at i on{Nohear Err or ()

None NdbEvent Oper ati on: : i sEnpt yEpoch(
None NdbEvent Oper ati on: : i sError Epoch(
Ndb: : pol | Event s() |Ndb: : pol | Event s2()

Ndb: : next Event () [Ndb:: next Event 2()

Ndb: : get Lat est GCI (Ndb: : get Hi ghest QueuedEpoch()

Ndb: : get GCl Event Opsdlat i geisiigxt Event Opl nEpoch?2()
Ndb: : i sConsi st ent (None

~—

~—

76

The Event Class

Types

Event::addEventColumn()

Description

Old Method New Method
Ndb: : i sConsi st ent (Jbfe

Error handling using the new API is accomplished by checking

the value returned from get Event Type2(), and is no longer
handled using the methods hasError () andcl earError (),
which are now deprecated and subject to removal in a future release
of NDB Cluster. In support of this change, the range of possible
Tabl eEvent types has been expanded by those listed here:

e TE_EMPTY: Empty epoch
e TE_| NCONSI STENT: Inconsistent epoch; missing data or overflow

« TE_OUT_OF_ MEMORY: Inconsistent data; event buffer out of
memory or overflow

The result of these changes is that, in NDB 7.4 and later, you can
check for errors while checking a table event's type, as shown here:

NdbDi cti onary: : Event: : Tabl eEvent* error_type = 0;
NdbEvent Oper ati on* pOp = next Event 2();

i f (pOp->i sErrorEpoch(error_type)

switch (error_type)
{
case TE_| NCONSI STENT :
/1 Handl e error/inconsistent epoch...
br eak;

case TE OQUT_OF_ MEMORY :
/! Handle error/inconsistent data...
br eak;

/1

}
}

For more information, see the detailed descriptions for the Ndb and
NdbEvent Oper at i on methods shown in the table previously, as
well as Event::TableEvent.

These are the public types of the Event class:

Table 2.16 Event class types and descriptions

Name Description

Tabl eEvent () Represents the type of a table event

Event Dur abi | i t y() |Specifies an event's scope, accessibility,
and lifetime

Event Report () Specifies the reporting option for a table
event

This method is used to add a column on which events should be
detected. The column may be indicated either by its ID or its name.

You must invoke Di cti onary: : creat eEvent () before any
errors will be detected. See Dictionary::createEvent().

77

The Event Class

Signatures

Parameters

Return value

Event::addEventColumns()

Description

Signature

Parameters

Return value

Event::addTableEvent()
Description

Signature

If you know several columns by name, you can enable event
detection on all of them at one time by using addEvent Col unms() .
See Event::addEventColumns().

This method can be invoked in either of the following ways:
« ldentifying the event using its column ID:

voi d addEvent Col umm

(

unsigned attrld

)
« |dentifying the column by name:

voi d addEvent Col umm

(

const char* col utmNane

)

This method takes a single argument, which may be either one of
the following:

e The column ID (at t r | d), which should be an integer greater
than or equal to 0, and less than the value returned by
get NoOf Event Col utms() .

« The column's nane (as a constant character pointer).

None.

This method is used to enable event detection on several columns
at the same time. You must use the names of the columns.

As with addEvent Col umm() , you must invoke
Dictionary::createEvent () before any errors will be
detected. See Dictionary::createEvent().

voi d addEvent Col umms

i nt n,
const char** col unmNanes

)
This method requires the two arguments listed here:
e The number of columns n (an integer).

¢ The names of the columns col unmNanes—this must be passed
as a pointer to a character pointer.

None.

This method is used to add types of events that should be detected.

voi d addTabl eEvent
(

const Tabl eEvent te

)

78

The Event Class

Parameters

Return value

Event Constructor

Description

Signatures

Parameters

Return value

This method requires a Tabl eEvent value.

None.

The Event constructor creates a new instance with a given name,
and optionally associated with a table.

You should keep in mind that the NDB API does not track allocated
event objects, which means that the user must explicitly delete the
Event thus created after it is no longer in use.

It is possible to invoke this method in either of two ways, the first of
these being by name only, as shown here:

Event

(

const char* nane

)

Alternatively, you can use the event name and an associated table,
like this:

Event

(

const char* nane,
const NdbDi ctionary:: Tabl e& tabl e
)

At a minimum, a name (as a constant character pointer) for the
event is required. Optionally, an event may also be associated with
a table; this argument, when present, is a reference to a Tabl e
object (see Section 2.3.27, “The Table Class”).

A new instance of Event .

Destructor. A destructor for this class is supplied as a virtual method which takes no arguments and

whose return type is voi d.

Event::EventDurability

This section provides information about Event Dur abi | i t y, a type defined by the Event class.

Description

Enumeration values

The values of this type are used to describe an event's lifetime or
persistence as well as its scope.

Possible values are shown, along with descriptions, in the following

table:

Table 2.17 Event::EventDurability data type values and
descriptions

Name Description

ED_UNDEFI NED The event is undefined or of an
unsupported type.

ED SESSI ON This event persists only for the duration of
the current session, and is available only
to the current application. It is deleted after
the application disconnects or following a
cluster restart.

79

The Event Class

Name Description

Important

A The value

ED SESSI ONis
reserved for future
use and is not

yet supported in
any NDB Cluster
release.

ED TEMPORARY Any application may use the event, but it is
deleted following a cluster restart.

Important

A The value

ED TEMPORARY

is reserved for
future use and is
not yet supported
in any NDB Cluster
release.

ED PERMANENT Any application may use the event, and it
persists until deleted by an application—
even following a cluster. restart

Important

A The value

ED PERMANENT

is reserved for
future use and is
not yet supported
in any NDB Cluster
release.

Event::EventReport

This section provides information about Event Repor t, a type defined by the Event class.

Description The values of this type are used to specify reporting options for table
events.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.18 Event::EventReport type values and descriptions

Name Description
ER _UPDATED Reporting of update events
ER ALL Reporting of all events, except for those

not resulting in any updates to the inline
parts of blob columns

ER_SUBSCRI BE Reporting of subscription events

ER _DDL Reporting of DDL events (see
Event::setReport(), for more information)

80

The Event Class

Event::getDurability()

Description

Signature

Parameters

Return value
Event::getEventColumn()

Description

Signature

Parameters

Return value
Event::getName()
Description

Signature

Parameters

Return value
Event::getNoOfEventColumns()

Description

Signature

Parameters

Return value

Event::getObjectStatus()
Description

Signature

This method gets the event's lifetime and scope (that is, its
Event Dur abi l i ty).

Event Durabi l ity getDurability

(
voi d
) const

None.

An Event Dur abi | i ty value.

This method is used to obtain a specific column from among those
on which an event is defined.

const Col utm* get Event Col utm

(
unsi gned no
) const

The number (no) of the column, as obtained using
get NoOf Col ums() (see Event::getNoOfEventColumns()).

A pointer to the Col urm corresponding to no.

This method obtains the name of the event.

const char* get Nane

(
voi d
) const

None.

The name of the event, as a character pointer.

This method obtains the number of columns on which an event is
defined.

i nt get NoOf Event Col umms
(

voi d
) const

None.

The number of columns (as an integer), or - 1 in the case of an
error.

This method gets the object status of the event.

virtual Qbject::Status get Qbject Status
(

voi d

81

The Event Class

Parameters

Return value

Event::getObjectVersion()

Description

Signature

Parameters

Return value

Event::getObjectld()

Description

Signature

Parameters

Return value
Event::getReport()

Description

Signature

Parameters

Return value

Event::getTable()

Description

Signature

Parameters

Return value

) const
None.

The object status of the event. For possible values, see
Object::Status.

This method gets the event's object version (see NDB Schema
Object Versions).

virtual int getCbjectVersion

(
voi d
) const

None.

The object version of the event, as an integer.

This method retrieves an event's object ID.

virtual int getCbjectld
(

voi d
) const

None.

The object ID of the event, as an integer.

This method is used to obtain the reporting option in force for this
event.

Event Report get Report
(

voi d
) const

None.

One of the reporting options specified in Event::EventReport.

This method is used to find the table with which an event is
associated. It returns a reference to the corresponding Tabl e
object. You may also obtain the name of the table directly using
get Tabl eNane() .

const NdbDi ctionary:: Tabl e* get Tabl e
(

voi d
) const

None.

The table with which the event is associated—if there is one—as
a pointer to a Tabl e object; otherwise, this method returns NULL.
(See Section 2.3.27, “The Table Class”.)

82

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Event Class

Event::getTableEvent()

Description

Signature

Parameters

Return value
Event:.:getTableName()

Description

Signature

Parameters

Return value

Event::mergeEvents()

Description

Signature

Parameters
Return value
Event::setDurability()

Description

This method is used to check whether a given table event will be
detected.

bool get Tabl eEvent
(

const Tabl eEvent te
) const

This method takes a single parameter, the table event's type—that
is, a Tabl eEvent value.

This method returns t r ue if events of Tabl eEvent type t e will be
detected. Otherwise, the return value is f al se.

This method obtains the name of the table with which an event
is associated, and can serve as a convenient alternative to
get Tabl e() . (See Event::getTable().)

const char* get Tabl eNane

(
voi d
) const

None.

The name of the table associated with this event, as a character
pointer.

This method is used to set the merge events flag, which is f al se by
default. Setting it to t r ue implies that events are merged as follows:

« For a given NdbEvent Qper at i on associated with this
event, events on the same primary key within the same global
checkpoint index (GCI) are merged into a single event.

< A blob table event is created for each blob attribute, and blob
events are handled as part of main table events.

« Blob post/pre data from blob part events can be read via
NdbBI ob methods as a single value.

This flag is not inherited by NdbEvent Oper at i on, and must be
set on NdbEvent Oper at i on explicitly.

voi d mergeEvents

(
bool flag

)
A Boolean f | ag value.

None.

This method sets an event's durability—that is, its lifetime and
scope.

83

The Event Class

Signature

Parameters

Return value

Event::setReport()

Description

Reporting of DDL events

Signature

Parameters

Return value
Event::setName()

Description

Signature

Parameters

Return value

Event::setTable()

Description

Signature

voi d setDurability(EventDurability ed)

This method requires a single Event Dur abi | i ty value as a
parameter.

None.

This method is used to set a reporting option for an event. Possible
option values may be found in Event::EventReport.

You must call set Report () using the Event Report value
ER DDL (added in the same NDB Cluster versions).

For example, to enable DDL event reporting on an Event object
named nyEvent , you must invoke this method as shown here:

nyEvent . set Report (NdbDi ctionary:: Event:: ER DDL);

voi d set Report

(
Event Report er

)
An Event Report option value.

None.

This method is used to set the name of an event. The nhame must
be unique among all events visible from the current application (see
Event::getDurability()).

You can also set the event's name when first creating it. See Event
Constructor.

voi d set Nane

(

const char* nane

)
The nane to be given to the event (as a constant character pointer).

None.

This method defines a table on which events are to be detected.

By default, event detection takes place on all columns in the table.
Use addEvent Col unm() to override this behavior. For details, see
Event::addEventColumn().

voi d set Tabl e

(
const NdbDi ctionary:: Tabl e& tabl e

)

You can also use a pointer with this method, as shown here:

voi d set Tabl e

(
const NdbDi ctionary:: Tabl e*; table

84

The ForeignKey Class

Parameters

Return value

Event::TableEvent

)

When so used, this version of set Tabl e() returns -1 if the table
pointer is NULL.

This method requires a single parameter, a reference or a pointer to
the table (see Section 2.3.27, “The Table Class”) on which events
are to be detected.

- 1 if a null table pointer is used, otherwise null.

This section describes Tabl eEvent , a type defined by the Event class.

Description

Enumeration values

2.3.6 The ForeignKey Class

Tabl eEvent is used to classify the types of events that may be
associated with tables in the NDB API.

Possible values are shown, along with descriptions, in the following
table:

Table 2.19 Event::TableEvent type values and descriptions

Name Description

TE_| NSERT Insert event on a table

TE _DELETE Delete event on a table

TE_UPDATE Update event on a table

TE_DROP Occurs when a table is dropped

TE_ALTER Occurs when a table definition is changed

TE_CREATE Occurs when a table is created

TE_GCP_COWVPLETE |Occurs on the completion of a global
checkpoint

TE_CLUSTER_FAI LUREOccurs on Cluster failures

TE_STOP Occurs when an event operation is stopped

TE_NODE_FAI LURE |Occurs when a Cluster node fails

TE_SUBSCRI BE Occurs when a cluster node subscribes to
an event

TE_UNSUBSCRI BE Occurs when a cluster node unsubscribes
from an event

TE_EMPTY Empty epoch received from data nodes

TE_| NCONSI STENT |Missing data or buffer overflow at data
node

TE_OUT_OF_MEMORY |Overflow in event buffer

TE_ALL Occurs when any event occurs on a table
(not relevant when a specific event is
received)

TE_EMPTY, TE_| NCONSI STENT, and TE_OUT_OF MEMORY were
added in NDB 7.4.

This section provides information about the For ei gnKey class, which models a foreign key on an NDB

table.

85

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html

The ForeignKey Class

ForeignKey Class Overview

ForeignKey()

ForeignKey

ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::
ForeignKey::

:FkAction

getName()
getParentTable()
getChildTable()
getParentColumnCount()
getChildColumnCount()
getParentindex()
getChildIindex()
getParentColumnNo()
getChildColumnNo()
getOnUpdateAction()
getOnDeleteAction()
setName()

setParent()

setChild()
setOnUpdateAction()
setOnDeleteAction()
getObjectStatus()
getObjectld()

getObjectVersion()

ForeignKey Class Overview

Parent class

Child classes

Methods

hj ect
None.

The following table lists

the public methods of the For ei gnKey

class and the purpose or use of each method:

Table 2.20 ForeignKey class methods and descriptions

Name

Description

For ei gnKey()

Class constructor

~For ei gnKey/()

Class destructor

get Name()

Get the foreign key's name

get Par ent Tabl e()

Get the foreign key's parent table

get Chi | dTabl e()

Get the foreign key's child table

get Par ent Col utmCo

U@et the number of columns in the parent
table

86

The ForeignKey Class

Types
ForeignKey()

Description

Signature

Parameters

Return value

ForeignKey::FkAction

Name

Description

get Chi | dCol utmCou

nG€eh the number of columns in the child
table

get Par ent Col unmNo

Get the column number in the parent table

get Chi | dCol ummNo(

Get the column number in the child table

get Par ent | ndex()

Returns 0 if key points to parent table's
primary key

get Chi | dl ndex()

Returns 0 if child references resolved using
child table's primary key

get OnUpdat eActi on

Get the foreign's key update action
(FkAct i on)

get OnDel et eActi on

Get the foreign key's delete action
(FkAct i on)

set Name() Set the foreign key's name
set Parent () Set the foreign key's parent table
set Chi | d() Set a foreign key's child table

set OnUpdat eAct i on

Jet the foreign's key update action
(FkAct i on)

set OnDel et eActi on

et the foreign key's delete action
(FkAction)

get Obj ect St at us()

Get the object status

get Obj ect1d()

Get the object ID

get Obj ect Ver si on(

Get the object version

The For ei gnKey class has one public type, the FkAct i on type.

Create either an entirely new foreign key reference, or a copy of an

existing one.

New instance:

For ei gnKey
(

)

voi d

Copy constructor:

For ei gnKey
(

const Forei gnKey&

)

For a new instance: None.

For the copy constructor: A reference to an existing instance of

For ei gnKey.

A new instance of For ei gnKey.

This section provides information about FkAct i on, which is an enumeration modelling a reference
action for a foreign key when an update or delete operation is performed on the parent table.

87

The ForeignKey Class

Enumeration values

Possible values are shown, along with the corresponding reference
action, in the following table:

Table 2.21 ForeignKey::FkAction data type values and
descriptions

Name Description

NoAct i on NO ACTI ON: Deferred check.

Restri ct RESTRI CT: Reject operation on parent
table.

Cascade CASCADE: Perform operation on row from

parent table; perform same operation on
matching rows in child table.

Set Nul | SET NULL: Perform operation on row from
parent table; set any matching foreign key
columns in child table to NULL.

Set Def aul t SET DEFAULT: Currently not supported in

NDB Cluster.

See also FOREIGN KEY Constraints, in the MySQL Manual.

ForeignKey::getName()

Description

Signature

Parameters

Return value

ForeignKey::getParentTable()

Description

Signature

Parameters

Return value

ForeignKey::getChildTable()

Description

Signature

Parameters

Return value

Retrieve the name of the For ei gnKey instance for which the
method is invoked.

const char* get Nanme

(
voi d
) const

None.

The name of the For ei gnKey.

Retrieve the parent table of the For ei gnKey instance for which the
method is invoked.

const char* get Parent Tabl e

(
voi d
) const

None.

A pointer to the parent table of the For ei gnKey.

Retrieve the child table of the For ei gnKey instance for which the
method is invoked.

const char* get Chil dTabl e

(
voi d
) const

None.

A pointer to the child table of this For ei gnKey.

88

https://dev.mysql.com/doc/refman/8.3/en/create-table-foreign-keys.html

The ForeignKey Class

ForeignKey::getParentColumnCount()

Description Retrieve the number of columns in the parent table of this
For ei gnKey.

Signature unsi gned get Par ent Col unnCount

(

voi d

) const
Parameters None.
Return value The number of columns in the parent table.

ForeignKey::getChildColumnCount()

Description Retrieve the number of columns in the child table of this
For ei gnKey.

Signature unsi gned get Chi | dCol urmCount

(

voi d

) const
Parameters None.
Return value The number of columns in the child table.

ForeignKey::getParentindex()

Description Returns 0 if the child table refers to the parent table's primary key.
Signature const char* get Parent | ndex
(voi d
) const
Parameters None.
Return value See description.

ForeignKey::getChildindex()

Description Return 0O if child references are resolved using the child table's
primary key.

Signature const char* get Chi | dl ndex

(

voi d

) const
Parameters None.
Return value See description.

ForeignKey::getParentColumnNo()

Description This method gets the sequence number of a foreign key column
in the parent table for a given index. See the documentation
for Col um: : get Col utmNo() , for information about handling
columns in the NDB API.

Signature i nt get Par ent Col urmNo
(

89

The ForeignKey Class

unsi gned no

) const
Parameters None.
Return value The sequence number of the column.
ForeignKey::getChildColumnNo()
Description This method gets the sequence number of a foreign key column

in the child table for a given index. See the documentation for
Col um: : get Col unmNo() for information about handling columns

in the NDB API.

Signature i nt get Chi | dCol unmNo

(unsi gned no

) const
Parameters None.
Return value The sequence number of the column.

ForeignKey::getOnUpdateAction()

Description Get the foreign key's ON UPDATE action. This is a

For ei gnKey: : FkAct i on and has one of the values NoAct i on,
Restrict, Cascade, or Set Nul | .

Signature FkAction get OnUpdat eActi on
(voi d
) const
Parameters None.
Return value The sequence number of the column.

ForeignKey::getOnDeleteAction()

Description Get the foreign key's ON DELETE action. This is a
For ei gnKey: : FkAct i on and has one of the values NoAct i on,
Restri ct, Cascade, or Set Nul | .

Signature FkAction get OnDel et eActi on
(voi d
) const
Parameters None.
Return value The sequence number of the column.

ForeignKey::setName()

Description Set the name of the For ei gnKey instance for which the method is
invoked.
Signature voi d set Nane

(

const char*

)

Parameters The name of the For ei gnKey.

90

The ForeignKey Class

Return value
ForeignKey::setParent()

Description

Signature

Parameters

Return value

ForeignKey::setChild()

Description

Signature

Parameters

Return value
ForeignKey::setOnUpdateAction()
Description

Signature

Parameters
Return value
ForeignKey::setOnDeleteAction()

Description

Signature

Parameters

Return value

None.

Set the parent table of a For ei gnKey, given a reference to the
table, and optionally, an index to use as the foreign key.

voi d set Par ent

(

const Tabl e&,
const | ndex* index = O,
const Colum* cols[] =0

)

A reference to a Tabl e (required). Optionally, an index using the
indicated column or columns.

None.

Set the child table of a For ei gnKey, given a reference to the table,
and optionally, an index to use as the foreign key.

void setChild
(

const Tabl e&,
const | ndex* index = 0,
const Col um* cols[] =0

)

A reference to a Tabl e (required). Optionally, an index using the
indicated column or columns.

None.

Set the foreign key's ON UPDATE action.

voi d set OnUpdat eActi on

FkActi on
)

The ON UPDATE action to be performed. This must be a
For ei gnKey: : FkAct i on having one of the values NoAct i on,
Restrict, Cascade, or Set Nul | .

None

Set the foreign key's ON DELETE action.

voi d set OnUpdat eActi on

(
FkActi on

)

The ON UPDATE action to be performed, of type
For ei gnKey: : FkAct i on. Must be one of the values NoAct i on,
Restrict, Cascade, or Set Nul | .

None

91

The HashMap Class

ForeignKey::getObjectStatus()

Description

Signature

Parameters

Return value
ForeignKey::getObjectld()
Description

Signature

Parameters

Return value

ForeignKey::getObjectVersion()

Description

Signature

Parameters

Return value

2.3.7 The HashMap Class

Get the object status (see Object::Status) for this For ei gnKey
object.

virtual Qbject::Status get Qbj ect Status
(

voi d
) const

None.

The For ei gnKey object's status, as a value of type
hj ect : : St at us. See this type's documentation for possible
values and their interpretation.

Get the object ID (see Object::getObjectld()) for this For ei gnKey
object.

virtual int getObjectld
(

voi d
) const

None.

The For ei gnKey object's ID, as returned by
Obj ect::getObjectld().

Get the object version (see Object::getObjectVersion()) for this
For ei gnKey object.

virtual int getQbjectVersion

(
voi d
) const

None.

The For ei gnKey object's version number (an integer), as returned
by Qbj ect : : get Obj ect Versi on().

This section provides information about the HashMap class, which models a hash map in an NDB

Cluster.

» HashMap Class Overview
» HashMap Constructor

» HashMap::setName()

» HashMap::getName()

* HashMap::setMap()

» HashMap::getMapLen()

» HashMap::getMapValues()

92

The HashMap Class

» HashMap::equal()

HashMap::getObjectStatus()

HashMap::getObjectVersion()

» HashMap::getObijectld()

HashMap Class Overview

Parent class hj ect
Child classes None.
Methods The following table lists the public methods of the HashMap class

and the purpose or use of each method:

Table 2.22 HashMap class methods and descriptions

Name Description
HashMap() Class constructor
~HashMap() Class destructor
set Name() Set a name for the hashmap
get Name() Gets a hashmap's hame
set Map() Sets a hashmap's length and values
get MapLen() Gets a hashmap's length
get MapVal ues() Gets the values contained in the hashmap
equal () Compares this hashmap's values with
those of another hashmap

get Obj ect St at us() |Gets the hashmap's object status
get Obj ect Ver si on()Gets the hashmap's schema object version
get Obj ect1d() Gets the hashmap's ID

Types The HashMap class defines no public types.

HashMap Constructor
Description The HashMap class constructor normally requires no arguments. A

copy constructor is also available.
See also Dictionary::createHashMap(), for more information.

Signature Base constructor:

HashMap HashMap
(
voi d

)

Copy constructor:
HashiMap HashMap

(
const HashMap& hashmap

)

Destructor:

virtual ~HashMap

93

The HashMap Class

Parameters

Return value

HashMap::setName()

Description

Signature

Parameters

Return value

HashMap::getName()

Description

Signature

Parameters

Return value

HashMap::setMap()

(
voi d

)

None, or the address of an existing HashMap object to be copied.

A new instance of HashMap, possibly a copy of an existing one.

Sets the name of the hash map.

voi d set Nanme

(

const char* nane

)
The name to be assigned to the hashmap.

None.

Gets the name of the hash map.

const char* get Nane

(
voi d
) const

None.

The name of the hash map.

Description Assigns a set of values to a has map.
Signature voi d set Map
(const Ui nt32* val ues,
Uint32 |l en
)
Parameters A pointer to a set of val ues of length | en.
Return value None.
HashMap::getMapLen()
Description Gets the hash map's length; that is, the number of values which it

contains. You can obtain the values using get MapVal ues() .

Signature Ui nt 32 get MapLen
(voi d
) const
Parameters None.
Return value The length of the hash map.

HashMap::getMapValues()

Description Gets the values listed in the hash map.

94

The Index Class

Signature

Parameters
Return value
HashMap::equal()

Description

Signature

Parameters
Return value
HashMap::getObjectStatus()

Description

Signature

Parameters

Return value
HashMap::getObjectVersion()

Description

Signature

Parameters

Return value
HashMap::getObjectid()

Description

Signature

Parameters

Return value

2.3.8 The Index Class

i nt get MapVal ues

(
U nt 32* dst,

Uint32 |l en
) const

A pointer to a set of values (dst) and the number of values (I en).

Returns 0 on success; on failure, returns -1 and sets error.

Compares (only) the values of this HashMap with those of another
one.

bool equal

(
const HashMap& hashmap
) const

A reference to the hash map to be compared with this one.

None.

This method retrieves the status of the HashMap for which it is
invoked. The return value is of type Cbj ect : : St at us.

virtual Status get Qbject Status
(

voi d
) const

None.

Returns the current St at us of the HashMap.

The method gets the hash map's schema object version.

virtual int getQbjectVersion

(
voi d
) const

None.

The object's version number, an integer.

This method retrieves the hash map's ID.

virtual int getCbjectld

(
voi d
) const
None.

The object ID, an integer.

95

The Index Class

This section provides information about the | ndex class.
* Index Class Overview

* Index Class Constructor

* Index::addColumn()

* Index::addColumnName()
* Index::addColumnNames()
 Index::getColumn()
 Index::getLogging()

* Index::getName()
 Index::getNoOfColumns()
 Index::getObjectStatus()

* Index::getObjectVersion()
* Index::getObjectld()

» Index::getTable()

* Index::getType()

» Index::setLogging

* Index::setName()

» Index::setTable()

* Index::setType()
e Index::Type
Index Class Overview
Parent class
Child classes

Description

Methods

NdbDi cti onary

None

This class represents an index on an NDB Cl ust er table column.
It is a descendant of the NdbDi ct i onary class, using the Cbj ect

class.

If you create or change indexes using the NDB API, these
modifications cannot be seen by MySQL. The only exception to this
is using | ndex: : set Nane() to rename the index.

The following table lists the public methods of | ndex and the
purpose or use of each method:

Table 2.23 Index class methods and descriptions

Name Description

I ndex() Class constructor

~I ndex() Destructor

addCol umm() Adds a Col umm object to the index

96

The Index Class

Types

Index Class Constructor

Description

Signature

Parameters

Return value

Destructor

Index::addColumn()

Description

Signature

Parameters

Name

Description

addCol ummNane()

Adds a column by name to the index

addCol ummNanes()

Adds multiple columns by name to the
index

get Col umm()

Gets a column making up (part of) the
index

get Loggi ng()

Checks whether the index is logged to disk

get Nane()

Gets the name of the index

get NoOf Col utms()

Gets the number of columns belonging to
the index

get Obj ect St at us()

Gets the index object status

get Obj ect Ver si on(

Gets the index object status

get Obj ect 1 d()

Gets the index object ID

get Tabl e() Gets the name of the table being indexed
get Type() Gets the index type

set Loggi ng() Enable/disable logging of the index to disk
set Nane() Sets the name of the index

set Tabl e() Sets the name of the table to be indexed
set Type() Set the index type

I ndex defines one public type, the Type type.

This is used to create an new instance of | ndex.

Indexes created using the NDB API cannot be seen by the MySQL

Server.

I ndex

(

const char* nane = ""

)

The name of the new index. It is possible to create an index without
a name, and then assign a name to it later using set Nane() . See
Index::setName().

A new instance of | ndex.

The destructor (~1 ndex()) is supplied as a virtual method.

This method may be used to add a column to an index.

The order of the columns matches the order in which they are added
to the index. However, this matters only with ordered indexes.

voi d addCol um
(

const Col umé& c

)

A reference c to the column which is to be added to the index.

97

The Index Class

Return value None.
Index::addColumnName()

Description This method works in the same way as addCol urm() , except
that it takes the name of the column as a parameter. See
Index::getColumn().
Signature voi d addCol unmName
(
const char* nane

)

Parameters The nane of the column to be added to the index, as a constant
character pointer.

Return value None.
Index::addColumnNames|()

Description This method is used to add several column names to an index
definition at one time.

As with the addCol utm () and addCol urmNanme() methods, the
indexes are numbered in the order in which they were added. This
normally matters only for ordered indexes.

Signature voi d addCol ummNanes
(

unsi gned noCf Nanes,
const char** nanes

)
Parameters This method takes two parameters, listed here:

¢ The number of columns and names noOf Nanes to be added to
the index.

« The nanes to be added (as a pointer to a pointer).

Return value None.

Index::getColumn()

Description This method retrieves the column at the specified position within the
index.
Signature const Col urm* get Col umm
(
unsi gned no
) const
Parameters The ordinal position number no of the column, as an unsigned

integer. Use the get NoOf Col urms() method to determine how
many columns make up the index—see Index::getNoOfColumns(),
for details.

Return value The column having position no in the index, as a pointer to an
instance of Col urm. See Section 2.3.1, “The Column Class”.

Index::getLogging()

Description Use this method to determine whether logging to disk has been
enabled for the index.

98

The Index Class

Signature

Parameters

Return value

Index::getName()
Description

Signature

Parameters

Return value
Index::getNoOfColumns()

Description

Signature

Parameters

Return value

Index::getObjectStatus()
Description

Signature

Parameters
Return value
Index::getObjectVersion()

Description

Indexes which are not logged are rebuilt when the cluster is started
or restarted.

Ordered indexes currently do not support logging to disk; they are
rebuilt each time the cluster is started. (This includes restarts.)

bool getLoggi ng
(voi d
) const
None.
A Boolean value:
e true: The index is being logged to disk.

- fal se: The index is not being logged.

This method is used to obtain the name of an index.

const char* get Nane

(
voi d
) const
None.

The name of the index, as a constant character pointer.

This method is used to obtain the number of columns making up the
index.

unsi gned get NoOf Col umms
(

voi d
) const
None.

An unsigned integer representing the number of columns in the
index.

This method gets the object status of the index.

virtual Object::Status get Cbject Status
(

voi d
) const

None.

A St at us value; see Object::Status, for more information.

This method gets the object version of the index (see NDB Schema
Object Versions).

99

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The Index Class

Signature virtual int getObjectVersion
(voi d
) const
Parameters None.
Return value The object version for the index, as an integer.

Index::getObjectld()

Description This method is used to obtain the object ID of the index.
Signature virtual int getObjectld
(voi d
) const
Parameters None.
Return value The object ID, as an integer.

Index::getTable()

Description This method can be used to obtain the name of the table to which
the index belongs.

Signature const char* get Tabl e
(voi d
) const
Parameters None.
Return value The name of the table, as a constant character pointer.

Index::getType()

Description This method can be used to find the type of index.
Signature Type get Type
(voi d
) const
Parameters None.
Return value An index type. See Index::Type, for possible values.

Index::setLogging

Description This method is used to enable or disable logging of the index to
disk.
Signature voi d set Loggi ng

(

bool enabl e

)

Parameters set Loggi ng() takes a single Boolean parameter enabl e. If
enabl e ist r ue, then logging is enabled for the index; if false, then
logging of this index is disabled.

Return value None.

100

The Index Class

Index::setName()

Description

Signature

Parameters

Return value

Index::setTable()

Description

Signature

Parameters

Return value

Index::setType()

Description

Signature

Parameters

Return value

Index::Type

This method sets the name of the index.

This is the only | ndex: : set * () method whose result is visible to a
MySQL Server.

voi d set Nane

(
)

const char* name

The desired nane for the index, as a constant character pointer.

None.

This method sets the table that is to be indexed. The table is
referenced by name.

voi d set Tabl e

(
)

const char* nane
The nane of the table to be indexed, as a constant character
pointer.

None.

This method is used to set the index type.
voi d set Type

(
Type type

The t ype of index. For possible values, see Index::Type.

None.

This section provides information about the | ndex type.

Description

Enumeration values

This is an enumerated type which describes the sort of column
index represented by a given instance of | ndex.

Do not confuse this enumerated type with Cbj ect : : Type, or with
Col um: : Type.

Possible values are shown, along with descriptions, in the following
table:

Table 2.24 Index:: Type data type values and descriptions

Name Description

Undefi ned Undefined object type (initial/default value)

Uni queHashl ndex |Unique unordered hash index (only index
type currently supported)

101

The LogfileGroup Class

Name

Description

Or der edl ndex

Nonunique, ordered index

2.3.9 The LogfileGroup Class

This section provides information about the Logf i | eGr oup class, which models an NDB Cluster Disk
Data log file group.

LogFileGroup Class Overview

LogfileGroup Constructor

LogfileGroup:
LogfileGroup:
LogfileGroup:
LogfileGroup:
LogfileGroup::
LogfileGroup:
LogfileGroup:
LogfileGroup:
LogfileGroup:

LogfileGroup:

:getAutoGrowSpecification()
:getName()
:getObijectld()

:getObjectStatus()

getObjectVersion()

:getUndoBufferSize()
:getUndoFreeWords()
:setAutoGrowSpecification()
:setName()

:setUndoBufferSize()

LogFileGroup Class Overview

Parent class

Child classes

Description

Methods

NdbDi cti onary

None

This class represents an NDB Cluster Disk Data log file group,
which is used for storing Disk Data undo files. For general
information about log file groups and undo files, see NDB Cluster

Disk Data Tables, in the

MySQL Manual.

Only unindexed column data can be stored on disk. Indexes and
indexes columns are always stored in memory.

The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.25 LogfileGroup class methods and descriptions

Name

Description

Logfil eG oup()

Class constructor

~Logfil eGroup()

Virtual destructor

get Aut oG owSpeci f i

Geats the(log file group's
Aut oG owSpeci f i cati on values

get Name()

Retrieves the log file group's name

get Obj ect 1 d()

Get the object ID of the log file group

get Obj ect St at us()

Gets the log file group's object status value

102

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-disk-data.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-disk-data.html

The LogfileGroup Class

Types

LogfileGroup Constructor

Description

Signatures

Parameters

Return value

Destructor

Name Description

get Obj ect Ver si on()Retrieves the log file group’s object version

get UndoBuf f er Si ze(Gets the size of the log file group's undo
buffer

get UndoFr eeVr ds()Retrieves the amount of free space in the
undo buffer

set Aut oG owSpeci f | SetisiAn(9G owSpeci fi cat i on values
for the log file group

set Nane() Sets the name of the log file group

set UndoBuf f er Si ze($ets the size of the log file group's undo
buffer.

While the Logf i | eGr oup class does not itself define

any public types, two of its methods make use of the

Aut 0Gr owSpeci fi cati on data structure as a parameter or return
value.

The Logfi | eG oup class has two public constructors, one of which
takes no arguments and creates a completely new instance. The
other is a copy constructor.

The Di cti onary class also supplies methods for creating and
destroying Logf i | eGr oup objects. See Section 2.3.3, “The
Dictionary Class”.

New instance:

Logfi |l eG oup
(

)

voi d

Copy constructor:

Logfi | eG oup
(

)

const Logfil eG oup& | ogfil eG oup

When creating a new instance, the constructor takes no parameters.
When copying an existing instance, the constructor is passed a
reference to the Logf i | eG oup instance to be copied.

A Logfi | eG oup object.

virtual ~Logfil eG oup

(
)

voi d

LogfileGroup::getAutoGrowSpecification()

Description

Signature

This method retrieves the Aut oG owSpeci fi cat i on associated
with the log file group.

const Aut oG owSpeci ficati on& get Aut oG owSpeci fi cati on
(
voi d
) const

103

The LogfileGroup Class

Parameters

Return value
LogfileGroup::getName()

Description

Signature

Parameters

Return value
LogfileGroup::getObjectid()

Description

Signature

Parameters

Return value
LogfileGroup::getObjectStatus()

Description

Signature

Parameters

Return value
LogfileGroup::getObjectVersion()

Description

Signature

Parameters

Return value

LogfileGroup::getUndoBufferSize()

Description

Signature

None.

An Aut oGr owSpeci fi cati on data structure.

This method gets the name of the log file group.

const char* get Nane

(
voi d
) const

None.

The logfile group's name, a string (as a character pointer).

This method is used to retrieve the object ID of the log file group.

vi rtual

(
voi d
) const

int getvjectld

None.

The log file group's object ID (an integer value).

This method is used to obtain the object status of the
Logfi |l eG oup.

virtual Object::Status get Cbject Status
(

voi d
) const

None.

The logdfile group's St at us—see Object::Status for possible values.

This method gets the log file group's object version (see NDB
Schema Object Versions).

vi rtual

(
voi d
) const

int get Obj ect Version

None.

