MySQL NDB Cluster API Developer Guide
MySQL NDB Cluster API Developer Guide

This is the MySQL NDB Cluster API Developer Guide, which provides information about developing applications using NDB Cluster as a data store. Application interfaces covered in this Guide include the low-level C++-language NDB API for the MySQL NDB storage engine, the C-language MGM API for communicating with and controlling NDB Cluster management servers, and the MySQL NDB Cluster Connector for Java, which is a collection of Java APIs for writing applications against NDB Cluster, including JDBC, JPA, and ClusterJ.

NDB Cluster also provides support for the Memcache API; for more information, see Chapter 6, ndbmemcache—Memcache API for NDB Cluster.

NDB Cluster 7.3 and later also provides support for applications written using Node.js. See Chapter 5, MySQL NoSQL Connector for JavaScript, for more information.

This Guide includes concepts, terminology, class and function references, practical examples, common problems, and tips for using these APIs in applications.

For information about NDB internals that may be of interest to developers working with NDB, see MySQL NDB Cluster Internals Manual.

The information presented in this guide is current for recent releases of NDB Cluster up to and including NDB Cluster 8.0.21. Due to significant functional and other changes in NDB Cluster and its underlying APIs, you should not expect this information to apply to versions of the NDB Cluster software prior to NDB Cluster 7.3. Users of older NDB Cluster releases should upgrade to the latest available release of NDB Cluster 8.0, currently the most recent GA release series.

For more information about NDB 8.0, see What is New in NDB Cluster.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL users.

Licensing information—NDB APIs. If you are using the NDB APIs with a Commercial release of MySQL NDB Cluster, see the MySQL NDB Cluster 7.6 Commercial Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Commercial release. If you are using the NDB APIs with a Community release of MySQL NDB Cluster, see the MySQL NDB Cluster 8.0 Community Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Community release.

Document generated on: 2020-06-18 (revision: 66284)
Table of Contents

Preface and Legal Notices ... vii
1 NDB Cluster APIs: Overview and Concepts .. 1
 1.1 NDB Cluster API Overview: Introduction ... 1
 1.1.1 NDB Cluster API Overview: The NDB API ... 1
 1.1.2 NDB Cluster API Overview: The MGM API ... 2
 1.2 NDB Cluster API Overview: Terminology .. 2
 1.3 The NDB Transaction and Scanning API .. 4
 1.3.1 Core NDB API Classes .. 4
 1.3.2 Application Program Basics ... 4
 1.3.3 Review of NDB Cluster Concepts ... 12
 1.3.4 The Adaptive Send Algorithm ... 13
 1.4 The NDB API Class Hierarchies ... 20
 1.4.1 NDB Cluster API Overview: The NDB API ... 20
 1.4.2 NDB Cluster API Overview: The MGM API ... 20
 1.4.3 The NDB Transaction Class .. 222
 1.4.4 The NdbRecAttr Class .. 197
 1.4.5 The NdbOperation Class .. 185
 1.4.6 The NdbInterpretedCode Class .. 159
 1.4.7 The NdbIndexOperation Class .. 153
 1.4.8 The NdbEventOperation Class .. 143
 1.4.9 The NdbDictionary Class .. 136
 1.4.10 The Datafile Class ... 42
 1.4.11 The Column Class ... 26
 1.4.12 The IndexBound Structure .. 92
 1.4.13 The Key_part_ptr Structure ... 97
 1.4.14 The LogfileGroup Class .. 97
 1.4.15 The List Class ... 97
 1.4.16 The Ndb Class .. 97
 1.4.17 The Ndb_cluster_connection Class ... 115
 1.4.18 The NdbBlob Class ... 126
 1.4.19 The NdbDictionary Class ... 136
 1.4.20 The NdbError Structure ... 140
 1.4.21 The NdbEventOperation Class ... 143
 1.4.22 The NdbIndexOperation Class .. 153
 1.4.23 The NdbIndexScanOperation Class ... 154
 1.4.24 The NdbInterpretedCode Class ... 159
 1.4.25 The NdbOperation Class ... 185
 1.4.26 The NdbRecAttr Class .. 197
 1.4.27 The NdbRecord Interface ... 204
 1.4.28 The NdbScanFilter Class ... 205
 1.4.29 The NdbScanOperation Class .. 214
 1.4.30 The NdbTransaction Class .. 222
 1.4.31 The Object Class ... 239
 1.4.32 The OperationOptions Structure ... 243
 1.4.33 The PartitionSpec Structure .. 245
 1.4.34 The RecordSpecification Structure .. 247
 1.4.35 The ScanOptions Structure ... 247
 1.4.36 The SetValueSpec Structure .. 249
 1.4.37 The Table Class ... 249

2 The NDB API .. 15
 2.1 Getting Started with the NDB API .. 16
 2.1.1 Compiling and Linking NDB API Programs .. 16
 2.1.2 Connecting to the Cluster ... 18
 2.1.3 Mapping MySQL Database Object Names and Types to NDB 20
 2.2 The NDB API Class Hierarchies ... 24
 2.2.1 NDB API Classes, Interfaces, and Structures ... 26
 2.2.1.1 The AutoGrowSpecification Structure ... 26
 2.2.1.2 The Column Class .. 26
 2.2.1.3 The Datafile Class .. 42
 2.2.1.4 The Dictionary Class .. 47
 2.2.1.5 The Element Structure .. 63
 2.2.1.6 The Event Class ... 65
 2.2.1.7 The EventBufferMemoryUsage Structure ... 75
 2.2.1.8 The ForeignKey Class .. 75
 2.2.1.9 The GetValueSpec Structure .. 82
 2.2.1.10 The HashMap Class .. 82
 2.2.1.11 The Index Class ... 86
 2.2.1.12 The IndexBound Structure .. 92
 2.2.1.13 The LogfileGroup Class .. 92
 2.2.1.14 The List Class ... 97
 2.2.1.15 The Key_part_ptr Structure ... 97
 2.2.1.16 The Ndb Class .. 97
 2.2.1.17 The Ndb_cluster_connection Class ... 115
 2.2.1.18 The NdbBlob Class .. 126
 2.2.1.19 The NdbDictionary Class .. 136
 2.2.1.20 The NdbError Structure .. 140
 2.2.1.21 The NdbEventOperation Class ... 143
 2.2.1.22 The NdbIndexOperation Class ... 153
 2.2.1.23 The NdbIndexScanOperation Class ... 154
 2.2.1.24 The NdbInterpretedCode Class .. 159
 2.2.1.25 The NdbOperation Class .. 185
 2.2.1.26 The NdbRecAttr Class ... 197
 2.2.1.27 The NdbRecord Interface .. 204
 2.2.1.28 The NdbScanFilter Class .. 205
 2.2.1.29 The NdbScanOperation Class ... 214
 2.2.1.30 The NdbTransaction Class .. 222
 2.2.1.31 The Object Class .. 239
 2.2.1.32 The OperationOptions Structure .. 243
 2.2.1.33 The PartitionSpec Structure .. 245
 2.2.1.34 The RecordSpecification Structure ... 247
 2.2.1.35 The ScanOptions Structure ... 247
 2.2.1.36 The SetValueSpec Structure .. 249
 2.2.1.37 The Table Class .. 249

3 Mapping MySQLDatabase Object Names and Types to NDB .. 20
 3.1 The NDB Transaction and Scanning API .. 4
 3.1.1 Mapping MySQL Database Object Names and Types to NDB 4
 3.1.2 Application Program Basics ... 4
 3.1.3 Review of NDB Cluster Concepts ... 12
 3.1.4 The Adaptive Send Algorithm ... 13
 3.2 The NDB Cluster API Overview: The NDB API ... 1
 3.2.1 Compiling and Linking NDB API Programs .. 16
 3.2.2 Connecting to the Cluster ... 18
 3.2.3 Mapping MySQL Database Object Names and Types to NDB 20
 3.3 The NDB Cluster API Overview: The MGM API ... 2
 3.3.1 Mapping MySQL Database Object Names and Types to NDB 20
 3.3.2 Application Program Basics ... 4
 3.3.3 Review of NDB Cluster Concepts ... 12
 3.3.4 The Adaptive Send Algorithm ... 13
 3.4 The NDB Cluster API Overview: Terminology .. 2
 3.4.1 Mapping MySQL Database Object Names and Types to NDB 20
 3.4.2 Application Program Basics ... 4
 3.4.3 Review of NDB Cluster Concepts ... 12
 3.4.4 The Adaptive Send Algorithm ... 13

4 The NDB Transaction and Scanning API ... 12
 4.1 The NDB Transaction and Scanning API .. 4
 4.1.1 Mapping MySQL Database Object Names and Types to NDB 20
 4.1.2 Application Program Basics ... 4
 4.1.3 Review of NDB Cluster Concepts ... 12
 4.1.4 The Adaptive Send Algorithm ... 13
 4.2 The NDB Cluster API Overview: The NDB API ... 1
 4.2.1 Compiling and Linking NDB API Programs .. 16
 4.2.2 Connecting to the Cluster ... 18
 4.2.3 Mapping MySQL Database Object Names and Types to NDB 20
 4.3 The NDB Cluster API Overview: The MGM API ... 2
 4.3.1 Mapping MySQL Database Object Names and Types to NDB 20
 4.3.2 Application Program Basics ... 4
 4.3.3 Review of NDB Cluster Concepts ... 12
 4.3.4 The Adaptive Send Algorithm ... 13
 4.4 The NDB Cluster API Overview: Terminology .. 2
 4.4.1 Mapping MySQL Database Object Names and Types to NDB 20
 4.4.2 Application Program Basics ... 4
 4.4.3 Review of NDB Cluster Concepts ... 12
 4.4.4 The Adaptive Send Algorithm ... 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.38 The Tablespace Class</td>
<td>272</td>
</tr>
<tr>
<td>2.3.39 The Undofile Class</td>
<td>277</td>
</tr>
<tr>
<td>2.4 NDB API Errors and Error Handling</td>
<td>281</td>
</tr>
<tr>
<td>2.4.1 Handling NDB API Errors</td>
<td>282</td>
</tr>
<tr>
<td>2.4.2 NDB Error Codes: by Type</td>
<td>285</td>
</tr>
<tr>
<td>2.4.3 NDB Error Codes: Single Listing</td>
<td>334</td>
</tr>
<tr>
<td>2.4.4 NDB Error Classifications</td>
<td>405</td>
</tr>
<tr>
<td>2.5 NDB API Examples</td>
<td>406</td>
</tr>
<tr>
<td>2.5.1 NDB API Example Using Synchronous Transactions</td>
<td>407</td>
</tr>
<tr>
<td>2.5.2 NDB API Example Using Synchronous Transactions and Multiple Clusters</td>
<td>411</td>
</tr>
<tr>
<td>2.5.3 NDB API Example: Handling Errors and Retrying Transactions</td>
<td>416</td>
</tr>
<tr>
<td>2.5.4 NDB API Basic Scanning Example</td>
<td>420</td>
</tr>
<tr>
<td>2.5.5 NDB API Example: Using Secondary Indexes in Scans</td>
<td>433</td>
</tr>
<tr>
<td>2.5.6 NDB API Example: Using NdbRecord with Hash Indexes</td>
<td>437</td>
</tr>
<tr>
<td>2.5.7 NDB API Example Comparing RecAttr and NdbRecord</td>
<td>442</td>
</tr>
<tr>
<td>2.5.8 NDB API Event Handling Example</td>
<td>487</td>
</tr>
<tr>
<td>2.5.9 NDB API Example: Basic BLOB Handling</td>
<td>491</td>
</tr>
<tr>
<td>2.5.10 NDB API Example: Handling BLOB Columns and Values Using NdbRecord</td>
<td>498</td>
</tr>
<tr>
<td>2.5.11 NDB API Simple Array Example</td>
<td>507</td>
</tr>
<tr>
<td>2.5.12 NDB API Simple Array Example Using Adapter</td>
<td>512</td>
</tr>
<tr>
<td>2.5.13 Timestamp2 Example</td>
<td>517</td>
</tr>
<tr>
<td>2.5.14 Common Files for NDB API Array Examples</td>
<td>521</td>
</tr>
<tr>
<td>3 The MGM API</td>
<td>529</td>
</tr>
<tr>
<td>3.1 MGM API Concepts</td>
<td>529</td>
</tr>
<tr>
<td>3.1.1 Working with Log Events</td>
<td>530</td>
</tr>
<tr>
<td>3.1.2 Structured Log Events</td>
<td>530</td>
</tr>
<tr>
<td>3.2 MGM API Function Listing</td>
<td>531</td>
</tr>
<tr>
<td>3.2.1 Log Event Functions</td>
<td>531</td>
</tr>
<tr>
<td>3.2.2 MGM API Error Handling Functions</td>
<td>534</td>
</tr>
<tr>
<td>3.2.3 Management Server Handle Functions</td>
<td>536</td>
</tr>
<tr>
<td>3.2.4 Management Server Connection Functions</td>
<td>537</td>
</tr>
<tr>
<td>3.2.5 Cluster Status Functions</td>
<td>542</td>
</tr>
<tr>
<td>3.2.6 Functions for Starting & Stopping Nodes</td>
<td>544</td>
</tr>
<tr>
<td>3.2.7 Cluster Log Functions</td>
<td>549</td>
</tr>
<tr>
<td>3.2.8 Backup Functions</td>
<td>551</td>
</tr>
<tr>
<td>3.2.9 Single-User Mode Functions</td>
<td>552</td>
</tr>
<tr>
<td>3.3 MGM API Data Types</td>
<td>552</td>
</tr>
<tr>
<td>3.3.1 The ndb_mgm_node_type Type</td>
<td>552</td>
</tr>
<tr>
<td>3.3.2 The ndb_mgm_node_status Type</td>
<td>553</td>
</tr>
<tr>
<td>3.3.3 The ndb_mgm_error Type</td>
<td>553</td>
</tr>
<tr>
<td>3.3.4 The Ndb_logevent_type</td>
<td>553</td>
</tr>
<tr>
<td>3.3.5 The ndb_mgm_event_severity Type</td>
<td>558</td>
</tr>
<tr>
<td>3.3.6 The ndb_logevent_handle_error Type</td>
<td>558</td>
</tr>
<tr>
<td>3.3.7 The ndb_mgm_event_category Type</td>
<td>558</td>
</tr>
<tr>
<td>3.4 MGM API Structures</td>
<td>559</td>
</tr>
<tr>
<td>3.4.1 The ndb_logevent Structure</td>
<td>559</td>
</tr>
<tr>
<td>3.4.2 The ndb_mgm_node_state Structure</td>
<td>564</td>
</tr>
<tr>
<td>3.4.3 The ndb_mgm_cluster_state Structure</td>
<td>565</td>
</tr>
<tr>
<td>3.4.4 The ndb_mgm_reply Structure</td>
<td>565</td>
</tr>
<tr>
<td>3.5 MGM API Errors</td>
<td>565</td>
</tr>
<tr>
<td>3.5.1 Request Errors</td>
<td>566</td>
</tr>
<tr>
<td>3.5.2 Node ID Allocation Errors</td>
<td>566</td>
</tr>
<tr>
<td>3.5.3 Service Errors</td>
<td>566</td>
</tr>
<tr>
<td>3.5.4 Backup Errors</td>
<td>566</td>
</tr>
<tr>
<td>3.5.5 Single User Mode Errors</td>
<td>567</td>
</tr>
<tr>
<td>3.5.6 General Usage Errors</td>
<td>567</td>
</tr>
<tr>
<td>3.6 MGM API Examples</td>
<td>567</td>
</tr>
<tr>
<td>3.6.1 Basic MGM API Event Logging Example</td>
<td>567</td>
</tr>
</tbody>
</table>
Preface and Legal Notices

This is the MySQL NDB Cluster API Developer Guide, which provides information about developing applications using NDB Cluster as a data store. Application interfaces covered in this Guide include the low-level C++-language NDB API for the MySQL NDB storage engine, the C-language MGM API for communicating with and controlling NDB Cluster management servers, and the MySQL NDB Cluster Connector for Java, which is a collection of Java APIs for writing applications against NDB Cluster, including JDBC, JPA, and ClusterJ.

NDB Cluster also provides support for the Memcache API; for more information, see Chapter 6, ndbmemcache—Memcache API for NDB Cluster.

NDB Cluster 7.3 and later also provides support for applications written using Node.js. See Chapter 5, MySQL NoSQL Connector for JavaScript, for more information.

This Guide includes concepts, terminology, class and function references, practical examples, common problems, and tips for using these APIs in applications. It also contains information about NDB internals that may be of interest to developers working with NDB, such as communication protocols employed between nodes, file systems used by management nodes and data nodes, error messages, and debugging (DUMP) commands in the management client.

The information presented in this guide is current for recent releases of NDB Cluster up to and including NDB Cluster 8.0.21. Due to significant functional and other changes in NDB Cluster and its underlying APIs, you should not expect this information to apply to previous releases of the NDB Cluster software prior to NDB Cluster 7.3. Users of older NDB Cluster releases should upgrade to the latest available release of NDB Cluster 8.0, which is the most recent GA release series.

For more information about NDB 8.0, see What is New in NDB Cluster.

For legal information, see the Legal Notices.

Licensing information—MySQL NDB Cluster 8.0. This product may include third-party software, used under license. If you are using a Commercial release of MySQL NDB Cluster 8.0, see the MySQL NDB Cluster 8.0 Commercial Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Commercial release. If you are using a Community release of MySQL NDB Cluster 8.0, see the MySQL NDB Cluster 8.0 Community Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Community release.

Legal Notices

Copyright © 1997, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.
Chapter 1 NDB Cluster APIs: Overview and Concepts

Table of Contents

1.1 NDB Cluster API Overview: Introduction ... 1
1.1.1 NDB Cluster API Overview: The NDB API ... 1
1.1.2 NDB Cluster API Overview: The MGM API ... 2
1.2 NDB Cluster API Overview: Terminology .. 2
1.3 The NDB Transaction and Scanning API ... 4
 1.3.1 Core NDB API Classes ... 4
 1.3.2 Application Program Basics ... 4
 1.3.3 Review of NDB Cluster Concepts ... 12
 1.3.4 The Adaptive Send Algorithm .. 13

This chapter provides a general overview of essential NDB Cluster, NDB API, and MGM API concepts, terminology, and programming constructs.

For an overview of Java APIs that can be used with NDB Cluster, see Section 4.1, “MySQL NDB Cluster Connector for Java: Overview”.

For information about using Memcache with NDB Cluster, see Chapter 6, ndbmemcache—Memcache API for NDB Cluster.

For information about writing JavaScript applications using Node.js with MySQL, see Chapter 5, MySQL NoSQL Connector for JavaScript.

1.1 NDB Cluster API Overview: Introduction

This section introduces the NDB Transaction and Scanning APIs as well as the NDB Management (MGM) API for use in building applications to run on NDB Cluster. It also discusses the general theory and principles involved in developing such applications.

1.1.1 NDB Cluster API Overview: The NDB API

The NDB API is an object-oriented application programming interface for NDB Cluster that implements indexes, scans, transactions, and event handling. NDB transactions are ACID-compliant in that they provide a means to group operations in such a way that they succeed (commit) or fail as a unit (rollback). It is also possible to perform operations in a “no-commit” or deferred mode, to be committed at a later time.

NDB scans are conceptually rather similar to the SQL cursors implemented in MySQL 5.0 and other common enterprise-level database management systems. These provide high-speed row processing for record retrieval purposes. (NDB Cluster naturally supports set processing just as does MySQL in its non-Cluster distributions. This can be accomplished through the usual MySQL APIs discussed in the MySQL Manual and elsewhere.) The NDB API supports both table scans and row scans; the latter can be performed using either unique or ordered indexes. Event detection and handling is discussed in Section 2.3.21, “The NdbEventOperation Class”, as well as Section 2.5.8, “NDB API Event Handling Example”.

In addition, the NDB API provides object-oriented error-handling facilities in order to provide a means of recovering gracefully from failed operations and other problems. (See Section 2.5.3, “NDB API Example: Handling Errors and Retrying Transactions”, for a detailed example.)

The NDB API provides a number of classes implementing the functionality described above. The most important of these include the Ndb, Ndb_cluster_connection, NdbTransaction, and NdbOperation classes. These model (respectively) database connections, cluster connections,
transactions, and operations. These classes and their subclasses are listed in Section 2.3, “NDB API Classes, Interfaces, and Structures”. Error conditions in the NDB API are handled using NdbError.

Note
NDB API applications access the NDB Cluster's data store directly, without requiring a MySQL Server as an intermediary. This means that such applications are not bound by the MySQL privilege system; any NDB API application has read and write access to any NDB table stored in the same NDB Cluster at any time without restriction.

It is possible to distribute the MySQL grant tables, converting them from the default storage engine to NDB. Once this has been done, NDB API applications can access any of the MySQL grant tables. This means that such applications can read or write user names, passwords, and any other data stored in these tables.

1.1.2 NDB Cluster API Overview: The MGM API

The NDB Cluster Management API, also known as the MGM API, is a C-language programming interface intended to provide administrative services for the cluster. These include starting and stopping NDB Cluster nodes, handling NDB Cluster logging, backups, and restoration from backups, as well as various other management tasks. A conceptual overview of the MGM API and its uses can be found in Chapter 3, The MGM API.

The MGM API's principal structures model the states of individual modes (ndb_mgm_node_state), the state of the NDB Cluster as a whole (ndb_mgm_cluster_state), and management server response messages (ndb_mgm_reply). See Section 3.4, "MGM API Structures", for detailed descriptions of these.

1.2 NDB Cluster API Overview: Terminology

This section provides a glossary of terms which are unique to the NDB and MGM APIs, or that have a specialized meaning when applied in the context of either or both of these APIs.

The terms in the following list are useful to an understanding of NDB Cluster, the NDB API, or have a specialized meaning when used in one of these:

Backup. A complete copy of all NDB Cluster data, transactions and logs, saved to disk.

Restore. Return the cluster to a previous state, as stored in a backup.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been reached. When working with the NDB storage engine, there are two sorts of checkpoints which work together in order to ensure that a consistent view of the cluster's data is maintained. These two types, local checkpoints and global checkpoints, are described in the next few paragraphs:

Local checkpoint (LCP). This is a checkpoint that is specific to a single node; however, LCPs take place for all nodes in the cluster more or less concurrently. An LCP involves saving all of a node's data to disk, and so usually occurs every few minutes, depending upon the amount of data stored by the node.

More detailed information about LCPs and their behavior can be found in the MySQL Manual; see in particular Defining NDB Cluster Data Nodes.

Global checkpoint (GCP). A GCP occurs every few seconds, when transactions for all nodes are synchronized and the REDO log is flushed to disk.

A related term is GCI, which stands for “Global Checkpoint ID”. This marks the point in the REDO log where a GCP took place.
Node. A component of NDB Cluster. 3 node types are supported:

- A **management (MGM) node** is an instance of `ndb_mgmd`, the NDB Cluster management server daemon.
- A **data node** an instance of `ndbd`, the NDB Cluster data storage daemon, and stores NDB Cluster data. This may also be an instance of `ndbmt_d`, a multithreaded version of `ndbd`.
- An **API node** an application that accesses NDB Cluster data. **SQL node** refers to a `mysqld` (MySQL Server) process that is connected to the NDB Cluster as an API node.

For more information about these node types, please refer to Section 1.3.3, “Review of NDB Cluster Concepts”, or to NDB Cluster Programs, in the MySQL Manual.

Node failure. An NDB Cluster is not solely dependent upon the functioning of any single node making up the cluster, which can continue to run even when one node fails.

Node restart. The process of restarting an NDB Cluster node which has stopped on its own or been stopped deliberately. This can be done for several different reasons, listed here:

- Restarting a node which has shut down on its own. (This is known as **forced shutdown or node failure**; the other cases discussed here involve manually shutting down the node and restarting it).
- To update the node's configuration.
- As part of a software or hardware upgrade.
- In order to defragment the node's **DataMemory**.

Initial node restart. The process of starting an NDB Cluster node with its file system having been removed. This is sometimes used in the course of software upgrades and in other special circumstances.

System crash (system failure). This can occur when so many data nodes have failed that the NDB Cluster's state can no longer be guaranteed.

System restart. The process of restarting an NDB Cluster and reinitializing its state from disk logs and checkpoints. This is required after any shutdown of the cluster, planned or unplanned.

Fragment. Contains a portion of a database table. In the NDB storage engine, a table is broken up into and stored as a number of subsets, usually referred to as fragments. A fragment is sometimes also called a **partition**.

Replica. Under the NDB storage engine, each table fragment has number of replicas in order to provide redundancy.

Transporter. A protocol providing data transfer across a network. The NDB API supports three different types of transporter connections: TCP/IP (local), TCP/IP (remote), and SHM. TCP/IP is, of course, the familiar network protocol that underlies HTTP, FTP, and so forth, on the Internet. SHM stands for Unix-style shared memory segments.

NDB. This originally stood for “Network DataBase”. It now refers to the MySQL storage engine (named NDB or `NDBCLUSTER`) used to enable the NDB Cluster distributed database system.

ACC (Access Manager). An NDB kernel block that handles hash indexes of primary keys providing speedy access to the records. For more information, see The **DBACC Block**.

TUP (Tuple Manager). This NDB kernel block handles storage of tuples (records) and contains the filtering engine used to filter out records and attributes when performing reads or updates. See The **DBTUP Block**, for more information.
The NDB Transaction and Scanning API

TC (Transaction Coordinator). Handles coordination of transactions and timeouts in the NDB kernel (see The DBTC Block). Provides interfaces to the NDB API for performing indexes and scan operations.

For more information, see NDB Kernel Blocks, elsewhere in this Guide.

See also NDB Cluster Overview, in the MySQL Manual.

1.3 The NDB Transaction and Scanning API

This section discusses the high-level architecture of the NDB API, and introduces the NDB classes which are of greatest use and interest to the developer. It also covers most important NDB API concepts, including a review of NDB Cluster Concepts.

1.3.1 Core NDB API Classes

The NDB API is an NDB Cluster application interface that implements transactions. It consists of the following fundamental classes:

- `Ndb_cluster_connection` represents a connection to a cluster.
- `Ndb` is the main class, and represents a connection to a database.
- `NdbDictionary` provides meta-information about tables and attributes.
- `NdbTransaction` represents a transaction.
- `NdbOperation` represents an operation using a primary key.
- `NdbScanOperation` represents an operation performing a full table scan.
- `NdbIndexOperation` represents an operation using a unique hash index.
- `NdbIndexScanOperation` represents an operation performing a scan using an ordered index.
- `NdbRecAttr` represents an attribute value.

In addition, the NDB API defines an `NdbError` structure, which contains the specification for an error.

It is also possible to receive events triggered when data in the database is changed. This is accomplished through the `NdbEventOperation` class.

The `NDB` event notification API is not supported prior to MySQL 5.1.

For more information about these classes as well as some additional auxiliary classes not listed here, see Section 2.3, “NDB API Classes, Interfaces, and Structures”.

1.3.2 Application Program Basics

The main structure of an application program is as follows:

1. Connect to a cluster using the `Ndb_cluster_connection` object.
2. Initiate a database connection by constructing and initialising one or more `Ndb` objects.
3. Identify the tables, columns, and indexes on which you wish to operate, using `NdbDictionary` and one or more of its subclasses.
4. Define and execute transactions using the `NdbTransaction` class.
5. Delete `Ndb` objects.
6. Terminate the connection to the cluster (terminate an instance of `Ndb_cluster_connection`).

1.3.2.1 Using Transactions

The procedure for using transactions is as follows:

1. Start a transaction (instantiate an `NdbTransaction` object).
2. Add and define operations associated with the transaction using instances of one or more of the `NdbOperation`, `NdbScanOperation`, `NdbIndexOperation`, and `NdbIndexScanOperation` classes.
3. Execute the transaction (call `NdbTransaction::execute()`).
4. The operation can be of two different types—Commit or NoCommit:
 - If the operation is of type NoCommit, then the application program requests that the operation portion of a transaction be executed, but without actually committing the transaction. Following the execution of a NoCommit operation, the program can continue to define additional transaction operations for later execution.
 - NoCommit operations can also be rolled back by the application.
 - If the operation is of type Commit, then the transaction is immediately committed. The transaction must be closed after it has been committed (even if the commit fails), and no further operations can be added to or defined for this transaction.

See Section 2.3.30.5, "NdbTransaction::ExecType".

1.3.2.2 Synchronous Transactions

Synchronous transactions are defined and executed as follows:

1. Begin (create) the transaction, which is referenced by an `NdbTransaction` object typically created using `Ndb::startTransaction()`. At this point, the transaction is merely being defined; it is not yet sent to the NDB kernel.
2. Define operations and add them to the transaction, using one or more of the following, along with the appropriate methods of the respective `NdbOperation` class (or possibly one or more of its subclasses):
 - `NdbTransaction::getNdbOperation()`
 - `NdbTransaction::getNdbScanOperation()`
 - `NdbTransaction::getNdbIndexOperation()`
 - `NdbTransaction::getNdbIndexScanOperation()`

 At this point, the transaction has still not yet been sent to the NDB kernel.
3. Execute the transaction, using the `NdbTransaction::execute()` method.
4. Close the transaction by calling `Ndb::closeTransaction()`.

For an example of this process, see Section 2.5.1, “NDB API Example Using Synchronous Transactions”.

To execute several synchronous transactions in parallel, you can either use multiple `Ndb` objects in several threads, or start multiple application programs.

1.3.2.3 Operations
An **NdbTransaction** consists of a list of operations, each of which is represented by an instance of **NdbOperation**, **NdbScanOperation**, **NdbIndexOperation**, or **NdbIndexScanOperation** (that is, of **NdbOperation** or one of its child classes).

See [NDB Access Types](#), for general information about NDB Cluster access operation types.

NDB Access Types

The data node process has a number of simple constructs which are used to access the data in an NDB Cluster. We have created a very simple benchmark to check the performance of each of these.

There are four access methods:

- **Primary key access.** This is access of a record through its primary key. In the simplest case, only one record is accessed at a time, which means that the full cost of setting up a number of TCP/IP messages and a number of costs for context switching are borne by this single request. In the case where multiple primary key accesses are sent in one batch, those accesses share the cost of setting up the necessary TCP/IP messages and context switches. If the TCP/IP messages are for different destinations, additional TCP/IP messages need to be set up.

- **Unique key access.** Unique key accesses are similar to primary key accesses, except that a unique key access is executed as a read on an index table followed by a primary key access on the table. However, only one request is sent from the MySQL Server, and the read of the index table is handled by the data node. Such requests also benefit from batching.

- **Full table scan.** When no indexes exist for a lookup on a table, a full table scan is performed. This is sent as a single request to the `ndbd` process, which then divides the table scan into a set of parallel scans on all NDB data node processes.

- **Range scan using ordered index.** When an ordered index is used, it performs a scan in the same manner as the full table scan, except that it scans only those records which are in the range used by the query transmitted by the MySQL server (SQL node). All partitions are scanned in parallel when all bound index attributes include all attributes in the partitioning key.

Single-row operations

After the operation is created using NdbTransaction::getNdbOperation() or NdbTransaction::getNdbIndexOperation(), it is defined in the following three steps:

1. Specify the standard operation type using **NdbOperation::readTuple()**.
2. Specify search conditions using **NdbOperation::equal()**.
3. Specify attribute actions using **NdbOperation::getValue()**.

Here are two brief examples illustrating this process. For the sake of brevity, we omit error handling.

This first example uses an **NdbOperation**:

```cpp
// 1. Retrieve table object
myTable= myDict->getTable("MYTABLENAME");

// 2. Create an NdbOperation on this table
myOperation= myTransaction->getNdbOperation(myTable);

// 3. Define the operation's type and lock mode
myOperation->readTuple(NdbOperation::LM_Read);

// 4. Specify search conditions
myOperation->equal("ATTR1", i);

// 5. Perform attribute retrieval
myRecAttr= myOperation->getValue("ATTR2", NULL);
```
For additional examples of this sort, see Section 2.5.1, “NDB API Example Using Synchronous Transactions”.

The second example uses an NdbIndexOperation:

```cpp
// 1. Retrieve index object
myIndex= myDict->getIndex("MYINDEX", "MYTABLENAME");
// 2. Create
myOperation= myTransaction->getNdbIndexOperation(myIndex);
// 3. Define type of operation and lock mode
myOperation->readTuple(NdbOperation::LM_Read);
// 4. Specify Search Conditions
myOperation->equal("ATTR1", i);
// 5. Attribute Actions
myRecAttr = myOperation->getValue("ATTR2", NULL);
```

Another example of this second type can be found in Section 2.5.5, “NDB API Example: Using Secondary Indexes in Scans”.

We now discuss in somewhat greater detail each step involved in the creation and use of synchronous transactions.

1. **Define single row operation type.** The following operation types are supported:
 - `NdbOperation::insertTuple()`: Inserts a nonexisting tuple.
 - `NdbOperation::writeTuple()`: Updates a tuple if one exists, otherwise inserts a new tuple.
 - `NdbOperation::updateTuple()`: Updates an existing tuple.
 - `NdbOperation::deleteTuple()`: Deletes an existing tuple.
 - `NdbOperation::readTuple()`: Reads an existing tuple using the specified lock mode.

 All of these operations operate on the unique tuple key. When `NdbIndexOperation` is used, then each of these operations operates on a defined unique hash index.

 Note

 If you want to define multiple operations within the same transaction, then you need to call `NdbTransaction::getNdbOperation()` or `NdbTransaction::getNdbIndexOperation()` for each operation.

2. **Specify Search Conditions.** The search condition is used to select tuples. Search conditions are set using `NdbOperation::equal()`.

3. **Specify Attribute Actions.** Next, it is necessary to determine which attributes should be read or updated. It is important to remember that:
 - Deletes can neither read nor set values, but only delete them.
 - Reads can only read values.
 - Updates can only set values. Normally the attribute is identified by name, but it is also possible to use the attribute’s identity to determine the attribute.

 `NdbOperation::getValue()` returns an `NdbRecAttr` object containing the value as read. To obtain the actual value, one of two methods can be used; the application can either
 - Use its own memory (passed through a pointer `aValue`) to `NdbOperation::getValue()`, or
• receive the attribute value in an `NdbRecAttr` object allocated by the NDB API.

The `NdbRecAttr` object is released when `Ndb::closeTransaction()` is called. For this reason, the application cannot reference this object following any subsequent call to `Ndb::closeTransaction()`. Attempting to read data from an `NdbRecAttr` object before calling `NdbTransaction::execute()` yields an undefined result.

Scan Operations

Scans are roughly the equivalent of SQL cursors, providing a means to perform high-speed row processing. A scan can be performed on either a table (using an `NdbScanOperation`) or an ordered index (by means of an `NdbIndexScanOperation`).

Scan operations have the following characteristics:

• They can perform read operations which may be shared, exclusive, or dirty.

• They can potentially work with multiple rows.

• They can be used to update or delete multiple rows.

• They can operate on several nodes in parallel.

After the operation is created using `NdbTransaction::getNdbScanOperation()` or `NdbTransaction::getNdbIndexScanOperation()`, it is carried out as follows:

1. Define the standard operation type, using `NdbScanOperation::readTuples()`.

Note

See Section 2.3.29.7, “NdbScanOperation::readTuples()”, for additional information about deadlocks which may occur when performing simultaneous, identical scans with exclusive locks.

2. Specify search conditions, using `NdbScanFilter`, `NdbIndexScanOperation::setBound()`, or both.

3. Specify attribute actions using `NdbOperation::getValue()`.

4. Execute the transaction using `NdbTransaction::execute()`.

5. Traverse the result set by means of successive calls to `NdbScanOperation::nextResult()`.

Here are two brief examples illustrating this process. Once again, in order to keep things relatively short and simple, we forego any error handling.

This first example performs a table scan using an `NdbScanOperation`:

```cpp
// 1. Retrieve a table object
myTable = myDict->getTable("MYTABLENAME");

// 2. Create a scan operation (NdbScanOperation) on this table
myOperation = myTransaction->getNdbScanOperation(myTable);

// 3. Define the operation's type and lock mode
myOperation->readTuples(NdbOperation::LM_Read);

// 4. Specify search conditions
NdbScanFilter sf(myOperation);
sf.begin(NdbScanFilter::OR);
sf.eq(0, i);  // Return rows with column 0 equal to i or
sf.eq(1, i+1); // column 1 equal to (i+1)
sf.end();
```
// 5. Retrieve attributes
myRecAttr = myOperation->getValue("ATTR2", NULL);

The second example uses an \texttt{NdbIndexScanOperation} to perform an index scan:

// 1. Retrieve index object
myIndex= myDict->getIndex("MYORDEREDINDEX", "MYTABLENAME");

// 2. Create an operation (NdbIndexScanOperation object)
myOperation= myTransaction->getNdbIndexScanOperation(myIndex);

// 3. Define type of operation and lock mode
myOperation->readTuples(NdbOperation::LM_Read);

// 4. Specify search conditions
// All rows with ATTR1 between i and (i+1)
myOperation->setBound("ATTR1", NdbIndexScanOperation::BoundGE, i);
myOperation->setBound("ATTR1", NdbIndexScanOperation::BoundLE, i+1);

// 5. Retrieve attributes
myRecAttr = MyOperation->getValue("ATTR2", NULL);

Some additional discussion of each step required to perform a scan follows:

1. \textbf{Define Scan Operation Type.} It is important to remember that only a single operation is supported for each scan operation (\texttt{NdbScanOperation::readTuples()} or \texttt{NdbIndexScanOperation::readTuples()}).

 \begin{itemize}
 \item \textbf{Note}
 \end{itemize}

 If you want to define multiple scan operations within the same transaction, then you need to call \texttt{NdbTransaction::getNdbScanOperation()} or \texttt{NdbTransaction::getNdbIndexScanOperation()} separately for each operation.

2. \textbf{Specify Search Conditions.} The search condition is used to select tuples. If no search condition is specified, the scan will return all rows in the table. The search condition can be an \texttt{NdbScanFilter} (which can be used on both \texttt{NdbScanOperation} and \texttt{NdbIndexScanOperation}) or bounds (which can be used only on index scans - see \texttt{NdbIndexScanOperation::setBound()}). An index scan can use both \texttt{NdbScanFilter} and bounds.

 \begin{itemize}
 \item \textbf{Note}
 \end{itemize}

 When \texttt{NdbScanFilter} is used, each row is examined, whether or not it is actually returned. However, when using bounds, only rows within the bounds will be examined.

3. \textbf{Specify Attribute Actions.} Next, it is necessary to define which attributes should be read. As with transaction attributes, scan attributes are defined by name, but it is also possible to use the attributes’ identities to define attributes as well. As discussed elsewhere in this document (see \texttt{Section 1.3.2.2, “Synchronous Transactions”}), the value read is returned by the \texttt{NdbOperation::getValue()} method as an \texttt{NdbRecAttr} object.

\section*{Using Scans to Update or Delete Rows}

Scanning can also be used to update or delete rows. This is performed as follows:

1. Scanning with exclusive locks using \texttt{NdbOperation::LM_Exclusive}.

2. (\textit{When iterating through the result set:]) For each row, optionally calling either \texttt{NdbScanOperation::updateCurrentTuple()} or \texttt{NdbScanOperation::deleteCurrentTuple()}.\textit{
3. (If performing NdbScanOperation::updateCurrentTuple()) Setting new values for records simply by using NdbOperation::setValue(), NdbOperation::equal() should not be called in such cases, as the primary key is retrieved from the scan.

Important

The update or delete is not actually performed until the next call to NdbTransaction::execute() is made, just as with single row operations. NdbTransaction::execute() also must be called before any locks are released; for more information, see Lock Handling with Scans.

Features Specific to Index Scans. When performing an index scan, it is possible to scan only a subset of a table using NdbIndexScanOperation::setBound(). In addition, result sets can be sorted in either ascending or descending order, using NdbIndexScanOperation::readTuples(). Note that rows are returned unordered by default unless sorted is set to true.

It is also important to note that, when using NdbIndexScanOperation::BoundEQ (see Section 2.3.23.1, “NdbIndexScanOperation::BoundType”) with a partition key, only fragments containing rows will actually be scanned. Finally, when performing a sorted scan, any value passed as the NdbIndexScanOperation::readTuples() method's parallel argument will be ignored and maximum parallelism will be used instead. In other words, all fragments which it is possible to scan are scanned simultaneously and in parallel in such cases.

Lock Handling with Scans

Performing scans on either a table or an index has the potential to return a great many records; however, Ndb locks only a predetermined number of rows per fragment at a time. The number of rows locked per fragment is controlled by the batch parameter passed to NdbScanOperation::readTuples().

In order to enable the application to handle how locks are released, NdbScanOperation::nextResult() has a Boolean parameter fetchAllowed. If NdbScanOperation::nextResult() is called with fetchAllowed equal to false, then no locks may be released as result of the function call. Otherwise the locks for the current batch may be released.

This next example shows a scan delete that handles locks in an efficient manner. For the sake of brevity, we omit error-handling.

```c
int check;

// Outer loop for each batch of rows
while((check = MyScanOperation->nextResult(true)) == 0)
{
  do
  {
    // Inner loop for each row within the batch
    MyScanOperation->deleteCurrentTuple();
  } while((check = MyScanOperation->nextResult(false)) == 0);

  // When there are no more rows in the batch, execute all defined deletes
  MyTransaction->execute(NoCommit);
}
```

For a more complete example of a scan, see Section 2.5.4, “NDB API Basic Scanning Example”.

Error Handling

Errors can occur either when operations making up a transaction are being defined, or when the transaction is actually being executed. Catching and handling either sort of error requires testing the value returned by NdbTransaction::execute(), and then, if an error is indicated (that is, if this value is equal to -1), using the following two methods in order to identify the error's type and location:
Application Program Basics

- `NdbTransaction::getNdbErrorOperation()` returns a reference to the operation causing the most recent error.
- `NdbTransaction::getNdbErrorLine()` yields the method number of the erroneous method in the operation, starting with 1.

This short example illustrates how to detect an error and to use these two methods to identify it:

```c
theTransaction = theNdb->startTransaction();
theOperation = theTransaction->getNdbOperation("TEST_TABLE");
if(theOperation == NULL)
    goto error;
theOperation->readTuple(NdbOperation::LM_Read);
theOperation->setValue("ATTR_1", at1);
theOperation->setValue("ATTR_2", at1); // Error occurs here
theOperation->setValue("ATTR_3", at1);
theOperation->setValue("ATTR_4", at1);
if(theTransaction->execute(Commit) == -1)
{
    errorLine = theTransaction->getNdbErrorLine();
    errorOperation = theTransaction->getNdbErrorOperation();
}
```

Here, `errorLine` is 3, as the error occurred in the third method called on the `NdbOperation` object (in this case, `theOperation`). If the result of `NdbTransaction::getNdbErrorLine()` is 0, then the error occurred when the operations were executed. In this example, `errorOperation` is a pointer to the object `theOperation`. The `NdbTransaction::getNdbError()` method returns an `NdbError` object providing information about the error.

Note
Transactions are not automatically closed when an error occurs. You must call `Ndb::closeTransaction()` or `NdbTransaction::close()` to close the transaction.

See Section 2.3.16.2, “Ndb::closeTransaction()”, and Section 2.3.30.1, “NdbTransaction::close()”.

One recommended way to handle a transaction failure (that is, when an error is reported) is as shown here:

1. Roll back the transaction by calling `NdbTransaction::execute()` with a special `ExecType` value for the `type` parameter.

 See Section 2.3.30.6, “NdbTransaction::execute()” and Section 2.3.30.5, “NdbTransaction::ExecType”, for more information about how this is done.

2. Close the transaction by calling `NdbTransaction::close()`.

3. If the error was temporary, attempt to restart the transaction.

Several errors can occur when a transaction contains multiple operations which are simultaneously executed. In this case the application must go through all operations and query each of their `NdbError` objects to find out what really happened.

Important
Errors can occur even when a commit is reported as successful. In order to handle such situations, the NDB API provides an additional `NdbTransaction::commitStatus()` method to check the transaction's commit status.

See Section 2.3.30.2, “NdbTransaction::commitStatus()”.
1.3.3 Review of NDB Cluster Concepts

This section covers the NDB Kernel, and discusses NDB Cluster transaction handling and transaction coordinators. It also describes NDB record structures and concurrency issues.

The NDB Kernel is the collection of data nodes belonging to an NDB Cluster. The application programmer can for most purposes view the set of all storage nodes as a single entity. Each data node is made up of three main components:

- **TC**: The transaction coordinator.
- **ACC**: The index storage component.
- **TUP**: The data storage component.

When an application executes a transaction, it connects to one transaction coordinator on one data node. Usually, the programmer does not need to specify which TC should be used, but in some cases where performance is important, the programmer can provide “hints” to use a certain TC. (If the node with the desired transaction coordinator is down, then another TC will automatically take its place.)

Each data node has an ACC and a TUP which store the indexes and data portions of the database table fragment. Even though a single TC is responsible for the transaction, several ACCs and TUPs on other data nodes might be involved in that transaction's execution.

1.3.3.1 Selecting a Transaction Coordinator

The default method is to select the transaction coordinator (TC) determined to be the "nearest" data node, using a heuristic for proximity based on the type of transporter connection. In order of nearest to most distant, these are:

1. SHM
2. TCP/IP (localhost)
3. TCP/IP (remote host)

If there are several connections available with the same proximity, one is selected for each transaction in a round-robin fashion. Optionally, you may set the method for TC selection to round-robin mode, where each new set of transactions is placed on the next data node. The pool of connections from which this selection is made consists of all available connections.

As noted in Section 1.3.3, “Review of NDB Cluster Concepts”, the application programmer can provide hints to the NDB API as to which transaction coordinator should be uses. This is done by providing a table and a partition key (usually the primary key). If the primary key is the partition key, then the transaction is placed on the node where the primary replica of that record resides. Note that this is only a hint; the system can be reconfigured at any time, in which case the NDB API chooses a transaction coordinator without using the hint. For more information, see Column::getPartitionKey(), and Section 2.3.16.35, "Ndb::startTransaction()".

The application programmer can specify the partition key from SQL by using the following construct:

```sql
CREATE TABLE ... ENGINE=NDB PARTITION BY KEY (attribute_list);
```

For additional information, see Partitioning, and in particular KEY Partitioning, in the MySQL Manual.

1.3.3.2 NDB Record Structure

The NDB storage engine used by NDB Cluster is a relational database engine storing records in tables as with other relational database systems. Table rows represent records as tuples of relational data. When a new table is created, its attribute schema is specified for the table as a whole, and thus each
The Adaptive Send Algorithm

table row has the same structure. Again, this is typical of relational databases, and NDB is no different in this regard.

Primary Keys. Each record has from 1 up to 32 attributes which belong to the primary key of the table.

Transactions. Transactions are committed first to main memory, and then to disk, after a global checkpoint (GCP) is issued. Since all data are (in most NDB Cluster configurations) synchronously replicated and stored on multiple data nodes, the system can handle processor failures without loss of data. However, in the case of a system-wide failure, all transactions (committed or not) occurring since the most recent GCP are lost.

Concurrency Control.
NDB uses pessimistic concurrency control based on locking. If a requested lock (implicit and depending on database operation) cannot be attained within a specified time, then a timeout error results.

Concurrent transactions as requested by parallel application programs and thread-based applications can sometimes deadlock when they try to access the same information simultaneously. Thus, applications need to be written in a manner such that timeout errors occurring due to such deadlocks are handled gracefully. This generally means that the transaction encountering a timeout should be rolled back and restarted.

Hints and Performance.
Placing the transaction coordinator in close proximity to the actual data used in the transaction can in many cases improve performance significantly. This is particularly true for systems using TCP/IP. For example, a Solaris system using a single 500 MHz processor has a cost model for TCP/IP communication which can be represented by the formula

\[
30 \text{ microseconds} + (100 \text{ nanoseconds} \times \text{number of bytes})
\]

This means that if we can ensure that we use “popular” links we increase buffering and thus drastically reduce the costs of communication.

A simple example would be an application that uses many simple updates where a transaction needs to update one record. This record has a 32-bit primary key which also serves as the partitioning key. Then the keyData is used as the address of the integer of the primary key and keyLen is 4.

1.3.4 The Adaptive Send Algorithm

Discusses the mechanics of transaction handling and transmission in NDB Cluster and the NDB API, and the objects used to implement these.

When transactions are sent using NdbTransaction::execute(), they are not immediately transferred to the NDB Kernel. Instead, transactions are kept in a special send list (buffer) in the Ndb object to which they belong. The adaptive send algorithm decides when transactions should actually be transferred to the NDB kernel.

The NDB API is designed as a multithreaded interface, and so it is often desirable to transfer database operations from more than one thread at a time. The NDB API keeps track of which Ndb objects are active in transferring information to the NDB kernel and the expected number of threads to interact with the NDB kernel. Note that a given instance of Ndb should be used in at most one thread; different threads should not share the same Ndb object.

There are four conditions leading to the transfer of database operations from Ndb object buffers to the NDB kernel:

1. The NDB Transporter (TCP/IP or shared memory) decides that a buffer is full and sends it off. The buffer size is implementation-dependent and may change between NDB Cluster releases. When TCP/IP is the transporter, the buffer size is usually around 64 KB. Since each Ndb object provides a single buffer per data node, the notion of a “full” buffer is local to each data node.
2. The accumulation of statistical data on transferred information may force sending of buffers to all storage nodes (that is, when all the buffers become full).

3. Every 10 milliseconds, a special transmission thread checks whether or not any send activity has occurred. If not, then the thread will force transmission to all nodes. This means that 20 ms is the maximum amount of time that database operations are kept waiting before being dispatched. A 10-millisecond limit is likely in future releases of NDB Cluster; checks more frequent than this require additional support from the operating system.

4. For methods that are affected by the adaptive send algorithm (such as \texttt{NdbTransaction::execute()}) , there is a \texttt{force} parameter that overrides its default behavior in this regard and forces immediate transmission to all nodes. See the individual NDB API class listings for more information.

The conditions listed above are subject to change in future releases of NDB Cluster.
Chapter 2 The NDB API

Table of Contents

2.1 Getting Started with the NDB API .. 16
 2.1.1 Compiling and Linking NDB API Programs ... 16
 2.1.2 Connecting to the Cluster .. 18
 2.1.3 Mapping MySQL Database Object Names and Types to NDB 20
2.2 The NDB API Class Hierachy .. 24
2.3 NDB API Classes, Interfaces, and Structures ... 26
 2.3.1 The AutoGrowSpecification Structure ... 26
 2.3.2 The Column Class ... 26
 2.3.3 The Datafile Class ... 42
 2.3.4 The Dictionary Class .. 47
 2.3.5 The Element Structure ... 63
 2.3.6 The Event Class ... 65
 2.3.7 The EventBufferMemoryUsage Structure ... 75
 2.3.8 The ForeignKey Class ... 75
 2.3.9 The GetValueSpec Structure .. 82
 2.3.10 The HashMap Class .. 82
 2.3.11 The Index Class .. 86
 2.3.12 The IndexBound Structure ... 92
 2.3.13 The LogfileGroup Class .. 92
 2.3.14 The List Class ... 97
 2.3.15 The Key_part_ptr Structure .. 97
 2.3.16 The Ndb Class ... 97
 2.3.17 The Ndb_blob Class ... 115
 2.3.18 The NdbDictionary Class .. 126
 2.3.19 The NdbError Structure ... 136
 2.3.20 The NdbError Operation .. 140
 2.3.21 The NdbEventOperation Class .. 143
 2.3.22 The NdbIndexOperation Class .. 153
 2.3.23 The NdbIndexScanOperation Class ... 154
 2.3.24 The NdbInterpretedCode Class .. 159
 2.3.25 The NdbOperation Class .. 185
 2.3.26 The NdbRecAttr Class ... 197
 2.3.27 The NdbRecord Interface ... 204
 2.3.28 The NdbScanFilter Class ... 205
 2.3.29 The NdbScanOperation Class ... 214
 2.3.30 The NdbTransaction Class ... 222
 2.3.31 The Object Class ... 239
 2.3.32 The OperationOptions Structure .. 243
 2.3.33 The PartitionSpec Structure .. 245
 2.3.34 The RecordSpecification Structure ... 247
 2.3.35 The ScanOptions Structure ... 247
 2.3.36 The SetValueSpec Structure .. 249
 2.3.37 The Table Class ... 249
 2.3.38 The Tablespace Class .. 272
 2.3.39 The UndoFile Class ... 277
2.4 NDB API Errors and Error Handling .. 281
 2.4.1 Handling NDB API Errors ... 282
 2.4.2 NDB Error Codes: by Type ... 285
 2.4.3 NDB Error Codes: Single Listing .. 334
 2.4.4 NDB Error Classifications ... 405
2.5 NDB API Examples ... 406
 2.5.1 NDB API Example Using Synchronous Transactions ... 407
This chapter contains information about the NDB API, which is used to write applications that access data in the NDB storage engine.

2.1 Getting Started with the NDB API

This section discusses preparations necessary for writing and compiling an NDB API application.

2.1.1 Compiling and Linking NDB API Programs

This section provides information on compiling and linking NDB API applications, including requirements and compiler and linker options.

2.1.1.1 General Requirements

To use the NDB API with MySQL, you must have the libndbclient client library and its associated header files installed alongside the regular MySQL client libraries and headers. These are automatically installed when you build MySQL using \texttt{-DWITH_NDBCLUSTER=ON} or use a MySQL binary package that supports the NDB storage engine.

This Guide is targeted for use with MySQL NDB Cluster 7.3 and later.

2.1.1.2 Compiler Options

Header Files. In order to compile source files that use the NDB API, you must ensure that the necessary header files can be found. Header files specific to the NDB and MGM APIs are installed in the following subdirectories of the MySQL include directory, respectively:

- 	exttt{include/mysql/storage/ndb/ndbapi}
- 	exttt{include/mysql/storage/ndb/mgmapi}

Compiler Flags. The MySQL-specific compiler flags needed can be determined using the \texttt{mysql_config} utility that is part of the MySQL installation:

$ mysql_config --cflags
-I/usr/local/mysql/include/mysql -Wreturn-type -Wtrigraphs -W -Wformat
-Wsign-compare -Wunused -mcpu=pentium4 -march=pentium4

This sets the include path for the MySQL header files but not for those specific to the NDB API. The \texttt{--include} option to \texttt{mysql_config} returns the generic include path switch:

\begin{verbatim}
shell> mysql_config --include
-I/usr/local/mysql/include/mysql
\end{verbatim}

It is necessary to add the subdirectory paths explicitly, so that adding all the needed compile flags to the \texttt{CXXFLAGS} shell variable should look something like this:

\begin{verbatim}
CFLAGS="$CFLAGS "'mysql_config --cflags'
\end{verbatim}
CFLAGS="$CFLAGS `mysql_config --include`/storage/ndb"
CFLAGS="$CFLAGS `mysql_config --include`/storage/ndb/ndbapi"
CFLAGS="$CFLAGS `mysql_config --include`/storage/ndb/mgmapi"

Tip
If you do not intend to use the NDB Cluster management functions, the last line in the previous example can be omitted. However, if you are interested in the management functions only, and do not want or need to access NDB Cluster data except from MySQL, then you can omit the line referencing the ndbapi directory.

2.1.3 Linker Options

NDB API applications must be linked against both the MySQL and NDB client libraries. The NDB client library also requires some functions from the mystrings library, so this must be linked in as well.

The necessary linker flags for the MySQL client library are returned by mysql_config --libs. For multithreaded applications you should use the --libs_r instead:

$ mysql_config --libs_r
-L/usr/local/mysql-5.1/lib/mysql -lmysqlclient_r -lz -lpthread -lcrypt
-lm -lpthread -l/usr/lib -lssl -lcrypto

It is now necessary only to add -lndbclient to LD_FLAGS, as shown here:

LDFLAGS="$LDFLAGS "mysqld_config --libs_r"
LDFLAGS="$LDFLAGS -lndbclient"

2.1.4 Using Autotools

It is often faster and simpler to use GNU autotools than to write your own makefiles. In this section, we provide an autoconf macro WITH_MYSQL that can be used to add a --with-mysql option to a configure file, and that automatically sets the correct compiler and linker flags for given MySQL installation.

All of the examples in this chapter include a common mysql.m4 file defining WITH_MYSQL. A typical complete example consists of the actual source file and the following helper files:

• acinclude
• configure.in
• Makefile.m4

automake also requires that you provide README, NEWS, AUTHORS, and ChangeLog files; however, these can be left empty.

To create all necessary build files, run the following:

aclocal
autoconf
automake -a -c
configure --with-mysql=/mysql/prefix/path

Normally, this needs to be done only once, after which make will accommodate any file changes.

Example 1-1: acinclude.m4.

m4.include(['../mysql.m4'])

Example 1-2: configure.in.

AC_INIT(example, 1.0)
AM_INIT_AUTOMAKE(example, 1.0)
WITH_MYSQL()
Example 1-3: Makefile.am.

```makefile
bin_PROGRAMS = example
test SOURCES = example.cc
```

Example 1-4: WITH_MYSQL source for inclusion in acinclude.m4.

```makefile
dnl
dnl configure.in helper macros
dnl
AC_DEFUN([WITH_MYSQL], [
  AC_MSG_CHECKING(for mysql_config executable)
  AC_ARG_WITH(mysql, [  --with-mysql=PATH path to mysql_config binary or mysql prefix dir], [
    if test -x $withval -a -f $withval
    then
      MYSQL_CONFIG=$withval
    elif test -x $withval/bin/mysql_config -a -f $withval/bin/mysql_config
    then
      MYSQL_CONFIG=$withval/bin/mysql_config
    fi
  ], [
    if test -x /usr/local/mysql/bin/mysql_config -a -f /usr/local/mysql/bin/mysql_config
    then
      MYSQL_CONFIG=/usr/local/mysql/bin/mysql_config
    elif test -x /usr/bin/mysql_config -a -f /usr/bin/mysql_config
    then
      MYSQL_CONFIG=/usr/bin/mysql_config
    fi
  ])

  if test "x$MYSQL_CONFIG" = "x"
  then
    AC_MSG_RESULT(not found)
    exit 3
  else
    AC_PROG_CC
    AC_PROG_CXX
    # add regular MySQL C flags
    ADDFLAGS=`$MYSQL_CONFIG --cflags`
    # add NDB API specific C flags
    IBASE=`$MYSQL_CONFIG --include`
    ADDFLAGS=`$ADDFLAGS $IBASE/storage/ndb`
    ADDFLAGS=`$ADDFLAGS $IBASE/storage/ndbapi`
    ADDFLAGS=`$ADDFLAGS $IBASE/storage/ndb/mgmapi`
    CFLAGS=`$CFLAGS $ADDFLAGS`
    CXXFLAGS=`$CXXFLAGS $ADDFLAGS`
    LDFLAGS=`$LDFLAGS "'$MYSQL_CONFIG --libs_r'" -lndbclient -lmystrings -lmysys`
    LDFLAGS=`$LDFLAGS "'$MYSQL_CONFIG --libs_r'" -lndbclient -lmystrings"
    AC_MSG_RESULT($MYSQL_CONFIG)
  fi
])
```

2.1.2 Connecting to the Cluster

This section covers connecting an NDB API application to an NDB Cluster.

2.1.2.1 Include Files

NDB API applications require one or more of the following include files:

- Applications accessing NDB Cluster data using the NDB API must include the file `NdbApi.hpp`.

18
• Applications making use of the regular MySQL client API as well as the NDB API must also include `mysql.h` (in addition to `NdbApi.hpp`).

• Applications that use NDB Cluster management functions from the MGM API need the include file `mgmapi.h`.

2.1.2.2 API Initialization and Cleanup

Before using the NDB API, it must first be initialized by calling the `ndb_init()` function.

Once an NDB API application is complete, you can call `ndb_end(0)` to perform any necessary cleanup. Keep in mind that, before you invoke this function, all `Ndb_cluster_connection` objects created in your NDB API application must be cleaned up or destroyed; otherwise, threads created when an `Ndb_cluster_connection` object's `connect()` method is invoked do not exit properly, which causes errors on application termination. When an `Ndb_cluster_connection` is created statically, you must not call `ndb_end()` in the same scope as the connection object. When the connection object is created dynamically, you can destroy it using `delete()` before calling `ndb_end()`.

Each of the functions `ndb_init()` and `ndb_end()` is defined in the file `storage/ndb/include/ndb_init.h`.

Note

It should be possible to use `fork()` in NDB API applications, but you must do so prior to calling `ndb_init()` or `my_init()` to avoid sharing of resources such as files and connections between processes.

2.1.2.3 Establishing the Connection

To establish a connection to the server, you must create an instance of `Ndb_cluster_connection`, whose constructor takes as its argument a cluster connection string. If no connection string is given, `localhost` is assumed.

The cluster connection is not actually initiated until the `Ndb_cluster_connection::connect()` method is called. When invoked without any arguments, the connection attempt is retried indefinitely, once per second, until successful. No reporting is done until the connection has been made.

By default an API node connects to the “nearest” data node. This is usually a data node running on the same machine as the nearest, due to the fact that shared memory transport can be used instead of the slower TCP/IP. This may lead to poor load distribution in some cases, so it is possible to enforce a round-robin node connection scheme by calling the `set_optimized_node_selection()` method with 0 as its argument prior to calling `connect()`.

`connect()` initiates a connection to an NDB Cluster management node only. To enable connections with data nodes, use `wait_until_ready()` after calling `connect(); wait_until_ready()` waits up to a given number of seconds for a connection to a data node to be established.

In the following example, initialization and connection are handled in the two functions `example_init()` and `example_end()`, which are included in subsequent examples by means of including the file `example_connection.h`.

Example 2-1: Connection example.

```c
#include <stdio.h>
#include <stdlib.h>
#include <NdbApi.hpp>
#include <mysql.h>
#include <mgmapi.h>

Ndb_cluster_connection* connect_to_cluster();
void disconnect_from_cluster(Ndb_cluster_connection *c);
```
2.1.3 Mapping MySQL Database Object Names and Types to NDB

The next two sections discuss naming and other conventions followed by the NDB API with regard to MySQL database objects, as well as handling of MySQL data types in NDB API applications.

2.1.3.1 MySQL Database Object Names in the NDB API

This section discusses mapping of MySQL database objects to the NDB API.

Databases and Schemas. Databases and schemas are not represented by objects as such in the NDB API. Instead, they are modelled as attributes of Table and Index objects. The value of the database attribute of one of these objects is always the same as the name of the MySQL database to which the table or index belongs. The value of the schema attribute of a Table or Index object is always 'def' (for "default").

Tables. MySQL table names are directly mapped to NDB table names without modification. Table names starting with 'NDB$' are reserved for internal use, as is the SYSTAB_0 table in the sys database.

Indexes. There are two different type of NDB indexes:

- **Hash indexes** are unique, but not ordered.
- **B-tree indexes** are ordered, but permit duplicate values.
Names of unique indexes and primary keys are handled as follows:

- For a MySQL UNIQUE index, both a B-tree and a hash index are created. The B-tree index uses the MySQL name for the index; the name for the hash index is generated by appending \'\$unique\' to the index name.

- For a MySQL primary key only a B-tree index is created. This index is given the name PRIMARY. There is no extra hash; however, the uniqueness of the primary key is guaranteed by making the MySQL key the internal primary key of the NDB table.

Column Names and Values. NDB column names are the same as their MySQL names.

2.1.3.2 NDB API Handling of MySQL Data Types

This section provides information about the way in which MySQL data types are represented in NDBCLUSTER table columns and how these values can be accessed in NDB API applications.

Numeric data types.

The MySQL TINYINT, SMALLINT, INT, and BIGINT data types map to NDB types having the same names and storage requirements as their MySQL counterparts.

The MySQL FLOAT and DOUBLE data types are mapped to NDB types having the same names and storage requirements.

Data types used for character data.

The storage space required for a MySQL CHAR column is determined by the maximum number of characters and the column's character set. For most (but not all) character sets, each character takes one byte of storage. When using utf8, each character requires three bytes; utfmb4 uses up to four bytes per character. You can find the maximum number of bytes needed per character in a given character set by checking the `Maxlen` column in the output of `SHOW CHARACTER SET`.

An NDB VARCHAR column value maps to a MySQL VARCHAR, except that the first two bytes of the NDB VARCHAR are reserved for the length of the string. A utility function like that shown here can make a VARCHAR value ready for use in an NDB API application:

```c
void make_ndb_varchar(char *buffer, char *str)
{
    int len = strlen(str);
    int hlen = (len > 255) ? 2 : 1;
    buffer[0] = len & 0xff;
    if( len > 255 )
        buffer[1] = (len / 256);
    strcpy(buffer+hlen, str);
}
```

You can use this function as shown here:

```c
char myVal[128+1]; // Size of myVal (+1 for length)
...
make_ndb_varchar(myVal, "NDB is way cool!!");
myOperation->setValue("myVal", myVal);
```

See Section 2.5.11, “NDB API Simple Array Example”, for a complete example program that writes and reads VARCHAR and VARBINARY values to and from a table using the NDB API.

MySQL storage requirements for a VARCHAR or VARBINARY column depend on whether the column is stored in memory or on disk:

- For in-memory columns, the NDB storage engine supports variable-width columns with 4-byte alignment. This means that (for example) a the string 'abcde' stored in a VARCHAR(50) column using the latin1 character set requires 12 bytes—in this case, 2 bytes times 5 characters is 10, rounded up to the next even multiple of 4 yields 12.

- For Disk Data columns, VARCHAR and VARBINARY are stored as fixed-width columns. This means that each of these types requires the same amount of storage as a CHAR of the same size.
Each row in an NDB Cluster BLOB or TEXT column is made up of two separate parts. One of these is of fixed size (256 bytes), and is actually stored in the original table. The other consists of any data in excess of 256 bytes, which stored in a hidden table. The rows in this second table are always 2000 bytes long. This means that record of size $size$ bytes in a TEXT or BLOB column requires

- 256 bytes, if $size \leq 256$
- $256 + 2000 \times \left(\frac{(size - 256)}{2000}\right) + 1$ bytes otherwise

Temporal data types. Storage of temporal types in the NDB API depends on whether MySQL’s “old” types without fractional seconds or “new” types with fractional second support are used. Support for fractional seconds was introduced in MySQL 5.6 as well as the NDB Cluster versions based on it—that is, NDB 7.3 and NDB 7.4. These versions use the new temporal types by default, but can be made to use the old ones by starting mysqld with \texttt{--create-old-temporals=ON}. NDB 7.5 and later—that is, those NDB Cluster versions based on MySQL 5.7 and later—can read and write data using the old temporal types, but cannot create tables that use the old types. See Fractional Seconds in Time Values, for more about these changes in the MySQL server.

Because support for the old temporal types is expected be removed in a future release, you are encouraged to migrate any tables using the old temporal types to the new versions of these types. You can do this by executing a copying ALTER TABLE operation on any table using the old temporals, or by means of backing up and restoring any such tables.

You can see whether a given table uses the old or new temporal types by checking the output of the ndb_desc utility supplied with the NDB Cluster distribution. Consider a table created in a database named test, using the following statement, on a mysqld started without the \texttt{--create-old-temporals} option:

```
CREATE TABLE t1 (  
c1 DATETIME,  
c2 DATE,  
c3 TIME,  
c4 TIMESTAMP,  
c5 YEAR) ENGINE=NDB;
```

The relevant portion (the Attributes block) of the output of ndb_desc looks like this:

```
shell> ndb_desc -dtest t1
...
-- Attributes --
c1 Datetime2(0) NULL AT=FIXED ST=MEMORY  
c2 Date NULL AT=FIXED ST=MEMORY  
c3 Time2(0) NULL AT=FIXED ST=MEMORY  
c4 Timestamp2(0) NOT NULL AT=FIXED ST=MEMORY DEFAULT 0  
c5 Year NULL AT=FIXED ST=MEMORY
```

The names of the new MySQL temporal types are are suffixed with 2 (for example, Datetime2) to set them apart from the old versions of these types. Assume that we restart mysqld with \texttt{--create-old-temporals=ON} and then create a table t2, also in the test database, using this statement:

```
CREATE TABLE t2 (  
c1 DATETIME,  
c2 DATE,  
c3 TIME,  
c4 TIMESTAMP,  
c5 YEAR) ENGINE=NDB;
```

The output from executing ndb_desc on this table as shown includes the Attributes block shown here:

```
shell> ndb_desc -dtest t2
...
-- Attributes --
c1 Datetime NULL AT=FIXED ST=MEMORY  
c2 Date NULL AT=FIXED ST=MEMORY
```
The affected MySQL types are `TIME`, `DATETIME`, and `TIMESTAMP`. The “new” versions of these types are reflected in the NDB API as `Time2`, `Datet ime2`, and `Timestamp2`, respectively, each supporting fractional seconds with up to 6 digits of precision. The new variants use big-endian encoding of integer values which are then processed to determine the components of each temporal type.

For the fractional second part of each of these types, the precision affects the number of bytes needed, as shown in the following table:

Table 2.1 Precision of NDB API new temporal types

<table>
<thead>
<tr>
<th>Precision</th>
<th>Bytes required</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0-9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0-99</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0-999</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0-9999</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0-99999</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0-999999</td>
</tr>
</tbody>
</table>

The fractional part for each of the new temporal types is stored in big-endian format—that is, with the highest order byte at the lowest address—using the necessary number of bytes.

The binary layouts of both the old and new versions of these types are described in the next few paragraphs.

Time: The “old” version of this type is stored as a 24-bit signed `int` value stored in little-endian format (lowest order byte in lowest order address). Byte 0 (bits 0-7) corresponds to hours, byte 2 (bits 8-15) to minutes, and byte 2 (bits 16-23) to seconds according to this formula:

\[
\text{value} = 10000 \times \text{hour} + 100 \times \text{minute} + \text{second}
\]

Bit 23 serves as the sign bit; if this bit is set, the time value is considered negative.

Time2: This is the “new” `TIME` type added in NDB 7.3 and 7.4 (MySQL 5.6), and is stored as a 3-byte big-endian encoded value plus 0 to 3 bytes for the fractional part. The integer part is encoded as shown in the following table:

Table 2.2 Time2 encoding

<table>
<thead>
<tr>
<th>Bits</th>
<th>Meaning</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Sign bit</td>
<td>0-1</td>
</tr>
<tr>
<td>22</td>
<td>Interval</td>
<td>0-1</td>
</tr>
<tr>
<td>22-13</td>
<td>Hour</td>
<td>0-1023</td>
</tr>
<tr>
<td>12-7</td>
<td>Minute</td>
<td>0-63</td>
</tr>
<tr>
<td>6-0</td>
<td>Second</td>
<td>0-63</td>
</tr>
</tbody>
</table>

Any fractional bytes in addition to this are handled as described previously.

Date: The representation for the MySQL `DATE` type is unchanged across NDB versions, and uses a 3-byte unsigned integer stored in little-endian order. The encoding is as shown here:
The NDB API Class Hierarachy

Table 2.3 Date encoding

<table>
<thead>
<tr>
<th>Bits</th>
<th>Meaning</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-9</td>
<td>Year</td>
<td>0-32767</td>
</tr>
<tr>
<td>8-5</td>
<td>Month</td>
<td>0-15</td>
</tr>
<tr>
<td>4-0</td>
<td>Day</td>
<td>0-31</td>
</tr>
</tbody>
</table>

DateTime: The “old” MySQL `DATETIME` type is represented by a 64-bit unsigned value stored in host byte order, encoded using the following formula:

\[\text{value} = \text{second} + \text{minute} \times 10^2 + \text{hour} \times 10^1 + \text{day} \times 10^0 + \text{year} \times 10^0 \]

DateTime2: The “new” `DATETIME` is encoded as a 5-byte big-endian with an optional fractional part of 0 to 3 bytes, the fractional portion being handled as described previously. The high 5 bytes are encoded as shown here:

Table 2.4 DateTime2 encoding

<table>
<thead>
<tr>
<th>Bits</th>
<th>Meaning</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Sign bit</td>
<td>0-1</td>
</tr>
<tr>
<td>22</td>
<td>Interval</td>
<td>0-1</td>
</tr>
<tr>
<td>22-13</td>
<td>Hour</td>
<td>1-1023</td>
</tr>
<tr>
<td>12-7</td>
<td>Minute</td>
<td>0-63</td>
</tr>
<tr>
<td>6-0</td>
<td>Second</td>
<td>0-63</td>
</tr>
</tbody>
</table>

The `YearMonth` bits are encoded as `Year = YearMonth / 13` and `Month = YearMonth \% 13`.

Timestamp: The “old” version of this type uses a 32-bit unsigned value representing seconds elapsed since the Unix epoch, stored in host byte order.

Timestamp2: This is the version of `TIMESTAMP` implemented in NDB 7.3 and 7.4 (MySQL 5.6), and uses 4 bytes with big-endian encoding for the integer portion (unsigned). The optional 3-byte fractional portion is encoded as explained earlier in this section.

Additional information. More information about and examples using data types as expressed in the NDB API can be found in `ndb/src/common/util/NdbSqlUtil.cpp`. In addition, see Section 2.5.13, “Timestamp2 Example”, which provides an example of a simple NDB API application that makes use of the `Timestamp2` data type.

2.2 The NDB API Class Hierarachy

This section provides a hierarchical listing of all classes, interfaces, and structures exposed by the NDB API.

- `Ndb`
 - `Key_part_ptr`
 - `PartitionSpec`
- `NdbBlob`
- `Ndb_cluster_connection`
- `NdbDictionary`
The NDB API Class Hierarchy

- AutoGrowSpecification
- Dictionary
 - List
 - Element
- Column
- Object
 - Datafile
 - Event
 - ForeignKey
 - HashMap
 - Index
 - LogfileGroup
 - Table
 - Tablespace
 - Undofile
- RecordSpecification
- NdbError
- NdbEventOperation
- NdbInterpretedCode
- NdbOperation
 - NdbIndexOperation
 - NdbScanOperation
 - NdbIndexScanOperation
 - IndexBound
 - ScanOptions
 - GetValueSpec
 - SetValueSpec
 - OperationOptions
- NdbRecAttr
- NdbRecord
- NdbScanFilter
- NdbTransaction
2.3 NDB API Classes, Interfaces, and Structures

This section provides a detailed listing of all classes, interfaces, and structures defined in the NDB API.

Each listing includes the following information:

- Description and purpose of the class, interface, or structure.
- Pointers, where applicable, to parent and child classes.
- Detailed listings of all public members, including descriptions of all method parameters and type values.

Class, interface, and structure descriptions are provided in alphabetic order. For a hierarchical listing, see Section 2.2, “The NDB API Class Hierarchy”.

2.3.1 The AutoGrowSpecification Structure

This section describes the AutoGrowSpecification structure.

Parent class. NdbDictionary

Description. The AutoGrowSpecification is a data structure defined in the NdbDictionary class, and is used as a parameter to or return value of some of the methods of the Tablespace and LogfileGroup classes. See Section 2.3.38, “The Tablespace Class”, and Section 2.3.13, “The LogfileGroup Class”, for more information.

Methods. AutoGrowSpecification has the methods shown in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>min_free</td>
<td>???</td>
</tr>
<tr>
<td>max_size</td>
<td>???</td>
</tr>
<tr>
<td>file_size</td>
<td>???</td>
</tr>
<tr>
<td>filename_pattern</td>
<td>???</td>
</tr>
</tbody>
</table>

2.3.2 The Column Class

This class represents a column in an NDB Cluster table.

Parent class. NdbDictionary

Child classes. None

Description. Each instance of Column is characterized by its type, which is determined by a number of type specifiers:

- Built-in type
- Array length or maximum length
- Precision and scale (currently not in use)
- Character set (applicable only to columns using string data types)
- Inline and part sizes (applicable only to BLOB columns)
The Column Class

These types in general correspond to MySQL data types and their variants. The data formats are same as in MySQL. The NDB API provides no support for constructing such formats; however, they are checked by the NDB kernel.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

Table 2.6 Column class methods and descriptions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column()</td>
<td>Class constructor; there is also a copy constructor</td>
</tr>
<tr>
<td>~Column()</td>
<td>Class destructor</td>
</tr>
<tr>
<td>equal()</td>
<td>Compares Column objects</td>
</tr>
<tr>
<td>getArrayType()</td>
<td>Gets the column's array type</td>
</tr>
<tr>
<td>getCharset()</td>
<td>Get the character set used by a string (text) column (not applicable to columns not storing character data)</td>
</tr>
<tr>
<td>getColumnNo()</td>
<td>Gets the column number</td>
</tr>
<tr>
<td>getDefaultValue()</td>
<td>Returns the column's default value</td>
</tr>
<tr>
<td>getInlineSize()</td>
<td>Gets the inline size of a BLOB column (not applicable to other column types)</td>
</tr>
<tr>
<td>getLength()</td>
<td>Gets the column's length</td>
</tr>
<tr>
<td>getName()</td>
<td>Gets the name of the column</td>
</tr>
<tr>
<td>getNullable()</td>
<td>Checks whether the column can be set to NULL</td>
</tr>
<tr>
<td>getPartitionKey()</td>
<td>Checks whether the column is part of the table's partitioning key</td>
</tr>
<tr>
<td>getPartSize()</td>
<td>Gets the part size of a BLOB column (not applicable to other column types)</td>
</tr>
<tr>
<td>getPrecision()</td>
<td>Gets the column's precision (used for decimal types only)</td>
</tr>
<tr>
<td>getPrimaryKey()</td>
<td>Check whether the column is part of the table's primary key</td>
</tr>
<tr>
<td>getScale()</td>
<td>Gets the column's scale (used for decimal types only)</td>
</tr>
<tr>
<td>getSize()</td>
<td>Gets the size of an element</td>
</tr>
<tr>
<td>getSizeInBytesForRecord()</td>
<td>Gets the space required for a column by NdbRecord, according to the column's type (added in NDB 7.3.10 and NDB 7.4.7)</td>
</tr>
<tr>
<td>getStripeSize()</td>
<td>Gets a BLOB column's stripe size (not applicable to other column types)</td>
</tr>
<tr>
<td>getStorageType()</td>
<td>Gets the storage type used by this column</td>
</tr>
<tr>
<td>getType()</td>
<td>Gets the column's type (Type value)</td>
</tr>
<tr>
<td>setArrayType()</td>
<td>Sets the column's ArrayType</td>
</tr>
<tr>
<td>setCharset()</td>
<td>Sets the character set used by a column containing character data (not applicable to nontextual columns)</td>
</tr>
<tr>
<td>setDefaultValue()</td>
<td>Sets the column's default value</td>
</tr>
<tr>
<td>setInlineSize()</td>
<td>Sets the inline size for a BLOB column (not applicable to non-BLOB columns)</td>
</tr>
<tr>
<td>setLength()</td>
<td>Sets the column's length</td>
</tr>
<tr>
<td>setName()</td>
<td>Sets the column's name</td>
</tr>
<tr>
<td>setNullable()</td>
<td>Toggles the column's nullability</td>
</tr>
<tr>
<td>setPartitionKey()</td>
<td>Determines whether the column is part of the table's partitioning key</td>
</tr>
</tbody>
</table>
The Column Class

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>setPartSize()</code></td>
<td>Sets the part size for a BLOB column (not applicable to non-BLOB columns)</td>
</tr>
<tr>
<td><code>setPrecision()</code></td>
<td>Sets the column’s precision (used for decimal types only)</td>
</tr>
<tr>
<td><code>setPrimaryKey()</code></td>
<td>Determines whether the column is part of the primary key</td>
</tr>
<tr>
<td><code>setScale()</code></td>
<td>Sets the column’s scale (used for decimal types only)</td>
</tr>
<tr>
<td><code>setStorageType()</code></td>
<td>Sets the storage type to be used by this column</td>
</tr>
<tr>
<td><code>setStripeSize()</code></td>
<td>Sets the stripe size for a BLOB column (not applicable to non-BLOB columns)</td>
</tr>
<tr>
<td><code>setType()</code></td>
<td>Sets the column’s Type</td>
</tr>
</tbody>
</table>

For detailed descriptions, signatures, and examples of use for each of these methods, see Section 2.3.2.4, “Column Methods”.

Important

Columns created using this class cannot be seen by the MySQL Server. This means that they cannot be accessed by MySQL clients, and that they cannot be replicated. For these reasons, it is often preferable to avoid working with them.

Important

In the NDB API, column names are handled in case-sensitive fashion. (This differs from the MySQL C API.) To reduce the possibility for error, it is recommended that you name all columns consistently using uppercase or lowercase.

Types. These are the public types of the `Column` class:

Table 2.7 Column class types and descriptions.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ArrayType</code></td>
<td>Specifies the column’s internal storage format</td>
</tr>
<tr>
<td><code>StorageType</code></td>
<td>Determines whether the column is stored in memory or on disk</td>
</tr>
<tr>
<td><code>Type</code></td>
<td>The column’s data type. NDB columns have the same data types as found in MySQL</td>
</tr>
</tbody>
</table>

2.3.2.1 Column::ArrayType

This type describes the `Column`’s internal attribute format.

Description. The attribute storage format can be either fixed or variable.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

Table 2.8 Column object ArrayType data type values and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ArrayTypeFixed</code></td>
<td>stored as a fixed number of bytes</td>
</tr>
<tr>
<td><code>ArrayTypeShortVar</code></td>
<td>stored as a variable number of bytes; uses 1 byte overhead</td>
</tr>
<tr>
<td><code>ArrayTypeMediumVar</code></td>
<td>stored as a variable number of bytes; uses 2 bytes overhead</td>
</tr>
</tbody>
</table>

The fixed storage format is faster but also generally requires more space than the variable format. The default is `ArrayTypeShortVar` for `Var*` types and `ArrayTypeFixed` for others. The default is usually sufficient.

2.3.2.2 Column::StorageType
The Column Class

This type describes the storage type used by a Column object.

Description. The storage type used for a given column can be either in memory or on disk. Columns stored on disk mean that less RAM is required overall but such columns cannot be indexed, and are potentially much slower to access. The default is `StorageTypeMemory`.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>StorageTypeMemory</code></td>
<td>Store the column in memory</td>
</tr>
<tr>
<td><code>StorageTypeDisk</code></td>
<td>Store the column on disk</td>
</tr>
</tbody>
</table>

2.3.2.3 Column::Type

Type is used to describe the Column object’s data type.

Description. Data types for Column objects are analogous to the data types used by MySQL. The types `Tinyint`, `Tinyintunsigned`, `Smallint`, `Smallunsigned`, `Mediumint`, `Mediumunsigned`, `Int`, `Unsigned`, `BigInt`, `Bigunsigned`, `Float`, and `Double` (that is, types `Tinyint` through `Double` in the order listed in the Enumeration Values table) can be used in arrays.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined</td>
<td>Undefined</td>
</tr>
<tr>
<td>Tinyint</td>
<td>1-byte signed integer</td>
</tr>
<tr>
<td>Tinyunsigned</td>
<td>1-byte unsigned integer</td>
</tr>
<tr>
<td>Smallint</td>
<td>2-byte signed integer</td>
</tr>
<tr>
<td>Smallunsigned</td>
<td>2-byte unsigned integer</td>
</tr>
<tr>
<td>Mediumint</td>
<td>3-byte signed integer</td>
</tr>
<tr>
<td>Mediumunsigned</td>
<td>3-byte unsigned integer</td>
</tr>
<tr>
<td>Int</td>
<td>4-byte signed integer</td>
</tr>
<tr>
<td>Unsigned</td>
<td>4-byte unsigned integer</td>
</tr>
<tr>
<td>Bigint</td>
<td>8-byte signed integer</td>
</tr>
<tr>
<td>Bigunsigned</td>
<td>8-byte signed integer</td>
</tr>
<tr>
<td>Float</td>
<td>4-byte float</td>
</tr>
<tr>
<td>Double</td>
<td>8-byte float</td>
</tr>
<tr>
<td>Olddecimal</td>
<td>Signed decimal as used prior to MySQL 5.0</td>
</tr>
<tr>
<td>Olddecimalunsigned</td>
<td>Unsigned decimal as used prior to MySQL 5.0</td>
</tr>
<tr>
<td>Decimal</td>
<td>Signed decimal as used by MySQL 5.0 and later</td>
</tr>
<tr>
<td>Decimalunsigned</td>
<td>Unsigned decimal as used by MySQL 5.0 and later</td>
</tr>
<tr>
<td>Char</td>
<td>A fixed-length array of 1-byte characters; maximum length is 255 characters</td>
</tr>
<tr>
<td>Varchar</td>
<td>A variable-length array of 1-byte characters; maximum length is 255 characters</td>
</tr>
<tr>
<td>Binary</td>
<td>A fixed-length array of 1-byte binary characters; maximum length is 255 characters</td>
</tr>
</tbody>
</table>
The Column Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varbinary</td>
<td>A variable-length array of 1-byte binary characters; maximum length is 255 characters</td>
</tr>
<tr>
<td>Datetime</td>
<td>An 8-byte date and time value, with a precision of 1 second (DEPRECATED)</td>
</tr>
<tr>
<td>Date</td>
<td>A 4-byte date value, with a precision of 1 day (DEPRECATED)</td>
</tr>
<tr>
<td>Blob</td>
<td>A binary large object; see Section 2.3.18, “The NdbBlob Class”</td>
</tr>
<tr>
<td>Text</td>
<td>A text blob</td>
</tr>
<tr>
<td>Bit</td>
<td>A bit value; the length specifies the number of bits</td>
</tr>
<tr>
<td>Longvarchar</td>
<td>A 2-byte Varchar</td>
</tr>
<tr>
<td>Longvarbinary</td>
<td>A 2-byte Varbinary</td>
</tr>
<tr>
<td>Time</td>
<td>Time without date (DEPRECATED)</td>
</tr>
<tr>
<td>Year</td>
<td>1-byte year value in the range 1901-2155 (same as MySQL)</td>
</tr>
<tr>
<td>Timestamp</td>
<td>Unix time (DEPRECATED)</td>
</tr>
<tr>
<td>Time2</td>
<td>Time without date, with fractional seconds. Added in NDB 7.3.1.</td>
</tr>
<tr>
<td>Datetime2</td>
<td>An 8-byte date and time value, with fractional seconds. Added in NDB 7.3.1.</td>
</tr>
<tr>
<td>Timestamp2</td>
<td>Unix time, with fractional seconds. Added in NDB 7.3.1.</td>
</tr>
</tbody>
</table>

Beginning with NDB 7.3.1, the NDB API provides access to the time types with microseconds added in MySQL 5.6 (TIME, DATETIME, and TIMESTAMP) as Time2, Datetime2, and Timestamp2. (Time, Datetime, and Timestamp are deprecated as of the same version.) Use setPrecision() to set up to 6 fractional digits (default 0). Data formats are as in MySQL and must use the correct byte length. **Note:** Since NDB can compare any of these values as binary strings, it does not perform any checks on the actual data.

Caution

Do not confuse Column::Type with Object::Type.

2.3.2.4 Column Methods

This section documents the public methods of the Column class.

Note

The assignment (=) operator is overloaded for this class, so that it always performs a deep copy.

Warning

As with other database objects, Column object creation and attribute changes to existing columns done using the NDB API are not visible from MySQL. For example, if you change a column's data type using Column::setType(), MySQL will regard the type of column as being unchanged. The only exception to this rule with regard to columns is that you can change the name of an existing column using Column::setName().

Also remember that the NDB API handles column names in case-sensitive fashion.

Column Constructor

Description. You can create a new Column or copy an existing one using the class constructor.
Warning

A Column created using the NDB API is not visible to a MySQL server.

The NDB API handles column names in case-sensitive fashion. For example, if you create a column named “myColumn”, you will not be able to access it later using “Mycolumn” for the name. You can reduce the possibility for error, by naming all columns consistently using only uppercase or only lowercase.

Signature. You can create either a new instance of the Column class, or by copying an existing Column object. Both of these are shown here:

- Constructor for a new Column:

```cpp
Column
{
    const char* name = "
}
```

- Copy constructor:

```cpp
Column
{
    const Column& column
}
```

Parameters. When creating a new instance of Column, the constructor takes a single argument, which is the name of the new column to be created. The copy constructor also takes one parameter—in this case, a reference to the Column instance to be copied.

Return value. A Column object.

Destructor. The Column class destructor takes no arguments and None.

Column::equal()

Description. This method is used to compare one Column with another to determine whether the two Column objects are the same.

Signature.

```cpp
bool equal
{
    const Column& column
} const
```

Parameters. equal() takes a single parameter, a reference to an instance of Column.

Return value. true if the columns being compared are equal, otherwise false.

Column::getArrayType()

Description. This method gets the column's array type.

Signature.

```cpp
ArrayType getArrayType
{
    void
} const
```

Parameters. None.

Return value. An ArrayType; see Section 2.3.2.1, “Column::ArrayType” for possible values.
The Column Class

Column::getCharset()

Description. This gets the character set used by a text column.

Note

This method is applicable only to columns whose Type value is Char, Varchar, or Text.

Important

The NDB API handles column names in case-sensitive fashion; “myColumn” and “Mycolumn” are not considered to refer to the same column. It is recommended that you minimize the possibility of errors from using the wrong lettercase for column names by naming all columns consistently using only uppercase or only lowercase.

Signature.

```cpp
CHARSET_INFO* getCharset
    (void) const
```

Parameters. *None.*

Return value. A pointer to a CHARSET_INFO structure specifying both character set and collation. This is the same as a MySQL MY_CHARSET_INFO data structure; for more information, see `mysql_get_character_set_info()` in the MySQL Manual.

Column::getColumnNo()

Description. This method gets the sequence number of a column within its containing table or index. If the column is part of an index (such as when returned by `getColumn()`), it is mapped to its position within that index, and not within the table containing the index.

Signature.

```cpp
int getColumnNo
    (void) const
```

Parameters. *None.*

Return value. The column number as an integer.

Column::getDefaultValue()

Description. Gets a column's default value data.

To determine whether a table has any columns with default values, use `Table::hasDefaultValues()`.

Signature.

```cpp
const void* getDefaultValue
    (unsigned int* len = 0) const
```

Parameters. *len* holds either the length of the default value data, or 0 in the event that the column is nullable or has no default value.
Return value. The default value data.

Column::getInlineSize()

Description. This method retrieves the inline size of a BLOB column—that is, the number of initial bytes to store in the table's blob attribute. This part is normally in main memory and can be indexed.

Note
This method is applicable only to BLOB columns.

Signature.

```cpp
int getInlineSize
  ( void 
  ) const
```

Parameters. None.

Return value. The BLOB column's inline size, as an integer.

Column::getLength()

Description. This method gets the length of a column. This is either the array length for the column or—for a variable length array—the maximum length.

Signature.

```cpp
int getLength
  ( void 
  ) const
```

Parameters. None.

Return value. The (maximum) array length of the column, as an integer.

Column::getName()

Description. This method returns the name of the column for which it is called.

Important
The NDB API handles column names in case-sensitive fashion. For example, if you retrieve the name "myColumn" for a given column, attempting to access this column using "Mycolumn" for the name fails with an error such as Column is NULL or Table definition has undefined column. You can reduce the possibility for error, by naming all columns consistently using only uppercase or only lowercase.

Signature.

```cpp
const char* getName
  ( void 
  ) const
```

Parameters. None.

Return value. The name of the column.

Column::getNullable()
The Column Class

getNullable()

Description.
This method is used to determine whether the column can be set to `NULL`.

Signature.

```cpp
bool getNullable()
{
    void
} const
```

Parameters.
None.

Return value.
A Boolean value: `true` if the column can be set to `NULL`, otherwise `false`.

getPartitionKey()

Description.
This method is used to check whether the column is part of the table’s partitioning key.

Note

A partitioning key is a set of attributes used to distribute the tuples onto the data nodes. This key a hashing function specific to the NDB storage engine.

An example where this would be useful is an inventory tracking application involving multiple warehouses and regions, where it might be good to use the warehouse ID and district ID as the partition key. This would place all data for a specific district and warehouse in the same storage node. Locally to each fragment the full primary key will still be used with the hashing algorithm in such a case.

For more information about partitioning, partitioning schemes, and partitioning keys in MySQL, see [Partitioning](#), in the MySQL Manual.

Important

The only type of user-defined partitioning that is supported for use with the NDB storage engine is key partitioning, including linear key partitioning.

Signature.

```cpp
bool getPartitionKey()
{
    void
} const
```

Parameters.
None.

Return value.
`true` if the column is part of the partitioning key for the table, otherwise `false`.

getPartSize()

Description.
This method is used to get the part size of a `BLOB` column—that is, the number of bytes that are stored in each tuple of the blob table.

Note

This method is applicable to `BLOB` columns only.

Signature.

```cpp
int getPartSize()
{
    void
} const
```
The Column Class

Parameters. None.

Return value. The column's part size, as an integer. In the case of a Tinyblob column, this value is 0 (that is, only inline bytes are stored).

Column::getPrecision()

Description. This method gets the precision of a column.

Note

This method is applicable to decimal columns only.

Signature.

```cpp
int getPrecision
(
    void
) const
```

Parameters. None.

Return value. The column's precision, as an integer. The precision is defined as the number of significant digits; for more information, see the discussion of the DECIMAL data type in Numeric Data Types, in the MySQL Manual.

Column::getPrimaryKey()

Description. This method is used to determine whether the column is part of the table's primary key.

Signature.

```cpp
bool getPrimaryKey
(
    void
) const
```

Parameters. None.

Return value. A Boolean: true if the column is part of the primary key of the table to which this column belongs, otherwise false.

Column::getScale()

Description. This method gets the scale used for a decimal column value.

Note

This method is applicable to decimal columns only.

Signature.

```cpp
int getScale
(
    void
) const
```

Parameters. None.

Return value. The decimal column's scale, as an integer. The scale of a decimal column represents the number of digits that can be stored following the decimal point. It is possible for this value to be 0. For more information, see the discussion of the DECIMAL data type in Numeric Data Types, in the MySQL Manual.
Column::getSize()

Description. This function is used to obtain the size of a column.

Signature.
```cpp
int getSize(
    void
) const
```

Parameters. None.

Return value. The column's size in bytes (an integer value).

Column::getSizeInBytesForRecord()

Description. Gets the space required for a given column by an `NdbRecord`, depending on the column's type, as follows:

- For a BLOB column, this value is the same as `sizeof(NdbRecord*)`, which is 4 or 8 bytes (the size of a pointer; platform-dependent).
- For columns of all other types, it is the same as the value returned by `getSize()`.

This method was added in NDB 7.3.10 and NDB 7.4.7.

Signature.
```cpp
int getSizeInBytesForRecord(
    void
) const
```

Parameters. None.

Return value. An integer (see Description).

Column::getStorageType()

Description. This method obtains a column's storage type.

Signature.
```cpp
StorageType getStorageType(
    void
) const
```

Parameters. None.

Return value. A `StorageType` value; for more information about this type, see Section 2.3.2.2, "Column::StorageType".

Column::getStripeSize()

Description. This method gets the stripe size of a BLOB column—that is, the number of consecutive parts to store in each node group.

Signature.
```cpp
int getStripeSize(
    void
) const
```
The Column Class

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
<th>Signature</th>
<th>Parameters</th>
<th>Return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column::getColumn()</td>
<td>This method gets the column's data type.</td>
<td>Type getColumn() { void } const</td>
<td>None</td>
<td>The Type (data type)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>of the column. For a list of possible values, see Section 2.3.2.3, “Column::getType”.</td>
</tr>
<tr>
<td>Column::setArrayType()</td>
<td>Sets the array type for the column.</td>
<td>void setArrayType (ArrayType type)</td>
<td>A Column::ArrayType</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>value. See Section 2.3.2.1, “Column::ArrayType”, for more information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column::setCharsetName()</td>
<td>This method can be used to set the character set and collation of a Char, Varchar, or Text column.</td>
<td>void setCharsetName (CHARSET_INFO* cs)</td>
<td>This method takes one parameter. cs is a pointer to a CHARSET_INFO structure. For additional information, see Column::getCharsetName().</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Column::setDefaultValue()</td>
<td>This method sets a column value to its default, if it has one; otherwise it sets the column to NULL.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To determine whether a table has any columns with default values, use `Table::hasDefaultValue()`.

Signature.

```cpp
int setDefaultValue
{
    const void* buf,
    unsigned int len
}
```

Parameters. This method takes 2 arguments: a value pointer `buf` and the length `len` of the data, as the number of significant bytes. For fixed size types, this is the type size. For variable length types, the leading 1 or 2 bytes pointed to by `buffer` also contain size information as normal for the type.

Return value. 0 on success, 1 on failure.

Column::setInlineSize

Description. This method gets the inline size of a BLOB column—that is, the number of initial bytes to store in the table’s blob attribute. This part is normally kept in main memory, and can be indexed and interpreted.

⚠️ **Important**

This method is applicable to BLOB columns only.

Changes made to columns using this method are not visible to MySQL.

Signature.

```cpp
void setInlineSize
{
    int size
}
```

Parameters. The integer `size` is the new inline size for the BLOB column.

Return value. None.

Column::setLength()

Description. This method sets the length of a column. For a variable-length array, this is the maximum length; otherwise it is the array length.

⚠️ **Important**

Changes made to columns using this method are not visible to MySQL.

Signature.

```cpp
void setLength
{
    int length
}
```

Parameters. This method takes a single argument—the integer value `length` is the new length for the column.

Return value. None.

Column::setName()

Description. This method is used to set the name of a column.
The Column Class

Important

setName() is the only Column method whose result is visible from a MySQL Server. MySQL cannot see any other changes made to existing columns using the NDB API.

Signature.

```cpp
void setName
(const char* name)
```

Parameters. This method takes a single argument—the new name for the column.

Return value. This method None.

Column::setNullable()

Description. This method toggles the nullability of a column.

Important

Changes made to columns using this method are not visible to MySQL.

Signature.

```cpp
void setNullable
(bool nullable)
```

Parameters. A Boolean value. Using true makes it possible to insert NULLs into the column; if nullable is false, then this method performs the equivalent of changing the column to NOT NULL in MySQL.

Return value. None.

Column::setPartitionKey()

Description. This method makes it possible to add a column to the partitioning key of the table to which it belongs, or to remove the column from the table's partitioning key.

Important

Changes made to columns using this method are not visible to MySQL.

Signature.

```cpp
void setPartitionKey
(bool enable)
```

Parameters. The single parameter enable is a Boolean value. Passing true to this method makes the column part of the table's partitioning key; if enable is false, then the column is removed from the partitioning key.

Return value. None.

Column::setPartSize()
The Column Class

Description. This method sets the part size of a BLOB column—that is, the number of bytes to store in each tuple of the BLOB table.

Important
- This method is applicable to BLOB columns only.
- Changes made to columns using this method are not visible to MySQL.

Signature.

```cpp
void setPartSize(int size)
```

Parameters. The integer `size` is the number of bytes to store in the BLOB table. Using zero for this value means only inline bytes can be stored, in effect making the column's type TINYBLOB.

Return value. None.

Column::setPrecision()

Description. This method can be used to set the precision of a decimal column.

Important
- This method is applicable to decimal columns only.
- Changes made to columns using this method are not visible to MySQL.

Signature.

```cpp
void setPrecision(int precision)
```

Parameters. This method takes a single parameter—precision is an integer, the value of the column's new precision. For additional information about decimal precision and scale, see `Column::getPrecision()` and `Column::getScale()`.

Return value. None.

Column::setPrimaryKey()

Description. This method is used to make a column part of the table's primary key, or to remove it from the primary key.

Important
- Changes made to columns using this method are not visible to MySQL.

Signature.

```cpp
void setPrimaryKey(bool primary)
```

Parameters. This method takes a single Boolean value. If it is `true`, then the column becomes part of the table's primary key; if `false`, then the column is removed from the primary key.

Return value. None.
Column::setScale()

Description. This method can be used to set the scale of a decimal column.

Important
- This method is applicable to decimal columns only.
- Changes made to columns using this method are not visible to MySQL.

Signature.
```cpp
void setScale
(   int scale
)
```

Parameters. This method takes a single parameter—the integer `scale` is the new scale for the decimal column. For additional information about decimal precision and scale, see `Column::getPrecision()`, and `Column::getScale()`.

Return value. `None`.

Column::setStripeSize()

Description. This method sets the stripe size of a BLOB column—that is, the number of consecutive parts to store in each node group.

Important
- This method is applicable to BLOB columns only.
- Changes made to columns using this method are not visible to MySQL.

Signature.
```cpp
void setStripeSize
(   int size
)
```

Parameters. This method takes a single argument. The integer `size` is the new stripe size for the column.

Return value. `None`.

Column::setStorageType()

Description. Sets the storage type for the column.

Signature.
```cpp
void setStorageType
(   StorageType type
)
```

Parameters. A `Column::StorageType` value. See Section 2.3.2.2, “Column::StorageType”, for more information.

Return value. `None`.

Column::setType()

Description. This method sets the `Type` (data type) of a column.
Important

`setType()` resets all column attributes to their (type dependent) default values; it should be the first method that you call when changing the attributes of a given column.

Changes made to columns using this method are not visible to MySQL.

Signature.

```java
void setType
{
    Type type
}
```

Parameters. This method takes a single parameter—the new `Column::Type` for the column. The default is `Unsigned`. For a listing of all permitted values, see Section 2.3.2.3, “Column::Type”.

Return value. None.

2.3.3 The Datafile Class

This section covers the `Datafile` class.

Parent class. Object

Child classes. None

Description. The `Datafile` class models a Cluster Disk Data datafile, which is used to store Disk Data table data.

Note

Currently, only unindexed column data can be stored on disk. Indexes and indexed columns are stored in memory.

NDB Cluster prior to MySQL 5.1 did not support Disk Data storage and so did not support datafiles; thus the `Datafile` class is unavailable for NDB API applications written against these older releases.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Datafile()</code></td>
<td>Class constructor</td>
</tr>
<tr>
<td><code>~Datafile()</code></td>
<td>Destructor</td>
</tr>
<tr>
<td><code>getFileName()</code></td>
<td>Removed in NDB 7.5.0 (Bug #47960, Bug #11756088)</td>
</tr>
<tr>
<td><code>getFree()</code></td>
<td>Gets the amount of free space in the datafile</td>
</tr>
<tr>
<td><code>getNode()</code></td>
<td>Removed in NDB 7.5.0 (Bug #47960, Bug #11756088)</td>
</tr>
<tr>
<td><code>getObjectId()</code></td>
<td>Gets the datafile’s object ID</td>
</tr>
<tr>
<td><code>getObjectStatus()</code></td>
<td>Gets the datafile’s object status</td>
</tr>
<tr>
<td><code>getObjectVersion()</code></td>
<td>Gets the datafile’s object version</td>
</tr>
<tr>
<td><code>getPath()</code></td>
<td>Gets the file system path to the datafile</td>
</tr>
<tr>
<td><code>getSize()</code></td>
<td>Gets the size of the datafile</td>
</tr>
<tr>
<td><code>getTablespace()</code></td>
<td>Gets the name of the tablespace to which the datafile belongs</td>
</tr>
</tbody>
</table>
The Datafile Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getTablespaceId()</td>
<td>Gets the ID of the tablespace to which the datafile belongs</td>
</tr>
<tr>
<td>setNode()</td>
<td>Removed in NDB 7.5.0 (Bug #47960, Bug #11756088)</td>
</tr>
<tr>
<td>setPath()</td>
<td>Sets the name and location of the datafile on the file system</td>
</tr>
<tr>
<td>setSize()</td>
<td>Sets the datafile's size</td>
</tr>
<tr>
<td>setTablespace()</td>
<td>Sets the tablespace to which the datafile belongs</td>
</tr>
</tbody>
</table>

Types. The Datafile class defines no public types.

2.3.3.1 Datafile Class Constructor

Description. This method creates a new instance of Datafile, or a copy of an existing one.

Signature. To create a new instance:

```cpp
Datafile()
{
    void
}
```

To create a copy of an existing Datafile instance:

```cpp
Datafile(const Datafile& datafile)
{
    const Datafile& datafile
}
```

Parameters. New instance: None. Copy constructor: a reference to the Datafile instance to be copied.

Return value. A Datafile object.

2.3.3.2 Datafile::getFileNo()

Description. This method did not work as intended, and was removed in NDB 7.5.0 (Bug #47960, Bug #11756088).

Signature.

```
Uint32 getFileNo()
{
    void
} const
```

Parameters. None.

Return value. The file number, as an unsigned 32-bit integer.

2.3.3.3 Datafile::getFree()

Description. This method gets the free space available in the datafile.

Signature.

```
Uint64 getFree()
{
    void
} const
```

Parameters. None.

Return value. The number of bytes free in the datafile, as an unsigned 64-bit integer.
2.3.3.4 Datafile::getNode()

Description. This method did not work as intended, and was removed in NDB 7.5.0 (Bug #47960, Bug #11756088).

Signature.

```cpp
Uint32 getNode(
    void
) const
```

Parameters. *None.*

Return value. The node ID as an unsigned 32-bit integer.

2.3.3.5 Datafile::getObjectId()

Description. This method is used to obtain the object ID of the datafile.

Signature.

```cpp
virtual int getObjectId(
    void
) const
```

Parameters. *None.*

Return value. The datafile's object ID, as an integer.

2.3.3.6 Datafile::getObjectStatus()

Description. This method is used to obtain the datafile's object status.

Signature.

```cpp
virtual Object::Status getObjectStatus(
    void
) const
```

Parameters. *None.*

Return value. The datafile's Status. See Section 2.3.31.4, “Object::Status”.

2.3.3.7 Datafile::getObjectVersion()

Description. This method retrieves the datafile's object version (see NDB Schema Object Versions).

Signature.

```cpp
virtual int getObjectVersion(
    void
) const
```

Parameters. *None.*

Return value. The datafile's object version, as an integer.

2.3.3.8 Datafile::getPath()

Description. This method returns the file system path to the datafile.
2.3.3.9 Datafile::getSize()

Description. This method gets the size of the datafile in bytes.

Signature.

```cpp
Uint64 getSize( void ) const
```

Parameters. None.

Return value. The size of the data file, in bytes, as an unsigned 64-bit integer.

2.3.3.10 Datafile::getTablespace()

Description. This method can be used to obtain the name of the tablespace to which the datafile belongs.

Note

You can also access the associated tablespace's ID directly. See Section 2.3.3.11, “Datafile::getTablespaceId()”.

Signature.

```cpp
const char* getTablespace( void ) const
```

Parameters. None.

Return value. The name of the associated tablespace (as a character pointer).

2.3.3.11 Datafile::getTablespaceId()

Description. This method gets the ID of the tablespace to which the datafile belongs.

Note

You can also access the name of the associated tablespace directly. See Section 2.3.3.10, “Datafile::getTablespace()”.

Signature.

```cpp
Uint32 getTablespaceId( void ) const
```

Parameters. None.
The Datafile Class

Return value. This method returns the tablespace ID as an unsigned 32-bit integer.

2.3.3.12 Datafile::setNode()

Description. This method did not work as intended, and was removed in NDB 7.5.0 (Bug #47960, Bug #11756088).

Signature.

```cpp
void setNode
{
    Uint32 nodeId
}
```

Parameters. The `nodeId` of the node on which the datafile is to be located (an unsigned 32-bit integer value).

Return value. None.

2.3.3.13 Datafile::setPath()

Description. This method sets the path to the datafile on the data node's file system.

Signature.

```cpp
const char* setPath
{
    void
} const
```

Parameters. The path to the file, a string (as a character pointer).

Return value. None.

2.3.3.14 Datafile::setSize()

Description. This method sets the size of the datafile.

Signature.

```cpp
void setSize
{
    Uint64 size
}
```

Parameters. This method takes a single parameter—the desired `size` in bytes for the datafile, as an unsigned 64-bit integer.

Return value. None.

2.3.3.15 Datafile::setTablespace()

Description. This method is used to associate the datafile with a tablespace.

Signatures. `setTablespace()` can be invoked in either of two ways, listed here:

- Using the name of the tablespace, as shown here:

  ```cpp
  void setTablespace
  {
      const char* name
  }
  ```

- Using a reference to a `Tablespace` object.

46
void setTablespace
(
 const class Tablespace& tablespace
)

Parameters. This method takes a single parameter, which can be either one of the following:

- The name of the tablespace (as a character pointer).
- A reference *tablespace* to the corresponding *Tablespace* object.

Return value. *None*.

2.3.4 The Dictionary Class

This section describes the *Dictionary* class.

Parent class. *NdbDictionary*

Child classes. *List*

Description. This is used for defining and retrieving data object metadata. It also includes methods for creating and dropping database objects.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

Table 2.12 Dictionary class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dictionary()</td>
<td>Class constructor method</td>
</tr>
<tr>
<td>~Dictionary()</td>
<td>Destructor method</td>
</tr>
<tr>
<td>beginSchemaTrans()</td>
<td>Begins a schema transaction</td>
</tr>
<tr>
<td>createDatafile()</td>
<td>Creates a datafile</td>
</tr>
<tr>
<td>createEvent()</td>
<td>Creates an event</td>
</tr>
<tr>
<td>createForeignKey()</td>
<td>Creates a foreign key</td>
</tr>
<tr>
<td>createHashMap()</td>
<td>Creates a has map</td>
</tr>
<tr>
<td>createIndex()</td>
<td>Creates an index</td>
</tr>
<tr>
<td>createLogfileGroup()</td>
<td>Creates a logfile group</td>
</tr>
<tr>
<td>createRecord()</td>
<td>Creates an Ndbrecord object</td>
</tr>
<tr>
<td>createTable()</td>
<td>Creates a table</td>
</tr>
<tr>
<td>createTablespace()</td>
<td>Creates a tablespace</td>
</tr>
<tr>
<td>createUndofile()</td>
<td>Creates an undofile</td>
</tr>
<tr>
<td>dropDatafile()</td>
<td>Drops a datafile</td>
</tr>
<tr>
<td>dropEvent()</td>
<td>Drops an event</td>
</tr>
<tr>
<td>dropForeignKey()</td>
<td>Drops a foreign key</td>
</tr>
<tr>
<td>dropIndex()</td>
<td>Drops an index</td>
</tr>
<tr>
<td>dropLogfileGroup()</td>
<td>Drops a logfile group</td>
</tr>
<tr>
<td>dropTable()</td>
<td>Drops a table</td>
</tr>
<tr>
<td>dropTablespace()</td>
<td>Drops a tablespace</td>
</tr>
<tr>
<td>dropUndofile()</td>
<td>Drops an undofile</td>
</tr>
<tr>
<td>endSchemaTrans()</td>
<td>Ends (commits and closes) a schema transaction</td>
</tr>
</tbody>
</table>
The Dictionary Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getDatafile()</code></td>
<td>Gets the datafile having the given name</td>
</tr>
<tr>
<td><code>getDefaultHashMap()</code></td>
<td>Gets a table's default hash map</td>
</tr>
<tr>
<td><code>getEvent()</code></td>
<td>Gets the event having the given name</td>
</tr>
<tr>
<td><code>getForeignKey()</code></td>
<td>Gets the foreign key having the given name or reference</td>
</tr>
<tr>
<td><code>getHashMap()</code></td>
<td>Gets the hash map given its name or associated table</td>
</tr>
<tr>
<td><code>getIndex()</code></td>
<td>Gets the index having the given name</td>
</tr>
<tr>
<td><code>getLogfileGroup()</code></td>
<td>Gets the logfile group having the given name</td>
</tr>
<tr>
<td><code>getNdbError()</code></td>
<td>Retrieves the latest error</td>
</tr>
<tr>
<td><code>getTable()</code></td>
<td>Gets the table having the given name</td>
</tr>
<tr>
<td><code>get Tablespace()</code></td>
<td>Gets the tablespace having the given name</td>
</tr>
<tr>
<td><code>get Undofile()</code></td>
<td>Gets the undofile having the given name</td>
</tr>
<tr>
<td><code>hasSchemaTrans()</code></td>
<td>Tells whether a schema transaction currently exists</td>
</tr>
<tr>
<td><code>initDefaultHashMap()</code></td>
<td>Initializes a table's default hash map</td>
</tr>
<tr>
<td><code>invalidateTable()</code></td>
<td>Invalidates a table object</td>
</tr>
<tr>
<td><code>listObjects()</code></td>
<td>Fetches a list of the objects in the dictionary</td>
</tr>
<tr>
<td><code>listIndexes()</code></td>
<td>Fetches a list of the indexes defined on a given table</td>
</tr>
<tr>
<td><code>listEvents()</code></td>
<td>Fetches a list of the events defined in the dictionary</td>
</tr>
<tr>
<td><code>prepareHashMap()</code></td>
<td>Creates or retrieves a hash map that can be updated</td>
</tr>
<tr>
<td><code>removeCachedTable()</code></td>
<td>Removes a table from the local cache</td>
</tr>
<tr>
<td><code>removeCachedIndex()</code></td>
<td>Removes an index from the local cache</td>
</tr>
</tbody>
</table>

Important

Database objects such as tables and indexes created using the `Dictionary::create*()` methods cannot be seen by the MySQL Server. This means that they cannot be accessed by MySQL clients, and that they cannot be replicated. For these reasons, it is often preferable to avoid working with them.

Note

The `Dictionary` class does not have any methods for working directly with columns. You must use `Column` class methods for this purpose—see Section 2.3.2, “The Column Class”, for details.

Types

See Section 2.3.14, “The List Class”, and Section 2.3.5, “The Element Structure”.

2.3.4.1 Dictionary Class Constructor

Description

This method creates a new instance of the `Dictionary` class.

Note

Both the constructor and destructor for this class are protected methods, rather than public.

Signature

```cpp
protected Dictionary
{
    Ndb& ndb
```
The Dictionary Class

Parameters. An Ndb object.

Return value. A Dictionary object.

Destructor. The destructor takes no parameters and returns nothing.

protected ~Dictionary
{
 void
}

2.3.4.2 Dictionary::beginSchemaTrans()

Description. Starts a schema transaction. An error occurs if a transaction is already active, or if the kernel metadata is locked. You can determine whether a schema transaction already exists using the hasSchemaTrans() method.

A metadata operation occurs whenever data objects are created, altered, or dropped; such an operation can create additional suboperations in the NDB kernel.

The Ndb object and its associated Dictionary support one schema transaction at a time. By default, each metadata operation is executed separately; that is, for each operation, a schema transaction is started implicitly, the operation (including any suboperations) is executed, and the transaction is closed.

It is also possible to begin and end a schema transaction explicitly, and execute a set of user-defined operations atomically within its boundaries. In this case, all operations within the schema transaction either succeed, or are aborted and rolled back, as a unit. This is done by following the steps listed here:

1. To begin the schema transaction, call beginSchemaTrans().
2. Execute the desired operations (such as createTable()).
3. End the schema transaction by calling endSchemaTrans.

Each operation is sent to the NDB kernel, which parses and saves it. A parse failure results in a rollback to the previous user operation before returning, at which point the user can either continue with or abort the entire transaction.

After all operations have been submitted, endSchemaTrans() processes and commits them. In the event of an error, the transaction is immediately aborted.

If the user exits before calling endSchemaTrans(), the NDB kernel aborts the transaction. If the user exits before the call to endSchemaTrans() returns, the kernel continues with the request, and its completion status is reported in the cluster log.

Signature.

int beginSchemaTrans
{
 void
}

Parameters. None.

Return value. Returns 0 on success, -1 on error.

2.3.4.3 Dictionary::createDatafile()

Description. This method creates a new datafile, given a Datafile object.

Signature.
The Dictionary Class

```c
int createDatafile
{
    const Datafile& dFile
}
```

Parameters. A single argument—a reference to an instance of `Datafile`—is required.

Return value. 0 on success, -1 on failure.

2.3.4.4 Dictionary::createEvent()

Description. Creates an event, given a reference to an `Event` object.

You should keep in mind that the NDB API does not track allocated event objects, which means that the user must delete the `Event` that was obtained using `createEvent()`, after this object is no longer required.

Signature.

```c
int createEvent
{
    const Event& event
}
```

Parameters. A reference `event` to an `Event` object.

Return value. 0 on success, -1 on failure.

2.3.4.5 Dictionary::createForeignKey()

Description. Creates a `ForeignKey` object, given a reference to this object and an `ObjectId`.

Signature.

```c
int createForeignKey
{
    const ForeignKey&,
    ObjectId* = 0,
    int flags = 0
}
```

Parameters. A reference to the `ForeignKey` object, and an `ObjectId`. An optional value `flags`, if used, allows the creation of the foreign key without performing any foreign key checks. If set, its value must be `CreateFK_NoVerify` (1).

Return value. 0 on success.

2.3.4.6 Dictionary::createHashMap()

Description. Creates a `HashMap`.

Signature.

```c
int createHashMap
{
    const HashMap& hashmap,
    ObjectId* id = 0
}
```

Parameters. A reference to the hash map, and, optionally, an ID to be assigned to it.

Return value. Returns 0 on success; on failure, returns -1 and sets an error.

2.3.4.7 Dictionary::createIndex()

```c
int createDatafile
{
    const Datafile& dFile
}
```
The Dictionary Class

Description. This method creates an index given an instance of **Index** and possibly an optional instance of **Table**.

Signature. This method can be invoked with or without a reference to a table object:

```cpp
int createIndex
(   
    const Index& index
)
```

```cpp
int createIndex
(   
    const Index& index,
    const Table& table
)
```

Parameters. *Required:* A reference to an **Index** object. *Optional:* A reference to a **Table** object.

Return value. 0 on success, -1 on failure.

2.3.4.8 Dictionary::createLogfileGroup()

Description. This method creates a new logfile group, given an instance of **LogfileGroup**.

Signature.

```cpp
int createLogfileGroup
(   
    const LogfileGroup& lGroup
)
```

Parameters. A single argument, a reference to a **LogfileGroup** object, is required.

Return value. 0 on success, -1 on failure.

2.3.4.9 Dictionary::createRecord()

Description. This method is used to create an **NdbRecord** object for use in table or index scanning operations.

Signature. The signature of this method depends on whether the resulting NdbRecord is to be used in table or index operations:

To create an NdbRecord for use in table operations, use the following:

```cpp
NdbRecord* createRecord
(   
    const Table* table,
    const RecordSpecification* recSpec,
    Uint32 length,
    Uint32 elSize
)
```

To create an NdbRecord for use in index operations, you can use either of the following:

```cpp
NdbRecord* createRecord
(   
    const Index* index,
    const Table* table,
    const RecordSpecification* recSpec,
    Uint32 length,
    Uint32 elSize
)
```

or

```cpp
NdbRecord* createRecord
(   
    const Index* index,
    const Table* table,
    const RecordSpecification* recSpec,
    Uint32 length,
    Uint32 elSize
)
```
Dictionary::createRecord() takes the following parameters:

- If this NdbRecord is to be used with an index, a pointer to the corresponding Index object. If the NdbRecord is to be used with a table, this parameter is omitted. (See Section 2.3.11, “The Index Class”.)

- A pointer to a Table object representing the table to be scanned. If the NdbRecord produced is to be used with an index, then this optionally specifies the table containing that index. (See Section 2.3.37, “The Table Class”.)

- A RecordSpecification used to describe a column. (See Section 2.3.34, “The RecordSpecification Structure”.

- The length of the record.

- The size of the elements making up this record.

Return value. An NdbRecord for use in operations involving the given table or index.

Example. See Section 2.3.27, “The NdbRecord Interface”.

2.3.4.10 Dictionary::createTable()

Description. Creates a table given an instance of Table.

Note
Tables created using this method cannot be seen by the MySQL Server, cannot be updated by MySQL clients, and cannot be replicated.

Signature.

```cpp
int createTable
{
    const Table& table
}
```

Parameters. An instance of Table. See Section 2.3.37, “The Table Class”, for more information.

Return value. 0 on success, -1 on failure.

2.3.4.11 Dictionary::createTablespace()

Description. This method creates a new tablespace, given a Tablespace object.

Signature.

```cpp
int createTablespace
{
    const Tablespace& tSpace
}
```

Parameters. This method requires a single argument—a reference to an instance of Tablespace.

Return value. 0 on success, -1 on failure.

2.3.4.12 Dictionary::createUndofile()
The Dictionary Class

2.3.4.13 Dictionary::dropDatafile()

Description. This method drops a data file, given a Datafile object.

Signature.

```cpp
int dropDatafile
    (const Datafile& dFile)
```

Parameters. A single argument—a reference to an instance of Datafile—is required.

Return value. 0 on success, -1 on failure.

2.3.4.14 Dictionary::dropEvent()

Description. This method drops an event, given a reference to an Event object.

Signature.

```cpp
int dropEvent
    (const char* name,
     int force = 0)
```

Parameters. This method takes two parameters:

- The name of the event to be dropped, as a string.
- By default, dropEvent() fails if the event specified does not exist. You can override this behavior by passing any nonzero value for the (optional) force argument; in this case no check is made as to whether there actually is such an event, and an error is returned only if the event exists but it was for whatever reason not possible to drop it.

Return value. 0 on success, -1 on failure.

2.3.4.15 Dictionary::dropForeignKey()

Description. This method drops a foreign key, given a reference to an ForeignKey object to be dropped.

Signature.

```cpp
int dropForeignKey
    (const ForeignKey&)
```

Parameters. A reference to the ForeignKey to be dropped.
Return value. 0 on success.

2.3.4.16 Dictionary::dropIndex()

Description. This method drops an index given an instance of Index, and possibly an optional instance of Table.

Signature.

```cpp
int dropIndex
{
    const Index& index
}
```

```cpp
int dropIndex
{
    const Index& index,
    const Table& table
}
```

Parameters. This method takes two parameters, one of which is optional:

- Required. A reference to an Index object.
- Optional. A reference to a Table object.

Return value. 0 on success, -1 on failure.

2.3.4.17 Dictionary::dropLogfileGroup()

Description. Given an instance of LogfileGroup, this method drops the corresponding log file group.