The object version of the log file group, as an integer.

This method retrieves the size of the log file group's undo buffer.

Ui nt 32 get UndoBuf f er Si ze
(

voi d

104

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html

The List Class

Parameters

Return value

) const
None.

The size of the undo buffer, in bytes.

LogfileGroup::getUndoFreeWords()

Description

Signature

Parameters

Return value

This method retrieves the number of bytes unused in the log file
group's undo buffer.

Ui nt 64 get UndoFr eeWor ds

(
voi d
) const

None.

The number of bytes free, as a 64-bit integer.

LogfileGroup::setAutoGrowSpecification()

Description

Signature

Parameters

Return value
LogfileGroup::setName()
Description

Signature

Parameters

Return value

LogfileGroup::setUndoBufferSize()

Description

Signature

Parameters

Return value

2.3.10 The List Class

This method sets the Aut oG owSpeci fi cat i on data for the log
file group.

voi d set Aut oG owSpeci fi cation

(
)

const Aut oG owSpeci ficati on& aut oG owSpec
The data is passed as a single parameter, an
Aut oGr owSpeci fi cati on data structure.

None.

This method is used to set a name for the log file group.

voi d set Nane

(
)

const char* nane

The nane to be given to the logfile group (character pointer).

None.

This method can be used to set the size of the log file group's undo
buffer.

voi d set UndoBuf ferSi ze

(
)

Ui nt 32 size

The si ze in bytes for the undo buffer (using a 32-bit unsigned
integer value).

None.

105

The Ndb Class

This section provides information about the Li st class.

Parent class

Child classes

Description

Methods

Attributes

Types

2.3.11 The Ndb Class

Di ctionary
El ement (structure)

The Li st classisaDi cti onary subclass that
is used for representing lists populated by the
methods Di cti onary::|istChjects(),
Dictionary::Ilistlndexes(),and
Dictionary::listEvents().

Beginning with NDB 8.0.29, this class has three methods, listed
here:

» aconstructor (Li st ())

» adestructor (~Li st ())

* acl ear () method

None of the methods just listed take any arguments.

Calling the constructor creates a new Li st whose count and
el enent s attributes are both set equal to 0.

The cl ear () method, introduced in NDB 8.0.29, removes all data
from the list. You can use this to prepare an existing Li st for reuse
with | i st Events(),listlndexes(),orlistObjects().

The destructor (~Li st ()) removes all elements and their
properties. Beginning with NDB 8.0.29, it first invokes cl ear ()
before doing so.

The definition of this class can be found in / st or age/ ndb/
i ncl ude/ ndbapi / NdbDi cti onary. hpp.

A Li st has the following two attributes:

e count, an unsigned integer, which stores the number of elements
in the list.

e el enent s, a pointer to an array of El enent data structures
contained in the list. See Section 2.3.4, “The Element Structure”.

The Li st class also defines the El enent structure.

This section provides information about the Ndb class, which models the NDB kernel; it is the primary
class of the NDB API.

Ndb Class Overview
Ndb Class Constructor
Ndb::closeTransaction()
Ndb::computeHash()

Ndb::createEventOperation()

106

The Ndb Class

Ndb:
Ndb::
Ndb::
Ndb::
Ndb:
Ndb::
Ndb::
Ndb::
Ndb::
Ndb:
Ndb::
Ndb::
Ndb::
Ndb:
Ndb::
Ndb::
Ndb::
Ndb:
Ndb::
Ndb::
Ndb::
Ndb::
Ndb:
Ndb::
Ndb::
Ndb::
Ndb:
Ndb::
Ndb::
Ndb::
Ndb:
Ndb::
Ndb::

:dropEventOperation()

EventBufferMemoryUsage
getDictionary()

getDatabaseName()

:getDatabaseSchemaName()

getGCIEventOperations() (DEPRECATED)
get_eventbuf_max_alloc()
get_eventbuffer_free_percent()

get_event_buffer_memory_usage()

:getHighestQueuedEpoch()

getLatestGCI() (DEPRECATED)
getNdbError()

getNdbErrorDetail()

:getNdbObjectName()

getNextEventOplnEpoch?2()
getNextEventOplnEpoch3()

getReference()

;init()

isConsistent() (DEPRECATED)
isConsistentGCI() (DEPRECATED)
isExpectingHigherQueuedEpochs()

Key_ part_ptr

:nextEvent() (DEPRECATED)

nextEvent2()
PartitionSpec

pollEvents()

:pollEvents2()

setDatabaseName()
setDatabaseSchemaName()

setEventBufferQueueEmptyEpoch()

:set_eventbuf_max_alloc()

set_eventbuffer_free_percent()

setNdbObjectName()

107

The Ndb Class

* Ndb::startTransaction()

Ndb Class Overview
Parent class
Child classes

Description

Methods

None
None

Any nontrivial NDB API

program makes use of at least one instance

of Ndb. By using several Ndb objects, it is possible to implement

a multithreaded application. You should remember that one Ndb
object cannot be shared between threads; however, it is possible
for a single thread to use multiple Ndb objects. A single application
process can support a maximum of 4711 Ndb objects.

The following table lists
purpose or use of each

the public methods of this class and the
method:

Table 2.26 Ndb class methods and descriptions

Name Description

Ndb() Class constructor; represents a connection
to an NDB Cluster.

~Ndb() Class destructor; terminates a Cluster

connection when it is no longer to be used

cl oseTransacti on(

Closes a transaction.

conput eHash()

Computes a distribution hash value.

creat eEvent Oper at | Grgates a subscription to a database

event. (See Section 2.3.16, “The
NdbEventOperation Class”.)

dropEvent Qperati o

nDjops a subscription to a database event.

get Di ctionary()

Gets a dictionary, which is used for working
with database schema information.

get Dat abaseNane()

Gets the name of the current database.

get Dat abaseSchema

NGets(the name of the current database
schema.

get _event buf _max_

aGetscthe current allocated maximum size of
the event buffer.

get _eventbuffer f

Getsthequmncéntage of event buffer
memory that should be available before
buffering resumes, once the limit has been
reached. Added in NDB 7.4.

get _event _buffer _

Rrovidesusan puffer memory usage
information. Added in NDB 7.4.

get GCl Event Qper at i

@Gats(the next event operation from a GCI.
Deprecated in NDB 7.4.

get Hi ghest QueuedE

hGets(the latest epoch in the event queue.
Added in NDB 7.4.

get Lat est GCl ()

Gets the most recent GCI. Deprecated in
NDB 7.4.

get NdbEr ror ()

Retrieves an error. (See Section 2.3.15,
“The NdbError Structure”.)

get NdbEr r or Det ai |

Retrieves extra error details.

108

The Ndb Class

Name

Description

get NdbCbj ect Nanme(

Retrieves the Ndb object name if one was
set.

get Next Event Opl nE

DGetsthe next event operation in this global
checkpoint.

get Next Event Opl nE

DGetsthe next event operation in this
global checkpoint, showing any received
anyvalues. Added in NDB 7.4.18 and 7.5.9.

get Ref erence()

Retrieves a reference or identifier for the
Ndb object instance.

init()

Initializes an Ndb object and makes it ready
for use.

i sConsi stent ()

Whether all received events are consistent.
Deprecated in NDB 7.4.

i sConsi st ent GCl ()

Whether all received events for a
given global checkpoint are consistent.
Deprecated in NDB 7.4.

i sExpecti ngHi gher

(Dkecld&petiies there are new queued
epochs, or there was a cluster failure
event. Added in NDB 7.4.7.

next Event ()

Gets the next event from the queue.
Deprecated in NDB 7.4.

next Event 2()

Gets the next event from the queue. Added
in NDB 7.4.

pol | Event s()

Waits for an event to occur. Deprecated in
NDB 7.4.

pol | Event s2()

Waits for an event to occur. Added in NDB
7.4.

set Dat abaseNane()

Sets the name of the current database.

set Dat abaseSchema

\Bets(the name of the current database
schema.

set Event Buf f er Que

LERalpies Gpeaing)of empty events. Added
in NDB 7.4.11.

set _event buf _max__

bSeétsdahie current allocated maximum size of
the event buffer.

set _eventbuffer f

Setspke pendgntage of event buffer
memory that should be available before
buffering resumes, once the limit has been
reached. Added in NDB 7.4.

set NdbObj ect Nane(

For debugging purposes: sets an arbitrary
name for this Ndb object.

start Transacti on(

Begins a transaction. (See Section 2.3.25,
“The NdbTransaction Class”.)

109

The Ndb Class

Types The Ndb class does not define any public typesbut does define three
data structures, which are listed here:

e Event Buf f er mrenor yUsage
e Key_part_ptr
e« PartitionSpec.

Resource consumption by Ndb objects. An Ndb object consumes memory in proportion to the
size of the largest operation performed over the lifetime of the object. This is particularly noticeable in
cases of large transactions, use of blob columns, or both. This memory is held for the lifetime of the
object, and once used in this way by the Ndb object, the only way to free this memory is to destroy the
object (and then to create a new instance if desired).

Note

@ The Ndb object is multithread safe in that each Ndb object can be handled by
one thread at a time. If an Ndb object is handed over to another thread, then the
application must ensure that a memory barrier is used to ensure that the new
thread sees all updates performed by the previous thread.

Semaphores and mutexes are examples of easy ways to provide memory
barriers without having to bother about the memory barrier concept.

It is also possible to use multiple Ndb objects to perform operations on different clusters in a single
application. See Section 1.5, “Application-level partitioning”, for conditions and restrictions applying to
such usage.

Ndb Class Constructor

Description This creates an instance of Ndb, which represents a connection to
the NDB Cluster. All NDB API applications should begin with the
creation of at least one Ndb object. This requires the creation of at
least one instance of Ndb_cl ust er _connect i on, which serves as
a container for a cluster connection string.

Signature Ndb
(
Ndb_cl ust er _connecti on* ndb_cl ust er _connecti on,
const char* cat al ogNane = ""
const char* schemaNane = "def"
)
Parameters The Ndb class constructor can take up to 3 parameters, of which

only the first is required:

e ndb_cluster _connecti on is aninstance of
Ndb_cl ust er _connect i on, which represents a
cluster connection string. (See Section 2.3.12, “The
Ndb_cluster_connection Class”.)

« cat al ogNane is an optional parameter providing a namespace
for the tables and indexes created in any connection from the Ndb
object.

This is equivalent to what nysql d considers “the database”.
The default value for this parameter is an empty string.

« The optional schenmaNane provides an additional nhamespace for
the tables and indexes created in a given catalog.

110

https://dev.mysql.com/doc/refman/8.3/en/mysqld.html

The Ndb Class

Return value

Destructor

Ndb::closeTransaction()

Description

Signature

Parameters

Return value

Ndb::computeHash()

Description

Signature

Parameters

The default value for this parameter is the string “def”.
An Ndb object.

The destructor for the Ndb class should be called in order to
terminate an instance of Ndb. It requires no arguments, nor any
special handling.

This is one of two NDB API methods provided for closing a
transaction (the other being NdbTr ansacti on: : cl ose()). You
must call one of these two methods to close the transaction once it
has been completed, whether or not the transaction succeeded.

If the transaction has not yet been committed, it is aborted when this
method is called. See Ndb::startTransaction().

voi d cl oseTransacti on

(

NdbTr ansacti on *transaction

)

This method takes a single argument, a pointer to the
NdbTr ansact i on to be closed.

None (voi d).

This method can be used to compute a distribution hash value,
given a table and its keys.

conput eHash() can be used only for tables that use native NDB
partitioning.

static int conputeHash

(
Ui nt 32* hashval ueptr,

const NdbDi ctionary:: Tabl e* table,

const struct Key_part_ptr* keyData,

voi d* xfrmbuf = 0,

Ui nt 32 xfrmbuflen = 0
)

This method takes the following parameters:

 |If the method call is successful, hashval uept r is set to the
computed hash value.

« Apointerto at abl e (see Section 2.3.27, “The Table Class”).

e keyDat a is a null-terminated array of pointers to the key parts
that are part of the table's distribution key. The length of each key
part is read from metadata and checked against the passed value
(see Ndb::Key part_ptr).

o xfrmbuf is a pointer to temporary buffer used to calculate the
hash value.

« xfrnbufl en is the length of this buffer.

111

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster.html

The Ndb Class

Return value

Ndb::createEventOperation()

Description

Signature

Parameters

Return value

Ndb::dropEventOperation()

Description

Signature

Parameters

Return value

Ndb::EventBufferMemoryUsage

If xf r mbuf is NULL (the default), then a call to mal | oc() or
free() is made automatically, as appropriate.

Prior to NDB 7.5.30, 7.6.26, 8.0.33: conput eHash() fails if
xf rmbuf is not NULL and xf r nbuf | en is too small.

NDB 7.5.30 and later, 7.6.26 and later, 8.0.33 and later: If the
buffer passed is not of sufficient size, a temporary buffer is
allocated automatically. (Bug #103814, Bug #32959894)

Note
S When el | oc() provides a buffer to this

method, the buffer is explicitly aligned
after it is allocated, and before it is actually
used. (Bug #16484617)

0 on success, an error code on failure. If the method call
succeeds, the computed hash value is made available through
hashval ueptr.

This method creates a subscription to a database event.

NDB API event subscriptions do not persist after an NDB Cluster
has been restored using ndb_r est or e; in such cases, all of the
subscriptions must be recreated explicitly.

NdbEvent Oper ati on* creat eEvent Operation

(

const char *event Nane

)

This method takes a single argument, the unique event Nane
identifying the event to which you wish to subscribe.

A pointer to an NdbEvent Oper at i on object (or NULL, in the event
of failure). See Section 2.3.16, “The NdbEventOperation Class”.

This method drops a subscription to a database event represented
by an NdbEvent Oper at i on object.

Memory used by an event operation which has been dropped is not
freed until the event buffer has been completely read. This means
you must continue to call pol | Event s() and next Event () in
such cases until these methods return 0 and NULL, respectively in
order for this memory to be freed.

i nt dropEvent Operation

(
)

NdbEvent Oper ati on *event Op

This method requires a single input parameter, a pointer to an
instance of NdbEvent Oper ati on.

0 on success; any other result indicates failure.

112

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-restore.html

The Ndb Class

This section describes the Event Buf f er Menor yUsage structure.

Parent class

Description

Attributes

Ndb::getDictionary()

Description

Signature

Parameters

Return value
Ndb::getDatabaseName()

Description

Signature

Parameters
Return value
Ndb::getDatabaseSchemaName()

Description

Ndb

This structure was added in NDB 7.4 for working with event
buffer memory usage statistics. It is used as an argument to
Ndb: : get _event buffer_menory_usage().

Event Buf f er Menor yUsage has the attributes shown in the
following table:

Table 2.27 EventBufferMemoryUsage structure attributes, with
types, initial values, and descriptions

Name Type Initial Value |Description

al | ocat ed |opsegned |none The total event buffer
memory allocated, in
bytes

used_byt equnsi gned |none The total memory used, in
bytes

usage_per gensi gned |none Event buffer memory

usage, as a percent
(100 * used_bytes /

al | ocat ed_byt es)

This method is used to obtain an object for retrieving or
manipulating database schema information. This Di cti onary
object contains meta-information about all tables in the cluster.

The dictionary returned by this method operates independently of
any transaction. See Section 2.3.3, “The Dictionary Class”, for more
information.

NdbDi cti onary:: Di ctionary* getDictionary
(
voi d
) const
None.

An instance of the Di cti onary class.

This method can be used to obtain the name of the current
database.

const char* get Dat abaseNane
(
voi d
)
None.

The name of the current database.

This method can be used to obtain the current database schema
name.

113

The Ndb Class

Signature const char* get Dat abaseSchemaName
(voi d
)
Parameters None.
Return value The name of the current database schema.

Ndb::getGCIEventOperations() (DEPRECATED)

Description Iterates over distinct event operations which are part of the current
GCl, becoming valid after calling next Event () . You can use this
method to obtain summary information for the epoch (such as a list
of all tables) before processing the event data.

This method is deprecated, and subject to removal in a future
release. Where possible, use get Next Event Opl nEpoch2()

instead.
Signature
const NdbEvent Oper ati on* get GCl Event Oper ati ons
(
Uint32* iter,
U nt 32* event _types
)
Parameters An iterator and a mask of event types. Set *i t er =0 to start.
Return value The next event operation; returns NULL when there are no more

event operations. If event _t ypes is not NULL, then after calling the
method it contains a bitmask of the event types received. .

Ndb::get_eventbuf_max_alloc()

Description Gets the maximum memory, in bytes, that can be used for
the event buffer. This is the same as reading the value of the
ndb_event buf fer _max_al | oc system variable in the MySQL

Server.
Signature unsi gned get _event buf _nmax_al | oc
(voi d
)
Parameters None.
Return value The mamximum memory available for the event buffer, in bytes.

Ndb::get_eventbuffer_free percent()

Description Gets ndb_event buf fer _free_percent —thatis, the
percentage of event buffer memory that should be available
before buffering resumes, once ndb_event buf fer _max_al | oc
has been reached. This value is calculated as used * 100 /
ndb_event buf fer_nax_al | oc, where used is the amount of
event buffer memory actually used, in bytes.

This method was added in NDB 7.4.

Signature unsi gned get _event buffer_free_percent
(

voi d

114

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_free_percent
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

)

Parameters The percentage (pct) of event buffer memory that must be present.
Valid range is 1 to 99 inclusive.

Return value None.
Ndb::get_event_buffer_memory_usage()

Description Gets event buffer usage as a percentage of
ndb_event buffer_nax_al | oc. Unlike
get _eventbuffer free_ percent (), this method makes
complete usage information available in the form of an
Event Buf f er Menor yUsage data structure.

This method was added in NDB 7.4.

Signature voi d get_event buffer_nenory_usage

Event Buf f er Menor yUsage&
)

Parameters A reference to an Event Buf f er Menor yUsage structure, which
receives the usage data.

Return value None.

Ndb::getHighestQueuedEpoch()

Description Added in NDB 7.4, this method supersedes get Lat est CCl (),
which is now deprecated and subject to removal in a future NDB
Cluster release.

Prior to NDB 7.4.7, this method returned the highest epoch
number in the event queue. In NDB 7.4.7 and later, it returns the
highest epoch number found after calling pol | Event s2() (Bug

#20700220).
Signature Ui nt 64 get Hi ghest QueuedEpoch
(voi d
)
Parameters None.
Return value The most recent epoch number, an integer.

Ndb::getLatestGCI() (DEPRECATED)
Description Gets the index for the most recent global checkpoint.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should use
get H ghest QueuedEpoch() instead.

Signature Ui nt 64 get Lat est GCl
(voi d
)
Parameters None.
Return value The most recent GCI, an integer.

115

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

Ndb::getNdbError()

Description

Signature

Parameters

Return value

Ndb::getNdbErrorDetail()

Description

Signature

This method provides you with two different ways to obtain an
NdbEr r or object representing an error condition. For more detailed
information about error handling in the NDB API, see NDB Cluster
API Errors.

The get NdbEr r or () method actually has two variants.

The first of these simply gets the most recent error to have occurred:

const NdbError & get NdbEr r or
(

voi d

)

The second variant returns the error corresponding to a given error
code:

const NdbError & get NdbEr r or
(

int errorCode

)

Regardless of which version of the method is used, the NdbEr r or
object returned persists until the next NDB API method is invoked.

To obtain the most recent error, simply call get NdbEr r or ()
without any parameters. To obtain the error matching a specific

er r or Code, invoke the method passing the code (ani nt)toitas a
parameter. For a listing of NDB API error codes and corresponding
error messages, see Section 2.4, “NDB API Errors and Error
Handling”.

An NdbEr r or object containing information about the error,
including its type and, where applicable, contextual information as to
how the error arose. See Section 2.3.15, “The NdbError Structure”,
for details.

This method provides an easy and safe way to access any extra
information about an error. Rather than reading these extra

details from the NdbEr r or object's det ai | s property (now now
deprecated in favor of get NdbEr r or Det ai | () -see Bug #48851).
This method enables storage of such details in a user-supplied
buffer, returning a pointer to the beginning of this buffer. In the event
that the string containing the details exceeds the length of the buffer,
it is truncated to fit.

get Error Det ai |l () provides the source of an error in the form
of a string. In the case of a unique constraint violation (error 893),
this string supplies the fully qualified nhame of the index where

the problem originated, in the format dat abase- nane/schena-
nane/t abl e- nane/i ndex- nane, (NdbEr r or . det ai | s, on the
other hand, supplies only an index ID, and it is often not readily
apparent to which table this index belongs.) Regardless of the type
of error and details concerning this error, the string retrieved by
get ErrorDetail () is always null-terminated.

The get NdbEr r or Det ai | () method has the following signature:

const char* get NdbError Det ai |

116

https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html

The Ndb Class

Parameters

Return value

Ndb::getNdbObjectName()

Description

Signature

Parameters

Return value

Ndb::getNextEventOpInEpoch2()

Description

Signature

Parameters

Return value

Ndb::getNextEventOpInEpoch3()

Description

const NdbErroré& error,

char* buf fer,
Ui nt 32 buf f er Lengt h
) const

To obtain detailed information about an error, call

get NdbEr r or Det ai | () with a reference to the corresponding
NdbEr r or object, a buf f er, and the length of this buffer
(expressed as an unsigned 32-bit integer).

When extra details about the er r or are available, this method
returns a pointer to the beginning of the buf f er supplied. As
stated previously, if the string containing the details is longer than
buf f er Lengt h, the string is truncated to fit. In the event that no
addition details are available, get NdbEr r or Det ai | () returns
NULL.

If a name was set for the Ndb object prior to its initialization, you can
retrieve it using this method. Used for debugging.

const char* get NdbObj ect Name
(

voi d
) const

None.

The Ndb object name, if one has been set using
set NdbObj ect Nane() . Otherwise, this method returns O.

Iterates over individual event operations making up the current
global checkpoint. Use following next Event 2() to obtain summary
information for the epoch, such as a listing of all tables, before
processing event data.

Exceptional epochs do not have any event operations associated
with them.

const NdbEvent Oper ati on* get Next Event Opl nEpoch2

(

Ui nt32* iter,

Ui nt 32* event _types
)

Seti t er to 0 initially; this is NULL when there are no more events
within this epoch. If event _t ypes is not NULL, it holds a bitmask of
the event types received.

A pointer to the next NdbEvent Oper at i on, if there is one.

Iterates over individual event operations making up the

current global checkpoint. Use following next Event 2() to
obtain summary information for the epoch, such as a listing

of all tables, before processing event data. Is the same as

get Next Event Opl nEpoch3() but with the addition of a third

117

The Ndb Class

Signature

Parameters

Return value
Ndb::getReference()

Description

Signature

Parameters

Return value
Ndb::init()

Description

Signature

Parameters

Return value

argument which holds the merger of all AnyValues received,
showing which bits are set for all operations on a given table.

Exceptional epochs do not have any event operations associated
with them.

This method was added in NDB 7.4.18 and 7.5.9. (Bug #26333981)

const NdbEvent Oper ati on* get Next Event Opl nEpoch2

(
U nt32* iter,
Ui nt 32* event _types
Ui nt 32* cunul ati ve_any_val ue

)

Seti t er to 0 initially; this is NULL when there are no more events
within this epoch. If event _t ypes is not NULL, it holds a bitmask of
the event types received. If cunul at i ve_any_val ue is not NULL,
it holds the merger of all AnyValues received.

A pointer to the next NdbEvent Oper at i on, if there is one.

This method can be used to obtain a reference to a given Ndb
object. This is the same value that is returned for a given operation
corresponding to this object in the output of DUMP 2350.

Ui nt 32 get Ref erence
(

voi d

)

None.

A 32-bit unsigned integer.

This method is used to initialize an Ndb object.

int init
(

int maxNoOf Tr ansacti ons = 4

)

The i ni t () method takes a single parameter

maxNoOF Tr ansact i ons of type integer. This parameter specifies
the maximum number of parallel NdbTr ansact i on objects that can
be handled by this instance of Ndb. The maximum permitted value
for maxNoOF Tr ansact i ons is 1024; if not specified, it defaults to
4.

Each scan or index operation uses an extra NdbTr ansact i on
object.

This method returns an i nt , which can be either of the following two
values:

¢ 0: indicates that the Ndb object was initialized successfully.

* -1: indicates failure.

Ndb::isConsistent() (DEPRECATED)

118

https://dev.mysql.com/doc/ndb-internals/en/dump-command-2350.html

The Ndb Class

Description

Signature

Parameters

Return value

Check if all events are consistent. If a node failure occurs when
resources are exhausted, events may be lost and the delivered
event data might thus be incomplete. This method makes it possible
to determine if this is the case.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should instead

use NdbEvent Oper ati on: : get Event Type2() to determine
the type of event—in this instance, whether the event is of type
TE | NCONSI STENT. See Event::TableEvent.

bool i sConsi stent

(
)

Ui nt 64& gci

A reference to a global checkpoint index. This is the first
inconsistent GCI found, if any.

t r ue if all events are consistent.

Ndb::isConsistentGCI() (DEPRECATED)

Description

Signature

Parameters

Return value

If a node failure occurs when resources are exhausted, events
may be lost and the delivered event data might thus be incomplete.
This method makes it possible to determine if this is the case by
checking whether all events in a given GCI are consistent.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should instead

use NdbEvent Oper ati on: : get Event Type2() to determine
the type of event—in this instance, whether the event is of type
TE_| NCONSI STENT. See Event::TableEvent.

bool i sConsi st ent GCl

(
Ui nt 64 gci
)

A global checkpoint index.

t r ue if this GCl is consistent; f al se indicates that the GCI may be
possibly inconsistent.

Ndb::isExpectingHigherQueuedEpochs()

Description

Signature

Parameters

Check whether higher queued epochs have been seen by
the last invocation of Ndb: : pol | Event s2(), or whether a
TE_CLUSTER FAI LURE event was found.

It is possible, after a cluster failure has been detected, for the
highest queued epoch returned by pol | Event s2() not to be
increasing any longer. In this case, rather than poll for more events,
you should instead consume events with next Event () until it
detects a TE_ CLUSTER_FAI LURE is detected, then reconnect to the
cluster when it becomes available again.

bool i sExpecti ngHi gher QueuedEpochs
(

voi d

)

None.

119

The Ndb Class

Return value

Ndb::Key_ part_ptr

True if queued epochs were seen by the last pol | Event s2() call
or, in the event of cluster failure.

This section describes the Key part ptr structure.

Parent class

Description

Attributes

Ndb::nextEvent() (DEPRECATED)

Description

Signature

Parameters

Return value

Ndb::nextEvent2()

Description

Ndb

Key part _ptr provides a convenient way to define key-part data
when starting transactions and computing hash values, by passing
in pointers to distribution key values. When the distribution key has
multiple parts, they should be passed as an array, with the last
part's pointer set equal to NULL. See Ndb::startTransaction(), and
Ndb::computeHash(), for more information about how this structure
is used.

A Key part_ptr has the attributes shown in the following table:

Table 2.28 Key_part_ptr structure attributes, with types, initial
values, and descriptions

Attribute Type Initial Value Description

ptr const voi d* |none Pointer to

one or more
distribution key
values

I en unsi gned none The length of
the pointer

Returns the next event operation having data from a subscription
queue.

This method clears inconsistent data events from the event
queue when processing them. In order to able to clear all such
events, applications must call this method even in cases when
pol | Event s() has already returned 0.

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, you should use
next Event 2() instead.

NdbEvent Oper at i on* next Event

(
voi d

)
None.

This method returns an NdbEvent Oper at i on object representing
the next event in a subscription queue, if there is such an event. If
there is no event in the queue, it returns NULL instead.

Returns the event operation associated with the data dequeued
from the event queue. This should be called repeatedly after
pol | Event s2() populates the queue, until the event queue is
empty.

120

The Ndb Class

Signature

Parameters

Return value

Ndb::PartitionSpec

Added in NDB 7.4, this method supersedes next Event (), which
is now deprecated and subject to removal in a future NDB Cluster

release.

After calling this method, use
NdbEvent Oper ati on: : get Epoch() to determine the

epoch, then check the type of the returned event data using
NdbEvent Oper ati on: : get Event Type2() . Handling must

be provided for all exceptional Tabl eEvent types, including
TE_EMPTY, TE_| NCONSI STENT, and TE_OUT_OF _NMEMORY (also
introduced in NDB 7.4). No other NdbEvent Oper at i on methods
than the two named here should be called for an exceptional epoch.
Returning empty epochs (TE_EMPTY) may flood applications when
data nodes are idle. If this is not desirable, applications should filter
out any empty epochs.

NdbEvent Oper at i on* next Event 2

(
voi d

)

None.

This method returns an NdbEvent Oper at i on object representing
the next event in an event queue, if there is such an event. If there is
no event in the queue, it returns NULL instead.

This section provides information about the Parti t i onSpec structure.

Parent class

Description

Attributes

Ndb

A PartitionSpec is used for describing a table partition using any
one of the following criteria:

A specific partition ID for a table with user-defined partitioning.

« An array made up of a table's distribution key values for a table
with native partitioning.

« Arow in NdbRecor d format containing a natively partitioned
table's distribution key values.

A PartitionSpec has two attributes, a SpecType and a Spec
which is a data structure corresponding to that SpecType, as shown

in the following table:

Table 2.29 PartitionSpec attributes with the SpecType values,
data structures, and descriptions for each attribute.

SpecType SpecTypeData Structure |Description
Enumeration Value
(Ui nt 32)

PS_NONE 0 none No partitioning
information is
provided.

PS_USER_DEFI NED1 Ndb: : Partiti gR@petablébavibgf i

user-defined

partitioning, a

121

ned

The Ndb Class

UserDefined structure.

SpecType
Enumeration

SpecTyp
Value
(Ui nt 32)

cData Structure |Description

specific partition
is identified by its
partition ID.

PS_DI STR_KEY_PA

RT PTR

Ndb: : Partiti pRdpetabl&kbavagt |

native partitioning,
an array containing
the table's
distribution key
values is used

to identify the
partition.

PS DI STR_KEY_RH

GORD

Ndb: : Partiti phi#opartitisayfeco

identified using a
natively partitioned
table's distribution
key values, as
contained in

a row given in
NdbRecor d
format.

This structure is used when the SpecType is PS_USER DEFI NED.

Table 2.30 Attribute types of the partitionld attribute of the PS_USER_DEFINED SpecType

Attribute

Type

Description

partitionld

Ui nt 32

The partition ID for the desired
table.

KeyPartPtr structure.

This structure is used when the SpecType is PS_DI STR_KEY_ PART_PTR.

Table 2.31 Attributes of the PS_DISTR_KEY_PART_PTR SpecType, with attribute types and

descriptions

Attribute

Type

Description

t abl eKeyParts

Key_ part _ptr

Pointer to the distribution key
values for a table having native
partitioning.

xf r mbuf voi d* Pointer to a temporary buffer
used for performing calculations.
xfrnbufl en Ui nt 32 Length of the temporary buffer.

KeyRecord structure.

This structure is used when the SpecType is PS_DI STR_KEY_ RECORD.

Table 2.32 PS_DISTR_KEY_RECORD SpecType attributes, with attribute types and descriptions

Attribute Type Description

keyRecord NdbRecor d A row in NdbRecor d format,
containing a table's distribution
keys.

keyRow const char* The distribution key data.

122

The Ndb Class

Attribute Type Description

xfrmouf voi d* Pointer to a temporary buffer
used for performing calculations.

xfrmbufl en U nt 32 Length of the temporary buffer.

Definition from Ndb. hpp. Because this is a fairly complex structure, we here provide the original
source-code definition of Parti ti onSpec, as given in st or age/ ndb/ i ncl ude/ ndbapi / Ndb. hpp:

struct PartitionSpec

{
/*
Si ze of the PartitionSpec structure.
*/
static inline U nt32 size()
{
return sizeof (PartitionSpec);
}
enum SpecType
{
PS_NONE = 0,
PS_USER DEFI NED = 1,
PS_DI STR_KEY_PART_PTR = 2,
PS_DI STR_KEY_RECORD =3
}s
Ui nt 32 type;
uni on
{
struct {

Ui nt32 partitionld;
} User Defi ned;

struct {
const Key part_ptr* tabl eKeyParts;
voi d* xfrnbuf;
Ui nt 32 xfrnbufl en;

} KeyPartPtr;

struct {
const NdbRecord* keyRecord;
const char* keyRow;
voi d* xfrnbuf;
Ui nt 32 xfrnbufl en;

} KeyRecord;

}s
}s

Ndb::pollEvents()

Description This method waits for a GCP to complete. It is used to determine
whether any events are available in the subscription queue.

This method waits for the next epoch, rather than the next GCP.
See Section 2.3.16, “The NdbEventOperation Class”, for more
information.

This method is deprecated and subject to removal in a future NDB
Cluster release; use pol | Event s2() instead.

Signature int pollEvents

(
i nt maxTi meToWi t,
Uint64* |atestGCl = 0

)

123

The Ndb Class

Parameters This method takes the two parameters listed here:

¢ The maximum time to wait, in milliseconds, before “giving up” and
reporting that no events were available (that is, before the method
automatically returns 0).

A negative value causes the wait to be indefinite and never
time out. This is not recommended (and is not supported by the
successor method pol | Event s2()).

« The index of the most recent global checkpoint. Normally, this
may safely be permitted to assume its default value, which is 0.

Return value pol | Event s() returns a value of type i nt , which may be
interpreted as follows:

e > 0: There are events available in the queue.
« 0: There are no events available.

« In NDB 7.6.28, 8.0.35, 8.2.0, and later releases, a negative
value indicates failure and NDB_FAI LURE_GCI (~(Ui nt 64) 0)
indicates cluster failure (Bug #35671818); 1 is returned when
encountering an exceptional event, except when only TE_EMPTY
events are found, as described later in this section.

When pol | Event s() finds an exceptional event at the head of
the event queue, the method returns 1 and otherwise behaves as
follows:

* Empty events (TE_EMPTY) are removed from the event queue
head until an event containing data is found. When this results
in the entire queue being processed without encountering any
data, the method returns O (no events available) rather than 1.
This behavior makes this event type transparent to an application
using pol | Event s().

« After encountering an event containing inconsistent data
(TE_I NCONSI STENT) due to data node buffer overflow, the next
call to next Event () call removes the inconsistent data event
data from the event queue, and returns NULL. You should check
the inconsistency by calling i sConsi st ent () immediately
thereafter.

Important: Although the inconsistent event data is removed from
the event queue by calling next Event (), information about the
inconsistency is removed only by another next Event () call
following this, that actually finds an event containing data.

* When pol | Event s() finds a data buffer overflow event
(TE_QUT_OF _MEMORY), the event data is added to the
event queue whenever event buffer usage exceeds
ndb_event buf fer _nmax_al | oc. In this case, the next call to
next Event () exits the process.

Ndb::pollEvents2()

Description Waits for an event to occur. Returns as soon as any event data is
available. This method also moves an epoch's complete event data
to the event queue.

124

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

This method supersedes pol | Event s(), which is now deprecated
and subject to removal in a future NDB Cluster release.

Signature int poll Events2
(

int aMI|isecondNunber,
Ui nt 64* hi ghest QueuedEpoch = 0
)
Parameters This method takes the two parameters listed here:

¢ The maximum time to wait, in milliseconds, before giving up and
reporting that no events were available (that is, before the method
automatically returns 0).

Specifying a negative value for this argument causes
pol | Event s2() to return -1, indicating an error.

« The index of the highest queued epoch. Normally, this may safely
be permitted to assume its default value, which is 0. If this value is
not NULL and new event data is available in the event queue, it is
set to the highest epoch found in the available event data.

Return value pol | Event s2() returns an integer whose value can be interpreted
as follows:

* > 0: There are events available in the queue.
« 0: There are no events available.

e < 0: Indicates failure (possible error).
Ndb::setDatabaseName()

Description This method is used to set the name of the current database.

Signature voi d set Dat abaseName
(

const char *dat abaseNane

)

Parameters set Dat abaseNane() takes a single, required parameter, the
name of the new database to be set as the current database.

Return value None.
Ndb::setDatabaseSchemaName()

Description This method sets the name of the current database schema.

Signature voi d set Dat abaseSchemaNane
(

const char *dat abaseSchemaNane

)
Parameters The name of the database schema.
Return value None.
Ndb::setEventBufferQueueEmptyEpoch()

Description Queuing of empty epochs is disabled by default. This method can
be used to enable such queuing, in which case any new, empty

125

The Ndb Class

Signature

Parameters

Return value

Ndb::set_eventbuf_max_alloc()

Description

Signature

Parameters

Return value

epochs entering the event buffer following the method call are
queued.