Signature.

```cpp
int dropLogfileGroup
{
    const LogfileGroup& lGroup
}
```

Parameters. A single argument, a reference to a LogfileGroup object, is required.

Return value. 0 on success, -1 on failure.

2.3.4.18 Dictionary::dropTable()

Description. Drops a table given an instance of Table.

Signature.

```cpp
int dropTable
{
    const Table& table
}
```

In NDB 7.3.5 and later, this method drops all foreign key constraints on the table that is being dropped, whether the dropped table acts as a parent table, child table, or both. (Bug #18069680)

Prior to NDB 8.0.17, an NDB table dropped using this method persisted in the MySQL data dictionary but could not be dropped using DROP TABLE in the mysql client. In NDB 8.0.17 and later, such “orphan” tables can be dropped using DROP TABLE. (Bug #29125206, Bug #93672)

Parameters. An instance of Table. See Section 2.3.37, “The Table Class”, for more information.

Return value. 0 on success, -1 on failure.
2.3.4.19 Dictionary::dropTablespace()

Description. This method drops a tablespace, given a Tablespace object.

Signature.

```c
int dropTablespace
(   const Tablespace& tSpace
)
```

Parameters. This method requires a single argument—a reference to an instance of Tablespace.

Return value. 0 on success, -1 on failure.

2.3.4.20 Dictionary::dropUndofile()

Description. This method drops an undo file, given an Undofile object.

Signature.

```c
int dropUndofile
(   const Undofile& uFile
)
```

Parameters. This method requires one argument: a reference to an instance of Undofile.

Return value. 0 on success, -1 on failure.

2.3.4.21 Dictionary::endSchemaTrans()

Description. Ends a schema transaction begun with beginSchemaTrans(); causes operations to be processed and either committed, or aborted and rolled back. This method combines transaction execution and closing; separate methods for these tasks are not required (or implemented). This method may be called successfully even if no schema transaction is currently active.

Note

As with many other NDB API methods, it is entirely possible for endSchemaTrans() to overwrite any current error code. For this reason, you should first check for and save any error code that may have resulted from a previous, failed operation.

Signature.

```c
int endSchemaTrans
(   Uint32 flags = 0
)
```

Parameters. The flags determines how the completed transaction is handled. The default is 0, which causes the transaction to be committed.

Dictionary::SchemaTransFlag. You can also use with endSchemaTrans() either of the SchemaTransFlag values shown here:

- SchemaTransAbort (= 1): Causes the transaction to be aborted
- SchemaTransBackground (= 2): Causes the transaction to execute in the background; the result is written to the cluster log, while the application continues without waiting for a response.

Return value. Returns 0 on success; in the event of an error, returns -1 and sets an NdbError error code.
2.3.4.22 Dictionary::getDatafile()

Description. This method is used to retrieve a Datafile object, given the node ID of the data node where a datafile is located and the path to the datafile on that node's file system.

Signature.

```cpp
Datafile getDatafile(
    Uint32 nodeId,
    const char* path
)
```

Parameters. This method must be invoked using two arguments, as shown here:

- The 32-bit unsigned integer `nodeId` of the data node where the datafile is located
- The `path` to the datafile on the node's file system (string as character pointer)

Return value. A Datafile object—see Section 2.3.3, “The Datafile Class”, for details.

2.3.4.23 Dictionary::getDefaultHashMap()

Description. Get a table's default hash map.

Signature.

```cpp
int getDefaultHashMap(
    HashMap& dst,
    Uint32 fragments
)
```

Return value. Returns 0 on success; on failure, returns -1 and sets an error.

2.3.4.24 Dictionary::getEvent()

Description. This method is used to obtain a new Event object representing an event, given the event's name.

`getEvent()` allocates memory each time it is successfully called. You should keep in mind that successive invocations of this method using the same event name return multiple, distinct objects.

The NDB API does not track allocated event objects, which means that the user must delete each Event created using `getEvent()`, after the object is no longer required.

Signature.

```cpp
const Event* getEvent(
    const char* eventName
)
```

Parameters. The `eventName`, a string (character pointer).

Return value. A pointer to an Event object. See Section 2.3.6, “The Event Class”, for more information.
2.3.4.25 Dictionary::getForeignKey()

Description. This method is used to obtain a new `ForeignKey` object representing an event, given a reference to the foreign key and its name.

Signature.

```cpp
int getForeignKey
(   ForeignKey& dst,
    const char* name
)
```

Parameters. A reference to the foreign key and its `name`, a string (character pointer).

Return value. A pointer to a `ForeignKey` object.

2.3.4.26 Dictionary::getHashMap()

Description. Gets a hash map by name or by table.

Signature.

```cpp
int getHashMap
(   HashMap& dst,
    const char* name
)
```

or

```cpp
int getHashMap
(   HashMap& dst,
    const Table* table
)
```

Parameters. A reference to the hash map and either a name or a `Table`.

Return value. Returns 0 on success; on failure, returns -1 and sets an error.

2.3.4.27 Dictionary::getIndex()

Description. This method retrieves a pointer to an index, given the name of the index and the name of the table to which the table belongs.

Signature.

```cpp
const Index* getIndex
(   const char* iName,
    const char* tName
)
```

Parameters. Two parameters are required:

- The name of the index (`iName`)
- The name of the table to which the index belongs (`tName`)

Both of these are string values, represented by character pointers.

Return value. A pointer to an `Index`. See Section 2.3.11, “The Index Class”, for information about this object.

2.3.4.28 Dictionary::getLogfileGroup()
The Dictionary Class

Description. This method gets a LogfileGroup object, given the name of the logfile group.

Signature.

LogfileGroup getLogfileGroup
{
 const char* name
}

Parameters. The name of the logfile group.

Return value. An instance of LogfileGroup; see Section 2.3.13, “The LogfileGroup Class”, for more information.

2.3.4.29 Dictionary::getNdbError()

Description. This method retrieves the most recent NDB API error.

Signature.

const struct NdbError& getNdbError()
{
 void
} const

Parameters. None.

Return value. A reference to an NdbError object. See Section 2.3.20, “The NdbError Structure”.

2.3.4.30 Dictionary::getTable()

Description. This method can be used to access the table with a known name. See Section 2.3.37, “The Table Class”.

Signature.

const Table* getTable
{
 const char* name
} const

Parameters. The name of the table.

Return value. A pointer to the table, or NULL if there is no table with the name supplied.

2.3.4.31 Dictionary::getTablespace()

Description. Given either the name or ID of a tablespace, this method returns the corresponding Tablespace object.

Signatures. This method can be invoked in either of ways, as show here:

- Using the tablespace name:

 Tablespace getTablespace
 {
 const char* name
 }

- Using the tablespace ID:

 Tablespace getTablespace
 {
 Uint32 id
 }
The Dictionary Class

Parameters. Either one of the following:

- The *name* of the tablespace, a string (as a character pointer)
- The unsigned 32-bit integer *id* of the tablespace

Return value. A *Tablespace* object, as discussed in Section 2.3.38, “The Tablespace Class”.

2.3.4.32 Dictionary::getUndofile()

Description. This method gets an *Undofile* object, given the ID of the node where an undofile is located and the file system path to the file.

Signature.

```cpp
Undofile getUndofile
    (Uint32 nodeId, const char* path)
```

Parameters. This method requires the following two arguments:

- The *nodeId* of the data node where the undofile is located; this value is passed as a 32-bit unsigned integer
- The *path* to the undofile on the node's file system (string as character pointer)

Return value. An instance of *Undofile*. For more information, see Section 2.3.39, “The Undofile Class”.

2.3.4.33 Dictionary::hasSchemaTrans()

Description. Tells whether an NDB API schema transaction is ongoing.

Signature.

```cpp
bool hasSchemaTrans
    (void) const
```

Parameters. *None.*

Return value. Returns boolean *TRUE* if a schema transaction is in progress, otherwise *FALSE*.

2.3.4.34 Dictionary::initDefaultHashMap()

Description. Initialize a default hash map for a table.

Signature.

```cpp
int initDefaultHashMap
    (HashMap& dst, Uint32 fragments)
```

or

```cpp
int initDefaultHashMap
    (HashMap& dst, Uint32 buckets, Uint32 fragments)
```
The Dictionary Class

2.3.4.35 Dictionary::invalidateIndex()

Description. This method is used to invalidate a cached index object.

Signature. The index invalidated by this method can be referenced either as an Index object (using a pointer), or by index name and table name, as shown here:

```cpp
void invalidateIndex
(const char* indexName,
 const char* tableName)

void invalidateIndex
(const Index* index)
```

Parameters. The names of the index to be removed from the cache and the table to which it belongs (indexName and tableName, respectively), or a pointer to the corresponding Index object.

Return value. None.

2.3.4.36 Dictionary::invalidateTable()

Description. This method is used to invalidate a cached table object.

Signature.

```cpp
void invalidateTable
(const char* name)
```

It is also possible to use a Table object rather than the name of the table, as shown here:

```cpp
void invalidateTable
(const Table* table)
```

Parameters. The name of the table to be removed from the table cache, or a pointer to the corresponding Table object.

Return value. None.

2.3.4.37 Dictionary::listEvents()

Description. This method returns a list of all events defined within the dictionary.

Signature.

```cpp
int listEvents
(List& list)
```

Parameters. A reference to a List object. (See Section 2.3.14, “The List Class”.)

Return value. 0 on success; -1 on failure.
2.3.438 Dictionary::listIndexes()

Description. This method is used to obtain a List of all the indexes on a table, given the table’s name. (See Section 2.3.14, “The List Class”.)

Signature.

```cpp
int listIndexes
    (List& list,
     const char* table)
) const
```

Parameters. `listIndexes()` takes two arguments, both of which are required:

- A reference to the List that contains the indexes following the call to the method
- The name of the table whose indexes are to be listed

Return value. 0 on success, -1 on failure.

2.3.439 Dictionary::listObjects()

Description. This method is used to obtain a list of objects in the dictionary. It is possible to get all of the objects in the dictionary, or to restrict the list to objects of a single type.

Signature. This method has two signatures:

```cpp
int listObjects
    (List& list,
     Object::Type type = Object::TypeUndefined)
) const
```

and

```cpp
int listObjects
    (List& list,
     Object::Type type,
     bool fullyQualified)
) const
```

Parameters. A reference to a List object is required—this is the list that contains the dictionary's objects after `listObjects()` is called. (See Section 2.3.14, “The List Class”.) An optional second argument `type` may be used to restrict the list to only those objects of the given type—that is, of the specified `Object::Type`. (See Section 2.3.31.6, “Object::Type”.) If `type` is not given, then the list contains all of the dictionary’s objects.

You can also specify whether or not the object names in the list are fully qualified (that is, whether the object name includes the database, schema, and possibly the table name). If you specify `fullyQualified`, then you must also specify the `type`.

Return value. 0 on success, -1 on failure.

2.3.440 Dictionary::prepareHashMap()

Description. Creates or retrieves a hash map suitable for alteration. Requires a schema transaction to be in progress; see Section 2.3.4.2, “Dictionary::beginSchemaTrans()”, for more information.

Signature.

```cpp
int prepareHashMap
    ()
```
const Table& oldTable,
 Table& newTable
}

or

int prepareHashMap
{
 const Table& oldTable,
 Table& newTable,
 Uint32 buckets
}

Parameters. References to the old and new tables. Optionally, a number of buckets.

Return value. Returns 0 on success; on failure, returns -1 and sets an error.

2.3.4.41 Dictionary::releaseRecord()

Description. This method is used to free an NdbRecord after it is no longer needed.

Signature.

```cpp
void releaseRecord
{
    NdbRecord* record
}
```

Parameters. The NdbRecord to be cleaned up.

Return value. None.

Example. See Section 2.3.27, “The NdbRecord Interface”.

2.3.4.42 Dictionary::removeCachedTable()

Description. This method removes the specified table from the local cache.

Signature.

```cpp
void removeCachedTable
{
    const char* table
}
```

Parameters. The name of the table to be removed from the cache.

Return value. None.

2.3.4.43 Dictionary::removeCachedIndex()

Description. This method removes the specified index from the local cache.

Signature.

```cpp
void removeCachedIndex
{
    const char* index,
    const char* table
}
```

Parameters. The removeCachedIndex() method requires two arguments:

- The name of the index to be removed from the cache
- The name of the table in which the index is found
Return value. None.

2.3.5 The Element Structure

This section discusses the Element structure.

Parent class. List

Description. The Element structure models an element of a list; it is used to store an object in a List populated by the Dictionary methods listObjects(), listIndexes(), and listEvents().

Attributes. An Element has the attributes shown in the following table:
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Initial Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>unsigned int</td>
<td>0</td>
<td>The object's ID</td>
</tr>
<tr>
<td>type</td>
<td>Object::Type</td>
<td>Object::TypeUndefined</td>
<td>The object's type—see Section 2.3.31.6, "Object::Type" for possible values</td>
</tr>
<tr>
<td>state</td>
<td>Object::State</td>
<td>Object::StateUndefined</td>
<td>The object's state—see Section 2.3.31.3, "Object::State" for possible values</td>
</tr>
<tr>
<td>store</td>
<td>Object::Store</td>
<td>Object::StoreUndefined</td>
<td>How the object is stored—see Section 2.3.31.5, "Object::Store" for possible values</td>
</tr>
<tr>
<td>database</td>
<td>char*</td>
<td>0</td>
<td>The database in which the object is found</td>
</tr>
<tr>
<td>schema</td>
<td>char*</td>
<td>0</td>
<td>The schema in which the object is found</td>
</tr>
<tr>
<td>name</td>
<td>char*</td>
<td>0</td>
<td>The object's name</td>
</tr>
</tbody>
</table>
2.3.6 The Event Class

This section discusses the Event class, its methods and defined types.

Parent class. NdbDictionary

Child classes. None

Description. This class represents a database event in an NDB Cluster.

Methods. The following table lists the public methods of the Event class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event()</td>
<td>Class constructor</td>
</tr>
<tr>
<td>~Event()</td>
<td>Destructor</td>
</tr>
<tr>
<td>addEventColumn()</td>
<td>Adds a column on which events should be detected</td>
</tr>
<tr>
<td>addEventColumns()</td>
<td>Adds multiple columns on which events should be detected</td>
</tr>
<tr>
<td>addTableEvent()</td>
<td>Adds the type of event that should be detected</td>
</tr>
<tr>
<td>getDurability()</td>
<td>Gets the event's durability</td>
</tr>
<tr>
<td>getEventColumn()</td>
<td>Gets a column for which an event is defined</td>
</tr>
<tr>
<td>getName()</td>
<td>Gets the event's name</td>
</tr>
<tr>
<td>getNoOfEventColumns()</td>
<td>Gets the number of columns for which an event is defined</td>
</tr>
<tr>
<td>getIdObject()</td>
<td>Gets the event's object ID</td>
</tr>
<tr>
<td>getObjectStatus()</td>
<td>Gets the event's object status</td>
</tr>
<tr>
<td>getObjectVersion()</td>
<td>Gets the event's object version</td>
</tr>
<tr>
<td>getReport()</td>
<td>Gets the event's reporting options</td>
</tr>
<tr>
<td>getTable()</td>
<td>Gets the Table object on which the event is defined</td>
</tr>
<tr>
<td>getTableEvent()</td>
<td>Checks whether an event is to be detected</td>
</tr>
<tr>
<td>getTableName()</td>
<td>Gets the name of the table on which the event is defined</td>
</tr>
<tr>
<td>mergeEvents()</td>
<td>Sets the event's merge flag</td>
</tr>
<tr>
<td>setDurability()</td>
<td>Sets the event's durability</td>
</tr>
<tr>
<td>setName()</td>
<td>Sets the event's name</td>
</tr>
<tr>
<td>setReport()</td>
<td>The the event's reporting options</td>
</tr>
<tr>
<td>setTable()</td>
<td>Sets the Table object on which the event is defined</td>
</tr>
</tbody>
</table>

Improved Event API (NDB 7.4.3 and later). NDB 7.4.3 introduces an epoch-driven Event API that supercedes the earlier GCI-based model. The new version of the API also simplifies error detection and handling. These changes are realized in the NDB API by implementing a number of new methods for Ndb and NdbEventOperation, deprecating several other methods of both classes, and adding new type values to TableEvent.

Some of the new methods directly replace or stand in for deprecated methods, but not all of the deprecated methods map to new ones, some of which are entirely new. Old (deprecated) methods are shown in the first column of the following table, and new methods in the second column; old methods corresponding to new methods are shown in the same row.
The Event Class

Table 2.15 Deprecated and new Event API methods in the NDB API, NDB 7.4.3

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdbEventOperation::getEventType()</td>
<td>NdbEventOperation::getEventType2()</td>
</tr>
<tr>
<td>NdbEventOperation::getGCI()</td>
<td>NdbEventOperation::getEpoch</td>
</tr>
<tr>
<td>NdbEventOperation::getLatestGCI()</td>
<td>NdbEventOperation::getHighestQueuedEpoch()</td>
</tr>
<tr>
<td>NdbEventOperation::isOverrun()</td>
<td>None; use NdbEventOperation::getEventType2()</td>
</tr>
<tr>
<td>NdbEventOperation::hasError()</td>
<td>None; use NdbEventOperation::getEventType2()</td>
</tr>
<tr>
<td>NdbEventOperation::clearError()</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>NdbEventOperation::isEmptyEpoch()</td>
</tr>
<tr>
<td>Ndb::pollEvents()</td>
<td>Ndb::pollEvents2()</td>
</tr>
<tr>
<td>Ndb::nextEvent()</td>
<td>Ndb::nextEvent2()</td>
</tr>
<tr>
<td>Ndb::getLatestGCI()</td>
<td>Ndb::getHighestQueuedEpoch()</td>
</tr>
<tr>
<td>Ndb::getGCIEventOperations()</td>
<td>Ndb::getNextEventOpInEpoch2()</td>
</tr>
<tr>
<td>Ndb::isConsistent()</td>
<td>None</td>
</tr>
<tr>
<td>Ndb::isConsistentGCI()</td>
<td>None</td>
</tr>
</tbody>
</table>

Error handling using the new API is accomplished by checking the value returned from `getEventType2()`, and is no longer handled using the methods `hasError()` and `clearError()`, which are now deprecated and subject to removal in a future release of NDB Cluster. In support of this change, the range of possible `TableEvent` types has been expanded by those listed here:

- **TE_EMPTY**: Empty epoch
- **TE_INCONSISTENT**: Inconsistent epoch; missing data or overflow
- **TE_OUT_OF_MEMORY**: Inconsistent data; event buffer out of memory or overflow

The result of these changes is that, in NDB 7.4.3 and later, you can check for errors while checking a table event's type, as shown here:

```c
NdbDictionary::Event::TableEvent* error_type = 0;
NdbEventOperation* pOp = nextEvent2();
if (pOp->isErrorEpoch(error_type))
{
    switch (error_type)
    {
        case TE_INCONSISTENT :
            // Handle error/inconsistent epoch...
            break;
        case TE_OUT_OF_MEMORY :
            // Handle error/inconsistent data...
            break;
        // ...
    }
}
```

For more information, see the detailed descriptions for the `Ndb` and `NdbEventOperation` methods shown in the table previously, as well as Section 2.3.6.23, “Event::TableEvent”.

Types. These are the public types of the `Event` class:
Table 2.16 Event class types and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TableEvent()</td>
<td>Represents the type of a table event</td>
</tr>
<tr>
<td>EventDurability()</td>
<td>Specifies an event's scope, accessibility, and lifetime</td>
</tr>
<tr>
<td>EventReport()</td>
<td>Specifies the reporting option for a table event</td>
</tr>
</tbody>
</table>

2.3.6.1 Event::addEventColumn()

Description. This method is used to add a column on which events should be detected. The column may be indicated either by its ID or its name.

Important

You must invoke `Dictionary::createEvent()` before any errors will be detected. See Section 2.3.4.4, “Dictionary::createEvent()”.

Note

If you know several columns by name, you can enable event detection on all of them at one time by using `addEventColumns()`. See Section 2.3.6.2, “Event::addEventColumns()”.

Signature. Identifying the event using its column ID:

```c
void addEventColumn(
    unsigned attrId
)
```

Identifying the column by name:

```c
void addEventColumn(
    const char* columnName
)
```

Parameters. This method takes a single argument, which may be either one of the following:

- The column ID (`attrId`), which should be an integer greater than or equal to 0, and less than the value returned by `getNoOfEventColumns()`.
- The column's `name` (as a constant character pointer).

Return value. None.

2.3.6.2 Event::addEventColumns()

Description. This method is used to enable event detection on several columns at the same time. You must use the names of the columns.

Important

As with `addEventColumn()`, you must invoke `Dictionary::createEvent()` before any errors will be detected. See Section 2.3.4.4, “Dictionary::createEvent()”.

Signature.

```c
void addEventColumns
```


The Event Class

```c
int n,
const char** columnNames
}
```

Parameters. This method requires two arguments, listed here:

- The number of columns \(n \) (an integer).
- The names of the columns \(columnNames \)—this must be passed as a pointer to a character pointer.

Return value. *None.*

2.3.6.3 Event::addTableEvent()

Description. This method is used to add types of events that should be detected.

Signature.

```c
void addTableEvent
{
    const TableEvent te
}
```

Parameters. This method requires a `TableEvent` value.

Return value. *None.*

2.3.6.4 Event Constructor

Description. The `Event` constructor creates a new instance with a given name, and optionally associated with a table.

You should keep in mind that the NDB API does not track allocated event objects, which means that the user must explicitly delete the `Event` thus created after it is no longer in use.

Signatures. It is possible to invoke this method in either of two ways, the first of these being by name only, as shown here:

```c
Event
{
    const char* name
}
```

Alternatively, you can use the event name and an associated table, like this:

```c
Event
{
    const char* name,
    const NdbDictionary::Table& table
}
```

Parameters. At a minimum, a `name` (as a constant character pointer) for the event is required. Optionally, an event may also be associated with a table; this argument, when present, is a reference to a `Table` object (see Section 2.3.37, “The Table Class”).

Return value. A new instance of `Event`.

Destructor. A destructor for this class is supplied as a virtual method which takes no arguments and whose return type is `void`.

2.3.6.5 Event::EventDurability

This section discusses `EventDurability`, a type defined by the `Event` class.
The Event Class

Description. The values of this type are used to describe an event's lifetime or persistence as well as its scope.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED_UNDEFINED</td>
<td>The event is undefined or of an unsupported type.</td>
</tr>
<tr>
<td>ED_SESSION</td>
<td>This event persists only for the duration of the current session, and is available only to the current application. It is deleted after the application disconnects or following a cluster restart.</td>
</tr>
<tr>
<td>Important</td>
<td>The value ED_SESSION is reserved for future use and is not yet supported in any NDB Cluster release.</td>
</tr>
<tr>
<td>ED_TEMPORARY</td>
<td>Any application may use the event, but it is deleted following a cluster restart.</td>
</tr>
<tr>
<td>Important</td>
<td>The value ED_TEMPORARY is reserved for future use and is not yet supported in any NDB Cluster release.</td>
</tr>
<tr>
<td>ED_PERMANENT</td>
<td>Any application may use the event, and it persists until deleted by an application—even following a cluster restart.</td>
</tr>
<tr>
<td>Important</td>
<td>The value ED_PERMANENT is reserved for future use and is not yet supported in any NDB Cluster release.</td>
</tr>
</tbody>
</table>

2.3.6.6 Event::EventReport

This section discusses EventReport, a type defined by the Event class.

Description. The values of this type are used to specify reporting options for table events.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER_UPDATED</td>
<td>Reporting of update events</td>
</tr>
<tr>
<td>ER_ALL</td>
<td>Reporting of all events, except for those not resulting in any updates to the inline parts of BLOB columns</td>
</tr>
<tr>
<td>ER_SUBSCRIBE</td>
<td>Reporting of subscription events</td>
</tr>
<tr>
<td>ER_DDL</td>
<td>Reporting of DDL events (see Section 2.3.6.20, “Event::setReport()”, for more information)</td>
</tr>
</tbody>
</table>

2.3.6.7 Event::getDurability()

Description. This method gets the event's lifetime and scope (that is, its EventDurability).
Signature.

EventDurability getDurability

\[
\begin{align*}
\text{void} & \quad \text{const} \\
\end{align*}
\]

Parameters. \textit{None.}

Return value. \textit{An EventDurability value.}

2.3.6.8 Event::getEventColumn()

Description. This method is used to obtain a specific column from among those on which an event is defined.

Signature.

\[
\begin{align*}
\text{const Column* getEventColumn} & \quad \text{(unsigned \ no \ const)} \\
\end{align*}
\]

Parameters. The number \textit{(no)} of the column, as obtained using \textit{getNoOfColumns()} (see Section 2.3.6.10, “Event::getNoOfEventColumns()”).

Return value. A pointer to the \textit{Column} corresponding to \textit{no}.

2.3.6.9 Event::getName()

Description. This method obtains the name of the event.

Signature.

\[
\begin{align*}
\text{const char* getName} & \quad \text{(void \ const)} \\
\end{align*}
\]

Parameters. \textit{None.}

Return value. The name of the event, as a character pointer.

2.3.6.10 Event::getNoOfEventColumns()

Description. This method obtains the number of columns on which an event is defined.

Signature.

\[
\begin{align*}
\text{int getNoOfEventColumns} & \quad \text{(void \ const)} \\
\end{align*}
\]

Parameters. \textit{None.}

Return value. The number of columns (as an integer), or \textit{-1} in the case of an error.

2.3.6.11 Event::getObjectStatus()

Description. This method gets the object status of the event.

Signature.
2.3.6.12 Event::getObjectVersion()

Description. This method gets the event's object version (see NDB Schema Object Versions).

Signature.

```cpp
virtual int getObjectVersion
    (  
        void  
    ) const
```

Parameters. None.

Return value. The object version of the event, as an integer.

2.3.6.13 Event::getObjectId()

Description. This method retrieves an event's object ID.

Signature.

```cpp
virtual int getObjectId
    (  
        void  
    ) const
```

Parameters. None.

Return value. The object ID of the event, as an integer.

2.3.6.14 Event::getReport()

Description. This method is used to obtain the reporting option in force for this event.

Signature.

```cpp
EventReport getReport
    (  
        void  
    ) const
```

Parameters. None.

Return value. One of the reporting options specified in Section 2.3.6.6, “Event::EventReport”.

2.3.6.15 Event::getTable()

Description. This method is used to find the table with which an event is associated. It returns a reference to the corresponding Table object. You may also obtain the name of the table directly using getTableName().

Signature.
const NdbDictionary::Table* getTable(
 void
) const

Parameters. None.

Return value. The table with which the event is associated—if there is one—as a pointer to a Table object; otherwise, this method returns NULL. (See Section 2.3.37, “The Table Class”.)

2.3.6.16 Event::getTableEvent()

Description. This method is used to check whether a given table event will be detected.

Signature.

bool getTableEvent(
 const TableEvent te
) const

Parameters. This method takes a single parameter, the table event's type—that is, a TableEvent value.

Return value. This method returns true if events of TableEvent type te will be detected. Otherwise, the return value is false.

2.3.6.17 Event::getTableName()

Description. This method obtains the name of the table with which an event is associated, and can serve as a convenient alternative to getTable(). (See Section 2.3.6.15, “Event::getTable()”.)

Signature.

const char* getTableName(
 void
) const

Parameters. None.

Return value. The name of the table associated with this event, as a character pointer.

2.3.6.18 Event::mergeEvents()

Description. This method is used to set the merge events flag, which is false by default. Setting it to true implies that events are merged as follows:

- For a given NdbEventOperation associated with this event, events on the same primary key within the same global checkpoint index (GCI) are merged into a single event.

- A blob table event is created for each blob attribute, and blob events are handled as part of main table events.

- Blob post/pre data from blob part events can be read via NdbBlob methods as a single value.

Note

Currently this flag is not inherited by NdbEventOperation, and must be set on NdbEventOperation explicitly. See Section 2.3.21, “The NdbEventOperation Class”.

72
The Event Class

2.3.6.19 Event::setDurability()

Description. This method sets an event's durability—that is, its lifetime and scope.

Signature.

```cpp
void setDurability(EventDurability ed)
```

Parameters. This method requires a single `EventDurability` value as a parameter.

Return value. None.

2.3.6.20 Event::setReport()

Description. This method is used to set a reporting option for an event. Possible option values may be found in Section 2.3.6.6, "Event::EventReport".

Reporting of DDL events. You must call `setReport()` using the `EventReport` value `ER_DDL` (added in the same NDB Cluster versions).

For example, to enable DDL event reporting on an `Event` object named `myEvent`, you must invoke this method as shown here:

```cpp
myEvent.setReport(NdbDictionary::Event::ER_DDL);
```

Signature.

```cpp
void setReport
  (EventReport er)
```

Parameters. An `EventReport` option value.

Return value. None.

2.3.6.21 Event::setName()

Description. This method is used to set the name of an event. The name must be unique among all events visible from the current application (see Section 2.3.6.7, "Event::getDurability()").

Note

You can also set the event's name when first creating it. See Section 2.3.6.4, "Event Constructor".

Signature.

```cpp
void setName
  ()
```
The Event Class

```c
const char* name
```

Parameters. The `name` to be given to the event (as a constant character pointer).

Return value. None.

2.3.6.22 Event::setTable()

Description. This method defines a table on which events are to be detected.

Note

By default, event detection takes place on all columns in the table. Use `addEventColumn()` to override this behavior. For details, see Section 2.3.6.1, “Event::addEventColumn()”.

Signature.

```c
void setTable
    (const NdbDictionary::Table& table)
```

NDB 7.3.3 and later NDB Cluster releases support the use of a pointer with this method, as shown here:

```c
void setTable
    (const NdbDictionary::Table*; table)
```

When so used, this version of `setTable()` returns -1 if the table pointer is `NULL`. (Bug #16329082)

Parameters. This method requires a single parameter, a reference to the table (see Section 2.3.37, “The Table Class”) on which events are to be detected. **NDB 7.3.3 and later:** A reference or a pointer to the table can be used.

Return value. None. **NDB 7.3.3 and later:** -1, if a null table pointer is used.

2.3.6.23 Event::TableEvent

This section describes `TableEvent`, a type defined by the `Event` class.

Description. `TableEvent` is used to classify the types of events that may be associated with tables in the NDB API.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE_INSERT</td>
<td>Insert event on a table</td>
</tr>
<tr>
<td>TE_DELETE</td>
<td>Delete event on a table</td>
</tr>
<tr>
<td>TE_UPDATE</td>
<td>Update event on a table</td>
</tr>
<tr>
<td>TE_DROP</td>
<td>Occurs when a table is dropped</td>
</tr>
<tr>
<td>TE_ALTER</td>
<td>Occurs when a table definition is changed</td>
</tr>
<tr>
<td>TE_CREATE</td>
<td>Occurs when a table is created</td>
</tr>
</tbody>
</table>
The EventBufferMemoryUsage Structure

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE_GCP_COMPLETE</td>
<td>Occurs on the completion of a global checkpoint</td>
</tr>
<tr>
<td>TE_CLUSTER_FAILURE</td>
<td>Occurs on Cluster failures</td>
</tr>
<tr>
<td>TE_STOP</td>
<td>Occurs when an event operation is stopped</td>
</tr>
<tr>
<td>TE_NODE_FAILURE</td>
<td>Occurs when a Cluster node fails</td>
</tr>
<tr>
<td>TE_SUBSCRIBE</td>
<td>Occurs when a cluster node subscribes to an event</td>
</tr>
<tr>
<td>TE_UNSUBSCRIBE</td>
<td>Occurs when a cluster node unsubscribes from an event</td>
</tr>
<tr>
<td>TE_EMPTY</td>
<td>Empty epoch received from data nodes</td>
</tr>
<tr>
<td>TE_INCONSISTENT</td>
<td>Missing data or buffer overflow at data node</td>
</tr>
<tr>
<td>TE_OUT_OF_MEMORY</td>
<td>Overflow in event buffer</td>
</tr>
<tr>
<td>TE_ALL</td>
<td>Occurs when any event occurs on a table (not relevant when a specific event is received)</td>
</tr>
</tbody>
</table>

TE_EMPTY, TE_INCONSISTENT, and TE_OUT_OF_MEMORY were added in NDB 7.4.3.

2.3.7 The EventBufferMemoryUsage Structure

This section describes the EventBufferMemoryUsage structure.

Parent class. Ndb

Description. This structure was added in NDB 7.4.3 for working with event buffer memory usage statistics. It is used as an argument to `Ndb::get_event_buffer_memory_usage()`.

Attributes. EventBufferMemoryUsage has the attributes shown in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Initial Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allocated_bytes</td>
<td>unsigned</td>
<td>none</td>
<td>The total event buffer memory allocated, in bytes</td>
</tr>
<tr>
<td>used_bytes</td>
<td>unsigned</td>
<td>none</td>
<td>The total memory used, in bytes</td>
</tr>
<tr>
<td>usage_percent</td>
<td>unsigned</td>
<td>none</td>
<td>Event buffer memory usage, as a percent (100 \times \frac{\text{used_bytes}}{\text{allocated_bytes}})</td>
</tr>
</tbody>
</table>

2.3.8 The ForeignKey Class

This class represents a foreign key on an NDB table. It was added to the NDB API in NDB Cluster 7.3.

Parent class. Object

Child classes. None.

Methods. The following table lists the public methods of the ForeignKey class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForeignKey()</td>
<td>Class constructor</td>
</tr>
</tbody>
</table>
The ForeignKey Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ForeignKey()</td>
<td>Class destructor</td>
</tr>
<tr>
<td>getName()</td>
<td>Get the foreign key's name</td>
</tr>
<tr>
<td>getParentTable()</td>
<td>Get the foreign key's parent table</td>
</tr>
<tr>
<td>getChildTable()</td>
<td>Get the foreign key's child table</td>
</tr>
<tr>
<td>getParentColumnCount()</td>
<td>Get the number of columns in the parent table</td>
</tr>
<tr>
<td>getChildColumnCount()</td>
<td>Get the number of columns in the child table</td>
</tr>
<tr>
<td>getParentColumnNo()</td>
<td>Get the column number in the parent table</td>
</tr>
<tr>
<td>getChildColumnNo()</td>
<td>Get the column number in the child table</td>
</tr>
<tr>
<td>getParentIndex()</td>
<td>Returns 0 if key points to parent table's primary key</td>
</tr>
<tr>
<td>getChildIndex()</td>
<td>Returns 0 if child references resolved using child table's primary key</td>
</tr>
<tr>
<td>getOnUpdateAction()</td>
<td>Get the foreign's key update action (FkAction)</td>
</tr>
<tr>
<td>getOnDeleteAction()</td>
<td>Get the foreign key's delete action (FkAction)</td>
</tr>
<tr>
<td>setName()</td>
<td>Set the foreign key's name</td>
</tr>
<tr>
<td>setParent()</td>
<td>Set the foreign key's parent table</td>
</tr>
<tr>
<td>setChild()</td>
<td>Set a foreign key's child table</td>
</tr>
<tr>
<td>setOnUpdateAction()</td>
<td>Set the foreign's key update action (FkAction)</td>
</tr>
<tr>
<td>setOnDeleteAction()</td>
<td>Set the foreign key's delete action (FkAction)</td>
</tr>
<tr>
<td>getObjectStatus()</td>
<td>Get the object status</td>
</tr>
<tr>
<td>getObjectId()</td>
<td>Get the object ID</td>
</tr>
<tr>
<td>getObjectVersion()</td>
<td>Get the object version</td>
</tr>
</tbody>
</table>

Types

The `ForeignKey` class has one public type, the `FkAction` type.

2.3.8.1 ForeignKey()

Description. Create either an entirely new foreign key reference, or a copy of an existing one.

Signature.

<table>
<thead>
<tr>
<th>New instance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForeignKey</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>void</td>
</tr>
<tr>
<td>)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copy constructor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ForeignKey</td>
</tr>
<tr>
<td>(</td>
</tr>
<tr>
<td>const ForeignKey&</td>
</tr>
<tr>
<td>)</td>
</tr>
</tbody>
</table>

Parameters. For a new instance: None.

For the copy constructor: A reference to an existing instance of `ForeignKey`.

Return value. A new instance of `ForeignKey`.

2.3.8.2 ForeignKey::FkAction

`FkAction` is an enumeration which represents a reference action for a foreign key when an update or delete operation is performed on the parent table.
The ForeignKey Class

Enumeration values. Possible values are shown, along with the corresponding reference action, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoAction</td>
<td>NO ACTION: Deferred check.</td>
</tr>
<tr>
<td>Restrict</td>
<td>RESTRICT: Reject operation on parent table.</td>
</tr>
<tr>
<td>Cascade</td>
<td>CASCADE: Perform operation on row from parent table; perform same operation on matching rows in child table.</td>
</tr>
<tr>
<td>SetNull</td>
<td>SET NULL: Perform operation on row from parent table; set any matching foreign key columns in child table to NULL.</td>
</tr>
<tr>
<td>SetDefault</td>
<td>SET DEFAULT: Currently not supported in NDB Cluster.</td>
</tr>
</tbody>
</table>

See also FOREIGN KEY Constraints, in the MySQL Manual.

2.3.8.3 ForeignKey::getName()

Description. Retrieve the name of the ForeignKey instance for which the method is invoked.

Signature.

```cpp
custom char* getName
    ( void
    ) const
```

Parameters. None.

Return value. The name of the ForeignKey.

2.3.8.4 ForeignKey::getParentTable()

Description. Retrieve the parent table of the ForeignKey instance for which the method is invoked.

Signature.

```cpp
custom char* getParentTable
    ( void
    ) const
```

Parameters. None.

Return value. A pointer to the parent table of the ForeignKey.

2.3.8.5 ForeignKey::getChildTable()

Description. Retrieve the child table of the ForeignKey instance for which the method is invoked.

Signature.

```cpp
custom char* getChildTable
    ( void
    ) const
```

Parameters. None.
Return value. A pointer to the child table of this ForeignKey.

2.3.8.6 ForeignKey::getParentColumnCount()

Description. Retrieve the number of columns in the parent table of this ForeignKey.

Signature.

```cpp
unsigned getParentColumnCount ( void ) const
```

Parameters. None.

Return value. The number of columns in the parent table.

2.3.8.7 ForeignKey::getChildColumnCount()

Description. Retrieve the number of columns in the child table of this ForeignKey.

Signature.

```cpp
unsigned getChildColumnCount ( void ) const
```

Parameters. None.

Return value. The number of columns in the child table.

2.3.8.8 ForeignKey::getParentIndex()

Description. Returns 0 if the child table refers to the parent table's primary key.

Signature.

```cpp
const char* getParentIndex ( void ) const
```

Parameters. None.

Return value. See description.

2.3.8.9 ForeignKey::getChildIndex()

Description. Return 0 if child references are resolved using the child table's primary key.

Signature.

```cpp
const char* getChildIndex ( void ) const
```

Parameters. None.

Return value. See description.

2.3.8.10 ForeignKey::getParentColumnNo()
Description. This method gets the sequence number of a foreign key column in the parent table for a given index. See the documentation for `Column::getColumnNo()` for information about handling columns in the NDB API.

Signature.

```cpp
int getParentColumnNo
(unsigned no)
const
```

Parameters. None.

Return value. The sequence number of the column.

2.3.8.11 ForeignKey::getChildColumnNo()

Description. This method gets the sequence number of a foreign key column in the child table for a given index. See the documentation for `Column::getColumnNo()` for information about handling columns in the NDB API.

Signature.

```cpp
int getChildColumnNo
(unsigned no)
const
```

Parameters. None.

Return value. The sequence number of the column.

2.3.8.12 ForeignKey::getOnUpdateAction()

Description. Get the foreign key's ON UPDATE action. This is a `ForeignKey::FkAction` and has one of the values `NoAction`, `Restrict`, `Cascade`, or `SetNull`.

Signature.

```cpp
FkAction getOnUpdateAction
(void)
const
```

Parameters. None.

Return value. The sequence number of the column.

2.3.8.13 ForeignKey::getOnDeleteAction()

Description. Get the foreign key's ON DELETE action. This is a `ForeignKey::FkAction` and has one of the values `NoAction`, `Restrict`, `Cascade`, or `SetNull`.

Signature.

```cpp
FkAction getOnDeleteAction
(void)
const
```

Parameters. None.
Return value. The sequence number of the column.

2.3.8.14 ForeignKey::setName()

Description. Set the name of the ForeignKey instance for which the method is invoked.

Signature.

```plaintext
void setName
(const char*)
```

Parameters. The name of the ForeignKey.

Return value. None.

2.3.8.15 ForeignKey::setParent()

Description. Set the parent table of a ForeignKey, given a reference to the table, and optionally, an index to use as the foreign key.

Signature.

```plaintext
void setParent
(const Table&,
const Index* index = 0,
const Column* cols[] = 0)
```

Parameters. A reference to a Table. Optionally, an index using the indicated column or columns.

Return value. None.

2.3.8.16 ForeignKey::setChild()

Description. Set the child table of a ForeignKey, given a reference to the table, and optionally, an index to use as the foreign key.

Signature.

```plaintext
void setChild
(const Table&,
const Index* index = 0,
const Column* cols[] = 0)
```

Parameters. A reference to a Table. Optionally, an index using the indicated column or columns.

Return value. None.

2.3.8.17 ForeignKey::setOnUpdateAction()

Description. Set the foreign key's ON UPDATE action.

Signature.

```plaintext
void setOnUpdateAction
(FkAction)
```
The ForeignKey Class

Parameters. The ON UPDATE action to be performed. This must be a ForeignKey::FkAction having one of the values NoAction, Restrict, Cascade, or SetNull.

Return value. None

2.3.8.18 ForeignKey::setOnDeleteAction()

Description. Set the foreign key's ON DELETE action.

Signature.

void setOnUpdateAction
{
 FkAction
}

Parameters. The ON UPDATE action to be performed, of type ForeignKey::FkAction. Must be one of the values NoAction, Restrict, Cascade, or SetNull.

Return value. None

2.3.8.19 ForeignKey::getObjectStatus()

Description. Get the object status (see Section 2.3.31.4, “Object::Status”) for this ForeignKey object.

Signature.

virtual Object::Status getObjectStatus
(
 void
) const

Parameters. None.

Return value. The ForeignKey object's status, as a value of type Object::Status. See this type's documentation for possible values and their interpretation.

2.3.8.20 ForeignKey::getObjectId()

Description. Get the object ID (see Section 2.3.31.7, “Object::getObjectId()”) for this ForeignKey object.

Signature.

virtual int getObjectId
(
 void
) const

Parameters. None.

Return value. The ForeignKey object's ID, as returned by Object::getObjectId().

2.3.8.21 ForeignKey::getObjectVersion()

Description. Get the object version (see Section 2.3.31.9, “Object::getObjectVersion()”) for this ForeignKey object.

Signature.

virtual int getObjectVersion

The GetValueSpec Structure

```c
{
    void
} const
```

Parameters. None.

Return value. The `ForeignKey` object's version number (an integer), as returned by `Object::getObjectVersion()`.

2.3.9 The GetValueSpec Structure

Parent class. `NdbOperation`

Description. This structure is used to specify an extra value to obtain as part of an `NdbRecord` operation.

Members. The elements making up this structure are shown in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>column</td>
<td>const <code>Column*</code></td>
<td>To specify an extra value to read, the caller must provide this, as well as (optionally NULL) <code>appStorage</code> pointer.</td>
</tr>
<tr>
<td>appStorage</td>
<td><code>void*</code></td>
<td>If this pointer is null, then the received value is stored in memory managed by the <code>NdbRecAttr</code> object. Otherwise, the received value is stored at the location pointed to (and is still accessible using the <code>NdbRecAttr</code> object).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>recAttr</td>
<td><code>NdbRecAttr*</code></td>
<td>After the operation is defined, <code>recAttr</code> contains a pointer to the <code>NdbRecAttr</code> object for receiving the data.</td>
</tr>
</tbody>
</table>

Important

- It is the caller's responsibility to ensure that the following conditions are met:
 1. `appStorage` points to sufficient space to store any returned data.
 2. Memory pointed to by `appStorage` is not reused or freed until after the `execute()` call returns.

For more information, see Section 2.3.27, “The NdbRecord Interface”.

2.3.10 The HashMap Class
The HashMap Class

This class represents a hash map in an NDB Cluster.

Parent class. *Object*

Child classes. *None.*

Methods. The following table lists the public methods of the *HashMap* class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HashMap()</td>
<td>Class constructor</td>
</tr>
<tr>
<td>~HashMap()</td>
<td>Class destructor</td>
</tr>
<tr>
<td>setName()</td>
<td>Set a name for the hashmap</td>
</tr>
<tr>
<td>getName()</td>
<td>Gets a hashmap's name</td>
</tr>
<tr>
<td>setMap()</td>
<td>Sets a hashmap's length and values</td>
</tr>
<tr>
<td>getMapLen()</td>
<td>Gets a hashmap's length</td>
</tr>
<tr>
<td>getMapValues()</td>
<td>Gets the values contained in the hashmap</td>
</tr>
<tr>
<td>equal()</td>
<td>Compares this hashmap's values with those of another hashmap</td>
</tr>
<tr>
<td>getObjectStatus()</td>
<td>Gets the hashmap's object status</td>
</tr>
<tr>
<td>getObjectVersion()</td>
<td>Gets the hashmap's schema object version</td>
</tr>
<tr>
<td>getObjectId()</td>
<td>Gets the hashmap's ID</td>
</tr>
</tbody>
</table>

Types. The *HashMap* class has no public types.

2.3.10.1 HashMap Constructor

Description. The *HashMap* class constructor normally requires no arguments. A copy constructor is also available.

See also *Section 2.3.4.6, "Dictionary::createHashMap()",* for more information.

Signature. Base constructor:

```cpp
HashMap HashMap()
{
   void
}
```

Copy constructor:

```cpp
HashMap HashMap(const HashMap& hashmap)
{
}
```

Destructor:

```cpp
virtual ~HashMap()
{
   void
}
```

Parameters. *None,* or the address of an existing *HashMap* object to be copied.

Return value. A new instance of *HashMap,* possibly a copy of an existing one.
2.3.10.2 HashMap::setName()

Description. Sets the name of the hash map.

Signature.

```cpp
void setName
{
    const char* name
}
```

Parameters. The name to be assigned to the hashmap.

Return value. None.

2.3.10.3 HashMap::getName()

Description. Gets the name of the hash map.

Signature.

```cpp
const char* getName
{
    void
} const
```

Parameters. None.

Return value. The name of the hash map.

2.3.10.4 HashMap::setMap()

Description. Assigns a set of values to a has map.

Signature.

```cpp
void setMap
{
    const Uint32* values,
    Uint32 len
}
```

Parameters. A pointer to a set of `values` of length `len`.

Return value. None.

2.3.10.5 HashMap::getMapLen()

Description. Gets the hash map's length; that is, the number of values which it contains. You can obtain the values using `getMapValues()`.

Signature.

```cpp
Uint32 getMapLen
{
    void
} const
```

Parameters. None.

Return value. The length of the hash map.
2.3.10.6 HashMap::getMapValues()

Description. Gets the values listed in the hash map.

Signature.

```c
int getMapValues
    (Uint32* dst,
     Uint32 len)
const
```

Parameters. A pointer to a set of values (`dst`) and the number of values (`len`).

Return value. Returns 0 on success; on failure, returns -1 and sets error.

2.3.10.7 HashMap::equal()

Description. Compares (only) the values of this `HashMap` with those of another one.

Signature.

```c
bool equal
    (const HashMap& hashmap)
const
```

Parameters. A reference to the hash map to be compared with this one.

Return value. `None`.

2.3.10.8 HashMap::getObjectStatus()

Description. This method retrieves the status of the `HashMap` for which it is invoked. The return value is of type `Object::Status`.

Signature.

```c
virtual Status getObjectStatus
    (void)
const
```

Parameters. `None`.

Return value. Returns the current `Status` of the `HashMap`.

2.3.10.9 HashMap::getObjectVersion()

Description. The method gets the hash map's schema object version.

Signature.

```c
virtual int getObjectVersion
    (void)
const
```

Parameters. `None`.

Return value. The object's version number, an integer.
2.3.10 HashMap::getobjectId()

Description. This method retrieves the hash map's ID.

Signature.

```cpp
dllexport virtual int getObjectId()
{
    void
} const
```

Parameters. *None.*

Return value. The object ID, an integer.

2.3.11 The Index Class

This section provides a reference to the Index class and its public members.

Parent class. NdbDictionary

Child classes. *None*

Description. This class represents an index on an NDB Cluster table column. It is a descendant of the NdbDictionary class, using the Object class.

Methods. The following table lists the public methods of Index and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index()</td>
<td>Class constructor</td>
</tr>
<tr>
<td>~Index()</td>
<td>Destructor</td>
</tr>
<tr>
<td>addColumn()</td>
<td>Adds a Column object to the index</td>
</tr>
<tr>
<td>addColumnName()</td>
<td>Adds a column by name to the index</td>
</tr>
<tr>
<td>addColumnNames()</td>
<td>Adds multiple columns by name to the index</td>
</tr>
<tr>
<td>getColumn()</td>
<td>Gets a column making up (part of) the index</td>
</tr>
<tr>
<td>getLogging()</td>
<td>Checks whether the index is logged to disk</td>
</tr>
<tr>
<td>getName()</td>
<td>Gets the name of the index</td>
</tr>
<tr>
<td>getNoOfColumns()</td>
<td>Gets the number of columns belonging to the index</td>
</tr>
<tr>
<td>getObjectName()</td>
<td>Gets the index object status</td>
</tr>
<tr>
<td>getObjectId()</td>
<td>Gets the index object ID</td>
</tr>
<tr>
<td>getTable()</td>
<td>Gets the name of the table being indexed</td>
</tr>
<tr>
<td>getType()</td>
<td>Gets the index type</td>
</tr>
<tr>
<td>setLogging()</td>
<td>Enable/disable logging of the index to disk</td>
</tr>
<tr>
<td>setName()</td>
<td>Sets the name of the index</td>
</tr>
<tr>
<td>setTable()</td>
<td>Sets the name of the table to be indexed</td>
</tr>
<tr>
<td>setType()</td>
<td>Set the index type</td>
</tr>
</tbody>
</table>

Types. Index has one public type, the Type type.
The Index Class

Important
If you create or change indexes using the NDB API, these modifications cannot be seen by MySQL. The only exception to this is renaming the index using `Index::setName()`.

2.3.11.1 Index Class Constructor

Description. This is used to create a new instance of `Index`.

Important
Indexes created using the NDB API cannot be seen by the MySQL Server.

Signature.

```cpp
Index(
    const char* name = ""
)
```

Parameters.

The name of the new index. It is possible to create an index without a name, and then assign a name to it later using `setName()`. See Section 2.3.11.15, "Index::setName()".

Return value.

A new instance of `Index`.

Destructor.
The destructor (`~Index()`) is supplied as a virtual method.

2.3.11.2 Index::addColumn()

Description. This method may be used to add a column to an index.

Note
The order of the columns matches the order in which they are added to the index. However, this matters only with ordered indexes.

Signature.

```cpp
void addColumn
    (const Column& c)
```

Parameters.

A reference `c` to the column which is to be added to the index.

Return value.

None.

2.3.11.3 Index::addColumnName()

Description. This method works in the same way as `addColumn()`, except that it takes the name of the column as a parameter. See Section 2.3.11.5, "Index::getColumn()".

Signature.

```cpp
void addColumnName
    (const char* name)
```

Parameters.

The `name` of the column to be added to the index, as a constant character pointer.
Return value. None.

2.3.11.4 Index::addColumnNames()

Description. This method is used to add several column names to an index definition at one time.

Note
As with the addColumn() and addColumnName() methods, the indexes are numbered in the order in which they were added. (However, this matters only for ordered indexes.)

Signature.

```c
void addColumnNames
    (unsigned noOfNames,
     const char** names)
```

Parameters. This method takes two parameters, listed here:

• The number of columns and names noOfNames to be added to the index.
• The names to be added (as a pointer to a pointer).

Return value. None.

2.3.11.5 Index::getColumn()

Description. This method retrieves the column at the specified position within the index.

Signature.

```c
const Column* getColumn
    (unsigned no) const
```

Parameters. The ordinal position number no of the column, as an unsigned integer. Use the getNoOfColumns() method to determine how many columns make up the index—see Section 2.3.11.8, “Index::getNoOfColumns()”, for details.

Return value. The column having position no in the index, as a pointer to an instance of Column. See Section 2.3.2, “The Column Class”.

2.3.11.6 Index::getLogging()

Description. Use this method to determine whether logging to disk has been enabled for the index.

Note
Indexes which are not logged are rebuilt when the cluster is started or restarted.

Ordered indexes currently do not support logging to disk; they are rebuilt each time the cluster is started. (This includes restarts.)

Signature.

```c
bool getLogging
    (void)
```
The Index Class

2.3.11.7 Index::getName()

Description. This method is used to obtain the name of an index.

Signature.

```c
const char* getName()
{
    void
} const
```

Parameters. *None.*

Return value. The name of the index, as a constant character pointer.

2.3.11.8 Index::getNoOfColumns()

Description. This method is used to obtain the number of columns making up the index.

Signature.

```c
unsigned getNoOfColumns()
{
    void
} const
```

Parameters. *None.*

Return value. An unsigned integer representing the number of columns in the index.

2.3.11.9 Index::getObjectStatus()

Description. This method gets the object status of the index.

Signature.

```c
virtual Object::Status getObjectStatus()
{
    void
} const
```

Parameters. *None.*

Return value. A `Status` value—see Section 2.3.31.4, “Object::Status”, for more information.

2.3.11.10 Index::getObjectVersion()

Description. This method gets the object version of the index (see NDB Schema Object Versions).

Signature.

```c
virtual int getObjectVersion
```
The Index Class

2.3.11 Index::getObjectId()

Description. This method is used to obtain the object ID of the index.

Signature.

```cpp
virtual int getObjectId()
{
    void
} const
```

Parameters. None.

Return value. The object ID, as an integer.

2.3.11.12 Index::getTable()

Description. This method can be used to obtain the name of the table to which the index belongs.

Signature.

```cpp
const char* getTable()
{
    void
} const
```

Parameters. None.

Return value. The name of the table, as a constant character pointer.

2.3.11.13 Index::getType()

Description. This method can be used to find the type of index.

Signature.

```cpp
Type getType()
{
    void
} const
```

Parameters. None.

Return value. An index type. See Section 2.3.11.18, "Index::Type", for possible values.

2.3.11.14 Index::setLogging

Description. This method is used to enable or disable logging of the index to disk.

Signature.

```cpp
void setLogging
{
    bool enable
```
Parameters. \texttt{setLogging()} takes a single Boolean parameter \texttt{enable}. If \texttt{enable} is \texttt{true}, then logging is enabled for the index; if false, then logging of this index is disabled.

Return value. \texttt{None}.

2.3.11.15 \texttt{Index::setName()}

Description. This method sets the name of the index.

\begin{itemize}
\item \textbf{Note} \hfill This is the only \texttt{Index::set*() method whose result is visible to a MySQL Server.}
\end{itemize}

Signature.

\begin{verbatim}
void setName
 (const char* name)
\end{verbatim}

Parameters. The desired \texttt{name} for the index, as a constant character pointer.

Return value. \texttt{None}.

2.3.11.16 \texttt{Index::setTable()}

Description. This method sets the table that is to be indexed. The table is referenced by name.

Signature.

\begin{verbatim}
void setTable
 (const char* name)
\end{verbatim}

Parameters. The \texttt{name} of the table to be indexed, as a constant character pointer.

Return value. \texttt{None}.

2.3.11.17 \texttt{Index::setType()}

Description. This method is used to set the index type.

Signature.

\begin{verbatim}
void setType
 (Type type)
\end{verbatim}

Parameters. The \texttt{type} of index. For possible values, see Section 2.3.11.18, "\texttt{Index::Type}".

Return value. \texttt{None}.

2.3.11.18 \texttt{Index::Type}

Description. This is an enumerated type which describes the sort of column index represented by a given instance of \texttt{index}.
The IndexBound Structure

Caution
Do not confuse this enumerated type with `Object::Type`, or with `Column::Type`.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

Table 2.26 `Index::Type` data type values and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined</td>
<td>Undefined object type (initial/default value)</td>
</tr>
<tr>
<td>UniqueHashIndex</td>
<td>Unique unordered hash index (only index type currently supported)</td>
</tr>
<tr>
<td>OrderedIndex</td>
<td>Nonunique, ordered index</td>
</tr>
</tbody>
</table>

2.3.12 The IndexBound Structure

Parent class. `NdbIndexScanOperation`

Description. `IndexBound` is a structure used to describe index scan bounds for `NdbRecord` scans.

Members. These are shown in the following table:

Table 2.27 `IndexBound` structure member names, types, and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>low_key</td>
<td><code>const char*</code></td>
<td>Row containing lower bound for scan (or <code>NULL</code> for scan from the start).</td>
</tr>
<tr>
<td>low_key_count</td>
<td><code>Uint32</code></td>
<td>Number of columns in lower bound (for bounding by partial prefix).</td>
</tr>
<tr>
<td>low_inclusive</td>
<td><code>bool</code></td>
<td>True for <code><=</code> relation, false for <code><</code>.</td>
</tr>
<tr>
<td>high_key</td>
<td><code>const char*</code></td>
<td>Row containing upper bound for scan (or <code>NULL</code> for scan to the end).</td>
</tr>
<tr>
<td>high_key_count</td>
<td><code>Uint32</code></td>
<td>Number of columns in upper bound (for bounding by partial prefix).</td>
</tr>
<tr>
<td>high_inclusive</td>
<td><code>bool</code></td>
<td>True for <code>>=</code> relation, false for <code>></code>.</td>
</tr>
<tr>
<td>range_no</td>
<td><code>Uint32</code></td>
<td>Value to identify this bound; may be read using the <code>get_range_no()</code> method (see Section 2.3.23.4, "NdbIndexScanOperation::get_range_no()"). This value must be less than 8192 (set to zero if it is not being used). For ordered scans, <code>range_no</code> must be strictly increasing for each range, or else the result set will not be sorted correctly.</td>
</tr>
</tbody>
</table>

For more information, see Section 2.3.27, "The NdbRecord Interface".

2.3.13 The LogfileGroup Class

This section discusses the `LogfileGroup` class, which represents an NDB Cluster Disk Data logfile group.

Parent class. `NdbDictionary`
The LogfileGroup Class

Child classes. None

Description. This class represents an NDB Cluster Disk Data logfile group, which is used for storing Disk Data undofiles. For general information about logfile groups and undofiles, see NDB Cluster Disk Data Tables, in the MySQL Manual.

Note
Only unindexed column data can be stored on disk. Indexes and indexes columns are always stored in memory.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

Table 2.28 LogfileGroup class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogfileGroup()</td>
<td>Class constructor</td>
</tr>
<tr>
<td>~LogfileGroup()</td>
<td>Virtual destructor</td>
</tr>
<tr>
<td>getAutoGrowSpecification()</td>
<td>Gets the logfile group's AutoGrowSpecification values</td>
</tr>
<tr>
<td>getName()</td>
<td>Retrieves the logfile group's name</td>
</tr>
<tr>
<td>getObjectID()</td>
<td>Get the object ID of the logfile group</td>
</tr>
<tr>
<td>getObjectStatus()</td>
<td>Gets the logfile group's object status value</td>
</tr>
<tr>
<td>getObjectVersion()</td>
<td>Retrieves the logfile group's object version</td>
</tr>
<tr>
<td>getUndoBufferSize()</td>
<td>Gets the size of the logfile group's UNDO buffer</td>
</tr>
<tr>
<td>getUndoFreeWords()</td>
<td>Retrieves the amount of free space in the UNDO buffer</td>
</tr>
<tr>
<td>setAutoGrowSpecification()</td>
<td>Sets AutoGrowSpecification values for the logfile group</td>
</tr>
<tr>
<td>setName()</td>
<td>Sets the name of the logfile group</td>
</tr>
<tr>
<td>setUndoBufferSize()</td>
<td>Sets the size of the logfile group's UNDO buffer</td>
</tr>
</tbody>
</table>

Types. The LogfileGroup class does not itself define any public types. However, two of its methods make use of the AutoGrowSpecification data structure as a parameter or return value. For more information, see Section 2.3.1, “The AutoGrowSpecification Structure”.

2.3.13.1 LogfileGroup Constructor

Description. The LogfileGroup class has two public constructors, one of which takes no arguments and creates a completely new instance. The other is a copy constructor.

Note
The Dictionary class also supplies methods for creating and destroying LogfileGroup objects. See Section 2.3.4, “The Dictionary Class”.

Signatures. New instance:

```cpp
LogfileGroup()
{
    void
}
```

Copy constructor:

```cpp
LogfileGroup(
    const LogfileGroup& logfileGroup
)"
The LogfileGroup Class

Parameters. When creating a new instance, the constructor takes no parameters. When copying an existing instance, the constructor is passed a reference to the LogfileGroup instance to be copied.

Return value. A LogfileGroup object.

Destructor.

virtual ~LogfileGroup
{
    void
}

Examples.
[To be supplied...]

2.3.13.2 LogfileGroup::getAutoGrowSpecification()

Description. This method retrieves the AutoGrowSpecification associated with the logfile group.

Signature.
const AutoGrowSpecification& getAutoGrowSpecification
{
    void
} const

Parameters. None.


2.3.13.3 LogfileGroup::getName()

Description. This method gets the name of the logfile group.

Signature.
const char* getName
{
    void
} const

Parameters. None.

Return value. The logfile group's name, a string (as a character pointer).

Example.
[To be supplied...]

2.3.13.4 LogfileGroup::getObjectId()

Description. This method is used to retrieve the object ID of the logfile group.

Signature.
virtual int getObjectId
{
    void
}
The LogfileGroup Class

### 2.3.13.5 LogfileGroup::getObjectStatus()

**Description.** This method is used to obtain the object status of the *LogfileGroup*.

**Signature.**

```cpp
virtual Object::Status getObjectStatus
 (void) const
```

**Parameters.** None.

**Return value.** The logfile group's *Status*—see Section 2.3.31.4, “Object::Status” for possible values.

### 2.3.13.6 LogfileGroup::getObjectVersion()

**Description.** This method gets the logfile group's object version (see NDB Schema Object Versions).

**Signature.**

```cpp
virtual int getObjectVersion
 (void) const
```

**Parameters.** None.

**Return value.** The object version of the logfile group, as an integer.

### 2.3.13.7 LogfileGroup::getUndoBufferSize()

**Description.** This method retrieves the size of the logfile group's *UNDO* buffer.

**Signature.**

```cpp
Uint32 getUndoBufferSize
 (void) const
```

**Parameters.** None.

**Return value.** The size of the *UNDO* buffer, in bytes.

**Example.**

[To be supplied...]

### 2.3.13.8 LogfileGroup::getUndoFreeWords()

**Description.** This method retrieves the number of bytes unused in the logfile group's *UNDO* buffer.

**Signature.**

```cpp
Uint64 getUndoFreeWords
```


The LogfileGroup Class

```cpp

// Parameters. None.
// Return value. The number of bytes free, as a 64-bit integer.
// Example.

[To be supplied...]

2.3.13.9 LogfileGroup::setAutoGrowSpecification()

// Description. This method sets the AutoGrowSpecification data for the logfile group.
// Signature.

void setAutoGrowSpecification
{
 const AutoGrowSpecification& autoGrowSpec
}

// Parameters. The data is passed as a single parameter, an AutoGrowSpecification data structure—see Section 2.3.1, “The AutoGrowSpecification Structure”.
// Return value. None.

2.3.13.10 LogfileGroup::setName()

// Description. This method is used to set a name for the logfile group.
// Signature.

void setName
{
 const char* name
}

// Parameters. The name to be given to the logfile group (character pointer).
// Return value. None.

[To be supplied...]

2.3.13.11 LogfileGroup::setUndoBufferSize()

// Description. This method can be used to set the size of the logfile group's UNDO buffer.
// Signature.

void setUndoBufferSize
{
 Uint32 size
}

// Parameters. The size in bytes for the UNDO buffer (using a 32-bit unsigned integer value).
// Return value. None.

Example.

96
2.3.14 The List Class

This section covers the List class.

Parent class. Dictionary

Child classes. None

Description. The List class is a Dictionary subclass that is used for representing lists populated by the methods Dictionary::listObjects(), Dictionary::listIndexes(), and Dictionary::listEvents().

Class Methods. This class has only two methods, a constructor and a destructor. Neither method takes any arguments.

Constructor. Calling the List constructor creates a new List whose count and elements attributes are both set equal to 0.

Destructor. The destructor ~List() is simply defined in such a way as to remove all elements and their properties. You can find its definition in the file /storage/ndb/include/ndbapi/NdbDictionary.hpp.

Attributes. A List has the following two attributes:

- count, an unsigned integer, which stores the number of elements in the list.
- elements, a pointer to an array of Element data structures contained in the list. See Section 2.3.5, “The Element Structure”.

Types. The List class also defines an Element structure.

2.3.15 The Key_part_ptr Structure

This section describes the Key_part_ptr structure.

Parent class. Ndb

Description. The Key_part_ptr provides a convenient way to define key-part data when starting transactions and computing hash values, by passing in pointers to distribution key values. When the distribution key has multiple parts, they should be passed as an array, with the last part’s pointer set equal to NULL. See Section 2.3.16.3, “Ndb::startTransaction()”, and Section 2.3.16.3, “Ndb::computeHash()”, for more information about how this structure is used.

Attributes. A Key_part_ptr has the attributes shown in the following table:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Initial Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ptr</td>
<td>const void*</td>
<td>none</td>
<td>Pointer to one or more distribution key values</td>
</tr>
<tr>
<td>len</td>
<td>unsigned</td>
<td>none</td>
<td>The length of the pointer</td>
</tr>
</tbody>
</table>

2.3.16 The Ndb Class

This class represents the NDB kernel; it is the primary class of the NDB API.
The Ndb Class

Parent class. None

Child classes. None

Description. Any nontrivial NDB API program makes use of at least one instance of Ndb. By using several Ndb objects, it is possible to implement a multithreaded application. You should remember that one Ndb object cannot be shared between threads; however, it is possible for a single thread to use multiple Ndb objects. A single application process can support a maximum of 4711 Ndb objects.

Resource consumption by Ndb objects. An Ndb object consumes memory in proportion to the size of the largest operation performed over the lifetime of the object. This is particularly noticeable in cases of large transactions; use of one or both of BLOB or TEXT columns; or both. This memory is held for the lifetime of the object, and once used in this way by the Ndb object, the only way to free this memory is to destroy the object (and then to create a new instance if desired).

Note

The Ndb object is multithread safe in that each Ndb object can be handled by one thread at a time. If an Ndb object is handed over to another thread, then the application must ensure that a memory barrier is used to ensure that the new thread sees all updates performed by the previous thread.

Semaphores and mutexes are examples of easy ways to provide memory barriers without having to bother about the memory barrier concept.

It is also possible to use multiple Ndb objects to perform operations on different clusters in a single application. See Application-level partitioning, for conditions and restrictions applying to such usage.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

Table 2.30 Ndb class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ndb()</td>
<td>Class constructor; represents a connection to an NDB Cluster.</td>
</tr>
<tr>
<td>~Ndb()</td>
<td>Class destructor; terminates a Cluster connection when it is no longer to be used</td>
</tr>
<tr>
<td>closeTransaction()</td>
<td>Closes a transaction.</td>
</tr>
<tr>
<td>computeHash()</td>
<td>Computes a distribution hash value.</td>
</tr>
</tbody>
</table>
| createEventOperation() | Creates a subscription to a database event. (See Section 2.3.21, “The NdbEventOperation Class”.)
| dropEventOperation() | Drops a subscription to a database event. |
| getDictionary() | Gets a dictionary, which is used for working with database schema information. |
| getDatabaseName() | Gets the name of the current database. |
| getDatabaseSchemaName() | Gets the name of the current database schema. |
| get_eventbuf_max_alloc() | Gets the current allocated maximum size of the event buffer. Added in NDB 7.3.3. |
| get_eventbuffer_free_percent() | Gets the percentage of event buffer memory that should be available before buffering resumes, once the limit has been reached. Added in NDB 7.4.3. |
| get_event_buffer_memory_usage() | Provides event buffer memory usage information. Added in NDB 7.4.3. |
| getGCIEventOperations() | Gets the next event operation from a GCI. Deprecated in NDB 7.4.3. |
The Ndb Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getHighestQueuedEpoch()</code></td>
<td>Gets the latest epoch in the event queue. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>getLatestGCI()</code></td>
<td>Gets the most recent GCI. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>getNdbError()</code></td>
<td>Retrieves an error. (See Section 2.3.20, “The NdbError Structure”.</td>
</tr>
<tr>
<td><code>getNdbErrorDetail()</code></td>
<td>Retrieves extra error details.</td>
</tr>
<tr>
<td><code>getNdbObjectName()</code></td>
<td>Retrieves the Ndb object name if one was set. Added in NDB 7.3.6.</td>
</tr>
<tr>
<td><code>getNextEventOpInEpoch2()</code></td>
<td>Gets the next event operation in this global checkpoint.</td>
</tr>
<tr>
<td><code>getNextEventOpInEpoch3()</code></td>
<td>Gets the next event operation in this global checkpoint, showing any received anyvalues. Added in NDB 7.3.20, 7.4.18, 7.5.9, and 7.6.4.</td>
</tr>
<tr>
<td><code>getNextReference()</code></td>
<td>Retrieves a reference or identifier for the Ndb object instance.</td>
</tr>
<tr>
<td><code>init()</code></td>
<td>Initializes an Ndb object and makes it ready for use.</td>
</tr>
<tr>
<td><code>isConsistent()</code></td>
<td>Whether all received events are consistent. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>isConsistentGCI()</code></td>
<td>Whether all received events for a given global checkpoint are consistent. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>isExpectingHigherQueuedEpochs()</code></td>
<td>Check whether there are new queued epochs, or there was a cluster failure event. Added in NDB 7.3.10 and 7.4.7.</td>
</tr>
<tr>
<td><code>nextEvent()</code></td>
<td>Gets the next event from the queue. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>nextEvent2()</code></td>
<td>Gets the next event from the queue. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>pollEvents()</code></td>
<td>Waits for an event to occur. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>pollEvents2()</code></td>
<td>Waits for an event to occur. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>setDatabaseName()</code></td>
<td>Sets the name of the current database.</td>
</tr>
<tr>
<td><code>setDatabaseSchemaName()</code></td>
<td>Sets the name of the current database schema.</td>
</tr>
<tr>
<td><code>setEventBufferQueueEmptyEpoch()</code></td>
<td>Enables queuing of empty events. Added in NDB 7.4.11 and NDB 7.5.2.</td>
</tr>
<tr>
<td><code>set_eventbuf_max_alloc()</code></td>
<td>Sets the current allocated maximum size of the event buffer. Added in NDB 7.3.3.</td>
</tr>
<tr>
<td><code>set_eventbuffer_free_percent()</code></td>
<td>Sets the percentage of event buffer memory that should be available before buffering resumes, once the limit has been reached. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td><code>setNdbObjectName()</code></td>
<td>For debugging purposes: sets an arbitrary name for this Ndb object. Added in NDB 7.3.6.</td>
</tr>
<tr>
<td><code>startTransaction()</code></td>
<td>Begins a transaction. (See Section 2.3.30, “The NdbTransaction Class”.</td>
</tr>
</tbody>
</table>

2.3.16.1 Ndb Class Constructor

Description. This creates an instance of Ndb, which represents a connection to the NDB Cluster. All NDB API applications should begin with the creation of at least one Ndb object. This requires the creation of at least one instance of Ndb_cluster_connection, which serves as a container for a cluster connection string.

Signature.

```
Ndb
  (Ndb_cluster_connection* ndb_cluster_connection,
```


const char* catalogName = "",
const char* schemaName = "def"
}

Parameters. The **Ndb** class constructor can take up to 3 parameters, of which only the first is required:

- **ndb_cluster_connection** is an instance of **Ndb_cluster_connection**, which represents a cluster connection string. (See Section 2.3.17, “The Ndb_cluster_connection Class”.)

 Prior to NDB 7.3.8 and NDB 7.4.3, it was possible to delete the **Ndb_cluster_connection** used to create a given instance of **Ndb** without first deleting the dependent **Ndb** object. (Bug #19999242)

- **catalogName** is an optional parameter providing a namespace for the tables and indexes created in any connection from the **Ndb** object.

 This is equivalent to what **mysqld** considers “the database”.

 The default value for this parameter is an empty string.

- The optional **schemaName** provides an additional namespace for the tables and indexes created in a given catalog.

 The default value for this parameter is the string “def”.

Return value. An **Ndb** object.

~Ndb() (Class Destructor). The destructor for the **Ndb** class should be called in order to terminate an instance of **Ndb**. It requires no arguments, nor any special handling.

2.3.16.2 Ndb::closeTransaction()

Description. This is one of two NDB API methods provided for closing a transaction (the other being **NdbTransaction::close()**). You must call one of these two methods to close the transaction once it has been completed, whether or not the transaction succeeded.

Important

If the transaction has not yet been committed, it is aborted when this method is called. See Section 2.3.16.35, “Ndb::startTransaction()”.

Signature.

```c
void closeTransaction
{
    NdbTransaction *transaction
}
```

Parameters. This method takes a single argument, a pointer to the **NdbTransaction** to be closed.

Return value. N/A.

2.3.16.3 Ndb::computeHash()

Description. This method can be used to compute a distribution hash value, given a table and its keys.

Important

computeHash() can be used only for tables that use native **NDB** partitioning.

Signature.
static int computeHash
{
 Uint32* hashvalueptr,
 const NdbDictionary::Table* table,
 const struct Key_part_ptr* keyData,
 void* xfrmbuf = 0,
 Uint32 xfrmbuflen = 0
}

Parameters. This method takes the following parameters:

- If the method call is successful, hashvalueptr is set to the computed hash value.
- A pointer to a table (see Section 2.3.37, “The Table Class”).
- keyData is a null-terminated array of pointers to the key parts that are part of the table's distribution key. The length of each key part is read from metadata and checked against the passed value (see Section 2.3.15, “The Key_part_ptr Structure”).
- xfrmbuf is a pointer to temporary buffer used to calculate the hash value.
- xfrmbuflen is the length of this buffer.

Note

If xfrmbuf is NULL (the default), then a call to malloc() or free() is made automatically, as appropriate. computeHash() fails if xfrmbuf is not NULL and xfrmbuflen is too small.

Previously, it was assumed that the memory returned by the malloc() call would always be suitably aligned, which is not always the case. Beginning with NDB 7.3.2, when malloc() provides a buffer to this method, the buffer is explicitly aligned after it is allocated, and before it is actually used. (Bug #16484617)

Return value. 0 on success, an error code on failure. (If the method call succeeds, the computed hash value is made available via hashvalueptr.)

2.3.16.4 Ndb::createEventOperation()

Description. This method creates a subscription to a database event.

Note

NDB API event subscriptions do not persist after an NDB Cluster has been restored using ndb_restore; in such cases, all of the subscriptions must be recreated explicitly.

Signature.

NdbEventOperation* createEventOperation
{
 const char *eventName
}

Parameters. This method takes a single argument, the unique eventName identifying the event to which you wish to subscribe.

Return value. A pointer to an NdbEventOperation object (or NULL, in the event of failure). See Section 2.3.21, “The NdbEventOperation Class”.

2.3.16.5 Ndb::dropEventOperation()
The Ndb Class

Description. This method drops a subscription to a database event represented by an NdbEventOperation object.

Important
Memory used by an event operation which has been dropped is not freed until the event buffer has been completely read. This means you must continue to call pollEvents() and nextEvent() in such cases until these methods return 0 and NULL, respectively in order for this memory to be freed.

Signature.
```c
int dropEventOperation
(``
    NdbEventOperation *eventOp
`');
```

Parameters. This method requires a single input parameter, a pointer to an instance of NdbEventOperation.

Return value. 0 on success; any other result indicates failure.

2.3.16.6 Ndb::getDictionary()

Description. This method is used to obtain an object for retrieving or manipulating database schema information. This Dictionary object contains meta-information about all tables in the cluster.

Note
The dictionary returned by this method operates independently of any transaction. See Section 2.3.4, "The Dictionary Class", for more information.

Signature.
```c
NdbDictionary::Dictionary* getDictionary
(``
    void
`');
```

Parameters. None.

Return value. An instance of the Dictionary class.

2.3.16.7 Ndb::getDatabaseName()

Description. This method can be used to obtain the name of the current database.

Signature.
```c
const char* getDatabaseName
(``
    void
`');
```

Parameters. None.

Return value. The name of the current database.

2.3.16.8 Ndb::getDatabaseSchemaName()

Description. This method can be used to obtain the current database schema name.
The Ndb Class

Signature.

```cpp
const char* getDatabaseSchemaName
{
    void
}
```

Parameters. None.

Return value. The name of the current database schema.

2.3.16.9 Ndb::getGCIEventOperations()

Description. Iterates over distinct event operations which are part of the current GCI, becoming valid after calling `nextEvent()`. You can use this method to obtain summary information for the epoch (such as a list of all tables) before processing the event data.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should use `getNextEventOpInEpoch2()` instead.

Signature.

```cpp
const NdbEventOperation* getGCIEventOperations
(
    Uint32* iter,
    Uint32* event_types
)
```

Parameters. An iterator and a mask of event types. Set `*iter=0` to start.

Return value. The next event operation; returns `NULL` when there are no more event operations. If `event_types` is not `NULL`, then after calling the method it contains a bitmask of the event types received.

2.3.16.10 Ndb::get_eventbuf_max_alloc()

Description. Gets the maximum memory, in bytes, that can be used for the event buffer. This is the same as reading the value of the `ndb_eventbuffer_max_alloc` system variable in the MySQL Server.

This method was added in NDB 7.3.3.

Signature.

```cpp
unsigned get_eventbuf_max_alloc
{
    void
}
```

Parameters. None.

Return value. The maximum memory available for the event buffer, in bytes.

2.3.16.11 Ndb::get_eventbuffer_free_percent()

Description. Gets `ndb_eventbuffer_free_percent`—that is, the percentage of event buffer memory that should be available before buffering resumes, once `ndb_eventbuffer_max_alloc` has been reached. This value is calculated as `used * 100 / ndb_eventbuffer_max_alloc`, where `used` is the amount of event buffer memory actually used, in bytes.

This method was added in NDB 7.4.3.
The Ndb Class

2.3.16.11 Ndb::get_eventbuffer_free_percent()

Description. The percentage \((\texttt{pct}) \) of event buffer memory that must be present. Valid range is 1 to 99 inclusive.

Parameters. None.

Return value. None.

2.3.16.12 Ndb::get_event_buffer_memory_usage()

Description. Gets event buffer usage as a percentage of \texttt{ndb_eventbuffer_max_alloc}. Unlike \texttt{get_eventbuffer_free_percent()}, this method makes complete usage information available in the form of an \texttt{EventBufferMemoryUsage} data structure.

This method was added in NDB 7.4.3.

Parameters. A reference to an \texttt{EventBufferMemoryUsage} structure, which receives the usage data.

Return value. None.

2.3.16.13 Ndb::getHighestQueuedEpoch()

Description. Added in NDB 7.4.3, this method supersedes \texttt{getLatestGCI()}, which is now deprecated and subject to removal in a future NDB Cluster release.

Prior to NDB 7.4.7, this method returned the highest epoch number in the event queue. In NDB 7.4.7 and later, it returns the highest epoch number found after calling \texttt{pollEvents2()} (Bug #20700220).

Parameters. None.

Return value. The most recent epoch number, an integer.

2.3.16.14 Ndb::getLatestGCI()

Description. Gets the index for the most recent global checkpoint.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should use \texttt{getHighestQueuedEpoch()} instead.
The Ndb Class

Parameters. None.

Return value. The most recent GCI, an integer.

2.3.16.15 Ndb::getNdbError()

Description. This method provides you with two different ways to obtain an NdbError object representing an error condition. For more detailed information about error handling in the NDB API, see NDB Cluster API Errors.

Signature. The getNdbError() method actually has two variants. The first of these simply gets the most recent error to have occurred:

```cpp
const NdbError& getNdbError()
{
    void
}
```

The second variant returns the error corresponding to a given error code:

```cpp
const NdbError& getNdbError(int errorCode)
```

Regardless of which version of the method is used, the NdbError object returned persists until the next NDB API method is invoked.

Parameters. To obtain the most recent error, simply call getNdbError() without any parameters. To obtain the error matching a specific errorCode, invoke the method passing the code (an int) to it as a parameter. For a listing of NDB API error codes and corresponding error messages, see Section 2.4, “NDB API Errors and Error Handling”.

Return value. An NdbError object containing information about the error, including its type and, where applicable, contextual information as to how the error arose. See Section 2.3.20, “The NdbError Structure”, for details.

2.3.16.16 Ndb::getNdbErrorDetail()

Description. This method provides an easy and safe way to access any extra information about an error. Rather than reading these extra details from the NdbError object’s details property (now now deprecated in favor of getNdbErrorDetail()—see Bug #48851), this method enables storage of such details in a user-supplied buffer, returning a pointer to the beginning of this buffer. In the event that the string containing the details exceeds the length of the buffer, it is truncated to fit.

getNdbErrorDetail() provides the source of an error in the form of a string. In the case of a unique constraint violation (error 893), this string supplies the fully qualified name of the index where the problem originated, in the format database-name/schema-name/table-name/index-name, (NdbError.details, on the other hand, supplies only an index ID, and it is often not readily apparent to which table this index belongs.) Regardless of the type of error and details concerning this error, the string retrieved by getNdbErrorDetail() is always null-terminated.

Signature. The getNdbErrorDetail() method has the following signature:

```cpp
const char* getNdbErrorDetail()
```
Parameters. To obtain detailed information about an error, call `getNdbErrorDetail()` with a reference to the corresponding `NdbError` object, a `buffer`, and the length of this buffer (expressed as an unsigned 32-bit integer).

Return value. When extra details about the `error` are available, this method returns a pointer to the beginning of the `buffer` supplied. As stated previously, if the string containing the details is longer than `bufferLength`, the string is truncated to fit. In the event that no additional details are available, `getNdbErrorDetail()` returns `NULL`.

2.3.16.17 Ndb::getNdbObjectName()

Description. If a name was set for the `Ndb` object prior to its initialization, you can retrieve it using this method. Used for debugging.

Signature.
```
const char* getNdbObjectName
{
    void
} const
```

Parameters. None.

Return value. The `Ndb` object name, if one has been set using `setNdbObjectName()`. Otherwise, this method returns 0.

This method was added in NDB 7.3.6. (Bug #18419907)

2.3.16.18 Ndb::getNextEventOpInEpoch2()

Description. Iterates over individual event operations making up the current global checkpoint. Use following `nextEvent2()` to obtain summary information for the epoch, such as a listing of all tables, before processing event data.

Note
Exceptional epochs do not have any event operations associated with them.

Signature.
```
const NdbEventOperation* getNextEventOpInEpoch2
{
    Uint32* iter,
    Uint32* event_types
}
```

Parameters. Set `iter` to 0 initially; this is `NULL` when there are no more events within this epoch. If `event_types` is not `NULL`, it holds a bitmask of the event types received.

Return value. A pointer to the next `NdbEventOperation`, if there is one.

2.3.16.19 Ndb::getNextEventOpInEpoch3()

Description. Iterates over individual event operations making up the current global checkpoint. Use following `nextEvent2()` to obtain summary information for the epoch, such as a listing of all tables, before processing event data. Is the same as `getNextEventOpInEpoch3()` but with the addition of
a third argument which holds the merger of all AnyValues received, showing which bits are set for all operations on a given table.

Note

Exceptional epochs do not have any event operations associated with them.

Signature.

```cpp
const NdbEventOperation* getNextEventOpInEpoch2(
    Uint32* iter,
    Uint32* event_types,
    Uint32* cumulative_any_value
)
```

Parameters.
Set `iter` to 0 initially; this is `NULL` when there are no more events within this epoch. If `event_types` is not `NULL`, it holds a bitmask of the event types received. If `cumulative_any_value` is not `NULL`, it holds the merger of all AnyValues received.

Return value.
A pointer to the next `NdbEventOperation`, if there is one.

This method was added in NDB 7.3.20, 7.4.18, 7.5.9, and 7.6.4. (Bug #26333981)

2.3.16.20 Ndb::getReference()

Description.
This method can be used to obtain a reference to a given `Ndb` object. This is the same value that is returned for a given operation corresponding to this object in the output of `DUMP 2350`.

Signature.

```cpp
Uint32 getReference()
{
    void
}
```

Parameters.
None.

Return value.
A 32-bit unsigned integer.

2.3.16.21 Ndb::init()

Description.
This method is used to initialize an `Ndb` object.

Signature.

```cpp
int init(
    int maxNoOfTransactions = 4
)
```

Parameters.
The `init()` method takes a single parameter `maxNoOfTransactions` of type integer. This parameter specifies the maximum number of parallel `NdbTransaction` objects that can be handled by this instance of `Ndb`. The maximum permitted value for `maxNoOfTransactions` is 1024; if not specified, it defaults to 4.

Note

Each scan or index operation uses an extra `NdbTransaction` object.

Return value.
This method returns an `int`, which can be either of the following two values:
• 0: indicates that the Ndb object was initialized successfully.
• -1: indicates failure.

2.3.16.22 Ndb::isConsistent()

Description. Check if all events are consistent. If a node failure occurs when resources are exhausted, events may be lost and the delivered event data might thus be incomplete. This method makes it possible to determine if this is the case.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should instead use `NdbEventOperation::getEventType2()` to determine the type of event—in this instance, whether the event is of type `TE_INCONSISTENT`. See Section 2.3.6.23, “Event::TableEvent”.

Signature.

```cpp
bool isConsistent
{
    Uint64& gci
}
```

Parameters. A reference to a global checkpoint index. This is the first inconsistent GCI found, if any.

Return value. `true` if all events are consistent.

2.3.16.23 Ndb::isConsistentGCI()

Description. If a node failure occurs when resources are exhausted, events may be lost and the delivered event data might thus be incomplete. This method makes it possible to determine if this is the case by checking whether all events in a given GCI are consistent.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should instead use `NdbEventOperation::getEventType2()` to determine the type of event—in this instance, whether the event is of type `TE_INCONSISTENT`. See Section 2.3.6.23, “Event::TableEvent”.

Signature.

```cpp
bool isConsistentGCI
{
    Uint64 gci
}
```

Parameters. A global checkpoint index.

Return value. `true` if this GCI is consistent; `false` indicates that the GCI may be possibly inconsistent.

2.3.16.24 Ndb::isExpectingHigherQueuedEpochs()

Description. Check whether higher queued epochs have been seen by the last invocation of `Ndb::pollEvents2()`, or whether a `TE_CLUSTER_FAILURE` event was found.

It is possible, after a cluster failure has been detected, for the highest queued epoch returned by `pollEvents2()` not to be increasing any longer. In this case, rather than poll for more events, you should instead consume events with `nextEvent()` until it detects a `TE_CLUSTER_FAILURE` is detected, then reconnect to the cluster when it becomes available again.

This method was added in NDB 7.3.10 and 7.4.7 (Bug #18753887).
Signature

```c
bool isExpectingHigherQueuedEpochs
```

```c

typedef struct {овои void }
```

Parameters

None.

Return value

True if queued epochs were seen by the last `pollEvents2()` call or, in the event of cluster failure.

2.3.16.25 Ndb::nextEvent()

Description

Returns the next event operation having data from a subscription queue.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should use `nextEvent2()` instead.

Signature

```c
NdbEventOperation* nextEvent2
```

```c

typedef struct {овои void }
```

Parameters

None.

Return value

This method returns an `NdbEventOperation` object representing the next event in a subscription queue, if there is such an event. If there is no event in the queue, it returns `NULL` instead.

Beginning with NDB 7.3.6, this method clears inconsistent data events from the event queue when processing them. In order to able to clear all such events in these and later versions, applications must call this method even in cases when `pollEvents()` has already returned 0. (Bug #18716991)

2.3.16.26 Ndb::nextEvent2()

Description

Returns the event operation associated with the data dequeued from the event queue. This should be called repeatedly after `pollEvents2()` populates the queue, until the event queue is empty.

Added in NDB 7.4.3, this method supersedes `nextEvent()`, which is now deprecated and subject to removal in a future NDB Cluster release.

After calling this method, use `NdbEventOperation::getEpoch()` to determine the epoch, then check the type of the returned event data using `NdbEventOperation::getEventType2()`.

Handling must be provided for all exceptional `TableEvent` types, including `TE_EMPTY`, `TE_INCONSISTENT`, and `TE_OUT_OF_MEMORY` (also introduced in NDB 7.4.3). No other `NdbEventOperation` methods than the two named here should be called for an exceptional epoch.

Returning empty epochs (`TE_EMPTY`) may flood applications when data nodes are idle. If this is not desirable, applications should filter out any empty epochs.

Signature

```c
NdbEventOperation* nextEvent2
```

```c

typedef struct {овои void }
```

Parameters

None.
Return value. This method returns an `NdbEventOperation` object representing the next event in an event queue, if there is such an event. If there is no event in the queue, it returns `NULL` instead.

2.3.16.27 Ndb::pollEvents()

Description. This method waits for a GCP to complete. It is used to determine whether any events are available in the subscription queue.

This method waits for the next epoch, rather than the next GCP. See Section 2.3.21, “The `NdbEventOperation` Class”, for more information.

In NDB 7.4.3 and later, you can (and should) use `pollEvents2()` instead of this method.

Prior to NDB 7.4.7, `pollEvents()` was not compatible with the exceptional `TableEvent` types added in NDB 7.4.3 (Bug #20646496); in NDB 7.4.7 and later, `pollEvents()` is compatible with these event types, as described later in this section.

Signature.

```c
int pollEvents
{
    int maxTimeToWait,
    Uint64* latestGCI = 0
}
```

Parameters. This method takes the two parameters listed here:

- The maximum time to wait, in milliseconds, before “giving up” and reporting that no events were available (that is, before the method automatically returns 0).

 A negative value causes the wait to be indefinite and never time out. This is not recommended (and is not supported by the successor method `pollEvents2()`).

- The index of the most recent global checkpoint. Normally, this may safely be permitted to assume its default value, which is 0.

Return value. `pollEvents()` returns a value of type `int`, which may be interpreted as follows:

- > 0: There are events available in the queue.
- 0: There are no events available.
- In NDB 7.4.7 and later, a negative value indicates failure and `NDB_FAILURE_GCI` (~(`Uint64`)0) indicates cluster failure (Bug #18753887); 1 is returned when encountering an exceptional event, except when only `TE_EMPTY` events are found, as described later in this section.

In NDB 7.4.7 and later, when `pollEvents()` finds an exceptional event at the head of the event queue, the method returns 1 and otherwise behaves as follows:

- Empty events (`TE_EMPTY`) are removed from the event queue head until an event containing data is found. When this results in the entire queue being processed without encountering any data, the method returns 0 (no events available) rather than 1. This behavior makes this event type transparent to an application using `pollEvents()`.

- After encountering an event containing inconsistent data (`TE_INCONSISTENT`) due to data node buffer overflow, the next call to `nextEvent()` call removes the inconsistent data event data from the event queue, and returns `NULL`. You should check the inconsistency by calling `isConsistent()` immediately thereafter.

 Important: Although the inconsistent event data is removed from the event queue by calling `nextEvent()`, information about the inconsistency is removed only by another `nextEvent()` call following this, that actually finds an event containing data.
• When `pollEvents()` finds a data buffer overflow event (TE_OUT_OF_MEMORY), the event data is added to the event queue whenever event buffer usage exceeds `ndb_eventbuffer_max_alloc`. In this case, the next call to `nextEvent()` exits the process.

2.3.16.28 Ndb::pollEvents2()

Description. Waits for an event to occur. Returns as soon as any event data is available. This method also moves an epoch's complete event data to the event queue.

Added in NDB 7.4.3, this method supersedes `pollEvents()`, which is now deprecated and subject to removal in a future NDB Cluster release.

Signature.

```c
int pollEvents2
    (int aMillisecondNumber,
     Uint64* highestQueuedEpoch = 0)
```

Parameters. This method takes the two parameters listed here:

- The maximum time to wait, in milliseconds, before giving up and reporting that no events were available (that is, before the method automatically returns 0).

 In NDB 7.4.7 and later, specifying a negative value for this argument causes `pollEvents2()` to return -1, indicating an error (Bug #20762291).

- The index of the highest queued epoch. Normally, this may safely be permitted to assume its default value, which is 0. If this value is not NULL and new event data is available in the event queue, it is set to the highest epoch found in the available event data.

Return value. `pollEvents2()` returns an integer whose value can be interpreted as follows:

- > 0: There are events available in the queue.
- 0: There are no events available.
- < 0: Indicates failure (possible error).

2.3.16.29 Ndb::setDatabaseName()

Description. This method is used to set the name of the current database.

Signature.

```c
void setDatabaseName
    (const char *databaseName)
```

Parameters. `setDatabaseName()` takes a single, required parameter, the name of the new database to be set as the current database.

Return value. N/A.

2.3.16.30 Ndb::setDatabaseSchemaName()

Description. This method sets the name of the current database schema.

Signature.

```c
void setDatabaseSchemaName
```
The Ndb Class

```c
{
    const char *databaseSchemaName
}
```

Parameters. The name of the database schema.

Return value. N/A.

2.3.16.31 Ndb::setEventBufferQueueEmptyEpoch()

Description. Queuing of empty epochs is disabled by default. This method can be used to enable such queuing, in which case any new, empty epochs entering the event buffer following the method call are queued.

When queuing of empty epochs is enabled, `nextEvent()` associates an empty epoch to one and only one of the subscriptions (event operations) connected to the subscribing Ndb object. This means that there can be no more than one empty epoch per subscription, even though the user may have many subscriptions associated with the same Ndb object.

Signature.

```c
void setEventBufferQueueEmptyEpoch
{
    bool queue_empty_epoch
}
```

Parameters. This method takes a single input parameter, a boolean. Invoking the method with `true` enables queuing of empty events; passing `false` to the method disables such queuing.

Return value. None.

Note

`setEventBufferQueueEmptyEpoch()` has no associated getter method. This is intentional, and is due to the fact this setter applies to queuing new epochs, whereas the queue itself may still reflect the state of affairs that existed prior to invoking the setter. Thus, during a transition period, an empty epoch might be found in the queue even if queuing is turned off.

`setEventBufferQueueEmptyEpoch()` was added in NDB 7.4.11 and NDB 7.5.2.

2.3.16.32 Ndb::set_eventbuf_max_alloc()

Description. Sets the maximum memory, in bytes, that can be used for the event buffer. This has the same effect as setting the value of the `ndb_eventbuffer_max_alloc` system variable in the MySQL Server.

This method was added in NDB 7.3.3.

Signature.

```c
void set_eventbuf_max_alloc
{
    unsigned size
}
```

Parameters. The desired maximum `size` for the event buffer, in bytes.

Return value. None.

2.3.16.33 Ndb::set_eventbuffer_free_percent()

[112]
Description. Sets `ndb_eventbuffer_free_percent`—that is, the percentage of event buffer memory that should be available before buffering resumes, once `ndb_eventbuffer_max_alloc` has been reached.

This method was added in NDB 7.4.3.

Signature.

```cpp
def set_eventbuffer_free_percent(pct: int) -> int:
    pass
```

Parameters. The percentage (`pct`) of event buffer memory that must be present. Valid range is 1 to 99 inclusive.

Return value. The value that was set.

2.3.16.34 Ndb::setNdbObjectName()

Description. Starting with NDB 7.3.6, you can set an arbitrary, human-readable name to identify an Ndb object for debugging purposes. This name can then be retrieved using `getNdbObjectName()`.

(Bug #18419907) This must be done prior to calling `init()` for this object; trying to set a name after initialization fails with an error.

You can set a name only once for a given Ndb object; subsequent attempts after the name has already been set fail with an error.

Signature.

```cpp
def setNdbObjectName(name: str) -> int:
    pass
```

Parameters. A `name` that is intended to be human-readable.

Return value. 0 on success.

2.3.16.35 Ndb::startTransaction()

Description. This method is used to begin a new transaction. There are three variants, the simplest of these using a table and a partition key or partition ID to specify the transaction coordinator (TC). The third variant makes it possible for you to specify the TC by means of a pointer to the data of the key.

Important

When the transaction is completed it must be closed using `NdbTransaction::close()` or `Ndb::closeTransaction()`. Failure to do so aborts the transaction. This must be done regardless of the transaction's final outcome, even if it fails due to an error.

See Section 2.3.16.2, "Ndb::closeTransaction()", and Section 2.3.30.1, "NdbTransaction::close()", for more information.

Signature.

```cpp
NdbTransaction* startTransaction(
    table: NdbDictionary::Table = 0,
    keyData: str = 0,
    keyLen: Uint32 = 0
) -> NdbTransaction*
```
Parameters. This method takes the following three parameters:

- **table**: A pointer to a `Table` object. This is used to determine on which node the transaction coordinator should run.
- **keyData**: A pointer to a partition key corresponding to `table`.
- **keyLen**: The length of the partition key, expressed in bytes.

Distribution-aware forms of startTransaction(). It is also possible to employ *distribution awareness* with this method; that is, to suggest which node should act as the transaction coordinator.

Signature.

```c
NdbTransaction* startTransaction
(  const NdbDictionary::Table* table,
  const struct Key_part_ptr* keyData,
  void* xfrmbuf = 0,
  Uint32 xfrmbuflen = 0)
```

Parameters. When specifying the transaction coordinator, this method takes the four parameters listed here:

- A pointer to a `table` (Table object) used for deciding which node should act as the transaction coordinator.
- A null-terminated array of pointers to the values of the distribution key columns. The length of the key part is read from metadata and checked against the passed value.

 A `Key_part_ptr` is defined as shown in Section 2.3.15, "The Key_part_ptr Structure".

- A pointer to a temporary buffer, used to calculate the hash value.
- The length of the buffer.

If `xfrmbuf` is NULL (the default), then a call to `malloc()` or `free()` is made automatically, as appropriate. `startTransaction()` fails if `xfrmbuf` is not NULL and `xfrmbuflen` is too small.

Example. Suppose that the table’s partition key is a single `BIGINT` column. Then you would declare the distribution key array as shown here:

```c
Key_part_ptr distkey[2];
```

The value of the distribution key would be defined as shown here:

```c
unsigned long long distkeyValue = 23;
```

The pointer to the distribution key array would be set as follows:

```c
distkey[0].ptr = (const void*) &distkeyValue;
```

The length of this pointer would be set accordingly:

```c
distkey[0].len = sizeof(distkeyValue);
```

The distribution key array must terminate with a NULL element. This is necessary to avoid having an additional parameter providing the number of columns in the distribution key:

```c
distkey[1].ptr = NULL;
distkey[1].len = NULL;
```
Setting the buffer to `NULL` permits `startTransaction()` to allocate and free memory automatically:

```c
xfrmbuf= NULL;
xfrmbuflen= 0;
```

Note

You can also specify a buffer to save having to make explicit `malloc()` and `free()` calls, but calculating an appropriate size for this buffer is not a simple matter; if the buffer is not `NULL` but its length is too short, then the `startTransaction()` call fails. However, if you choose to specify the buffer, 1 MB is usually a sufficient size.

Now, when you start the transaction, you can access the node that contains the desired information directly.

Another distribution-aware version of this method makes it possible for you to specify a table and partition (using the partition ID) as a hint for selecting the transaction coordinator, and is defined as shown here:

```c
NdbTransaction* startTransaction
    (const NdbDictionary::Table* table,
     Uint32 partitionId)
```

In the event that the cluster has the same number of data nodes as it has replicas, specifying the transaction coordinator gains no improvement in performance, since each data node contains the entire database. However, where the number of data nodes is greater than the number of replicas (for example, where `NoOfReplicas` is set equal to 2 in a cluster with 4 data nodes), you should see a marked improvement in performance by using the distribution-aware version of this method.

It is still possible to use this method as before, without specifying the transaction coordinator. In either case, you must still explicitly close the transaction, whether or not the call to `startTransaction()` was successful.

Return value. On success, an `NdbTransaction` object. In the event of failure, `NULL` is returned.

2.3.17 The Ndb_cluster_connection Class

This class represents a connection to a cluster of data nodes.

Parent class. None

Child classes. None

Description. An NDB application program should begin with the creation of a single `Ndb_cluster_connection` object, and typically makes use of a single `Ndb_cluster_connection`. The application connects to a cluster management server when this object's `connect()` method is called. By using the `wait_until_ready()` method it is possible to wait for the connection to reach one or more data nodes.

Note

An instance of `Ndb_cluster_connection` used to create an `Ndb` object. Prior to NDB 7.3.8 and NDB 7.4.3, it was possible to delete the `Ndb_cluster_connection` used to create a given instance of `Ndb` without first deleting the dependent `Ndb` object. (Bug #19999242)

Application-level partitioning. There is no restriction against instantiating multiple `Ndb_cluster_connection` objects representing connections to different management servers in
a single application, nor against using these for creating multiple instances of the Ndb class. Such Ndb_cluster_connection objects (and the Ndb instances based on them) are not required even to connect to the same cluster.

For example, it is entirely possible to perform application-level partitioning of data in such a manner that data meeting one set of criteria are “handed off” to one cluster using an Ndb object that makes use of an Ndb_cluster_connection object representing a connection to that cluster, while data not meeting those criteria (or perhaps a different set of criteria) can be sent to a different cluster through a different instance of Ndb that makes use of an Ndb_cluster_connection “pointing” to the second cluster.

It is possible to extend this scenario to develop a single application that accesses an arbitrary number of clusters. However, in doing so, the following conditions and requirements must be kept in mind:

- A cluster management server (ndb_mgmd) can connect to one and only one cluster without being restarted and reconfigured, as it must read the data telling it which data nodes make up the cluster from a configuration file (config.ini).

- An Ndb_cluster_connection object “belongs” to a single management server whose host name or IP address is used in instantiating this object (passed as the connection_string argument to its constructor); once the object is created, it cannot be used to initiate a connection to a different management server.

(See Section 2.3.17.1, “Ndb_cluster_connection Class Constructor”.)

- An Ndb object making use of this connection (Ndb_cluster_connection) cannot be re-used to connect to a different cluster management server (and thus to a different collection of data nodes making up a cluster). Any given instance of Ndb is bound to a specific Ndb_cluster_connection when created, and that Ndb_cluster_connection is in turn bound to a single and unique management server when it is instantiated.

(See Section 2.3.16.1, “Ndb Class Constructor”.)

- The bindings described above persist for the lifetimes of the Ndb and Ndb_cluster_connection objects in question.

Therefore, it is imperative in designing and implementing any application that accesses multiple clusters in a single session, that a separate set of Ndb_cluster_connection and Ndb objects be instantiated for connecting to each cluster management server, and that no confusion arises as to which of these is used to access which NDB Cluster.

It is also important to keep in mind that no direct “sharing” of data or data nodes between different clusters is possible. A data node can belong to one and only one cluster, and any movement of data between clusters must be accomplished on the application level.

For examples demonstrating how connections to two different clusters can be made and used in a single application, see Section 2.5.2, “NDB API Example Using Synchronous Transactions and Multiple Clusters”, and Section 3.6.2, “MGM API Event Handling with Multiple Clusters”.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ndb_cluster_connection()</td>
<td>Constructor; creates a connection to a cluster of data nodes.</td>
</tr>
<tr>
<td>connect()</td>
<td>Connects to a cluster management server.</td>
</tr>
<tr>
<td>get_auto_reconnect()</td>
<td>Gets the auto-reconnection setting for API nodes using this Ndb_cluster_connection.</td>
</tr>
</tbody>
</table>
2.3.17.1 Ndb_cluster_connection Class Constructor

Description. This method creates a connection to an NDB Cluster, that is, to a cluster of data nodes. The object returned by this method is required in order to instantiate an Ndb object. Thus, every NDB API application requires the use of an Ndb_cluster_connection.

Ndb_cluster_connection has two constructors. The first of these is shown here:

Signature.

```c
Ndb_cluster_connection
{
    const char* connection_string = 0
}
```

Parameters. This version of the constructor requires a single `connection_string` parameter, pointing to the location of the management server.

The second constructor takes a node ID in addition to the connection string argument. Its signature and parameters are shown here:

Signature.

```c
Ndb_cluster_connection
{
    const char* connection_string,
```
The Ndb_cluster_connection Class

```cpp
int force_api_nodeid
```

Parameters. This version of the constructor takes two arguments, a `connection_string` and the node ID (`force_api_nodeid`) to be used by this API node. This node ID overrides any node ID value set in the `connection_string` argument.

Return value. (Both versions:) An instance of `Ndb_cluster_connection`.

2.3.17.2 Ndb_cluster_connection::connect()

Description. This method connects to a cluster management server.

Signature.

```cpp
int connect
{
    int retries = 30,
    int delay = 1,
    int verbose = 0
}
```

Parameters. This method takes three parameters, all of which are optional:

- `retries` specifies the number of times to retry the connection in the event of failure. The default value is 30.

 0 means that no additional attempts to connect are made in the event of failure; using a negative value for `retries` results in the connection attempt being repeated indefinitely.

- The `delay` represents the number of seconds between reconnect attempts; the default is 1 second.

- `verbose` indicates whether the method should output a report of its progress, with 1 causing this reporting to be enabled; the default is 0 (reporting disabled).

Return value. This method returns an `int`, which can have one of the following 3 values:

- 0: The connection attempt was successful.
- 1: Indicates a recoverable error.
- -1: Indicates an unrecoverable error.

2.3.17.3 Ndb_cluster_connection::get_auto_reconnect()

Description. This method retrieves the current `AutoReconnect` setting for a given `Ndb_cluster_connection`. For more detailed information, see Section 2.3.17.12, “Ndb_cluster_connection::set_auto_reconnect()”.

Signature.

```cpp
int get_auto_reconnect
{
    void
}
```

Parameters. None.

Return value. An integer value 0 or 1, corresponding to the current `AutoReconnect` setting in effect for this connection. 0 forces API nodes to use new connections to the cluster, while 1 enables API nodes to re-use existing connections.

2.3.17.4 Ndb_cluster_connection::get_latest_error()
The Ndb_cluster_connection Class

Description. This method can be used to determine whether or not the most recent connect() attempt made by this Ndb_cluster_connection succeeded. If the connection succeeded, get_latest_error() returns 0; otherwise, it returns 1. If the connection attempt failed, use Ndb_cluster_connection::get_latest_error_msg() to obtain an error message giving the reason for the failure.

Signature.

```c
int get_latest_error
    (     
    void     
) const
```

Parameters. None.

Return value. 1 or 0. A return value of 1 indicates that the latest attempt to connect failed; if the attempt succeeded, a 0 is returned.

2.3.17.5 Ndb_cluster_connection::get_latest_error_msg()

Description. If the most recent connection attempt by this Ndb_cluster_connection failed (as determined by calling get_latest_error()), this method provides an error message supplying information about the reason for the failure.

Signature.

```c
const char* get_latest_error_msg
    (     
    void     
) const
```

Parameters. None.

Return value. A string containing an error message describing a failure by Ndb_cluster_connection::connect(). If the most recent connection attempt succeeded, an empty string is returned.

2.3.17.6 Ndb_cluster_connection::get_max_adaptive_send_time()

Description. Get the minimum time in milliseconds that is permit to lapse before the adaptive send mechanism forces all pending signals to be sent.

Signature.

```c
Uint32 get_max_adaptive_send_time
    (     
)     
```

Parameters. None.

Return value. Wait time as a number of milliseconds. This should always be a value between 0 and 10, inclusive.

2.3.17.7 Ndb_cluster_connection::get_next_ndb_object()

Description. This method is used to iterate over a set of Ndb objects, retrieving them one at a time.

Signature.

```c
const Ndb* get_next_ndb_object
    (     
)     
```
The Ndb_cluster_connection Class

```cpp
class Ndb_cluster_connection {
public:

  const Ndb* get_next_Ndb_object(const Ndb* p)
  { ... }

  int get_num_recv_threads() const
  { ... }

  int get_recv_thread_activation_threshold() const
  { ... }

  const char* get_system_name() const
  { ... }
};
```

Parameters. This method takes a single parameter, a pointer to the last Ndb object to have been retrieved or NULL.

Return value. Returns the next Ndb object, or NULL if no more Ndb objects are available.

Iterating over Ndb objects. To retrieve all existing Ndb objects, perform the following three steps:

1. Invoke the lock_ndb_objects() method. This prevents the creation of any new instances of Ndb until the unlock_ndb_objects() method is called.

2. Retrieve the first available Ndb object by passing NULL to get_next_ndb_object(). You can retrieve the second Ndb object by passing the pointer retrieved by the first call to the next get_next_ndb_object() call, and so on. When a pointer to the last available Ndb instance is used, the method returns NULL.

3. After you have retrieved all desired Ndb objects, you should re-enable Ndb object creation by calling the unlock_ndb_objects() method.

2.3.17.8 Ndb_cluster_connection::get_num_recv_threads()

Description. Get the number of receiver threads.

Signature.

```cpp
int get_num_recv_threads()
{ ... } const
```

Parameters. None.

Return value. The number of receiver threads.

2.3.17.9 Ndb_cluster_connection::get_recv_thread_activation_threshold()

Description. Get the level set for activating the receiver thread bound by set_recv_thread_cpu().

Signature.

```cpp
int get_recv_thread_activation_threshold()
{ ... } const
```

Parameters. None.

Return value. An integer threshold value. See Section 2.3.17.18, “Ndb_cluster_connection::set_recv_thread_activation_threshold()”, for information about interpreting this value.

2.3.17.10 Ndb_cluster_connection::get_system_name()

Description. Gets the system name from the cluster configuration. This is the value of the Name system configuration parameter set in the cluster’s config.ini configuration file.

Signature.

```cpp
const char* get_system_name
```
Parameters. None.

Return value. The cluster system name. If not set in the cluster configuration file, this is a generated value in the form `MC_timestamp` (for example, `MC_20170426182343`), using the time that the management server was started.

2.3.17.11 `ndb_cluster_connection::lock_ndb_objects()`

Description. Calling this method prevents the creation of new instances of the `Ndb` class. This method must be called prior to iterating over multiple `Ndb` objects using `get_next_ndb_object()`.

Signature.

```c
void lock_ndb_objects
    (const
     )
```

Parameters. None.

Return value. None.

This method was made `const` in NDB 7.3.15, 7.4.13, and 7.5.4 (Bug #23709232).

For more information, see Section 2.3.17.7, “`ndb_cluster_connection::get_next_ndb_object()`”.

2.3.17.12 `Ndb_cluster_connection::set_auto_reconnect()`

Description. An API node that is disconnected from the cluster is forced to use a new connection object to reconnect, unless this behavior is overridden by setting `AutoReconnect = 1` in the `config.ini` file or calling this method with 1 as the input value. Calling the method with 0 for the value has the same effect as setting the `AutoReconnect` configuration parameter (also introduced in those NDB Cluster versions) to 0; that is, API nodes are forced to create new connections.

![Important]

When called, this method overrides any setting for `AutoReconnect` made in the `config.ini` file.

For more information, see Defining SQL and Other API Nodes in an NDB Cluster.

Signature.

```c
void set_auto_reconnect
    (int value
     )
```

Parameters. A `value` of 0 or 1 which determines API node reconnection behavior. 0 forces API nodes to use new connections (`Ndb_cluster_connection` objects); 1 permits API nodes to re-use existing connections to the cluster.

Return value. None.

2.3.17.13 `Ndb_cluster_connection::set_data_node_neighbour()`

Description. Set data node neighbor of the connection, used for optimal placement of the transaction coordinator. This method be used after creating the `Ndb_cluster_connection`, but
prior to starting any query threads. This is due to the fact that this method may change the internal state of the `Ndb_cluster_connection` shared by the threads using it. This state is not thread-safe; changing it can lead to non-optimal node selection at the time of the change.

You can use the `ndb_data_node_neighbour` server system variable to set a data node neighbor for an NDB Cluster SQL node.

This method was added in NDB 7.5.2.

Signature.

```c
void set_data_node_neighbour
    (Uint32 neighbour_node)
```

Parameters. The ID of the node to be used as the neighbor.

Return value. None.

2.3.17.14 Ndb_cluster_connection::set_max_adaptive_send_time()

Description. Set the minimum time in milliseconds that is permit to lapse before the adaptive send mechanism forces all pending signals to be sent.

Signature.

```c
void set_max_adaptive_send_time
    (Uint32 milliseconds)
```

Parameters. Wait time in milliseconds. The range is 0-10, with 10 being the default value.

Return value. None.

2.3.17.15 Ndb_cluster_connection::set_name()

Description. Sets a name for the connection. If the name is specified, it is reported in the cluster log.

Signature.

```c
void set_name
    (const char* name)
```

Parameters. The `name` to be used as an identifier for the connection.

Return value. None.

2.3.17.16 Ndb_cluster_connection::set_num_recv_threads()

Description. Set the number of receiver threads bound to the CPU (or CPUs) determined using `set_recv_thread_cpu()` and with the threshold set by `set_recv_thread_activation_threshold()`.

This method should be invoked before trying to connect to any other nodes.

Signature.
The Ndb_cluster_connection Class

```c
int set_num_recv_threads(
    Uint32 num_recv_threads);
```

Parameters. The number of receive threads. The only supported value is 1.

Return value. -1 indicates an error; any other value indicates success.

2.3.17.17 Ndb_cluster_connection::set_optimized_node_selection()

Description. This method can be used to override the `connect()` method’s default behavior as regards which node should be connected to first.

Signature.

```c
void set_optimized_node_selection(
    int value);
```

Parameters. An integer `value`.

Return value. None.

2.3.17.18 Ndb_cluster_connection::set_recv_thread_activation_threshold()

Description. Set the level for activating the receiver thread bound by `set_recv_thread_cpu()`. Below this level, normal user threads are used to receive signals.

Signature.

```c
int set_recv_thread_activation_threshold(
    Uint32 threshold);
```

Parameters. An integer `threshold` value. 16 or higher means that receive threads are never used as receivers. 0 means that the receive thread is always active, and that retains poll rights for its own exclusive use, effectively blocking all user threads from becoming receivers. In such cases care should be taken to ensure that the receive thread does not compete with the user thread for CPU resources; it is preferable for it to be locked to a CPU for its own exclusive use. The default is 8.

Return value. -1 indicates an error; any other value indicates success.

2.3.17.19 Ndb_cluster_connection::set_service_uri()

Description. Beginning with NDB 7.5.7 and NDB 7.8.2, this method can be used to create a URI for publication in `service_URI` column of the the application’s row in the `ndbinfo.processes` table.

Provided that this method is called prior to invoking `connect()`, the service URI is published immediately upon connection; otherwise, it is published after a delay of up to `HeartbeatIntervalDbApi` milliseconds.

Signature.

```c
int set_service_uri(
    const char* scheme,
    const char* host,
    int port,
    const char* path);
```
The Ndb_cluster_connection Class

Parameters. This method takes the parameters listed here:

- **scheme**: The URI scheme. This is restricted to lowercase letters, numbers, and the characters `.`, `+`, and `−` (period, plus sign, and dash). The maximum length is 16 characters; any characters over this limit are truncated.

- **host**: The URI network address or host name. The maximum length is 48 characters (sufficient for an IPv6 network address); any characters over this limit are truncated. If null, each data node reports the network address from its own connection to this node. An Ndb_cluster_connection that uses multiple transporters or network addresses to connect to different data nodes is reflected in multiple rows in the ndbinfo.processes table.

- **port**: The URI port. This is not published if it is equal to 0.

- **path**: The URI path, possibly followed by a query string beginning with `?`. The maximum combined length of the path and query may not exceed 128 characters; if longer, it is truncated to this length.

 The path may not begin with a double slash (`//`).

Return value. 0 on success, 1 in the event of a syntax error.

2.3.17.20 Ndb_cluster_connection::set_recv_thread_cpu()

Description. Set the CPU or CPUs to which the receiver thread should be bound. Set the level for activating the receiver thread as a receiver by invoking set_recv_thread_activation_threshold(). Unset the binding for this receiver thread by invoking unset_recv_thread_cpu().

Signature.

```c
int set_recv_thread_cpu
{
    Uint16* cpuid_array,
    Uint32 array_len,
    Uint32 recv_thread_id = 0
}
```

Parameters. This method takes three parameters, listed here:

- An array of one or more CPU IDs to which the receive thread should be bound

- The length of this array

- The thread ID of the receive thread to bind. The default value is 0.

Return value. -1 indicates an error; any other value indicates success.

2.3.17.21 Ndb_cluster_connection::set_timeout()

Description. Used to set a timeout for the connection, to limit the amount of time that we may block when connecting.

This method is actually a wrapper for the function ndb_mgm_set_timeout(). For more information, see Section 3.2.4.12, “ndb_mgm_set_timeout()”.

Signature.

```c
int set_timeout
{
    int timeout_ms
```
2.3.17.22 Ndb_cluster_connection::unlock_ndb_objects()

Description. This method undoes the effects of the lock_ndb_objects() method, making it possible to create new instances of Ndb objects using the get_next_ndb_object() method.

Signature.

```cpp
void unlock_ndb_objects()
```

Parameters. None.

Return value. None.

This method was made `const` in NDB 7.3.15, 7.4.13, and 7.5.4 (Bug #23709232).

For more information, see Section 2.3.17.7, "Ndb_cluster_connection::get_next_ndb_object()".

2.3.17.23 Ndb_cluster_connection::unset_recv_thread_cpu()

Description. Unset the CPU or CPUs to which the receiver thread was bound using set_recv_thread_cpu().

Signature.

```cpp
int unset_recv_thread_cpu(Uint32 recv_thread_id)
```

Parameters. The thread ID of the receiver thread to be unbound.

Return value. −1 indicates an error; any other value indicates success.

2.3.17.24 Ndb_cluster_connection::wait_until_ready()

Description. This method is needed to establish connections with the data nodes. It waits until the requested connection with one or more data nodes is successful, or until a timeout condition is met.

Signature.

```cpp
int wait_until_ready(int timeoutBefore, int timeoutAfter)
```

Parameters. This method takes two parameters:

- `timeoutBefore` determines the number of seconds to wait until the first “live” node is detected. If this amount of time is exceeded with no live nodes detected, then the method immediately returns a negative value.
timeoutAfter determines the number of seconds to wait after the first "live" node is detected for all nodes to become active. If this amount of time is exceeded without all nodes becoming active, then the method immediately returns a value greater than zero.

Return value.
wait_until_ready() returns an int, whose value is interpreted as follows:

• = 0: All nodes are "live".
• > 0: At least one node is "live" (however, it is not known whether all nodes are "live").
• < 0: An error occurred.

2.3.18 The NdbBlob Class

This class represents a handle to a BLOB column and provides read and write access to BLOB column values. This object has a number of different states and provides several modes of access to BLOB data; these are also described in this section.

Parent class. None

Child classes. None

Description. This class has no public constructor. An instance of NdbBlob is created using the NdbOperation::getBlobHandle() method during the operation preparation phase. (See Section 2.3.25, “The NdbOperation Class”.) This object acts as a handle on a BLOB column.

BLOB Data Storage. BLOB data is stored in 2 locations:

• The header and inline bytes are stored in the blob attribute.
• The blob’s data segments are stored in a separate table named NDB$BLOB_tid_cid, where tid is the table ID, and cid is the blob column ID.

The inline and data segment sizes can be set using the appropriate Column methods when the table is created. See Section 2.3.2, “The Column Class”, for more information about these methods.

Data Access Types. NdbBlob supports 3 types of data access: These data access types can be applied in combination, provided that they are used in the order given above.

• In the preparation phase, the NdbBlob methods getValue() and setValue() are used to prepare a read or write of a BLOB value of known size.
• Also in the preparation phase, setActiveHook() is used to define a routine which is invoked as soon as the handle becomes active.
• In the active phase, readData() and writeData() are used to read and write BLOB values having arbitrary sizes.

BLOB Operations. BLOB operations take effect when the next transaction is executed. In some cases, NdbBlob is forced to perform implicit execution. To avoid this, you should always operate on complete blob data segments.

Use NdbTransaction::executePendingBlobOps() to flush reads and writes, which avoids any execution penalty if no operations are pending. This is not necessary following execution of operations, or after the next scan result.

NdbBlob also supports reading post- or pre-blob data from events. The handle can be read after the next event on the main table has been retrieved. The data becomes available immediately. (See Section 2.3.21, “The NdbEventOperation Class”, for more information.)

BLOBs and NdbOperations. NdbOperation methods acting on NdbBlob objects have the following characteristics:
The NdbBlob Class

- **NdbOperation::insertTuple()** must use **NdbBlob::setValue()** if the **BLOB** attribute is nonnullable.

- **NdbOperation::readTuple()** used with any lock mode can read but not write blob values.

 When the **LM_CommittedRead** lock mode is used with **readTuple()**, the lock mode is automatically upgraded to **LM_Read** whenever blob attributes are accessed.

- **NdbOperation::updateTuple()** can either overwrite an existing value using **NdbBlob::setValue()**, or update it during the active phase.

- **NdbOperation::writeTuple()** always overwrites blob values, and must use **NdbBlob::setValue()** if the **BLOB** attribute is nonnullable.

- **NdbOperation::deleteTuple()** creates implicit, nonaccessible **BLOB** handles.

- A scan with any lock mode can use its blob handles to read blob values but not write them.

 A scan using the **LM_Exclusive** lock mode can update row and blob values using **updateCurrentTuple()**; the operation returned must explicitly create its own blob handle.

 A scan using the **LM_Exclusive** lock mode can delete row values (and therefore blob values) using **deleteCurrentTuple()**; this create implicit nonaccessible blob handles.