When queuing of empty epochs is enabled, next Event ()
associates an empty epoch to one and only one of the subscriptions
(event operations) connected to the subscribing Ndb object. This
means that there can be no more than one empty epoch per
subscription, even though the user may have many subscriptions
associated with the same Ndb object.

set Event Buf f er QueueEnpt yEpoch() has no associated getter
method. This is intentional, and is due to the fact this setter applies
to queuing new epochs, whereas the queue itself may still reflect the
state of affairs that existed prior to invoking the setter. Thus, during
a transition period, an empty epoch might be found in the queue
even if queuing is turned off.

set Event Buf f er QueueEnpt yEpoch() was added in NDB
7.4.11.

voi d set Event Buf f er QueueEnpt yEpoch

bool queue_enpty_epoch
)

This method takes a single input parameter, a boolean. Invoking the
method with t r ue enables queuing of empty events; passing f al se
to the method disables such queuing.

None.

Sets the maximum memory, in bytes, that can be used for the
event buffer. This has the same effect as setting the value of the
ndb_event buf f er _max_al | oc system variable in the MySQL
Server.

voi d set _event buf _max_al | oc
(
unsi gned si ze
)
The desired maximum si ze for the event buffer, in bytes.

None.

Ndb::set_eventbuffer free percent()

Description

Signature

Parameters

Sets ndb_event buf fer _free_per cent —thatis, the percentage
of event buffer memory that should be available before buffering
resumes, once ndb_event buf fer _nax_al | oc has been
reached.

This method was added in NDB 7.4.

int set_eventbuffer_free_percent

(

unsi gned pct

)

The percentage (pct) of event buffer memory that must be present.
Valid range is 1 to 99 inclusive.

126

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_free_percent
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc

The Ndb Class

Return value

Ndb::setNdbObjectName()

Description

Signature

Parameters

Return value
Ndb::startTransaction()

Description

Signature

Parameters

The value that was set.

You can also set an arbitrary, human-readable name to identify

an Ndb object for debugging purposes. This name can then be
retrieved using get NdbCbj ect Nane() . This must be done prior to
calling i ni t () for this object; trying to set a name after initialization
fails with an error.

You can set a name only once for a given Ndb object; subsequent
attempts after the name has already been set fail with an error.

i nt set NdbCbj ect Nane
(

const char* nane

)
A nane that is intended to be human-readable.

0 on success.

This method is used to begin a new transaction. There are three
variants, the simplest of these using a table and a partition key or
partition ID to specify the transaction coordinator (TC). The third
variant makes it possible for you to specify the TC by means of a
pointer to the data of the key.

When the transaction is completed it must be closed using

NdbTr ansaction:: cl ose() or Ndb: : cl oseTransacti on().
Failure to do so aborts the transaction. This must be done
regardless of the transaction's final outcome, even if it fails due to an
error.

See Ndb::closeTransaction(), and NdbTransaction::close(), for more
information.

NdbTr ansacti on* start Transacti on

(
const NdbDi ctionary:: Tabl e* table = 0,
const char* keyData = 0,
U nt 32* keylLen = 0

)

This method takes the following three parameters:

« tabl e: A pointer to a Tabl e object. This is used to determine on
which node the transaction coordinator should run.

e keyDat a: A pointer to a partition key corresponding to t abl e.

< keyLen: The length of the partition key, expressed in bytes.

Distribution-aware forms of startTransaction(). It is also possible to employ distribution
awareness with this method; that is, to suggest which node should act as the transaction coordinator.

Signature

NdbTr ansacti on* start Transaction
(
const NdbDi ctionary:: Tabl e* table,
const struct Key_part_ptr* keyData,
voi d* xfrmbuf = 0,
Ui nt 32 xfrmbuflen = 0

127

The Ndb Class

Parameters

Return value

Example

When specifying the transaction coordinator, this method takes the
four parameters listed here:

e Apointerto at abl e (Tabl e object) used for deciding which
node should act as the transaction coordinator.

« A null-terminated array of pointers to the values of the distribution
key columns. The length of the key part is read from metadata
and checked against the passed value.

An Ndb: : Key part ptr is defined as shown in
Ndb::Key_part_ptr.

« A pointer to a temporary buffer, used to calculate the hash value.

If xf r mbuf is NULL (the default), then a call to mal | oc() or
free() is made automatically, as appropriate.

Prior to NDB 7.5.30, 7.6.26, 8.0.33: st art Transact i on() fails
if xf r mbuf is not NULL and xf r nbuf | en is too small.

NDB 7.5.30 and later, 7.6.26 and later, 8.0.33 and later: If the
buffer passed is not of sufficient size, a temporary buffer is
allocated automatically. (Bug #103814, Bug #32959894, Bug
#34917498)

¢ The length of the buffer.

On success, an NdbTr ansact i on object. In the event of failure,
NULL is returned.

Suppose that the table's partition key is a single Bl Gl NT column.
Then you would declare the distribution key array as shown here:

Key_part _ptr distkey[2];

The value of the distribution key would be defined as shown here:

unsi gned | ong | ong di st keyVal ue= 23;

The pointer to the distribution key array would be set as follows:

di st key[0] . ptr= (const voi d*) &distkeyVal ue;

The length of this pointer would be set accordingly:

di stkey[0] . | en= si zeof (di st keyVal ue) ;

The distribution key array must terminate with a NULL element. This
is necessary to avoid to having an additional parameter providing
the number of columns in the distribution key:

di stkey[1].ptr= NULL;
di stkey[1] .1 en= NULL;

Setting the buffer to NULL permits st art Tr ansacti on() to
allocate and free memory automatically:

xfrmbuf = NULL;

128

The Ndb_cluster_connection Class

xfrnbufl en= 0

Now, when you start the transaction, you can access the node that
contains the desired information directly.

Another distribution-aware version of this method makes it possible
for you to specify a table and partition (using the patrtition ID) as

a hint for selecting the transaction coordinator, and is defined as
shown here:

NdbTr ansacti on* startTransacti on

(
const NdbDi ctionary: : Tabl e* table

Uint32 partitionld
)

In the event that the cluster has the same number of data nodes as
it has fragment replicas, specifying the transaction coordinator gains
no improvement in performance, since each data node contains

the entire database. However, where the number of data nodes is
greater than the number of fragment replicas (for example, where
NoOf Repl i cas is set equal to 2 in a cluster with four data nodes),
you should see a marked improvement in performance by using the
distribution-aware version of this method.

It is still possible to use this method as before, without specifying the
transaction coordinator. In either case, you must still explicitly close
the transaction, whether or not the call to st art Tr ansacti on()
was successful.

2.3.12 The Ndb_cluster_connection Class

This section provides information about the Ndb_cl ust er _connect i on class, which models a
connection by a management server (ndb_ngnd) to a set of data nodes.

* Ndb_cluster_connection Class Overview

» Ndb_cluster_connection Class Constructor

* Ndb_cluster_connection:
* Ndb_cluster_connection:
* Ndb_cluster_connection:
* Ndb_cluster_connection:
* Ndb_cluster_connection:
* Ndb_cluster_connection:
e Ndb_cluster_connection:
* Ndb_cluster_connection:
* Ndb_cluster_connection:
* Ndb_cluster_connection:

* Ndb_cluster_connection:

:configure_tls()

:connect()

:get_auto_reconnect()
:get_latest_error()
:get_latest_error_msg()
:get_max_adaptive_send_time()
:get_next_ndb_object()
:get_num_recv_threads()
:get_recv_thread_activation_threshold()
:get_system_name()

:get_tls_certificate_path()

» ndb_cluster_connection::lock_ndb_objects()

* Ndb_cluster_connection

'set_auto_reconnect()

129

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-mgmd.html

The Ndb_cluster_connection Class

Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:
Ndb_cluster_connection:

Ndb_cluster_connection::

:set_data_node_neighbour()
:set_max_adaptive_send_time()
:set_name()

:set_num_recv_threads()
'set_optimized_node_selection()
:set_recv_thread_activation_threshold()
:set_service_uri()
:set_recv_thread_cpu()

:set_timeout()

:unlock_ndb_objects()

:unset_recv_thread_cpu()

wait_until_ready()

Ndb_cluster_connection Class Overview

Parent class

Child classes

Description

Methods

None

None

An NDB application program should begin with the creation of a

single Ndb_cl uster _c

onnect i on object, and typically makes use

of a single Ndb_cl ust er _connect i on. The application connects
to a cluster management server when this object's connect ()
method is called. By using the wai t _unti| ready() method itis
possible to wait for the connection to reach one or more data nodes.

An instance of Ndb_cl ust er _connect i on is used to create an

Ndb object.

The following table lists

the public methods of this class and the

purpose or use of each method:

Table 2.33 Ndb_cluster_connection class methods and

descriptions

Name

Description

Ndb_cl uster _conne

c€Comwst(yctor; creates a connection to a
cluster of data nodes.

configure_tls()

Provides TLS configuration data.

connect ()

Connects to a cluster management server.

get _auto_reconnect

Gets the auto-reconnection
setting for API nodes using this
Ndb _cl ust er _connecti on.

get _latest _error(

Whether or not the most recent attempt to
connect succeeded.

get latest_error_

i t{© most recent attempt to connect failed,
provides the reason.

get _nax_adaptive_

s@etitimeoet hefore adaptive send forces
the sending of all pending signals.

130

The Ndb_cluster_connection Class

Name

Description

get_numrecv_thre

a@et humber of receive threads.

get _next ndb_obje

céed to iterate through multiple Ndb
objects.

get _recv_thread_a

cGevadtivation hevesd ffiar la{ynd receive
threads.

get _tls_certificati@eptuehddth to the active TLS certificate.

get _system nane()

Get the cluster's system name.

| ock_ndb_obj ect s(

Disables the creation of new Ndb objects.

set _aut o_reconnectEnpables or disables auto-

reconnection of API nodes using this
Ndb _cl ust er _connecti on.

set data _node_nei

pBétsia (éighbor node for for optimal
transaction coordinator placement

set _max_adaptive_

sBettimeowt(tp elapse before adaptive send
forces the sending of all pending signals.

set _nane()

Provides a name for the connection

set _numrecv_thre;

aBet(number of receive threads to be bound.

set _recv_thread c

&ét)one or more CPUs to bind receive
threads to.

set _optim zed_nod

“Used s comtrgl)node-selection behavior.

set _service_uri ()

Set a URI for publication in the
ndbi nf 0. processes table

set _tineout()

Sets a connection timeout

unl ock_ndb_obj ect

sEmables the creation of new Ndb objects.

unset _recv_t hread]

| dps€t)the binding of the receive thread to
one or more CPUs.

wait _until _ready(

Waits until a connection with one or more

data nodes is successful.

Ndb_cluster_connection Class Constructor

Description

Signatures

This method creates a connection to an NDB Cluster, that is, to

a cluster of data nodes.

The object returned by this method is

required in order to instantiate an Ndb object. Thus, every NDB API

application requires the

use of an Ndb_cl ust er _connecti on.

Ndb_cl ust er _connecti on has two constructors. The first of

these is shown here:

Ndb_cl ust er _connecti on

(

const char* connection_string = 0

)

The second constructor

takes a node ID in addition to the

connection string argument. Its signature and parameters are shown

here:

Ndb_cl ust er _connecti on

(

const char* connection_string
int force_api_nodeid

)

131

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbinfo-processes.html

The N

db_cluster_connection Class

Parameters

Return value

The first version of the constructor requires a single
connecti on_stri ng parameter, pointing to the location of the
management server.

The second version of the constructor takes two arguments, a
connection_string andthe node ID (f orce_api _nodei d) to
be used by this API node. This node ID overrides any node ID value
set in the connecti on_stri ng argument.

An instance of Ndb_cl ust er _connecti on.

Ndb_cluster_connection::configure_tls()

Description

Signature

Parameters

Return value
Ndb_cluster_connection::connect()

Description

Signature

Provides configuration information needed for a TLS connection.

If the node finds active NDB TLS node keys and certificates
(created using ndb_si gn_keys or another tool) in the search
path, it can connect securely to other nodes. If this mehtod is not
called for a connection, the search path is the compiled-in default
(W TH_NDB_TLS SEARCH PATH), and the TLS level is O (relaxed).

See also TLS Link Encryption for NDB Cluster.

void configure_tls

(

const char *tls_search_path,
int ngmtls_|evel

)

tls_search_path A colon-delimited list of
directories that may contain
TLS private key files or signed
public key certificates. A directory
reference contained in the search
path may be absolute or relative.
Environment variables are
expanded.

mgm_tls_level This is 0 or 1 to specify the
TLS requirement for securing
the MGM protocol connection
between this node and the
NDB Management server. O
means the requirement for TLS
is relaxed; the node attempts
to use TLS, but the connection
succeeds even if TLS does not
do so. 1 sets a strict requirement
for TLS; failure to establish
TLS is treated as an error
(and a connection cannot be
established).

none

This method connects to a cluster management server.

i nt connect

(

int retries = 30,

132

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-sign-keys.html
https://dev.mysql.com/doc/refman/8.3/en/source-configuration-options.html#option_cmake_with_ndb_tls_search_path
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-tls.html

The Ndb_cluster_connection Class

int del ay =1,
int verbose = 0
)
Parameters This method takes three parameters, all of which are optional:

e retri es specifies the number of times to retry the connection in
the event of failure. The default value is 30.

0 means that no additional attempts to connect are made in the
event of failure; using a negative value for r et r i es results in the
connection attempt being repeated indefinitely.

e The del ay represents the number of seconds between reconnect
attempts; the default is 1 second.

» ver bose indicates whether the method should output a report
of its progress, with 1 causing this reporting to be enabled; the
default is O (reporting disabled).

Return value This method returns an i nt , which can have one of the following 3
values:

¢ 0: The connection attempt was successful.
* 1: Indicates a recoverable error.

+ -1: Indicates an unrecoverable error.

Ndb_cluster_connection::get_auto_reconnect()

Description This method retrieves the current Aut oReconnect setting for a
given Ndb_cl ust er _connect i on. For more detailed information,
see Ndb_cluster_connection::set_auto_reconnect().

Signature int get_auto_reconnect
(voi d
)
Parameters None.
Return value An integer value 0 or 1, corresponding to the current

Aut oReconnect setting in effect for for this connection. O forces
API nodes to use new connections to the cluster, while 1 enables
API nodes to re-use existing connections.

Ndb_cluster_connection::get_latest_error()

Description This method can be used to determine whether or
not the most recent connect () attempt made by
this Ndb_cl ust er _connecti on succeeded . If the
connection succeeded, get | atest _error () returns O;
otherwise, it returns 1. If the connection attempt failed, use
Ndb_cl uster _connection::get latest _error_mnsg() to
obtain an error message giving the reason for the failure.

Signature int get |atest_error
(
voi d
) const
Parameters None.

133

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect

The Ndb_cluster_connection Class

Return value 1 or 0. Areturn value of 1 indicates that the latest attempt to
connect failed; if the attempt succeeded, a 0O is returned.

Ndb_cluster_connection::get_latest_error_msg()

Description If the most recent connection attempt by this
Ndb_cl ust er _connecti on failed (as determined by calling
get | atest _error()), this method provides an error message
supplying information about the reason for the failure.

Signature const char* get_latest_error_nsg
(voi d
) const
Parameters None.
Return value A string containing an error message describing a failure by

Ndb_cl ust er _connecti on: : connect (). If the most recent
connection attempt succeeded, an empty string is returned.

Ndb_cluster_connection::get_max_adaptive_send_time()

Description Get the minimum time in milliseconds that is permit to lapse before
the adaptive send mechanism forces all pending signals to be sent.

Signature Ui nt 32 get _max_adapti ve_send_ti me
(
)
Parameters None.
Return value Wait time as a number of milliseconds. This should always be a

value between 0 and 10, inclusive.
Ndb_cluster_connection::get_next_ndb_object()

Description This method is used to iterate over a set of Ndb objects, retrieving
them one at a time.

Signature const Ndb* get_next_ndb_obj ect
(
const Ndb* p
)
Parameters This method takes a single parameter, a pointer to the last Ndb

object to have been retrieved or NULL.

Return value Returns the next Ndb object, or NULL if no more Ndb objects are
available.

Iterating over Ndb objects. To retrieve all existing Ndb objects, perform the following three steps:

1. Invoke the | ock_ndb_obj ect s() method. This prevents the creation of any new instances of
Ndb until the unl ock_ndb_obj ect s() method is called.

2. Retrieve the first available Ndb object by passing NULL to get _next ndb_obj ect (). You
can retrieve the second Ndb object by passing the pointer retrieved by the first call to the next
get _next ndb_obj ect () call, and so on. When a pointer to the last available Ndb instance is
used, the method returns NULL.

3. After you have retrieved all desired Ndb objects, you should re-enable Ndb object creation by
calling the unl ock_ndb_obj ect s() method.

134

The Ndb_cluster_connection Class

Ndb_cluster_connection::get_num_recv_threads()

Description Get the number of receiver threads.
Signature int get_numrecv_threads
(voi d
) const
Parameters None.
Return value The number of receiver threads.

Ndb_cluster_connection::get_recv_thread_activation_threshold()

Description Get the level set for activating the receiver thread bound by
set _recv_thread cpu().

Signature int get _recv_thread_activation_threshold
(voi d
) const

Parameters None.

Return value An integer threshold value. See

Ndb_cluster_connection::set_recv_thread_activation_threshold(), for
information about interpreting this value.

Ndb_cluster_connection::get_system_name()

Description Gets the system name from the cluster configuration. This is
the value of the Nanme system configuration parameter set in the
cluster's confi g. i ni configuration file.

Signature const char* get_system nanme
(voi d
) const
Parameters None.
Return value The cluster system name. If not set in the cluster configuration file,

this is a generated value in the form MC t i nest anp (for example,
MC 20170426182343), using the time that the management server
was started.

Ndb_cluster_connection::get_tls_certificate_path()

Description Retrieve the pathname for the active TLS certificate file. Call after
calling connect () .

Returns nul | if connect () has not yet been called, or no valid
key and certificate can be found in the TLS search path (whether
supplied to confi gure_tl s() orthe default).

This method was added in NDB 8.3.0.

Signature const char *get tls certificate_path
(
voi d
)
const
Parameters None.

135

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-system-definition.html#ndbparam-system-name

The Ndb_cluster_connection Class

Return value The absolute path to the TLS certificate file that is currently active.
ndb_cluster_connection::lock_ndb_objects()

Description Calling this method prevents the creation of new instances of the
Ndb class. This method must be called prior to iterating over multiple
Ndb objects using get _next ndb_obj ect ().

Signature voi d | ock_ndb_obj ect's
(

voi d
) const

This method is const beginning with NDB 7.4.13 (Bug #23709232).

For more information, see
Ndb_cluster_connection::get_next_ndb_object().

Parameters None.

Return value None.
Ndb_cluster_connection::set_auto_reconnect()

Description An API node that is disconnected from the cluster is forced to
use a new connection object to reconnect, unless this behavior is
overridden by setting Aut oReconnect = 1inthe confi g.i ni
file or calling this method with 1 as the input value. Calling the
method with O for the value has the same effect as setting the
Aut oReconnect configuration parameter (also introduced in those
NDB Cluster versions) to 0; that is, APl nodes are forced to create
new connections.

Important

A When called, this method overrides any setting for Aut oReconnect made in
the confi g.ini file.

For more information, see Defining SQL and Other APl Nodes in an NDB Cluster.

Signature voi d set_auto_reconnect
(
int val ue
)
Parameters A val ue of 0 or 1 which determines API node reconnection

behavior. 0 forces API nodes to use new connections
(Ndb_cl ust er _connect i on objects); 1 permits APl nodes to re-
use existing connections to the cluster.

Return value None.
Ndb_cluster_connection::set_data _node_neighbour()

Description Set data node neighbor of the connection, used for optimal
placement of the transaction coordinator. This method be used after
creating the Ndb_cl ust er _connect i on, but prior to starting any
query threads. This is due to the fact that this method may change
the internal state of the Ndb_cl ust er _connect i on shared by the
threads using it. This state is not thread-safe; changing it can lead to
non-optimal node selection at the time of the change.

You can use the ndb_dat a_node_nei ghbour server system
variable to set a data node neighbor for an NDB Cluster SQL node.

136

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_ndb_data_node_neighbour

The Ndb_cluster_connection Class

This method was added in NDB 7.5.

Signature voi d set _data_node_nei ghbour

(
Ui nt 32 nei ghbour _node

)
Parameters The ID of the node to be used as the neighbor.

Return value None.
Ndb_cluster_connection::set_max_adaptive_send_time()

Description Set the minimum time in milliseconds that is permit to lapse before
the adaptive send mechanism forces all pending signals to be sent.

Signature voi d set_nax_adaptive_send_ti me
(

Uint32 mlliseconds

)

Parameters Wait time in milliseconds. The range is 0-10, with 10 being the
default value.

Return value None.

Ndb_cluster_connection::set_name()

Description Sets a name for the connection. If the name is specified, it is
reported in the cluster log.

Signature voi d set_nane
(

const char* nane

)
Parameters The nane to be used as an identifier for the connection.

Return value None.

Ndb_cluster_connection::set_num_recv_threads()

Description Set the number of receiver threads bound
to the CPU (or CPUs) determined using
set _recv_thread _cpu() and with the threshold set by
set _recv_thread_activation_threshol d().

This method should be invoked before trying to connect to any other
nodes.

Signature int set_numrecv_threads
(

Ui nt 32 num recv_t hreads

)
Parameters The number of receive threads. The only supported value is 1.
Return value - 1 indicates an error; any other value indicates success.
Ndb_cluster_connection::set_optimized_node_selection()

Description This method can be used to override the connect () method's
default behavior as regards which node should be connected to first.

137

The Ndb_cluster_connection Class

Signature voi d set_optim zed_node_sel ecti on
(int val ue
)

Parameters An integer val ue.

Return value None.

Ndb_cluster_connection::set_recv_thread_activation_threshold()

Description Set the level for activating the receiver thread bound by
set _recv_thread_cpu() . Below this level, normal user threads
are used to receive signals.

Signature int set_recv_thread_activation_threshold

(
Uint32 threshol d

)

Parameters An integer t hr eshol d value. 16 or higher means that receive
threads are never used as receivers. 0 means that the receive
thread is always active, and that retains poll rights for its own
exclusive use, effectively blocking all user threads from becoming
receivers. In such cases care should be taken to ensure that the
receive thread does not compete with the user thread for CPU
resources; it is preferable for it to be locked to a CPU for its own
exclusive use. The default is 8.

Return value - 1 indicates an error; any other value indicates success.
Ndb_cluster_connection::set_service_uri()

Description Beginning with NDB 7.5.7, this method can be used to create a URI
for publication in ser vi ce_URI column of the application's row in
the ndbi nf 0. processes table.

Provided that this method is called prior to invoking connect (), the
service URI is published immediately upon connection; otherwise,

it is published after a delay of up to Hear t beat | nt er val DbApi
milliseconds.

Signature int set_service_uri
(

const char* scheneg,
const char* host,
int port,

const char* path

)
Parameters This method takes the parameters listed here:

« scheme: The URI scheme. This is resticted to lowercase letters,
numbers, and the characters . , +, and - (period, plus sign, and
dash). The maximu length is 16 characters; any characters over
this limit are truncated.

* host : The URI network address or host name. The maximum
length is 48 characters (sufficient for an IPv6 network address);
any characters over this limit are truncated. If null, each data
node reports the network address from its own connection to
this node. An Ndb_cl ust er _connect i on that uses multiple
transporters or network addresses to connect to different data

138

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbinfo-processes.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-heartbeatintervaldbapi

The Ndb_cluster_connection Class

nodes is reflected in multiple rows in the ndbi nf 0. pr ocesses
table.

e port: The URI port. This is not published if it is equal to O.

« pat h: The URI path, possibly followed by a query string beginning
with ?. The maximum combined length of the path and query may
not exceed 128 characters; if longer, it is truncated to this length.

The path may not begin with a double slash (/ /).

Return value 0 on success, 1 in the event of a syntax error.
Ndb_cluster_connection::set_recv_thread_cpu()

Description Set the CPU or CPUs to which the receiver thread should be bound.
Set the level for activating the receiver thread as a receiver by
invoking set _recv_thread_activation_threshol d().
Unset the binding for this receiver thread by invoking
unset recv_thread cpu().
Signature int set_recv_thread_cpu
(
Ui nt 16* cpuid_array,
Uint32 array_| en,
Unt32 recv_thread id = 0
)

Parameters This method takes three parameters, listed here:

* An array of one or more CPU IDs to which the receive thread
should be bound

* The length of this array
* The thread ID of the receive thread to bind. The default value is 0.

Return value - 1 indicates an error; any other value indicates success.
Ndb_cluster_connection::set_timeout()

Description Used to set a timeout for the connection, to limit the amount of time
that we may block when connecting.

This method is actually a wrapper for the MGM API function
ndb_nmgm set timeout ().

Signature int set_tineout
(

)

int tineout_ns

Parameters The length of the timeout, in milliseconds (t i neout _ns). Currently,
only multiples of 1000 are accepted.

Return value 0 on success; any other value indicates failure.
Ndb_cluster_connection::unlock_ndb_objects()

Description This method undoes the effects of the | ock_ndb_obj ect s()
method, making it possible to create new instances of Ndb.
unl ock_ndb_obj ect s() should be called after you have finished
retrieving Ndb objects using the get _next ndb_obj ect ()
method.

139

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbinfo-processes.html

The NdbBlob Class

Signature

Parameters

Return value

voi d unl ock_ndb_obj ects

(
void
) const
This method is const beginning with NDB 7.4.13 (Bug #23709232).

For more information, see
Ndb_cluster_connection::get_next_ndb_object().

None.

None.

Ndb_cluster_connection::unset_recv_thread_cpu()

Description

Signature

Parameters

Return value

Unset the CPU or CPUs to which the receiver thread was bound
using set _recv_t hread_cpu().
int unset_recv_thread_cpu
(
U nt32 recv_thread_id
)
The thread ID of the receiver thread to be unbound.

- 1 indicates an error; any other value indicates success.

Ndb_cluster_connection::wait_until_ready()

Description

Signature

Parameters

Return value

2.3.13 The NdbBlob Class

This method is needed to establish connections with the data nodes.
It waits until the requested connection with one or more data nodes
is successful, or until a timeout condition is met.

int wait_until _ready

(
int tinmeoutBefore,
int timeoutAfter

)
This method takes two parameters:

e tinmeout Bef or e determines the number of seconds to wait until
the first “live” node is detected. If this amount of time is exceeded
with no live nodes detected, then the method immediately returns
a negative value.

e tineout Aft er determines the number of seconds to wait after
the first “live” node is detected for all nodes to become active.
If this amount of time is exceeded without all nodes becoming
active, then the method immediately returns a value greater than
zero.

wai t _until _ready() returnsani nt,whose value is interpreted
as follows:

« = 0: All nodes are “live”.

e > 0: At least one node is “live” (however, it is not known whether
all nodes are “live”).

* < 0: An error occurred.

140

The NdbBlob Class

This section provides information about the NdbBI ob class, which models a handle to a blob column
and provides read and write access to blob column values. This object has a number of different states
and provides several modes of access to blob data; these are also described in this section.

NdbBlob Class Overview
NdbBIlob::ActiveHook
NdbBIlob::blobsFirstBlob()
NdbBlob::blobsNextBlob()
NdbBlob::close()
NdbBlob::getBlobEventName()
NdbBlob::getBlobTableName()
NdbBlob::getColumn()
NdbBlob::getLength()
NdbBlob::getNull()
NdbBlob::getNdbError()
NdbBlob::getNdbOperation()
NdbBlob::getPos()
NdbBlob::getState()
NdbBlob::getValue()
NdbBlob::getVersion()
NdbBlob::readData()
NdbBIlob::setActiveHook()
NdbBIlob::setNull()
NdbBlob::setPos()
NdbBlob::setValue()
NdbBlob::State
NdbBIlob::truncate()
NdbBlob::writeData()

NdbBlob Class Overview

Parent class

Child classes

Description

Methods

None
None

This class has no public constructor. An instance of NdbBI ob is
created using the NdbQper at i on: : get Bl obHandl e() method
during the operation preparation phase. (See Section 2.3.20, “The
NdbOperation Class”.) This object acts as a handle on a blob
column.

The following table lists the public methods of this class and the
purpose or use of each method:

141

The NdbBlob Class

Types

Blob Data Storage.

Table 2.34 NdbBlob class methods and descrptions

Name

Description

bl obsFi r st Bl ob()

Gets the first blob in a list.

bl obsNext Bl ob()

Gets the next blob in a list

cl ose()

Release internal resources prior to commit
or abort

get Bl obEvent Name(

Gets a blob event name

get Bl obTabl eNane(

Gets a blob data segment's table name.

get Col umm()

Gets a blob column.

get Lengt h()

Gets the length of a blob, in bytes

get NdbError ()

Gets an error (an NdbEr r or object)

get NdbOper ati on()

Get a pointer to the operation
(NdbOper at i on object) to which this
NdbBI ob object belonged when created.

get Nul I () Checks whether a blob value is NULL

get Pos() Gets the current position for reading/writing
get St at e() Gets the state of an NdbBI ob object

get Val ue() Prepares to read a blob value

get Ver si on()

Checks whether a blob is statement-based
or event-based

r eadDat a()

Reads data from a blob

set Acti veHook()

Defines a callback for blob handle
activation

set Nul I () Sets a blob to NULL

set Pos() Sets the position at which to begin reading/
writing

set Val ue() Prepares to insert or update a blob value

truncate()

Truncates a blob to a given length

writeData()

Writes blob data

get Bl obTabl eNanme() and get Bl obEvent Nane() are static

methods.

Most NdbBI ob methods (nearly all of those whose return type is
i nt) return 0 on success and - 1 in the event of failure.

The public types defined by NdbBI ob are shown here:

Table 2.35 NdbBlob types and descriptions

Name

Description

Acti veHook()

Callback for
NdbBI ob: : set Acti veHook()

State()

Represents the states that may be
assumed by the NdbBI ob.

Blob data is stored in 2 locations:

» The header and inline bytes are stored in the blob column.

The NdbBlob Class

» The blob's data segments are stored in a separate table named NDB$BLOB tid cid,wheretidis
the table ID, and ci d is the blob column ID.

The inline and data segment sizes can be set using the appropriate Col urm methods when the table is
created. See Section 2.3.1, “The Column Class”, for more information about these methods.

Data Access Types. NdbBI ob supports 3 types of data access: These data access types can be
applied in combination, provided that they are used in the order given above.

* In the preparation phase, the NdbBl ob methods get Val ue() and set Val ue() are used to
prepare a read or write of a blob value of known size.

» Also in the preparation phase, set Act i veHook() is used to define a routine which is invoked as
soon as the handle becomes active.

 Inthe active phase, r eadDat a() andwr i t eDat a() are used to read and write blob values having
arbitrary sizes.

Blob operations. Blob operations take effect when the next transaction is executed. In some cases,
NdbBI ob is forced to perform implicit execution. To avoid this, you should always operate on complete
blob data segments.

Use NdbTr ansact i on: : execut ePendi ngBl obOps() to flush reads and writes, which avoids any
execution penalty if no operations are pending. This is not necessary following execution of operations,
or after the next scan result.

NdbBI ob also supports reading post- or pre-blob data from events. The handle can be read after
the next event on the main table has been retrieved. The data becomes available immediately. (See
Section 2.3.16, “The NdbEventOperation Class”, for more information.)

Blobs and NdbOperations. NdbOper at i on methods acting on NdbBl ob objects have the
following characteristics:.

* NdbOperation::insertTupl e() mustuse NdbBl ob: : set Val ue() if the blob attribute is
nonnullable.

* NdbOperation::readTupl e() used with any lock mode can read but not write blob values.

When the LM Conmi t t edRead lock mode is used with r eadTupl e() , the lock mode is
automatically upgraded to LM Read whenever blob attributes are accessed.

* NdbOper ati on: : updat eTupl e() can either overwrite an existing value using
NdbBI ob: : set Val ue(), or update it during the active phase.

 NdbOperation::witeTupl e() always overwrites blob values, and must use
NdbBI ob: : set Val ue() if the blob attribute is nonnullable.

e NdbOper ation: : del et eTupl e() creates implicit, nonaccessible blob handles.
» A scan with any lock mode can use its blob handles to read blob values but not write them.

A scan using the LM Excl usi ve lock mode can update row and blob values using
updat eCur r ent Tupl e() ; the operation returned must explicitly create its own blob handle.

A scan using the LM Excl usi ve lock mode can delete row values (and therefore blob values) using
del et eCurrent Tupl e() ; this create implicit nonaccessible blob handles.

» An operation which is returned by | ockCur r ent Tupl e() cannot update blob values.

Known Issues. The following are known issues or limitations encountered when working with
NdbBI ob objects:

» Too many pending blob operations can overflow the 1/0 buffers.

143

The NdbBlob Class

» The table and its blob data segment tables are not created atomically.

NdbBlob::ActiveHook

ActiveHook is a data type defined for use as a callback for the set Act i veHook() method. (See

NdbBlob::setActiveHook().)

Definition. Acti veHook is a custom data type defined as shown here:

typedef int ActiveHook

NdbBI ob* e,
voi d* arg
)
Description

NdbBlob::blobsFirstBlob()

Description

Signature

Parameters

Return value

NdbBlob::blobsNextBlob()

Description

Signature

Parameters

Return value

NdbBlob::close()

Description

Signature

This is a callback for NdbBI ob: : set Acti veHook(), andis
invoked immediately once the prepared operation has been
executed (but not committed). Any calls to get Val ue() or

set Val ue() are performed first. The blob handle is active so
readDat a() orwiteData() can be used to manipulate the blob
value. A user-defined argument is passed along with the NdbBI ob.
set Acti veHook() returns a nonzero value in the event of an
error.

This method initialises a list of blobs belonging to the current
operation and returns the first blob in the list.

NdbBI ob* bl obsFi r st Bl ob
(

voi d

)
None.

A pointer to the desired blob.

Use the method to obtain the next in a list of blobs
that was initialised using bl obsFi r st Bl ob() . See
NdbBIlob::blobsFirstBlob().

NdbBl ob* bl obsNext Bl ob
(

voi d

)
None.

A pointer to the desired blob.

Closes the blob handle, releasing internal resources as it does so,
prior to committing or aborting the transaction. In other words, this
signals that an application has finished with reading from a given
blob. This method can be called only when the blob's St at e is
Acti ve.

int close

(

bool execPendi ngBl obOps = true

)

144

The NdbBlob Class

Parameters This method has a single boolean parameter
execPendi ngBl obOps. If the value of this parameter t r ue
(the default), any pending blob operations are flushed before the
blob handle is closed. If execPendi ngBl obOps is f al se, then
it is assumed that the blob handle has no pending read or write
operations to flush.

Return value 0 on success.

Read operations and locking. When a blob handle is created on a read operation using LM Read
or LM Excl usi ve as the LockMbde, the read operation can be unlocked only once all Blob handles
created on this operation have been closed.

When a row containing blobs has been read with lock mode LM Cormmi t t edRead, the mode is
automatically upgraded to LM Read to ensure consistency. In this case, when all the blob handles for
the row have been closed, an unlock operation for the row is automatically performed by the call to the
cl ose() method, which adds a pending write operation to the blob. The upgraded lock is released
following the call to execut e() .

NdbBlob::getBlobEventName()

Description This method gets a blob event name. The blob event is created if
the main event monitors the blob column. The name includes the
main event name.

Signature static int getBl obEvent Nane
(
char* nane,
Ndb* ndb,

const char* event,
const char* col um

)
Parameters This method takes the four parameters listed here:
* nane: The name of the blob event.
« ndb: The relevant Ndb object.
* event: The name of the main event.
e col umm: The blob column.

Return value 0 on success, - 1 on failure.

NdbBlob::getBlobTableName()
Description This method gets the blob data segment table name.

This method is generally of use only for testing and debugging

purposes.
Signature static int getBl obTabl eNane
(
char* nane,
Ndb* ndb,

const char* table,
const char* col um
)
Parameters This method takes the four parameters listed here:
« nane: The name of the blob data segment table.

« ndb: The relevant Ndb object.

145

The NdbBlob Class

Return value

NdbBlob::getColumn()

Description

Signature

Parameters

Return value
NdbBlob::getLength()
Description

Signature

Parameters

Return value

NdbBlob::getNull()
Description

Signature

Parameters

Return value
NdbBlob::getNdbError()

Description

* t abl e: The name of the main table.
¢ col um: The blob column.

Returns 0 on success, - 1 on failure.

Use this method to get the blob column to which the NdbBI ob
belongs.

const Col um* get Col um

(
)

voi d

None.

A Col umm object.

This method gets the blob's current length in bytes.

int getlLength
(

)

Ui nt 64& | ength

A reference to the length.

The blob's length in bytes. For a NULL blob, this method returns 0.
to distinguish between a blob whose length is 0 blob and one which
is NULL, use the get Nul | () method.