- An operation which is returned by **lockCurrentTuple()** cannot update blob values.

Known Issues. The following are known issues or limitations encountered when working with **NdbBlob** objects:

- Too many pending **BLOB** operations can overflow the I/O buffers.

- The table and its **BLOB** data segment tables are not created atomically.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

Table 2.32 NdbBlob class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blobsFirstBlob()</td>
<td>Gets the first blob in a list.</td>
</tr>
<tr>
<td>blobsNextBlob()</td>
<td>Gets the next blob in a list</td>
</tr>
<tr>
<td>close()</td>
<td>Release internal resources prior to commit or abort</td>
</tr>
<tr>
<td>getBlobEventName()</td>
<td>Gets a blob event name</td>
</tr>
<tr>
<td>getBlobTableName()</td>
<td>Gets a blob data segment's table name.</td>
</tr>
<tr>
<td>getColumn()</td>
<td>Gets a blob column.</td>
</tr>
<tr>
<td>getLength()</td>
<td>Gets the length of a blob, in bytes</td>
</tr>
<tr>
<td>getNdbError()</td>
<td>Gets an error (an NdbError object)</td>
</tr>
<tr>
<td>getNdbOperation()</td>
<td>Get a pointer to the operation (NdbOperation object) to which this NdbBlob object belonged when created.</td>
</tr>
<tr>
<td>getNull()</td>
<td>Checks whether a blob value is NULL</td>
</tr>
<tr>
<td>getPos()</td>
<td>Gets the current position for reading/writing</td>
</tr>
<tr>
<td>getState()</td>
<td>Gets the state of an NdbBlob object</td>
</tr>
<tr>
<td>getValue()</td>
<td>Prepares to read a blob value</td>
</tr>
<tr>
<td>getVersion()</td>
<td>Checks whether a blob is statement-based or event-based</td>
</tr>
<tr>
<td>readData()</td>
<td>Reads data from a blob</td>
</tr>
</tbody>
</table>
The NdbBlob Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setActiveHook()</td>
<td>Defines a callback for blob handle activation</td>
</tr>
<tr>
<td>setNull()</td>
<td>Sets a blob to NULL</td>
</tr>
<tr>
<td>setPos()</td>
<td>Sets the position at which to begin reading/writing</td>
</tr>
<tr>
<td>setValue()</td>
<td>Prepares to insert or update a blob value</td>
</tr>
<tr>
<td>truncate()</td>
<td>Truncates a blob to a given length</td>
</tr>
<tr>
<td>writeData()</td>
<td>Writes blob data</td>
</tr>
</tbody>
</table>

Note
- `getBlobTableName()` and `getBlobEventName()` are static methods.

Tip
- Most `NdbBlob` methods (nearly all of those whose return type is `int`) return `0` on success and `-1` in the event of failure.

Types
- The public types defined by `NdbBlob` are shown here:

 Table 2.33 NdbBlob types and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ActiveHook()</code></td>
<td>Callback for <code>NdbBlob::setActiveHook()</code></td>
</tr>
<tr>
<td><code>State()</code></td>
<td>Represents the states that may be assumed by the <code>NdbBlob</code>.</td>
</tr>
</tbody>
</table>

2.3.18.1 `NdbBlob::ActiveHook`

`ActiveHook` is a data type defined for use as a callback for the `setActiveHook()` method. (See Section 2.3.18.17, "NdbBlob::setActiveHook().")

Definition. `ActiveHook` is a custom data type defined as shown here:

```c
typedef int ActiveHook
{
    NdbBlob* me,
    void* arg
}
```

Description. This is a callback for `NdbBlob::setActiveHook()`, and is invoked immediately once the prepared operation has been executed (but not committed). Any calls to `getValue()` or `setValue()` are performed first. The BLOB handle is active so `readData()` or `writeData()` can be used to manipulate the BLOB value. A user-defined argument is passed along with the `NdbBlob`. `setActiveHook()` returns a nonzero value in the event of an error.

2.3.18.2 `NdbBlob::blobsFirstBlob()`

Description. This method initialises a list of blobs belonging to the current operation and returns the first blob in the list.

Signature.

```c
NdbBlob* blobsFirstBlob
{
    void
}
```

Parameters. None.
The NdbBlob Class

Return value. A pointer to the desired blob.

2.3.18.3 NdbBlob::blobsNextBlob()

Description. Use the method to obtain the next in a list of blobs that was initialised using blobsFirstBlob(). See Section 2.3.18.2, "NdbBlob::blobsFirstBlob()".

Signature.

NdbBlob* blobsNextBlob
(void)

Parameters. None.

Return value. A pointer to the desired blob.

2.3.18.4 NdbBlob::close()

Description. Closes the blob handle, releasing internal resources as it does so, prior to committing or aborting the transaction. In other words, this signals that an application has finished with reading from a given blob. This method can be called only when the blob's State is Active.

Read operations and locking. When a blob handle is created on a read operation using LM_Read or LM_Exclusive as the LockMode, the read operation can be unlocked only once all Blob handles created on this operation have been closed.

When a row containing blobs has been read with lock mode LM_CommittedRead, the mode is automatically upgraded to LM_Read to ensure consistency. In this case, when all the blob handles for the row have been closed, an unlock operation for the row is automatically performed by the call to the close() method, which adds a pending write operation to the blob. The upgraded lock is released following the call to execute().

Signature.

int close
(bool execPendingBlobOps = true)

Parameters. This method has a single boolean parameter execPendingBlobOps. If the value of this parameter true (the default), any pending blob operations are flushed before the blob handle is closed. If execPendingBlobOps is false, then it is assumed that the blob handle has no pending read or write operations to flush.

Return value. 0 on success.

2.3.18.5 NdbBlob::getBlobEventName()

Description. This method gets a blob event name. The blob event is created if the main event monitors the blob column. The name includes the main event name.

Signature.

static int getBlobEventName
(char* name,
 Ndb* ndb,
 const char* event,
 const char* column)

129
The NdbBlob Class

Parameters. This method takes the four parameters listed here:

- **name**: The name of the blob event.
- **ndb**: The relevant Ndb object.
- **event**: The name of the main event.
- **column**: The blob column.

Return value. 0 on success, -1 on failure.

2.3.18.6 NdbBlob::getBlobTableName()

Description. This method gets the blob data segment table name.

Note
This method is generally of use only for testing and debugging purposes.

Signature.
```
static int getBlobTableName
{ char* name,
  Ndb* ndb,
  const char* table,
  const char* column
}
```

Parameters. This method takes the four parameters listed here:

- **name**: The name of the blob data segment table.
- **ndb**: The relevant Ndb object.
- **table**: The name of the main table.
- **column**: The blob column.

Return value. Returns 0 on success, -1 on failure.

2.3.18.7 NdbBlob::getColumn()

Description. Use this method to get the BLOB column to which the NdbBlob belongs.

Signature.
```
const Column* getColumn
{ void
}
```

Parameters. None.

Return value. A Column object. (See Section 2.3.2, “The Column Class”.)

2.3.18.8 NdbBlob::getLength()

Description. This method gets the blob's current length in bytes.
The NdbBlob Class

Signature.

```c
int getLength
{
    Uint64& length
}
```

Parameters. A reference to the length.

Return value. The blob's length in bytes. For a NULL blob, this method returns 0. To distinguish between a blob whose length is 0 blob and one which is NULL, use the `getNull()` method.

2.3.18.9 NdbBlob::getNull()

Description. This method checks whether the blob's value is NULL.

Signature.

```c
int getNull
{
    int& isNull
}
```

Parameters. A reference to an integer `isNull`. Following invocation, this parameter has one of the following values, interpreted as shown here:

- `-1`: The blob is undefined. If this is a nonevent blob, this result causes a state error.
- `0`: The blob has a nonnull value.
- `1`: The blob's value is NULL.

Return value. None.

2.3.18.10 NdbBlob::getNdbError()

Description. Use this method to obtain an error object. The error may be blob-specific or may be copied from a failed implicit operation. The error code is copied back to the operation unless the operation already has a nonzero error code.

Signature.

```c
const NdbError& getNdbError
{
    void
} const
```

Parameters. None.

Return value. An `NdbError` object. See Section 2.3.20, “The NdbError Structure”.

2.3.18.11 NdbBlob::getNdbOperation()

Description. This method can be used to find the operation with which the handle for this `NdbBlob` is associated.

Signature.

```c
const NdbOperation* getNdbOperation
{
    void
} const
```
2.3.18.12 NdbBlob::getPos()

Description. This method gets the current read/write position in a blob.

Signature.

```c
int getPos
{
    Uint64& pos
}
```

Parameters. One parameter, a reference to the position.

Return value. Returns 0 on success, or -1 on failure. (Following a successful invocation, pos will hold the current read/write position within the blob, as a number of bytes from the beginning.)

2.3.18.13 NdbBlob::getState()

Description. This method gets the current state of the NdbBlob object for which it is invoked. Possible states are described in Section 2.3.18.21, “NdbBlob::State”.

Signature.

```c
State getState
{
    void
}
```

Parameters. None.

Return value. A State value. For possible values, see Section 2.3.18.21, “NdbBlob::State”.

2.3.18.14 NdbBlob::getValue()

Description. Use this method to prepare to read a blob value; the value is available following invocation. Use getNull() to check for a NULL value; use getLength() to get the actual length of the blob, and to check for truncation. getValue() sets the current read/write position to the point following the end of the data which was read.

Signature.

```c
int getValue
{
    void* data,
    Uint32 bytes
}
```

Parameters. This method takes two parameters. The first of these is a pointer to the data to be read; the second is the number of bytes to be read.
Return value. 0 on success, -1 on failure.

2.3.18.15 NdbBlob::getVersion()

Description. This method is used to distinguish whether a blob operation is statement-based or event-based.

Signature.

```
void getVersion
  (    
     int& version
  )
```

Parameters. This method takes a single parameter, an integer reference to the blob version (operation type).

Return value. One of the following three values:

- -1: This is a “normal” (statement-based) blob.
- 0: This is an event-operation based blob, following a change in its data.
- 1: This is an event-operation based blob, prior to any change in its data.

Note

getVersion() is always successful, assuming that it is invoked as a method of a valid NdbBlob instance.

2.3.18.16 NdbBlob::readData()

Description. This method is used to read data from a blob.

Signature.

```
int readData
  (    
     void* data,    
     Uint32& bytes
  )
```

Parameters. readData() accepts a pointer to the data to be read, and a reference to the number of bytes read.

Return value. Returns 0 on success, -1 on failure. Following a successful invocation, data points to the data that was read, and bytes holds the number of bytes read.

2.3.18.17 NdbBlob::setActiveHook()

Description. This method defines a callback for blob handle activation. The queue of prepared operations will be executed in no-commit mode up to this point; then, the callback is invoked. For additional information, see Section 2.3.18.1, “NdbBlob::ActiveHook”.

Signature.

```
int setActiveHook
  (    
     ActiveHook* activeHook,    
     void* arg
  )
```

Parameters. This method requires the two parameters listed here:
The NdbBlob Class

- A pointer to an ActiveHook value; this is a callback as explained in Section 2.3.18.1, "NdbBlob::ActiveHook".

- A pointer to void, for any data to be passed to the callback.

Return value. 0 on success, -1 on failure.

2.3.18.18 NdbBlob::setNull()

Description. This method sets the value of a blob to NULL.

Signature.

```c
int setNull
{
    void
}
```

Parameters. None.

Return value. 0 on success; -1 on failure.

2.3.18.19 NdbBlob::setPos()

Description. This method sets the position within the blob at which to read or write data.

Signature.

```c
int setPos
{
    Uint64 pos
}
```

Parameters. The setPos() method takes a single parameter pos (an unsigned 64-bit integer), which is the position for reading or writing data. The value of pos must be between 0 and the blob's current length.

⚠️ Important

"Sparse" blobs are not supported in the NDB API; in other words, there can be no unused data positions within a blob.

Return value. 0 on success, -1 on failure.

2.3.18.20 NdbBlob::setValue()

Description. This method is used to prepare for inserting or updating a blob value. Any existing blob data that is longer than the new data is truncated. The data buffer must remain valid until the operation has been executed. setValue() sets the current read/write position to the point following the end of the data. You can set data to a null pointer (0) in order to create a NULL value.

Signature.

```c
int setValue
{
    const void* data,
    Uint32  bytes
}
```

Parameters. This method takes the two parameters listed here:

- The data that is to be inserted or used to overwrite the blob value.
• The number of bytes—that is, the length—of the data.

Return value. 0 on success, -1 on failure.

2.3.18.21 NdbBlob::State

This is an enumerated data type which represents the possible states of an NdbBlob instance.

Description. An NdbBlob may assume any one of these states

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>The NdbBlob has not yet been prepared for use with any operations.</td>
</tr>
<tr>
<td>Prepared</td>
<td>This is the state of the NdbBlob prior to operation execution.</td>
</tr>
<tr>
<td>Active</td>
<td>This is the BLOB handle's state following execution or the fetching of the next result, but before the transaction is committed.</td>
</tr>
<tr>
<td>Closed</td>
<td>This state occurs after the transaction has been committed.</td>
</tr>
<tr>
<td>Invalid</td>
<td>This follows a rollback or the close of a transaction.</td>
</tr>
</tbody>
</table>

2.3.18.22 NdbBlob::truncate()

Description. This method is used to truncate a blob to a given length.

Signature.

```cpp
int truncate
(   Uint64 length = 0
)
```

Parameters. truncate() takes a single parameter which specifies the new length to which the blob is to be truncated. This method has no effect if length is greater than the blob's current length (which you can check using getLength()).

Return value. 0 on success, -1 on failure.

2.3.18.23 NdbBlob::writeData()

Description. This method is used to write data to an NdbBlob. After a successful invocation, the read/write position will be at the first byte following the data that was written to the blob.

Note

A write past the current end of the blob data extends the blob automatically.

Signature.

```cpp
int writeData
(   const void* data,
    Uint32 bytes
)
```

Parameters. This method takes two parameters, a pointer to the data to be written, and the number of bytes to write.
Return value. 0 on success, -1 on failure.

2.3.19 The NdbDictionary Class

This class provides meta-information about database objects, such as tables, columns, and indexes. While the preferred method of database object creation and deletion is through the MySQL Server, NdbDictionary also permits the developer to perform these tasks through the NDB API.

Parent class. None

Child classes. Dictionary, Column, Object

Description. This is a data dictionary class that supports enquiries about tables, columns, and indexes. It also provides ways to define these database objects and to remove them. Both sorts of functionality are supplied using inner classes that model these objects. These include the following inner classes:

- **Table** for working with tables
- **Column** for creating table columns
- **Index** for working with secondary indexes
- **Dictionary** for creating database objects and making schema enquiries
- **Event** for working with events in the cluster.

Additional Object subclasses model the tablespaces, logfile groups, datafiles, and undofiles required for working with NDB Cluster Disk Data tables (introduced in MySQL 5.1), as well as foreign keys (NDB Cluster 7.3 and later).

Warning

Tables and indexes created using NdbDictionary cannot be viewed from the MySQL Server.

Dropping indexes through the NDB API that were created originally from an NDB Cluster causes inconsistencies. It is possible that a table from which one or more indexes have been dropped using the NDB API will no longer be usable by MySQL following such operations. In this event, the table must be dropped, and then re-created using MySQL to make it accessible to MySQL once more.

Methods. NdbDictionary itself has no public instance methods, only static methods that are used for working with NdbRecord objects. Operations not using NdbRecord are accomplished by means of NdbDictionary subclass instance methods. The following table lists the public methods of NdbDictionary and the purpose or use of each method:

Table 2.35 NdbDictionary class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getEmptyBitmask()</td>
<td>Returns an empty column presence bitmask which can be used with NdbRecord</td>
</tr>
<tr>
<td>getFirstAttrId()</td>
<td>Get the first attribute ID specified by a given NdbRecord object</td>
</tr>
<tr>
<td>getRecordIndexName()</td>
<td>Gets the name of the index object referred to by an NdbRecord</td>
</tr>
<tr>
<td>getRecordRowLength()</td>
<td>Get the number of bytes needed to store one row of data using a given NdbRecord</td>
</tr>
<tr>
<td>getRecordTableName()</td>
<td>Gets the name of the table object referred to by an NdbRecord</td>
</tr>
</tbody>
</table>
The NdbDictionary Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getRecordType()</code></td>
<td>Gets the RecordType of an NdbRecord</td>
</tr>
<tr>
<td><code>getValuePtr()</code></td>
<td>Returns a pointer to the beginning of stored data specified by attribute ID, using NdbRecord</td>
</tr>
<tr>
<td><code>isNull()</code></td>
<td>Show whether the null bit for a column is true or false</td>
</tr>
<tr>
<td><code>setNull()</code></td>
<td>Set a column's null bit</td>
</tr>
</tbody>
</table>

Note

For the numeric equivalents to enumerations of NdbDictionary subclasses, see the file `/storage/ndb/include/ndbapi/NdbDictionary.hpp` in the NDB Cluster source tree.

2.3.19.1 NdbDictionary::getEmptyBitmask()

Description. Returns an empty column presence bitmask which can be used with any NdbRecord to specify that no NdbRecord columns are to be included in the operation.

Signature.

```c
static const unsigned char* getEmptyBitmask
(   void
 )
```

Parameters. None.

Return value. An empty bitmask.

2.3.19.2 NdbDictionary::getFirstAttrId()

Description. Get the first attribute ID specified by an NdbRecord object. Returns false if no attribute ID is specified.

Signature.

```c
static bool getFirstAttrId
(   const NdbRecord* record,
    Uint32& firstAttrId
 )
```

Parameters. A pointer to an NdbRecord and a reference to the attribute (firstAttrId).

Return value. Boolean false, when no attribute ID can be obtained.

2.3.19.3 NdbDictionary::getNextAttrId()

Description. Get the next attribute ID specified by an NdbRecord object following the attribute ID passed in. Returns false when there are no more attribute IDs to be returned.

Signature.

```c
static bool getNextAttrId
(   const NdbRecord* record,
    Uint32& attrId
 )
```

Parameters. A pointer to an NdbRecord and a reference to an attribute ID.
The NdbDictionary Class

Return value. Boolean false, when no attribute ID can be obtained.

2.3.19.4 NdbDictionary::getNullBitOffset()

Description. Get the offset of the given attribute ID's null bit from the start of the NdbRecord row. Returns false if the attribute ID is not present.

Signature.

```c
static bool getNullBitOffset
  (const NdbRecord* record,
   Uint32 attrId,
   Uint32& bytes,
   Uint32& bit)
```

Parameters. An NdbRecord record in which to get the null bit offset of the given attribute ID (attrId). The offset is expressed as a number of bytes (bytes) plus a number of bits within the last byte (bit).

Return value. Boolean false, if the attribute with the given ID is not present.

2.3.19.5 NdbDictionary::getOffset()

Description. Get the offset of the given attribute ID's storage from the start of the NdbRecord row. Returns false if the attribute id is not present

Signature.

```c
static bool getOffset
  (const NdbRecord* record,
   Uint32 attrId,
   Uint32& offset)
```

Parameters. The offset of the given attribute ID's storage from the start of the NdbRecord row.

Return value. Boolean false, if no attribute ID can be found.

2.3.19.6 NdbDictionary::getRecordIndexName()

Description. Get the name of the Index object that the NdbRecord refers to.

If the NdbRecord object is not an IndexAccess NdbRecord, the method returns null.

Signature.

```c
static const char* getRecordIndexName
  (const NdbRecord* record)
```

Parameters. A pointer to the NdbRecord for which to get the name.

Return value. The name, if any. Otherwise, or if the NdbRecord object is not of the IndexAccess type, this method returns null.

2.3.19.7 NdbDictionary::getRecordRowLength()

Description. Get the number of bytes needed to store one row of data laid out as described by the NdbRecord structure passed in to this method.
The NdbDictionary Class

Signature.

```c
static Uint32 getRecordRowLength
    (  
        const NdbRecord* record
    )
```

Parameters. An `NdbRecord` object.

Return value. The number of bytes needed per row.

2.3.19.8 NdbDictionary::getRecordTableName()

Description. Return the name of the table object that the `NdbRecord` refers to. This method returns null if the record is not a `TableAccess`.

Signature.

```c
static const char* getRecordTableName
    (  
        const NdbRecord* record
    )
```

Parameters. The `record` (NdbRecord object) for which to get the table name.

Return value. The name of the table, or null if the `NdbRecord` object' type is not `TableAccess`.

2.3.19.9 NdbDictionary::getRecordType()

Description. Return the type of the `NdbRecord` object passed.

Signature.

```c
static RecordType getRecordType
    (  
        const NdbRecord* record
    )
```

Parameters. An `NdbRecord` object.

Return value. The `RecordType` of the `NdbRecord` (IndexAccess or TableAccess).

2.3.19.10 NdbDictionary::getValuePtr()

Description. Returns a pointer to the beginning of stored data specified by attribute ID, by looking up the offset of the column stored in the `NdbRecord` object and returning the sum of the row position and the offset.

Note

This method provides both row-const and non-row-const versions.

Signature.

```c
static const char* getValuePtr
    (  
        const NdbRecord* record,  
        const char* row,  
        Uint32 attrId
    )
```
The NdbError Structure

```c
static char* getValuePtr
{
    const NdbRecord* record,
    char* row,
    Uint32 attrId
}
```

Parameters. A pointer to an NdbRecord object describing the row format, a pointer to the start of the row data (const in the const version of this method), and the attribute ID of the column,

Return value. A pointer to the start of the attribute in the row. This is null if the attribute is not part of the NdbRecord definition.

2.3.19.11 NdbDictionary::isNull()

Description. Indicate whether the null bit for the given column is set to true or false. The location of the null bit in relation to the row pointer is obtained from the passed NdbRecord object. If the column is not nullable, or if the column is not part of the NdbRecord definition, the method returns false.

Signature.

```c
static bool isNull
{
    const NdbRecord* record,
    const char* row,
    Uint32 attrId
}
```

Parameters. A pointer to an NdbRecord object describing the row format, a pointer to the start of the row data, and the attribute ID of the column to check.

Return value. Boolean true if the attribute ID exists in this NdbRecord, is nullable, and this row's null bit is set; otherwise, Boolean false.

2.3.19.12 NdbDictionary::setNull()

Description. Set the null bit for the given column to the supplied value. The offset for the null bit is obtained from the passed NdbRecord object. If the attribute ID is not part of the NdbRecord, or if it is not nullable, this method returns an error (-1).

Signature.

```c
static int setNull
{
    const NdbRecord* record,
    char* row,
    Uint32 attrId,
    bool value
}
```

Parameters. A pointer to the record (NdbRecord object) describing the row format; a pointer to the start of the row data; the attribute ID of the column (attrId); and the value to set the null bit to (true or false).

Return value. Returns 0 on success; returns -1 if the attrId is not part of the record, or is not nullable.

2.3.20 The NdbError Structure

This section discusses the NdbError data structure, which contains status and other information about errors, including error codes, classifications, and messages.
Description. An NdbError consists of six parts, listed here, of which one is deprecated:

1. **Error status**: This describes the impact of an error on the application, and reflects what the application should do when the error is encountered.

 The error status is described by a value of the Status type. See Section 2.3.20.2, “NdbError::Status”, for possible Status values and how they should be interpreted.

2. **Error classification**: This represents a logical error type or grouping.

 The error classification is described by a value of the Classification type. See Section 2.3.20.1, “NdbError::Classification”, for possible classifications and their interpretation. Additional information is provided in Section 2.4.4, “NDB Error Classifications”.

3. **Error code**: This is an NDB API internal error code which uniquely identifies the error.

 ![Important](image)

 It is *not* recommended to write application programs which are dependent on specific error codes. Instead, applications should check error status and classification. More information about errors can also be obtained by checking error messages and (when available) error detail messages. However—like error codes—these error messages and error detail messages are subject to change.

 A listing of current error codes, broken down by classification, is provided in Section 2.4.2, “NDB Error Codes: by Type”: This listing is updated with new NDB Cluster releases. You can also check the file `storage/ndb/src/ndbapi/ndberror.c` in the NDB Cluster sources.

4. **MySQL Error code**: This is the corresponding MySQL Server error code. MySQL error codes are not discussed in this document; please see Server Error Message Reference, in the MySQL Manual, for information about these.

5. **Error message**: This is a generic, context-independent description of the error.

6. **Error details**: This can often provide additional information (not found in the error message) about an error, specific to the circumstances under which the error is encountered. However, it is not available in all cases.

 Where not specified, the error detail message is **NULL**.

![Note](image)

This property is deprecated and scheduled for eventual removal. For obtaining error details, you should use the `Ndb::getNdbErrorDetail()` method instead.

![Important](image)

Specific NDB API error codes, messages, and detail messages are subject to change without notice.

Definition. The NdbError structure contains the following members, whose types are as shown here:

- **Status status**: The error status.
- **Classification classification**: The error type (classification).
- **int code**: The NDB API error code.
- **int mysql_code**: The MySQL error code.
The NdbError Structure

- **const char* message**: The error message.
- **char* details**: The error detail message.

Note

details is deprecated and scheduled for eventual removal. You should use the `Ndb::getNdbErrorDetail()` method instead. (Bug #48851)

See the *Description* for more information about these members and their types.

Types. `NdbError` defines the two data types listed here:

- **Classification**: The type of error or the logical grouping to which the error belongs.
- **Status**: The error status.

2.3.20.1 NdbError::Classification

Description. This type describes the type of error, or the logical group to which it belongs.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoError</td>
<td>Indicates success (no error occurred)</td>
</tr>
<tr>
<td>ApplicationError</td>
<td>An error occurred in an application program</td>
</tr>
<tr>
<td>NoDataFound</td>
<td>A read operation failed due to one or more missing records.</td>
</tr>
<tr>
<td>ConstraintViolation</td>
<td>A constraint violation occurred, such as attempting to insert a tuple having a primary key value already in use in the target table.</td>
</tr>
<tr>
<td>SchemaError</td>
<td>An error took place when trying to create or use a table.</td>
</tr>
<tr>
<td>InsufficientSpace</td>
<td>There was insufficient memory for data or indexes.</td>
</tr>
<tr>
<td>TemporaryResourceError</td>
<td>This type of error is typically encountered when there are too many active transactions.</td>
</tr>
<tr>
<td>NodeRecoveryError</td>
<td>This is a temporary failure which was likely caused by a node recovery in progress, some examples being when information sent between an application and NDB is lost, or when there is a distribution change.</td>
</tr>
<tr>
<td>OverloadError</td>
<td>This type of error is often caused when there is insufficient logfile space.</td>
</tr>
<tr>
<td>TimeoutExpired</td>
<td>A timeout, often caused by a deadlock.</td>
</tr>
<tr>
<td>UnknownResultError</td>
<td>It is not known whether a transaction was committed.</td>
</tr>
<tr>
<td>InternalError</td>
<td>A serious error has occurred in NDB itself.</td>
</tr>
<tr>
<td>FunctionNotImplemented</td>
<td>The application attempted to use a function which is not yet implemented.</td>
</tr>
<tr>
<td>UnknownErrorCode</td>
<td>This is seen where the NDB error handler cannot determine the correct error code to report.</td>
</tr>
<tr>
<td>NodeShutdown</td>
<td>This is caused by a node shutdown.</td>
</tr>
<tr>
<td>SchemaObjectExists</td>
<td>The application attempted to create a schema object that already exists.</td>
</tr>
<tr>
<td>InternalTemporary</td>
<td>A request was sent to a node other than the master.</td>
</tr>
</tbody>
</table>
The NdbEventOperation Class

2.3.20.2 NdbError::Status

Description. This type is used to describe an error's status.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

Table 2.37 NdbError Status data type values and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success</td>
<td>No error has occurred</td>
</tr>
<tr>
<td>TemporaryError</td>
<td>A temporary and usually recoverable error; the application should retry the operation giving rise to the error</td>
</tr>
<tr>
<td>PermanentError</td>
<td>Permanent error; not recoverable</td>
</tr>
<tr>
<td>UnknownResult</td>
<td>The operation's result or status is unknown</td>
</tr>
</tbody>
</table>

2.3.21 The NdbEventOperation Class

This section describes the NdbEventOperation class, which is used to monitor changes (events) in a database. It provides the core functionality used to implement NDB Cluster Replication.

Parent class. None

Child classes. None

Description. NdbEventOperation represents a database event.

Creating an instance of NdbEventOperation. This class has no public constructor or destructor. Instead, instances of NdbEventOperation are created as the result of method calls on Ndb and NdbDictionary objects, subject to the following conditions:

1. There must exist an event which was created using Dictionary::createEvent(). This method returns an instance of the Event class.

2. An NdbEventOperation object is instantiated using Ndb::createEventOperation(), which acts on an instance of Event.

An instance of this class is removed by invoking Ndb::dropEventOperation.

Tip

A detailed example demonstrating creation and removal of event operations is provided in Section 2.5.8, “NDB API Event Handling Example”.

Known Issues.

The following issues may be encountered when working with event operations in the NDB API:

- The maximum number of active NdbEventOperation objects is currently fixed at compile time at 2 * MaxNoOfTables.
• Currently, all INSERT, DELETE, and UPDATE events—as well as all attribute changes—are sent to the API, even if only some attributes have been specified. However, these are hidden from the user and only relevant data is shown after calling `Ndb::nextEvent()`.

Note that false exits from `Ndb::pollEvents()` may occur, and thus the following `nextEvent()` call returns zero, since there was no available data. In such cases, simply call `pollEvents()` again.

See Section 2.3.16.27, “Ndb::pollEvents()”, and Section 2.3.16.25, “Ndb::nextEvent()”.

• Event code does not check the table schema version. When a table is dropped, make sure that you drop any associated events.

• If you have received a complete epoch, events from this epoch are not re-sent, even in the event of a node failure. However, if a node failure has occurred, subsequent epochs may contain duplicate events, which can be identified by duplicated primary keys.

In the NDB Cluster replication code, duplicate primary keys on INSERT operations are normally handled by treating such inserts as REPLACE operations.

Tip
To view the contents of the system table containing created events, you can use the `ndb_select_all` utility as shown here:

```
ndb_select_all -d sys 'NDB$EVENTS_0'
```

Methods.
The following table lists the public methods of this class and the purpose or use of each method:

Table 2.38 NdbEventOperation class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clearError()</td>
<td>Clears the most recent error. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td>execute()</td>
<td>Activates the <code>NdbEventOperation</code></td>
</tr>
<tr>
<td>getBlobHandle()</td>
<td>Gets a handle for reading blob attributes</td>
</tr>
<tr>
<td>getEpoch()</td>
<td>Retrieves the epoch for the event data most recently retrieved. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td>getEventType()</td>
<td>Gets the event type. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td>getEventType2()</td>
<td>Gets the event type. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td>getGCI()</td>
<td>Retrieves the GCI of the most recently retrieved event. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td>getLatestGCI()</td>
<td>Retrieves the most recent GCI (whether or not the corresponding event has been retrieved). Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td>getNdbError()</td>
<td>Gets the most recent error</td>
</tr>
<tr>
<td>getPreBlobHandle()</td>
<td>Gets a handle for reading the previous blob attribute</td>
</tr>
<tr>
<td>getPreValue()</td>
<td>Retrieves an attribute’s previous value</td>
</tr>
<tr>
<td>getState()</td>
<td>Gets the current state of the event operation</td>
</tr>
<tr>
<td>getValue()</td>
<td>Retrieves an attribute value</td>
</tr>
<tr>
<td>hasError()</td>
<td>Whether an error has occurred as part of this operation. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td>isConsistent()</td>
<td>Detects event loss caused by node failure. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td>isEmptyEpoch()</td>
<td>Detects an empty epoch. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>isErreurEpoch()</td>
<td>Detects an error epoch, and retrieves the error if there is one. Added in NDB 7.4.3.</td>
</tr>
<tr>
<td>isOverrun()</td>
<td>Whether event loss has taken place due to a buffer overrun. Deprecated in NDB 7.4.3.</td>
</tr>
<tr>
<td>mergeEvents()</td>
<td>Makes it possible for events to be merged</td>
</tr>
<tr>
<td>tableFragmentationChanged()</td>
<td>Checks to see whether the fragmentation for a table has changed</td>
</tr>
<tr>
<td>tableFrmChanged()</td>
<td>Checks to see whether a table .FRM file has changed</td>
</tr>
<tr>
<td>tableNameChanged()</td>
<td>Checks to see whether the name of a table has changed</td>
</tr>
<tr>
<td>tableRangeListChanged()</td>
<td>Checks to see whether a table range partition list name has changed</td>
</tr>
</tbody>
</table>

Types. `NdbEventOperation` defines one enumerated type, the `State` type.

2.3.21.1 NdbEventOperation::clearError()

Description. Clears the error most recently associated with this event operation.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release.

Signature.

```cpp
t void clearError()
```

Parameters. None.

Return value. None.

2.3.21.2 NdbEventOperation::execute()

Description. Activates the `NdbEventOperation`, so that it can begin receiving events. Changed attribute values may be retrieved after `Ndb::nextEvent()` has returned a value other than `NULL`.

One of `getValue()`, `getPreValue()`, `getBlobValue()`, or `getPreBlobValue()` must be called before invoking `execute()`.

Important

Before attempting to use this method, you should have read the explanations provided in Section 2.3.16.25, “Ndb::nextEvent()”, and Section 2.3.21.13, “NdbEventOperation::getValue()”. Also see Section 2.3.21, “The NdbEventOperation Class”.

Signature.

```cpp
t int execute()
```

Parameters. None.

Return value. This method returns 0 on success and -1 on failure.

2.3.21.3 NdbEventOperation::getBlobHandle()
The NdbEventOperation Class

Description. This method is used in place of `getValue()` for blob attributes. The blob handle (`NdbBlob`) returned by this method supports read operations only.

Note
To obtain the previous value for a blob attribute, use `getPreBlobHandle()`.

Signature.

```c
NdbBlob* getBlobHandle
    (const char* name)
```

Parameters. The `name` of the blob attribute.

Return value. A pointer to an `NdbBlob` object.

2.3.21.4 NdbEventOperation::getEpoch()

Description. Gets the epoch for the latest event data retrieved.

Added in NDB 7.4.3, this method supersedes `getGCI()`, which is now deprecated and subject to removal in a future NDB Cluster release.

Signature.

```c
Uint64 getEpoch
    (void) const
```

Parameters. None.

Return value. An epoch number (an integer).

2.3.21.5 NdbEventOperation::getEventType()

Description. This method is used to obtain the event's type (`TableEvent`).

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should use `getEventType2()` instead.

Signature.

```c
NdbDictionary::Event::TableEvent getEventType
    (void) const
```

Parameters. None.

Return value. A `TableEvent` value.

2.3.21.6 NdbEventOperation::getEventType2()

Description. This method is used to obtain the event's type (`TableEvent`).

Added in NDB 7.4.3, this method supersedes `getEventType()`, which is now deprecated and subject to removal in a future NDB Cluster release.
The NdbEventOperation Class

2.3.21.7 NdbEventOperation::getGCI()

Description. This method retrieves the GCI for the most recently retrieved event.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should use `getEpoch()` instead.

Signature.

```c
Uint64 getGCI(
    void
) const
```

Parameters. None.

Return value. The global checkpoint index of the most recently retrieved event (an integer).

2.3.21.8 NdbEventOperation::getLatestGCI()

Description. This method retrieves the most recent GCI.

This method returns the latest epoch number.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should use `Ndb::getHighestQueuedEpoch()` instead.

Note

The GCI obtained using this method is not necessarily associated with an event.

Signature.

```c
Uint64 getLatestGCI(
    void
) const
```

Parameters. None.

Return value. The index of the latest global checkpoint, an integer.

2.3.21.9 NdbEventOperation::getNdbError()

Description. This method retrieves the most recent error.

Signature.

```c
const struct NdbError& getNdbError(
    void
) const
```
The NdbEventOperation Class

2.3.21.10 NdbEventOperation::getPreBlobHandle()

Description. This function is the same as getBlobHandle(), except that it is used to access the previous value of the blob attribute. See Section 2.3.21.3, "NdbEventOperation::getBlobHandle()".

Signature.

NdbBlob* getPreBlobHandle
{
 const char* name
}

Parameters. The name of the blob attribute.

Return value. A pointer to an NdbBlob.

2.3.21.11 NdbEventOperation::getPreValue()

Description. This method performs identically to getValue(), except that it is used to define a retrieval operation of an attribute's previous value rather than the current value. See Section 2.3.21.13, "NdbEventOperation::getValue()", for details.

Signature.

NdbRecAttr* getPreValue
{
 const char* name,
 char* value = 0
}

Parameters. This method takes the two parameters listed here:

- The name of the attribute (as a constant character pointer).
- A pointer to a value, such that:
 - If the attribute value is not NULL, then the attribute value is returned in this parameter.
 - If the attribute value is NULL, then the attribute value is stored only in the NdbRecAttr object returned by this method.

See value Buffer Memory Allocation, for more information regarding this parameter.

Return value. An NdbRecAttr object to hold the value of the attribute, or a NULL pointer indicating that an error has occurred.

2.3.21.12 NdbEventOperation::getState()

Description. This method gets the event operation's current state.

Signature.

State getState
{
 void
}
The NdbEventOperation Class

Parameters. None.

Return value. A State value. See Section 2.3.21.20, “NdbEventOperation::State”.

2.3.21.13 NdbEventOperation::getValue()

Description. This method defines the retrieval of an attribute value. The NDB API allocates memory for the NdbRecAttr object that is to hold the returned attribute value.

Important

This method does not fetch the attribute value from the database, and the NdbRecAttr object returned by this method is not readable or printable before calling the execute() method and Ndb::nextEvent() has returned a non-NULL value.

If a specific attribute has not changed, the corresponding NdbRecAttr will be in the state UNDEFINED. This can be checked by using NdbRecAttr::isNULL() which in such cases returns -1.

value Buffer Memory Allocation. It is the application's responsibility to allocate sufficient memory for the value buffer (if not NULL), and this buffer must be aligned appropriately. The buffer is used directly (thus avoiding a copy penalty) only if it is aligned on a 4-byte boundary and the attribute size in bytes (calculated as NdbRecAttr::get_size_in_bytes()) is a multiple of 4.

Note

getValue() retrieves the current value. Use getPreValue() for retrieving the previous value.

Signature.

NdbRecAttr* getValue
()
 const char* name,
 char* value = 0

Parameters. This method takes the two parameters listed here:

• The name of the attribute (as a constant character pointer).

• A pointer to a value, such that:

 • If the attribute value is not NULL, then the attribute value is returned in this parameter.

 • If the attribute value is NULL, then the attribute value is stored only in the NdbRecAttr object returned by this method.

See value Buffer Memory Allocation, for more information regarding this parameter.

Return value. An NdbRecAttr object to hold the value of the attribute, or a NULL pointer indicating that an error has occurred.

2.3.21.14 NdbEventOperation::hasError()

Description. This method is used to determine whether there is an error associated with this event operation.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should instead use getEventType2() to determine the event type. See Section 2.3.6.23, “Event::TableEvent”.

149
The NdbEventOperation Class

Signature.

```cpp
int hasError()
{
    void
} const
```

Parameters. None.

Return value. If event loss has taken place, then this method returns 0; otherwise, it returns 1.

2.3.21.15 NdbEventOperation::isConsistent()

Description. This method is used to determine whether event loss has taken place following the failure of a node.

This method is deprecated in NDB 7.4.3, and is subject to removal in a future release. In NDB 7.4.3 and later, you should instead use `getEventType2()` to determine whether the event is of type `TE_INCONSISTENT`. See Section 2.3.6.23, “Event::TableEvent”.

Signature.

```cpp
bool isConsistent()
{
    void
} const
```

Parameters. None.

Return value. If event loss has taken place, then this method returns `false`; otherwise, it returns `true`.

2.3.21.16 NdbEventOperation::isEmptyEpoch()

Description. This method is used to determine whether consumed event data marks an empty epoch.

This method was added in NDB 7.4.3.

Signature.

```cpp
bool isEmptyEpoch()
{
    void
}
```

Parameters. None.

Return value. If this epoch is empty, the method returns `true`; otherwise, it returns `false`.

2.3.21.17 NdbEventOperation::isErrorEpoch()

Description. This method is used to determine whether consumed event data marks an empty epoch.

This method was added in NDB 7.4.3.

Signature.

```cpp
bool isErrorEpoch()
{
    NdbDictionary::Event::TableEvent* error_type = 0
} `
The NdbEventOperation Class

Parameters. If this is an error epoch, error_type contains the TableEvent value corresponding to the error.

Return value. If this epoch is in error, the method returns true; otherwise, it returns false.

2.3.21.18 NdbEventOperation::isOverrun()

Description. This method is used to determine whether event loss has taken place due to a buffer overrun.

Signature.

```cpp
bool isOverrun
 (void) const
```

Parameters. None.

Return value. If the event buffer has been overrun, then this method returns true, otherwise, it returns false.

2.3.21.19 NdbEventOperation::mergeEvents()

Description. This method is used to set the merge events flag. For information about event merging, see Section 2.3.6.18, "Event::mergeEvents()".

Note

The merge events flag is false by default.

Signature.

```cpp
void mergeEvents
 (bool flag)
```

Parameters. A Boolean flag.

Return value. None.

2.3.21.20 NdbEventOperation::State

Description. This type describes the event operation's state.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO_CREATED</td>
<td>The event operation has been created, but execute() has not yet been called.</td>
</tr>
<tr>
<td>EO_EXECUTING</td>
<td>The execute() method has been invoked for this event operation.</td>
</tr>
<tr>
<td>EO_DROPPED</td>
<td>The event operation is waiting to be deleted, and is no longer usable.</td>
</tr>
</tbody>
</table>
### The NdbEventOperation Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO_ERROR</td>
<td>An error has occurred, and the event operation is unusable.</td>
</tr>
</tbody>
</table>

A `State` value is returned by the `getState()` method.

#### 2.3.21.21 NdbEventOperation::tableFragmentationChanged()

**Description.** This method is used to test whether a table's fragmentation has changed in connection with a `TE_ALTER` event. (See Section 2.3.6.23, “Event::TableEvent”)

**Signature.**

```cpp
def tableFragmentationChanged()
 void
) const
```

**Parameters.** None.

**Return value.** Returns `true` if the table's fragmentation has changed; otherwise, the method returns `false`.

#### 2.3.21.22 NdbEventOperation::tableFrmChanged()

**Description.** Use this method to determine whether a table `.FRM` file has changed in connection with a `TE_ALTER` event. (See Section 2.3.6.23, “Event::TableEvent”)

**Signature.**

```cpp
def tableFrmChanged()
 void
) const
```

**Parameters.** None.

**Return value.** Returns `true` if the table `.FRM` file has changed; otherwise, the method returns `false`.

#### 2.3.21.23 NdbEventOperation::tableNameChanged()

**Description.** This method tests whether a table name has changed as the result of a `TE_ALTER` table event. (See Section 2.3.6.23, “Event::TableEvent”)

**Signature.**

```cpp
def tableNameChanged()
 void
) const
```

**Parameters.** None.

**Return value.** Returns `true` if the name of the table has changed; otherwise, the method returns `false`.

#### 2.3.21.24 NdbEventOperation::tableRangeListChanged()

**Description.** Use this method to check whether a table range partition list name has changed in connection with a `TE_ALTER` event.

**Signature.**

```cpp
def tableRangeListChanged()
 void
) const
```
The NdbIndexOperation Class

bool tableRangeListChanged
    (void)
const

Parameters.  None.

Return value.  This method returns true if range or list partition name has changed; otherwise it returns false.

2.3.22 The NdbIndexOperation Class

This section describes the NdbIndexOperation class and its public methods.

Parent class.  NdbOperation

Child classes.  None

Description.  NdbIndexOperation represents an index operation for use in transactions. This class inherits from NdbOperation.

NdbIndexOperation can be used only with unique hash indexes; to work with ordered indexes, use NdbIndexScanOperation.

Important
This class has no public constructor. To create an instance of NdbIndexOperation, it is necessary to use the NdbTransaction::getNdbIndexOperation() method.

Methods.  The following table lists the public methods of this class and the purpose or use of each method:

Table 2.40 NdbIndexOperation class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deleteTuple()</td>
<td>Removes a tuple from a table</td>
</tr>
<tr>
<td>getIndex()</td>
<td>Gets the index used by the operation</td>
</tr>
<tr>
<td>readTuple()</td>
<td>Reads a tuple from a table</td>
</tr>
<tr>
<td>updateTuple()</td>
<td>Updates an existing tuple in a table</td>
</tr>
</tbody>
</table>

Note
Index operations are not permitted to insert tuples.

Types.  The NdbIndexOperation class defines no public types of its own.

For more information about the use of NdbIndexOperation, see Single-row operations.

2.3.22.1 NdbIndexOperation::deleteTuple()

Description.  This method defines the NdbIndexOperation as a DELETE operation. When the NdbTransaction::execute() method is invoked, the operation deletes a tuple from the table.

Signature.

```c
int deleteTuple()
```
The NdbIndexScanOperation Class

```c
void
)

Parameters. None.
Return value. 0 on success, -1 on failure.
```

### 2.3.22.2 NdbIndexOperation::getIndex()

**Description.** Gets the index, given an index operation.

**Signature.**

```c
const NdbDictionary::Index* getIndex
{
 void
} const
```

**Parameters.** None.

**Return value.** A pointer to an Index object.

### 2.3.22.3 NdbIndexOperation::readTuple()

**Description.** This method defines the NdbIndexOperation as a READ operation. When the NdbTransaction::execute() method is invoked, the operation reads a tuple.

**Signature.**

```c
int readTuple
{
 LockMode mode
}
```

**Parameters.** mode specifies the locking mode used by the read operation. See Section 2.3.25.15, “NdbOperation::LockMode”, for possible values.

**Return value.** 0 on success, -1 on failure.

### 2.3.22.4 NdbIndexOperation::updateTuple()

**Description.** This method defines the NdbIndexOperation as an UPDATE operation. When the NdbTransaction::execute() method is invoked, the operation updates a tuple found in the table.

**Signature.**

```c
int updateTuple
{
 void
}
```

**Parameters.** None.

**Return value.** 0 on success, -1 on failure.

### 2.3.23 The NdbIndexScanOperation Class

This section discusses the NdbIndexScanOperation class and its public members.

**Parent class.** NdbScanOperation

**Child classes.** None
The NdbIndexScanOperation Class

Description. The NdbIndexScanOperation class represents a scan operation using an ordered index. This class inherits from NdbScanOperation and NdbOperation.

Note

NdbIndexScanOperation is for use with ordered indexes only; to work with unique hash indexes, use NdbIndexOperation.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>end_of_bound()</td>
<td>Marks the end of a bound</td>
</tr>
<tr>
<td>get_range_no()</td>
<td>Gets the range number for the current row</td>
</tr>
<tr>
<td>getDescending()</td>
<td>Checks whether the current scan is sorted</td>
</tr>
<tr>
<td>getSorted()</td>
<td>Checks whether the current scan is sorted</td>
</tr>
<tr>
<td>readTuples()</td>
<td>Reads tuples using an ordered index</td>
</tr>
<tr>
<td>reset_bounds()</td>
<td>Resets tuples, puts the operation in the send queue</td>
</tr>
<tr>
<td>setBound()</td>
<td>Defines a bound on the index key for a range scan</td>
</tr>
</tbody>
</table>

Types. The NdbIndexScanOperation class defines one public type BoundType.

This class also defines an IndexBound struct, for use with operations employing NdbRecord.

For more information about the use of NdbIndexScanOperation, see Scan Operations, and Using Scans to Update or Delete Rows

2.3.23.1 NdbIndexScanOperation::BoundType

Description. This type is used to describe an ordered key bound.

Tip

The numeric values are fixed in the API and can be used explicitly; in other words, it is “safe” to calculate the values and use them.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Numeric Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BoundLE</td>
<td>0</td>
<td>Lower bound</td>
</tr>
<tr>
<td>BoundLT</td>
<td>1</td>
<td>Strict lower bound</td>
</tr>
<tr>
<td>BoundGE</td>
<td>2</td>
<td>Upper bound</td>
</tr>
<tr>
<td>BoundGT</td>
<td>3</td>
<td>Strict upper bound</td>
</tr>
<tr>
<td>BoundEQ</td>
<td>4</td>
<td>Equality</td>
</tr>
</tbody>
</table>

2.3.23.2 NdbIndexScanOperation::end_of_bound()

Description. This method is used to mark the end of a bound; it is used when batching index reads (that is, when employing multiple ranges).
The NdbIndexScanOperation Class

### Signature

```c
int end_of_bound
{
 Uint32 range_no
}
```

**Parameters.** The number of the range on which the bound occurs.

**Return value.** 0 indicates success; -1 indicates failure.

#### 2.3.23.3 NdbIndexScanOperation::getDescending()

**Description.** This method is used to check whether the scan is descending.

**Signature.**

```c
bool getDescending
{
 void
} const
```

**Parameters.** None.

**Return value.** This method returns `true` if the scan is sorted in descending order; otherwise, it returns `false`.

#### 2.3.23.4 NdbIndexScanOperation::get_range_no()

**Description.** This method returns the range number for the current row.

**Signature.**

```c
int get_range_no
{
 void
}
```

**Parameters.** None.

**Return value.** The range number (an integer).

#### 2.3.23.5 NdbIndexScanOperation::getSorted()

**Description.** This method is used to check whether the scan is sorted.

**Signature.**

```c
bool getSorted
{
 void
} const
```

**Parameters.** None.

**Return value.** `true` if the scan is sorted, otherwise `false`.

#### 2.3.23.6 NdbIndexScanOperation::readTuples()

**Description.** This method is used to read tuples, using an ordered index.

**Signature.**
The `NdbIndexScanOperation::reset_bounds()` method resets the bounds, and puts the operation into the list that will be sent on the next `NdbTransaction::execute()` call.

**Signature.**

```cpp
int reset_bounds
 (bool forceSend = false)
```

**Parameters.** Set `forceSend` to `true` in order to force the operation to be sent immediately.

**Return value.** Returns `0` on success, `-1` on failure.

The `NdbIndexScanOperation::setBound()` method defines a bound on an index key used in a range scan, and sets bounds for index scans defined using `NdbRecord`.

**Signature.**

```cpp
void setBound (
 const NdbIndex &index,
 const NdbIndexKey &key,
 BoundKind kind, BoundKind::Operator operator, Uint32 value
)
```

**Parameters.**

- `index` is the index on which the bound is defined.
- `key` is the index key for the bound.
- `kind` specifies the type of bound (upper, lower, or both).
- `operator` specifies the comparison operator for the bound (e.g., `<`, `<=`, `==`, `<>`, `>`, `>=`).
- `value` is the value to be used for the bound.

**Return value.** Returns an integer indicating success or failure.

Each index key can have a lower bound, upper bound, or both. Setting the key equal to a value defines both upper and lower bounds. Bounds must be defined in any order. Conflicting definitions give rise to an error. Bounds must be set on initial sequences of index keys, and all but possibly the last bound must be nonstrict. This means, for example, that "a >= 2 AND b > 3" is permissible, but "a > 2 AND b >= 3" is not.

The scan may currently return tuples for which the bounds are not satisfied. For example, a <= 2 && b <= 3 not only scans the index up to (a=2, b=3), but also returns any (a=1, b=4) as well.
When setting bounds based on equality, it is better to use `BoundEQ` instead of the equivalent pair `BoundLE` and `BoundGE`. This is especially true when the table partition key is a prefix of the index key.

NULL is considered less than any non-NULL value and equal to another NULL value. To perform comparisons with NULL, use `setBound()` with a null pointer (0).

An index also stores all-NUL keys as well, and performing an index scan with an empty bound set returns all tuples from the table.

**Signature (“Old” API).** Using the “old” API, this method could be called in either of two ways. Both of these use the bound type and value; the first also uses the name of the bound, as shown here:

```c
int setBound
 (const char* name,
 int type,
 const void* value)
```

The second way to invoke this method under the “old” API uses the bound’s ID rather than the name, as shown here:

```c
int setBound
 (Uint32 id,
 int type,
 const void* value)
```

**Parameters (“Old” API).** This method takes 3 parameters:

- Either the `name` or the `id` of the attribute on which the bound is to be set.
- The bound `type`—see Section 2.3.23.1, “NdbIndexScanOperation::BoundType”.
- A pointer to the bound `value` (use 0 for NULL).

**As used with NdbRecord.** This method is called to add a range to an index scan operation which has been defined with a call to `NdbTransaction::scanIndex()`. To add more than one range, the index scan operation must have been defined with the `SF_MultiRange` flag set. (See Section 2.3.29.9, “NdbScanOperation::ScanFlag”.)

**Note**

Where multiple numbered ranges are defined with multiple calls to `setBound()`, and the scan is ordered, the range number for each range must be larger than the range number for the previously defined range.

**Signature.**

```c
int setBound
 (const NdbRecord* keyRecord,
 const IndexBound& bound)
```

**Parameters.** As used with `NdbRecord`, this method takes 2 parameters, listed here:

- `keyRecord`: This is an `NdbRecord` structure corresponding to the key on which the index is defined.
- The `bound` to add (see Section 2.3.12, “The IndexBound Structure”).

An additional version of this method can be used when the application knows that rows in-range will be found only within a particular partition. This is the same as that shown previously, except for
the addition of a `PartitionSpec`. Doing so limits the scan to a single partition, improving system efficiency.

**Signature (when specifying a partition).**

```c
int setBound
(
 const NdbRecord* keyRecord,
 const IndexBound& bound,
 const Ndb::PartitionSpec* partInfo,
 Uint32 sizeOfPartInfo = 0
)
```

**Parameters (when specifying a partition).** This method can also be invoked with the following four parameters:

- `keyRecord`: This is an `NdbRecord` structure corresponding to the key on which the index is defined.
- The `bound` to be added to the scan (see Section 2.3.12, “The IndexBound Structure”).
- `partInfo`: This is a pointer to a `PartitionSpec`, which provides extra information making it possible to scan a reduced set of partitions.
- `sizeOfPartInfo`: The length of the partition specification.

**Note**

`keyRecord` and `bound` are defined and used in the same way as with the 2-parameter version of this method.

**Return value.** Returns 0 on success, -1 on failure.

---

### 2.3.24 The NdbInterpretedCode Class

This section discusses the `NdbInterpretedCode` class, which can be used to prepare and execute an NDB API interpreted program.

**Parent class.** None.

**Child classes.** None.

**Description.** `NdbInterpretedCode` represents an interpreted program for use in operations created using `NdbRecord`, or with scans created using the old API. The `NdbScanFilter` class can also be used to generate an NDB interpreted program using this class.

**Important**

This interface is still under development, and so is subject to change without notice. The `NdbScanFilter` API is a more stable API for defining scanning and filtering programs.

**Using NdbInterpretedCode.** To create an `NdbInterpretedCode` object, invoke the constructor, optionally supplying a table for the program to operate on, and a buffer for program storage and finalization. If no table is supplied, then only instructions which do not access table attributes can be used. Beginning with NDB 8.0.18, an instance of `Ndbrecord` can be used for this purpose, in place of the Table.

**Note**

Each NDB API operation applies to one table, and so does any `NdbInterpretedCode` program attached to that operation.
The NdbInterpretedCode Class

If no buffer is supplied, then an internal buffer is dynamically allocated and extended as necessary. Once the NdbInterpretedCode object is created, you can add instructions and labels to it by calling the appropriate methods as described later in this section. When the program has completed, finalize it by calling the finalise() method, which resolves any remaining internal branches and calls to label and subroutine offsets.

Note

A single finalized NdbInterpretedCode program can be used by more than one operation. It need not be re-prepared for successive operations.

To use the program with NdbRecord operations and scans, pass it at operation definition time using the OperationOptions or ScanOptions parameter. When the program is no longer required, the NdbInterpretedCode object can be deleted, along with any user-supplied buffer.

Error checking. For reasons of efficiency, methods of this class provide minimal error checking.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdbInterpretedCode()</td>
<td>Class constructor</td>
</tr>
<tr>
<td>add_reg()</td>
<td>Add two register values and store the result in a third register</td>
</tr>
<tr>
<td>add_val()</td>
<td>Add a value to a table column value</td>
</tr>
<tr>
<td>branch_col_and_mask_eq_mask()</td>
<td>Jump if a column value ANDed with a bitmask is equal to the bitmask</td>
</tr>
<tr>
<td>branch_col_and_mask_eq_zero()</td>
<td>Jump if a column value ANDed with a bitmask is equal to 0</td>
</tr>
<tr>
<td>branch_col_and_mask_ne_mask()</td>
<td>Jump if a column value ANDed with a bitmask is not equal to the bitmask</td>
</tr>
<tr>
<td>branch_col_and_mask_ne_zero()</td>
<td>Jump if a column value ANDed with a bitmask is not equal to 0</td>
</tr>
<tr>
<td>branch_col_eq()</td>
<td>Jump if a column value is equal to another</td>
</tr>
<tr>
<td>branch_col_eq_null()</td>
<td>Jump if a column value is NULL</td>
</tr>
<tr>
<td>branch_col_ge()</td>
<td>Jump if a column value is greater than or equal to another</td>
</tr>
<tr>
<td>branch_col_gt()</td>
<td>Jump if a column value is greater than another</td>
</tr>
<tr>
<td>branch_col_le()</td>
<td>Jump if a column value is less than or equal to another</td>
</tr>
<tr>
<td>branch_col_like()</td>
<td>Jump if a column value matches a pattern</td>
</tr>
<tr>
<td>branch_col_lt()</td>
<td>Jump if a column value is less than another</td>
</tr>
<tr>
<td>branch_col_ne()</td>
<td>Jump if a column value is not equal to another</td>
</tr>
<tr>
<td>branch_col_ne_null()</td>
<td>Jump if a column value is not NULL</td>
</tr>
<tr>
<td>branch_col_notlike()</td>
<td>Jump if a column value does not match a pattern</td>
</tr>
<tr>
<td>branch_eq()</td>
<td>Jump if one register value is equal to another</td>
</tr>
<tr>
<td>branch_eq_null()</td>
<td>Jump if one register value is NULL</td>
</tr>
<tr>
<td>branch_ge()</td>
<td>Jump if one register value is greater than or equal to another</td>
</tr>
<tr>
<td>branch_gt()</td>
<td>Jump if one register value is greater than another</td>
</tr>
<tr>
<td>branch_label()</td>
<td>Unconditional jump to a label</td>
</tr>
<tr>
<td>branch_le()</td>
<td>Jump if one register value is less than or equal to another</td>
</tr>
<tr>
<td>branch_lt()</td>
<td>Jump if one register value is less than another</td>
</tr>
</tbody>
</table>
The NdbInterpretedCode Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>branch_ne()</td>
<td>Jump if one register value is not equal to another</td>
</tr>
<tr>
<td>branch_ne_null()</td>
<td>Jump if a register value is not NULL</td>
</tr>
<tr>
<td>call_sub()</td>
<td>Call a subroutine</td>
</tr>
<tr>
<td>copy()</td>
<td>Make a deep copy of an NdbInterpretedCode object</td>
</tr>
<tr>
<td>def_label()</td>
<td>Create a label for use within the interpreted program</td>
</tr>
<tr>
<td>def_sub()</td>
<td>Define a subroutine</td>
</tr>
<tr>
<td>finalise()</td>
<td>Completes interpreted program and prepares it for use</td>
</tr>
<tr>
<td>getNdbError()</td>
<td>Gets the most recent error associated with this NdbInterpretedCode object</td>
</tr>
<tr>
<td>getTable()</td>
<td>Gets the table on which the program is defined</td>
</tr>
<tr>
<td>getWordsUsed()</td>
<td>Gets the number of words used in the buffer</td>
</tr>
<tr>
<td>interpret_exit_last_row()</td>
<td>Return a row as part of the result, and do not check any more rows in this fragment</td>
</tr>
<tr>
<td>interpret_exit_nok()</td>
<td>Do not return a row as part of the result</td>
</tr>
<tr>
<td>interpret_exit_ok()</td>
<td>Return a row as part of the result</td>
</tr>
<tr>
<td>load_const_null()</td>
<td>Load a NULL value into a register</td>
</tr>
<tr>
<td>load_const_u16()</td>
<td>Load a 16-bit numeric value into a register</td>
</tr>
<tr>
<td>load_const_u32()</td>
<td>Load a 32-bit numeric value into a register</td>
</tr>
<tr>
<td>load_const_u64()</td>
<td>Load a 64-bit numeric value into a register</td>
</tr>
<tr>
<td>read_attr()</td>
<td>Read a table column value into a register</td>
</tr>
<tr>
<td>ret_sub()</td>
<td>Return from a subroutine</td>
</tr>
<tr>
<td>sub_reg()</td>
<td>Subtract two register values and store the result in a third register</td>
</tr>
<tr>
<td>sub_val()</td>
<td>Subtract a value from a table column value</td>
</tr>
<tr>
<td>write_attr()</td>
<td>Write a register value into a table column</td>
</tr>
</tbody>
</table>

See also Section 2.3.24.1, “Using NdbInterpretedCode”.

Types. This class defines no public types.

2.3.24.1 Using NdbInterpretedCode

The next few sections provide information about performing different types of operations with NdbInterpretedCode methods, including resource usage.

NdbInterpretedCode Methods for Loading Values into Registers

The methods described in this section are used to load constant values into NdbInterpretedCode program registers. The space required by each of these methods is shown in the following table:

Table 2.44 NdbInterpretedCode methods used to load constant values into NdbInterpretedCode program registers, with required buffer and request message space.

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>load_const_null()</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>load_const_u16()</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>load_const_u32()</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
NdbInterpretedCode Methods for Copying Values Between Registers and Table Columns

NdbInterpretedCode provides two methods for copying values between a column in the current table row and a program register. The read_attr() method is used to copy a table column value into a program register; write_attr() is used to copy a value from a program register into a table column. Both of these methods require that the table being operated on was specified when creating the NdbInterpretedCode object for which they are called.

The space required by each of these methods is shown in the following table:

Table 2.45 NdbInterpretedCode methods used to copy values between registers and table columns, with required buffer and request message space.

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>read_attr()</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>write_attr()</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For more information, see Section 2.3.24.43, “NdbInterpretedCode::read_attr()”, and Section 2.3.24.47, “NdbInterpretedCode::write_attr()”.

NdbInterpretedCode Register Arithmetic Methods

NdbInterpretedCode provides two methods for performing arithmetic operations on registers. Using add_reg(), you can load the sum of two registers into another register; sub_reg() lets you load the difference of two registers into another register.

The space required by each of these methods is shown in the following table:

Table 2.46 NdbInterpretedCode methods used to perform arithmetic operations on registers, with required buffer and request message space.

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_reg()</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>sub_reg()</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

For more information, see Section 2.3.24.3, “NdbInterpretedCode::add_reg()”, and Section 2.3.24.45, “NdbInterpretedCode::sub_reg()”.

NdbInterpretedCode: Labels and Branching

The NdbInterpretedCode class lets you define labels within interpreted programs and provides a number of methods for performing jumps to these labels based on any of the following types of conditions:

- Comparison between two register values
- Comparison between a column value and a given constant
- Whether or not a column value matches a given pattern

To define a label, use the def_label() method.
To perform an unconditional jump to a label, use the `branch_label()` method.

To perform a jump to a given label based on a comparison of register values, use one of the `branch_*()` methods (`branch_ge()`, `branch_gt()`, `branch_le()`, `branch_lt()`, `branch_eq()`, `branch_ne()`, `branch_ne_null()`, or `branch_eq_null()`). See Register-Based NdbInterpretedCode Branch Operations.

To perform a jump to a given label based on a comparison of table column values, use one of the `branch_col_*()` methods (`branch_col_ge()`, `branch_col_gt()`, `branch_col_le()`, `branch_col_lt()`, `branch_col_eq()`, `branch_col_ne()`, `branch_col_ne_null()`, or `branch_col_eq_null()`). See Column-Based NdbInterpretedCode Branch Operations.

To perform a jump based on pattern-matching of a table column value, use one of the methods `branch_col_like()` or `branch_col_notlike()`. See Pattern-Based NdbInterpretedCode Branch Operations.

### Register-Based NdbInterpretedCode Branch Operations

Most of these are used to branch based on the results of register-to-register comparisons. There are also two methods used to compare a register value with `NULL`. All of these methods require as a parameter a label defined using the `def_label()` method.

These methods can be thought of as performing the following logic:

```c
if(register_value1 condition register_value2)
goto Label
```

The space required by each of these methods is shown in the following table:

#### Table 2.47 Register-based NdbInterpretedCode branch methods, with required buffer and request message space.

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>branch_ge()</code></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>branch_gt()</code></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>branch_le()</code></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>branch_lt()</code></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>branch_eq()</code></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>branch_ne()</code></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>branch_ne_null()</code></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td><code>branch_eq_null()</code></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

### Column-Based NdbInterpretedCode Branch Operations

The methods described in this section are used to perform branching based on a comparison between a table column value and a given constant value. Each of these methods expects the attribute ID of the column whose value is to be tested rather than a reference to a `Column` object.

These methods, with the exception of `branch_col_eq_null()` and `branch_col_ne_null()`, can be thought of as performing the following logic:

```c
if(constant_value condition column_value)
goto Label
```

In each case (once again excepting `branch_col_eq_null()` and `branch_col_ne_null()`), the arbitrary constant is the first parameter passed to the method.
The NdbInterpretedCode Class

The space requirements for each of these methods is shown in the following table, where \( L \) represents the length of the constant value:

Table 2.48 Column-based NdbInterpretedCode branch methods, with required buffer and request message space.

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>branch_col_eq_null()</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>branch_col_ne_null()</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>branch_col_eq()</td>
<td>2 + CEIL(L/8)</td>
<td></td>
</tr>
<tr>
<td>branch_col_ne()</td>
<td>2 + CEIL(L/8)</td>
<td></td>
</tr>
<tr>
<td>branch_col_lt()</td>
<td>2 + CEIL(L/8)</td>
<td></td>
</tr>
<tr>
<td>branch_col_le()</td>
<td>2 + CEIL(L/8)</td>
<td></td>
</tr>
<tr>
<td>branch_col_gt()</td>
<td>2 + CEIL(L/8)</td>
<td></td>
</tr>
<tr>
<td>branch_col_ge()</td>
<td>2 + CEIL(L/8)</td>
<td></td>
</tr>
</tbody>
</table>

Note
The expression CEIL\(L/8\) is the number of whole 8-byte words required to hold the constant value to be compared.

Pattern-Based NdbInterpretedCode Branch Operations

The NdbInterpretedCode class provides two methods which can be used to branch based on a comparison between a column containing character data (that is, a CHAR, VARCHAR, BINARY, or VARBINARY column) and a regular expression pattern.

The pattern syntax supported by the regular expression is the same as that supported by the MySQL Server’s LIKE and NOT LIKE operators, including the _ and % metacharacters. For more information about these, see String Comparison Functions and Operators.

Note
This is the same regular expression pattern syntax that is supported by NdbScanFilter; see Section 2.3.28.3, “NdbScanFilter::cmp()”, for more information.

The table being operated upon must be supplied when the NdbInterpretedCode object is instantiated. The regular expression pattern should be in plain CHAR format, even if the column is actually a VARCHAR (in other words, there should be no leading length bytes).

These functions behave as shown here:

```c
if (column_value [NOT] LIKE pattern)
 goto Label;
```

The space requirements for these methods are shown in the following table, where \( L \) represents the length of the constant value:

Table 2.49 Pattern-based NdbInterpretedCode branch methods, with required buffer and request message space.

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>branch_col_like()</td>
<td>2 + CEIL(L/8)</td>
<td></td>
</tr>
</tbody>
</table>
The NdbInterpretedCode Class

### NdbInterpretedCode Bitwise Comparison Operations

These instructions are used to branch based on the result of a logical AND comparison between a `BIT` column value and a bitmask pattern.

Use of these methods requires that the table being operated upon was supplied when the NdbInterpretedCode object was constructed. The mask value should be the same size as the bit column being compared. `BIT` values are passed into and out of the NDB API as 32-bit words with bits set in order from the least significant bit to the most significant bit. The endianness of the platform on which the instructions are executed controls which byte contains the least significant bits. On x86, this is the first byte (byte 0); on SPARC and PPC, it is the last byte.

The buffer length and the request length for each of the methods listed here each requires an amount of space equal to 2 words plus the column width rounded (up) to the nearest whole word:

- `branch_col_and_mask_eq_mask()`
- `branch_col_and_mask_ne_mask()`
- `branch_col_and_mask_eq_zero()`
- `branch_col_and_mask_ne_zero()`

### NdbInterpretedCode Result Handling Methods

The methods described in this section are used to tell the interpreter that processing of the current row is complete, and—in the case of scans—whether or not to include this row in the results of the scan.

The space requirements for these methods are shown in the following table, where \( L \) represents the length of the constant value:

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>interpret_exit_ok()</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>interpret_exit_nok()</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>interpret_exit_last_row()</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

### NdbInterpretedCode Convenience Methods

The methods described in this section can be used to insert multiple instructions (using specific registers) into an interpreted program.

#### Important

In addition to updating the table column, these methods use interpreter registers 6 and 7, replacing any existing contents of register 6 with the original

---

### Note

The expression `CEIL(L / 8)` is the number of whole 8-byte words required to hold the constant value to be compared.
column value and any existing contents of register 7 with the modified column value. The table itself must be previously defined when instantiating the NdbInterpretedCode object for which the method is invoked.

The space requirements for these methods are shown in the following table, where \( L \) represents the length of the constant value:

Table 2.51 NdbInterpretedCode convenience methods, with required buffer and request message space.

<table>
<thead>
<tr>
<th>Method</th>
<th>Buffer (words)</th>
<th>Request message (words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_val()</td>
<td>4</td>
<td>1; if the supplied value &gt;= ( 2^{16} ); 2; if &gt;= ( 2^{32} ); 3</td>
</tr>
<tr>
<td>sub_val()</td>
<td>4</td>
<td>1; if the supplied value &gt;= ( 2^{16} ); 2; if &gt;= ( 2^{32} ); 3</td>
</tr>
</tbody>
</table>

Using Subroutines with NdbInterpretedCode

NdbInterpretedCode supports subroutines which can be invoked from within interpreted programs, with each subroutine being identified by a unique number. Subroutines can be defined only following all main program instructions.

- The beginning of a subroutine is indicated by invoking the def_sub() method;
- ret_sub() terminates the subroutine; all instructions following the call to def_sub() belong to the subroutine until it is terminated using this method.
- A subroutine is called using the call_sub() method.

Once the subroutine has completed, the program resumes execution with the instruction immediately following the one which invoked the subroutine. Subroutines can also be invoked from other subroutines; currently, the maximum subroutine stack depth is 32.

NdbInterpretedCode Utility Methods

Some additional utility methods supplied by NdbInterpretedCode are listed here:

- copy(): Copies an existing interpreted program by performing a deep copy on the associated NdbInterpretedCode object.
- finalise(): Prepares an interpreted program by resolving all branching instructions and subroutine calls.
- getTable(): Get a reference to the table for which the NdbInterpretedCode object was defined.
- getNdbError(): Get the most recent error associated with this NdbInterpretedCode object.
- getWordsUsed(): Obtain the number of words used from the buffer.

2.3.24.2 NdbInterpretedCode Constructor

Description. This is the NdbInterpretedCode class constructor.

Signature.
The NdbInterpretedCode Class

NdbInterpretedCode
{
    const NdbDictionary::Table* table = 0,
    Uint32* buffer = 0,
    Uint32 buffer_word_size = 0
}

Alternative constructor (NDB 8.0.18 and later).

NdbInterpretedCode
{
    const NdbRecord&,
    Uint32* buffer = 0,
    Uint32 buffer_word_size = 0;
}

Parameters. The NdbInterpretedCode constructor takes three parameters, as described here:

• The table against which this program is to be run. Prior to NDB 8.0.18, this parameter must be supplied if the program is table-specific—that is, if it reads from or writes to columns in a table. In NDB 8.0.18 and later, the constructor accepts an NdbRecord in place of the Table.

• A pointer to a buffer of 32-bit words used to store the program.

• buffer_word_size is the length of the buffer passed in. If the program exceeds this length then adding new instructions will fail with error 4518 Too many instructions in interpreted program.

Alternatively, if no buffer is passed, a buffer will be dynamically allocated internally and extended to cope as instructions are added.

Return value. An instance of NdbInterpretedCode.

2.3.24.3 NdbInterpretedCode::add_reg()

Description. This method sums the values stored in any two given registers and stores the result in a third register.

Signature.

int add_reg
{
    Uint32 RegDest,
    Uint32 RegSource1,
    Uint32 RegSource2
}

Parameters. This method takes three parameters. The first of these is the register in which the result is to be stored (RegDest). The second and third parameters (RegSource1 and RegSource2) are the registers whose values are to be summed.

Note
It is possible to re-use for storing the result one of the registers whose values are summed; that is, RegDest can be the same as RegSource1 or RegSource2.

Return value. Returns 0 on success, -1 on failure.

2.3.24.4 NdbInterpretedCode::add_val()

Description. This method adds a specified value to the value of a given table column, and places the original and modified column values in registers 6 and 7. It is equivalent to the following series of NdbInterpretedCode method calls, where attrId is the table column’s attribute ID and aValue is the value to be added:
The NdbInterpretedCode Class

read_attr(6, attrId);
load_const_u32(7, aValue);
add_reg(7, 6, 7);
write_attr(attrId, 7);

aValue can be a 32-bit or 64-bit integer.

Signature. This method can be invoked in either of two ways, depending on whether aValue is 32-bit or 64-bit.

32-bit aValue:

```c
int add_val
{
 Uint32 attrId,
 Uint32 aValue
}
```

64-bit aValue:

```c
int add_val
{
 Uint32 attrId,
 Uint64 aValue
}
```

Parameters. A table column attribute ID and a 32-bit or 64-bit integer value to be added to this column value.

Return value. Returns 0 on success, -1 on failure.

2.3.24.5 NdbInterpretedCode::branch_col_and_mask_eq_mask()

Description. This method is used to compare a BIT column value with a bitmask; if the column value ANDed together with the bitmask is equal to the bitmask, then execution jumps to a specified label specified in the method call.

Signature.

```c
int branch_col_and_mask_eq_mask
{
 const void* mask,
 Uint32 unused,
 Uint32 attrId,
 Uint32 Label
}
```

Parameters. This method can accept four parameters, of which three are actually used. These are described in the following list:

- A pointer to a constant mask to compare the column value to
- A Uint32 value which is currently unused.
- The attrId of the column to be compared.
- A program Label to jump to if the condition is true.

Return value. This method returns 0 on success and -1 on failure.

2.3.24.6 NdbInterpretedCode::branch_col_and_mask_eq_zero()

Description. This method is used to compare a BIT column value with a bitmask; if the column value ANDed together with the bitmask is equal to 0, then execution jumps to a specified label specified in the method call.
### The NdbInterpretedCode Class

#### Signature.

```c
int branch_col_and_mask_eq_zero
{
 const void* mask,
 Uint32 unused,
 Uint32 attrId,
 Uint32 Label
}
```

**Parameters.** This method can accept the following four parameters, of which three are actually used:

- A pointer to a constant `mask` to compare the column value to.
- A `Uint32` value which is currently `unused`.
- The `attrId` of the column to be compared.
- A program `Label` to jump to if the condition is true.

**Return value.** This method returns `0` on success and `-1` on failure.

#### 2.3.24.7 NdbInterpretedCode::branch_col_and_mask_ne_mask()

**Description.** This method is used to compare a `BIT` column value with a bitmask; if the column value ANDed together with the bitmask is not equal to the bitmask, then execution jumps to a specified label specified in the method call.

**Signature.**

```c
int branch_col_and_mask_ne_mask
{
 const void* mask,
 Uint32 unused,
 Uint32 attrId,
 Uint32 Label
}
```

**Parameters.** This method accepts four parameters, of which three are actually used. These described in the following list:

- A pointer to a constant `mask` to compare the column value to.
- A `Uint32` value which is currently `unused`.
- The `attrId` of the column to be compared.
- A program `Label` to jump to if the condition is true.

**Return value.** This method returns `0` on success and `-1` on failure.

#### 2.3.24.8 NdbInterpretedCode::branch_col_and_mask_ne_zero()

**Description.** This method is used to compare a `BIT` column value with a bitmask; if the column value ANDed together with the bitmask is not equal to `0`, then execution jumps to a specified label specified in the method call.

**Signature.**

```c
int branch_col_and_mask_ne_zero
{
 const void* mask,
 Uint32 unused,
```
Parameters. This method accepts the following four parameters, of which three are actually used:

- A pointer to a constant \textit{mask} to compare the column value to.
- A \textit{Uint32} value which is currently \textit{unused}.
- The \textit{attrId} of the column to be compared.
- A program \textit{Label} to jump to if the condition is true.

Return value. This method returns 0 on success and -1 on failure.

2.3.24.9 \texttt{NdbInterpretedCode::branch\_col\_eq()}

Description. This method compares a table column value with an arbitrary constant and jumps to the specified program label if the values are equal. In NDB 8.0.18 and later, it can also be used to compare two columns for equality.

Signature. Compare a column with a value:

```c
int branch_col_eq

 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 Label

int branch_col_eq

 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
```

Parameters. When comparing a column and a value, this method takes the following four parameters:

- A constant value \texttt{(val)}
- The length of the value (in bytes)
- The attribute ID of the table column whose value is to be compared with \texttt{val}
- A \textit{Label} (previously defined using \texttt{def\_label()}) to jump to if the compared values are equal

When comparing two table column values, the parameters required are shown here:

- \texttt{AttrId1}: The attribute ID of the first table column whose value is to be compared
- \texttt{AttrId2}: The attribute ID of the second table column
- \texttt{label}: Location to jump to if the compared columns are the same. Must already have been defined using \texttt{def\_label()}

When using this method to compare two columns, the columns must be of exactly the same type.

Return value. Returns 0 on success, -1 on failure.
2.3.24.10 NdbInterpretedCode::branch_col_eq_null()

Description. This method tests the value of a table column and jumps to the indicated program label if the column value is NULL.

Signature.

```c
int branch_col_eq_null
 (Uint32 attrId,
 Uint32 Label
)
```

Parameters. This method requires the following two parameters:

- The attribute ID of the table column
- The program label to jump to if the column value is NULL

Return value. Returns 0 on success, -1 on failure.

2.3.24.11 NdbInterpretedCode::branch_col_ge()

Description. This method compares a table column value with an arbitrary constant and jumps to the specified program label if the constant column value. In NDB 8.0.18 and later, it can also be used to compare two columns and perform the jump if the value of the first column is greater than or equal to that of the second.

Signature. Compare value with column:

```c
int branch_col_ge
 (const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 label
)
```

Compare values of two columns:

```c
int branch_col_ge
 (Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)
```

Parameters. When used to compare a value with a column, this method takes the four parameters listed here:

- A constant value (`val`)
- The length of the value (in bytes)
- The attribute ID of the table column whose value is to be compared with `val`
- A `label` (previously defined using `def_label()`) to jump to if the constant value is greater than or equal to the column value

The method takes the parameters listed here when used to compare two columns:

- `AttrId1`: The attribute ID of the first table column whose value is to be compared
- `AttrId2`: The attribute ID of the second table column
• *label*: Jump to this if the first column value is greater than or equal to the second

When comparing two columns, the types of the columns must be exactly the same in all respects.

**Return value.**  Returns 0 on success, -1 on failure.

### 2.3.24.12 NdbInterpretedCode::branch_col_gt()

**Description.**  This method compares a table column value with an arbitrary constant and jumps to the specified program label if the constant is greater than the column value. In NDB 8.0.18 and later, this method is overloaded such that it can be used to compare two column values and make the jump if the first is greater than the second.

**Signature.**  Compare value with column:

```c
int branch_col_ge
{
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 label
}
```

Compare values of two columns:

```c
int branch_col_ge
{
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
}
```

**Parameters.**  When used to compare a value with a table column, this method takes the following four parameters:

• A constant value *(val)*

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be compared with *(val)*

• A *Label* (previously defined using `def_label()`) to jump to if the constant value is greater than the column value

The method takes the three parameters listed here when used to compare two columns:

• *AttrId1*: The attribute ID of the first table column whose value is to be compared

• *AttrId2*: The attribute ID of the second table column

• *label*: Jump to this if the first column value is greater than or equal to the second

When comparing two columns, the types of the columns must be exactly the same in all respects.

**Return value.**  Returns 0 on success, -1 on failure.

### 2.3.24.13 NdbInterpretedCode::branch_col_le()

**Description.**  This method compares a table column value with an arbitrary constant and jumps to the specified program label if the constant is less than or equal to the column value. Beginning with NDB 8.0.18, it can also be used to compare two table column values in this fashion.

**Signature.**  Compare a table column value with a constant:
The NdbInterpretedCode Class

int branch_col_le
(
    const void* val,
    Uint32 len,
    Uint32 attrId,
    Uint32 Label
)

Compare values of two table columns:

int branch_col_ge
(
    Uint32 attrId1,
    Uint32 attrId2,
    Uint32 label
)

Parameters. When comparing a table column value with a constant, this method takes the four parameters listed here:

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be compared with val

• A Label (previously defined using def_label()) to jump to if the constant value is less than or equal to the column value

The method takes the three parameters listed here when used to compare two table column values:

• AttrId1: The attribute ID of the first table column whose value is to be compared

• AttrId2: The attribute ID of the second table column

• label: Jump to this if the first column value is less than or equal to the second

When comparing two table column values, the types of the column values must be exactly the same in all respects.

Return value. Returns 0 on success, -1 on failure.

2.3.24.14 NdbInterpretedCode::branch_col_like()

Description. This method tests a table column value against a regular expression pattern and jumps to the indicated program label if they match.

Signature.

int branch_col_like
(
    const void* val,
    Uint32 len,
    Uint32 attrId,
    Uint32 Label
)

Parameters. This method takes four parameters, which are listed here:

• A regular expression pattern (val); see Pattern-Based NdbInterpretedCode Branch Operations, for the syntax supported

• Length of the pattern (in bytes)

• The attribute ID for the table column being tested
The NdbInterpretedCode Class

• The program label to jump to if the table column value matches the pattern

Return value. 0 on success, -1 on failure

2.3.24.15 NdbInterpretedCode::branch_col_lt()

Description. This method compares a table column value with an arbitrary constant and jumps to the specified program label if the constant is less than the column value. In NDB 8.0.18 and later, two table column values can be compared instead.

Signature. Compare a table column value with a constant:

```c
int branch_col_lt
{
 const void* val,
 Uint32 len,
 Uint32 attrId,
 Uint32 Label
}
```

Compare two table column values:

```c
int branch_col_lt
{
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
}
```

Parameters. When comparing a table column value with a constant, this method takes the following four parameters:

• A constant value (val)

• The length of the value (in bytes)

• The attribute ID of the table column whose value is to be compared with val

• A Label (previously defined using def_label()) to jump to if the constant value is less than the column value

When used to compare two table column values, branch_col_lt() takes the following three parameters:

• AttrId1: The attribute ID of the first table column whose value is to be compared

• AttrId2: The attribute ID of the second table column

• label: Jump to this if the first column value is less than the second

When comparing two table column values, the types of the table column values must be exactly the same. This means that they must have the same length, precision, and scale.

Return value. 0 on success, -1 on failure.

2.3.24.16 NdbInterpretedCode::branch_col_ne()

Description. This method compares a table column value with an arbitrary constant and jumps to the specified program label if the two values are not equal. In NDB 8.0.18 and later, it can also be used to compare a table column value with another table column value instead.

Signature. Compare a table column value with a constant:
Compare two table column values:

```c
int branch_col_ne
(
 Uint32 attrId1,
 Uint32 attrId2,
 Uint32 label
)
```

**Parameters.** When comparing a table column value with a constant, this method takes the four parameters listed here:

- A constant value (`val`)
- The length of the value (in bytes)
- The attribute ID of the table column whose value is to be compared with `val`
- A `Label` (previously defined using `def_label()`) to jump to if the compared values are unequal

When comparing two table column values, the parameters required are shown here:

- `AttrId1`: The attribute ID of the first table column whose value is to be compared
- `AttrId2`: The attribute ID of the second table column
- `label`: Location to jump to if the compared columns are not the same. Must already have been defined using `def_label()`

When using this method to compare two table column values, the columns must be of exactly the same type.

**Return value.** Returns 0 on success, -1 on failure.

### 2.3.24.17 NdbInterpretedCode::branch_col_ne_null()

**Description.** This method tests the value of a table column and jumps to the indicated program label if the column value is not `NULL`.

**Signature.**

```c
int branch_col_ne_null
(
 Uint32 attrId,
 Uint32 label
)
```

**Parameters.** This method requires the following two parameters:

- The attribute ID of the table column
- The program label to jump to if the column value is not `NULL`

**Return value.** Returns 0 on success, -1 on failure.
Description. This method is similar to \texttt{branch\_col\_like()} in that it tests a table column value against a regular expression pattern; however it jumps to the indicated program label only if the pattern and the column value do not match.

Signature.

\begin{verbatim}
int branch\_col\_notlike  
    {  
        const void* val,  
        Uint32 len,  
        Uint32 attrId,  
        Uint32 Label  
    }
\end{verbatim}

Parameters. This method takes the following four parameters:

- A regular expression pattern \texttt{(val)}; see Pattern-Based NdbInterpretedCode Branch Operations, for the syntax supported
- Length of the pattern (in bytes)
- The attribute ID for the table column being tested
- The program label to jump to if the table column value does not match the pattern

Return value. Returns \texttt{0} on success, \texttt{-1} on failure

2.3.24.19 \texttt{NdbInterpretedCode::branch\_eq()}

Description. This method compares two register values; if they equal, then the interpreted program jumps to the specified label.

Signature.

\begin{verbatim}
int branch\_eq  
    {  
        Uint32 RegLvalue,  
        Uint32 RegRvalue,  
        Uint32 Label  
    }
\end{verbatim}

Parameters. This method takes three parameters, the registers whose values are to be compared—\texttt{RegLvalue} and \texttt{RegRvalue}—and the program \texttt{Label} to jump to if they are equal. \texttt{Label} must have been defined previously using \texttt{def\_label()} (see Section 2.3.24.30, "NdbInterpretedCode::def\_label()").

Return value. \texttt{0} on success, \texttt{-1} on failure.

2.3.24.20 \texttt{NdbInterpretedCode::branch\_eq\_null()}

Description. This method compares a register value with \texttt{NULL}; if the register value is null, then the interpreted program jumps to the specified label.

Signature.

\begin{verbatim}
int branch\_eq\_null  
    {  
        Uint32 RegLvalue,  
        Uint32 Label  
    }
\end{verbatim}

Parameters. This method takes two parameters, the register whose value is to be compared with \texttt{NULL} (\texttt{RegLvalue}) and the program \texttt{Label} to jump to if \texttt{RegLvalue} is null. \texttt{Label} must have been defined previously using \texttt{def\_label()} (see Section 2.3.24.30, "NdbInterpretedCode::def\_label()").
Return value.  0 on success, −1 on failure.

2.3.24.21 NdbInterpretedCode::branch_ge()

Description.  This method compares two register values; if the first is greater than or equal to the second, the interpreted program jumps to the specified label.

Signature.

```c
int branch_ge
(Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)
```

Parameters.  This method takes three parameters, the registers whose values are to be compared —RegLvalue and RegRvalue—and the program Label to jump to if RegLvalue is greater than or equal to RegRvalue. Label must have been defined previously using def_label() (see Section 2.3.24.30, “NdbInterpretedCode::def_label()”).

Return value.  0 on success, −1 on failure.

2.3.24.22 NdbInterpretedCode::branch_gt()

Description.  This method compares two register values; if the first is greater than the second, the interpreted program jumps to the specified label.

Signature.

```c
int branch_gt
(Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
)
```

Parameters.  This method takes three parameters, the registers whose values are to be compared —RegLvalue and RegRvalue—and the program Label to jump to if RegLvalue is greater than RegRvalue. Label must have been defined previously using def_label() (see Section 2.3.24.30, “NdbInterpretedCode::def_label()”).

Return value.  0 on success, −1 on failure.

2.3.24.23 NdbInterpretedCode::branch_label()

Description.  This method performs an unconditional jump to an interpreted program label (see Section 2.3.24.30, “NdbInterpretedCode::def_label()”).

Signature.

```c
int branch_label
(Uint32 Label
)
```

Parameters.  This method takes a single parameter, an interpreted program Label defined using def_label().

Return value.  0 on success, −1 on failure.

2.3.24.24 NdbInterpretedCode::branch_le()
**Description.** This method compares two register values; if the first is less than or equal to the second, the interpreted program jumps to the specified label.

**Signature.**

```c
int branch_le
{
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
}
```

**Parameters.** This method takes three parameters, the registers whose values are to be compared —`RegLvalue` and `RegRvalue`—and the program `Label` to jump to if `RegLvalue` is less than or equal to `RegRvalue`. `Label` must have been defined previously using `def_label()` (see Section 2.3.24.30, “NdbInterpretedCode::def_label()”).

**Return value.** 0 on success, −1 on failure.

### 2.3.24.25 NdbInterpretedCode::branch_lt()

**Description.** This method compares two register values; if the first is less than the second, the interpreted program jumps to the specified label.

**Signature.**

```c
int branch_lt
{
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
}
```

**Parameters.** This method takes three parameters, the registers whose values are to be compared —`RegLvalue` and `RegRvalue`—and the program `Label` to jump to if `RegLvalue` is less than `RegRvalue`. `Label` must have been defined previously using `def_label()` (see Section 2.3.24.30, “NdbInterpretedCode::def_label()”).

**Return value.** 0 on success, −1 on failure.

### 2.3.24.26 NdbInterpretedCode::branch_ne()

**Description.** This method compares two register values; if they are not equal, then the interpreted program jumps to the specified label.

**Signature.**

```c
int branch_ne
{
 Uint32 RegLvalue,
 Uint32 RegRvalue,
 Uint32 Label
}
```

**Parameters.** This method takes three parameters, the registers whose values are to be compared (`RegLvalue` and `RegRvalue`) and the program `Label` to jump to if they are not equal. `Label` must have been defined previously using `def_label()`.

**Return value.** 0 on success, −1 on failure.

### 2.3.24.27 NdbInterpretedCode::branch_ne_null()
The NdbInterpretedCode Class

**Description.** This method compares a register value with `NULL`; if the value is not null, then the interpreted program jumps to the specified label.

**Signature.**

```c
int branch_ne_null
 (
 Uint32 RegLvalue,
 Uint32 Label
)
```

**Parameters.** This method takes two parameters, the register whose value is to be compared with `NULL` (**RegLvalue**) and the program **Label** to jump to if **RegLvalue** is not null. **Label** must have been defined previously using `def_label()` (see Section 2.3.24.30, "NdbInterpretedCode::def_label()").

**Return value.** 0 on success, -1 on failure.

2.3.24.28 NdbInterpretedCode::call_sub()

**Description.** This method is used to call a subroutine.

**Signature.**

```c
int call_sub
 (
 Uint32 SubroutineNumber
)
```

**Parameters.** This method takes a single parameter, the number identifying the subroutine to be called.

**Return value.** Returns 0 on success, -1 on failure.

2.3.24.29 NdbInterpretedCode::copy()

**Description.** Makes a deep copy of an NdbInterpretedCode object.

**Signature.**

```c
int copy
 (
 const NdbInterpretedCode& src
)
```

**Parameters.** A reference to the copy.

**Return value.** 0 on success, or an error code.

2.3.24.30 NdbInterpretedCode::def_label()

**Description.** This method defines a label to be used as the target of one or more jumps in an interpreted program. 

`def_label()` uses a 2-word buffer and requires no space for request messages.

**Signature.**

```c
int def_label
 (
 int LabelNum
)
```
**Parameters.** This method takes a single parameter `LabelNum`, whose value must be unique among all values used for labels within the interpreted program.

**Return value.** 0 on success; −1 on failure.

### 2.3.24.31 NdbInterpretedCode::def_sub()

**Description.** This method is used to mark the start of a subroutine. See Using Subroutines with NdbInterpretedCode, for more information.

**Signature.**

```c
int def_sub
{
 Uint32 SubroutineNumber
}
```

**Parameters.** A single parameter, a number used to identify the subroutine.

**Return value.** Returns 0 on success, −1 otherwise.

### 2.3.24.32 NdbInterpretedCode::finalise()

**Description.** This method prepares an interpreted program, including any subroutines it might have, by resolving all branching instructions and calls to subroutines. It must be called before using the program, and can be invoked only once for any given NdbInterpretedCode object.

If no instructions have been defined, this method attempts to insert a single `interpret_exit_ok()` method call prior to finalization.

**Signature.**

```c
int finalise
{
 void
}
```

**Parameters.** None.

**Return value.** Returns 0 on success, −1 otherwise.

### 2.3.24.33 NdbInterpretedCode::getNdbError()

**Description.** This method returns the most recent error associated with this NdbInterpretedCode object.

**Signature.**

```c
const class NdbError& getNdbError
{
 void
} const
```

**Parameters.** None.

**Return value.** A reference to an NdbError object.

### 2.3.24.34 NdbInterpretedCode::getTable()

**Description.** This method can be used to obtain a reference to the table for which the NdbInterpretedCode object was defined.
The NdbInterpretedCode Class

2.3.24.35 NdbInterpretedCode::getWordsUsed()

Description. This method returns the number of words from the buffer that have been used, whether the buffer is one that is user-supplied or the internally-provided buffer.

Signature.

```cpp
Uint32 getWordsUsed(void) const
```

Parameters. None.

Return value. The 32-bit number of words used from the buffer.

2.3.24.36 NdbInterpretedCode::interpret_exit_last_row()

Description. For a scanning operation, invoking this method indicates that this row should be returned as part of the scan, and that no more rows in this fragment should be scanned. For other types of operations, the method causes the operation to be aborted.

Signature.

```cpp
int interpret_exit_last_row(void)
```

Parameters. None.

Return value. Returns 0 if successful, -1 otherwise.

2.3.24.37 NdbInterpretedCode::interpret_exit_nok()

Description. For scanning operations, this method is used to indicate that the current row should not be returned as part of the scan, and to cause the program should move on to the next row. It causes other types of operations to be aborted.

Signature.

```cpp
int interpret_exit_nok(Uint32 ErrorCode = 626 // HA_ERR_KEY_NOT_FOUND)
```

Parameters. This method takes a single (optional) parameter ErrorCode which. For a complete listing of NDB error codes, see Section 2.4.2, “NDB Error Codes: by Type”. If not supplied, defaults to 626 (HA_ERR_KEY_NOT_FOUND/Tuple did not exist). Applications should use error code 626 or another code in the range 6000 to 6999 inclusive.

---

Signature.

```cpp
const NdbDictionary::Table* getTable(void) const
```

Parameters. None.

Return value. A pointer to a Table object. Returns NULL if no table object was supplied when the NdbInterpretedCode was instantiated.
The NdbInterpretedCode Class

For any values other than those mentioned here, the behavior of this method is undefined, and is subject to change at any time without prior notice.

**Return value.** Returns 0 on success, -1 on failure.

### 2.3.24.38 NdbInterpretedCode::interpret_exit_ok()

**Description.** For a scanning operation, this method indicates that the current row should be returned as part of the results of the scan and that the program should move on to the next row. For other operations, calling this method causes the interpreted program to exit.

**Signature.**

```c
int interpret_exit_ok
{
 void
}
```

**Parameters.** None.

**Return value.** Returns 0 on success, -1 on failure.

### 2.3.24.39 NdbInterpretedCode::load_const_null()

**Description.** This method is used to load a NULL value into a register.

**Signature.**

```c
int load_const_null
{
 Uint32 RegDest
}
```

**Parameters.** This method takes a single parameter, the register into which to place the NULL.

**Return value.** Returns 0 on success, -1 otherwise.

### 2.3.24.40 NdbInterpretedCode::load_const_u16()

**Description.** This method loads a 16-bit value into the specified interpreter register.

**Signature.**

```c
int load_const_u16
{
 Uint32 RegDest,
 Uint32 Constant
}
```

**Parameters.** This method takes the following two parameters:

- **RegDest:** The register into which the value should be loaded.
- A **Constant** value to be loaded

**Return value.** Returns 0 on success, -1 otherwise.

### 2.3.24.41 NdbInterpretedCode::load_const_u32()

**Description.** This method loads a 32-bit value into the specified interpreter register.

**Signature.**

```c
int load_const_u32
{
 Uint32 RegDest,
 Uint32 Constant
}
```
int load_const_u32

Parameters. This method takes the following two parameters:

- RegDest: The register into which the value should be loaded.
- A Constant value to be loaded

Return value. Returns 0 on success, -1 otherwise.

2.3.24.42 NdbInterpretedCode::load_const_u64()

Description. This method loads a 64-bit value into the specified interpreter register.

Signature.

int load_const_u64

Parameters. This method takes the following two parameters:

- RegDest: The register into which the value should be loaded.
- A Constant value to be loaded

Return value. Returns 0 on success, -1 otherwise.

2.3.24.43 NdbInterpretedCode::read_attr()

Description. The read_attr() method is used to read a table column value into a program register. The column may be specified either by using its attribute ID or as a pointer to a Column object.

Signature. This method can be called in either of two ways. The first of these is by referencing the column by its attribute ID, as shown here:

int read_attr

Alternatively, you can reference the column as a Column object, as shown here:

int read_attr

Parameters. This method takes two parameters, as described here:

- The register to which the column value is to be copied (RegDest).
- Either of the following references to the table column whose value is to be copied:
  - The table column's attribute ID (attrId)
The NdbInterpretedCode Class

- A pointer to a column—that is, a pointer to an Column object referencing the table column

Return value. Returns 0 on success, and -1 on failure.

2.3.24.44 NdbInterpretedCode::ret_sub()

Description. This method marks the end of the current subroutine.

Signature.

```cpp
int ret_sub
{
 void
}
```

Parameters. None.

Return value. Returns 0 on success, -1 otherwise.

2.3.24.45 NdbInterpretedCode::sub_reg()

Description. This method gets the difference between the values stored in any two given registers and stores the result in a third register.

Signature.

```cpp
int sub_reg
{
 Uint32 RegDest,
 Uint32 RegSource1,
 Uint32 RegSource2
}
```

Parameters. This method takes three parameters. The first of these is the register in which the result is to be stored (RegDest). The second and third parameters (RegSource1 and RegSource2) are the registers whose values are to be subtracted. In other words, the value of register RegDest is calculated as the value of the expression shown here:

\[(\text{value in register RegSource1}) - (\text{value in register RegSource2})\]

Note

It is possible to re-use one of the registers whose values are subtracted for storing the result; that is, RegDest can be the same as RegSource1 or RegSource2.

Return value. 0 on success; -1 on failure.

2.3.24.46 NdbInterpretedCode::sub_val()

Description. This method subtracts a specified value from the value of a given table column, and places the original and modified column values in registers 6 and 7. It is equivalent to the following series of NdbInterpretedCode method calls, where attrId is the table column' attribute ID and aValue is the value to be subtracted:

```cpp
read_attr(6, attrId);
load_const_u32(7, aValue);
sub_reg(7, 6, 7);
write_attr(attrId, 7);
```

aValue can be a 32-bit or 64-bit integer.
The NdbOperation Class

**Signature.** This method can be invoked in either of two ways, depending on whether `aValue` is 32-bit or 64-bit.

**32-bit `aValue`:**

```c
int sub_val(
 Uint32 attrId,
 Uint32 aValue
)
```

**64-bit `aValue`:**

```c
int sub_val(
 Uint32 attrId,
 Uint64 aValue
)
```

**Parameters.** A table column attribute ID and a 32-bit or 64-bit integer value to be subtracted from this column value.

**Return value.** Returns 0 on success, -1 on failure.

### 2.3.24.47 NdbInterpretedCode::write_attr()

**Description.** This method is used to copy a register value to a table column. The column may be specified either by using its attribute ID or as a pointer to a `Column` object.

**Signature.** This method can be invoked in either of two ways. The first of these is requires referencing the column by its attribute ID, as shown here:

```c
int read_attr(
 Uint32 attrId,
 Uint32 RegSource
)
```

You can also reference the column as a `Column` object instead, like this:

```c
int read_attr(
 const NdbDictionary::Column* column,
 Uint32 RegSource
)
```

**Parameters.** This method takes two parameters as follows:

- A reference to the table column to which the register value is to be copied. This can be either of the following:
  - The table column's attribute ID (`attrId`)
  - A pointer to a `column`—that is, a pointer to a `Column` object referencing the table column
  - The register whose value is to be copied (`RegSource`).

**Return value.** Returns 0 on success; -1 on failure.

### 2.3.25 The NdbOperation Class

This section discusses the `NdbOperation` class.

**Parent class.** None
The NdbOperation Class

Child classes. NdbIndexOperation, NdbScanOperation

Description. NdbOperation represents a “generic” data operation. Its subclasses represent more specific types of operations. See Section 2.3.25.18, “NdbOperation::Type” for a listing of operation types and their corresponding NdbOperation subclasses.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

Table 2.52 NdbOperation class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deleteTuple()</td>
<td>Removes a tuple from a table</td>
</tr>
<tr>
<td>equal()</td>
<td>Defines a search condition using equality</td>
</tr>
<tr>
<td>getBlobHandle()</td>
<td>Used to access blob attributes</td>
</tr>
<tr>
<td>getLockHandle()</td>
<td>Gets a lock handle for the operation</td>
</tr>
<tr>
<td>getLockMode()</td>
<td>Gets the operation's lock mode</td>
</tr>
<tr>
<td>getNdbError()</td>
<td>Gets the latest error</td>
</tr>
<tr>
<td>getNdbErrorLine()</td>
<td>Gets the number of the method where the latest error occurred</td>
</tr>
<tr>
<td>getTableName()</td>
<td>Gets the name of the table used for this operation</td>
</tr>
<tr>
<td>getTable()</td>
<td>Gets the table object used for this operation</td>
</tr>
<tr>
<td>getNdbTransaction()</td>
<td>Gets the NdbTransaction object for this operation</td>
</tr>
<tr>
<td>getType()</td>
<td>Gets the type of operation</td>
</tr>
<tr>
<td>getValue()</td>
<td>Allocates an attribute value holder for later access</td>
</tr>
<tr>
<td>insertTuple()</td>
<td>Adds a new tuple to a table</td>
</tr>
<tr>
<td>readTuple()</td>
<td>Reads a tuple from a table</td>
</tr>
<tr>
<td>setValue()</td>
<td>Defines an attribute to set or update</td>
</tr>
<tr>
<td>updateTuple()</td>
<td>Updates an existing tuple in a table</td>
</tr>
<tr>
<td>writeTuple()</td>
<td>Inserts or updates a tuple</td>
</tr>
</tbody>
</table>

Note

This class has no public constructor. To create an instance of NdbOperation, you must use NdbTransaction::getNdbOperation().

Types. The NdbOperation class defines three public types, shown in the following table:

Table 2.53 NdbOperation class types and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbortOption()</td>
<td>Determines whether a failed operation causes failure of the transaction of which it is part</td>
</tr>
<tr>
<td>LockMode()</td>
<td>The type of lock used when performing a read operation</td>
</tr>
<tr>
<td>Type()</td>
<td>Operation access types</td>
</tr>
</tbody>
</table>

Note

For more information about the use of NdbOperation, see Single-row operations.

2.3.25.1 NdbOperation::AbortOption
The NdbOperation Class

**Description.** This type is used to determine whether failed operations should force a transaction to be aborted. It is used as an argument to the `execute()` method—see Section 2.3.30.6, “NdbTransaction::execute()”, for more information.

** Enumeration values.** Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbortOnError</td>
<td>A failed operation causes the transaction to abort.</td>
</tr>
<tr>
<td>AO_IgnoreOnError</td>
<td>Failed operations are ignored; the transaction continues to execute.</td>
</tr>
<tr>
<td>DefaultAbortOption</td>
<td>The <code>AbortOption</code> value is set according to the operation type:</td>
</tr>
<tr>
<td></td>
<td>* Read operations: <code>AO_IgnoreOnError</code></td>
</tr>
<tr>
<td></td>
<td>* Scan takeover or DML operations: <code>AbortOnError</code></td>
</tr>
</tbody>
</table>

See Section 2.3.30.6, “NdbTransaction::execute()”, for more information.

**2.3.25.2 NdbOperation::deleteTuple()**

**Description.** This method defines the `NdbOperation` as a DELETE operation. When the `NdbTransaction::execute()` method is invoked, the operation deletes a tuple from the table.

**Signature.**

```cpp
virtual int deleteTuple
(void)
```

**Parameters.** *None.*

**Return value.** Returns 0 on success, -1 on failure.

**2.3.25.3 NdbOperation::equal()**

**Description.** This method defines a search condition with an equality. The condition is true if the attribute has the given value. To set search conditions on multiple attributes, use several calls to `equal()`; in such cases all of them must be satisfied for the tuple to be selected.

**Important**

If the attribute is of a fixed size, its value must include all bytes. In particular a `Char` value must be native-space padded. If the attribute is of variable size, its value must start with 1 or 2 little-endian length bytes (2 if its type is `Long*`).

**Note**

When using `insertTuple()`, you may also define the search key with `setValue()`. See Section 2.3.25.17, “NdbOperation::setValue()”.

**Signature.** There are 10 versions of `equal()`, each having slightly different parameters. All of these are listed here:

```cpp
int equal
```
The NdbOperation Class

```c
{
 const char* name,
 const char* value
}

int equal
{
 const char* name,
 Int32 value
}

int equal
{
 const char* name,
 Uint32 value
}

int equal
{
 const char* name,
 Int64 value
}

int equal
{
 const char* name,
 Uint64 value
}

int equal
{
 Uint32 id,
 const char* value
}

int equal
{
 Uint32 id,
 Int32 value
}

int equal
{
 Uint32 id,
 Uint32 value
}

int equal
{
 Uint32 id,
 Int64 value
}

int equal
{
 Uint32 id,
 Uint64 value
}
```

**Parameters.** This method requires two parameters:

- The first parameter can be either of the following:
  1. The `name` of the attribute (a string)
  2. The `id` of the attribute (an unsigned 32-bit integer)

- The second parameter is the attribute `value` to be tested. This value can be any one of the following 5 types:
  1. String
2. 32-bit integer
3. Unsigned 32-bit integer
4. 64-bit integer
5. Unsigned 64-bit integer

Return value. Returns \(-1\) in the event of an error.

### 2.3.25.4 NdbOperation::getBlobHandle()

**Description.** This method is used in place of `getValue()` or `setValue()` for blob attributes. It creates a blob handle (`NdbBlob` object). A second call with the same argument returns the previously created handle. The handle is linked to the operation and is maintained automatically.

**Signature.** This method has two forms, depending on whether it is called with the name or the ID of the blob attribute:

```cpp
virtual NdbBlob* getBlobHandle(
 const char* name
)
```

or

```cpp
virtual NdbBlob* getBlobHandle(
 Uint32 id
)
```

**Parameters.** This method takes a single parameter, which can be either one of the following:

- The *name* of the attribute
- The *id* of the attribute

**Return value.** Regardless of parameter type used, this method return a pointer to an instance of `NdbBlob`.

### 2.3.25.5 NdbOperation::getLockHandle

**Description.** Returns a pointer to the current operation's lock handle. When used with `NdbRecord`, the lock handle must first be requested with the `OO_LOCKHANDLE` operation option. For other operations, this method can be used alone. In any case, the `NdbLockHandle` object returned by this method cannot be used until the operation has been executed.

**Using lock handle methods.** Shared or exclusive locks taken by read operations in a transaction are normally held until the transaction commits or aborts. Such locks can be released before a transaction commits or aborts by requesting a lock handle when defining the read operation. Once the read operation has been executed, an `NdbLockHandle` can be used to create a new unlock operation (with `NdbTransaction::unlock()`). When the unlock operation is executed, the row lock placed by the read operation is released.

The steps required to release these locks are listed here:

- Define the primary key read operation in the normal way with lock mode `LM_Read` or `LM_Exclusive`.
- Call `NdbOperation::getLockHandle()` during operation definition, or, for `Ndbrecord`, set the `OO_LOCKHANDLE` operation option when calling `NdbTransaction::readTuple()`.
The NdbOperation Class

- Call `NdbTransaction::execute()`; the row is now locked from this point on, as normal.
- (Use data, possibly making calls to `NdbTransaction::execute()`.)
- Call `NdbTransaction::unlock()`, passing in the `const NdbLockHandle` obtained previously to create an unlock operation.
- Call `NdbTransaction::execute()`; this unlocks the row.

Notes:
- As with other operation types, unlock operations can be batched.
- Each `NdbLockHandle` object refers to a lock placed on a row by a single primary key read operation. A single row in the database may have concurrent multiple lock holders (mode `LM_Read`) and may have multiple lock holders pending (LM_Exclusive), so releasing the claim of one lock holder may not result in a change to the observable lock status of the row.
- Lock handles are supported for scan lock takeover operations; the lock handle must be requested before the lock takeover is executed.
- Lock handles and unlock operations are not supported for unique index read operations.

Signature.

```cpp
const NdbLockHandle* getLockHandle()
{
 void
} const
```

(or)

```cpp
const NdbLockHandle* getLockHandle()
{
 void
}
```

Parameters.  None.

Return value.  Pointer to an `NdbLockHandle` that can be used by the `NdbTransaction` methods `unlock()` and `releaseLockHandle()`.

2.3.25.6 `NdbOperation::getLockMode()`

Description.  This method gets the operation's lock mode.

Signature.

```cpp
LockMode getLockMode()
{
 void
} const
```

Parameters.  None.

Return value.  A `LockMode` value. See Section 2.3.25.15, “`NdbOperation::LockMode`”.

2.3.25.7 `NdbOperation::getNdbError()`

Description.  This method gets the most recent error (an `NdbError` object).

Signature.
The NdbOperation Class

const NdbErrors getNdbError
{
    void
} const

Parameters. None.
Return value. An NdbError object.

2.3.25.8 NdbOperation::getNdbErrorLine()

Description. This method retrieves the method number in which the latest error occurred.
Signature. This method can and should be used as shown here:

int getNdbErrorLine
{
    void
} const

Parameters. None.
Return value. The method number (an integer).

2.3.25.9 NdbOperation::getTable()

Description. This method is used to retrieve the table object associated with the operation.
Signature.

const NdbDictionary::Table* getTable
{
    void
} const

Parameters. None.
Return value. A pointer to an instance of Table.

2.3.25.10 NdbOperation::getTableName()

Description. This method retrieves the name of the table used for the operation.
Signature.

const char* getTableName
{
    void
} const

Parameters. None.
Return value. The name of the table.

2.3.25.11 NdbOperation::getNdbTransaction()

Description. Gets the NdbTransaction object for this operation.
Signature.

virtual NdbTransaction* getNdbTransaction

The NdbOperation Class

void \) const

Parameters.  None.

Return value.  A pointer to an NdbTransaction object.

2.3.25.12 NdbOperation::getType()

Description.  This method is used to retrieve the access type for this operation.

Signature.

Type getType
{
  void
} const

Parameters.  None.

Return value.  A Type value.

2.3.25.13 NdbOperation::getValue()

Description.  This method prepares for the retrieval of an attribute value. The NDB API allocates memory for an NdbRecAttr object that is later used to obtain the attribute value. This can be done by using one of the many NdbRecAttr accessor methods, the exact method to be used depending on the attribute's data type. (This includes the generic NdbRecAttr::aRef() method, which retrieves the data as char*, regardless of its actual type. However, this is not type-safe, and requires a cast from the user.)

Important

This method does not fetch the attribute value from the database; the NdbRecAttr object returned by this method is not readable or printable before calling NdbTransaction::execute().

If a specific attribute has not changed, the corresponding NdbRecAttr has the state UNDEFINED. This can be checked by using NdbRecAttr::isNull(), which in such cases returns -1.

See Section 2.3.30.6, "NdbTransaction::execute()", and Section 2.3.26.13, "NdbRecAttr::isNull()."

Signature.  There are three versions of this method, each having different parameters:

NdbRecAttr* getValue
{
  const char* name,
  char*    value = 0
}

NdbRecAttr* getValue
{
  Uint32 id,
  char* value = 0
}

NdbRecAttr* getValue
{
  const NdbDictionary::Column* col,
  char*    value = 0
}
The NdbOperation Class

Parameters. All three forms of this method have two parameters, the second parameter being optional (defaults to 0). They differ only with regard to the type of the first parameter, which can be any one of the following:

- The attribute name
- The attribute id
- The table column on which the attribute is defined

In all three cases, the second parameter is a character buffer in which a non-NULL attribute value is returned. In the event that the attribute is NULL, it is stored only in the NdbRecAttr object returned by this method.

If no value is specified in the getValue() method call, or if 0 is passed as the value, then the NdbRecAttr object provides memory management for storing the received data. If the maximum size of the received data is above a small fixed size, malloc() is used to store it: For small sizes, a small, fixed internal buffer (32 bytes in extent) is provided. This storage is managed by the NdbRecAttr instance; it is freed when the operation is released, such as at transaction close time; any data written here that you wish to preserve should be copied elsewhere before this freeing of memory takes place.

If you pass a non-zero pointer for value, then it is assumed that this points to an portion of memory which is large enough to hold the maximum value of the column; any returned data is written to that location. The pointer should be at least 32-bit aligned.

Note

Index columns cannot be used in place of table columns with this method. In cases where a table column is not available, you can use the attribute name, obtained with getName(), for this purpose instead.

Return value. A pointer to an NdbRecAttr object to hold the value of the attribute, or a NULL pointer, indicating an error.

Retrieving integers. Integer values can be retrieved from both the value buffer passed as this method's second parameter, and from the NdbRecAttr object itself. On the other hand, character data is available from NdbRecAttr if no buffer has been passed in to getValue() (see Section 2.3.26.2, “NdbRecAttr::aRef()”). However, character data is written to the buffer only if one is provided, in which case it cannot be retrieved from the NdbRecAttr object that was returned. In the latter case, NdbRecAttr::aRef() returns a buffer pointing to an empty string.

Accessing bit values. The following example shows how to check a given bit from the value buffer. Here, op is an operation (NdbOperation object), name is the name of the column from which to get the bit value, and trans is an NdbTransaction object:

```c
Uint32 buf[];
op->getValue(name, buf); /* bit column */
trans->execute();
if(buf[X/32] & 1 << (X & 31)) /* check bit X */
 { /* bit X set */
```

2.3.25.14 NdbOperation::insertTuple()

Description. This method defines the NdbOperation to be an INSERT operation. When the NdbTransaction::execute() method is called, this operation adds a new tuple to the table.
### The NdbOperation Class

#### Signature.

```cpp
template virtual int insertTuple()
{
 void
}
```

**Parameters.**  
*None.*

**Return value.**  
Returns 0 on success, -1 on failure.

#### 2.3.25.15 NdbOperation::LockMode

**Description.** This type describes the lock mode used when performing a read operation.

**Enumeration values.** Possible values for this type are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM_Read</td>
<td>Read with shared lock</td>
</tr>
<tr>
<td>LM_Exclusive</td>
<td>Read with exclusive lock</td>
</tr>
<tr>
<td>LM_CommittedRead</td>
<td>Ignore locks; read last committed</td>
</tr>
<tr>
<td>LM_SimpleRead</td>
<td>Read with shared lock, but release lock directly</td>
</tr>
</tbody>
</table>

**Note**  
There is also support for dirty reads (LM_Dirty), but this is normally for internal purposes only, and should not be used for applications deployed in a production setting.

#### 2.3.25.16 NdbOperation::readTuple()

**Description.** This method defines the NdbOperation as a READ operation. When the NdbTransaction::execute() method is invoked, the operation reads a tuple.

**Signature.**

```cpp
template virtual int readTuple(LockMode mode)
```

**Parameters.**  
*mode* specifies the locking mode used by the read operation. See Section 2.3.25.15, “NdbOperation::LockMode”, for possible values.

**Return value.**  
Returns 0 on success, -1 on failure.

#### 2.3.25.17 NdbOperation::setValue()

**Description.** This method defines an attribute to be set or updated.

There are a number of NdbOperation::setValue() methods that take a certain type as input (pass by value rather than passing a pointer). It is the responsibility of the application programmer to use the correct types.

However, the NDB API does check that the application sends a correct length to the interface as given in the length parameter. A char* value can contain any data type or any type of array. If the length is
not provided, or if it is set to zero, then the API assumes that the pointer is correct, and does not check it.

To set a **NULL** value, use the following construct:

```c
setValue("ATTR_NAME", (char*)NULL);
```

When you use `insertTuple()`, the NDB API automatically detects that it is supposed to use `equal()` instead.

In addition, it is not necessary when using `insertTuple()` to use `setValue()` on key attributes before other attributes.

**Signature.** There are 14 versions of `NdbOperation::setValue()`, each with slightly different parameters, as listed here (and summarized in the `Parameters` section following):

```c
int setValue
(const char* name,
 const char* value
);

int setValue
(const char* name,
 Int32 value
);

int setValue
(const char* name,
 Uint32 value
);

int setValue
(const char* name,
 Int64 value
);

int setValue
(const char* name,
 Uint64 value
);

int setValue
(const char* name,
 float value
);

int setValue
(const char* name,
 double value
);

int setValue
(Uint32 id,
 const char* value
);

int setValue
(Uint32 id,
 Int32 value
);
```
The NdbOperation Class

```c
int setValue
{
 Uint32 id,
 Uint32 value
}
```

```c
int setValue
{
 Uint32 id,
 Int64 value
}
```

```c
int setValue
{
 Uint32 id,
 Uint64 value
}
```

```c
int setValue
{
 Uint32 id,
 float value
}
```

```c
int setValue
{
 Uint32 id,
 double value
}
```

**Parameters.** This method requires the following two parameters:

- The first parameter identified the attribute to be set, and may be either one of the following:
  1. The attribute *name* (a string)
  2. The attribute *id* (an unsigned 32-bit integer)

- The second parameter is the *value* to which the attribute is to be set; its type may be any one of the following 7 types:
  1. String (*const char*\*)
  2. 32-bit integer
  3. Unsigned 32-bit integer
  4. 64-bit integer
  5. Unsigned 64-bit integer
  6. Double
  7. Float

See Section 2.3.25.3, “NdbOperation::equal()”, for important information regarding the value's format and length.

**Return value.** Returns **-1** in the event of failure.

### 2.3.25.18 NdbOperation::Type

**Description.** Type is used to describe the operation access type. Each access type is supported by *NdbOperation* or one of its subclasses, as shown in the following table:

**Enumeration values.** Possible values are shown, along with descriptions, in the following table:
Table 2.56 NdbOperation::Type data type values and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Applicable Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrimaryKeyAccess</td>
<td>A read, insert, update, or delete operation using the table's primary key</td>
<td>NdbOperation</td>
</tr>
<tr>
<td>UniqueIndexAccess</td>
<td>A read, update, or delete operation using a unique index</td>
<td>NdbIndexOperation</td>
</tr>
<tr>
<td>TableScan</td>
<td>A full table scan</td>
<td>NdbScanOperation</td>
</tr>
<tr>
<td>OrderedIndexScan</td>
<td>An ordered index scan</td>
<td>NdbIndexScanOperation</td>
</tr>
</tbody>
</table>

2.3.25.19 NdbOperation::writeTuple()

Description. This method defines the NdbOperation as a WRITE operation. When the NdbTransaction::execute() method is invoked, the operation writes a tuple to the table. If the tuple already exists, it is updated; otherwise an insert takes place.

Signature.

```cpp
virtual int writeTuple
{
 void
}
```

Parameters. None.

Return value. Returns 0 on success, -1 on failure.

2.3.25.20 NdbOperation::updateTuple()

Description. This method defines the NdbOperation as an UPDATE operation. When the NdbTransaction::execute() method is invoked, the operation updates a tuple found in the table.

Signature.

```cpp
virtual int updateTuple
{
 void
}
```

Parameters. None.

Return value. Returns 0 on success, -1 on failure.

2.3.26 The NdbRecAttr Class

The section describes the NdbRecAttr class and its public methods.

Parent class. None

Child classes. None

Description. NdbRecAttr contains the value of an attribute. An NdbRecAttr object is used to store an attribute value after it has been retrieved using the NdbOperation::getValue() method. This object is allocated by the NDB API. A brief example is shown here:

```c
MyRecAttr = MyOperation->getValue("ATTR2", NULL);
if(MyRecAttr == NULL)
 goto error;
if(MyTransaction->execute(Commit) == -1)
 goto error;
```
The NdbRecAttr Class

```cpp
ndbout << MyRecAttr->u_32_value();
```

For additional examples, see Section 2.5.1, “NDB API Example Using Synchronous Transactions”.

**Note**

An `NdbRecAttr` object is instantiated with its value only when `NdbTransaction::execute()` is invoked. Prior to this, the value is undefined. (Use `NdbRecAttr::isNULL()` to check whether the value is defined.) This means that an `NdbRecAttr` object has valid information only between the times that `NdbTransaction::execute()` and `Ndb::closeTransaction()` are called. The value of the NULL indicator is -1 until the `NdbTransaction::execute()` method is invoked.

**Methods.** `NdbRecAttr` has a number of methods for retrieving values of various simple types directly from an instance of this class.

**Note**

It is also possible to obtain a reference to the value regardless of its actual type, by using `NdbRecAttr::aRef()`; however, you should be aware that this is not type-safe, and requires a cast from the user.

The following table lists all of the public methods of this class and the purpose or use of each method:

**Table 2.57 NdbRecAttr class methods and descriptions**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~NdbRecAttr()</td>
<td>Destructor method</td>
</tr>
<tr>
<td>aRef()</td>
<td>Gets a pointer to the attribute value</td>
</tr>
<tr>
<td>char_value()</td>
<td>Retrieves a <code>Char</code> attribute value</td>
</tr>
<tr>
<td>clone()</td>
<td>Makes a deep copy of the <code>RecAttr</code> object</td>
</tr>
<tr>
<td>double_value()</td>
<td>Retrieves a <code>Double</code> attribute value, as a double (8 bytes)</td>
</tr>
<tr>
<td>float_value()</td>
<td>Retrieves a <code>Float</code> attribute value, as a float (4 bytes)</td>
</tr>
<tr>
<td>get_size_in_bytes()</td>
<td>Gets the size of the attribute, in bytes</td>
</tr>
<tr>
<td>getColumn()</td>
<td>Gets the column to which the attribute belongs</td>
</tr>
<tr>
<td>getType()</td>
<td>Gets the attribute’s type (<code>Column::Type</code>)</td>
</tr>
<tr>
<td>isNULL()</td>
<td>Tests whether the attribute is NULL</td>
</tr>
<tr>
<td>int8_value()</td>
<td>Retrieves a <code>Tinyint</code> attribute value, as an 8-bit integer</td>
</tr>
<tr>
<td>int32_value()</td>
<td>Retrieves an <code>Int</code> attribute value, as a 32-bit integer</td>
</tr>
<tr>
<td>int64_value()</td>
<td>Retrieves a <code>BigInt</code> attribute value, as a 64-bit integer</td>
</tr>
<tr>
<td>medium_value()</td>
<td>Retrieves a <code>Mediumint</code> attribute value, as a 32-bit integer</td>
</tr>
<tr>
<td>short_value()</td>
<td>Retrieves a <code>Smallint</code> attribute value, as a 16-bit integer</td>
</tr>
<tr>
<td>u_8_value()</td>
<td>Retrieves a <code>Tinyunsigned</code> attribute value, as an unsigned 8-bit integer</td>
</tr>
<tr>
<td>u_32_value()</td>
<td>Retrieves an <code>Unsigned</code> attribute value, as an unsigned 32-bit integer</td>
</tr>
<tr>
<td>u_64_value()</td>
<td>Retrieves a <code>BigIntunsigned</code> attribute value, as an unsigned 64-bit integer</td>
</tr>
<tr>
<td>u_char_value()</td>
<td>Retrieves a <code>Char</code> attribute value, as an unsigned <code>char</code></td>
</tr>
<tr>
<td>u_medium_value()</td>
<td>Retrieves a <code>Mediumunsigned</code> attribute value, as an unsigned 32-bit integer</td>
</tr>
</tbody>
</table>
### The NdbRecAttr Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_short_value()</td>
<td>Retrieves a <strong>Smallunsigned</strong> attribute value, as an unsigned 16-bit integer</td>
</tr>
</tbody>
</table>

#### Note

The `NdbRecAttr` class has no public constructor; an instance of this object is created using `NdbTransaction::execute()`. For information about the destructor, which is public, see Section 2.3.26.1, "~NdbRecAttr()".

### Types

The `NdbRecAttr` class defines no public types.

#### 2.3.26.1 ~NdbRecAttr()

**Description.** The `NdbRecAttr` class destructor method.

**Important**

You should delete only copies of `NdbRecAttr` objects that were created in your application using the `clone()` method.

**Signature.**

```
~NdbRecAttr
 (
 void
)
```

**Parameters.** *None.*

**Return value.** *None.*

#### 2.3.26.2 NdbRecAttr::aRef()

**Description.** This method is used to obtain a reference to an attribute value, as a `char` pointer. This pointer is aligned appropriately for the data type. The memory is released by the NDB API when `NdbTransaction::close()` is executed on the transaction which read the value.

**Signature.**

```
char* aRef
 (
 void
) const
```

**Parameters.** A pointer to the attribute value. Because this pointer is constant, this method can be called anytime after `NdbOperation::getValue()` has been called.

**Return value.** *None.*

#### 2.3.26.3 NdbRecAttr::char_value()

**Description.** This method gets a `Char` value stored in an `NdbRecAttr` object, and returns it as a `char`.

**Signature.**

```
char char_value
 (
 void
)
```
The NdbRecAttr Class

2.3.26.4 NdbRecAttr::clone()

**Description.** This method creates a deep copy of an NdbRecAttr object.

**Note**
The copy created by this method should be deleted by the application when no longer needed.

**Signature.**

```cpp
NdbRecAttr* clone(
 void
) const
```

**Parameters.** None.

**Return value.** An NdbRecAttr object. This is a complete copy of the original, including all data.

2.3.26.5 NdbRecAttr::double_value()

**Description.** This method gets a Double value stored in an NdbRecAttr object, and returns it as a double.

**Signature.**

```cpp
double double_value(
 void
) const
```

**Parameters.** None.

**Return value.** A double (8 bytes).

2.3.26.6 NdbRecAttr::float_value()

**Description.** This method gets a Float value stored in an NdbRecAttr object, and returns it as a float.

**Signature.**

```cpp
float float_value(
 void
) const
```

**Parameters.** None.

**Return value.** A float (4 bytes).

2.3.26.7 NdbRecAttr::get_size_in_bytes()

**Description.** You can use this method to obtain the size of an attribute (element).
The NdbRecAttr Class

2.3.26.8 NdbRecAttr::getColumn()

Description.  This method is used to obtain the column to which the attribute belongs.

Signature.  

```cpp
const NdbDictionary::Column* getColumn(
 void
) const
```

Parameters.  None.

Return value.  A pointer to a `Column` object.

2.3.26.9 NdbRecAttr::getType()

Description.  This method is used to obtain the column's data type.

Signature.  

```cpp
NdbDictionary::Column::Type getType(
 void
) const
```

Parameters.  None.

Return value.  An `Column::Type` value.

2.3.26.10 NdbRecAttr::int8_value()

Description.  This method gets a `Small` value stored in an `NdbRecAttr` object, and returns it as an 8-bit signed integer.

Signature.  

```cpp
Int8 int8_value(
 void
) const
```

Parameters.  None.

Return value.  An 8-bit signed integer.

2.3.26.11 NdbRecAttr::int32_value()

Description.  This method gets an `Int` value stored in an `NdbRecAttr` object, and returns it as a 32-bit signed integer.

Signature.
The NdbRecAttr Class

2.3.26.12 NdbRecAttr::int64_value()

Description.  This method gets a Bigint value stored in an NdbRecAttr object, and returns it as a 64-bit signed integer.

Signature.

\[
\text{Int64 int64\_value} \\
\quad (\text{void}) \text{ const}
\]

Parameters.  None.

Return value.  A 64-bit signed integer.

2.3.26.13 NdbRecAttr::isNULL()

Description.  This method checks whether an attribute value is NULL.

Signature.

\[
\text{int isNULL} \\
\quad (\text{void}) \text{ const}
\]

Parameters.  None.

Return value.  One of the following three values:

- \(-1\): The attribute value is not defined due to an error.
- \(0\): The attribute value is defined, but is not NULL.
- \(1\): The attribute value is defined and is NULL.

Important

In the event that NdbTransaction::execute() has not yet been called, the value returned by isNULL() is not determined.

2.3.26.14 NdbRecAttr::medium_value()

Description.  Gets the value of a Mediumint value stored in an NdbRecAttr object, and returns it as a 32-bit signed integer.

Signature.

\[
\text{Int32 medium\_value} \\
\quad (\text{void}) \text{ const}
\]
Parameters. None.

Return value. A 32-bit signed integer.

2.3.26.15 NdbRecAttr::short_value()

Description. This method gets a Smallint value stored in an NdbRecAttr object, and returns it as a 16-bit signed integer (short).

Signature.

```cpp
short short_value
 (void) const
```

Parameters. None.

Return value. A 16-bit signed integer.

2.3.26.16 NdbRecAttr::u_8_value()

Description. This method gets a Smallunsigned value stored in an NdbRecAttr object, and returns it as an 8-bit unsigned integer.

Signature.

```cpp
Uint8 u_8_value
 (void) const
```

Parameters. None.

Return value. An 8-bit unsigned integer.

2.3.26.17 NdbRecAttr::u_32_value()

Description. This method gets an Unsigned value stored in an NdbRecAttr object, and returns it as a 32-bit unsigned integer.

Signature.

```cpp
Uint32 u_32_value
 (void) const
```

Parameters. None.

Return value. A 32-bit unsigned integer.

2.3.26.18 NdbRecAttr::u_64_value()

Description. This method gets a Bigunsigned value stored in an NdbRecAttr object, and returns it as a 64-bit unsigned integer.

Signature.

```cpp
Uint64 u_64_value
 (void) const
```
The NdbRecord Interface

2.3.26.19 NdbRecAttr::u_char_value()

Description.  This method gets a Char value stored in an NdbRecAttr object, and returns it as an unsigned char.

Signature.

```c
Uint8 u_char_value
{
 void
} const
```

Parameters.  None.

Return value.  A 64-bit unsigned integer.

2.3.26.20 NdbRecAttr::u_medium_value()

Description.  This method gets an Mediumunsigned value stored in an NdbRecAttr object, and returns it as a 32-bit unsigned integer.

Signature.

```c
Uint32 u_medium_value
{
 void
} const
```

Parameters.  None.

Return value.  A 32-bit unsigned integer.

2.3.26.21 NdbRecAttr::u_short_value()

Description.  This method gets a Smallunsigned value stored in an NdbRecAttr object, and returns it as a 16-bit (short) unsigned integer.

Signature.

```c
Uint16 u_short_value
{
 void
} const
```

Parameters.  None.

Return value.  A short (16-bit) unsigned integer.

2.3.27 The NdbRecord Interface

NdbRecord is an interface which provides a mapping to a full or a partial record stored in NDB. In the latter case, it can be used in conjunction with a bitmap to assist in access.

NdbRecord has no API methods of its own; rather it acts as a handle that can be passed between various method calls for use in many different sorts of operations, including the following operation types:
• Unique key reads and primary key reads
• Table scans and index scans
• DML operations involving unique keys or primary keys
• Operations involving index bounds

The same NdbRecord can be used simultaneously in multiple operations, transactions, and threads.

An NdbRecord can be created in NDB API programs by calling the createRecord() method of the Dictionary class. In addition, a number of NDB API methods have additional declarations that enable the programmer to leverage NdbRecord:

• NdbScanOperation::nextResult()
• NdbScanOperation::lockCurrentTuple()
• NdbScanOperation::updateCurrentTuple()
• NdbScanOperation::deleteCurrentTuple()
• Dictionary::createRecord()
• Dictionary::releaseRecord()
• NdbTransaction::readTuple()
• NdbTransaction::insertTuple()
• NdbTransaction::updateTuple()
• NdbTransaction::writeTuple()
• NdbTransaction::deleteTuple()
• NdbTransaction::scanTable()
• NdbTransaction::scanIndex()

The following members of NdbIndexScanOperation and NdbDictionary can also be used with NdbRecord scans:

• IndexBound is a structure used to describe index scan bounds.
• RecordSpecification is a structure used to specify columns and range offsets.

You can also use NdbRecord in conjunction with the new PartitionSpec structure to perform scans that take advantage of partition pruning, by means of a variant of NdbIndexScanOperation::setBound() that was added in the same NDB Cluster releases.

### 2.3.28 The NdbScanFilter Class

This section discusses the NdbScanFilter class and its public members.

**Parent class.** None

**Child classes.** None

**Description.** NdbScanFilter provides an alternative means of specifying filters for scan operations.
The NdbScanFilter Class

Important

Prior to MySQL 5.1.14, the comparison methods of this class did not work with
BIT values (see Bug #24503).

Development of this interface continues; the characteristics of the
NdbScanFilter class are likely to change further in future releases.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdbScanFilter()</td>
<td>Constructor method</td>
</tr>
<tr>
<td>~NdbScanFilter()</td>
<td>Destructor method</td>
</tr>
<tr>
<td>begin()</td>
<td>Begins a compound (set of conditions)</td>
</tr>
<tr>
<td>cmp()</td>
<td>Compares a column value with an arbitrary value</td>
</tr>
<tr>
<td>end()</td>
<td>Ends a compound</td>
</tr>
<tr>
<td>eq()</td>
<td>Tests for equality</td>
</tr>
<tr>
<td>ge()</td>
<td>Tests for a greater-than-or-equal condition</td>
</tr>
<tr>
<td>getNdbError()</td>
<td>Provides access to error information</td>
</tr>
<tr>
<td>getNdbOperation()</td>
<td>Gets the associated NdbOperation</td>
</tr>
<tr>
<td>gt()</td>
<td>Tests for a greater-than condition</td>
</tr>
<tr>
<td>isfalse()</td>
<td>Defines a term in a compound as FALSE</td>
</tr>
<tr>
<td>isnonnull()</td>
<td>Tests whether a column value is not NULL</td>
</tr>
<tr>
<td>isnull()</td>
<td>Tests whether a column value is NULL</td>
</tr>
<tr>
<td>istrue()</td>
<td>Defines a term in a compound as TRUE</td>
</tr>
<tr>
<td>le()</td>
<td>Tests for a less-than-or-equal condition</td>
</tr>
<tr>
<td>lt()</td>
<td>Tests for a less-than condition</td>
</tr>
<tr>
<td>ne()</td>
<td>Tests for inequality</td>
</tr>
</tbody>
</table>

NdbScanFilter Integer Comparison Methods. NdbScanFilter provides several convenience methods which can be used in lieu of the cmp() method when the arbitrary value to be compared is an integer: eq(), ge(), gt(), le(), lt(), and ne().

Each of these methods is essentially a wrapper for cmp() that includes an appropriate value of BinaryCondition for that method's condition parameter; for example, NdbScanFilter::eq() is defined like this:

```cpp
int eq(int columnId, Uint32 value)
{
 return cmp(BinaryCondition::COND_EQ, columnId, &value, 4);
}
```

Types. The NdbScanFilter class defines two public types:

- **BinaryCondition**: The type of condition, such as lower bound or upper bound.
- **Group**: A logical grouping operator, such as **AND** or **OR**.

2.3.28.1 NdbScanFilter::begin()
Description. This method is used to start a compound, and specifies the logical operator used to group the conditions making up the compound. The default is AND.

Signature.

```c
int begin
(
 Group group = AND
)
```

Parameters. A Group value: one of AND, OR, NAND, or NOR. See Section 2.3.28.14, "NdbScanFilter::Group", for additional information.

Return value. 0 on success, -1 on failure.

2.3.28.2 NdbScanFilter::BinaryCondition

Description. This type represents a condition based on the comparison of a column value with some arbitrary value—that is, a bound condition. A value of this type is used as the first argument to NdbScanFilter::cmp().

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Column type compared</th>
</tr>
</thead>
<tbody>
<tr>
<td>COND_EQ</td>
<td>Equality (=)</td>
<td>any</td>
</tr>
<tr>
<td>COND_NE</td>
<td>Inequality (&lt;&gt; or !=)</td>
<td>any</td>
</tr>
<tr>
<td>COND_LE</td>
<td>Lower bound (&lt;=)</td>
<td>any</td>
</tr>
<tr>
<td>COND_LT</td>
<td>Strict lower bound (&lt;)</td>
<td>any</td>
</tr>
<tr>
<td>COND_GE</td>
<td>Upper bound (&gt;=)</td>
<td>any</td>
</tr>
<tr>
<td>COND_GT</td>
<td>Strict upper bound (&gt;)</td>
<td>any</td>
</tr>
<tr>
<td>COND_LIKE</td>
<td>LIKE condition</td>
<td>string or binary</td>
</tr>
<tr>
<td>COND_NOTLIKE</td>
<td>NOT LIKE condition</td>
<td>string or binary</td>
</tr>
<tr>
<td>COL_AND_MASK_EQ_MASK</td>
<td>Column value ANDed with bitmask is equal to bitmask</td>
<td>BIT</td>
</tr>
<tr>
<td>COL_AND_MASK_NE_MASK</td>
<td>Column value ANDed with bitmask is not equal to bitmask</td>
<td>BIT</td>
</tr>
<tr>
<td>COL_AND_MASK_EQ_ZERO</td>
<td>Column value ANDed with bitmask is equal to zero</td>
<td>BIT</td>
</tr>
<tr>
<td>COL_AND_MASK_NE_ZERO</td>
<td>Column value ANDed with bitmask is not equal to zero</td>
<td>BIT</td>
</tr>
</tbody>
</table>

When used in comparisons with COND_EQ, COND_NE, COND_LT, COND_LE, COND_GT, or COND_GE, fixed-length character and binary column values must be prefixed with the column size, and must be padded to length. This is not necessary for such values when used in COND_LIKE, COND_NOTLIKE, COL_AND_MASK_EQ_MASK, COL_AND_MASK_EQ_ZERO, or COL_AND_MASK_NE_ZERO comparisons.

String comparisons. Strings compared using COND_LIKE and COND_NOTLIKE can use the pattern metacharacters % and _. See Section 2.3.28.3, "NdbScanFilter::cmp()", for more information.

BIT comparisons. The BIT comparison operators are COL_AND_MASK_EQ_MASK, COL_AND_MASK_NE_MASK, COL_AND_MASK_EQ_ZERO, and COL_AND_MASK_NE_ZERO.
Corresponding methods are available for NdbInterpretedCode and NdbOperation; for more information about these methods, see NdbInterpretedCode Bitwise Comparison Operations.

### 2.3.28.3 NdbScanFilter::cmp()

**Description.** This method is used to define a comparison between a given value and the value of a column. Beginning with NDB 8.0.18, it can also be used to compare two columns. (This method does not actually execute the comparison, which is done later when performing the scan for which this NdbScanFilter is defined.)

**Note**
In many cases, where the value to be compared is an integer, you can instead use one of several convenience methods provided by NdbScanFilter for this purpose. See NdbScanFilter Integer Comparison Methods.

**Signature.**

```cpp
int cmp
(BinaryCondition condition,
 int columnId,
 const void* value,
 Uint32 length = 0)
```

Additionally, in NDB 8.0.18 and later:

```cpp
int cmp
(BinaryCondition condition,
 int ColumnId1,
 int ColumnId2)
```

**Parameters.** When used to compare a value with a column, this method takes the following parameters:

- **condition**: This represents the condition to be tested which compares the value of the column having the column ID `columnID` with some arbitrary value. The `condition` is a `BinaryCondition` value; for permitted values and the relations that they represent, see Section 2.3.28.2, “NdbScanFilter::BinaryCondition”.

  The `condition` values `COND_LIKE` or `COND_NOTLIKE` are used to compare a column value with a string pattern.

- **columnId**: This is the column’s identifier, which can be obtained using the `Column::getColumnNo()` method.

- **value**: The value to be compared, represented as a pointer to void.

When using a `COND_LIKE` or `COND_NOTLIKE` comparison condition, the `value` is treated as a string pattern. This string must not be padded or use a prefix. The string `value` can include the pattern metacharacters or “wildcard” characters `%` and `_`, which have the meanings shown here:

<table>
<thead>
<tr>
<th>Metacharacter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>%</code></td>
<td>Matches zero or more characters</td>
</tr>
<tr>
<td><code>_</code></td>
<td>Matches exactly one character</td>
</tr>
</tbody>
</table>

To match against a literal “%” or “_” character, use the backslash (\) as an escape character. To match a literal “\” character, use `\\`.  

---

208
The NdbScanFilter Class

Note
These are the same wildcard characters that are supported by the SQL LIKE and NOT LIKE operators, and are interpreted in the same way. See String Comparison Functions and Operators, for more information.

• length: The length of the value to be compared. The default value is 0. Using 0 for the length has the same effect as comparing to NULL, that is using the isnull() method.

When used to compare two columns, cmp() takes the following parameters:

• condition: The condition to be tested when comparing the columns. The condition may be any one of the BinaryCondition values EQ, NE, LT, LE, GT, or GE. Other values are not accepted.

• columnID1: ID of the first of the two columns to be compared.

• columnID2: ID of the second column.

Columns being compared using this method must be of exactly the same type. This includes length, precision, scale, and all other particulars.

Return value. This method returns an integer: 0 on success, and -1 on failure.

2.3.28.4 NdbScanFilter Constructor

Description. This is the constructor method for NdbScanFilter, and creates a new instance of the class.

Signature.

NdbScanFilter
(  class NdbOperation* op )

Parameters. This method takes a single parameter, a pointer to the NdbOperation to which the filter applies.

Return value. A new instance of NdbScanFilter.

Destructor. The destructor takes no arguments and does not return a value. It should be called to remove the NdbScanFilter object when it is no longer needed.

2.3.28.5 NdbScanFilter::end()

Description. This method completes a compound, signalling that there are no more conditions to be added to it.

Signature.

int end
(  void )

Parameters. None.

Return value. Returns 0 on success, or -1 on failure.

2.3.28.6 NdbScanFilter::eq()

Description. This method is used to perform an equality test on a column value and an integer.
Signature.

```c
int eq
{
 int ColId,
 Uint32 value
}
```
or

```c
int eq
{
 int ColId,
 Uint64 value
}
```

Parameters. This method takes two parameters, listed here:

- The ID (ColId) of the column whose value is to be tested
- An integer with which to compare the column value; this integer may be either 32-bit or 64-bit, and is unsigned in either case.

Return value. Returns 0 on success, or -1 on failure.

2.3.28.7 NdbScanFilter::isfalse()

Description. Defines a term of the current group as FALSE.

Signature.

```c
int isfalse
{
 void
}
```

Parameters. None.

Return value. 0 on success, or -1 on failure.

2.3.28.8 NdbScanFilter::isnonnull()

Description. This method is used to check whether a column value is not NULL.

Signature.

```c
int isnonnull
{
 int ColId
}
```

Parameters. The ID of the column whose value is to be tested.

Return value. Returns 0, if the column value is not NULL.

2.3.28.9 NdbScanFilter::isnull()

Description. This method is used to check whether a column value is NULL.

Signature.

```c
int isnull
{
 int ColId
```
The NdbScanFilter Class

Parameters. The ID of the column whose value is to be tested.

Return value. Returns 0, if the column value is NULL.

2.3.28.10 NdbScanFilter::istrue()

Description. Defines a term of the current group as TRUE.

Signature.

```cpp
int istrue
 (void)
```

Parameters. None.

Return value. Returns 0 on success, -1 on failure.

2.3.28.11 NdbScanFilter::ge()

Description. This method is used to perform a greater-than-or-equal test on a column value and an integer.

Signature. This method accepts both 32-bit and 64-bit values, as shown here:

```cpp
int ge
 (int ColId,
 Uint32 value)

int ge
 (int ColId,
 Uint64 value)
```

Parameters. Like eq(), lt(), le(), and the other NdbScanFilter methods of this type, this method takes two parameters:

- The ID (ColId) of the column whose value is to be tested
- An integer with which to compare the column value; this integer may be either 32-bit or 64-bit, and is unsigned in either case.

Return value. 0 on success; -1 on failure.

2.3.28.12 NdbScanFilter::getNdbError()

Description. Because errors encountered when building an NdbScanFilter do not propagate to any involved NdbOperation object, it is necessary to use this method to access error information.

Signature.

```cpp
const NdbErro& getNdbError
 (void)
```

Parameters. None.
Return value. A reference to an NdbError.

2.3.28.13 NdbScanFilter::getNdbOperation()

Description. If the NdbScanFilter was constructed with an NdbOperation, this method can be used to obtain a pointer to that NdbOperation object.

Signature.

```cpp
NdbOperation* getNdbOperation()
{
 void
}
```

Parameters. None.

Return value. A pointer to the NdbOperation associated with this NdbScanFilter, if there is one. Otherwise, NULL.

2.3.28.14 NdbScanFilter::Group

Description. This type is used to describe logical (grouping) operators, and is used with the begin() method. (See Section 2.3.28.1, “NdbScanFilter::begin()”.)

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Logical AND: A AND B AND C</td>
</tr>
<tr>
<td>OR</td>
<td>Logical OR: A OR B OR C</td>
</tr>
<tr>
<td>NAND</td>
<td>Logical NOT AND: NOT (A AND B AND C)</td>
</tr>
<tr>
<td>NOR</td>
<td>Logical NOT OR: NOT (A OR B OR C)</td>
</tr>
</tbody>
</table>

2.3.28.15 NdbScanFilter::gt()

Description. This method is used to perform a greater-than (strict upper bound) test on a column value and an integer.

Signature. This method accommodates both 32-bit and 64-bit values:

```cpp
int gt(int ColId, Uint32 value)
```

```cpp
int gt(int ColId, Uint64 value)
```

Parameters. Like the other NdbScanFilter methods of this type, this method takes two parameters:

- The ID (ColId) of the column whose value is to be tested
- An integer with which to compare the column value; this integer may be either 32-bit or 64-bit, and is unsigned in either case.
Return value. 0 on success; -1 on failure.

2.3.28.16 NdbScanFilter::le()

Description. This method is used to perform a less-than-or-equal test on a column value and an integer.

Signature. This method has two variants, to accommodate 32-bit and 64-bit values:

```c
int le(
 int ColId,
 Uint32 value
)

int le(
 int ColId,
 Uint64 value
)
```

Parameters. Like the other NdbScanFilter methods of this type, this method takes two parameters:

- The ID (ColId) of the column whose value is to be tested
- An integer with which to compare the column value; this integer may be either 32-bit or 64-bit, and is unsigned in either case.

Return value. Returns 0 on success, or -1 on failure.

2.3.28.17 NdbScanFilter::lt()

Description. This method is used to perform a less-than (strict lower bound) test on a column value and an integer.

Signature. This method has 32-bit and 64-bit variants, as shown here:

```c
int lt(
 int ColId,
 Uint32 value
)

int lt(
 int ColId,
 Uint64 value
)
```

Parameters. Like eq(), ne(), and the other NdbScanFilter methods of this type, this method takes two parameters, listed here:

- The ID (ColId) of the column whose value is to be tested
- An integer with which to compare the column value; this integer may be either 32-bit or 64-bit, and is unsigned in either case.

Return value. Returns 0 on success, or -1 on failure.

2.3.28.18 NdbScanFilter::ne()

Description. This method is used to perform an inequality test on a column value and an integer.
The NdbScanOperation Class

Signature. This method has 32-bit and 64-bit variants, as shown here:

```c
int ne
{
 int ColId,
 Uint32 value
}
int ne
{
 int ColId,
 Uint64 value
}
```

Parameters. Like eq() and the other NdbScanFilter methods of this type, this method takes two parameters:

- The ID (ColId) of the column whose value is to be tested
- An integer with which to compare the column value; this integer may be either 32-bit or 64-bit, and is unsigned in either case.

Return value. Returns 0 on success, or -1 on failure.

2.3.29 The NdbScanOperation Class

This section describes the NdbScanOperation class and its class members.

Parent class. NdbOperation

Child classes. NdbIndexScanOperation

Description. The NdbScanOperation class represents a scanning operation used in a transaction. This class inherits from NdbOperation.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td>Closes the scan</td>
</tr>
<tr>
<td>deleteCurrentTuple()</td>
<td>Deletes the current tuple</td>
</tr>
<tr>
<td>lockCurrentTuple()</td>
<td>Locks the current tuple</td>
</tr>
<tr>
<td>nextResult()</td>
<td>Gets the next tuple</td>
</tr>
<tr>
<td>getNdbTransaction()</td>
<td>Gets the NdbTransaction object for this scan</td>
</tr>
<tr>
<td>getPruned()</td>
<td>Used to find out whether this scan is pruned to a single partition</td>
</tr>
<tr>
<td>readTuples()</td>
<td>Reads tuples</td>
</tr>
<tr>
<td>restart()</td>
<td>Restarts the scan</td>
</tr>
<tr>
<td>updateCurrentTuple()</td>
<td>Updates the current tuple</td>
</tr>
</tbody>
</table>

Note

This class has no public constructor. To create an instance of NdbScanOperation, it is necessary to use the NdbTransaction::getNdbScanOperation() method.

Types. This class defines a single public type ScanFlag.
For more information about the use of NdbScanOperation, see Scan Operations, and Using Scans to Update or Delete Rows.

2.3.29.1 NdbScanOperation::close()

Description. Calling this method closes a scan. Rows returned by this scan are no longer available after the scan has been closed using this method.

Note
See Scans with exclusive locks, for information about multiple threads attempting to perform the same scan with an exclusive lock and how this can affect closing the scans.

Signature.

```cpp
void close(
 bool forceSend = false,
 bool releaseOp = false
)
```

Parameters. This method takes the two parameters listed here:

- `forceSend` defaults to `false`; call `close()` with this parameter set to `true` in order to force transactions to be sent.

- `releaseOp` also defaults to `false`; set this to `true` in order to release the operation.

Prior to NDB 7.3.8, the buffer allocated by an NdbScanOperation for receiving the scanned rows was not released until the NdbTransaction owning the scan operation was closed (Bug #75128, Bug #20166585). In these and subsequent versions of NDB Cluster, the buffer is released whenever the cursor navigating the result set is closed using the `close()` method, regardless of the value of the `releaseOp` argument.

Return value. None.

2.3.29.2 NdbScanOperation::deleteCurrentTuple()

Description. This method is used to delete the current tuple.

Signature.

```cpp
const NdbOperation* deleteCurrentTuple
(
 NdbTransaction* takeOverTrans,
 const NdbRecord* record,
 char* row = 0,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOpts = 0
)
```

For more information, see Section 2.3.27, “The NdbRecord Interface”.

Parameters. When used with the NdbRecord interface, this method takes the parameters listed here:

- The transaction (`takeOverTrans`) that should perform the lock; when using NdbRecord with scans, this parameter is not optional.

- The NdbRecord referenced by the scan. This `record` value is required, even if no records are being read.
The `row` from which to read. Set this to `NULL` if no read is to occur.

- The `mask` pointer is optional. If it is present, then only columns for which the corresponding bit in the mask is set are retrieved by the scan.

- `OperationOptions (opts)` can be used to provide more finely-grained control of operation definitions. An `OperationOptions` structure is passed with flags indicating which operation definition options are present. Not all operation types support all operation options; the options supported for each type of operation are shown in the following table:

<table>
<thead>
<tr>
<th>Operation type (Method)</th>
<th>OperationOptions Flags Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>readTuple()</td>
<td>OO_ABORTOPTION, OO_GETVALUE, OO_PARTITION_ID, OO_INTERPRETED</td>
</tr>
<tr>
<td>insertTuple()</td>
<td>OO_ABORTOPTION, OO_SETVALUE, OO_PARTITION_ID, OO_ANYVALUE</td>
</tr>
<tr>
<td>updateTuple()</td>
<td>OO_ABORTOPTION, OO_SETVALUE, OO_PARTITION_ID, OO_INTERPRETED, OO_ANYVALUE</td>
</tr>
<tr>
<td>writeTuple()</td>
<td>OO_ABORTOPTION, OO_SETVALUE, OO_PARTITION_ID, OO_ANYVALUE</td>
</tr>
<tr>
<td>deleteTuple()</td>
<td>OO_ABORTOPTION, OO_GETVALUE, OO_PARTITION_ID, OO_INTERPRETED, OO_ANYVALUE</td>
</tr>
</tbody>
</table>

- The optional `sizeOfOptions` parameter is used to preserve backward compatibility of this interface with previous definitions of the `OperationOptions` structure. If an unusual size is detected by the interface implementation, it can use this to determine how to interpret the passed `OperationOptions` structure. To enable this functionality, the caller should pass `sizeof(NdbOperation::OperationOptions)` for the value of this argument.

- If options are specified, their length (`sizeOfOpts`) must be specified as well.

**Return value.** Returns 0 on success, or -1 on failure.

### 2.3.29.3 NdbScanOperation::getNdbTransaction()

**Description.** Gets the `NdbTransaction` object for this scan.

**Signature.**

```c
NdbTransaction* getNdbTransaction
(
 void
) const
```

**Parameters.** None.

**Return value.** A pointer to an `NdbTransaction` object.

### 2.3.29.4 NdbScanOperation::getPruned()

**Description.** This method is used to determine whether or not a given scan operation has been pruned to a single partition. For scans defined using `NdbRecord`, this method can be called before or after the scan is executed. For scans not defined using `NdbRecord`, `getPruned()` is valid only after the scan has been executed.

**Signature.**

```c
bool getPruned
```
Parameters.  None.

Return value.  Returns true, if the scan is pruned to a single table partition.

2.3.29.5 NdbScanOperation::lockCurrentTuple()

Description.  This method locks the current tuple.

Signature.  In MySQL 5.1 and later, this method can be called with an optional single parameter, in either of the two ways shown here:

```cpp
NdbOperation* lockCurrentTuple
 (void)
```

```cpp
NdbOperation* lockCurrentTuple
 (NdbTransaction* lockTrans)
```

The following signature is also supported for this method, when using NdbRecord:

```cpp
NdbOperation *lockCurrentTuple
 (NdbTransaction* takeOverTrans,
 const NdbRecord* record,
 char* row = 0,
 const unsigned char* mask = 0)
```

This method also supports specifying one or more OperationOptions (also when using NdbRecord):

```cpp
NdbOperation *lockCurrentTuple
 (NdbTransaction* takeOverTrans,
 const NdbRecord* record,
 char* row = 0,
 const unsigned char* mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0)
```

Parameters (old style).  This method takes a single, optional parameter—the transaction that should perform the lock. If this is omitted, the transaction is the current one.

Parameters (when using NdbRecord).  When using the NdbRecord interface, this method takes these parameters, as described in the following list:

- The transaction (takeOverTrans) that should perform the lock; when using NdbRecord with scans, this parameter is not optional.

- The NdbRecord referenced by the scan. This is required, even if no records are being read.

- The row from which to read. Set this to NULL if no read is to occur.

- The mask pointer is optional. If it is present, then only columns for which the corresponding bit in the mask is set are retrieved by the scan.

- The opts argument can take on any of the following OperationOptions values: OO_ABORTOPTION, OO_GETVALUE, and OO_ANYVALUE.
• If options are specified, their length (sizeOfOptions) must be specified as well.

Important
Calling an NdbRecord scan lock takeover on an NdbRecAttr-style scan is not valid, nor is calling an NdbRecAttr-style scan lock takeover on an NdbRecord-style scan.

Return value. This method returns a pointer to an NdbOperation object, or NULL.

2.3.29.6 NdbScanOperation::nextResult()

Description. This method is used to fetch the next tuple in a scan transaction. Following each call to nextResult(), the buffers and NdbRecAttr objects defined in NdbOperation::getValue() are updated with values from the scanned tuple.

When nextResult() is executed following end-of-file, NDB returns error code 4210 (Ndb sent more info than length specified) and the extra transaction object is freed by returning it to the idle list for the right TC node.

Signature. This method can be invoked in one of two ways. The first of these, shown here, is available beginning in MySQL 5.1:

```c
int nextResult
{
 bool fetchAllowed = true,
 bool forceSend = false
}
```

It is also possible to use this method as shown here:

```c
int nextResult
{
 const char*& outRow,
 bool fetchAllowed = true,
 bool forceSend = false
}
```

Parameters (2-parameter version). This method takes the following two parameters:

• Normally, the NDB API contacts the NDB kernel for more tuples whenever it is necessary; setting fetchAllowed to false keeps this from happening.

Disabling fetchAllowed by setting it to false forces NDB to process any records it already has in its caches. When there are no more cached records it returns 2. You must then call nextResult() with fetchAllowed equal to true in order to contact NDB for more records.

While nextResult(false) returns 0, you should transfer the record to another transaction using execute(NdbTransaction::NoCommit). When nextResult(false) returns 2, you should normally execute and commit the other transaction. This causes any locks to be transferred to the other transaction, updates or deletes to be made, and then, the locks to be released. Following this, you can call nextResult(true) to have more records fetched and cached in the NDB API.

Note
If you do not transfer the records to another transaction, the locks on those records will be released the next time that the NDB Kernel is contacted for more records.

Disabling fetchAllowedCan be useful when you want to update or delete all of the records obtained in a given transaction, as doing so saves time and speeds up updates or deletes of scanned records.
• **forceSend** defaults to `false`, and can normally be omitted. However, setting this parameter to `true` means that transactions are sent immediately. See Section 1.3.4, “The Adaptive Send Algorithm”, for more information.

### Parameters (3-parameter version)

This method can also be called with the following three parameters:

- Calling `nextResult()` sets a pointer to the next row in `outRow` (if returning 0). This pointer is valid (only) until the next call to `nextResult()` when `fetchAllowed` is true. The `NdbRecord` object defining the row format must be specified beforehand using `NdbTransaction::scanTable()` (or `NdbTransaction::scanIndex()`).

- When false, `fetchAllowed` forces NDB to process any records it already has in its caches. See the description for this parameter in the previous Parameters subsection for more details.

- Setting `forceSend` to `true` means that transactions are sent immediately, as described in the previous Parameters subsection, as well as in Section 1.3.4, “The Adaptive Send Algorithm”.

### Return value

This method returns one of the following 4 integer values, interpreted as shown in the following list:

- `-1`: Indicates that an error has occurred.
- `0`: Another tuple has been received.
- `1`: There are no more tuples to scan.
- `2`: There are no more cached records (invoke `nextResult(true)` to fetch more records).

### Example

See Section 2.5.4, “NDB API Basic Scanning Example”.

#### 2.3.29.7 NdbScanOperation::readTuples()  

**Description.** This method is used to perform a scan.

**Signature.**

```cpp
virtual int readTuples
(
 LockMode mode = LM_Read,
 Uint32 flags = 0,
 Uint32 parallel = 0,
 Uint32 batch = 0
)
```

**Parameters.** This method takes the four parameters listed here:

- The lock `mode`; this is a `LockMode` value.

**Scans with exclusive locks.** When scanning with an exclusive lock, extra care must be taken due to the fact that, if two threads perform this scan simultaneously over the same range, then there is a significant probability of causing a deadlock. The likelihood of a deadlock is increased if the scan is also ordered (that is, using `SF_OrderBy` or `SF_Descending`).

The `NdbScanOperation::close()` method is also affected by this deadlock, since all outstanding requests are serviced before the scan is actually closed.

- One or more `ScanFlag` values. Multiple values are OR’ed together

- The number of fragments to scan in `parallel`; use 0 to require that the maximum possible number be used.

- The `batch` parameter specifies how many records will be returned to the client from the server by the next `NdbScanOperation::nextResult(true)` method call. Use 0 to specify the maximum automatically.
The NdbScanOperation Class

Note
This parameter was ignored prior to MySQL 5.1.12, and the maximum was used (see Bug #20252).

Return value. Returns 0 on success, -1 on failure.

2.3.29.8 NdbScanOperation::restart()

Description. Use this method to restart a scan without changing any of its getValue() calls or search conditions.

Signature.

```cpp
int restart
(bool forceSend = false)
```

Parameters. Call this method with forceSend set to true in order to force the transaction to be sent.

Return value. 0 on success; -1 on failure.

2.3.29.9 NdbScanOperation::ScanFlag

Description. Values of this type are the scan flags used with the readTuples() method. More than one may be used, in which case, they are OR’ed together as the second argument to that method. See Section 2.3.29.7, “NdbScanOperation::readTuples()”, for more information.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF_TupScan</td>
<td>Scan in TUP order (that is, in the order of the rows in memory). Applies to table scans only.</td>
</tr>
<tr>
<td>SF_DiskScan</td>
<td>Scan in disk order (order of rows on disk). Applies to table scans only.</td>
</tr>
<tr>
<td>SF_OrderBy</td>
<td>Ordered index scan (ascending); rows returned from an index scan are sorted, and ordered on the index key. Scans in either ascending or descending order are affected by this flag, which causes the API to perform a merge-sort among the ordered scans of each fragment to obtain a single sorted result set.</td>
</tr>
</tbody>
</table>

Notes:
- Ordered indexes are distributed, with one ordered index for each fragment of a table.
- Range scans are often parallel across all index fragments. Occasionally, they can be pruned to one index fragment.
- Each index fragment range scan can return results in either ascending or descending order. Ascending is the default; to choose descending order, set the SF_Descending flag.
- When multiple index fragments are scanned in parallel, the results are sent back to NDB where they can optionally
### The NdbScanOperation Class

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF_OrderBy</td>
<td>be merge-sorted before being returned to the user. This merge sorting is controlled using the SF_OrderBy and SF_OrderByFull flags.</td>
</tr>
<tr>
<td>SF_OrderByFull</td>
<td>If SF_OrderBy or SF_OrderByFull is not used, the results from each index fragment are in order (either ascending or descending), but results from different fragments may be interleaved.</td>
</tr>
<tr>
<td>SF_Descending</td>
<td>When using SF_OrderBy or SF_OrderByFull, some extra constraints are imposed internally; these are listed here:</td>
</tr>
<tr>
<td>SF_ReadRangeNo</td>
<td>1. If the range scan is not pruned to one index fragment then all index fragments must be scanned in parallel. (Unordered scans can be executed with less than full parallelism.)</td>
</tr>
<tr>
<td>SF_MultiRange</td>
<td>2. Results from every index fragment must be available before returning any rows, to ensure a correct merge sort. This serialises the “scrolling” of the scan, potentially resulting in lower row throughput.</td>
</tr>
<tr>
<td>SF_KeyInfo</td>
<td>3. Unordered scans can return rows to the API client before all index fragments have returned any batches, and can overlap next-batch requests with row processing.</td>
</tr>
<tr>
<td>SF_OrderByFull</td>
<td>This is the same as SF_OrderBy, except that all key columns are added automatically to the read bitmask.</td>
</tr>
<tr>
<td>SF_Descending</td>
<td>Causes an ordered index scan to be performed in descending order.</td>
</tr>
<tr>
<td>SF_ReadRangeNo</td>
<td>For index scans, when this flag is set, NdbIndexScanOperation::get_range_no() can be called to read back the range_no defined in NdbIndexScanOperation::setBound(). In addition, when this flag is set, and SF_OrderBy or SF_OrderByFull is also set, results from ranges are returned in their entirety before any results are returned from subsequent ranges.</td>
</tr>
<tr>
<td>SF_MultiRange</td>
<td>Indicates that this scan is part of a multirange scan; each range is scanned separately.</td>
</tr>
<tr>
<td>SF_KeyInfo</td>
<td>Requests KeyInfo to be sent back to the caller. This enables the option to take over the row lock taken by the scan, using lockCurrentTuple(), by making sure that the kernel sends back the information needed to identify the row and the lock. This flag is enabled by default for scans using LM_Exclusive, but must be explicitly specified to enable the taking over of LM_Read locks. (See the LockMode documentation for more information.)</td>
</tr>
</tbody>
</table>

#### 2.3.29.10 NdbScanOperation::updateCurrentTuple()

**Description.** This method is used to update the current tuple.

**Signature.** Originally, this method could be called with a single, optional parameter, in either of the ways shown here:

```cpp
NdbOperation* updateCurrentTuple
{
 void
}
```
The NdbTransaction Class

NdbOperation* updateCurrentTuple
{
    NdbTransaction* updateTrans
}

It is also possible to employ this method, when using NdbRecord with scans, as shown here:

NdbOperation* updateCurrentTuple
{
    NdbTransaction* takeOverTrans,  
    const NdbRecord* record,  
    const char* row,  
    const unsigned char* mask = 0
}

See Section 2.3.27, “The NdbRecord Interface”, for more information.

Parameters (original). This method takes a single, optional parameter—the transaction that should
perform the lock. If this is omitted, the transaction is the current one.

Parameters (when using NdbRecord). When using the NdbRecord interface, this method takes
the following parameters, as described in the following list:

- The takeover transaction (takeOverTrans).
- The record (NdbRecord object) referencing the column used for the scan.
- The row to read from. If no attributes are to be read, set this equal to NULL.
- The mask pointer is optional. If it is present, then only columns for which the corresponding bit in the
  mask is set are retrieved by the scan.

Return value. This method returns an NdbOperation object or NULL.

2.3.30 The NdbTransaction Class

This section describes the NdbTransaction class and its public members.

Parent class. None

Child classes. None

Description. A transaction is represented in the NDB API by an NdbTransaction object,
which belongs to an Ndb object and is created using Ndb::startTransaction(). A transaction
consists of a list of operations represented by the NdbOperation class, or by one of its subclasses
—NdbScanOperation, NdbIndexOperation, or NdbIndexScanOperation. Each operation
access exactly one table.

Using Transactions. After obtaining an NdbTransaction object, it is employed as follows:

1. An operation is allocated to the transaction using any one of the following methods:

   - getNdbOperation()
   - getNdbScanOperation()
   - getNdbIndexOperation()
   - getNdbIndexScanOperation()

   Calling one of these methods defines the operation. Several operations can be defined on the same
NdbTransaction object, in which case they are executed in parallel. When all operations are
defined, the execute() method sends them to the NDB kernel for execution.
2. The `execute()` method returns when the NDB kernel has completed execution of all operations previously defined.

   **Important**
   All allocated operations should be properly defined *before* calling the `execute()` method.

3. `execute()` operates in one of the three modes listed here:
   - `NdbTransaction::NoCommit`: Executes operations without committing them.
   - `NdbTransaction::Commit`: Executes any remaining operation and then commits the complete transaction.
   - `NdbTransaction::Rollback`: Rolls back the entire transaction.

   `execute()` is also equipped with an extra error handling parameter, which provides the two alternatives listed here:
   - `NdbOperation::AbortOnError`: Any error causes the transaction to be aborted. This is the default behavior.
   - `NdbOperation::AO_IgnoreError`: The transaction continues to be executed even if one or more of the operations defined for that transaction fails.

   **Note**
   In MySQL 5.1.15 and earlier, these values were `NdbTransaction::AbortOnError` and `NdbTransaction::AO_IgnoreError`.

**Methods.** The following table lists the public methods of this class and the purpose or use of each method:

**Table 2.65 NdbTransaction class methods and descriptions**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>close()</td>
<td>Closes a transaction</td>
</tr>
<tr>
<td>commitStatus()</td>
<td>Gets the transaction’s commit status</td>
</tr>
<tr>
<td>deleteTuple()</td>
<td>Delete a tuple using NdbRecord</td>
</tr>
<tr>
<td>execute()</td>
<td>Executes a transaction</td>
</tr>
<tr>
<td>executePendingBlobOps()</td>
<td>Executes a transaction in NoCommit mode if it includes any blob part operations of the specified types that are not yet executed.</td>
</tr>
<tr>
<td>getGCI()</td>
<td>Gets a transaction’s global checkpoint ID (GCI)</td>
</tr>
<tr>
<td>getMaxPendingBlobReadBytes()</td>
<td>Get the current BLOB read batch size</td>
</tr>
<tr>
<td>getMaxPendingBlobWriteBytes()</td>
<td>Get the current BLOB write batch size</td>
</tr>
<tr>
<td>getNdbError()</td>
<td>Gets the most recent error</td>
</tr>
<tr>
<td>getNdbErrorLine()</td>
<td>Gets the line number where the most recent error occurred</td>
</tr>
<tr>
<td>getNdbErrorOperation()</td>
<td>Gets the most recent operation which caused an error</td>
</tr>
<tr>
<td>getNextCompletedOperation()</td>
<td>Gets operations that have been executed; used for finding errors</td>
</tr>
<tr>
<td>getNdbOperation()</td>
<td>Gets an NdbOperation</td>
</tr>
<tr>
<td>getNdbScanOperation()</td>
<td>Gets an NdbScanOperation</td>
</tr>
<tr>
<td>getNdbIndexOperation()</td>
<td>Gets an NdbIndexOperation</td>
</tr>
</tbody>
</table>
The NdbTransaction Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getNdbIndexScanOperation()</td>
<td>Gets an NdbIndexScanOperation</td>
</tr>
<tr>
<td>getTransactionId()</td>
<td>Gets the transaction ID</td>
</tr>
<tr>
<td>insertTuple()</td>
<td>Insert a tuple using NdbRecord</td>
</tr>
<tr>
<td>readTuple()</td>
<td>Read a tuple using NdbRecord</td>
</tr>
<tr>
<td>refresh()</td>
<td>Keeps a transaction from timing out</td>
</tr>
<tr>
<td>releaseLockHandle()</td>
<td>Release an NdbLockHandle object once it is no longer needed</td>
</tr>
<tr>
<td>scanIndex()</td>
<td>Perform an index scan using NdbRecord</td>
</tr>
<tr>
<td>scanTable()</td>
<td>Perform a table scan using NdbRecord</td>
</tr>
<tr>
<td>setMaxPendingBlobReadBytes()</td>
<td>Set the BLOB read batch size</td>
</tr>
<tr>
<td>setMaxPendingBlobWriteBytes()</td>
<td>Set the BLOB write batch size</td>
</tr>
<tr>
<td>setSchemaObjectOwnerChecks()</td>
<td>Enable or disable schema object ownership checks</td>
</tr>
<tr>
<td>unlock()</td>
<td>Create an unlock operation on the current transaction</td>
</tr>
<tr>
<td>updateTuple()</td>
<td>Update a tuple using NdbRecord</td>
</tr>
<tr>
<td>writeTuple()</td>
<td>Write a tuple using NdbRecord</td>
</tr>
</tbody>
</table>

The methods `readTuple()`, `insertTuple()`, `updateTuple()`, `writeTuple()`, `deleteTuple()`, `scanTable()`, and `scanIndex()` require the use of NdbRecord.

Types. NdbTransaction defines 2 public types as shown in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CommitStatusType()</td>
<td>Describes the transaction's commit status</td>
</tr>
<tr>
<td>ExecType()</td>
<td>Determines whether the transaction should be committed or rolled back</td>
</tr>
</tbody>
</table>

### 2.3.30.1 NdbTransaction::close()

**Description.** This method closes a transaction. It is equivalent to calling `Ndb::closeTransaction()`.

**Important**

If the transaction has not yet been committed, it is aborted when this method is called. See Section 2.3.16.35, “Ndb::startTransaction()”.

**Signature.**

```cpp
void close
{
 void
}
```

**Parameters.** None.

**Return value.** None.

### 2.3.30.2 NdbTransaction::commitStatus()

**Description.** This method gets the transaction's commit status.
Signature.

```cpp
CommitStatusType commitStatus
{
 void
}
```

Parameters.  None.

Return value.  The commit status of the transaction, a CommitStatusType value. See Section 2.3.30.3, “NdbTransaction::CommitStatusType”.

### 2.3.30.3 NdbTransaction::CommitStatusType

#### Description.
This type is used to describe a transaction's commit status.

#### Enumeration values.
Possible values are shown, along with descriptions, in the following table:

**Table 2.67 NdbTransaction::CommitStatusType values and descriptions**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NotStarted</td>
<td>The transaction has not yet been started.</td>
</tr>
<tr>
<td>Started</td>
<td>The transaction has started, but is not yet committed.</td>
</tr>
<tr>
<td>Committed</td>
<td>The transaction has completed, and has been committed.</td>
</tr>
<tr>
<td>Aborted</td>
<td>The transaction was aborted.</td>
</tr>
<tr>
<td>NeedAbort</td>
<td>The transaction has encountered an error, but has not yet been aborted.</td>
</tr>
</tbody>
</table>

A transaction's commit status can be read using the `commitStatus()` method. See Section 2.3.30.2, “NdbTransaction::commitStatus()”.

### 2.3.30.4 NdbTransaction::deleteTuple()

#### Description.
Deletes a tuple using NdbRecord.

#### Signature.

```cpp
const NdbOperation* deleteTuple
{
 const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* result_rec,
 char* result_row,
 const unsigned char* result_mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
}
```

Parameters.  This method takes the following parameters:

- `key_rec` is a pointer to an NdbRecord for either a table or an index. If on a table, then the delete operation uses a primary key; if on an index, then the operation uses a unique key. In either case, the `key_rec` must include all columns of the key.

- The `key_row` passed to this method defines the primary or unique key of the tuple to be deleted, and must remain valid until `execute()` is called.

- The `result_rec` is the NdbRecord to be used.

- The `result_row` can be NULL if no attributes are to be returned.
The result_mask, if not NULL, defines a subset of attributes to be read and returned to the client. The mask is copied, and so does not need to remain valid after the call to this method returns.

OperationOptions (opts) can be used to provide more finely-grained control of operation definitions. An OperationOptions structure is passed with flags indicating which operation definition options are present. Not all operation types support all operation options; for the options supported by each type of operation, see Section 2.3.30.21, “NdbTransaction::readTuple()”.

The optional sizeOfOptions parameter provides backward compatibility of this interface with previous definitions of the OperationOptions structure. If an unusual size is detected by the interface implementation, it can use this to determine how to interpret the passed OperationOptions structure. To enable this functionality, the caller should pass sizeof(NdbOperation::OperationOptions) for the value of this argument.

Return value. A const pointer to the NdbOperation representing this write operation. The operation can be checked for errors if necessary.

2.3.30.5 NdbTransaction::ExecType

Description. This type sets the transaction's execution type; that is, whether it should execute, execute and commit, or abort. It is used as a parameter to the execute() method. (See Section 2.3.30.6, “NdbTransaction::execute()”.)

Enumeration values. Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoCommit</td>
<td>The transaction should execute, but not commit.</td>
</tr>
<tr>
<td>Commit</td>
<td>The transaction should execute and be committed.</td>
</tr>
<tr>
<td>Rollback</td>
<td>The transaction should be rolled back.</td>
</tr>
</tbody>
</table>

2.3.30.6 NdbTransaction::execute()

Description. This method is used to execute a transaction.

Signature.

```cpp
int execute(ExecType execType, NdbOperation::AbortOption abortOption = NdbOperation::DefaultAbortOption, int force = 0)
```

Parameters. The execute method takes the three parameters listed here:

- The execution type (ExecType value); see Section 2.3.30.5, “NdbTransaction::ExecType”, for more information and possible values.
- An abort option (NdbOperation::AbortOption value).
- A force parameter, which determines when operations should be sent to the NDB Kernel. It takes one of the values listed here:
  - 0: Nonforced; detected by the adaptive send algorithm.
The NdbTransaction Class

• 1: Forced; detected by the adaptive send algorithm.
• 2: Nonforced; not detected by the adaptive send algorithm.

See Section 1.3.4, “The Adaptive Send Algorithm”, for more information.

**Return value.** Returns 0 on success, or -1 on failure. The fact that the transaction did not abort does not necessarily mean that each operation was successful; you must check each operation individually for errors.

In MySQL 5.1.15 and earlier versions, this method returned -1 for some errors even when the transaction itself was not aborted; beginning with MySQL 5.1.16, this method reports a failure *if and only if* the transaction was aborted. (This change was made due to the fact it had been possible to construct cases where there was no way to determine whether or not a transaction was actually aborted.) However, the transaction’s error information is still set in such cases to reflect the actual error code and category.

This means, in the case where a **NoDataFound** error is a possibility, you must now check for it explicitly, as shown in this example:

```c
Ndb_cluster_connection myConnection;
if(myConnection.connect(4, 5, 1))
{
 cout << "Unable to connect to cluster within 30 secs." << endl;
 exit(-1);
}
Ndb myNdb(&myConnection, "test");
// define operations...
myTransaction = myNdb->startTransaction();
if(myTransaction->getNdbError().classification == NdbError:NoDataFound)
{
 cout << "No records found." << endl;
 // ...
}
myNdb->closeTransaction(myTransaction);
```

### 2.3.30.7 NdbTransaction::executePendingBlobOps()

**Description.** This method executes the transaction with **ExecType** equal to **NoCommit** if there remain any blob part operations of the given types which have not yet been executed.

**Signature.**

```c
int executePendingBlobOps
(Uint8 flags = 0xFF)
```

**Parameters.** The **flags** argument is the result of a bitwise OR, equal to 1 << **optype**, where **optype** is an **NdbOperation::Type**. The default corresponds to **PrimaryKeyAccess**.

**Return value.** Returns 0 on success, or -1 on failure. The fact that the transaction did not abort does not necessarily mean that each operation was successful; you must check each operation individually for errors.

### 2.3.30.8 NdbTransaction::getGCI()

**Description.** This method retrieves the transaction’s global checkpoint ID (GCI).
Each committed transaction belongs to a GCI. The log for the committed transaction is saved on disk when a global checkpoint occurs.

By comparing the GCI of a transaction with the value of the latest GCI restored in a restarted NDB Cluster, you can determine whether or not the transaction was restored.

**Note**

Whether or not the global checkpoint with this GCI has been saved on disk cannot be determined by this method.

**Important**

The GCI for a scan transaction is undefined, since no updates are performed in scan transactions.

```cpp
int getGCI
{
 void
}
```

**Parameters.**  None.

**Return value.**  The transaction’s GCI, or -1 if none is available.

**Note**

No GCI is available until `execute()` has been called with `ExecType::Commit`.

### 2.3.30.9 NdbTransaction::getMaxPendingBlobReadBytes()

**Description.**  Gets the current batch size in bytes for BLOB read operations. When the volume of BLOB data to be read within a given transaction exceeds this amount, all of the transaction's pending BLOB read operations are executed.

**Signature.**

```cpp
Uint32 getMaxPendingBlobReadBytes
{
 void
} const
```

**Parameters.**  None.

**Return value.**  The current BLOB read batch size, in bytes. See Section 2.3.30.26, “NdbTransaction::setMaxPendingBlobReadBytes()”, for more information.

### 2.3.30.10 NdbTransaction::getMaxPendingBlobWriteBytes()

**Description.**  Gets the current batch size in bytes for BLOB write operations. When the volume of BLOB data to be written within a given transaction exceeds this amount, all of the transaction's pending BLOB write operations are executed.

**Signature.**

```cpp
Uint32 getMaxPendingBlobWriteBytes
{
 void
} const
```
The NdbTransaction Class

Parameters. None.

Return value. The current BLOB write batch size, in bytes. See Section 2.3.30.27, "NdbTransaction::setMaxPendingBlobWriteBytes()", for more information.

2.3.30.11 NdbTransaction::getNdbError()

Description. This method is used to obtain the most recent error (NdbError).

Signature.

```cpp
const NdbError& getNdbError
{
 void
} const
```

Parameters. None.

Return value. A reference to an NdbError object.

Note
For additional information about handling errors in transactions, see Error Handling.

2.3.30.12 NdbTransaction::getNdbErrorLine()

Description. This method return the line number where the most recent error occurred.

Signature.

```cpp
int getNdbErrorLine
{
 void
}
```

Parameters. None.

Return value. The line number of the most recent error.

Note
For additional information about handling errors in transactions, see Error Handling.

2.3.30.13 NdbTransaction::getNdbErrorOperation()

Description. This method retrieves the operation that caused an error.

Tip
To obtain more information about the actual error, use the NdbOperation::getNdbError() method of the NdbOperation object returned by getNdbErrorOperation().

Signature.

```cpp
NdbOperation* getNdbErrorOperation
{
 void
}
```

Parameters. None.
The NdbTransaction Class

2.3.30.14 NdbTransaction::getNdbIndexOperation()

Description. This method is used to create an NdbIndexOperation associated with a given table.

Note
All index operations within the same transaction must be initialised with this method. Operations must be defined before they are executed.

Signature.

```cpp
NdbIndexOperation* getNdbIndexOperation(
 const NdbDictionary::Index* index
)
```

Parameters. The Index object on which the operation is to be performed.

Return value. A pointer to the new NdbIndexOperation.

2.3.30.15 NdbTransaction::getNdbIndexScanOperation()

Description. This method is used to create an NdbIndexScanOperation associated with a given table.

Note
All index scan operations within the same transaction must be initialised with this method. Operations must be defined before they are executed.

Signature.

```cpp
NdbIndexScanOperation* getNdbIndexScanOperation(
 const NdbDictionary::Index* index
)
```

Parameters. The Index object on which the operation is to be performed.

Return value. A pointer to the new NdbIndexScanOperation.

2.3.30.16 NdbTransaction::getNdbOperation()

Description. This method is used to create an NdbOperation associated with a given table.

Note
All operations within the same transaction must be initialised with this method. Operations must be defined before they are executed.

Signature.