This method checks whether the blob's value is NULL.

int getNull
(

)

int& isNull

A reference to an integer i sNul | . Following invocation, this
parameter has one of the following values, interpreted as shown
here:

* - 1: The blob is undefined. If this is a nonevent blob, this result
causes a state error.

* 0: The blob has a nonnull value.
e 1: The blob's value is NULL.

None.

Use this method to obtain an error object. The error may be blob-
specific or may be copied from a failed implicit operation. The error
code is copied back to the operation unless the operation already
has a nonzero error code.

146

The NdbBlob Class

Signature const NdbError& get NdbErr or
(voi d
) const

Parameters None.

Return value An NdbEr r or object.

NdbBlob::getNdbOperation()

Description This method can be used to find the operation with which the handle
for this NdbBl ob is associated.

Signature const NdbOperati on* get NdbQperati on
(voi d
) const

Parameters None.

Return value A pointer to an operation.

The operation referenced by the pointer returned by this
method may be represented by either an NdbOper at i on or
NdbScanOper at i on object.

See Section 2.3.20, “The NdbOperation Class”, and Section 2.3.24,
“The NdbScanOperation Class”, for more information.

NdbBlob::getPos()

Description This method gets the current read/write position in a blob.
Signature int getPos
(Ui nt 64& pos
)
Parameters One parameter, a reference to the position.
Return value Returns 0 on success, or - 1 on failure. (Following a successful

invocation, pos will hold the current read/write position within the
blob, as a number of bytes from the beginning.)

NdbBlob::getState()

Description This method gets the current state of the NdbBI ob object for which
it is invoked. Possible states are described in NdbBlob::State.

Signature State getState

(

voi d

)
Parameters None.
Return value A value of type St at e.

NdbBlob::getValue()

Description Use this method to prepare to read a blob value; the value is
available following invocation. Use get Nul | () to check for a NULL
value; use get Lengt h() to get the actual length of the blob, and
to check for truncation. get Val ue() sets the current read/write
position to the point following the end of the data which was read.

147

The NdbBlob Class

Signature

Parameters

Return value

NdbBlob::getVersion()

Description

Signature

Parameters

Return value

NdbBlob::readData()
Description

Signature

Parameters

Return value

NdbBlob::setActiveHook()

Description

Signature

i nt getVal ue

(
voi d* data,
Ui nt 32 bytes

)

This method takes two parameters. The first of these is a pointer to
the dat a to be read; the second is the number of byt es to be read.

0 on success, - 1 on failure.

This method is used to distinguish whether a blob operation is
statement-based or event-based.

voi d get Version

(

int& version

)

This method takes a single parameter, an integer reference to the
blob version (operation type).

One of the following three values:
e -1: Thisis a “normal” (statement-based) blob.

< 0: This is an event-operation based blob, following a change in its
data.

< 1: This is an event-operation based blob, prior to any change in its
data.

get Ver si on() is always successful, assuming that it is invoked as
a method of a valid instance of NdbBl ob.

This method is used to read data from a blob.

int readDat a
(

voi d* dat a,
Ui nt32& bytes

)

readDat a() accepts a pointer to the dat a to be read, and a
reference to the number of byt es read.

Returns 0 on success, - 1 on failure. Following a successful
invocation, dat a points to the data that was read, and byt es holds
the number of bytes read.

This method defines a callback for blob handle activation. The
queue of prepared operations will be executed in ho-commit
mode up to this point; then, the callback is invoked. For additional
information, see NdbBlob::ActiveHook.

int setActiveHook

(
Act i veHook* acti veHook,

voi d* arg

148

The NdbBlob Class

)
Parameters This method requires the two parameters listed here:
* A pointer to an Act i veHook.
* A pointer to voi d, for any data to be passed to the callback.

Return value 0 on success, - 1 on failure.

NdbBlob::setNull()

Description This method sets the value of a blob to NULL.
Signature int setNull
(voi d
)
Parameters None.
Return value 0 on success; - 1 on failure.

NdbBlob::setPos()

Description This method sets the position within the blob at which to read or
write data.
Signature int setPos
(
Ui nt 64 pos
)
Parameters The setPos() method takes a single parameter pos (an unsigned

64-bit integer), which is the position for reading or writing data. The
value of pos must be between 0 and the blob's current length.

Important

A “Sparse” blobs are not supported in the NDB API; in other words, there can be
no unused data positions within a blob.

Return value 0 on success, - 1 on failure.
NdbBlob::setValue()

Description This method is used to prepare for inserting or updating a blob
value. Any existing blob data that is longer than the new data is
truncated. The data buffer must remain valid until the operation has
been executed. set Val ue() sets the current read/write position to
the point following the end of the data. You can set dat a to a null
pointer (0) in order to create a NULL value.

Signature int setVal ue
(
const void* data,
Ui nt 32 byt es
)
Parameters This method takes the two parameters listed here:

* The dat a that is to be inserted or used to overwrite the blob
value.

e The number of byt es—that is, the length—of the dat a.

149

The NdbBlob Class

Return value 0 on success, - 1 on failure.
NdbBlob::State

This is an enumerated data type which represents the possible states of an NdbBI ob instance.

Description An NdbBI ob may assume any one of these states
Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.36 NdbBlob::State type values and descriptions

Name Description

Idle The NdbBI ob has not yet been prepared
for use with any operations.

Pr epar ed This is the state of the NdbBI ob prior to
operation execution.

Active This is the blob handle's state following
execution or the fetching of the next result,
but before the transaction is committed.

Cl osed This state occurs after the transaction has
been committed.
I nvalid This follows a rollback or the close of a
transaction.
NdbBlob::truncate()
Description This method is used to truncate a blob to a given length.
Signature int truncate

(
Unt64 length = 0

)

Parameters truncat e() takes a single parameter which specifies the new
| engt h to which the blob is to be truncated. This method has no
effect if | engt h is greater than the blob's current length (which you
can check using get Lengt h()).

Return value 0 on success, - 1 on failure.
NdbBlob::writeData()

Description This method is used to write data to an NdbBl ob. After a successful
invocation, the read/write position will be at the first byte following
the data that was written to the blob.

A write past the current end of the blob data extends the blob
automatically.

Signature int witeData
(
const voi d* data,
Ui nt 32 byt es
)
Parameters This method takes two parameters, a pointer to the dat a to be

written, and the number of byt es to write.

Return value 0 on success, - 1 on failure.

150

The NdbDictionary Class

2.3.14 The NdbDictionary Class

This section provides information about the NdbDi ct i onar y class, which stores meta-information
about NDB database objects, such as tables, columns, and indexes.

While the preferred method of database object creation and deletion is through the MySQL Server,
NdbDi cti onary also permits the developer to perform these tasks through the NDB API.

* NdbDictionary Class Overview

NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:
NdbDictionary:

NdbDictionary:

:AutoGrowSpecification
:getEmptyBitmask()
:getFirstAttrid()
:getNextAttrid()
:getNullBitOffset()
:getOffset()
:getRecordindexName()
:getRecordRowLength()
:getRecordTableName()
:getRecordType()
:getValuePtr()

;isNull()
:RecordSpecification

:setNull()

NdbDictionary Class Overview

Parent class None

Child classes Di ctionary, Col um, Cbj ect

For the numeric equivalents to enumerations of NdbDi cti onary
subclasses, see the file / st or age/ ndb/ i ncl ude/ ndbapi /
NdbDi cti onary. hpp in the NDB Cluster source tree.

Description This is a data dictionary class that supports enquiries about tables,
columns, and indexes. It also provides ways to define these
database objects and to remove them. Both sorts of functionality
are supplied using inner classes that model these objects. These

include the following inner classes:

e Tabl e for working with tables

e Col umn for creating table columns

* | ndex for working with secondary indexes

e Di ctionary for creating database objects and making schema
enquiries

151

The NdbDictionary Class

Methods

Types

e Event for working with events in the cluster.

Additional Ooj ect subclasses model the tablespaces, log file
groups, data files, and undo files required for working with NDB
Cluster Disk Data table, as well as with foreign key constraints.

Tables and indexes created using NdbDi ct i onary cannot be
viewed from the MySQL Server.

Dropping indexes through the NDB API that were created originally
from an NDB Cluster causes inconsistencies. It is possible that a
table from which one or more indexes have been dropped using
the NDB API will no longer be usable by MySQL following such
operations. In this event, the table must be dropped, and then re-
created using MySQL to make it accessible to MySQL once more.

NdbDi cti onary itself has no public instance methods, only

static methods that are used for working with NdbRecor d objects.
Operations not using NdbRecor d are accomplished by means of
NdbDi cti onary subclass instance methods. The following table
lists the public methods of NdbDi ct i onary and the purpose or use
of each method:

Table 2.37 NdbDictionary class methods and descriptions

Name Description

get Enpt yBi t mask() |Returns an empty column presence
bitmask which can be used with
NdbRecor d

getFirstAttrld() |Getthe firstattribute ID specified by a
given NdbRecor d object

get Recor dl ndexNanmeGets the name of the index object referred
to by an NdbRecord

get Recor dRowLengt hGet the number of bytes needed to store
one row of data using a given NdbRecor d

get Recor dTabl eNameGets the name of the table object referred
to by an NdbRecord

get Recor dType() Gets the RecordType of an NdbRecord

get Val uePtr () Returns a pointer to the beginning of
stored data specified by attribute ID, using
NdbRecor d

i sNul'l () Show whether the null bit for a column is

true or false

set Nul | () Set a column's null bit

NdbDictionary defines two data structures, listed here:
¢ Aut oG owSpeci fication

e RecordSpecification

NdbDictionary::AutoGrowSpecification

This section provides information about the Aut oG owSpeci fi cat i on data structure.

Parent class

NdbDi cti onary

152

The NdbDictionary Class

Description

Members

NdbDictionary::getEmptyBitmask()

Description

Signature

Parameters

Return value
NdbDictionary::getFirstAttrid()

Description

Signature

Parameters

Return value

NdbDictionary::getNextAttrid()

Description

Signature

Parameters

Return value

The Aut oGr owSpeci fi cati on is a data structure defined in
the NdbDi cti onary class, and is used as a parameter to or

return value of some of the methods of the Tabl espace and

Logfi | eG oup classes.

Aut oG owSpeci fi cati on has the members shown in the
following table:

Table 2.38 NdbDictionary::AutoGrowSpecification data
structure member names and descriptions

Name Description
mn_free ??7?
max_si ze ??77?
file_size ?77?
filenane_pattern |???

Returns an empty column presence bitmask which can be used with
any NdbRecor d to specify that no NdbRecor d columns are to be
included in the operation.

static const unsigned char* get EnptyBitmask

(
voi d

)
None.

An empty bitmask.

Get the first attribute ID specified by an NdbRecor d object. Returns
f al se if no attribute ID is specified.

static bool getFirstAttrld
(

const NdbRecord* record,
Unt32& firstAttrid

)

A pointer to an NdbRecor d and a reference to the attribute
(firstAttrl D).

Boolean f al se, when no attribute ID can be obtained.

Get the next attribute ID specified by an NdbRecor d object
following the attribute ID passed in. Returns f al se when there are
no more attribute IDs to be returned.

static bool getNextAttrld
(

const NdbRecord* record,
U nt32& attrld
)
A pointer to an NdbRecor d and a reference to an attribute ID.

Boolean f al se, when no attribute ID can be obtained.

153

The NdbDictionary Class

NdbDictionary::getNullBitOffset()

Description

Signature

Parameters

Return value

NdbDictionary::getOffset()

Description

Signature

Parameters

Return value

Get the offset of the given attribute ID's null bit from the start of the
NdbRecor d row. Returns f al se if the attribute ID is not present.

static bool getNullBitOfset
(

const NdbRecord* record,
Unt32 attrld,

Ui nt 32& byt es,

Ui nt 32& bi t

)

An NdbRecor d r ecor d in which to get the null bit offset of the
given attribute ID (at t r | d). The offset is expressed as a number of
bytes (byt es) plus a number of bits within the last byte (bi t).

Boolean f al se, if the attribute with the given ID is not present.

Get the offset of the given attribute ID's storage from the start of the
NdbRecor d row. Returns f al se if the attribute id is not present

static bool getOffset
(

const NdbRecord* record,
unt32 attrld,
U nt 32& of f set

)

The of f set of the given attribute ID's storage from the start of the
NdbRecor d row.

Boolean f al se, if no attribute ID can be found.

NdbDictionary::getRecordindexName()

Description

Signature

Parameters

Return value

Get the name of the | ndex object that the NdbRecor d refers to.

static const char* getRecordl ndexNane

(

const NdbRecord* record
)
A pointer to the NdbRecor d for which to get the name.

The name, if any. Otherwise, or if the NdbRecor d object is not of
the | ndexAccess type, this method returns null.

NdbDictionary::getRecordRowLength()

Description

Signature

Parameters

Return value

Get the number of bytes needed to store one row of data laid out as
described by the NdbRecor d structure passed in to this method.

static Ui nt32 get RecordRowLengt h
(

const NdbRecord* record
)
An NdbRecor d object.

The number of bytes needed per row.

NdbDictionary::getRecordTableName()

154

The NdbDictionary Class

Description

Signature

Parameters

Return value

NdbDictionary::getRecordType()

Description

Signature

Parameters

Return value

NdbDictionary::getValuePtr()

Description

Signature

Parameters

Return value

NdbDictionary::isNull()

Description

Signature

Return the name of the table object that the NdbRecor d refers to.
This method returns null if the record is not a Tabl eAccess.

static const char* get RecordTabl eNane

(

const NdbRecord* record

)
The r ecor d (NdbRecor d object) for which to get the table name.

The name of the table, or null if the NdbRecor d object' type is not
Tabl eAccess.

Return the type of the NdbRecor d object passed.

stati c RecordType get RecordType
(

const NdbRecord* record

)
An NdbRecor d object.

The Recor dType of the NdbRecor d (I ndexAccess or
Tabl eAccess).

Returns a pointer to the beginning of stored data specified by
attribute ID, by looking up the offset of the column stored in the
NdbRecord object and returning the sum of the row position and the
offset.

This method provides both row-const and non-row-const versions:

static const char* getVal uePtr

(

const NdbRecord* record,
const char* row,
unt32 attrld

)

static char* getVal uePtr

(

const NdbRecord* record,
char* row,
unt32 attrld

)

A pointer to an NdbRecor d object describing the row format, a
pointer to the start of the row data (const in the const version of
this method), and the attribute 1D of the column,

A pointer to the start of the attribute in the row. This is null if the
attribute is not part of the NdbRecor d definition.

Indicate whether the null bit for the given column is setto t r ue or

f al se. The location of the null bit in relation to the row pointer is
obtained from the passed NdbRecor d object. If the column is not
nullable, or if the column is not part of the NdbRecor d definition, the
method returns f al se.

static bool isNull

(

155

The NdbDictionary Class

Parameters

Return value

const NdbRecord* record,
const char* row,
unt32 attrld

)

A pointer to an NdbRecor d object describing the row format, a
pointer to the start of the row data, and the attribute ID of the column
to check.

Boolean t r ue if the attribute ID exists in this NdbRecor d, is
nullable, and this row's null bit is set; otherwise, Boolean f al se.

NdbDictionary::RecordSpecification

This section provides information about the Recor dSpeci fi cat i on structure.

Parent class

Description

Members

NdbDi cti onary

This structure is used to specify columns and range offsets when
creating NdbRecor d objects.

The elements making up this structure are shown in the following
table:

Table 2.39 NdbDictionary::RecordSpecification attributes, with
types and descriptions

Name Type Description

col um Col um The column
described by this
entry (the column's
maximum size
defines the field size
for the row). Even
when creating an
NdbRecor d for an
index, this must point
to a column obtained
from the underlying
table, and not from
the index itself.

of f set U nt 32 The offset of data
from the beginning
of a row. For reading
blobs, the blob
handle (NdbBI ob),
rather than the actual
blob data, is written
into the row. This
means that there
must be at least

si zeof (NdbBI ob*)
must be available in
the row.

nul I bit_byte offsditnt 32 The offset from the
beginning of the row
of the byte containing
the NULL bit.

nul I bit_bit_i n_bytient 32 NULL bit (0-7).

156

The NdbError Structure

NdbDictionary::setNull()

Description

Signature

Parameters

Return value

2.3.15 The NdbError Structure

nul I bit _byte offset andnullbit _bit _in_byte arenot
used for non-nullable columns.

For more information, see Section 2.3.22, “The NdbRecord
Interface”.

Set the null bit for the given column to the supplied value. The offset
for the null bit is obtained from the passed NdbRecor d object. If the
attribute ID is not part of the NdbRecor d, or if it is not nullable, this
method returns an error (-1).

static int setNul

(

const NdbRecord* record
char* row,

unt32 attrld,

bool val ue

)

A pointer to the r ecor d (NdbRecor d object) describing the row
format; a pointer to the start of the r ow data; the attribute ID of the
column (at t r | d); and the val ue to set the null bit to (t r ue or

f al se).

Returns 0 on success; returns -1 if the at t r | d is not part of the
record, or is not nullable.

This section provides information about the NdbEr r or data structure, which contains status and other
information about errors, including error codes, classifications, and messages.

* NdbError Overview

* NdbError::Classification

* NdbError::Status
NdbError Overview

Description

An NdbEr r or consists of six parts, listed here, of which one is
deprecated:

1. Error status: This describes the impact of an error on the
application, and reflects what the application should do when the
error is encountered.

The error status is described by a value of the St at us type.
See NdbError::Status, for possible St at us values and how they
should be interpreted.

2. Error classification: This represents a logical error type or
grouping.

The error classification is described by a value of the

Cl assi ficati on type. See NdbError::Classification, for
possible classifications and their interpretation. Additional
information is provided in Section 2.4.4, “NDB Error
Classifications”.

157

The NdbError Structure

3. Error code: This is an NDB API internal error code which
uniquely identifies the error.

Important

A It is not recommended to write application
programs which are dependent
on specific error codes. Instead,
applications should check error status
and classification. More information about
errors can also be obtained by checking
error messages and (when available)
error detail messages. However—like
error codes—these error messages and
error detail messages are subject to
change.

A listing of current error codes, broken down by classification,

is provided in Section 2.4.2, “NDB Error Codes: by Type”. This
listing is updated with new NDB Cluster releases. You can also
check the file st or age/ ndb/ sr c/ ndbapi / ndberror. c in the
NDB Cluster sources.

4. MySQL Error code: This is the corresponding MySQL Server
error code. MySQL error codes are not discussed in this
document; please see Server Error Message Reference, in the
MySQL Manual, for information about these.

5. Error message: This is a generic, context-independent
description of the error.

6. Error details: This can often provide additional information
(not found in the error message) about an error, specific to the
circumstances under which the error is encountered. However, it
is not available in all cases.

Where not specified, the error detail message is NULL.

Note

S This property is deprecated and
scheduled for eventual removal. For
obtaining error details, you should use
the Ndb: : get NdbError Det ai | ()
method instead.

Specific NDB API error codes, messages, and detail messages are
subject to change without notice.

158

https://dev.mysql.com/doc/mysql-errors/8.3/en/server-error-reference.html

The NdbError Structure

Definition

The NdbEr r or structure contains the following members, whose

types are as shown here:

Types

NdbError::Classification

St at us st at us: The error status.

Classification classification:The errortype
(classification).

i nt code: The NDB API error code.
int nysql _code: The MySQL error code.

const char* message: The error message.

char* detail s: The error detail message.

det ai | s is deprecated and scheduled for eventual removal. You
should use the Ndb: : get NdbEr r or Det ai | () method instead.
(Bug #48851)

NdbEr r or defines the two data types listed here:

Cl assi fi cati on: The type of error or the logical grouping to
which the error belongs.

St at us: The error status.

This section provides information about the Cl assi fi cati on data type.

Description

This type describes the type of error, or the logical group to which it

belongs.

Enumeration values

Possible values are shown, along with descriptions, in the following

table:

Table 2.40 NdbError Classification data type values and
descriptions

Name

Description

NoEr r or

Indicates success (no error occurred)

Appl i cationError

An error occurred in an application
program

NoDat aFound

A read operation failed due to one or more
missing records.

ConstraintViol ati

DA constraint violation occurred, such
as attempting to insert a tuple having a
primary key value already in use in the
target table.

SchenmaErr or

An error took place when trying to create or
use a table.

I nsuf fi ci ent Space

There was insufficient memory for data or
indexes.

Tenpor ar yResour ceEFhisitype of error is typically encountered

when there are too many active
transactions.

159

The NdbEventOperation Class

NdbError::Status

Name

Description

NodeRecover yErr or

This is a temporary failure which was likely
caused by a node recovery in progress,
some examples being when information
sent between an application and NDB is
lost, or when there is a distribution change.

Over | oadErr or

This type of error is often caused when
there is insufficient log file space.

Ti meout Expi r ed

A timeout, often caused by a deadlock.

UnknownResul tErro

It is not known whether a transaction was
committed.

I nternal Error

A serious error has occurred in NDB itself.

Functi onNot | npl entfiedpplication attempted to use a function

which is not yet implemented.

UnknownEr r or Code

This is seen where the NDB error handler
cannot determine the correct error code to
report.

NodeShut down

This is caused by a node shutdown.

Schema(Cbj ect Exi st $The application attempted to create a

schema object that already exists.

I nt er nal Tenporary

A request was sent to a node other than
the master.

Related information specific to certain error conditions can be found
in Section 2.4.2, “NDB Error Codes: by Type”, and in Section 2.4.4,
“NDB Error Classifications”.

This section provides information about the St at us data type.

Description

Enumeration values

Replication.

This type is used to describe an error's status.

Possible values are shown, along with descriptions, in the following

table:

Table 2.41 NdbError Status data type values and descriptions

Name

Description

sSuccess

No error has occurred

Tenpor ar yErr or

A temporary and usually recoverable error;
the application should retry the operation
giving rise to the error

Per manent Er r or

Permanent error; not recoverable

UnknownResul t

The operation's result or status is unknown

Related information specific to certain error conditions can be found
in Section 2.4.4, “NDB Error Classifications”.

2.3.16 The NdbEventOperation Class

This section provides information about the NdbEvent Oper at i on class, which is used to monitor
changes (events) in a database. It provides the core functionality used to implement NDB Cluster

160

The NdbEventOperation Class

NdbEventOperation Class Overview
NdbEventOperation::clearError() (DEPRECATED)
NdbEventOperation::execute()
NdbEventOperation::getBlobHandle()
NdbEventOperation::getEpoch()
NdbEventOperation::getEventType() (DEPRECATED)
NdbEventOperation::getEventType2()
NdbEventOperation::getGCI() (DEPRECATED)
NdbEventOperation::getLatestGCIl() (DEPRECATED)
NdbEventOperation::getNdbError()
NdbEventOperation::getPreBlobHandle()
NdbEventOperation::getPreValue()
NdbEventOperation::getState()
NdbEventOperation::getValue()
NdbEventOperation::hasError() (DEPRECATED)
NdbEventOperation::isConsistent() (DEPRECATED)
NdbEventOperation::isEmptyEpoch()
NdbEventOperation::isErrorEpoch()
NdbEventOperation::isOverrun()
NdbEventOperation::mergeEvents()
NdbEventOperation::State
NdbEventOperation::tableFragmentationChanged()
NdbEventOperation::tableFrmChanged()
NdbEventOperation::tableNameChanged()
NdbEventOperation::tableRangeListChanged()

NdbEventOperation Class Overview

Parent class None

Child classes None

Description NdbEvent Oper at i on represents a database event.

Methods The following table lists the public methods of this class and the

purpose or use of each method:

Table 2.42 NdbEventOperation class methods and descriptions

Name Description

clearError() Clears the most recent error. Deprecated in
NDB 7.4.

execut e() Activates the NdbEvent Oper at i on

161

The NdbEventOperation Class

Types

Creating an Instance of NdbEventOperation.

Name

Description

get Bl obHandl e()

Gets a handle for reading blob attributes

get Epoch()

Retrieves the epoch for the event data
most recently retrieved. Added in NDB 7.4.

get Event Type()

Gets the event type. Deprecated in NDB
7.4.

get Event Type2()

Gets the event type. Added in NDB 7.4.

get GClI ()

Retrieves the GCI of the most recently
retrieved event. Deprecated in NDB 7.4.

get Lat est GCl ()

Retrieves the most recent GCI (whether
or not the corresponding event has been
retrieved). Deprecated in NDB 7.4.

get NdbError ()

Gets the most recent error

get Pr eBl obHandl e(

Gets a handle for reading the previous blob
attribute

get PreVal ue()

Retrieves an attribute's previous value

get State()

Gets the current state of the event
operation

get Val ue()

Retrieves an attribute value

hasError ()

Whether an error has occurred as part of
this operation. Deprecated in NDB 7.4.

i sConsi stent ()

Detects event loss caused by node failure.
Deprecated in NDB 7.4.

i sEnpt yEpoch()

Detects an empty epoch. Added in NDB
7.4.

i SErrorEpoch()

Detects an error epoch, and retrieves the
error if there is one. Added in NDB 7.4.

i sOverrun()

Whether event loss has taken place due to
a buffer overrun. Deprecated in NDB 7.4.

mer geEvent s()

Makes it possible for events to be merged

t abl eFragnentati o

"Checlgetd(9ee whether the fragmentation
for a table has changed

t abl eFr mChanged()

Checks to see whether a table . FRMfile
has changed

t abl eNameChanged(

Checks to see whether the name of a table
has changed

t abl eRangelLi st Cha

nQkec¢ks to see whether a table range
partition list name has changed

NdbEvent Oper at i on defines one enumerated type, the St at e

type.

This class has no public constructor or destructor.

Instead, instances of NdbEvent Oper at i on are created as the result of method calls on Ndb and
NdbDi ct i onary objects, subject to the following conditions:

1.

There must exist an event which was created using Di cti onary: : cr eat eEvent () . This method
returns an instance of the Event class.

An NdbEvent Oper at i on object is instantiated using Ndb: : cr eat eEvent Qper at i on(), which

acts on an instance of Event .

162

The NdbEventOperation Class

An instance of this class is removed by invoking Ndb: : dr opEvent Qper ati on.

Tip
@ A detailed example demonstrating creation and removal of event operations is
provided in Section 2.5.9, “NDB API Event Handling Example”.

Known Issues. The following issues may be encountered when working with event operations in
the NDB API:

» The maximum number of active NdbEvent Oper at i on objects is currently fixed at compile time at 2
* MaxNoCf Tabl es.

» Currently, all | NSERT, DELETE, and UPDATE events—as well as all attribute changes—are sent to
the API, even if only some attributes have been specified. However, these are hidden from the user
and only relevant data is shown after calling Ndb: : next Event ().

Note that false exits from Ndb: : pol | Event s() may occur, and thus the following next Event ()
call returns zero, since there was no available data. In such cases, simply call pol | Event s()
again.

See Ndb::pollEvents(), and Ndb::nextEvent() (DEPRECATED).

» Event code does not check the table schema version. When a table is dropped, make sure that you
drop any associated events.

« If you have received a complete epoch, events from this epoch are not re-sent, even in the event of
a node failure. However, if a node failure has occurred, subsequent epochs may contain duplicate
events, which can be identified by duplicated primary keys.

In the NDB Cluster replication code, duplicate primary keys on | NSERT operations are normally
handled by treating such inserts as REPLACE operations.

Tip
@ To view the contents of the system table containing created events, you can use
the ndb_sel ect _al | utility as shown here:

ndb_sel ect _all -d sys ' NDB$SEVENTS 0'
NdbEventOperation::clearError() (DEPRECATED)

Description Clears the error most recently associated with this event operation.

This method is deprecated, and is subject to removal in a future
release. Beginning with NDB 8.4.0, it does nothing.

Signature voi d cl earError
(
voi d
)
Parameters None.
Return value None.

NdbEventOperation::execute()

Description Activates the NdbEvent Oper at i on, so that it can begin
receiving events. Changed attribute values may be retrieved after
Ndb: : next Event () has returned a value other than NULL.

One of get Val ue(), get PreVal ue(), get Bl obVal ue(), or
get PreBl obVal ue() must be called before invoking execut e() .

163

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftables
https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-programs-ndb-select-all.html

The NdbEventOperation Class

Before attempting to use this method, you should have read the
explanations provided in Ndb::nextEvent() (DEPRECATED), and
NdbEventOperation::getValue(). Also see Section 2.3.16, “The
NdbEventOperation Class”.

Signature int execute
(voi d
)
Parameters None.
Return value This method returns 0 on success and - 1 on failure.

NdbEventOperation::getBlobHandle()

Description This method is used in place of get Val ue() for blob attributes.
The blob handle (NdbBI ob) returned by this method supports read
operations only.

To obtain the previous value for a blob attribute, use
get PreBl obHandl e() .

Signature NdbBI ob* get Bl obHandl e
(

const char* nane

)
Parameters The nane of the blob attribute.
Return value A pointer to an NdbBI ob object.
NdbEventOperation::getEpoch()
Description Gets the epoch for the latest event data retrieved.

Added in NDB 7.4, this method supersedes get GCI (), which is
now deprecated and subject to removal in a future NDB Cluster

release.
Signature Ui nt 64 get Epoch
voi d
) const
Parameters None.
Return value An epoch number (an integer).

NdbEventOperation::getEventType() (DEPRECATED)
Description This method is used to obtain the event's type (Tabl eEvent).

This method is deprecated in NDB 7.4, and is subject to removal
in a future release. In NDB 7.4 and later, use get Event Type2()

instead.
Signature NdbDi cti onary: : Event: : Tabl eEvent get Event Type
(voi d
) const
Parameters None.

164

The NdbEventOperation Class

Return value A Tabl eEvent value.
NdbEventOperation::getEventType2()

Description This method is used to obtain the event's type (Tabl eEvent).

Added in NDB 7.4, this method supersedes get Event Type(),
which is now deprecated and subject to removal in a future NDB
Cluster release.

Signature get Event Type2

(voi d

) const
Parameters None.
Return value A Tabl eEvent value.

NdbEventOperation::getGCI() (DEPRECATED)
Description This method retrieves the GCI for the most recently retrieved event.

This method is deprecated in NDB 7.4, and is subject to removal in
a future release. In NDB 7.4 and later, use get Epoch() instead.

Signature U nt 64 get GCl
(voi d
) const
Parameters None.
Return value The global checkpoint index of the most recently retrieved event (an
integer).

NdbEventOperation::getLatestGCIl() (DEPRECATED)
Description This method retrieves the most recent GCI.
This method returns the latest epoch number.

The GCI obtained using this method is not necessarily associated
with an event.

This method is deprecated in NDB 7.4, and is subject to
removal in a future release. In NDB 7.4 and later, use
Ndb: : get Hi ghest QueuedEpoch() instead.

Signature Ui nt 64 get Lat est GClI
(voi d
) const
Parameters None.
Return value The index of the latest global checkpoint, an integer.

NdbEventOperation::getNdbError()

Description This method retrieves the most recent error.

Signature const struct NdbError& get NdbError
(

165

The NdbEventOperation Class

voi d
) const
Parameters None.
Return value A reference to an NdbEr r or structure.

NdbEventOperation::getPreBlobHandle()

Description This function is the same as get Bl obHandl e() , except that it
is used to access the previous value of the blob attribute. See
NdbEventOperation::getBlobHandle().

Signature NdbBI ob* get PreBl obHandl e
(

const char* nane

)
Parameters The nane of the blob attribute.
Return value A pointer to an NdbBI ob.
NdbEventOperation::getPreValue()

Description This method performs identically to get Val ue() , except that it is
used to define a retrieval operation of an attribute's previous value
rather than the current value.

Signature NdbRecAttr* get PreVal ue
(
const char* nane,
char* value = 0
)
Parameters This method takes the two parameters listed here:

« The nane of the attribute (as a constant character pointer).
¢ A pointer to a val ue, such that:

« [f the attribute value is not NULL, then the attribute value is
returned in this parameter.

« [f the attribute value is NULL, then the attribute value is stored
only in the NdbRecAt t r object returned by this method.

See val ue Buffer Memory Allocation, for more information
regarding this parameter.

Return value An NdbRecAt t r object to hold the value of the attribute, or a NULL
pointer indicating that an error has occurred.

NdbEventOperation::getState()

Description This method gets the event operation's current state.
Signature State getState
(voi d
)
Parameters None.
Return value A St at e value.

166

The NdbEventOperation Class

NdbEventOperation::getValue()

Description This method defines the retrieval of an attribute value. The NDB
API allocates memory for the NdbRecAt t r object that is to hold the
returned attribute value.

This method does not fetch the attribute value from the database,
and the NdbRecAt t r object returned by this method is not
readable or printable before calling the execut e() method and
Ndb: : next Event () has returned a non-NULL value.

If a specific attribute has not changed, the corresponding
NdbRecAt t r will be in the state UNDEFI NED. This can be checked
by using NdbRecAt tr: : i sNULL() which in such cases returns - 1.

get Val ue()) retrieves the current value. Use get Pr eVal ue() for
retrieving the previous value.

Signature NdbRecAt tr* get Val ue
(
const char* nane,
char* value = 0
)
Parameters This method takes the two parameters listed here:

e The nane of the attribute (as a constant character pointer).
¢ A pointer to a val ue, such that:

« [f the attribute value is not NULL, then the attribute value is
returned in this parameter.

« [f the attribute value is NULL, then the attribute value is stored
only in the NdbRecAt t r object returned by this method.

See val ue Buffer Memory Allocation, for more information
regarding this parameter.

Return value An NdbRecAt t r object to hold the value of the attribute, or a NULL
pointer indicating that an error has occurred.

val ue Buffer Memory Allocation. Itis the application's responsibility to allocate sufficient memory
for the val ue buffer (if not NULL), and this buffer must be aligned appropriately. The buffer is used
directly (thus avoiding a copy penalty) only if it is aligned on a 4-byte boundary and the attribute size in
bytes (calculated as NdbRecAttr::get _size in_bytes())isamultiple of 4.

NdbEventOperation::hasError() (DEPRECATED)

Description This method is used to determine whether there is an error
associated with this event operation.

This method is deprecated, and is subject to removal in a
future release. In NDB 8.4 and later, it returns a constant. Use
get Event Type2() to determine the event type instead. See
Event::TableEvent.

Signature i nt hasError
(
voi d
) const
Parameters None.

167

The NdbEventOperation Class

Return value NDB 8.3 and earlier: If event loss has taken place, then this method
returns 0O; otherwise, it returns 1.

NDB 8.4 and later: Always returns 0.
NdbEventOperation::isConsistent() (DEPRECATED)

Description This method is used to determine whether event loss has taken
place following the failure of a node.

This method is deprecated in NDB 7.4, and is subject to removal in
a future release. In NDB 7.4 and later, use get Event Type2() to
determine whether the event is of type TE | NCONSI STENT. See
Event::TableEvent.

Signature bool isConsi st ent
(voi d
) const
Parameters None.
Return value If event loss has taken place, then this method returns f al se;

otherwise, it returns t r ue.
NdbEventOperation::isEmptyEpoch()

Description This method is used to determine whether consumed event data
marks an empty epoch.

This method was added in NDB 7.4.

Signature bool i sEnptyEpoch
(voi d
)
Parameters None.
Return value If this epoch is empty, the method returns t r ue; otherwise, it returns
fal se.

NdbEventOperation::isErrorEpoch()

Description This method is used to determine whether consumed event data
marks an empty epoch.

This method was added in NDB 7.4.

Signature bool i sErrorEpoch

NdbDi cti onary: : Event:: Tabl eEvent* error_type = 0
)

Parameters If this is an error epoch, er r or _t ype contains the Tabl eEvent
value corresponding to the error.

Return value If this epoch is in error, the method returns t r ue; otherwise, it
returns f al se.

NdbEventOperation::isOverrun()

Description This method is used to determine whether event loss has taken
place due to a buffer overrun.

168

The NdbEventOperation Class

Signature bool isOverrun
(voi d
) const
Parameters None.
Return value If the event buffer has been overrun, then this method returns t r ue,

otherwise, it returns f al se.
NdbEventOperation::mergeEvents()

Description This method is used to set the merge events flag. For information
about event merging, see Event::mergeEvents().

The merge events flag is f al se by default.

Signature voi d nergeEvents
(bool flag
)
Parameters A Boolean f | ag.
Return value None.

NdbEventOperation::State
This section provides information about the St at e data type.
Description This type describes the event operation's state.
A St at e value is returned by the get St at e() method.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.43 NdbEventOperation data type values and
descriptions

Name Description

EO CREATED The event operation has been created, but
execut e() has not yet been called.

EO EXECUTI NG The execut e() method has been invoked
for this event operation.

EO_DROPPED The event operation is waiting to be
deleted, and is no longer usable.

EO ERROR An error has occurred, and the event
operation is unusable.

NdbEventOperation::tableFragmentationChanged()

Description This method is used to test whether a table's fragmentation
has changed in connection with a TE_ALTER event. (See
Event::TableEvent.)

Signature bool tabl eFragnent ati onChanged
(
voi d
) const
Parameters None.

169

The NdblndexOperation Class

Return value

Returns t r ue if the table's fragmentation has changed; otherwise,
the method returns f al se.

NdbEventOperation::tableFrmChanged()

Description

Signature

Parameters

Return value

Use this method to determine whether a table . FRMfile
has changed in connection with a TE_ALTER event. (See
Event::TableEvent.)

bool tabl eFr nChanged
(

voi d
) const

None.

Returns t r ue if the table . FRMfile has changed; otherwise, the
method returns f al se.

NdbEventOperation::tableNameChanged()

Description

Signature

Parameters

Return value

This method tests whether a table name has changed as the result
of a TE_ALTER table event. (See Event::TableEvent.)

bool tabl eNameChanged
(

voi d
) const

None.

Returns t r ue if the name of the table has changed; otherwise, the
method returns f al se.

NdbEventOperation::tableRangeListChanged()

Description

Signature

Parameters

Return value

Use this method to check whether a table range partition list name
has changed in connection with a TE_ALTER event.

bool tabl eRangelLi st Changed
(

voi d
) const

None.

This method returns t r ue if range or list partition name has
changed; otherwise it returns f al se.

2.3.17 The NdbIndexOperation Class

This section provides information about the Ndbl ndexOper at i on class.

» NdbindexOperation Class Overview

* NdblIndexOperation::deleteTuple()

* NdbindexOperation::getindex()

» NdbindexOperation::readTuple()

» NdblIndexOperation::updateTuple()

170

The NdbIndexOperation Class

NdbIndexOperation Class Overview

Parent class
Child classes

Description

Methods

Types

NdbOper ati on
None

Ndbl ndexOper at i on represents an index operation for use in
transactions. This class inherits from NdbOper at i on.

Ndbl ndexOper at i on can be used only with unique hash indexes;
to work with ordered indexes, use Ndbl ndexScanQper at i on.

This class has no public constructor. To create an instance
of Ndbl ndexQper at i on, it is necessary to use the
NdbTr ansacti on: : get Ndbl ndexQOper ati on() method.

The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.44 NdbIndexOperation class methods and descriptions

Name Description

del et eTupl e() Removes a tuple from a table

get I ndex() Gets the index used by the operation
readTupl e() Reads a tuple from a table

updat eTupl e() Updates an existing tuple in a table

Index operations are not permitted to insert tuples.

The Ndbl ndexOper at i on class defines no public types of its own.

For more information about the use of Ndbl ndexOper at i on, see Single-row operations.

NdbIndexOperation::deleteTuple()

Description

Signature

Parameters

Return value
NdbIndexOperation::getindex()

Description

Signature

Parameters

Return value

NdbIndexOperation::readTuple()

This method defines the Ndbl ndexQOper ati on as a DELETE
operation. When the NdbTr ansact i on: : execut e() method is
invoked, the operation deletes a tuple from the table.

int del eteTuple
(
voi d
)
None.

0 on success, - 1 on failure.

Gets the index, given an index operation.

const NdbDi ctionary:: | ndex* getlndex

(
voi d
) const

None.

A pointer to an | ndex object.

171

The NdbindexScanOperation Class

Description This method defines the Ndbl ndexOper at i on as a READ
operation. When the NdbTr ansact i on: : execut e() method is
invoked, the operation reads a tuple.

Signature int readTuple

(
LockMbde node
)

Parameters node specifies the locking mode used by the read operation. See
NdbOperation::LockMode, for possible values.
Return value 0 on success, - 1 on failure.
NdbIndexOperation::updateTuple()

Description This method defines the Ndbl ndexQOper at i on as an UPDATE
operation. When the NdbTr ansact i on: : execut e() method is
invoked, the operation updates a tuple found in the table.

Signature i nt updat eTupl e
(voi d
)
Parameters None.
Return value 0 on success, - 1 on failure.

2.3.18 The NdbIndexScanOperation Class

This section provides information about the Ndbl ndexScanOper at i on class.
* NdbIndexScanOperation Class Overview

» NdbIndexScanOperation::BoundType

» NdblndexScanOperation::end_of bound()

* NdbIindexScanOperation::getDescending()

* NdblndexScanOperation::get_range _no()

» NdblndexScanOperation::getSorted()

» NdblndexScanOperation::IndexBound

» NdblndexScanOperation::readTuples()

» NdbIndexScanOperation::reset_bounds()

» NdbIndexScanOperation::setBound()

NdblndexScanOperation Class Overview

Parent class NdbScanOper ati on
Child classes None
Description The Ndbl ndexScanQper at i on class represents a scan

operation using an ordered index. This class inherits from
NdbScanOper at i on and NdbQper at i on.

Ndbl ndexScanQper at i on is for use with ordered indexes only; to
work with unique hash indexes, use Ndbl ndexQOper at i on.

172

The NdbindexScanOperation Class

Methods

Types

For more information about the use of Ndbl ndexScanQper ati on,
see Scan Operations, and Using Scans to Update or Delete Rows.

The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.45 NdbIndexScanOperation class methods and
descriptions

Name Description

end_of _bound() Marks the end of a bound

get _range_no() Gets the range number for the current row

get Descendi ng() Checks whether the current scan is sorted

get Sorted() Checks whether the current scan is sorted

readTupl es() Reads tuples using an ordered index

reset bounds() Resets bounds, puts the operation in the
send queue

set Bound() Defines a bound on the index key for a
range scan

The Ndbl ndexScanQper at i on class defines one public type
BoundType.

This class also defines an | ndexBound data structure, for use with
operations employing NdbRecor d.

NdbIndexScanOperation::BoundType

This section provides information abut the BoundType data type.

Description

Enumeration values

This type is used to describe an ordered key bound.

Possible values are shown, along with descriptions, in the following
table:

Table 2.46 NdbIndexScanOperation::BoundType values,
numeric equivalents, and descriptions

Value Numeric Value Description
BoundLE 0 Lower bound
BoundLT 1 Strict lower bound
BoundGE 2 Upper bound
BoundGT 3 Strict upper bound
BoundEQ 4 Equality

The numeric values just shown are “safe”;that is, they are fixed in
the API, and so can be calculated and used explicitly.

NdbIndexScanOperation::end_of_bound()

Description

Signature

This method is used to mark the end of a bound; it is used when
batching index reads (that is, when employing multiple ranges).

i nt end_of _bound

(

Ui nt 32 range_no

173

The NdbindexScanOperation Class

)
Parameters The number of the range on which the bound occurs.

Return value 0 indicates success; - 1 indicates failure.

NdbIndexScanOperation::getDescending()

Description This method is used to check whether the scan is descending.
Signature bool get Descendi ng
(voi d
) const
Parameters None.
Return value This method returns t r ue if the scan is sorted in descending order;

otherwise, it returns f al se.

NdbIndexScanOperation::get_range _no()

Description This method returns the range number for the current row.
Signature i nt get_range_no
(voi d
)
Parameters None.
Return value The range number (an integer).

NdblndexScanOperation::getSorted()

Description This method is used to check whether the scan is sorted.
Signature bool get Sort ed
(voi d
) const
Parameters None.
Return value t r ue if the scan is sorted, otherwise f al se.

NdbIndexScanOperation::IndexBound

This section provides information about the | ndexBound data structure.

Parent class Ndbl ndexScanQper at i on

Description I ndexBound is a structure used to describe index scan bounds for
NdbRecor d scans.

Members Member names, types, and descriptions are shown in the following
table:

Table 2.47 IndexBound structure member names, types, and
descriptions

Name Type Description

| ow _key const char* Row containing lower
bound for scan (or NULL
for scan from the start).

174

The NdbindexScanOperation Class

Name Type Description

| ow key count |Uint32 Number of columns in
lower bound (for bounding
by partial prefix).

[ow_i ncl usi ve |bool True for <= relation, false

for <.

hi gh_key

const char*

Row containing upper
bound for scan (or NULL
for scan to the end).

hi gh_key_ count

Ui nt 32

Number of columns
in upper bound (for
bounding by partial
prefix).

hi gh_i ncl usi ve

bool

True for >= relation, false
for >.

range_no

Ui nt 32

Value to identify this
bound; may be read using
the get _range_no()
method (see
NdblndexScanOperation::d
This value must be less
than 8192 (set to zero

if it is not being used).

For ordered scans,
range_no must be
strictly increasing for each
range, or else the result
set will not be sorted

correctly.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbIndexScanOperation::readTuples()

Description

Signature

Parameters

This method is used to read tuples, using an ordered index.

virtual int readTuples

(

LockMbde nmode = LM Read,

Ui nt 32 flags = 0,
Ui nt 32 parallel = 0,
Ui nt 32 batch = 0

)

The r eadTupl es() method takes the three parameters listed here:

* The lock node used for the scan. This is a LockMode value;
see NdbOperation::LockMode for more information, including

permitted values.

* One or more scan flags; multiple f | ags are
OR'ed together as they are when used with
NdbScanOper ati on: : readTupl es() . See
NdbScanOperation::ScanFlag for possible values.

e The number of fragments to scan in par al | el ; use 0 to specify
the maximum automatically.

175

et_rang

The NdbindexScanOperation Class

e The bat ch parameter specifies how many records will
be returned to the client from the server by the next
NdbScanQOper ati on: : next Resul t (t rue) method call. Use 0
to specify the maximum automatically.

Note
g This parameter was ignored prior to

MySQL 5.1.12, and the maximum was
used.(Bug #20252)

Return value An integer: O indicates success; - 1 indicates failure.
NdbIndexScanOperation::reset_bounds()

Description Resets the bounds, and puts the operation into the list sent on the
next call to NdbTr ansact i on: : execut e() .

Signature int reset_bounds
(

bool forceSend = false

)

Parameters Set f or ceSend to t r ue in order to force the operation to be sent
immediately.
Return value Returns 0 on success, - 1 on failure.

NdbIndexScanOperation::setBound()

Description This method defines a bound on an index key used in a range scan,
and sets bounds for index scans defined using NdbRecor d.

As used with NdbRecor d, this method is called to add a range
to an index scan operation which has been defined with a call

to NdbTr ansacti on: : scanl ndex() . To add more than one
range, the index scan operation must have been defined with the
SF_ Ml ti Range flag set. (See NdbScanOperation::ScanFlag.)

Where multiple numbered ranges are defined with multiple calls

to set Bound(), and the scan is ordered, the range number for
each range must be larger than the range number for the previously
defined range.

Signature i nt setBound

(
const NdbRecord* keyRecord,

const | ndexBound& bound

)

Parameters As used with NdbRecor d, this method takes 2 parameters, listed
here:

« keyRecor d: This is an NdbRecor d structure corresponding to
the key on which the index is defined.

e The bound to add (see NdbindexScanOperation::IndexBound).
Return value Returns 0 on success, - 1 on failure.

An additional version of this method can be used when the application knows that rows in-range
will be found only within a particular partition. This is the same as that shown previously, except for

176

The NdbindexScanOperation Class

the addition of a Par ti t i onSpec. Doing so limits the scan to a single partition, improving system

efficiency.

Signature (when specifying a
partition)

Parameters (when specifying a
partition)

Return value

“Old” API usage (prior to
introduction of NdbRecord)

Signature (“Old” API)

i nt set Bound

(
const NdbRecord* keyRecord,

const | ndexBound& bound,
const Ndb::PartitionSpec* partlnfo,
Ui nt32 sizeOPartinfo = 0

)
This method can also be invoked with the following four parameters:

* keyRecor d: This is an NdbRecor d structure corresponding to
the key on which the index is defined.

e The bound to be added to the scan (see
NdbIndexScanOperation::IndexBound).

e partlnfo: Thisis apointertoaPartiti onSpec, which
provides extra information making it possible to scan a reduced
set of partitions.

e sizeOf Part | nf o: The length of the partition specification.

keyRecor d and bound are defined and used in the same way as
with the 2-parameter version of this method.

Returns 0 on success, - 1 on failure.

Each index key can have a lower bound, upper bound, or both.
Setting the key equal to a value defines both upper and lower
bounds. Bounds can be defined in any order. Conflicting definitions
gives rise to an error.

Bounds must be set on initial sequences of index keys, and all but
possibly the last bound must be nonstrict. This means, for example,
that “a >= 2 AND b > 3" is permissible, but “a > 2 AND b >= 3" is not.

The scan may currently return tuples for which the bounds are not
satisfied. For example,a<= 2 && b <= 3 not only scans the
index up to (a=2, b=3), but also returns any (a=1, b=4) as
well.

When setting bounds based on equality, it is better to use BoundEQ
instead of the equivalent pair BoundLE and BoundGE. This is
especially true when the table partition key is a prefix of the index
key.

NULL is considered less than any non-NULL value and equal to
another NULL value. To perform comparisons with NULL, use
set Bound() with a null pointer (0).

An index also stores all-NULL keys as well, and performing an index
scan with an empty bound set returns all tuples from the table.

Using the “old” API, this method could be called in either of two
ways. Both of these use the bound type and value; the first also
uses the name of the bound, as shown here:

i nt set Bound

(

const char* nane,

177

The NdblinterpretedCode Class

i nt type,
const voi d* val ue

)

The second way to invoke this method under the “old” API uses the
bound's ID rather than the name, as shown here:

i nt set Bound

(
Ui nt 32 id,
i nt type,
const voi d* val ue
)
Parameters (“Old” API) This method takes 3 parameters:

« Either the nane or the i d of the attribute on which the bound is to
be set.

e The bound t ype—see NdblndexScanOperation::BoundType.
¢ A pointer to the bound val ue (use O for NULL).

Return value Returns 0 on success, - 1 on failure.

2.3.19 The NdblinterpretedCode Class

This section provides information about the Ndbl nt er pr et edCode class, which can be used to

prepare and execute an NDB API interpreted program.

NdblinterpretedCode Class Overview

NdblinterpretedCode Constructor

NdblinterpretedCode::
NdblinterpretedCode:
NdblinterpretedCode:
NdbinterpretedCode:
NdblinterpretedCode:
NdbinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:

NdbinterpretedCode:

add_reg()

:add_val()
:branch_col_and_mask_eq_mask()
:branch_col_and_mask_eq_zero()
:branch_col_and_mask ne_mask()
:branch_col_and_mask_ne_zero()
:branch_col_eq()
:branch_col_eq_null()
:branch_col_eq_param()
:branch_col_ge()
:branch_col_ge_param()
:branch_col_gt()
:branch_col_gt_param()
:branch_col_le()
:branch_col_le_param()
:branch_col_like()

:branch_col_lIt()

178

The NdblinterpretedCode Class

NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdbinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdbinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:
NdbinterpretedCode:
NdblinterpretedCode:
NdblinterpretedCode:

NdblinterpretedCode:

:branch_col_It_param()
:branch_col_ne()
branch_col_ne_null()
:branch_col_ne_param()
:branch_col_notlike()
:branch_eq()
:branch_eq_null()
:branch_ge()
:branch_gt()
:branch_label()
:branch_le()
:branch_lt()
:branch_ne()
:branch_ne_null()
:call_sub()

:copy()

:def_label()
:def_sub()

finalise()
:getNdbError()
:getTable()
:getWordsUsed()
sinterpret_exit_last_row()
;interpret_exit_nok()
sinterpret_exit_ok()
:load_const_null()
:load_const_ul6()
sload_const_u32()
:load_const_u64()
:read_attr()

-reset()

:ret_sub()

:sub_reg()

:sub_val()

179

The NdblinterpretedCode Class

* NdblinterpretedCode::write_attr()

NdblInterpretedCode Class Overview

Parent class None.
Child classes None.
Description Ndbl nt er pr et edCode represents an interpreted program for

use in operations created using NdbRecor d, or with scans created
using the old API. The NdbScanFi | t er class can also be used to
generate an NDB interpreted program using this class.

To create an Ndbl nt er pr et edCode object, invoke the constructor,
optionally supplying a table for the program to operate on, and a
buffer for program storage and finalization. If no table is supplied,
then only instructions which do not access table attributes can be
used. In NDB 8.0, an instance of Ndbr ecor d can be used for this
purpose, in place of the Tabl e.

Each NDB API operation applies to one table, and so does any
Ndbl nt er pr et edCode program attached to that operation.

If no buffer is supplied, then an internal buffer is dynamically
allocated and extended as necessary. Once the

Ndbl nt er pr et edCode object is created, you can add instructions
and labels to it by calling the appropriate methods as described
later in this section. When the program has completed, finalize it
by calling the fi nal i se() method, which resolves any remaining
internal branches and calls to label and subroutine offsets.

A single finalized Ndbl nt er pr et edCode program can be used by
more than one operation. It need not be re-prepared for successive
operations.

To use the program with NdbRecor d operations and scans, pass

it at operation definition time using the Qper ati onOpt i ons or
ScanOpt i ons parameter. When the program is no longer required,
the Ndbl nt er pr et edCode object can be deleted, along with any
user-supplied buffer.

For additional information and examples, see Section 1.6, “Using
NdblinterpretedCode”.

This interface is still under development, and so is subject to change
without notice. The NdbScanFi | t er APl is a more stable API for
defining scanning and filtering programs.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.48 NdblinterpretedCode class methods and descriptions

Name Description
Ndbl nt er pr et edCodeClass constructor
add_reg() Add two register values and store the result

in a third register

add_val () Add a value to a table column value

180

The NdblinterpretedCode Class

Name

Description

branch_col _and_nma

skurep ifreasél(inn value ANDed with a
bitmask is equal to the bitmask

branch_col and _na

sJurep ifzzecal(linn value ANDed with a
bitmask is equal to 0

branch_col and na

skumgp ifreasdl(iinn value ANDed with a
bitmask is not equal to the bitmask

branch_col and nma

skumgp ifzzecal(iinn value ANDed with a
bitmask is not equal to 0

branch_col _eq()

Jump if a column value is equal to another

branch_col _eq_par

ajgmp if a column value is equal to a
supplied parameter

branch_col _eq_nul |

Jump if a column value is NULL

branch_col _ge()

Jump if a column value is greater than or
equal to another

branch_col _ge_par

ajgmp if a column value is greater than or
equal to a supplied parameter

branch_col gt ()

Jump if a column value is greater than
another

branch_col _gt _par

ajmp if a column value is greater than a
supplied parameter

branch_col _I e()

Jump if a column value is less than or
equal to another

branch_col _|ike()

Jump if a column value matches a pattern

branch_col 1t ()

Jump if a column value is less than another

branch_col ne()

Jump if a column value is not equal to
another

branch_col ne_nul |

Jump if a column value is not NULL

branch_col ne_par

ajgmp if a column value is not equal to a
supplied parameter

branch_col _notlik

2[Ump if a column value does not match a
pattern

branch_eq()

Jump if one register value is equal to
another

branch_eq_nul | ()

Jump if a register value is NULL

branch_ge()

Jump if one register value is greater than
or equal to another

branch_gt ()

Jump if one register value is greater than
another

branch_I abel ()

Unconditional jump to a label

branch_l e()

Jump if one register value is less than or
equal to another

branch_col | e_par

ajgmp if a column value is greater than or
equal to a supplied parameter

branch_It ()

Jump if one register value is less than
another

181

The NdblinterpretedCode Class

Types
NdblinterpretedCode Constructor

Description

Signature

Name

Description

branch_col |t_par

ajgmp if a column value is less than a
supplied parameter

branch_ne()

Jump if one register value is not equal to
another

branch_ne_nul | ()

Jump if a register value is not NULL

call _sub()

Call a subroutine

copy() Make a deep copy of an
Ndbl nt er pr et edCode object

def | abel () Create a label for use within the interpreted
program

def sub() Define a subroutine

finalise()

Completes interpreted program and
prepares it for use

get NdbError ()

Gets the most recent error associated with
this Ndbl nt er pr et edCode object

get Tabl e()

Gets the table on which the program is
defined

get Wor dsUsed()

Gets the number of words used in the
buffer

interpret_exit _la

sRetuomv@)row as part of the result, and do
not check any more rows in this fragment

interpret_exit_no

KD® not return a row as part of the result

interpret_exit_ok

Return a row as part of the result

| oad_const _nul | ()

Load a NULL value into a register

| oad_const _ul6()

Load a 16-bit numeric value into a register

| oad_const _u32()

Load a 32-bit numeric value into a register

| oad_const _u64()

Load a 64-bit numeric value into a register

read_attr()

Read a table column value into a register

reset () Discard program

ret_sub() Return from a subroutine

sub_reg() Subtract two register values and store the
result in a third register

sub_val () Subtract a value from a table column value

wite attr()

Write a register value into a table column

For reasons of efficiency, methods of this class provide minimal

error checking.

See also Section 1.6, “Using NdblnterpretedCode”.

This class defines no public types.

This is the Ndbl nt er pr et edCode class constuctor.

Ndbl nt er pr et edCode
(

const NdbDictionary:: Tabl e* table = 0,

182

The NdblinterpretedCode Class

Alternative constructor (NDB
8.0)

Parameters

Return value

NdblinterpretedCode::add_reg()

Description

Signature

Parameters

Return value
NdbinterpretedCode::add_val()

Description

Ui nt32* buffer = 0,
U nt32 buffer word _size = 0

)

Ndbl nt er pr et edCode

(
const NdbRecor d&,
Ui nt 32* buffer = 0,
Uint32 buffer_word_size = 0);

The Ndbl nt er pr et edCode constructor takes three parameters, as
described here:

e Thet abl e against which this program is to be run. Prior to NDB
8.0, this parameter must be supplied if the program is table-
specific—that is, if it reads from or writes to columns in a table. In
NDB 8.0, the constructor accepts an NdbRecor d in place of the
Tabl e

e A pointer to a buf f er of 32-bit words used to store the program.

e buffer_word_si ze is the length of the buffer passed in. If the
program exceeds this length then adding new instructions will fail
with error 4518 Too many instructions in interpreted
program

Alternatively, if no buffer is passed, a buffer will be dynamically
allocated internally and extended to cope as instructions are
added.

An instance of Ndbl nt er pr et edCode.

This method sums the values stored in any two given registers and
stores the result in a third register.

int add_reg

(
Ui nt 32 RegDest,

Ui nt 32 RegSour cel,
Ui nt 32 RegSour ce?2

)

This method takes three parameters. The first of these is the
register in which the result is to be stored (RegDest). The second
and third parameters (RegSour cel and RegSour ce?2) are the
registers whose values are to be summed.

For storing the result, it is possible to re-use one of the registers
whose values are summed; that is, RegDest can be the same as
RegSour cel or RegSour ce?2.

Returns 0 on success, - 1 on failure.

This method adds a specified value to the value of a given table
column, and places the original and modified column values

in registers 6 and 7. It is equivalent to the following series of

Ndbl nt er pr et edCode method calls, where at t r | d is the table
column' attribute ID and aVal ue is the value to be added:

read_attr(6, attrld);

183

The NdblinterpretedCode Class

| oad_const _u32(7, aVal ue);
add_reg(7,6,7);
wite attr(attrlid, 7);

aVal ue can be a 32-bit or 64-bit integer.

Signature This method can be invoked in either of two ways, depending on
whether aVal ue is 32-bit or 64-bit.

32-bit aval ue:

int add_val

(
Uint32 attrld,

Ui nt 32 aVal ue
)

64-bit aVal ue:

int add_val

(
Unt32 attrld,

Ui nt 64 aVal ue
)

Parameters A table column attribute ID and a 32-bit or 64-bit integer value to be
added to this column value.

Return value Returns 0 on success, - 1 on failure.
NdblinterpretedCode::branch_col_and_mask_eq_mask()

Description This method is used to compare a Bl T column value with a bitmask;
if the column value ANDed together with the bitmask is equal to the
bitmask, then execution jumps to a specified label specified in the
method call.

Signature int branch_col _and_mask_eq_nmask
(

const voi d* mask,
U nt 32 unused,
unt32 attrld,

Ui nt 32 | abel

)

Parameters This method can accept four parameters, of which three are actually
used. These are described in the following list:

« A pointer to a constant mask to compare the column value to

A Ui nt 32 value which is currently unused.

The at t r | d of the column to be compared.
* A program | abel to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and - 1 on failure.
NdbinterpretedCode::branch_col_and_mask_eq_zero()

Description This method is used to compare a Bl T column value with a bitmask;
if the column value ANDed together with the bitmask is equal to O,

184

The NdblinterpretedCode Class

then execution jumps to a specified label specified in the method

call.
Signature int branch_col _and_mask_eq_zero
(
const voi d* mask,
Ui nt 32 unused,
Unt32 attrld,
Ui nt 32 | abel
)
Parameters This method can accept the following four parameters, of which

three are actually used:

* A pointer to a constant nask to compare the column value to.
¢ A Ui nt 32 value which is currently unused.

e The attrl d of the column to be compared.

e Aprogram | abel to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and - 1 on failure.
NdblinterpretedCode::branch_col_and_mask_ne_mask()

Description This method is used to compare a Bl T column value with a bitmask;
if the column value ANDed together with the bitmask is not equal to
the bitmask, then execution jumps to a specified label specified in
the method call.

Signature int branch_col _and_mask_ne_mask
(

const voi d* mask,
Ui nt 32 unused,
Unt32 attrld,

Ui nt 32 | abel

)

Parameters This method accepts four parameters, of which three are actually
used. These described in the following list:

* A pointer to a constant nask to compare the column value to.

A Ui nt 32 value which is currently unused.

The at t r | d of the column to be compared.
e Aprogram | abel to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and - 1 on failure.
NdbinterpretedCode::branch_col_and_mask_ne_zero()

Description This method is used to compare a Bl T column value with a bitmask;
if the column value ANDed together with the bitmask is not equal to
0, then execution jumps to a specified label specified in the method
call.

185

The NdblinterpretedCode Class

Signature int branch_col _and_mask_ne_zero
(

const voi d* mask,
U nt 32 unused,
unt32 attrld,

Ui nt 32 | abel

)

Parameters This method accepts the following four parameters, of which three
are actually used:

« A pointer to a constant mask to compare the column value to.

A Ui nt 32 value which is currently unused.

The at t r | d of the column to be compared.
e Aprogram | abel to jump to if the condition is true.

Prior to NDB 8.0.30, this argument was not handled correctly for
nonzero values. (Bug #33888962)

Return value This method returns 0 on success and - 1 on failure.
NdblInterpretedCode::branch_col_eq()

Description This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the values are
equal. In NDB 8.0, it can also be used to compare two columns for
equality.

Signature Compare a column with a value:

int branch_col _eq

(

const void* val,
Ui nt32 | en,
Uint32 attrld,
Ui nt 32 Label

)

Compare two columns:

int branch_col _eq

(
Unt32 attrldi,

Unt32 attrld2,
Ui nt 32 | abel

)

Parameters When comparing a column and a value, this method takes the
following four parameters:

¢ A constant value (val)
¢ The length of the value (in bytes)

¢ The attribute ID of the table column whose value is to be
compared with val

e A Label (previously defined using def | abel ()) to jump to if
the compared values are equal

When comparing two table column values, the parameters required
are shown here:

186

The NdblinterpretedCode Class

*« Attrldl: The attribute ID of the first table column whose value is
to be compared

 Attrl d2: The attribute ID of the second table column

e | abel : Location to jump to if the compared columns are the
same. Must already have been defined using def _| abel ()

When using this method to compare two columns, the columns must
be of exactly the same type.

Return value Returns 0 on success, - 1 on failure.

NdblinterpretedCode::branch_col_eq_null()

Description This method tests the value of a table column and jumps to the
indicated program label if the column value is NULL.
Signature i nt branch_col _eq_nul |
(
Unt32 attrld,
Ui nt 32 Label
)
Parameters This method requires the following two parameters:

¢ The attribute ID of the table column
¢ The program label to jump to if the column value is NULL

Return value Returns 0 on success, - 1 on failure.
NdblinterpretedCode::branch_col _eq_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if they are equal. Added in NDB
8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking set Sql CnpSermanti cs() .

Signature int branch_col _eq_param
(
unt32 attrld,
Ui nt 32 paranmi d,

Ui nt 32 | abel
)

Parameters attrid ID of a table attribute.

paramld Parameter ID.

label Label to jump to if arguments are

equal.
Return value 0 on success.
NdblinterpretedCode::branch_col_ge()

Description This method compares a table column value with an arbitrary

constant and jumps to the specified program label if the constant

187

The NdblinterpretedCode Class

Signature

Parameters

Return value

column value. In NDB 8.0, it can also be used to compare two
columns, and to perform the jump if the value of the first column is
greater than or equal to that of the second.

Compare value with column:

int branch_col ge

(

const void* val,
Uint32 |en,
Unt32 attrld,
Ui nt 32 | abel

)

Compare values of two columns:

int branch_col _ge

(
unt32 attrldi,

uint32 attrld2,
Ui nt 32 | abel

)

When used to compare a value with a column, this method takes the
four parameters listed here:

e A constant value (val)
¢ The length of the value (in bytes)

* The attribute ID of the table column whose value is to be
compared with val

e Al abel (previously defined using def _I abel ()) to jump to if
the constant value is greater than or equal to the column value

The method takes the parameters listed here when used to compare
two columns:

« Attr ! dl: The attribute ID of the first table column whose value is
to be compared

* Attrld2: The attribute ID of the second table column

e | abel : Jump to this if the first column value is greater than or
equal to the second

When comparing two columns, the types of the columns must be
exactly the same in all respects.

Returns 0 on success, - 1 on failure.

NdblinterpretedCode::branch_col_ge param()

Description

Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is greater
than or equal to that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking set Sql CnpSermanti cs() .

188

The NdblinterpretedCode Class

Signature int branch_col _ge_param
(
unt32 attrld,
Ui nt 32 parami d,

Ui nt 32 | abel
)

Parameters attrid ID of a table attribute.

paramld Parameter ID.

label Label to jump to if column value

is not less than parameter value.
Return value 0 on success.
NdblinterpretedCode::branch_col_gt()

Description This method compares a table column value with an arbitrary

constant and jumps to the specified program label if the constant

is greater than the column value. In NDB 8.0, this method is
overloaded such that it can be used to compare two column values,
and to make the jump if the first is greater than the second.

Signature Compare value with column:

int branch_col ge

(
const void* val,
Uint32 |len,
Unt32 attrld,
Ui nt 32 | abel

)

Compare values of two columns:

int branch_col ge

(
Uint32 attrldi,

Uint32 attrld2,
Ui nt 32 | abel

)

Parameters When used to compare a value with a table column, this method
takes the following four parameters:

« A constant value (val)
e The length of the value (in bytes)

* The attribute ID of the table column whose value is to be
compared with val

e A Label (previously defined using def _| abel ()) to jump to if
the constant value is greater than the column value

The method takes the three parameters listed here when used to
compare two columns:

« Attrldl: The attribute ID of the first table column whose value is
to be compared

 Attrl d2: The attribute ID of the second table column

189

The NdblinterpretedCode Class

e | abel : Jump to this if the first column value is greater than or
equal to the second

When comparing two columns, the types of the columns must be
exactly the same in all respects.

Return value Returns 0 on success, - 1 on failure.

NdblInterpretedCode::branch_col_gt _param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is greater
than that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking set Sql CnpSermanti cs() .

Signature int branch_col gt _param
(
unt32 attrld,
Ui nt 32 param d,

Ui nt 32 | abel
)

Parameters attrid ID of a table attribute.

paramld Parameter ID.

label Label to jump to if column value

is greater than parameter value.
Return value 0 on success.
NdblinterpretedCode::branch_col_le()

Description This method compares a table column value with an arbitrary

constant and jumps to the specified program label if the constant is
less than or equal to the column value. In NDB 8.0, it can also be
used to compare two table column values in this fashion.

Signature Compare a table column value with a constant:

int branch_col le
(
const voi d* val,
Uint32 |len,
unt32 attrld,
Ui nt 32 Label

)

Compare values of two table columns:

int branch_col _ge

(
Uint32 attrldi,

Unt32 attrld2,
Ui nt 32 | abel

)

Parameters When comparing a table column value with a constant, this method
takes the four parameters listed here:

190

The NdblinterpretedCode Class

Return value

* A constant value (val)

The length of the value (in bytes)

The attribute 1D of the table column whose value is to be
compared with val

L]

A Label (previously defined using def | abel ()) to jump to if
the constant value is less than or equal to the column value

The method takes the three parameters listed here when used to
compare two table column values:

e Attr! dl: The attribute ID of the first table column whose value is
to be compared

« Attrl d2: The attribute ID of the second table column

e | abel : Jump to this if the first column value is less than or equal
to the second

When comparing two table column values, the types of the column
values must be exactly the same in all respects.

Returns 0 on success, - 1 on failure.

NdblInterpretedCode::branch_col_le_param()

Description

Signature

Parameters

Return value

Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is less than
or equal to that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking set Sgl ChpSenmant i cs() .

int branch_col _| e_param
(
Unt32 attrld,
Ui nt 32 param d,

Ui nt 32 | abel
)
attrid ID of a table attribute.
paramld Parameter ID.
label Label to jump to if column value
is not greater than parameter
value.

0 on success.

NdblinterpretedCode::branch_col_like()

Description

Signature

This method tests a table column value against a regular expression
pattern and jumps to the indicated program label if they match.

int branch_col _|ike

(

const voi d* val,

191

The NdblinterpretedCode Class

Parameters

Return value

Unt32 |len,
unt32 attrld,
U nt 32 Label

)
This method takes four parameters, which are listed here:

« Aregular expression pattern (val); see Pattern-Based
NdblinterpretedCode Branch Operations, for the syntax supported

Length of the pattern (in bytes)

The attribute ID for the table column being tested

e The program label to jump to if the table column value matches
the pattern

0 on success, - 1 on failure

NdblInterpretedCode::branch_col_lt()

Description

Signature

Parameters

This method compares a table column value with an arbitrary
constant and jumps to the specified program label if the constant
is less than the column value. In NDB 8.0, two table column values
can be compared instead.

Compare a table column value with a constant:

int branch_col It

(

const void* val,
Ui nt32 | en,
Unt32 attrld,
Ui nt 32 Label

)

Compare two table column values:

int branch_col _It

(
unt32 attrldi,

unt32 attrld2,
Ui nt 32 | abel
)

When comparing a table column value with a constant, this method
takes the following four parameters:

* A constant value (val)
¢ The length of the value (in bytes)

* The attribute ID of the table column whose value is to be
compared with val

e A lLabel (previously defined using def _| abel ()) to jump to if
the constant value is less than the column value

When used to compare two table column values,
branch_col |t () takes the folowwing three parameters:

« Attrldl: The attribute ID of the first table column whose value is
to be compared

« Attrl d2: The attribute ID of the second table column

192

The NdblinterpretedCode Class

e | abel : Jump to this if the first column value is less than the
second

When comparing two table column values, the types of the table
column values must be exactly the same. This means that they must
have the same length, precision, and scale.

Return value 0 on success, - 1 on failure.
NdblinterpretedCode::branch_col_It_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if the attribute value is less than
that of the parameter. Added in NDB 8.0.27.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking set Sql CnpSermanti cs() .

Signature int branch_col |t _param
(
Unt32 attrld,
Ui nt 32 param d,

Ui nt 32 | abel
)

Parameters attrid ID of a table attribute.

paramld Parameter ID.

label Label to jump to if column value

is less than parameter value.
Return value 0 on success.
NdblinterpretedCode::branch_col_ne()

Description This method compares a table column value with an arbitrary

constant and jumps to the specified program label if the two values
are not equal. In NDB 8.0, it can also be used to compare a table
column value with another table column value instead.

Signature Compare a table column value with a constant:

int branch_col ne
(
const void* val,
Uint32 |len,
unt32 attrld,
Ui nt 32 Label
)

Compare two table column values:

int branch_col _ne

(
Unt32 attrldi,

Uint32 attrld2,
Ui nt 32 | abel

)

Parameters When comparing a table column value with a constant, this method
takes the four parameters listed here:

193

The NdblinterpretedCode Class

* A constant value (val)
¢ The length of the value (in bytes)

¢ The attribute ID of the table column whose value is to be
compared with val

e ALabel (previously defined using def _I abel ()) to jump to if
the compared values are unequal

When comparing two table column values, the parameters required
are shown here:

* Attrldl: The attribute ID of the first table column whose value is
to be compared

*« Attrl d2: The attribute ID of the second table column

e | abel : Location to jump to if the compared columns are not the
same. Must already have been defined using def _| abel ()

When using this method to compare two table column values, the
columns must be of exactly the same type.

Return value Returns 0 on success, - 1 on failure.
NdblinterpretedCode::branch_col_ne_null()

Description This method tests the value of a table column and jumps to the
indicated program label if the column value is not NULL.

Signature int branch_col _ne_nul |
(
Uint32 attrld,
Ui nt 32 Label
)
Parameters This method requires the following two parameters:

* The attribute ID of the table column

e The program label to jump to if the column value is not NULL. The
label must have been defined previously using def _| abel ().

Return value Returns 0 on success, - 1 on failure.
NdblInterpretedCode::branch_col_ne_param()

Description Compares a table attribute with a parameter, each specified by ID,
and branches to the specified label if they are not equal.

The parameter can be NULL, and is compared according to the
NULL handling mode in effect; the default is to treat NULL as less
than any other value, and NULL as equal to NULL. You can override
this behavior and force NULL handling that complies with the SQL
standard instead, by invoking set Sgl ChpSenmant i cs() .

Signature int branch_col _ne_param
(
Uint32 attrld,
Ui nt 32 param d,
Ui nt 32 | abel

)

194

The NdblinterpretedCode Class

Parameters

Return value

attrid ID of a table attribute.

paramld Parameter ID.

label Label to jump to if arguments are
not equal.

0 on success.

NdblinterpretedCode::branch_col_notlike()

Description

Signature

Parameters

Return value

NdblInterpretedCode::branch_eq()

Description

Signature

Parameters

Return value

This method is similar to branch_col _|'i ke() inthat it tests a
table column value against a regular expression pattern; however
it jumps to the indicated program label only if the pattern and the
column value do not match.

int branch_col _notlike

(

const void* val,
Uint32 |en,
Uint32 attrld,
Ui nt 32 Label

)
This method takes the following four parameters:

* Aregular expression pattern (val); see Pattern-Based
NdbinterpretedCode Branch Operations, for the syntax supported

« Length of the pattern (in bytes)
e The attribute ID for the table column being tested

¢ The program label to jump to if the table column value does not
match the pattern. The Label must have been defined previously
using def _| abel ().

Returns 0 on success, - 1 on failure

This method compares two register values; if they are equal, then
the interpreted program jumps to the specified label.

int branch_eq

(
Ui nt 32 RegLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

This method takes three parameters, the registers whose values are
to be compared—RegLval ue and RegRval ue—and the program
Label tojump to if they are equal. Label must have been defined
previously using def [abel ().

0 on success, - 1 on failure.

NdblinterpretedCode::branch_eq_null()

Description

This method compares a register value with NULL; if the register
value is null, then the interpreted program jumps to the specified
label.

195

The NdblinterpretedCode Class

Signature

Parameters

Return value
NdblinterpretedCode::branch_ge()

Description

Signature

Parameters

Return value

NdblInterpretedCode::branch_gt()

Description

Signature

Parameters

Return value

int branch_eq_nul |

(
Ui nt 32 Reglval ue,

U nt 32 Label
)

This method takes two parameters, the register whose value is to be
compared with NULL (RegLval ue) and the program Label to jump
to if RegLval ue is null. Label must have been defined previously
using def _| abel ().

0 on success, - 1 on failure.

This method compares two register values; if the first is greater
than or equal to the second, the interpreted program jumps to the
specified label.

int branch_ge

(
Ui nt 32 ReglLval ue,
Ui nt 32 RegRval ue,
Ui nt 32 Label

)

This method takes three parameters, the registers whose values
are to be compared—RegLval ue and RegRval ue—and the
program Label to jump to if RegLval ue is greater than or equal
to RegRval ue. Label must have been defined previously using
def | abel ().

0 on success, - 1 on failure.

This method compares two register values; if the first is greater than
the second, the interpreted program jumps to the specified label.

int branch_gt

(
Ui nt 32 RegLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

This method takes three parameters, the registers whose values are
to be compared—RegLval ue and RegRval ue—and the program
Label tojump toif RegLval ue is greater than RegRval ue. Label
must have been defined previously using def _| abel ().

0 on success, - 1 on failure.

NdblinterpretedCode::branch_label()

Description

Signature

Parameters

This method performs an unconditional jump to an interpreted
program label (see NdblinterpretedCode::def label()).

i nt branch_| abel

(
U nt 32 Label

)

This method takes a single parameter, an interpreted program
Label defined using def | abel ().

196

The NdblinterpretedCode Class

Return value

NdbInterpretedCode::branch_le()

Description

Signature

Parameters

Return value
NdblinterpretedCode::branch_lt()

Description

Signature

Parameters

Return value

NdblinterpretedCode::branch_ne()

Description

Signature

Parameters

Return value

0 on success, - 1 on failure.

This method compares two register values; if the first is less than or
equal to the second, the interpreted program jumps to the specified
label.

int branch_le

(
Ui nt 32 RegLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

This method takes three parameters, the registers whose values
are to be compared—ReglLval ue and RegRval ue—and the
program Label to jump to if RegLval ue is less than or equal to
RegRval ue. Label must have been defined previously using
def | abel ().

0 on success, - 1 on failure.

This method compares two register values; if the first is less than
the second, the interpreted program jumps to the specified label.

int branch_|t

(
Ui nt 32 RegLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

This method takes three parameters, the registers whose values are
to be compared—RegLval ue and RegRval ue—and the program
Label tojump to if RegLval ue is less than RegRval ue. Label
must have been defined previously using def _| abel ().

0 on success, - 1 on failure.

This method compares two register values; if they are not equal,
then the interpreted program jumps to the specified label.

int branch_ne

(
Ui nt 32 Reglval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

This method takes three parameters, the registers whose values are
to be compared (RegLval ue and RegRval ue) and the program
label to jump to if they are not equal. Label must have been
defined previously using def | abel ().

0 on success, - 1 on failure.

NdblinterpretedCode::branch_ne_null()

Description

This method compares a register value with NULL; if the value is not
null, then the interpreted program jumps to the specified label.

197

The NdblinterpretedCode Class

Signature int branch_ne_nul |
(
Ui nt 32 Reglval ue,
Ui nt 32 Label
)
Parameters This method takes two parameters, the register whose value is to

be compared with NULL (RegLval ue) and the program Label to
jump to if RegLval ue is not null. Label must have been defined
previously using def | abel ().

Return value 0 on success, - 1 on failure.
NdblInterpretedCode::call_sub()
Description This method is used to call a subroutine.

Signature int call_sub
(
Ui nt 32 Subr out i neNunber
)

Parameters This method takes a single parameter, the number identifying the
subroutine to be called.

Return value Returns 0 on success, - 1 on failure.
NdblinterpretedCode::copy()

Description Makes a deep copy of an Ndbl nt er pr et edCode object.

Signature int copy

(
const Ndbl nt er pret edCode& src

)
Parameters A reference to the copy.

Return value 0 on success, or an error code.

NdblinterpretedCode::def_label()

Description This method defines a label to be used as the target of one or more
jumps in an interpreted program.

def | abel () uses a 2-word buffer and requires no space for request messages.

Signature int def_| abel
(

int Label Num

)

Parameters This method takes a single parameter Label Num an integer whose
value must be uniqgue among all values used for labels within the
interpreted program.

Return value 0 on success; - 1 on failure.

NdblinterpretedCode::def_sub()

Description This method is used to mark the start of a subroutine. See Using
Subroutines with NdblinterpretedCode, for more information.

Signature int def sub

(
Ui nt 32 Subr out i neNunber

)

198

The NdblinterpretedCode Class

Parameters A single parameter, a number used to identify the subroutine.
Return value Returns 0 on success, - 1 otherwise.

NdblInterpretedCode::finalise()

Description This method prepares an interpreted program, including any
subroutines it might have, by resolving all branching instructions and
calls to subroutines. It must be called before using the program, and
can be invoked only once for any given Ndbl nt er pr et edCode
object.

If no instructions have been defined, this method attempts to insert a
single i nt er pret _exi t _ok() method call prior to finalization.

Signature int finalise
(voi d
)
Parameters None.
Return value Returns 0 on success, - 1 otherwise.

NdbinterpretedCode::getNdbError()

Description This method returns the most recent error associated with this
Ndbl nt er pr et edCode object.

Signature const class NdbError& get NdbError
(voi d
) const

Parameters None.

Return value A reference to an NdbEr r or object.

NdblinterpretedCode::getTable()

Description This method can be used to obtain a reference to the table for which
the Ndbl nt er pr et edCode object was defined.

Signature const NdbDi ctionary:: Tabl e* get Tabl e
(voi d
) const
Parameters None.
Return value A pointer to a Tabl e object. Returns NULL if no table object was

supplied when the Ndbl nt er pr et edCode was instantiated.
NdblInterpretedCode::getWordsUsed()

Description This method returns the number of words from the buffer that have
been used, whether the buffer is one that is user-supplied or the
internally-provided buffer.

Signature Ui nt 32 get Wor dsUsed
(
voi d
) const
Parameters None.

199

The NdblinterpretedCode Class

Return value The 32-bit number of words used from the buffer.
NdblinterpretedCode::interpret_exit_last_row()

Description For a scanning operation, invoking this method indicates that this
row should be returned as part of the scan, and that no more rows in
this fragment should be scanned. For other types of operations, the
method causes the operation to be aborted.

Signature int interpret_exit_l|ast_row
(voi d
)
Parameters None.
Return value Returns 0 if successful, - 1 otherwise.

NdblinterpretedCode::interpret_exit_nok()

Description For scanning operations, this method is used to indicate that the
current row should not be returned as part of the scan, and to cause
the program should move on to the next row. It causes other types
of operations to be aborted.

Signature int interpret_exit_nok

(
Uint32 ErrorCode = 626 // HA ERR KEY_NOT_FOUND

)

Parameters This method takes a single (optional) parameter Er r or Code.
(For a complete listing of NDB error codes, see Section 2.4.2,
“NDB Error Codes: by Type”.) If not supplied, this defaults to 626
(HA_ERR_KEY_NOT_FQOUND, Tupl e did not exi st.Applications
should use error code 626 or another code in the range 6000 to
6999 inclusive.

For any values other than those mentioned here, the behavior of this
method is undefined, and is subject to change at any time without
prior notice.

Return value Returns 0 on success, - 1 on failure.
NdbinterpretedCode::interpret_exit_ok()

Description For a scanning operation, this method indicates that the current
row should be returned as part of the results of the scan and that
the program should move on to the next row. For other operations,
calling this method causes the interpreted program to exit.

Signature int interpret_exit ok
(voi d
)
Parameters None.
Return value Returns 0 on success, - 1 on failure.

NdbinterpretedCode::load_const_null()
Description This method is used to load a NULL value into a register.

Signature int |oad_const_null
(

200

The NdblinterpretedCode Class

Ui nt 32 RegDest
)

Parameters This method takes a single parameter, the register into which to
place the NULL.

Return value Returns 0 on success, - 1 otherwise.

NdblInterpretedCode::load_const_ul6()

Description This method loads a 16-bit value into the specified interpreter
register.
Signature int |oad_const_ul6

(
Ui nt 32 RegDest,
Ui nt 32 Const ant
)
Parameters This method takes the following two parameters:
* RegDest : The register into which the value should be loaded.
¢ A Const ant value to be loaded

Return value Returns 0 on success, - 1 otherwise.

NdbinterpretedCode::load_const_u32()

Description This method loads a 32-bit value into the specified interpreter
register.
Signature int | oad_const_u32

(
Ui nt 32 RegDest,
Ui nt 32 Const ant

)
Parameters This method takes the following two parameters:
¢ RegDest : The register into which the value should be loaded.
* A Const ant value to be loaded

Return value Returns 0 on success, - 1 otherwise.

NdblinterpretedCode::load_const_u64()

Description This method loads a 64-bit value into the specified interpreter
register.
Signature int | oad_const_u64

(
Ui nt 32 RegDest,
Ui nt 64 Const ant
)
Parameters This method takes the following two parameters:
* RegDest : The register into which the value should be loaded.
¢ A Const ant value to be loaded

Return value Returns 0 on success, - 1 otherwise.

NdbinterpretedCode::read_attr()

201

The NdblinterpretedCode Class

Description Theread_attr () method is used to read a table column value
into a program register. The column may be specified either by
using its attribute ID or as a pointer to a Col unm object.

Signature This method can be called in either of two ways. The first of these is
by referencing the column by its attribute ID, as shown here:

int read_attr

(
Ui nt 32 RegDest,
Unt32 attrld

)

Alternatively, you can reference the column as a Col umm object, as
shown here:

int read_attr

(
Ui nt 32 RegDest,

const NdbDi cti onary: : Col um* col um
)
Parameters This method takes two parameters, as described here:
* The register to which the column value is to be copied (RegDest).

« Either of the following references to the table column whose value
is to be copied:

* The table column's attribute ID (at t r | d)

* A pointer to a col unm—that is, a pointer to an Col unm object
referencing the table column

Return value Returns 0 on success, and - 1 on failure.
NdblinterpretedCode::reset()

Description This method clears any existing program from the
Ndbl nt er pr et edCode object, which can then be used for
constructing a new program.

Signature int ret_sub
(voi d
)

Parameters None.

Return value None.

This method was added in NDB 8.0.

NdbInterpretedCode::ret_sub()

Description This method marks the end of the current subroutine.
Signature int ret_sub
(voi d
)
Parameters None.
Return value Returns 0 on success, - 1 otherwise.

202

The NdblinterpretedCode Class

NdblinterpretedCode::sub_reg()

Description

Signature

Parameters

Return value

NdblinterpretedCode::sub_val()

Description

Signature

Parameters

Return value

This method gets the difference between the values stored in any
two given registers and stores the result in a third register.

int sub_reg

(
Ui nt 32 RegDest,
Ui nt 32 RegSour cel,
Ui nt 32 RegSour ce2

)

This method takes three parameters. The first of these is the
register in which the result is to be stored (RegDest). The second
and third parameters (RegSour celand RegSour ce?2) are the
registers whose values are to be subtracted. In other words,

the value of register RegDest is calculated as the value of the
expression shown here:

(value in register RegSourcel) - (value in register RegSource?2)

It is possible to re-use one of the registers whose values are
subtracted for storing the result; that is, RegDest can be the same
as RegSour cel or RegSour ce2.

0 on success; - 1 on failure.

This method subtracts a specified value from the value of a given
table column, and places the original and modified column values
in registers 6 and 7. It is equivalent to the following series of

Ndbl nt er pr et edCode method calls, where at t r | d is the table
column' attribute ID and aVal ue is the value to be subtracted:

read_attr(6, attrld);

| oad_const _u32(7, aVal ue);
sub reg(7,6,7);
wite_attr(attrld, 7);

aVal ue can be a 32-bit or 64-bit integer.

This method can be invoked in either of two ways, depending on
whether aVal ue is 32-bit or 64-bit.

32-bit aval ue:

int sub_val

(
unt32 attrld,

U nt 32 aVal ue
)

64-bit aVal ue:

int sub_val

(
Uint32 attrld,

Ui nt 64 aVal ue
)

A table column attribute ID and a 32-bit or 64-bit integer value to be
subtracted from this column value.

Returns 0 on success, - 1 on failure.

203

The NdbOperation Class

NdbInterpretedCode::write_attr()

Description This method is used to copy a register value to a table column.
The column may be specified either by using its attribute ID or as a
pointer to a Col unm object.

Signature This method can be invoked in either of two ways. The first of these
is requires referencing the column by its attribute ID, as shown here:

int read_attr

(
Uint32 attrld,

Ui nt 32 RegSour ce
)

You can also reference the column as a Col unm object instead, like
this:

int read_attr

(
const NdbDi ctionary: : Col um* col um,
Ui nt 32 RegSour ce

)
Parameters This method takes two parameters as follows:

< Areference to the table column to which the register value is to be
copied. This can be either of the following:

e The table column's attribute ID (att r | d)

» A pointer to a col unm—that is, a pointer to an Col unm object
referencing the table column

e The register whose value is to be copied (RegSour ce).

Return value Returns 0 on success; - 1 on failure.

2.3.20 The NdbOperation Class

This section provides information about the NdbCOper at i on class.

Beginning with NDB 8.0.30, NdbOper at i on supports an interpreted code API similar to that
implemented by Ndbl nt er pr et edCode. See NdbOperation Interpreted Code API, for more
information.

* NdbOperation Class Overview

» NdbOperation Interpreted Code API
* NdbOperation::AbortOption

* NdbOperation::add_reg()

» NdbOperation::branch_col_eq_null()
* NdbOperation::branch_col_ne_null()
» NdbOperation::branch_col_eq()

* NdbOperation::branch_col_ne()

* NdbOperation::branch_col_lIt()

» NdbOperation::branch_col_le()

204

The NdbOperation Class

NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::
NdbOperation::

NdbOperation::

branch_col_gt()

branch_col_ge()
branch_col_like()
branch_col_notlike()
branch_col_and_mask_eq_mask()
branch_col_and_mask_ne_mask()
branch_col_and_mask_eq_zero()
branch_col_and_mask_ne_zero()
branch_ge()

branch_gt()

branch_le()

branch_lt()

branch_eq()

branch_ne()

branch_ne_null()
branch_eq_null()

branch_label()

call_sub()

def_label()

def_subroutine()

deleteTuple()

equal()

getBlobHandle()

getLockHandle

getLockMode()

getNdbError()

getNdbErrorLine()

getTable()

getTableName()
getNdbTransaction()

getType()

getValue()

GetValueSpec

incValue()

205

The NdbOperation Class

* NdbOperation::insertTuple()

» NdbOperation::interpret_exit_last_row()
» NdbOperation::interpret_exit_nok()

» NdbOperation::interpret_exit_ok()

» NdbOperation::interpretedDeleteTuple()
* NdbOperation::interpretedUpdateTuple()
» NdbOperation::interpretedWrite Tuple()
» NdbOperation::load_const_u32()

* NdbOperation::load_const_u64()

* NdbOperation::load_const_null()

* NdbOperation::LockMode

» NdbOperation::OperationOptions

* NdbOperation::read_attr()

* NdbOperation::readTuple()

» NdbOperation::ret_sub()

» NdbOperation::setValue()

* NdbOperation::SetValueSpec

* NdbOperation::sub_reg()

» NdbOperation::subValue()

* NdbOperation::Type

* NdbOperation::updateTuple()

* NdbOperation::write_attr()

* NdbOperation::writeTuple()

NdbOperation Class Overview

Parent class None
Child classes Ndbl ndexOper at i on, NdbScanQOper at i on
Description NdbOper at i on represents a “generic” data operation. Its

subclasses represent more specific types of operations. See
NdbOperation::Type for a listing of operation types and their
corresponding NdbOper at i on subclasses.

Methods The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.49 NdbOperation class methods and descriptions

Name Description

add_reg() Add and store contents of two registers

branch_col _and_nasBramghrifeddmn value AND bitmask equals
bitmask

206

The NdbOperation Class

Name

Description

branch_col _and_nma

sBramehrifaeddgmnn value AND bitmask does
not equal bitmask

branch_col and _na

sBramghzfecalmn value AND bitmask equals
zero

branch_col and na

sBramehzfcalgmn value AND bitmask does
not equal zero

branch_col _eq()

Branch if column is equal to specified value

branch_col _eq_nul |

Bnanch if column is NULL

branch_col ge()

Branch if column is greater than or equal to
than specified value

branch_col gt ()

Branch if column is greater than specified
value

branch_col _I e()

Branch if column is less than or equal to
specified value

branch_col _|ike()

Branch if column value matches wildcard
pattern

branch_col 1t ()

Branch if column is less than specified
value

branch_col _ne()

Branch if column is not equal to specified
value

branch_col ne_nul |

Boanch if column is not NULL

branch_col notlik

sBanch if column value does not match
wildcard pattern

branch_eq()

Branch if first register value equal to
second register value

branch_eq_nul I ()

Branch if register value is null

branch_ge()

Branch if first register value is greater than
or equal to second register value

branch_gt ()

Branch if first register value is greater than
second register value

branch_I abel ()

Jump to label in interpeted progam

branch_I e()

Branch if first register value is less than
second register value

branch_It()

Branch if first register value is less than or
equal to second register value

branch_ne()

Branch if first register value not equal to
second register value

branch_ne_nul | ()

Branch if register value is not null

call _sub()

Call interpreted program subroutine

def _| abel ()

Define jump label in interpreted program
operation

def _subrouti ne()

Define interpreted program subroutine

del et eTupl e()

Removes a tuple from a table

equal ()

Defines a search condition using equality

get Bl obHandl e()

Used to access blob attributes

207

The NdbOperation Class

Name

Description

get LockHandl e()

Gets a lock handle for the operation

get LockMode()

Gets the operation's lock mode

get NdbEr ror ()

Gets the latest error

get NdbEr r or Li ne()

Gets the number of the method where the
latest error occurred

get Tabl eNane()

Gets the name of the table used for this
operation

get Tabl e()

Gets the table object used for this
operation

get NdbTransacti on

Gets the NdbTr ansact i on object for this
operation

get Type() Gets the type of operation

get Val ue() Allocates an attribute value holder for later
access

i ncVal ue() Adds value to attribute

nsert Tupl e()

Adds a new tuple to a table

nterpret_exit_la

sTenmtnéde transaction

nterpret_exit_no

KEXit interpreted program with status NOT
XK

nterpret _exit_ok

Exit interpreted program with status OK

nt er pr et edDel et e]

Delets yuple using interpreted program

nt er pr et edUpdat e]

lupdate)tuple using interpreted program

nterpretedWiteT

I\NMrigg Juple using interpreted program

oad_const_u32()

Load 32-bit constant value into register

| oad_const _u64()

Load 64-bit constant value into register

| oad_const _nul | ()

Load NULL into register

read_attr()

Read given attribute into register

readTupl e()

Reads a tuple from a table

ret_sub() Return from interpreted program
subroutine

set Val ue() Defines an attribute to set or update

sub_reg() Store difference of two register values

subVal ue() Subtracts value from attribute

updat eTupl e()

Updates an existing tuple in a table

wite attr()

Write given attribute from register

writeTupl e()

Inserts or updates a tuple

This class has no public constructor. To create
an instance of NdbOper at i on, you must use
NdbTr ansacti on: : get NdbOperati on().

208

The NdbOperation Class

Types The NdbOper at i on class defines three public types, shown in the
following table:

Table 2.50 NdbOperation class types and descriptions

Name Description

Abort Opti on Determines whether a failed operation
causes failure of the transaction of which it
is part

LockMbde The type of lock used when performing a
read operation

Type Operation access types

For more information about the use of NdbQOper at i on, see Single-row operations.
NdbOperation Interpreted Code API

NdbOper at i on in NDB 8.0.30 and later supports an interpreted code API similar to that used with
Ndbl nt er pr et edCode.

To start with, use one of updat eTupl e(),witeTupl e(), ordel et eTupl e() to define the
operation as an operation of a given type (update, write, or delete). This is the operation that is to be
performed by an interpreted program; the interpreted program itself is assembled from various register,
comparison, and branch instructions.

The interpreted program is not a separate Ndbl nt er pr et edCode object, although it behaves
much like one. Instructions are assigned to the NdbOper at i on instance (for example, myNdbOp-
>branch_col _It(col 1id, vall, col 2id, val 2)). To runthe interpreted program, call
NdbTr ansacti on: : execut e().

Another difference between the NdbOper at i on interpreted code APl implementation and that
supported by Ndbl nt er pr et edCode is that the order of arguments for analogous methods is not
necessarily the same. One such pair of methods is listed here:

e InNdbOper ati on::branch col It(Colld, val, Ien, bool, Label), comparison
happens like this, using the second and first arguments passed to the method, in that order:

i f(val < Colld_val ue)
branch_t o Label

* Ndbl nt er pret edCode: : branch_col |t(*val, Unt32, attrld, Label),compares the
first argument passed with the third, like this:

if(val < attrld_val ue)
branch_to Label

Branch column method comparisons. The branch column methods such as br anch_col | e()
compare a supplied value with the value of a column. These methods act on the first two arguments
from right to left, so that, for example, br anch_col | e(nyCol I d, nyVal ue, 8, true,

nmyLabel) acts as shown by the following pseudocode:

i f (nmyVal ue <= val ue(nyCol | d))
got o nmylLabel ;

Bitwise logical comparisons. These comparison types are supported only for the bitfield type,

and can be used to test bitfield columns against bit patterns. The value passed in is a bitmask which

is bitwise-ANDed with the column data. Bitfields are passed in and out of the NDB API as 32-bit words
with bits set from least significant bit (LSB) to most significant bit (MSB). The platform's endianness
controls which byte contains the LSB: for x86, this is the first (0th) byte; for SPARC and PPC platforms,
it is the last (3rd) byte.

You can set bit n of a bitmask to 1 from a Ui nt 32* mask like this:

209

The NdbOperation Class

mask[n >> 5] |= (1 << (n & 31))
Four different sorts of branching on bitwise comparison are supported by the methods listed here:

* branch_col _and_mask_eq_nask() : Branchif col uim val ue AND rmask == mask (all
masked bits set in value).

* branch_col _and mask _ne_mask(): Branch if col uim val ue AND mask ! = mask (not all
masked bits are set in value).

e branch_col and mask _eq zero():Branchif col unm val ue AND nmask == 0 (no masked

bits are set in value).

* branch_col _and_mask_ne_zero():Branchif col uitm val ue AND mask !
bits are set in value).

0 (some masked

See the descriptions of the individual methods for more information.

NdbOperation::AbortOption
This section provides information about the Abor t Opt i on data type.

Description This type is used to determine whether failed operations should
force a transaction to be aborted. It is used as an argument to the
execut e() method—see NdbTransaction::execute(), for more
information.

Enumeration values Possible values are shown, along with descriptions, in the following
table:

Table 2.51 NdbOperation::AbortOption type values and
descriptions

Name Description
Abort OnError A failed operation causes the transaction to
abort.

AQ_| gnor eOnError |Failed operations are ignored; the
transaction continues to execute.

Def aul t Abort Opt i onThe Abort Opt i on value is set according
to the operation type:

« Read operations: AO_| gnor eOnErr or

» Scan takeover or DML operations:
Abor t OnErr or

See NdbTransaction::execute(), for more information.

NdbOperation::add_reg()
Description Add contents of two registers; store result in a third register.

Signature int add_reg

(
Ui nt 32 RegSour cel,

Ui nt 32 RegSour ce2,
Ui nt 32 RegDest

)

Parameters RegSour cel Register containing first value to
be added.

210

The NdbOperation Class

RegSour ce2 Register containing second value
to be added.
RegDest Register in which to store the
result.
Return value 0 on success, otherwise -1.

NdbOperation::branch_col_eq_null()

Description Branch to a label in an interpreted program if the specified column is
NULL.
Signature int branch_col _eq_nul |
(
Ui nt 32 Col I d,
Ui nt 32 Label
)
Parameters Colld ID of the column to check.
parLabel am Label to jump to if the column is
NULL.
Return value 0 on success, otherwise -1.

NdbOperation::branch_col_ne_null()

Description Branch to a label in an interpreted program if the specified column is
not NULL.
Signature int branch_col _ne_nul |
(
Ui nt32 Col I d,
Ui nt 32 Label
)
Parameters Col 1d ID of the column to check.
parLabel am Label to jump to if the column is
not NULL.
Return value none

NdbOperation::branch_col_eq()

Description Branch to a label in an interpreted program if a given value is equal
to the value of the specified column.

Note
@ Like the other

NdbOper ati on: : branch_col _*()
methods, br anch_col _eg() compares its
second argument with the first, in that order.

Signature int branch_col eq
(
Ui nt32 Col | d,
const void* val,
Uint32 |len,
bool ,

211

The NdbOperation Class

Ui nt 32 Label
)
Parameters Colld ID of column to compare.

val Value to be compared.

| en Length of val .

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Label to jump to if val is equal to
the column value.

Return value 0 on success, -1 otherwise.
NdbOperation::branch_col_ne()
Description Branch to a label in an interpreted program if a given value is not

equal to the value of the specified column.

Note
3 Like the other

NdbOper ati on: : branch_col _*()
methods, br anch_col _ne() compares its
second argument with the first, in that order.

Signature int branch_col _ne
(
Ui nt 32 Col I d,
const void* val,
Uint32 |en,
bool ,
Ui nt 32 Label
)
Parameters Col Id ID of column to compare.

val Value to be compared.

| en Length of val .

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Label to jump to if column value
is not equal to val .

Return value 0 on success, else -1.

NdbOperation::branch_col_It()

Description Branch to a label in an interpreted program if a given value is less
than a column value.

Note
@ Like the other

NdbOper ati on: : branch_col _*()

212

The NdbOperation Class

Signature

Parameters

Return value
NdbOperation::branch_col_le()

Description

Signature

Parameters

Return value

NdbOperation::branch_col_gt()

methods, branch_col |t () compares its
second argument with the first, in that order.

int branch_col _It

(

Ui nt32 Col I d,
const void* val,
Uint32 |en,
bool ,
Ui nt 32 Label
)

Colld ID of column to compare.

val Value to be compared.

I en Length of val .

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Label to jump to if val is less

than the column value.

0 on success, otherwise -1.

Branch to a label in an interpreted program if a given value is less
than or equal to a column value.

Note
@ Like the other

NdbQOper ati on: : branch_col _*()
methods, br anch_col | e() compares its
second argument with the first, in that order.

int branch_col |e

(

Ui nt32 Col I d,
const voi d* val,
Ui nt32 |en,
bool ,
Ui nt 32 Label
)

Colld ID of column to compare.

val Value to be compared.

| en Length of val .

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Label to jump to if val is less
than or equal to the column
value.

On success, 0; otherwise, -1.

213

The NdbOperation Class

Description

Signature

Parameters

Return value
NdbOperation::branch_col_ge()

Description

Signature

Parameters

Branch to a label in an interpreted program if a given value is
greater than a column value.

Note
@ Like the other

NdbQper ati on: : branch_col _*()
methods, branch_col gt () compares its
second argument with the first, in that order.

int branch_col _gt

(

Ui nt 32 Col I d,
const voi d* val,
Uint32 |en,
bool ,
Ui nt 32 Label
)

Colld ID of column to compare.

val Value to be compared.

| en Length of val .

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Label to jump to if val is greater

than the column value.

0 on success, -1 otherwise.

Branch to a label in an interpreted program if a given value is

greate

Note
3 Like the other

r than or equal to a column value.

NdbOper ati on: : branch_col *()
methods, br anch_col ge() compares its
second argument with the first, in that order.

int branch_col _ge
(
Ui nt32 Col I d,
const void* val,
uUint32 |en,
bool ,
Ui nt 32 Label
)
Colld ID of column to compare.
val Value to be compared.
I en Length of val .

Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

214

The NdbOperation Class

Label Label to jump to if val is greater
than or equal to the column
value.

Return value 0 if successful, else -1.
NdbOperation::branch_col_like()
Description Branch if the column value matches a wildcard pattern. This method

and branch_col _notlike() each support the wildcards used by
the MySQL LI KE operator: %for any string of O or more characters,
and _ for any single character.

The column's type must be one of CHAR, VARCHAR, Bl NARY, or
VARBI NARY.

Signature int branch_col _|ike

(
Ui nt 32 Col I d,
const void* val,

Uint32 |en,
bool ,
Ui nt 32 Label
)
Parameters Col 1d ID of column whose value is to
be compared.

val Pattern to match.

| en Length of pattern value.

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Label to jump to if column value
matches pattern.

Return value 0 on success, otherwise -1.
NdbOperation::branch_col_notlike()
Description Branch if the column value does not match the given wildcard
pattern. This method and br anch_col _| i ke() each support the

same wildcards %(0 or more characters) and _ (any one character)
as the MySQL LI KE operator.

The column's type must be one of CHAR, VARCHAR, Bl NARY, or

VARBI NARY.
Signature int branch_col _notlike
(
Ui nt 32 Col I d,
const void* val,
Uint32 |len,
bool ,
Ui nt 32 Label
)
Parameters Col I d ID of column whose value is to
be compared.
val Pattern to match.

215

https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.3/en/binary-varbinary.html

The NdbOperation Class

| en

Label

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_and_mask_eq_mask()

Length of pattern value.

Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label to jump to if column value
does not match pattern.

Description Branch if the value of a column in a logical bitwise AND with a

bitmask is equal to the bitmask.

See also Bitwise logical comparisons.

Signature int branch_col _and_nask_eq_mask

(
Uint32 Col I d,

const voi d* mask,
Ui nt32 | en,

bool ,

Ui nt 32 Label

Parameters Col I d
mask

| en

Label

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_and_mask_ne_mask()

Use the value of the column
having this ID.

Bitmask to compare with column
value.

Length of mask.

Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Branch to jump to if the result of
the AND operation is the same as
the mask.

Description Branch if the value of a column in a logical bitwise AND with a
bitmask is not equal to the bitmask.

See also Bitwise logical comparisons.

Signature int branch_col _and_mask_ne_mask

(
Uint32 Col Id,

const voi d* mask,
uint32 |en,

bool ,

Ui nt 32 Label

216

The NdbOperation Class

Parameters Col 1d Use the value of the column
having this ID.
mask Bitmask to compare with column
value.
| en Length of mask.

- Boolean t r ue or f al se required
for legacy reasons, but no longer

used.

Label Branch to jump to if the result of
the AND operation is not equal to
the mask.

Return value On success 0, else -1.
NdbOperation::branch_col_and_mask_eq_zero()
Description Branch if the value of a column in a logical bitwise AND with a

bitmask is equal to 0.

See also Bitwise logical comparisons.

Signature i nt branch_col _and_mask_eq_zero
(
U nt32 Col Id,
const voi d* mask,
Uint32 |en,
bool ,
Ui nt 32 Label
)
Parameters Col I d Use the value of the column
having this ID.
mask Bitmask to compare with column
value.
| en Length of mask.

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Branch to jump to if the result of
the AND operation is equal to 0.

Return value 0 on success, -1 otherwise.

NdbOperation::branch_col_and_mask_ne_zero()

Description Branch if the value of a column in a logical bitwise AND with a
bitmask is not equal to 0.

See also Bitwise logical comparisons.

Signature int branch_col _and_mask_ne_zero

(
Ui nt32 Col I d,

const voi d* mask,

217

The NdbOperation Class

Parameters

Return value

NdbOperation::branch_ge()

Description

Signature

Parameters

Return value
NdbOperation::branch_gt()

Description

Unt32 |len,
bool ,
U nt 32 Label

)

Col I d Use the value of the column
having this ID.

mask Bitmask to compare with column
value.

| en Length of mask.

- Boolean t r ue or f al se required
for legacy reasons, but no longer
used.

Label Branch to jump to if the result of
the AND operation is not equal to
0.

Returns 0 on success, -1 otherwise.

Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is greater than or equal to the LH value.

Note
@ This method, like the other NdbOper at i on

branch on comparison methods, compares
the two register values from right to left.

int branch_ge

(
Ui nt 32 ReglLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

RegLval ue Register value compared with
RegRval ue.

RegRval ue Compare value of this register
with RegLval ue; branch to the
label if this value is greater than
or equal to RegLval ue.

Label Label to branch to if RegRval ue
is greater than or equal to
RegLval ue.

0 on success, -1 otherwise.

Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is greater than the LH value.

218

The NdbOperation Class

Signature

Parameters

Return value

NdbOperation::branch_le()

Description

Signature

Parameters

Return value
NdbOperation::branch_It()

Description

Note

@ This method, like the other NdbQper at i on
branch on comparison methods, compares
the two register values from right to left.

int branch_gt

(
Ui nt 32 RegLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

Register value compared with
RegRval ue.

RegLval ue

Compare value of this register
with RegLval ue; branch to the
label if this value is greater than
RegLval ue.

RegRval ue

Label Label to branch to if RegRval ue
is greater than RegLval ue.

0 on success, -1 otherwise.

Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is less than the LH value.

Note

@ This method, like the other NdbOper at i on
branch on comparison methods, compares
the two register values from right to left.

int branch_le

(
Ui nt 32 Reglval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

Register value compared with
RegRval ue.

ReglLval ue

Compare value of this register
with RegLval ue; branch to the
label if this value is less than
RegLval ue.

RegRval ue

Label Label to branch to if RegRval ue
is less than ReglLval ue.

0 on success, -1 otherwise.

Define a search condition in an interpreted program. Compares the
right-hand register value with the left; branch to a label if the RH
value is less than or equal to the LH value.

219

The NdbOperation Class

Signature

Parameters

Return value
NdbOperation::branch_eq()

Description

Signature

Parameters

Return value
NdbOperation::branch_ne()

Description

Signature

Parameters

branch on comparison methods, compares

Note
@ This method, like the other NdbQper at i on

the two register values from right to left.

int branch_|t

(
Ui nt 32 RegLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label
)

RegLval ue

RegRval ue

Label

0 on success, -1 otherwise.

Register value compared with
RegRval ue.

Compare value of this register
with RegLval ue; branch to the
label if this value is less than or
equal to RegLval ue.

Label to branch to if RegRval ue
is less than or equal to
RegLval ue.

Branch to a label in an interpreted program when two register values

are equal.

int branch_eq

(
Ui nt 32 RegLval ue,

Ui nt 32 RegRval ue,
Ui nt 32 Label

)

RegLval ue

RegRval ue

Label

0 on success, -1 otherwise.

One of two register values to be
compared.

The other register value to be
compared.

Branch to this label if the register
values are equal.

Branch to a label in an interpreted program when two register values

are not equal.

int branch_eq
(
Ui nt 32 ReglLval ue,
Ui nt 32 RegRval ue,
Ui nt 32 Label

)

RegLval ue

One of two register values to be
compared.

220

The NdbOperation Class

Return value
NdbOperation::branch_ne_null()

Description

Signature

Parameters

Return value
NdbOperation::branch_eq_null()

Description

Signature

Parameters

Return value
NdbOperation::branch_label()

Description

Signature

Parameters

Return value
NdbOperation::call_sub()

Description

Signature

RegRval ue The other register value to be
compared.
Label Branch to this label if the register

values are not equal.

0 on success, otherwise -1.

Branch to a label in an interpeted program if a register value is not
NULL.

int branch_ne_nul |

(
Ui nt 32 ReglLval ue,
Ui nt 32 Label

)
RegLval ue Register to be tested.

Label Branch to this label if
RegLval ue is not NULL.

On success, returns 0; otherwise, returns -1.

Branch to a label in an interpeted program if a register value is
NULL.

int branch_ne_nul |
(
Ui nt 32 ReglLval ue,
Ui nt 32 Label
)
RegLval ue Register to be tested.

Label Branch to this label if
RegLval ue is NULL.

On success, 0; otherwise, -1.

Jump to a label in an interpeted progam.
i nt branch_| abel

(
U nt 32 Label

)

Label The label to branch to.

0 if successful; otherwise, -1.

Call a subroutine in an interpeted program.

int call_sub

(
U nt 32 Subrouti ne

221

The NdbOperation Class

)
Parameters Subr outi ne The subroutine number.

Return value If successful, returns 0; otherwise, returns -1.
NdbOperation::def_label()

Description Define a jump label in an interpreted operation. Labels are
numbered automatically starting with O.

Signature int def_| abel

i nt | abel Nunmber
)

Parameters | abel Nurber The label number. For easier
debugging, this should match the
automatic numbering performed

by NDB.

Return value | abel Number on success, -1 otherwise.
NdbOperation::def_subroutine()

Description Define a subroutine in an interpreted program.

Signature int def_subroutine

: i nt Subrouti neNunber

Parameters Subr out i neNunber The subroutine number.

Return value 0 on success, -1 otherwise.
NdbOperation::deleteTuple()

Description This method defines the NdbOper at i on as a DELETE operation.

When the NdbTr ansact i on: : execut e() method is invoked, the
operation deletes a tuple from the table.

Signature virtual int deleteTuple
(voi d
)
Parameters None.
Return value Returns 0 on success, - 1 on failure.

NdbOperation::equal()

Description This method defines a search condition with an equality. The
condition is true if the attribute has the given value. To set search
conditions on multiple attributes, use several calls to equal () ; in
such cases all of them must be satisfied for the tuple to be selected.

If the attribute is of a fixed size, its value must include all bytes.
In particular a Char value must be native-space padded. If the
attribute is of variable size, its value must start with 1 or 2 little-
endian length bytes (2 if its type is Long*).

When using i nser t Tupl e(), you may also define the search key
with set Val ue() . See NdbOperation::setValue().

222

The NdbOperation Class

Signature There are 10 versions of equal (), each having slightly different
parameters. All of these are shown here:

223

The NdbOperation Class

Parameters This method requires two parameters:
e The first parameter can be either of the following:
1. The nane of the attribute (a string)
2. The i d of the attribute (an unsigned 32-bit integer)

* The second parameter is the attribute val ue to be tested. This
value can be any one of the following 5 types:

e String

* 32-bit integer

» Unsigned 32-bit integer
* 64-bit integer

« Unsigned 64-bit integer

Return value Returns - 1 in the event of an error.
NdbOperation::getBlobHandle()

Description This method is used in place of get Val ue() or set Val ue()
for blob attributes. It creates a blob handle (NdbBI ob object). A
second call with the same argument returns the previously created
handle. The handle is linked to the operation and is maintained
automatically.

Signature This method has two forms, depending on whether it is called with
the name or the ID of the blob attribute:

virtual NdbBl ob* get Bl obHandl e
(

const char* nane

)

or

virtual NdbBl ob* get Bl obHandl e
(

Uint32 id
)
Parameters This method takes a single parameter, which can be either one of
the following:

* The nane of the attribute
* The i d of the attribute

Return value Regardless of parameter type used, this method return a pointer to
an instance of NdbBI ob.

NdbOperation::getLockHandle

Description Returns a pointer to the current operation's lock handle. When
used with NdbRecor d, the lock handle must first be requested
with the OO L OCKHANDL E operation option. For other operations,
this method can be used alone. In any case, the NdbLockHandl e
object returned by this method cannot be used until the operation
has been executed.

224

The NdbOperation Class

Signature const NdbLockHandl e* get LockHandl e

voi d
) const

or

const NdbLockHandl e* get LockHandl e
(
voi d

)

Parameters None.

Return value Pointer to an NdbLockHand| e that can be used

by the NdbTr ansact i on methods unl ock() and
rel easeLockHandl e().

Using lock handle methods. Shared or exclusive locks taken by read operations in a transaction
are normally held until the transaction commits or aborts. Such locks can be released before a
transaction commits or aborts by requesting a lock handle when defining the read operation. Once the
read operation has been executed, an NdbLockHand!| e can be used to create a new unlock operation
(with NdbTr ansacti on: : unl ock()). When the unlock operation is executed, the row lock placed by
the read operation is released.

The steps required to release these locks are listed here:

Define the primary key read operation in the normal way with LockMbde set to LM Read or
LM Excl usi ve.

Call NdbOper at i on: : get LockHandl e() during operation definition, or, for Ndbr ecor d, set the
OO_LOCKHANDLE operation option when calling NdbTr ansact i on: : readTupl e() .

Call NdbTr ansacti on: : execut e() ; the row is now locked from this point on, as normal.
(Use data, possibly making calls to NdbTr ansacti on: : execute().)

Call NdbTr ansacti on: : unl ock(), passing in the const NdbLockHandl e obtained previously
to create an unlock operation.

Call NdbTr ansacti on: : execut e() ; this unlocks the row.

Notes:

As with other operation types, unlock operations can be batched.

Each NdbLockHandl e object refers to a lock placed on a row by a single primary key read
operation. A single row in the database may have concurrent multiple lock holders (mode LM Read)
and may have multiple lock holders pending (LM _Excl usi ve), so releasing the claim of one lock
holder may not result in a change to the observable lock status of the row.

Lock handles are supported for scan lock takeover operations; the lock handle must be requested
before the lock takeover is executed.

Lock handles and unlock operations are not supported for unique index read operations.

NdbOperation::getLockMode()

Description This method gets the operation's lock mode.
Signature LockMode get LockMode
(
voi d

225

The NdbOperation Class

Parameters

Return value
NdbOperation::getNdbError()

Description

Signature

Parameters

Return value

NdbOperation::getNdbErrorLine()

Description

Signature

Parameters

Return value

NdbOperation::getTable()

Description

Signature

Parameters

Return value
NdbOperation::getTableName()

Description

Signature

Parameters

Return value

) const
None.

A LockMode value. See NdbOperation::LockMode.

This method gets the most recent error (an NdbEr r or object).

const NdbError & get NdbEr r or
(

voi d
) const
None.

An NdbEr r or object.

This method retrieves the method number in which the latest error
occurred.

i nt get NdbErrorLi ne
(

voi d
) const

None.

The method number (an integer).

This method is used to retrieve the table object associated with the
operation.

const NdbDi ctionary:: Tabl e* get Tabl e
(

voi d
) const
None.

A pointer to an instance of Tabl e.

This method retrieves the name of the table used for the operation.

const char* get Tabl eNanme

(
voi d
) const

None.

The name of the table.

NdbOperation::getNdbTransaction()

Description

Signature

Gets the NdbTr ansact i on object for this operation.

virtual NdbTransaction* get NdbTransacti on

226

The NdbOperation Class

(

voi d
) const
Parameters None.
Return value A pointer to an NdbTr ansact i on object.
NdbOperation::getType()
Description This method is used to retrieve the access type for this operation.
Signature Type get Type
(voi d
) const
Parameters None.
Return value A Type value.
NdbOperation::getValue()
Description This method prepares for the retrieval of an attribute value. The

NDB API allocates memory for an NdbRecAt t r object that is later
used to obtain the attribute value. This can be done by using one
of the many NdbRecAt t r accessor methods, the exact method to
be used depending on the attribute's data type. (This includes the
generic NdbRecAt tr: : aRef () method, which retrieves the data
as char *, regardless of its actual type. You should be aware that
this is not type-safe, and requires an explicit cast from the user.)

This method does not fetch the attribute value from the database;
the NdbRecAt t r object returned by this method is not readable or
printable before calling NdbTr ansact i on: : execut e() .

If a specific attribute has not changed, the corresponding
NdbRecAt t r has the state UNDEFI NED. This can be checked by
using NdbRecAt tr: : i sNULL(), which in such cases returns - 1.

See NdbTransaction::execute(), and NdbRecAttr::isSNULL().

Signature There are three versions of this method, each having different
parameters:

NdbRecAttr* get Val ue
(

const char* nane,
char * value = 0

)

NdbRecAttr* get Val ue

(
Uint32 id,
char* value =0

)

NdbRecAttr* get Val ue
(

const NdbDi ctionary: : Col um* col,
char* value = 0

)

Parameters All three forms of this method have two parameters, the second
parameter being optional (defaults to 0). They differ only with regard

227

The NdbOperation Class

to the type of the first parameter, which can be any one of the
following:

¢ The attribute nane
¢ The attribute i d
* The table col unm on which the attribute is defined

In all three cases, the second parameter is a character buffer in
which a non-NULL attribute value is returned. In the event that
the attribute is NULL, is it stored only in the NdbRecAt t r object
returned by this method.

If no val ue is specified in the get Val ue() method call, orif O

is passed as the value, then the NdbRecAt t r object provides
memory management for storing the received data. If the maximum
size of the received data is above a small fixed size, mal | oc()

is used to store it: For small sizes, a small, fixed internal buffer

(32 bytes in extent) is provided. This storage is managed by the
NdbRecAt t r instance; it is freed when the operation is released,
such as at transaction close time; any data written here that you
wish to preserve should be copied elsewhere before this freeing of
memory takes place.

If you pass a non-zero pointer for val ue, then it is assumed that
this points to an portion of memory which is large enough to hold the
maximum value of the column; any returned data is written to that
location. The pointer should be at least 32-bit aligned.

Index columns cannot be used in place of table columns with this
method. In cases where a table column is not available, you can
use the attribute name, obtained with get Nane() , for this purpose
instead.

Return value A pointer to an NdbRecAt t r object to hold the value of the attribute,
or a NULL pointer, indicating an error.

Retrieving integers. Integer values can be retrieved from both the val ue buffer passed as

this method's second parameter, and from the NdbRecAt t r object itself. On the other hand,
character data is available from NdbRecAt t r if no buffer has been passed in to get Val ue()

(see NdbRecAttr::aRef()). However, character data is written to the buffer only if one is provided, in
which case it cannot be retrieved from the NdbRecAt t r object that was returned. In the latter case,
NdbRecAt t r: : aRef () returns a buffer pointing to an empty string.

Accessing bit values. The following example shows how to check a given bit from the val ue
buffer. Here, op is an operation (NdbQper at i on object), namne is the name of the column from which
to get the bit value, and t r ans is an NdbTr ansact i on object:

Ui nt32 buf[];

op- >get Val ue(nane, buf); /* bit colum */
trans->execute();

i{f(buf[X/32] & 1 << (X & 31)) /* check bit X */

/* bit X set */
}

NdbOperation::GetValueSpec

This section provides information about the Get Val ueSpec data structure.

228

The NdbOperation Class

Parent class

Description

Members

NdbOper ati on

This structure is used to specify an extra value to obtain as part of
an NdbRecor d operation.

The elements making up this structure are shown in the following

table:

Table 2.52 GetValueSpec structure member names, types, and

descriptions

Name Type Description
col umm const To specify an extra value to
Col um?* read, the caller must provide
this, as well as (optionally NULL)
appSt or age pointer.
appSt orage |voi d* If this pointer is null, then

the received value is stored

in memory managed by the
NdbRecAt t r object. Otherwise,
the received value is stored

at the location pointed to (and

is still accessable using the
NdbRecAt t r object).

Important

A It is the

caller's
responsibility
to ensure
that the
following
conditions
are met:

1. appStora
points
to
sufficient
space
to
store
any
returned
data.

2. Memory
pointed
to by
appStora
is not
reused
or
freed
until
after
the
execut e(

229

The NdbOperation Class

Name Type Description
call
returns.
recAttr NdbRecAt t r* |After the operation is defined,

recAttr contains a pointer
to the NdbRecAt t r object for
receiving the data.

Blob reads cannot be specified using Get Val ueSpec.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbOperation::incValue()

Description

Signature

Parameters

Return value

NdbOperation::insertTuple()

Description

Interpreted program instruction which adds a value to an attribute.
The attribute can be specified by name or by ID. Thus, there are
four versions of of this method having slightly different parameters,
as shown under Signature.

This instruction uses registers 6 and 7, and overwrites these
registers in the course of its operation.

For scans and NdbRecor d operations, use the
Ndbl nt er pr et edCode interface instead.

int incVal ue
(
const char* anAttr Nanme
Ui nt 32 aVal ue

)

int incVal ue
(
const char* anAttr Nane
U nt 64 aVal ue

)

int incVal ue
(
U nt32 anAttrld,
U nt 32 aVal ue

)

int incVal ue
(
U nt32 anAttrid
Ui nt 64 aVal ue

)

anAt t r Name Name of the attribute.
anAttrld The attribute ID.
aVal ue The value to be added; this can

be a 32-bit or 64-bit integer.

0 on success, -1 otherwise.

This method defines the NdbQOper at i on to be an | NSERT
operation. When the NdbTr ansact i on: : execut e() method is
called, this operation adds a new tuple to the table.

230

The NdbOperation Class

Signature virtual int insertTuple
(voi d
)
Parameters None.
Return value Returns 0 on success, - 1 on failure.

NdbOperation::interpret_exit_last_row()

Description Terminate the entire transaction.
Signature int interpret_exit_|ast_row
(voi d
)
Parameters none
Return value Returns 0 on success; otherwise, returns -1.

NdbOperation::interpret_exit_nok()

Description Exit interpreted program with status NOT OK and an optional error
code (see Section 2.4.2, “NDB Error Codes: by Type”).

Signature int interpret_exit_nok
(

)

Ui nt 32 Error Code

int interpret_exit_nok

(

voi d
)

Parameters Er r or Code Optional error code, defaults to
error 899. Applications should
use error code 626 or any
code in the 6000-6999 range.
Error code 899 is supported for
backwards compatibility, but 626
is recommmended instead. For
other error codes, the behavior
is undefined and may change at
any time without prior notice.

Return value 0 on success, -1 otherwise.

NdbOperation::interpret_exit_ok()

Description Exit interpreted program with status OK.
Signature int interpret_exit_ok

(

voi d

)
Parameters none
Return value 0 on success, -1 otherwise.

NdbOperation::interpretedDeleteTuple()

231

The NdbOperation Class

Description Delete a tuple using an interpreted program.
Signature vi rtual
int interpretedDel eteTuple
(
voi d

)
Parameters None.
Return value 0 on success, -1 otherwise.

NdbOperation::interpretedUpdateTuple()

Description Update a tuple using an interpreted program.
Signature vi rtual
int interpretedUpdat eTupl e
(voi d
)
Parameters None.
Return value 0 on success, -1 otherwise.
NdbOperation::interpretedWriteTuple()
Description Write a tuple using an interpreted program.
Signature vi rtual
int interpretedWiteTuple
(voi d
)
Parameters None.
Return value 0 on success, -1 otherwise.
NdbOperation::load_const_u32()
Description Load a 32-bit constant value into a register.
Signature int |oad_const_u32

(
Ui nt 32 RegDest,
U nt 32 Const ant

)

Parameters RegDest Destination register.
Const ant Value to load into the register.
Return value 0 on success, -1 otherwise.

NdbOperation::load_const_u64()

Description Load a 64-bit constant value into a register.

Signature int | oad_const_u64
(
Ui nt 64 RegDest,
U nt 64 Const ant
)

232

The NdbOperation Class

Parameters RegDest Destination register.
Const ant Value to load into the register.
Return value 0 on success, otherwise -1.

NdbOperation::load_const_null()
Description Load NULL into a register.

Signature int 1oad_const_nul |
(

)

Ui nt 32 RegDest

Parameters RegDest Destination register.
Return value 0 on success, -1 otherwise.
NdbOperation::LockMode

This section provides information about the LockMbde data type.

Description This type describes the lock mode used when performing a read
operation.
Enumeration values Possible values for this type are shown, along with descriptions, in

the following table:

Table 2.53 NdbOperation::LockMode type values and
descriptions

Name Description
LM Read Read with shared lock
LM Excl usi ve Read with exclusive lock

LM Conmi tt edRead |lgnore locks; read last committed

LM Si npl eRead Read with shared lock, but release lock
directly

There is also support for dirty reads (LM Di r t y), but this is normally
for internal purposes only, and should not be used for applications
deployed in a production setting.

NdbOperation::OperationOptions
This section provides information about the Qper at i onOpt i ons data structure.
Parent class NdbQOper at i on

Description These options are passed to the NdbRecor d-based primary
key and scan takeover operation methods defined in the
NdbTr ansacti on and NdbScanQOper at i on classes.

Most NdbTr ansact i on: : * Tupl e() methods (see

Section 2.3.25, “The NdbTransaction Class”) take a supplementary
si zeOr Opt i ons parameter. This is optional, and is intended to
permit the interface implementation to remain backward compatible
with older un-recompiled clients that may pass an older (smaller)
version of the Oper at i onOpt i ons structure. This effect is
achieved by passing si zeof (Oper ati onOpt i ons) into this
parameter.

233

The NdbOperation Class

Each option type is marked as present by setting the corresponding
bit in opt i onsPr esent . (Only the option types marked in

opti onsPresent need have sensible data.) All data is copied

out of the Oper at i onOpt i ons structure (and any subtended
structures) at operation definition time. If no options are required,
then NULL may be passed instead.

Members The elements making up this structure are shown in the following
table:

Table 2.54 NdbOperation::OperationOptions structure member
names, types, and description

Name Type Description

opti onsPreseqt nt 64 Which flags are present.

[...] Fl ags: Type of flags.

The accepted
names and
values are
shown in the
following list:

* OO_ABORTOPT
0x01

ON:
e OO GETVALUE:
0x02

* OO _SETVALUE:
0x04

« OO_PARTI TI ON_I D
0x08

e OO _| NTERPRETED:
0x10

* OO_ANYVALUE:
0x20

* OO _CUSTOVDATA:
0x40

« 0O _LOCKHANDLE:
0x80

« 00 QUEUABLE
0x100
-« 00 _NOT_QUEUABLE
0x200
- 0O _DEFERREI) CONSTAI NTS

0x400

00 DI SABLE |FK

234

The NdbOperation Class

Name Type Description
0x800
« OO NOWAIT
0x1000
abort Option |Abort Opti on |An operation-specific abort

option; necessary only if the
default abortoption behavior is
not satisfactory.

extraCet Val u

pGet Val ueSpec

Extra column values to be read.

numext r aGet V

Aliugs32

Number of extra column values
to be read.

extraSet Val u

£Set Val ueSpec

Extra column values to be set.

numext r aSet V

Alliues3 2

Number of extra column values
to be set.

partitionld

Ui nt 32

Limit the scan to the partition
having this ID; alternatively, you
can supply an Partiti onSpec
here. For index scans,
partitioning information can be
supplied for each range.

i nterpretedC

odetb | nt er pr et

Hdtérypgeted code to execute as
part of the scan.

anyVal ue

Ui nt 32

An anyVal ue to be used with
this operation. This is used by
NDB Cluster Replication to store
the SQL node's server ID. By
starting the SQL node with the
--server-id-bits option
(which causes only some of
the bits in the server i dto
be used for uniquely identifying
it) set to less than 32, the
remaining bits can be used to
store user data.

cust onDat a

voi d*

Data pointer to associate with
this operation.

partitionl nf

pPartitionSpe

cPartition information for
bounding this scan.

sizeO Partln

4d nt 32

Size of the bounding patrtition
information.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbOperation::read_attr()
Description

Signature

Read an attribute identified by name or ID into a register.

int read_attr

(

const char

* anAttr Nane,

Ui nt 32 RegDest

)

235

https://dev.mysql.com/doc/refman/8.3/en/mysql-cluster-options-variables.html#sysvar_server_id_bits
https://dev.mysql.com/doc/refman/8.3/en/replication-options.html#sysvar_server_id

The NdbOperation Class

Parameters

Return value
NdbOperation::readTuple()

Description

Signature

Parameters

Return value
NdbOperation::ret_sub()
Description

Signature

Parameters
Return value
NdbOperation::setValue()

Description

int read_attr
(
U nt32 anAttrld,
Ui nt 32 RegDest

)

anAt t r Nane Attribute name. Use this or the
attribute ID.

anAttrld Attribute ID. Use this or the name
of the attribute.

RegDest Destination register.

On success, 0; otheriwse, -1.

This method defines the NdbQper at i on as a READ operation.
When the NdbTr ansact i on: : execut e() method is invoked, the
operation reads a tuple.

virtual int readTuple

(
LockMbde node

)

node specifies the locking mode used by the read operation. See
NdbOperation::LockMode, for possible values.

Returns 0 on success, - 1 on failure.

Return from an interpreted program subroutine.

int ret_sub

(
voi d

)
none.

0 on success, -1 otherwise.

This method defines an attribute to be set or updated.

There are a number of NdbQper at i on: : set Val ue() methods
that take a certain type as input (pass by value rather than passing a
pointer). It is the responsibility of the application programmer to use
the correct types.

The NDB API does check that the application sends a correct length
to the interface as given in the length parameter. A char * value
can contain any data type or any type of array. If the length is not
provided, or if it is set to zero, then the API assumes that the pointer
is correct, and does not check it.

To set a NULL value, use the following construct:

set Val ue("ATTR_NAME', (char*)NULL);

236

The NdbOperation Class

Signature

When you use i nsert Tupl e(), the NDB API automatically detects
that it is supposed to use equal () instead.

In addition, it is not necessary when using i nser t Tupl e() to use
set Val ue() on key attributes before other attributes.

There are 14 versions of NdbOper at i on: : set Val ue(), each with
slightly different parameters, as listed here:

int setVal ue

(

const char* nane,
const char* val ue

int setVal ue

(

const char* nane,
I nt 32 val ue

)

i nt setVal ue

(

const char* nane,
Ui nt 32 val ue

)

int setVal ue

(

const char* nane,
I nt 64 val ue

)

i nt setVal ue

(

const char* nane,
Ui nt 64 val ue

)

i nt setVal ue

(

const char* nane,
f | oat val ue

)

int setVal ue

(

const char* nane,
doubl e val ue

)

i nt setVal ue

(
Ui nt 32 id,
const char* val ue

)

i nt setVal ue

(
Uint32 id,
Int32 val ue

)

i nt setVal ue

(
Uint32 id,
Ui nt 32 val ue

)

int setVal ue

237

The NdbOperation Class

(
Uint32 id,

Int64 val ue

)

int setVal ue

(
Uint32 id,

U nt 64 val ue
)

int setVal ue

(
Uint32 id,

float val ue

)

int setVal ue

(
Uint32 id,
doubl e val ue

)
Parameters This method requires the following two parameters:

* The first parameter identifies the attribute to be set, and may be
either one of the following:

1. The attribute nane (a string)
2. The attribute i d (an unsigned 32-bit integer)

* The second parameter is the val ue to which the attribute is to be
set; its type may be any one of the following 7 types:

1. String (const char*)
2. 32-bit integer

3. Unsigned 32-bit integer
4. 64-bit integer

5. Unsigned 64-bit integer
6. Double

7. Float

See NdbOperation::equal(), for important information regarding
the value's format and length.

Return value Returns - 1 in the event of failure.
NdbOperation::SetValueSpec

This section provides information about the Set Val ueSpec data structure.
Parent class NdbQOper at i on

Description This structure is used to specify an extra value to set as part of an
NdbRecor d operation.

Members The elements making up this structure are shown in the following
table:

238

The NdbOperation Class

Table 2.55 NdbOperation::SetValueSpec attributes, with types

and descriptions

Name Type

Description

col umm Col umm

To specify an extra
value to read, the
caller must provide
this, as well as
(optionally NULL)
appSt or age
pointer.

val ue voi d*

This must point to
the value to be set,
or to NULL if the
attribute is to be set
to NULL. The value
pointed to is copied
when the operation
is defined, and need
not remain in place
until execution time.

Blob values cannot be set using Set Val ueSpec.

For more information, see Section 2.3.22, “The NdbRecord Interface”.

NdbOperation::sub_reg()
Description

Signature

Parameters

Store difference of two register values in a third register.

int sub_reg
(
Ui nt 32 RegSour cel,
Ui nt 32 RegSour ce2,
Ui nt 32 RegDest

)

param

RegSour cel

RegSour ce2

239

Registe
contain
value
to

be
subtrac

Registe
contain
value
to

be
subtrac
from.

Registe
in
which
to
store
the
result.

The NdbOperation Class

Return value
NdbOperation::subValue()

Description

Signature

Parameters

Return value

NdbOperation::Type

0 on success, otherwise -1.

Interpreted program instruction which subtracts a value from an
attribute in an interpreted operation. The attribute can be specified
by name or by ID. Thus, there are four versions of of this method
having slightly different parameters, as shown under Signature.

As with i ncVal ue(), this instruction uses registers 6 and 7, and
overwrites these registers in the course of its operation.

For scans and NdbRecor d operations, use the
Ndbl nt er pr et edCode interface instead.

i nt subVal ue
(
const char* anAttr Nanme
Ui nt 32 aVal ue

)

i nt subVal ue
(
const char* anAttr Nanme
Ui nt 64 aVal ue

)

i nt subVal ue
(
U nt32 anAttrld
Ui nt 32 aVal ue

)

i nt subVal ue
(
U nt32 anAttrld
Ui nt 64 aVal ue

)

anAt t r Nane Name of the attribute
anAttrld The attribute ID
aVal ue The value to be subtracted; this

can be a 32-bit or 64-bit integer.

0 on success, -1 otherwise.

This section provides information about the Type data type.

Description

Enumeration values

Type is used to describe the operation access type. Each access
type is supported by NdbOper at i on or one of its subclasses, as
shown in the following table:

Possible values are shown, along with descriptions, in the following
table:

Table 2.56 NdbOperation::Type data type values and
descriptions

Name Description
Pri mar yKeyAccess A read, insert, update, or delete operation using
primary key

240

The NdbOperation Class

NdbOperation::updateTuple()

Description

Signature

Parameters

Return value
NdbOperation::write_attr()

Description

Signature

Parameters

Return value

NdbOperation::writeTuple()

Description

Signature

Parameters

Return value

Name Description

Uni quel ndexAccess A read, update, or delete operation using a

Tabl eScan A full table scan

Or der edl ndexScan An ordered index scan

This method defines the NdbOper at i on as an UPDATE operation.
When the NdbTr ansacti on: : execut e() method is invoked, the
operation updates a tuple found in the table.

virtual int updateTuple

(
)

voi d

None.

Returns 0 on success, - 1 on failure.

Write an attribute value from a register. The attribute to be written
can be specified by name or ID.

int wite_ attr
(
const char* anAttr Nane,
Ui nt 32 RegSource

)

int wite_ attr
(
Uint32 anAttrid,
Ui nt 32 RegSour ce

)

anAt t r Name Attribute name. Use this or the
attribute ID.

anAttrld Attribute ID. Use this or the name
of the attribute.

RegSour ce Source register.

Returns 0 on success; otherwise, returns -1.

This method defines the NdbOper at i on as a ARl TE operation.
When the NdbTr ansact i on: : execut e() method is invoked, the
operation writes a tuple to the table. If the tuple already exists, it is
updated; otherwise an insert takes place.

virtual int witeTuple
(
voi d
)
None.

Returns 0 on success, - 1 on failure.

241

The NdbRecAttr Class

2.3.21 The NdbRecAttr Class

This section provides information about the NdbRecAt t r class.

NdbRecAttr

Class Overview

~NdbRecAttr()

NdbRecAttr
NdbRecAttr

NdbRecAttr::
NdbRecAttr:
NdbRecAttr:
NdbRecAttr::
NdbRecAttr::
NdbRecAttr:
NdbRecAttr::
NdbRecAttr:
NdbRecAttr:
NdbRecAttr::
NdbRecAttr::
NdbRecAttr:

NdbRecAttr
NdbRecAttr
NdbRecAttr
NdbRecAttr
NdbRecAttr
NdbRecAttr

:aRef()
::char_value()
clone()
double_value()
float_value()
get_size_in_bytes()
getColumn()
getType()
int8_value()
:int32_value()
:int64_value()
iSNULL()
medium_value()
short_value()

:u_8 value()
::u_32_value()
:u_64 value()
::u_char_value()
::u_medium_value()

::u_short_value()

NdbRecAttr Class Overview

Parent class

Child classes

Description

None
None

NdbRecAt t r contains the value of an attribute. An NdbRecAt t r
object is used to store an attribute value after it has been retrieved
using the NdbOper at i on: : get Val ue() method. This object is
allocated by the NDB API. A brief example is shown here:

My/RecAttr = MyOper ati on- >get Val ue("ATTR2", NULL);

i f (M/RecAttr == NULL)
gOtO error,

i f(MyTransacti on->execute(Commit) == -1)
goto error;

ndbout << MyRecAttr->u_32_val ue();

242

The NdbRecAttr Class

Methods

For additional examples, see Section 2.5.2, “NDB APl Example
Using Synchronous Transactions”.

An NdbRecAt t r object is instantiated with its value only

when NdbTr ansact i on: : execut e() is invoked. Prior to

this, the value is undefined. (Use NdbRecAt t r: : i sNULL()

to check whether the value is defined.) This means that an
NdbRecAt t r object has valid information only between

the times that NdbTr ansacti on: : execut e() and

Ndb: : cl oseTransacti on() are called. The value of the NULL
indicator is - 1 until the NdbTr ansact i on: : execut e() method is
invoked.

NdbRecAt t r has a number of methods for retrieving values of
various simple types directly from an instance of this class.

It is also possible to obtain a reference to the value regardless of its
actual type, by using NdbRecAt t r: : aRef () ; however, you should
be aware that this is not type-safe, and requires a cast from the
user.

The following table lists all of the public methods of this class and
the purpose or use of each method:

Table 2.57 NdbRecAttr class methods and descriptions

Name Description

~NdbRecAt tr () Destructor method

aRef () Gets a pointer to the attribute value

char _val ue() Retrieves a Char attribute value

cl one() Makes a deep copy of the RecAt t r object

doubl e_val ue() Retrieves a Doubl e attribute value, as a
double (8 bytes)

fl oat val ue() Retrieves a Fl oat attribute value, as a

float (4 bytes)
get _size_ in_byt es(Gets the size of the attribute, in bytes

get Col um() Gets the column to which the attribute
belongs

get Type() Gets the attribute's type (Col urm: : Type)

i SNULL() Tests whether the attribute is NULL

i nt 8 _val ue() Retrieves a Ti nyi nt attribute value, as an
8-bit integer

i nt32_val ue() Retrieves an | nt attribute value, as a 32-
bit integer

i nt 64_val ue() Retrieves a Bi gi nt attribute value, as a
64-bit integer

nmedi um val ue() Retrieves a Medi um nt attribute value, as
a 32-bit integer

short _val ue() Retrieves a Snal | i nt attribute value, as a
16-bit integer

u_8 val ue() Retrieves a Ti nyunsi gned attribute

value, as an unsigned 8-bit integer

243

The NdbRecAttr Class

Types
~NdbRecAttr()

Description

Signature

Parameters
Return value
NdbRecAttr::aRef()

Description

Signature

Parameters

Return value
NdbRecAttr::char_value()

Description

Signature

Name Description

u_32_val ue() Retrieves an Unsi gned attribute value, as
an unsigned 32-bit integer

u_64 val ue() Retrieves a Bi gunsi gned attribute value,
as an unsigned 64-bit integer

u_char _val ue() Retrieves a Char attribute value, as an
unsigned char

u_nedi um val ue() |Retrieves a Medi ununsi gned attribute
value, as an unsigned 32-bit integer

u_short _val ue() Retrieves a Sral | unsi gned attribute
value, as an unsigned 16-bit integer

The NdbRecAt t r class has no public constructor; an instance of
this object is created using NdbTr ansacti on: : execut e() . For
information about the destructor, which is public, see ~NdbRecAttr().

The NdbRecAt t r class defines no public types.

The NdbRecAt t r class destructor method.

You should delete only copies of NdbRecAt t r objects that were
created in your application using the cl one() method.

~NdbRecAt t r
(

voi d

)
None.

None.

This method is used to obtain a reference to an attribute value,

as a char pointer. This pointer is aligned appropriately for

the data type. The memory is released by the NDB API when
NdbTransacti on: : cl ose() is executed on the transaction which
read the value.

char* aRef
(

voi d
) const

A pointer to the attribute value. Because this pointer is constant, this
method can be called anytime after NdbOCper at i on: : get Val ue()
has been called.

None.

This method gets a Char value stored in an NdbRecAt t r object,
and returns it as a char .

char char_val ue

(

244

The NdbRecAttr Class

Parameters

Return value

NdbRecAttr::clone()

Description

Signature

Parameters

Return value

NdbRecAttr::double_value()

Description

Signature

Parameters

Return value

NdbRecAttr::float_value()

Description

Signature

Parameters

Return value

NdbRecAttr::get_size_in_bytes()

Description

Signature

Parameters

Return value

voi d
) const

None.

A char value.

This method creates a deep copy of an NdbRecAt t r object.

The copy created by this method should be deleted by the
application when no longer needed.

NdbRecAttr* cl one
(

voi d
) const
None.

An NdbRecAt t r object. This is a complete copy of the original,
including all data.

This method gets a Doubl e value stored in an NdbRecAt t r object,
and returns it as a double.

doubl e doubl e_val ue

(
voi d
) const
None.

A double (8 bytes).

This method gets a FI oat value stored in an NdbRecAt t r object,
and returns it as a float.

float float_val ue

(
voi d
) const
None.

A float (4 bytes).

You can use this method to obtain the size of an attribute (element).
Ui nt 32 get_size_in_bytes
(
voi d
) const

None.

The attribute size in bytes, as an unsigned 32-bit integer.

245

The NdbRecAttr Class

NdbRecAttr::getColumn()

Description

Signature

Parameters

Return value
NdbRecAttr::getType()

Description

Signature

Parameters

Return value
NdbRecAttr::int8 value()

Description

Signature

Parameters

Return value
NdbRecAttr::int32_value()

Description

Signature

Parameters

Return value
NdbRecAttr::int64_value()

Description

Signature

Parameters

This method is used to obtain the column to which the attribute
belongs.

const NdbDi ctionary:: Col um* get Col utm
(
voi d
) const
None.

A pointer to a Col urm object.

This method is used to obtain the column's data type.

NdbDi cti onary: : Col um: : Type get Type
(

voi d
) const

None.

A Col umm: : Type value.

This method gets a Snal | value stored in an NdbRecAt t r object,
and returns it as an 8-bit signed integer.

Int8 int8 val ue

(
voi d
) const

None.

An 8-bit signed integer.

This method gets an | nt value stored in an NdbRecAt t r object,
and returns it as a 32-bit signed integer.

Int32 int32_val ue
(

voi d
) const

None.

A 32-bit signed integer.

This method gets a Bi gi nt value stored in an NdbRecAt t r object,
and returns it as a 64-bit signed integer.

I nt64 int64_val ue
(

voi d
) const

None.

246

The NdbRecAttr Class

Return value A 64-bit signed integer.

NdbRecAttr::isNULL()

Description This method checks whether a given attribute value is NULL.
Signature int i sNULL
(voi d
) const
Parameters None.
Return value One of the following three values:

¢ - 1: The attribute value is not defined due to an error.
¢ 0: The attribute value is defined, but is not NULL.
¢ 1: The attribute value is defined and is NULL.

In the event that NdbTr ansact i on: : execut e() has not yet been called, the value returned by
i SNULL() is not determined.

NdbRecAttr::medium_value()

Description Gets the value of a Medi uni nt value stored in an NdbRecAt t r
object, and returns it as a 32-bit signed integer.

Signature I nt 32 nedi um val ue

(voi d

) const
Parameters None.
Return value A 32-bit signed integer.

NdbRecAttr::short_value()

Description This method gets a Sral | i nt value stored in an NdbRecAt t r
object, and returns it as a 16-bit signed integer (short).

Signature short short_val ue

(voi d

) const
Parameters None.
Return value A 16-bit signed integer.

NdbRecAttr::u_8 value()

Description This method gets a Snal | unsi gned value stored in an
NdbRecAt t r object, and returns it as an 8-bit unsigned integer.

Signature U nt8 u_8_val ue
(voi d
) const
Parameters None.
Return value An 8-bit unsigned integer.

247

The NdbRecAttr Class

NdbRecAttr::u_32 value()

Description This method gets an Unsi gned value stored in an NdbRecAt t r
object, and returns it as a 32-bit unsigned integer.

Signature Uint32 u_32 val ue
(voi d
) const
Parameters None.
Return value A 32-bit unsigned integer.

NdbRecAttr::u_64 value()

Description This method gets a Bi gunsi gned value stored in an NdbRecAt t r
object, and returns it as a 64-bit unsigned integer.

Signature Uint64 u_64_val ue
(voi d
) const
Parameters None.
Return value A 64-bit unsigned integer.

NdbRecAttr::u_char_value()

Description This method gets a Char value stored in an NdbRecAt t r object,
and returns it as an unsigned char .

Signature Uint8 u_char_val ue
(voi d
) const
Parameters None.
Return value An 8-bit unsigned char value.

NdbRecAttr::u_medium_value()

Description This method gets an Medi ununsi gned value stored in an
NdbRecAt t r object, and returns it as a 32-bit unsigned integer.

Signature Ui nt 32 u_nedi um val ue
(voi d
) const
Parameters None.
Return value A 32-bit unsigned integer.

NdbRecAttr::u_short_value()

Description This method gets a Snal | unsi gned value stored in an
NdbRecAt t r object, and returns it as a 16-bit (short) unsigned
integer.

Signature Uint16 u_short_val ue

(
voi d

248

The NdbRecord Interface

) const
Parameters None.
Return value A short (16-bit) unsigned integer.

2.3.22 The NdbRecord Interface

This section provides information about the NdbRecor d interface.

Decription NdbRecor d is an interface which provides a mapping to a full or
a partial record stored in NDB. In the latter case, it can be used in
conjunction with a bitmap to assist in access.

Parent None.
Methods None.
Types None.

NdbRecor d has no APl methods of its own; rather, it acts as a handle that can be passed between
various method calls for use in many different sorts of operations, including the following:

» Unique key reads and primary key reads

+ Table scans and index scans

» DML operations involving unique keys or primary keys

» Operations involving index bounds

The same NdbRecor d can be used simultaneously in multiple operations, transactions, and threads.

An NdbRecor d can be created in NDB API programs by calling Di cti onary: : creat eRecord().
In addition, a number of NDB APl methods have additional declarations that enable the programmer to
leverage NdbRecor d:

* NdbScanQOperati on:: next Resul t ()

* NdbScanQper ation: : | ockCurrent Tupl e()

* NdbScanQOper ati on: : updat eCurrent Tupl e()
* NdbScanQOper ati on: : del et eCurrent Tupl e()
e« Dictionary::createRecord()

e Dictionary::rel easeRecord()
 NdbTransacti on::readTupl e()
 NdbTransacti on::insert Tupl e()

* NdbTransacti on: : updat eTupl e()

« NdbTransaction::witeTuple()
 NdbTransacti on: : del et eTupl e()

* NdbTransacti on:: scanTabl e()
 NdbTransacti on: : scanl ndex()

The following members of Ndbl ndexScanOper at i on and NdbDi cti onary can also be used with
NdbRecor d scans:

249

The NdbScanFilter Class

» | ndexBound is a structure used to describe index scan bounds.
» RecordSpeci ficati onis a structure used to specify columns and range offsets.

You can also use NdbRecor d in conjunction with the Parti t i onSpec structure to perform scans that
take advantage of partition pruning, using Ndbl ndexScanQper ati on: : set Bound() .

2.3.23 The NdbScanFilter Class

This section provides information about the NdbScanFi | t er class.

* NdbScanFilter Class Overview

* NdbScanFilter::
* NdbScanFilter::
* NdbScanFilter::

* NdbScanFilter::

begin()
BinaryCondition

cmp()

cmp_param()

* NdbScanFilter Constructor

* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:
* NdbScanFilter:

¢ NdbScanFilter:

end()

-eq()

sisfalse()
;isnotnull()
;isnull()
sistrue()

:ge()
:getNdbError()
:getNdbOperation()
:Group

gt()

lle()

1t()

‘ne()

‘reset()

* NdbScanFilter::setSglCmpSemantics()
NdbScanFilter Class Overview
Parent class None
Child classes None

Description NdbScanFi | t er provides an alternative means of specifying filters

for scan operations.

250

The NdbScanFilter Class

Methods

Types

NdbScanFilter Integer Comparison Methods.

Because development of this interface is ongoing, the
characteristics of the NdbScanFi | t er class are subject to change

in future releases.

The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.58 NdbScanFilter class methods and descriptions

Name

Description

NdbScanFi | ter ()

Constructor method

~NdbScanFi I ter ()

Destructor method

begi n() Begins a compound (set of conditions)

cmp() Compares a column value with an arbitrary
value

cnp_param() Compares a column value with the value of
a supplied parameter

end() Ends a compound

eq() Tests for equality

ge() Tests for a greater-than-or-equal condition

get NdbError ()

Provides access to error information

get NdbOper ati on()

Gets the associated NdbQper at i on

gt ()

Tests for a greater-than condition

i sfal se()

Defines a term in a compound as FALSE

i snotnull ()

Tests whether a column value is not NULL

i snull () Tests whether a column value is NULL
i strue() Defines a term in a compound as TRUE
le() Tests for a less-than-or-equal condition
[t() Tests for a less-than condition

ne() Tests for inequality

reset () Resets this NdbScanFi | t er object

set Sgl CnpSenanti ¢

sFEQrces use of SQL-compliant NULL
comparison handling

The NdbScanFi | t er class defines two public types:

e Bi naryCondi ti on: The type of condition, such as lower bound

or upper bound.

e G oup: Alogical grouping operator, such as AND or OR.

NdbScanFi | t er provides several convenience

methods which can be used in lieu of the cnp() method when the arbitrary value to be compared is an
integer: eq(), ge(),gt(),le(),It(),andne().

Each of these methods is essentially a wrapper for cnp() that includes an appropriate value of
Bi nar yCondi t i on for that method's condi t i on parameter; for example, NdbScanFi | ter: : eq()

is defined like this:

int eq(int columld, U nt32 val ue)

{

251

The NdbScanFilter Class

return cnp(Bi naryCondi tion:: COND_EQ col umld, &val ue, 4);

}
NdbScanFilter::begin()

Description

Signature

Parameters

Return value

NdbScanFilter::BinaryCondition

This method is used to start a compound, and specifies the logical
operator used to group the conditions making up the compound.
The default is AND.

int begin
(
G oup group = AND

)

A Gr oup value: one of AND, OR, NAND, or NOR. See
NdbScanFilter::Group, for additional information.

0 on success, - 1 on failure.

This section provides information about the Bi nar yCondi t i on data type.

Description

Enumeration values

This type represents a condition based on the comparison of a
column value with some arbitrary value—that is, a bound condition.
A value of this type is used as the first argument to the cnp()
method.

When used in comparisons with COND_EQ, COND_NE, COND_LT,
COND_LE, COND_GT, or COND_C¥, fixed-length character and binary
column values must be prefixed with the column size, and must

be padded to length. This is not necessary for such values when
used in COND_LI KE, COND_NOTLI KE, COL_AND_MASK_EQ MASK,
COL_AND_MASK_NE_MASK, COL_AND MASK_EQ ZERQ, or
COL_AND_MASK_NE_ZERO comparisons.

Strings compared using COND LI KE and COND_NOTLI KE can use
the pattern metacharacters %and _. See NdbScanFilter::cmp(), for
more information.

The Bl T comparison operators are COL_AND_MASK _EQ MASK,
COL_AND_MASK_NE_MASK, COL_AND_MASK_EQ ZERO, and
COL_AND_MASK_NE_ZERO. Corresponding methods are available
for Ndbl nt er pr et edCode and NdbOper at i on; for more
information about these methods, see NdbinterpretedCode Bitwise
Comparison Operations.

Possible values are shown, along with descriptions, in the following
table:

Table 2.59 NdbScanFilter data type values and descriptions

Name Description Column type
compared

COND_EQ Equality (=) any

COND_NE Inequality (<>or! =) |any

COND_LE Lower bound (<=) any

COND LT Strict lower bound (<) |any

COND_GE Upper bound (>=) any

252

The NdbScanFilter Class

NdbScanFilter::cmp()

Description

Signature

Parameters

Name Description Column type
compared

COND_GT Strict upper bound (>) |any

COND_LI KE LI KE condition string or binary

COND_NOTLI KE NOT LI KE condition |string or binary

COL_AND_MASK_EQ MrS#lumn value ANDed |BI T
with bitmask is equal
to bitmask

COL_AND _NMASK_NE_MS#lumn value ANDed [BI T
with bitmask is not
equal to bitmask

COL_AND MASK EQ ZHEBalumn value ANDed |BI T
with bitmask is equal
to zero

COL_AND MASK NE ZHBGlumn value ANDed |BI T
with bitmask is not
equal to zero

This method is used to define a comparison between a given value
and the value of a column. In NDB 8.0, it can also be used to
compare two columns. (This method does not actually execute the
comparison, which is done later when performing the scan for which
this NdbScanFi | t er is defined.)

In many cases, where the value to be compared is an integer, you
can instead use one of several convenience methods provided

by NdbScanFi | t er for this purpose. See NdbScanFilter Integer
Comparison Methods.

int cnp
(
Bi naryCondi ti on condition,
int columld,
const voi d* val ue,
Unt32 length =0
)

Addtionally, in NDB 8.0:

int cnp
(
Bi naryCondi ti on condition,
int Columldil,
int Col uml d2

)

When used to compare a value with a column, this method takes the
following parameters:

e condi t i on: This represents the condition to be tested which
compares the value of the column having the column ID
col unml D with some arbitrary value. The condi ti onis a
Bi nar yCondi t i on value; for permitted values and the relations
that they represent, see NdbScanFilter::BinaryCondition.

The condi ti on values COND_LI KE or COND_NOTLI KE are used
to compare a column value with a string pattern.

253

The NdbScanFilter Class

* col uml d: This is the column's identifier, which can be obtained
using the Col um: : get Col unmNo() method.

e val ue: The value to be compared, represented as a pointer to
voi d.

When using a COND_LI KE or COND_NOTLI KE comparison
condition, the val ue is treated as a string pattern. This string
must not be padded or use a prefix. The string val ue can include
the pattern metacharacters or “wildcard” characters %and _,
which have the meanings shown here:

Table 2.60 Pattern metacharacters used with COND_LIKE and
COND_NOTLIKE comparisons

Metacharacter Description

% Matches zero or more characters

Matches exactly one character

To match against a literal “%” or “_" character, use the backslash
(\) as an escape character. To match a literal “\” character, use \
\.

These are the same wildcard characters that are supported by the
SQL LI KEand NOT LI KE operators, and are interpreted in the
same way. See String Comparison Functions and Operators, for
more information.

* | engt h: The length of the value to be compared. The default
value is 0. Using O for the | engt h has the same effect as
comparing to NULL, that is using the i snul | () method.

When used to compare two columns, cnp() takes the following
parameters:

e condi t i on: The condition to be tested when comparing
the columns. The condition may be any one of the
Bi nar yCondi ti on values EQ, NE, LT, LE, GT, or GE. Other
values are not accepted.

e col unml D1: ID of the first of the two columns to be compared.

¢ col uml D1: ID of the second column.

Columns being compared using this method must be of exactly
the same type. This includes length, precision, scale, and all other

particulars.
Return value This method returns an integer: 0 on success, and - 1 on failure.
NdbScanFilter::cmp_param()
Description This method is used to define a comparison between the value

of a column and that of a parameter having the specified ID. The
comparison is actually performed later when executing the scan for
which this NdbScanFi | t er is defined.

This method was added in NDB 8.0.27.

254

https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html

The NdbScanFilter Class

Signature

Parameters

Return value
NdbScanFilter Constructor

Description

Signature

Parameters

Return value

Destructor

NdbScanFilter::end()

Description

Signature

Parameters

Return value

NdbScanFilter::eq()

int cnp_paramn()
(
Bi naryCondi ti on condition
int colld
int paramd

)

When used to compare a value with a column, this method takes the
following parameters:

e condi t i on: This represents the condition to be tested which
compares the value of the column having the column ID
col umml D with some arbitrary value. The condi ti onis a
Bi nar yCondi t i on value; for permitted values and the relations
that they represent, see NdbScanFilter::BinaryCondition.

The condi ti on values COND_LI KE or COND_NOTLI KE are used
to compare a column value with a string pattern.

¢ col | d: This is the column's identifier, which can be obtained
using the Col umm: : get Col unmNo() method.

e param d: The ID of the parameter whose value is to be
compared.

Values being compared using this method must be of exactly the
same type. This includes length, precision, scale, and all other
particulars.

This method returns an integer: 0 on success, and - 1 on failure.

This is the constructor method for NdbScanFi | t er, and creates a
new instance of the class.

NdbScanFi | t er

(
cl ass NdbQOperati on* op

)

This method takes a single parameter, a pointer to the
NdbOper at i on to which the filter applies.

A new instance of NdbScanFi | t er.

The destructor takes no arguments and does not return a value. It
should be called to remove the NdbScanFi | t er object when it is
no longer needed.

This method completes a compound, signalling that there are no
more conditions to be added to it.

int end
(
voi d
)
None.

Returns 0 on success, or - 1 on failure.

255

The NdbScanFilter Class

Description

Signature

Parameters

Return value
NdbScanFilter::isfalse()

Description

Signature

Parameters

Return value

NdbScanFilter::isnotnull()

Description

Signature

Parameters

Return value
NdbScanFilter::isnull()

Description

Signature

Parameters
Return value
NdbScanFilter::istrue()

Description

This method is used to perform an equality test on a column value
and an integer.

int eq
(
i nt Col 1 d,
Ui nt 32 val ue
)
or
int eq

(
int Col I d,

Ui nt 64 val ue
)
This method takes two parameters, listed here:

e The ID (Col | d) of the column whose value is to be tested

* An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Returns 0 on success, or - 1 on failure.

Defines a term of the current group as FALSE.
int isfal se

(voi d

)
None.

0 on success, or - 1 on failure.

This method is used to check whether a column value is not NULL.
int isnotnull

(int Colld

)
The ID of the column whose value is to be tested.

Returns 0, if the column value is not NULL.

This method is used to check whether a column value is NULL.
int isnull
(
int Colld
)
The ID of the column whose value is to be tested.

Returns 0, if the column value is NULL.

Defines a term of the current group as TRUE.

256

The NdbScanFilter Class

Signature

Parameters

Return value
NdbScanFilter::ge()

Description

Signature

Parameters

Return value

NdbScanFilter::getNdbError()

Description

Signature

Parameters

Return value

NdbScanFilter::getNdbOperation()

Description

Signature

Parameters

int istrue

(
)

voi d

None.

Returns 0 on success, - 1 on failure.

This method is used to perform a greater-than-or-equal test on a
column value and an integer.

This method accepts both 32-bit and 64-bit values, as shown here:

int ge
(
i nt Col 1 d,
Ui nt 32 val ue
)

int ge
(
i nt Col 1 d,
Ui nt 64 val ue
)

Likeeq(),It(),!e(), andthe other NdbScanFi | t er methods of
this type, this method takes two parameters:

e The ID (Col I d) of the column whose value is to be tested

* An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

0 on success; - 1 on failure.

Because errors encountered when building an NdbScanFi | t er
do not propagate to any involved NdbOper at i on object, it is
necessary to use this method to access error information.

const NdbError & get NdbEr r or
(

)

voi d

None.

A reference to an NdbEr r or .

If the NdbScanFi | t er was constructed with an NdbQper at i on,
this method can be used to obtain a pointer to that NdbOper at i on
object.

NdbOper at i on* get NdbOper ati on
(
voi d

)

None.

257

The NdbScanFilter Class

Return value

NdbScanFilter::Group

A pointer to the NdbOper at i on associated with this
NdbScanFi | t er, if there is one. Otherwise, NULL.

This section provides information about the Gr oup data type.

Description

Enumeration values

NdbScanFilter::gt()

Description

Signature

Parameters

Return value
NdbScanFilter::le()

Description
Signature

int le

(

This type is used to describe logical (grouping) operators, and is
used with the begi n() method. (See NdbScanFilter::begin().)

Possible values are shown, along with descriptions, in the following
table:

Table 2.61 NdbScanFilter::Group data type values and
descriptions

Value Description

AND Logical AND: A AND B AND C

OR Logical ORA OR B OR C

NAND Logical NOT AND: NOT (A AND B AND
0

NOR Logical NOT OR NOT (A OR B OR O

This method is used to perform a greater-than (strict upper bound)
test on a column value and an integer.

This method accommodates both 32-bit and 64-bit values:

int gt
(
i nt Col Id
Ui nt 32 val ue
)

int gt
(
i nt Col Id
Ui nt 64 val ue
)

Like the other NdbScanFi | t er methods of this type, this method
takes two parameters:

e The ID (Col I d) of the column whose value is to be tested

« An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

0 on success; - 1 on failure.

This method is used to perform a less-than-or-equal test on a
column value and an integer.

This method has two variants, to accommodate 32-bit and 64-bit
values:

258

The NdbScanFilter Class

int Col 1 d,

Ui nt 32 val ue
)

int le

(

int Col 1 d,

U nt 64 val ue
)

Parameters

Return value
NdbScanFilter::1t()

Description

Signature

Parameters

Return value
NdbScanFilter::ne()

Description

Signature

Like the other NdbScanFi | t er methods of this type, this method
takes two parameters:

e The ID (Col I d) of the column whose value is to be tested

* An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Returns 0 on success, or - 1 on failure.

This method is used to perform a less-than (strict lower bound) test
on a column value and an integer.

This method has 32-bit and 64-bit variants, as shown here:

int It

(
int Col 1 d,

U nt 32 val ue
)

int It

(
int Col 1 d,

U nt 64 val ue
)

Like eq(), ne(), and the other NdbScanFi | t er methods of this
type, this method takes two parameters, listed here:

e The ID (Col | d) of the column whose value is to be tested

* An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Retrturns 0 on success, or - 1 on failure.

This method is used to perform an inequality test on a column value
and an integer.

This method has 32-bit and 64-bit variants, as shown here:

int ne
(
i nt Col I d
Ui nt 32 val ue
)

int ne
(
i nt Col I d
Ui nt 64 val ue
)

259

The NdbScanOperation Class

Parameters

Return value
NdbScanFilter::reset()

Description

Signature

Parameters

Return value

Like eq() and the other NdbScanFi | t er methods of this type, this
method takes two parameters:

e The ID (Col I d) of the column whose value is to be tested

* An integer with which to compare the column value; this integer
may be either 32-bit or 64-bit, and is unsigned in either case.

Returns 0 on success, or - 1 on failure.

This method resets the NdbScanFi | t er object, discarding any
previous filter definition and error state.
voi d reset
(
voi d

)

None.

None.

reset () has no effect on the SQL-compliant NULL comparison mode set by

set Sgl ChrpSenmanti cs().

This method was added in NDB 8.0.

NdbScanFilter::setSqlCmpSemantics()

Description

Signature

Parameters

Return value

Traditionally, when making comparisons involving NULL,
NdbScanFi | t er treats NULL as equal to NULL (and thus considers
NULL == NULL to be TRUE). This is not the same as specified by
the SQL Standard, which requires that any comparison with NULL
return NULL, including NULL == NULL.

Beginning with NDB 8.0.26, it is possible to override this behavior
by calling this method, which takes no arguments. Doing so causes
the next NdbScanFi | t er object to be created to employ SQL-
compliant NULL comparison for all operations for its entire lifetime.
This cannot be unset once set Sql CnpSemant i cs() is called;
invoking r eset () has no effect in this regard. The effect of this
method extends only to the next instance of NdbScanFi | t er to be
created; any subsequent instance uses the traditional comparison
mode unless set Sql CnpSenmant i cs() is invoked beforehand.

This method has no effect on NULL sorting; NdbScanFi | t er
always considers NULL to be less than any other value.
voi d set Sgl CnpSenanti cs
(
voi d

)

None

None

This method was added in NDB 8.0.26.
2.3.24 The NdbScanOperation Class

This section provides information about the NdbScanQOper at i on class.

260

The NdbScanOperation Class

NdbScanOperation Class Overview

NdbScanOperation::
NdbScanOperation::
NdbScanOperation::
NdbScanOperation::
NdbScanOperation::
NdbScanOperation::
NdbScanOperation::
NdbScanOperation::
NdbScanOperation::
NdbScanOperation::

NdbScanOperation::

close()
deleteCurrentTuple()
getNdbTransaction()
getPruned()
lockCurrentTuple()
nextResult()
readTuples()
restart()

ScanFlag
ScanOptions

updateCurrentTuple()

NdbScanOperation Class Overview

Parent class

Child classes

Description

Methods

Types

NdbOper ati on
Ndbl ndexScanOper ati on

The NdbScanQper at i on class represents a scanning operation
used in a transaction. This class inherits from NdbQper at i on.

The following table lists the public methods of this class and the
purpose or use of each method:

Table 2.62 NdbScanOperation class methods and descriptions

Name Description

cl ose() Closes the scan

del et eCurr ent Tupl eDégletes the current tuple

| ockCurrent Tupl e()Locks the current tuple

next Resul t () Gets the next tuple

get NdbTransact i on{Gets the NdbTr ansact i on object for this
scan

get Pruned() Used to find out whether this scan is
pruned to a single partition

readTupl es() Reads tuples

restart() Restarts the scan

updat eCur r ent Tupl e¢pdates the current tuple

This class has no public constructor. To create an instance
of NdbScanQper at i on, it is necessary to use the
NdbTr ansacti on: : get NdbScanQOper ati on() method.

This class defines two public types, which are listed here:
e ScanFl ag

e ScanOpti ons.

261

The NdbScanOperation Class

For more information about the use of NdbScanQOper at i on, see Scan Operations, and Using Scans
to Update or Delete Rows.

NdbScanOperation::close()

Description Calling this method closes a scan. Rows returned by this scan
are no longer available after the scan has been closed using this
method.

See Scans with exclusive locks, for information about multiple
threads attempting to perform the same scan with an exclusive lock
and how this can affect closing the scans.

Signature voi d cl ose
(
bool forceSend = fal se,
bool releaseCp = fal se
)
Parameters This method takes the two parameters listed here:

« forceSend defaultsto f al se; call cl ose() with this parameter
setto t r ue in order to force transactions to be sent.

e rel ease(p also defaults to f al se; setthistot r ue in order to
release the operation.

The buffer allocated by an NdbScanQper at i on for receiving
the scanned rows is released whenever the cursor navigating the
result set is closed using the cl ose() method, regardless of the
value of the r el easeQp argument.

Return value None.

NdbScanOperation::deleteCurrentTuple()
Description This method is used to delete the current tuple.

Signature const NdbOperation* del eteCurrent Tupl e
(

NdbTr ansacti on* takeOver Tr ans,
const NdbRecord* record,
char* row = 0,
const unsigned char* mask = 0,
const NdbQOperation:: Qperati onOptions* opts = 0,
U nt32 sizeOOpts = 0
)

For more information, see Section 2.3.22, “The NdbRecord
Interface”.

Parameters When used with the NdbRecor d interface, this method takes the
parameters listed here:

e The transaction (t akeQver Tr ans) that should perform the
lock; when using NdbRecor d with scans, this parameter is not
optional.

* The NdbRecor d referenced by the scan. This r ecor d value is
required, even if no records are being read.

* The r owfrom which to read. Set this to NULL if no read is to
occur.

262

The NdbScanOperation Class

« The nmask pointer is optional. If it is present, then only columns for
which the corresponding bit in the mask is set are retrieved by the
scan.

e OperationOptions (opts) can be used to provide more finely-
grained control of operation definitions. An Oper at i onOpt i ons
structure is passed with flags indicating which operation definition
options are present. Not all operation types support all operation
options; the options supported for each type of operation are
shown in the following table:

Table 2.63 Operation types for the NdbRecord
OperationOptions

Operation type Oper ati onOpt i ons Flags
(Method) Supported
readTupl e() OO_ABORTOPTI ON, OO_CETVALUE,

0O _PARTI TI ON_I D,
0O0_| NTERPRETED

i nsert Tupl e() 00_ABORTOPTI ON, 0O_SETVALUE,
0O _PARTI TI ON_I D, 00_ANYVALUE
updat eTupl e() 0O ABORTOPTI ON, 0O SETVALUE,

0O _PARTI TI ON_I D,
00_| NTERPRETED, 0O_ANYVALUE

wr it eTupl e() 0O_ABORTOPTI ON, 0O_SETVALUE,
0O _PARTI TI ON_I D, 00_ANYVALUE
del et eTupl e() 0O_ABORTOPTI ON, 0O_GETVALUE,

OO _PARTI TI ON_I D,
00_| NTERPRETED, 0O_ANYVALUE

* The optional si zeOF Opt i ons parameter is used to preserve
backward compatibility of this interface with previous definitions
of the Oper ati onQOpt i ons structure. If an unusual size is
detected by the interface implementation, it can use this to
determine how to interpret the passed Oper ati onOpti ons
structure. To enable this functionality, the caller should pass
si zeof (NdbOper ati on: : Oper ati onOpti ons) for the value
of this argument.

« If options are specified, their length (si zeOf Opt s) must be
specified as well.

Return value Returns 0 on success, or - 1 on failure.

NdbScanOperation::getNdbTransaction()

Description Gets the NdbTr ansact i on object for this scan.
Signature NdbTr ansacti on* get NdbTransacti on
(voi d
) const
Parameters None.
Return value A pointer to an NdbTr ansact i on object.

NdbScanOperation::getPruned()

263

The NdbScanOperation Class

Description This method is used to determine whether or not a given scan
operation has been pruned to a single partition. For scans defined
using NdbRecord, this method can be called before or after the
scan is executed. For scans not defined using NdbRecor d,
get Pruned() is valid only after the scan has been executed.

Signature bool get Pruned
(voi d
) const
Parameters None.
Return value Returns t r ue, if the scan is pruned to a single table partition.

NdbScanOperation::lockCurrentTuple()

Description This method locks the current tuple.

Signature This method can be called with an optional single parameter, in
either of the two ways shown here:

NdbOper at i on* | ockCurrent Tupl e
(
voi d

)

NdbOper at i on* | ockCurrent Tupl e
(

NdbTr ansacti on* | ockTrans

)

The following signature is also supported for this method, when
using NdbRecor d:

NdbQOper ati on *| ockCurrent Tupl e
(

NdbTr ansacti on* takeOver Tr ans,
const NdbRecord* record,
char* row = 0,

const unsigned char* mask = 0

)

This method also supports specifying one or more
Oper ati onOpt i ons (also when using NdbRecor d):

NdbOper ati on *| ockCurrent Tupl e
(

NdbTr ansacti on* takeOver Tr ans,
const NdbRecord* record,
char* row = 0,
const unsigned char* mask = 0,
const NdbOperation:: Qperati onOpti ons* opts = 0,
Uint32 sizeO Options = 0
)

Parameters (without This method takes a single, optional parameter—the transaction
NdbRecord) that should perform the lock. If this is omitted, the transaction is the
current one.

Parameters (using NdbRecord) When using the NdbRecor d interface, this method takes these
parameters, as described in the following list:

¢ The transaction (t akeOver Tr ans) that should perform the
lock; when using NdbRecor d with scans, this parameter is not
optional.

264

The NdbScanOperation Class

« The NdbRecor d referenced by the scan. This is required, even if
no records are being read.

¢ The r owfrom which to read. Set this to NULL if no read is to
occur.

* The mask pointer is optional. If it is present, then only columns for
which the corresponding bit in the mask is set are retrieved by the
scan.

e The opt s argument can take on any of the following
Oper ati onOpt i ons values: OO _ABORTOPTI ON, OO GETVALUE,
and OO ANYVALUE.

« If options are specified, their length (si zeOf Opt i ons) must be
specified as well.

Calling an NdbRecor d scan lock takeover on an NdbRecAt t r -
style scan is not valid, nor is calling an NdbRecAt t r -style scan lock
takeover on an NdbRecor d-style scan.

Return value This method returns a pointer to an NdbOper at i on object, or
NULL.

NdbScanOperation::nextResult()

Description This method is used to fetch the next tuple in a scan transaction.
Following each call to next Resul t (), the buffers and
NdbRecAt t r objects defined in NdbOper at i on: : get Val ue()
are updated with values from the scanned tuple.

When next Resul t () is executed following end-of-file, NDB
returns error code 4210 (Ndb sent nore info than | ength
speci fi ed) and the extra transaction object is freed by returning it
to the idle list for the right TC node.

Signatures This method can be invoked in one of two ways. The first of these is
shown here:

i nt nextResult

(

bool fetchAllowed = true,
bool forceSend = false

)

It is also possible to use this method as shown here:

i nt nextResult

(

const char*& out Row,
bool fetchAllowed = true,
bool forceSend = false

)

Parameters (2-parameter This method takes the following two parameters:

version)
* Normally, the NDB API contacts the NDB kernel for more tuples

whenever it is necessary; setting f et chAl | owed to f al se keeps
this from happening.

Disabling f et chAl | owed by setting it to f al se forces NDB to
process any records it already has in its caches. When there

265

The NdbScanOperation Class

Parameters (3-parameter
version)

Return value

are no more cached records it returns 2. You must then call
next Resul t () with f et chAl | owed equal to t r ue in order to
contact NDB for more records.

While next Resul t (fal se) returns 0, you should

transfer the record to another transaction using

execut e(NdbTransacti on: : NoConmi t) . When

next Resul t (fal se) returns 2, you should normally execute
and commit the other transaction. This causes any locks to be
transferred to the other transaction, updates or deletes to be
made, and then, the locks to be released. Following this, you
can call next Resul t (true) to have more records fetched and
cached in the NDB API.

Note
g If you do not transfer the records to

another transaction, the locks on those
records will be released the next time
that the NDB Kernel is contacted for more
records.

Disabling f et chAl | owed can be useful when you want to
update or delete all of the records obtained in a given transaction,
as doing so saves time and speeds up updates or deletes of
scanned records.

f or ceSend defaults to f al se, and can normally be omitted.
However, setting this parameter to t r ue means that transactions
are sent immediately. See Section 1.4.4, “The Adaptive Send
Algorithm”, for more information.

This method can also be called with the following three parameters:

Calling next Resul t () sets a pointer to the next row in

out Row (if returning 0). This pointer is valid (only) until the
next call to next Resul t () when f et chAl | owed is true. The
NdbRecor d object defining the row format must be specified
beforehand using NdbTr ansacti on: : scanTabl e() (or
NdbTr ansacti on: : scanl ndex() .

When false, f et chAl | owed forces NDB to process any records it
already has in its caches. See the description for this parameter in
the previous Parameters subsection for more details.

Setting f or ceSend to t r ue means that transactions are sent
immediately, as described in the previous Parameters subsection,
as well as in Section 1.4.4, “The Adaptive Send Algorithm”.

This method returns one of the following 4 integer values,
interpreted as shown in the following list:

- 1: Indicates that an error has occurred.
0: Another tuple has been received.
1: There are no more tuples to scan.

2: There are no more cached records (invoke
next Resul t (true) to fetch more records).

266

The NdbScanOperation Class

Example
NdbScanOperation::readTuples()
Description

Signature

Parameters

Return value
NdbScanOperation::restart()

Description

Signature

Parameters

Return value

NdbScanOperation::ScanFlag

See Section 2.5.5, “NDB API Basic Scanning Example”.

This method is used to perform a scan.

virtual int readTuples

(
LockMbde node = LM Read,

Ui nt 32 flags = 0,
Ui nt 32 parallel = 0,
Ui nt 32 batch = 0

)

This method takes the four parameters listed here:

The lock node; this is a LockMode value.

Scans with exclusive locks. When scanning with an
exclusive lock, extra care must be taken due to the fact that, if two
threads perform this scan simultaneously over the same range,
then there is a significant probability of causing a deadlock. The
likelihood of a deadlock is increased if the scan is also ordered
(that is, using SF_Or der By or SF_Descendi ng).

The NdbScanQOper ati on: : cl ose() method is also affected by
this deadlock, since all outstanding requests are serviced before
the scan is actually closed.

One or more ScanFl ag values. Multiple values are ORed
together

The number of fragments to scan in par al | el ; use 0 to require
that the maximum possible number be used.

The bat ch parameter specifies how many records will

be returned to the client from the server by the next
NdbScanOper ati on: : next Resul t (true) method call. Use 0
to specify the maximum automatically.

Returns 0 on success, - 1 on failure.

Use this method to restart a scan without changing any of its
get Val ue()) calls or search conditions.

int restart

(

bool forceSend = false

)

Call this method with f or ceSend setto t r ue in order to force the
transaction to be sent.

0 on success; - 1 on failure.

This section provides information about the ScanF| ag data type.

Description

Values of this type are the scan flags used with the r eadTupl es()
method. More than one may be used, in which case, they are

267

The NdbScanOperation Class

Enumeration values

OR'ed together as the second argument to that method. See
NdbScanOperation::readTuples(), for more information.

Possible values are shown, along with descriptions, in the following

table:

Table 2.64 NdbScanOperation::ScanFlag values and

descriptions

Value Description

SF_TupScan Scan in TUP order (that is, in the order
of the rows in memory). Applies to table
scans only.

SF_Di skScan Scan in disk order (order of rows on disk).
Applies to table scans only.

SF_Or der By Ordered index scan (ascending); rows

returned from an index scan are sorted,
and ordered on the index key. Scans in
either ascending or descending order are
affected by this flag, which causes the API
to perform a merge-sort among the ordered
scans of each fragment to obtain a single
sorted result set.

Notes:

» Ordered indexes are distributed, with
one ordered index for each fragment of a
table.

« Range scans are often parallel across all
index fragments. Occasionally, they can
be pruned to one index fragment.

» Each index fragment range scan can
return results in either ascending or
descending order. Ascending is the
default; to choose descending order, set
the SF_Descendi ng flag.

* When multiple index fragments are
scanned in parallel, the results are
sent back to NDB where they can
optionally be merge-sorted before being
returned to the user. This merge sorting
is controlled using the SF_Or der By and
SF_Order ByFul | flags.

e If SF_OrderBy or SF_Or der ByFul |
is not used, the results from each index
fragment are in order (either ascending
or descending), but results from different
fragments may be interleaved.

e When using SF_Or der By or
SF_Order ByFul |, some extra

268

The NdbScanOperation Class

NdbScanOperation::ScanOptions

Value

Description

constraints are imposed internally; these
are listed here:

1. If the range scan is not pruned to
one index fragment then all index
fragments must be scanned in
parallel. (Unordered scans can
be executed with less than full
parallelism.)

2. Results from every index fragment
must be available before returning
any rows, to ensure a correct merge
sort. This serialises the “scrolling” of
the scan, potentially resulting in lower
row throughput.

3. Unordered scans can return rows
to the API client before all index
fragments have returned any
batches, and can overlap next-batch
requests with row processing.

SF_Or der ByFul |

This is the same as SF_Or der By,
except that all key columns are added
automatically to the read bitmask.

SF _Descendi ng

Causes an ordered index scan to be
performed in descending order.

SF_ReadRangeNo

For index scans, when this flag is set,
Ndbl ndexScanQper ati on: : get _range|
can be called to read back

the r ange_no defined in

Ndbl ndexScanQper at i on: : set Bound(
In addition, when this flag is set, and
SF_OrderBy or SF_Order ByFul | is
also set, results from ranges are returned
in their entirety before any results are
returned from subsequent ranges.

Lno()

SF_Mil ti Range

Indicates that this scan is part of a
multirange scan; each range is scanned
separately.

SF_Keyl nf o

Requests Key| nf o to be sent back to

the caller. This enables the option to take
over the row lock taken by the scan, using

| ockCurrent Tupl e(), by making sure
that the kernel sends back the information
needed to identify the row and the lock.
This flag is enabled by default for scans
using LM _Excl usi ve, but must be
explicitly specified to enable the taking over
of LM Read locks. (See the LockMbde

documentation for more information.)

This section provides information about the ScanOpt i ons data structure.

269

The NdbScanOperation Class

Parent class NdbScanOper ati on

Description This data structure is used to pass options to the NdbRecor d-
based scanTabl e() and scanl ndex() methods of the
NdbTr ansact i on class. Each option type is marked as present by
setting