```cpp
NdbOperation* getNdbOperation(
 const NdbDictionary::Table* table
)
```
The NdbTransaction Class

Parameters. The Table object on which the operation is to be performed.

Return value. A pointer to the new NdbOperation.

2.3.30.17 NdbTransaction::getNdbScanOperation()

Description. This method is used to create an NdbScanOperation associated with a given table.

Note
All scan operations within the same transaction must be initialised with this method. Operations must be defined before they are executed.

Signature.
NdbScanOperation* getNdbScanOperation
(const NdbDictionary::Table* table)

Parameters. The Table object on which the operation is to be performed.

Return value. A pointer to the new NdbScanOperation.

2.3.30.18 NdbTransaction::getNextCompletedOperation()

Description. This method is used to retrieve a transaction’s completed operations. It is typically used to fetch all operations belonging to a given transaction to check for errors.

NdbTransaction::getNextCompletedOperation(NULL) returns the transaction’s first NdbOperation object; NdbTransaction::getNextCompletedOperation(myOp) returns the NdbOperation object defined after NdbOperation myOp.

Important
This method should only be used after the transaction has been executed, but before the transaction has been closed.

Signature.
const NdbOperation* getNextCompletedOperation
(const NdbOperation* op)

Parameters. This method requires a single parameter op, which is an operation (NdbOperation object), or NULL.

Return value. The operation following op, or the first operation defined for the transaction if getNextCompletedOperation() was called using NULL.

2.3.30.19 NdbTransaction::getTransactionId()

Description. This method is used to obtain the transaction ID.

Signature.
Uint64 getTransactionId
(void)
The NdbTransaction Class

Parameters. None.

Return value. The transaction ID, as an unsigned 64-bit integer.

2.3.30.20 NdbTransaction::insertTuple()

Description. Inserts a tuple using NdbRecord.

Signature.

const NdbOperation* insertTuple
{
    const NdbRecord* key_rec,
    const char* key_row,
    const NdbRecord* attr_rec,
    const char* attr_row,
    const unsigned char* mask = 0,
    const NdbOperation::OperationOptions* opts = 0,
    Uint32 sizeOfOptions = 0
}

const NdbOperation* insertTuple
{
    const NdbRecord* combined_rec,
    const char* combined_row,
    const unsigned char* mask = 0,
    const NdbOperation::OperationOptions* opts = 0,
    Uint32 sizeOfOptions = 0
}

Parameters. insertTuple() takes the following parameters:

• A pointer to an NdbRecord indicating the record (key_rec) to be inserted.

• A row (key_row) of data to be inserted.

• A pointer to an NdbRecord indicating an attribute (attr_rec) to be inserted.

• A row (attr_row) of data to be inserted as the attribute.

• A mask which can be used to filter the columns to be inserted.

• OperationOptions (opts) can be used to provide more finely-grained control of operation definitions. An OperationOptions structure is passed with flags indicating which operation definition options are present. Not all operation types support all operation options; for the options supported by each type of operation, see Section 2.3.30.21, “NdbTransaction::readTuple()”.

• The optional sizeOfOptions parameter is used to preserve backward compatibility of this interface with previous definitions of the OperationOptions structure. If an unusual size is detected by the interface implementation, it can use this to determine how to interpret the passed OperationOptions structure. To enable this functionality, the caller should pass sizeof(NdbOperation::OperationOptions) for the value of this argument.

This method can also be called using a single NdbRecord pointer and single char pointer (combined_rec, combined_row) where the single NdbRecord represents record and attribute and data.

Return value. A const pointer to the NdbOperation representing this insert operation.

2.3.30.21 NdbTransaction::readTuple()

Description. This method reads a tuple using NdbRecord objects.
Signature.

```c
const NdbOperation* readTuple
 (const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* result_rec,
 char* result_row,
 NdbOperation::LockMode lock_mode = NdbOperation::LM_Read,
 const unsigned char* result_mask = 0,
 const NdbOperation::OperationOptions* opts = 0,
 Uint32 sizeOfOptions = 0
)
```

Parameters.  This method takes the following parameters:

- `key_rec` is a pointer to an `NdbRecord` for either a table or an index. If on a table, then the operation uses a primary key; if on an index, then the operation uses a unique key. In either case, the `key_rec` must include all columns of the key.

- The `key_row` passed to this method defines the primary or unique key of the affected tuple, and must remain valid until `execute()` is called.

The mask, if not `NULL`, defines a subset of attributes to read, update, or insert. Only if `(mask[attrId >> 3] & (1<<(attrId & 7)))` is set is the column affected. The mask is copied by the methods, so need not remain valid after the call returns.

- `result_rec` is a pointer to an `NdbRecord` used to hold the result.

- `result_row` defines a buffer for the result data.

- `lock_mode` specifies the lock mode in effect for the operation. See Section 2.3.25.15, “NdbOperation::LockMode”, for permitted values and other information.

- `result_mask` defines a subset of attributes to read. Only if `mask[attrId >> 3] & (1<<(attrId & 7))` is set is the column affected. The mask is copied, and so need not remain valid after the method call returns.

- `OperationOptions (opts)` can be used to provide more finely-grained control of operation definitions. An `OperationOptions` structure is passed with flags indicating which operation definition options are present. Not all operation types support all operation options; the options supported for each type of operation are shown in the following table:

<table>
<thead>
<tr>
<th>Operation type (Method)</th>
<th>OperationOptions Flags Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>readTuple()</code></td>
<td><code>OO_ABORTOPTION, OO_GETVALUE, OO_PARTITION_ID, OO_INTERPRETED</code></td>
</tr>
<tr>
<td><code>insertTuple()</code></td>
<td><code>OO_ABORTOPTION, OO_SETVALUE, OO_PARTITION_ID, OO_ANYVALUE</code></td>
</tr>
<tr>
<td><code>updateTuple()</code></td>
<td><code>OO_ABORTOPTION, OO_SETVALUE, OO_PARTITION_ID, OO_ANYVALUE</code></td>
</tr>
<tr>
<td><code>writeTuple()</code></td>
<td><code>OO_ABORTOPTION, OO_SETVALUE, OO_PARTITION_ID, OO_ANYVALUE</code></td>
</tr>
<tr>
<td><code>deleteTuple()</code></td>
<td><code>OO_ABORTOPTION, OO_GETVALUE, OO_PARTITION_ID, OO_ANYVALUE</code></td>
</tr>
</tbody>
</table>

- The optional `sizeOfOptions` parameter is used to preserve backward compatibility of this interface with previous definitions of the `OperationOptions` structure. If an unusual size is detected by the interface implementation, it can use this to determine how to interpret the
The NdbTransaction Class

passed OperationOptions structure. To enable this functionality, the caller should pass sizeof(NdbOperation::OperationOptions) for the value of this argument.

Return value. A pointer to the NdbOperation representing this read operation (this can be used to check for errors).

2.3.30.22 NdbTransaction::refresh()

Description. This method updates the transaction's timeout counter, and thus avoids aborting due to transaction timeout.

Note  It is not advisable to take a lock on a record and maintain it for an extended time since this can impact other transactions.

Signature.

int refresh
{
    void
}

Parameters. None.

Return value. Returns 0 on success, -1 on failure.

2.3.30.23 NdbTransaction::releaseLockHandle()

Description. This method is used to release a lock handle (see Section 2.3.25.5, “NdbOperation::getLockHandle”) when it is no longer required. For NdbRecord primary key read operations, this cannot be called until the associated read operation has been executed.

Note  All lock handles associated with a given transaction are released when that transaction is closed.

Signature.

int releaseLockHandle
{
    const NdbLockHandle* lockHandle
}

Parameters. The NdbLockHandle object to be released.

Return value. 0 on success.

2.3.30.24 NdbTransaction::scanIndex()

Description. Perform an index range scan of a table, with optional ordering.

Signature.

NdbIndexScanOperation* scanIndex
{
    const NdbRecord* key_record,
    const NdbRecord* result_record,
    NdbOperation::LockMode lock_mode = NdbOperation::LM_Read,
    const unsigned char* result_mask = 0,
    const NdbIndexScanOperation::IndexBound* bound = 0,
    const NdbScanOperation::ScanOptions* options = 0,
The NdbTransaction Class

```
Uint32 sizeOfOptions = 0
)
```

**Parameters.** The `key_record` describes the index to be scanned. It must be a key record for the index; that is, it must specify, at a minimum, all of the key columns of the index. The `key_record` must be created from the index to be scanned (and not from the underlying table).

The `result_record` describes the rows to be returned from the scan. For an ordered index scan, `result_record` must be a key record for the index to be scanned; that is, it must include (at a minimum) all of the columns in the index (the full index key is needed by the NDB API for merge-sorting the ordered rows returned from each fragment).

Like the `key_record`, the `result_record` must be created from the underlying table, and not from the index to be scanned. Both the `key_record` and `result_record` NdbRecord structures must stay in place until the scan operation is closed.

A single IndexBound can be specified either in this call or in a separate call to NdbIndexScanOperation::setBound(). To perform a multi-range read, the `scan_flags` in the ScanOptions structure must include SF_MULTIRANGE. Additional bounds can be added using successive calls to NdbIndexScanOperation::setBound().

To specify an equals bound, use the same row pointer for the `low_key` and `high_key` with the low and high inclusive bits set.

To specify additional options, pass a ScanOptions structure.

The `sizeOfOptions` exists To enable backward compatibility for this interface. This parameter indicates the size of the ScanOptions structure at the time the client was compiled, and enables detection of the use of an old-style ScanOptions structure. If this functionality is not required, this argument can be left set to 0.

**Note**

For multi-range scans, the `low_key` and `high_key` pointers must be unique. In other words, it is not permissible to reuse the same row buffer for several different range bounds within a single scan. However, it is permissible to use the same row pointer as `low_key` and `high_key` in order to specify an equals bound; it is also permissible to reuse the rows after the scanIndex() method returns—that is, they need not remain valid until execute() time (unlike the NdbRecord pointers).

**Return value.** The current NdbIndexScanOperation, which can be used for error checking.

### 2.30.25 NdbTransaction::scanTable()

**Description.** This method performs a table scan, using an NdbRecord object to read out column data.

**Signature.**

```
NdbScanOperation* scanTable
(
 const NdbRecord* result_record,
 NdbOperation::LockMode lock_mode = NdbOperation::LM_Read,
 const unsigned char* result_mask = 0,
 Uint32 scan_flags = 0,
 Uint32 parallel = 0,
 Uint32 batch = 0
)
```

**Parameters.** The `scanTable()` method takes the following parameters:
The NdbTransaction Class

- A pointer to an NdbRecord for storing the result. This result_record must remain valid until after the execute() call has been made.

- The lock_mode in effect for the operation. See Section 2.3.25.15, “NdbOperation::LockMode”, for permitted values and other information.

- The result_mask pointer is optional. If it is present, only columns for which the corresponding bit (by attribute ID order) in result_mask is set will be retrieved in the scan. The result_mask is copied internally, so in contrast to result_record need not be valid when execute() is invoked.

- scan_flags can be used to impose ordering and sorting conditions for scans. See Section 2.3.29.9, “NdbScanOperation::ScanFlag”, for a list of permitted values.

- The parallel argument is the desired parallelism, or 0 for maximum parallelism (receiving rows from all fragments in parallel), which is the default.

- batch determines whether batching is employed. The default is 0 (off).

Return value. A pointer to the NdbScanOperation representing this scan. The operation can be checked for errors if necessary.

2.3.30.26 NdbTransaction::setMaxPendingBlobReadBytes()

Description. Sets the batch size in bytes for BLOB read operations. When the volume of BLOB data to be read within a given transaction exceeds this amount, all of the transaction's pending BLOB read operations are executed.

Signature.

```c
void setMaxPendingBlobReadBytes
{
 Uint32 bytes
}
```

Parameters. The batch size, as the number of bytes. Using 0 causes BLOB read batching to be disabled, which is the default behavior (for backward compatibility).

Return value. None.

Note

BLOB read batching can also be controlled in the mysql client and other MySQL client application using the MySQL Server's --ndb-blob-read-batch-bytes option and its associated MySQL Server system variables.

2.3.30.27 NdbTransaction::setMaxPendingBlobWriteBytes()

Description. Sets the batch size in bytes for BLOB write operations. When the volume of BLOB data to be written within a given transaction exceeds this amount, all of the transaction's pending BLOB write operations are executed.

Signature.

```c
void setMaxPendingBlobWriteBytes
{
 Uint32 bytes
}
```

Parameters. The batch size, as the number of bytes. Using 0 causes BLOB write batching to be disabled, which is the default behavior (for backward compatibility).

Return value. None.
Note

BLOB write batching can also be controlled in the mysql client and other MySQL client application using the MySQL Server's --ndb-blob-write-batch-bytes option and its associated MySQL Server system variables.

2.3.30.28 NdbTransaction::setSchemaObjectOwnerChecks()

Description. Enables or disables a schema object ownership check when multiple Ndb_cluster_connection objects are in use. When this check is enabled, objects used by this transaction are checked to make sure that they belong to the NdbDictionary owned by this connection. This is done by acquiring the schema objects of the same names from the connection and comparing these with the schema objects passed to the transaction. If they do not match, an error is returned.

This method is available for debugging purposes beginning with NDB 7.3.9 and NDB 7.4.4. (Bug #19875977) You should be aware that enabling this check carries a performance penalty and for this reason you should avoid doing so in a production setting.

Signature.

```cpp
void setSchemaObjOwnerChecks
 (bool runChecks)
```

Parameters. A single parameter runChecks. Use true to enable ownership checks, false to disable them.

Return value. None.

2.3.30.29 NdbTransaction::unlock()

Description. This method creates an unlock operation on the current transaction; when executed, the unlock operation removes the lock referenced by the NdbLockHandle (see Section 2.3.25.5, “NdbOperation::getLockHandle”) passed to the method.

Signature.

```cpp
const NdbOperation* unlock
 (const NdbLockHandle* lockHandle,
 NdbOperation::AbortOption ao = NdbOperation::DefaultAbortOption)
```

Parameters. A pointer to a lock handle; in addition, optionally, an AbortOption value ao.

In the event that the unlock operation fails—for example, due to the row already being unlocked—the AbortOption specifies how this is handled, the default being that errors cause transactions to abort.

Return value. A pointer to an NdbOperation (the unlock operation created).

2.3.30.30 NdbTransaction::updateTuple()

Description. Updates a tuple using an NdbRecord object.

Signature.

```cpp
const NdbOperation* updateTuple
 (const NdbRecord* key_rec,
 const char* key_row,
 const NdbRecord* attr_rec,
 const char* attr_row,
```


The NdbTransaction Class

const unsigned char* mask = 0,
const NdbOperation::OperationOptions* opts = 0,
UInt32 sizeOfOptions = 0
)

Parameters.  updateTuple() takes the following parameters:

- **key_rec** is a pointer to an NdbRecord for either a table or an index. If on a table, then the operation uses a primary key; if on an index, then the operation uses a unique key. In either case, the key_rec must include all columns of the key.

- The **key_row** passed to this method defines the primary or unique key of the affected tuple, and must remain valid until execute() is called.

- **attr_rec** is an NdbRecord referencing the attribute to be updated.

  Note
  For unique index operations, the attr_rec must refer to the underlying table of the index, not to the index itself.

- **attr_row** is a buffer containing the new data for the update.

- The **mask**, if not NULL, defines a subset of attributes to be updated. The mask is copied, and so does not need to remain valid after the call to this method returns.

- **OperationOptions (opts)** can be used to provide more finely-grained control of operation definitions. An OperationOptions structure is passed with flags indicating which operation definition options are present. Not all operation types support all operation options; for the options supported by each type of operation, see Section 2.3.30.21, “NdbTransaction::readTuple()”.

- The optional sizeOfOptions parameter is used to preserve backward compatibility of this interface with previous definitions of the OperationOptions structure. If an unusual size is detected by the interface implementation, it can use this to determine how to interpret the passed OperationOptions structure. To enable this functionality, the caller should pass sizeof(NdbOperation::OperationOptions) for the value of this argument.

Return value.  The NdbOperation representing this operation (can be used to check for errors).

2.3.30.31 NdbTransaction::writeTuple()

Description.  This method is used with NdbRecord to write a tuple of data.

Signature.  

const NdbOperation* writeTuple
{
    const NdbRecord* key_rec,
    const char* key_row,
    const NdbRecord* attr_rec,
    const char* attr_row,
    const unsigned char* mask = 0,
    const NdbOperation::OperationOptions* opts = 0,
    Uint32 sizeOfOptions = 0
}

Parameters.  This method takes the following parameters:

- **key_rec** is a pointer to an NdbRecord for either a table or an index. If on a table, then the operation uses a primary key; if on an index, then the operation uses a unique key. In either case, the key_rec must include all columns of the key.

- The **key_row** passed to this method defines the primary or unique key of the tuple to be written, and must remain valid until execute() is called.
The Object Class

- `attr_rec` is an `NdbRecord` referencing the attribute to be written.

  **Note**
  For unique index operations, the `attr_rec` must refer to the underlying table of the index, not to the index itself.

- `attr_row` is a buffer containing the new data.

- The `mask`, if not `NULL`, defines a subset of attributes to be written. The mask is copied, and so does not need to remain valid after the call to this method returns.

- `OperationOptions (opts)` can be used to provide more finely-grained control of operation definitions. An `OperationOptions` structure is passed with flags indicating which operation definition options are present. Not all operation types support all operation options; for the options supported by each type of operation, see Section 2.3.30.21, "NdbTransaction::readTuple()".

- The optional `sizeOfOptions` parameter is used to provide backward compatibility of this interface with previous definitions of the `OperationOptions` structure. If an unusual size is detected by the interface implementation, it can use this to determine how to interpret the passed `OperationOptions` structure. To enable this functionality, the caller should pass `sizeof(NdbOperation::OperationOptions)` for the value of this argument.

**Return value.** A `const` pointer to the `NdbOperation` representing this write operation. The operation can be checked for errors if and as necessary.

### 2.3.31 The Object Class

This class provides meta-information about database objects such as tables and indexes. `Object` subclasses model these and other database objects.

**Parent class.** `NdbDictionary`

**Child classes.** `Datafile`, `Event`, `Index`, `LogFileGroup`, `Table`, `Tablespace`, `Undofile`, `HashMap`, `ForeignKey`

**Methods.** The following table lists the public methods of the `Object` class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getObjectId()</code></td>
<td>Gets an object's ID</td>
</tr>
<tr>
<td><code>getObjectStatus()</code></td>
<td>Gets an object's status</td>
</tr>
<tr>
<td><code>getObjectVersion()</code></td>
<td>Gets the version of an object</td>
</tr>
</tbody>
</table>

**Note**

All 3 of these methods are pure virtual methods, and are reimplemented in the `Table`, `Index`, and `Event` subclasses where needed.

**Types.** These are the public types of the `Object` class:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>FragmentType</code></td>
<td>Fragmentation type used by the object (a table or index)</td>
</tr>
</tbody>
</table>
2.3.31 Object::FragmentType

This type describes the Object’s fragmentation type.

**Description.** This parameter specifies how data in the table or index is distributed among the cluster’s storage nodes, that is, the number of fragments per node. The larger the table, the larger the number of fragments that should be used. Note that all replicas count as a single fragment. For a table, the default is FragAllMedium. For a unique hash index, the default is taken from the underlying table and cannot currently be changed.

**Enumeration values.** Possible values for FragmentType are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FragUndefined</td>
<td>The fragmentation type is undefined or the default</td>
</tr>
<tr>
<td>FragAllMedium</td>
<td>Two fragments per node</td>
</tr>
<tr>
<td>FragAllLarge</td>
<td>Four fragments per node</td>
</tr>
<tr>
<td>DistrKeyHash</td>
<td>Distributed hash key</td>
</tr>
<tr>
<td>DistrKeyLin</td>
<td>Distributed linear hash key</td>
</tr>
<tr>
<td>UserDefined</td>
<td>User defined</td>
</tr>
<tr>
<td>HashMapPartition</td>
<td>Hash map partition</td>
</tr>
</tbody>
</table>

2.3.31.2 Object::PartitionBalance

**Description.** This type enumerates provides partition balance settings (fragment count types) from which to choose when using setPartitionBalance(). This is also the type returned by getPartitionBalance().

**Enumeration values.** Possible values for PartitionBalance are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PartitionBalance_ForRPByLDM</td>
<td>Use one fragment per LDM per node</td>
</tr>
<tr>
<td>PartitionBalance_ForRAByLDM</td>
<td>Use one fragment per LDM per node group</td>
</tr>
<tr>
<td>PartitionBalance_ForRPByNode</td>
<td>Use one fragment per node</td>
</tr>
<tr>
<td>PartitionBalance_ForRAByNode</td>
<td>Use one fragment per node group</td>
</tr>
<tr>
<td>PartitionBalance_Specific</td>
<td>Use setting determined by setPartitionBalance()</td>
</tr>
</tbody>
</table>

Prior to NDB 7.5.4, this was known as FragmentCountType, and could take one of the values FragmentCount_OnePerLDMPerNode, FragmentCount_OnePerLDMPerNodeGroup,
The Object Class

FragmentCount_OnePerNode, FragmentCount_OnePerNodeGroup, or FragmentCount_Specific. These values correspond to those shown in the previous table, in the order shown.

2.3.31.3 Object::State

This type describes the state of the Object.

**Description.** This parameter provides us with the object's state. By state, we mean whether or not the object is defined and is in a usable condition.

**Enumeration values.** Possible values for State are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StateUndefined</td>
<td>Undefined</td>
</tr>
<tr>
<td>StateOffline</td>
<td>Offline, not useable</td>
</tr>
<tr>
<td>StateBuilding</td>
<td>Building (e.g. restore?), not useable(?)</td>
</tr>
<tr>
<td>StateDropping</td>
<td>Going offline or being dropped; not usable</td>
</tr>
<tr>
<td>StateOnline</td>
<td>Online, usable</td>
</tr>
<tr>
<td>StateBackup</td>
<td>Online, being backed up, usable</td>
</tr>
<tr>
<td>StateBroken</td>
<td>Broken; should be dropped and re-created</td>
</tr>
</tbody>
</table>

2.3.31.4 Object::Status

This type describes the Object's status.

**Description.** Reading an object's Status tells whether or not it is available in the NDB kernel.

**Enumeration values.** Possible values for Status are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>The object exists only in memory, and has not yet been created in the NDB kernel</td>
</tr>
<tr>
<td>Changed</td>
<td>The object has been modified in memory, and must be committed in the NDB Kernel for changes to take effect</td>
</tr>
<tr>
<td>Retrieved</td>
<td>The object exists, and has been read into main memory from the NDB Kernel</td>
</tr>
<tr>
<td>Invalid</td>
<td>The object has been invalidated, and should no longer be used</td>
</tr>
<tr>
<td>Altered</td>
<td>The table has been altered in the NDB kernel, but is still available for use</td>
</tr>
</tbody>
</table>

2.3.31.5 Object::Store

This type describes the Object's persistence.

**Description.** Reading this value tells us is the object is temporary or permanent.
### The Object Class

**Enumeration values.** Possible values for `Store` are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StoreUndefined</td>
<td>The object is undefined</td>
</tr>
<tr>
<td>StoreTemporary</td>
<td>Temporary storage; the object or data will be deleted on system restart</td>
</tr>
<tr>
<td>StorePermanent</td>
<td>The object or data is permanent; it has been logged to disk</td>
</tr>
</tbody>
</table>

#### 2.3.31.6 Object::Type

This type describes the type of the `Object`.

**Description.** The `Type` of the object can be one of several different sorts of index, trigger, tablespace, and so on.

**Enumeration values.** Possible values for `Type` are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TypeUndefined</td>
<td>Undefined</td>
</tr>
<tr>
<td>SystemTable</td>
<td>System table</td>
</tr>
<tr>
<td>UserTable</td>
<td>User table (may be temporary)</td>
</tr>
<tr>
<td>UniqueHashIndex</td>
<td>Unique (but unordered) hash index</td>
</tr>
<tr>
<td>OrderedIndex</td>
<td>Ordered (but not unique) index</td>
</tr>
<tr>
<td>HashIndexTrigger</td>
<td>Index maintenance (internal)</td>
</tr>
<tr>
<td>IndexTrigger</td>
<td>Index maintenance (internal)</td>
</tr>
<tr>
<td>SubscriptionTrigger</td>
<td>Backup or replication (internal)</td>
</tr>
<tr>
<td>ReadOnlyConstraint</td>
<td>Trigger (internal)</td>
</tr>
<tr>
<td>Tablespace</td>
<td>Tablespace</td>
</tr>
<tr>
<td>LogfileGroup</td>
<td>Logfile group</td>
</tr>
<tr>
<td>Datafile</td>
<td>Datafile</td>
</tr>
<tr>
<td>Undofile</td>
<td>Undofile</td>
</tr>
<tr>
<td>ReorgTrigger</td>
<td>Trigger</td>
</tr>
<tr>
<td>HashMap</td>
<td>Hash map</td>
</tr>
<tr>
<td>ForeignKey</td>
<td>Foreign key</td>
</tr>
<tr>
<td>FKParentTrigger</td>
<td>Trigger on a foreign key's parent table</td>
</tr>
<tr>
<td>FKChildTrigger</td>
<td>Trigger on a foreign key's child table</td>
</tr>
</tbody>
</table>

*ForeignKey, FKParentTrigger, and FKChildTrigger were added in NDB Cluster 7.3. See Section 2.3.8, "The ForeignKey Class".*

#### 2.3.31.7 Object::getObjectId()

**Description.** This method retrieves the object's ID.
The OperationOptions Structure

### 2.3.31.8 Object::getObjectStatus()

**Description.** This method retrieves the status of the object for which it is invoked.

**Signature.**

```cpp
virtual Status getObjectStatus
 (void) const
```

**Parameters.** *None.*

**Return value.** Returns the current Status of the Object.

### 2.3.31.9 Object::getObjectVersion()

**Description.** The method gets the current version of the object.

**Signature.**

```cpp
virtual int getObjectVersion
 (void) const
```

**Parameters.** *None.*

**Return value.** The object's version number, an integer.

### 2.3.32 The OperationOptions Structure

**Parent class.** NdbOperation

**Description.** These options are passed to the NdbRecord-based primary key and scan takeover operation methods defined in the NdbTransaction and NdbScanOperation classes.

**Note**

Most NdbTransaction::*Tuple() methods (see Section 2.3.30, "The NdbTransaction Class") take a supplementary sizeOfOptions parameter. This is optional, and is intended to permit the interface implementation to remain backward compatible with older un-recompiled clients that may pass an older (smaller) version of the OperationOptions structure. This effect is achieved by passing sizeof(OperationOptions) into this parameter.

Each option type is marked as present by setting the corresponding bit in optionsPresent. (Only the option types marked in optionsPresent need have sensible data.) All data is copied out of the OperationOptions structure (and any subtended structures) at operation definition time. If no options are required, then NULL may be passed instead.
Members. The elements making up this structure are shown in the following table:

Table 2.78 NdbOperation::OperationOptions structure member names, types, and description

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>optionsPresent</td>
<td>Uint64</td>
<td>Which flags are present.</td>
</tr>
<tr>
<td>[]</td>
<td>Flags</td>
<td>Type of flags.</td>
</tr>
</tbody>
</table>

The accepted names and values are shown in the following list:

- **OO_ABORTOPTION**: 0x01
- **OO_GETVALUE**: 0x02
- **OO_SETVALUE**: 0x04
- **OO_PARTITION_ID**: 0x08
- **OO_INTERPRETED**: 0x10
- **OO_ANYVALUE**: 0x20
- **OO_CUSTOMDATA**: 0x40
- **OO_LOCKHANDLE**: 0x80
- **OO_QUEUEABLE**: 0x100
- **OO_NOT_QUEUEABLE**: 0x200
- **OO_DEFERRED_CONSTRAINTS**: 0x400
- **OO_DISABLE_FK**: 0x800
- **OO_NOWAIT**: 0x1000

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abortOption</td>
<td>AbortOption</td>
<td>An operation-specific abort option; necessary only if the default abort option behavior is not satisfactory.</td>
</tr>
<tr>
<td>extraGetValues</td>
<td>GetValueSpec</td>
<td>Extra column values to be read.</td>
</tr>
<tr>
<td>numExtraGetValues</td>
<td>Uint32</td>
<td>Number of extra column values to be read.</td>
</tr>
<tr>
<td>extraSetValues</td>
<td>SetValueSpec</td>
<td>Extra column values to be set.</td>
</tr>
<tr>
<td>numExtraSetValues</td>
<td>Uint32</td>
<td>Number of extra column values to be set.</td>
</tr>
</tbody>
</table>
The PartitionSpec Structure

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>partitionId</td>
<td>Uint32</td>
<td>Limit the scan to the partition having this ID; alternatively, you can supply an PartitionSpec here. For index scans, partitioning information can be supplied for each range.</td>
</tr>
<tr>
<td>interpretedCode</td>
<td>NdbInterpretedCode</td>
<td>Interpreted code to execute as part of the scan.</td>
</tr>
<tr>
<td>anyValue</td>
<td>Uint32</td>
<td>An anyValue to be used with this operation. This is used by NDB Cluster Replication to store the SQL node's server ID. By starting the SQL node with the --server-id-bits option (which causes only some of the server_id's bits to be used for uniquely identifying it) set to less than 32, the remaining bits can be used to store user data.</td>
</tr>
<tr>
<td>customData</td>
<td>void*</td>
<td>Data pointer to associate with this operation.</td>
</tr>
<tr>
<td>partitionInfo</td>
<td>PartitionSpec</td>
<td>Partition information for bounding this scan.</td>
</tr>
<tr>
<td>sizeOfPartInfo</td>
<td>Uint32</td>
<td>Size of the bounding partition information.</td>
</tr>
</tbody>
</table>

For more information, see Section 2.3.27, “The NdbRecord Interface”.

### 2.3.33 The PartitionSpec Structure

This section describes the PartitionSpec structure.

**Parent class.** Ndb

**Description.** A PartitionSpec is used for describing a table partition in terms of any one of the following criteria:

- A specific partition ID for a table with user-defined partitioning.
- An array made up of a table's distribution key values for a table with native partitioning.
- A row in NdbRecord format containing a natively partitioned table's distribution key values.

**Attributes.** A PartitionSpec has two attributes, a SpecType and a Spec which is a data structure corresponding to that SpecType, as shown in the following table:

**Table 2.79 PartitionSpec attributes with the SpecType values, data structures, and descriptions for each attribute.**

<table>
<thead>
<tr>
<th>SpecType Enumeration</th>
<th>SpecType Value (Uint32)</th>
<th>Data Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS_NONE</td>
<td>0</td>
<td>none</td>
<td>No partitioning information is provided.</td>
</tr>
<tr>
<td>PS_USER_DEFINED</td>
<td>1</td>
<td>UserDefined</td>
<td>For a table having user-defined partitioning, a specific partition is identified by its partition ID.</td>
</tr>
<tr>
<td>PS_DISTR_KEY_PART_PTR</td>
<td>2</td>
<td>KeyPartPtr</td>
<td>For a table having native partitioning, an array containing the table's distribution key values is used to identify the partition.</td>
</tr>
<tr>
<td>PS_DISTR_KEY_RECORD</td>
<td>3</td>
<td>KeyRecord</td>
<td>The partition is identified using a natively partitioned table's distribution key values,</td>
</tr>
</tbody>
</table>
The PartitionSpec Structure

<table>
<thead>
<tr>
<th>SpecType Enumeration</th>
<th>SpecType Value (Uint32)</th>
<th>Data Structure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>as contained in a row given in NdbRecord format.</td>
</tr>
</tbody>
</table>

**UserDefined structure.** This structure is used when the SpecType is PS_USER_DEFINED.

Table 2.80 Attribute types of the partitionId attribute of the PS_USER_DEFINED SpecType

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>partitionId</td>
<td>Uint32</td>
<td>The partition ID for the desired table.</td>
</tr>
</tbody>
</table>

**KeyPartPtr structure.** This structure is used when the SpecType is PS_DISTR_KEY_PART_PTR.

Table 2.81 Attributes of the PS_DISTR_KEY_PART_PTR SpecType, with attribute types and descriptions

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tableKeyParts</td>
<td>Key_part_ptr</td>
<td>Pointer to the distribution key values for a table having native partitioning.</td>
</tr>
<tr>
<td>xfrmbuf</td>
<td>void*</td>
<td>Pointer to a temporary buffer used for performing calculations.</td>
</tr>
<tr>
<td>xfrmbuflen</td>
<td>Uint32</td>
<td>Length of the temporary buffer.</td>
</tr>
</tbody>
</table>

**KeyRecord structure.** This structure is used when the SpecType is PS_DISTR_KEY_RECORD.

Table 2.82 PS_DISTR_KEY_RECORD SpecType attributes, with attribute types and descriptions

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keyRecord</td>
<td>NdbRecord</td>
<td>A row in NdbRecord format, containing a table’s distribution keys.</td>
</tr>
<tr>
<td>keyRow</td>
<td>const char*</td>
<td>The distribution key data.</td>
</tr>
<tr>
<td>xfrmbuf</td>
<td>void*</td>
<td>Pointer to a temporary buffer used for performing calculations.</td>
</tr>
<tr>
<td>xfrmbuflen</td>
<td>Uint32</td>
<td>Length of the temporary buffer.</td>
</tr>
</tbody>
</table>

**Definition from Ndb.hpp.** Because this is a fairly complex structure, we here provide the original source-code definition of PartitionSpec, as given in storage/ndb/include/ndbapi/Ndb.hpp:

```c
struct PartitionSpec
{
 enum SpecType
 {
 PS_NONE = 0,
 PS_USER_DEFINED = 1,
 PS_DISTR_KEY_PART_PTR = 2,
 PS_DISTR_KEY_RECORD = 3
 }

 Uint32 type;
 union
 {
 struct {
 Uint32 partitionId;
 } UserDefined;
```
2.3.34 The RecordSpecification Structure

Parent class.  
NdbDictionary

Description.  
This structure is used to specify columns and range offsets when creating NdbRecord objects.

Members.  
The elements making up this structure are shown in the following table:

Table 2.83 NdbDictionary::RecordSpecification attributes, with types and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>column</td>
<td>Column</td>
<td>The column described by this entry (the column's maximum size defines the field size for the row). Even when creating an NdbRecord for an index, this must point to a column obtained from the underlying table, and not from the index itself.</td>
</tr>
<tr>
<td>offset</td>
<td>Uint32</td>
<td>The offset of data from the beginning of a row. For reading blobs, the blob handle (NdbBlob), rather than the actual blob data, is written into the row. This means that there must be at least sizeof(NdbBlob*) must be available in the row.</td>
</tr>
<tr>
<td>nullbit_byte_offset</td>
<td>Uint32</td>
<td>The offset from the beginning of the row of the byte containing the NULL bit.</td>
</tr>
<tr>
<td>nullbit_bit_in_byte</td>
<td>Uint32</td>
<td>NULL bit (0-7).</td>
</tr>
</tbody>
</table>

Important
nullbit_byte_offset and nullbit_bit_in_byte are not used for non-NULLable columns.

For more information, see Section 2.3.27, “The NdbRecord Interface”.

2.3.35 The ScanOptions Structure

Parent class.  
NdbScanOperation

Description.  
This data structure is used to pass options to the NdbRecord-based scanTable() and scanIndex() methods of the NdbTransaction class. Each option type is marked as present.
by setting the corresponding bit in the `optionsPresent` field. Only the option types marked in the `optionsPresent` field need have sensible data.

All data is copied out of the `ScanOptions` structure (and any subtended structures) at operation definition time. If no options are required, then `NULL` may be passed as the `ScanOptions` pointer.

**Members.** The elements making up this structure are shown in the following table:

**Table 2.84 NdbScanOperation::ScanOptions attributes, with types and descriptions**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>optionsPresent</td>
<td>Uint64</td>
<td>Which options are present.</td>
</tr>
<tr>
<td>...</td>
<td>Type:</td>
<td>Type of options.</td>
</tr>
<tr>
<td></td>
<td>• SO_SCANFLAGS: 0x01</td>
<td>Flags controlling scan behavior; see Section 2.3.29.9, “NdbScanOperation::ScanFlag”, for more information.</td>
</tr>
<tr>
<td></td>
<td>• SO_PARALLEL: 0x02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SO_BATCH: 0x04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SO_GETVALUE: 0x08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SO_PARTITION_ID: 0x10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SO_INTERPRETED: 0x20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SO_CUSTOMDATA: 0x40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SO_PARTINFO: 0x80</td>
<td></td>
</tr>
<tr>
<td>scan_flags</td>
<td>Uint32</td>
<td>Flasgs controlling scan behavior; see Section 2.3.29.9, “NdbScanOperation::ScanFlag”, for more information.</td>
</tr>
<tr>
<td>parallel</td>
<td>Uint32</td>
<td>Scan parallelism; 0 (the default) sets maximum parallelism.</td>
</tr>
<tr>
<td>batch</td>
<td>Uint32</td>
<td>Batch size for transfers from data nodes to API nodes; 0 (the default) enables this to be selected automatically.</td>
</tr>
<tr>
<td>extraGetValues</td>
<td>GetValueSpec</td>
<td>Extra values to be read for each row matching the sdcan criteria.</td>
</tr>
<tr>
<td>numExtraGetValues</td>
<td>Uint32</td>
<td>Number of extra values to be read.</td>
</tr>
<tr>
<td>partitionId</td>
<td>Uint32</td>
<td>Limit the scan to the partition having this ID; alternatively, you can supply an <code>PartitionSpec</code> here. For index scans, partitioning information can be supplied for each range.</td>
</tr>
<tr>
<td>interpretedCode</td>
<td>NdbInterpretedCode</td>
<td>Interpreted code to execute as part of the scan.</td>
</tr>
<tr>
<td>customData</td>
<td>void*</td>
<td>Data pointer to associate with this scan operation.</td>
</tr>
<tr>
<td>partitionInfo</td>
<td>PartitionSpec</td>
<td>Partition information for bounding this scan.</td>
</tr>
</tbody>
</table>
The SetValueSpec Structure

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sizeOfPartInfo</td>
<td>Uint32</td>
<td>Size of the bounding partition information.</td>
</tr>
</tbody>
</table>

For more information, see Section 2.3.27, “The NdbRecord Interface”.

2.3.36 The SetValueSpec Structure

**Parent class.** NdbOperation

**Description.** This structure is used to specify an extra value to set as part of an NdbRecord operation.

**Members.** The elements making up this structure are shown in the following table:

Table 2.85 NdbOperation::SetValueSpec attributes, with types and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>column</td>
<td>Column</td>
<td>To specify an extra value to read, the caller must provide this, as well as (optionally NULL) appStorage pointer.</td>
</tr>
<tr>
<td>value</td>
<td>void*</td>
<td>This must point to the value to be set, or to NULL if the attribute is to be set to NULL. The value pointed to is copied when the operation is defined, and need not remain in place until execution time.</td>
</tr>
</tbody>
</table>

⚠️ Important

Currently, blob values cannot be set using SetValueSpec.

For more information, see Section 2.3.27, “The NdbRecord Interface”.

2.3.37 The Table Class

This section describes the Table class, which models a database table in the NDB API.

**Parent class.** NdbDictionary

**Child classes.** None

**Description.** The Table class represents a table in an NDB Cluster database. This class extends the Object class, which in turn is an inner class of the NdbDictionary class.

⚠️ Important

It is possible using the NDB API to create tables independently of the MySQL server. However, it is usually not advisable to do so, since tables created in this fashion cannot be seen by the MySQL server. Similarly, it is possible using Table methods to modify existing tables, but these changes (except for renaming tables) are not visible to MySQL.

**Calculating Table Sizes.** When calculating the data storage one should add the size of all attributes (each attribute consuming a minimum of 4 bytes) and well as 12 bytes overhead. Variable size attributes have a size of 12 bytes plus the actual data storage parts, with an additional overhead based on the size of the variable part. For example, consider a table with 5 attributes: one 64-bit attribute, one 32-bit attribute, two 16-bit attributes, and one array of 64 8-bit attributes. The amount of memory consumed per record by this table is the sum of the following:
The Table Class

- 8 bytes for the 64-bit attribute
- 4 bytes for the 32-bit attribute
- 8 bytes for the two 16-bit attributes, each of these taking up 4 bytes due to right-alignment
- 64 bytes for the array (64 * 1 byte per array element)
- 12 bytes overhead

This totals 96 bytes per record. In addition, you should assume an overhead of about 2% for the allocation of page headers and wasted space. Thus, 1 million records should consume 96 MB, and the additional page header and other overhead comes to approximately 2 MB. Rounding up yields 100 MB.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

Table 2.86 Table class methods and descriptions

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table()</td>
<td>Class constructor</td>
</tr>
<tr>
<td>~Table()</td>
<td>Destructor</td>
</tr>
<tr>
<td>addColumn()</td>
<td>Adds a column to the table</td>
</tr>
<tr>
<td>aggregate()</td>
<td>Computes aggregate data for the table</td>
</tr>
<tr>
<td>equal()</td>
<td>Compares the table with another table</td>
</tr>
<tr>
<td>getColumn()</td>
<td>Gets a column (by name) from the table</td>
</tr>
<tr>
<td>getDefaultValue()</td>
<td>Checks whether the default number of partitions is being used</td>
</tr>
<tr>
<td>getFragmentCount()</td>
<td>Gets the number of fragments for this table</td>
</tr>
<tr>
<td>getExtraMetadata()</td>
<td>Gets extra metadata for this table</td>
</tr>
<tr>
<td>getFragmentData()</td>
<td>Gets table fragment data (ID, state, and node group)</td>
</tr>
<tr>
<td>getFragmentDataLen()</td>
<td>Gets the length of the table fragment data</td>
</tr>
<tr>
<td>getFragmentNodes()</td>
<td>Gets IDs of data nodes on which fragments are located</td>
</tr>
<tr>
<td>getFragmentType()</td>
<td>Gets the table’s FragmentType</td>
</tr>
<tr>
<td>getFormData()</td>
<td>Gets the data from the table .FRM file</td>
</tr>
<tr>
<td>getFrmLength()</td>
<td>Gets the length of the table’s .FRM file</td>
</tr>
<tr>
<td>getHashMap()</td>
<td>Gets the table’s hash map</td>
</tr>
<tr>
<td>getKValue()</td>
<td>Gets the table’s KValue</td>
</tr>
<tr>
<td>getLinearFlag()</td>
<td>Gets the current setting for the table’s linear hashing flag</td>
</tr>
<tr>
<td>getLogging()</td>
<td>Checks whether logging to disk is enabled for this table</td>
</tr>
<tr>
<td>getMaxLoadFactor()</td>
<td>Gets the table’s maximum load factor</td>
</tr>
<tr>
<td>getMaxRows()</td>
<td>Gets the maximum number of rows that this table may contain</td>
</tr>
<tr>
<td>getMinLoadFactor()</td>
<td>Gets the table’s minimum load factor</td>
</tr>
<tr>
<td>getName()</td>
<td>Gets the table’s name</td>
</tr>
<tr>
<td>getNoOfColumns()</td>
<td>Gets the number of columns in the table</td>
</tr>
<tr>
<td>getNoOfPrimaryKeys()</td>
<td>Gets the number of columns in the table’s primary key.</td>
</tr>
<tr>
<td>getObjectId()</td>
<td>Gets the table’s object ID</td>
</tr>
<tr>
<td>getObjectStatus()</td>
<td>Gets the table’s object status</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>getObjectType()</td>
<td>Removed in NDB 7.5.0 (Bug #47960, Bug #11756088)</td>
</tr>
<tr>
<td>getObjectVersion()</td>
<td>Gets the table’s object version</td>
</tr>
<tr>
<td>getPartitionBalance()</td>
<td>Gets partition balance (fragment count type) used for this table (NDB 7.5.4 and later)</td>
</tr>
<tr>
<td>getPartitionBalanceString()</td>
<td>Gets partition balance used for this table, as a string (NDB 7.5.4 and later)</td>
</tr>
<tr>
<td>getPartitionId()</td>
<td>Gets a partition ID from a hash value</td>
</tr>
<tr>
<td>getPrimaryKey()</td>
<td>Gets the name of the table’s primary key</td>
</tr>
<tr>
<td>getRangeListData()</td>
<td>Gets a <strong>RANGE</strong> or <strong>LIST</strong> array</td>
</tr>
<tr>
<td>getRangeListDataLen()</td>
<td>Gets the length of the table <strong>RANGE</strong> or <strong>LIST</strong> array</td>
</tr>
<tr>
<td>getRowChecksumIndicator()</td>
<td>Checks whether the row checksum indicator has been set</td>
</tr>
<tr>
<td>getRowGCIIndicator()</td>
<td>Checks whether the row GCI indicator has been set</td>
</tr>
<tr>
<td>getSingleUserMode()</td>
<td>Gets the <strong>SingleUserMode</strong> for this table</td>
</tr>
<tr>
<td>getTableId()</td>
<td>Gets the table’s ID</td>
</tr>
<tr>
<td>getTablespace()</td>
<td>Gets the tablespace containing this table</td>
</tr>
<tr>
<td>getTablespaceData()</td>
<td>Gets the ID and version of the tablespace containing the table</td>
</tr>
<tr>
<td>getTablespaceDataLen()</td>
<td>Gets the length of the table’s tablespace data</td>
</tr>
<tr>
<td>getTablespaceNames()</td>
<td>Gets the names of the tablespaces used in the table fragments</td>
</tr>
<tr>
<td>hasDefaultValues()</td>
<td>Determine whether table has any columns using default values</td>
</tr>
<tr>
<td>setDefaultNoPartitionsFlag()</td>
<td>Toggles whether the default number of partitions should be used for the table</td>
</tr>
<tr>
<td>setExtraMetadata()</td>
<td>Sets extra metadata for this table</td>
</tr>
<tr>
<td>setFragmentCount()</td>
<td>Gets the number of fragments for this table</td>
</tr>
<tr>
<td>setFragmentData()</td>
<td>Sets the fragment ID, node group ID, and fragment state</td>
</tr>
<tr>
<td>setFragmentType()</td>
<td>Sets the table’s <strong>FragmentType</strong></td>
</tr>
<tr>
<td>setFrm()</td>
<td>Sets the <strong>.FRM</strong> file to be used for this table</td>
</tr>
<tr>
<td>setHashMap()</td>
<td>Sets the table’s hash map.</td>
</tr>
<tr>
<td>setKValue()</td>
<td>Set the <strong>KValue</strong></td>
</tr>
<tr>
<td>setLinearFlag()</td>
<td>Sets the table’s linear hashing flag</td>
</tr>
<tr>
<td>setLogging()</td>
<td>Toggle logging of the table to disk</td>
</tr>
<tr>
<td>setMaxLoadFactor()</td>
<td>Set the table’s maximum load factor (<strong>MaxLoadFactor</strong>)</td>
</tr>
<tr>
<td>setMaxRows()</td>
<td>Sets the maximum number of rows in the table</td>
</tr>
<tr>
<td>setMinLoadFactor()</td>
<td>Set the table’s minimum load factor (<strong>MinLoadFactor</strong>)</td>
</tr>
<tr>
<td>setPartitionBalance()</td>
<td>Sets the partition balance (fragment count type) for this table (NDB 7.5.4 and later)</td>
</tr>
<tr>
<td>setName()</td>
<td>Sets the table’s name</td>
</tr>
<tr>
<td>setObjectType()</td>
<td>Removed in NDB 7.5.0 (Bug #47960, Bug #11756088)</td>
</tr>
<tr>
<td>setRangeListData()</td>
<td>Sets <strong>LIST</strong> and <strong>RANGE</strong> partition data</td>
</tr>
</tbody>
</table>
The Table Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setRowChecksumIndicator()</td>
<td>Sets the row checksum indicator</td>
</tr>
<tr>
<td>setRowGCIIndicator()</td>
<td>Sets the row GCI indicator</td>
</tr>
<tr>
<td>setSingleUserMode()</td>
<td>Sets the SingleUserMode value for this table</td>
</tr>
<tr>
<td>setStatusInvalid()</td>
<td></td>
</tr>
<tr>
<td>setTablespace()</td>
<td>Set the tablespace to use for this table</td>
</tr>
<tr>
<td>setTablespaceData()</td>
<td>Sets the tablespace ID and version</td>
</tr>
<tr>
<td>setTablespaceNames()</td>
<td>Sets the tablespace names for fragments</td>
</tr>
<tr>
<td>validate()</td>
<td>Validates the definition for a new table prior to creating it</td>
</tr>
</tbody>
</table>

The assignment (=) operator is overloaded for this class, so that it always performs a deep copy.

**Note**

As with other database objects, the `Table` object creation and attribute changes to existing tables done using the NDB API are not visible from MySQL. For example, if you add a new column to a table using `Table::addColumn()`, MySQL cannot see the new column. The only exception to this rule with regard to tables is that a change of name of an existing NDB table using `Table::setName()` is visible to MySQL.

Types.

The `Table` class defines a single public type `SingleUserMode`.

2.3.37.1 Table::addColumn()

**Description.** Adds a column to a table.

**Signature.**

```cpp
void addColumn
 (const Column& column)
```

**Parameters.** A reference to the column which is to be added to the table.

**Return value.** None; however, it does create a copy of the original `Column` object.

2.3.37.2 Table::aggregate()

**Description.** This method computes aggregate data for the table. It is required in order for aggregate methods such as `getNoOfPrimaryKeys()` to work properly before the table has been created and retrieved via `getTableId()`.

**Note**

This method was added in MySQL 5.1.12 (see Bug #21690).

**Signature.**

```cpp
int aggregate
 (struct NdbError& error)
```

**Parameters.** A reference to an `NdbError` object.
Return value.  An integer, whose value is 0 on success, and -1 if the table is in an inconsistent state. In the latter case, the error is also set.

2.3.37.3 Table Constructor

Description.  Creates a Table instance. There are two versions of the Table constructor, one for creating a new instance, and a copy constructor.

Important
Tables created in the NDB API using this method are not accessible from MySQL.

Signature.  New instance:

```cpp
Table
 (
 const char* name = ""
)
```

Copy constructor:

```cpp
Table
 (
 const Table& table
)
```

Parameters.  For a new instance, the name of the table to be created. For a copy, a reference to the table to be copied.

Return value.  A Table object.

Destructor.
virtual ~Table()

2.3.37.4 Table::equal()

Description.  This method is used to compare one instance of Table with another.

Signature.

```cpp
bool equal
 (
 const Table& table
) const
```

Parameters.  A reference to the Table object with which the current instance is to be compared.

Return value.  true if the two tables are the same, otherwise false.

2.3.37.5 Table::getColumn()

Description.  This method is used to obtain a column definition, given either the index or the name of the column.

Signature.  This method can be invoked using either the column ID or column name, as shown here:

```cpp
Column* getColumn
 (
 const int AttributeId
)
```
The Table Class

Column* getColumn
{
    const char* name
}

Parameters. Either of: the column's index in the table (as it would be returned by the column's getColumnNo() method), or the name of the column.

Return value. A pointer to the column with the specified index or name. If there is no such column, then this method returns NULL.

2.3.37.6 Table::getDefaultNoPartitionsFlag()

Description. This method is used to find out whether the default number of partitions is used for the table.

Signature.

Uint32 getDefaultNoPartitionsFlag
{
    void
} const

Parameters. None.

Return value. A 32-bit unsigned integer.

2.3.37.7 Table::getExtraMetadata()

Description. Get and unpack extra metadata for this Table.

Signature.

int getExtraMetadata
{
    Uint32& version,
    void** data,
    Uint32* length
} const

Parameters. This method takes the following three parameters:

• version: By convention, as used in NDB Cluster code, 1 means that the extra metadata contains a .frm file (BLOB) as in NDB 7.6 and earlier; 2 indicates that it is serialized dictionary information as in NDB 8.0. The values are actually arbitrary, and application-specific.

• data: The stored data retrieved as metadata.

• length: The length of the stored data (metadata).

Return value. Returns 0 on success, any other value on failure. A nonzer4o value should be interpreted as an error code for the type of error.

This method was added in NDB 8.0.13.

2.3.37.8 Table::getFragmentCount()

Description. This method gets the number of fragments in the table.

Signature.

Uint32 getFragmentCount
{
}
The Table Class

### void getFragmentData()

**Parameters.** None.

**Return value.** The number of table fragments, as a 32-bit unsigned integer.

### Table::getFragmentData()

**Description.** This method gets the table's fragment data (ID, state, and node group).

**Signature.**

```cpp
const void* getFragmentData()
```

**Parameters.** None.

**Return value.** A pointer to the data to be read.

### Table::getFragmentDataLen()

**Description.** Gets the length of the table fragment data to be read, in bytes.

**Signature.**

```cpp
Uint32 getFragmentDataLen()
```

**Parameters.** None.

**Return value.** The number of bytes to be read, as an unsigned 32-bit integer.

### Table::getFragmentNodes()

**Description.** This method retrieves a list of nodes storing a given fragment.

**Signature.**

```cpp
Uint32 getFragmentNodes(Uint32 fragmentId, Uint32* nodeIdArrayPtr, Uint32 arraySize)
```

**Parameters.** This method takes the following three parameters:

- **fragmentId**: The ID of the desired fragment.
- **nodeIdArrayPtr**: Pointer to an array of node IDs of the nodes containing this fragment.
- **arraySize**: The size of the array containing the node IDs. If this is less than the number of fragments, then only the first `arraySize` entries are written to this array.

#### Note

Normally, the primary fragment is entry 0 in this array.
The Table Class

**Return value.** A return value of 0 indicates an error; otherwise, this is the number of table fragments, as a 32-bit unsigned integer.

### 2.3.37.12 Table::getFragmentType()

**Description.** This method gets the table’s fragmentation type.

**Signature.**

```cpp
FragmentType getFragmentType()
{
 void
} const
```

**Parameters.** None.

**Return value.** A `FragmentType` value, as defined in Section 2.3.31.1, “Object::FragmentType”.

### 2.3.37.13 Table::getFrmData()

**Description.** The the data from the .FRM file associated with the table.

**Signature.**

```cpp
const void* getFrmData()
{
 void
} const
```

**Parameters.** None.

**Return value.** A pointer to the .FRM data.

### 2.3.37.14 Table::getFrmLength()

**Description.** Gets the length of the table's .FRM file data, in bytes.

**Signature.**

```cpp
Uint32 getFrmLength()
{
 void
} const
```

**Parameters.** None.

**Return value.** The length of the .FRM file data (an unsigned 32-bit integer).

### 2.3.37.15 Table::getHashMap()

**Description.** Get the hash map used for this table.

**Signature.**

```cpp
bool getHashMap(Uint32* id = 0,
 Uint32* version = 0)
const
```

**Parameters.** The table ID and version.

**Return value.** True if the table has a hash map, otherwise false.
2.3.37.16 Table::getKValue()

**Description.** This method gets the KValue, a hashing parameter which is currently restricted to the value 6. In a future release, it may become feasible to set this parameter to other values.

**Signature.**

```cpp
int getKValue()
```

**Parameters.** None.

**Return value.** An integer (currently always 6).

2.3.37.17 Table::getLinearFlag()

**Description.** This method retrieves the value of the table's linear hashing flag.

**Signature.**

```cpp
bool getLinearFlag()
```

**Parameters.** None.

**Return value.** true if the flag is set, and false if it is not.

2.3.37.18 Table::getLogging()

**Description.** This class is used to check whether a table is logged to disk—that is, whether it is permanent or temporary.

**Signature.**

```cpp
bool getLogging()
```

**Parameters.** None.

**Return value.** Returns a Boolean value. If this method returns true, then full checkpointing and logging are done on the table. If false, then the table is a temporary table and is not logged to disk; in the event of a system restart the table still exists and retains its definition, but it will be empty. The default logging value is true.

2.3.37.19 Table::getMaxLoadFactor()

**Description.** This method returns the load factor (a hashing parameter) when splitting of the containers in the local hash tables begins.

**Signature.**

```cpp
int getMaxLoadFactor()
```

**Parameters.** None.
Return value. An integer whose maximum value is 100. When the maximum value is returned, this means that memory usage is optimised. Smaller values indicate that less data is stored in each container, which means that keys are found more quickly; however, this also consumes more memory.

### 2.3.37.20 Table::getMaxRows()

**Description.** This method gets the maximum number of rows that the table can hold. This is used for calculating the number of partitions.

**Signature.**

```cpp
Uint64 getMaxRows
 (void) const
```

**Parameters.** *None.*

**Return value.** The maximum number of table rows, as a 64-bit unsigned integer.

### 2.3.37.21 Table::getMinLoadFactor()

**Description.** This method gets the value of the load factor when reduction of the hash table begins. This should always be less than the value returned by `getMaxLoadFactor()`.

**Signature.**

```cpp
int getMinLoadFactor
 (void) const
```

**Parameters.** *None.*

**Return value.** An integer (actually, a percentage expressed as an integer; see Section 2.3.37.19, “Table::getMaxLoadFactor()”).

### 2.3.37.22 Table::getName()

**Description.** Gets the name of a table.

**Signature.**

```cpp
const char* getName
 (void) const
```

**Parameters.** *None.*

**Return value.** The name of the table (a string).

### 2.3.37.23 Table::getNoOfColumns()

**Description.** This method is used to obtain the number of columns in a table.

**Signature.**

```cpp
int getNoOfColumns
 (void) const
```
The Table Class

Parameters.  
Return value.  

2.3.37.24 Table::getNoOfPrimaryKeys()

Description.  
Signature.

```cpp
int getNoOfPrimaryKeys
{
 void
} const
```

Parameters.  
Return value.  

2.3.37.25 Table::getObjectId()

Description.  
Signature.

```cpp
virtual int getObjectId
{
 void
} const
```

Parameters.  
Return value.  

2.3.37.26 Table::getObjectStatus()

Description.  
Signature.

```cpp
virtual Object::Status getObjectStatus
{
 void
} const
```

Parameters.  
Return value.  

2.3.37.27 Table::getObjectType()

Description.  
Signature.

```cpp
Object::Type getObjectType
{
 void
} const
```

Parameters.  

The Table Class

Return value. Returns a Type value. For possible values, see Section 2.3.31.6, “Object::Type”.

2.3.37.28 Table::getObjectVersion()

Description. This method gets the table’s object version (see NDB Schema Object Versions).

Signature.

```cpp
virtual int getObjectVersion
{
 void
} const
```

Parameters. None.

Return value. The table’s object version, as an integer.

2.3.37.29 Table::getPartitionBalance()

Description. This method gets the table’s partition balance scheme (fragment count type).

Signature.

```cpp
Object::PartitionBalance getPartitionBalance
{
 void
} const
```

Parameters. None.

Return value. The partition balancing scheme, as a value of type Object::PartitionBalance.

Prior to NDB 7.5.4, this method was known as getFragmentCountType().

2.3.37.30 Table::getPartitionBalanceString()

Description. This method gets the table’s partition balance scheme (fragment count type), and returns it as a string.

Signature.

```cpp
const char* getPartitionBalanceString
{
 void
} const
```

Parameters. None.

Return value. The partition balancing scheme, as a string value.

Prior to NDB 7.5.4, this method was known as getFragmentCountTypeString().

2.3.37.31 Table::getPartitionId()

Description. Gets a table partition ID given its hash value.

Signature.

```cpp
Uint32 getPartitionId
{
 Uint32 hashvalue
} const
```
The Table Class

Parameters. A hashvalue. Note that if the table has not actually been retrieved (using, for example, getTableId()), then the result is likely not to be accurate or useful.

Return value. The identifier of the partition corresponding to the hashvalue.

2.3.37.32 Table::getPrimaryKey()

Description. This method is used to obtain the name of the table's primary key.

Signature.

```c
const char* getPrimaryKey
 (
 int no
) const
```

Parameters. None.

Return value. The name of the primary key, a string (character pointer).

2.3.37.33 Table::getRangeListData()

Description. This method gets the range or list data associated with the table.

Signature.

```c
const void* getRangeListData
 (
 void
) const
```

Parameters. None.

Return value. A pointer to the data.

2.3.37.34 Table::getRangeListDataLen()

Description. This method gets the size of the table's range or list array.

Signature.

```c
Uint32 getRangeListDataLen
 (
 void
) const
```

Parameters. None.

Return value. The length of the list or range array, as an integer.

2.3.37.35 Table::getRowChecksumIndicator()

Description. Check whether the row checksum indicator has been set.

Signature.

```c
bool getRowChecksumIndicator
 (
 void
) const
```

Parameters. None.

Return value. A true or false value.
2.3.37.36 Table::getRowGCIIndicator()

Description. Checks whether the row GCI indicator has been set.

Signature.

```cpp
bool getRowGCIIndicator()
{
 void
} const
```

Parameters. None.

Return value. A true or false value.

2.3.37.37 Table::getSingleUserMode()

Description. Gets the single user mode of the table.

Signature.

```cpp
enum SingleUserMode getSingleUserMode()
{
 void
} const
```

Parameters. None.

Return value. A SingleUserMode value.

2.3.37.38 Table::getTableId()

Description. This method gets a table's ID.

Signature.

```cpp
int getTableId()
{
 void
} const
```

Parameters. None.

Return value. An integer.

2.3.37.39 Table::getTablespace()

Description. This method is used in two ways: to obtain the name of the tablespace to which this table is assigned; to verify that a given tablespace is the one being used by this table.

Signatures. To obtain the name of the tablespace, invoke without any arguments:

```cpp
const char* getTablespace()
{
 void
} const
```

To determine whether the tablespace is the one indicated by the given ID and version, supply these as arguments, as shown here:

```cpp
bool getTablespace(
 Uint32* id = 0,
```
Parameters. The number and types of parameters depend on how this method is being used:

A. When used to obtain the name of the tablespace in use by the table, it is called without any arguments.

B. When used to determine whether the given tablespace is the one being used by this table, then `getTablespace()` takes two parameters:
   - The tablespace `id`, given as a pointer to a 32-bit unsigned integer
   - The tablespace `version`, also given as a pointer to a 32-bit unsigned integer

The default value for both `id` and `version` is `0`.

Return value. The return type depends on how the method is called.

A. When `getTablespace()` is called without any arguments, it returns a `Tablespace` object instance.

B. When called with two arguments, it returns `true` if the tablespace is the same as the one having the ID and version indicated; otherwise, it returns `false`.

2.3.37.40 `Table::getTablespaceData()`

Description. This method gets the table's tablespace data (ID and version).

Signature.

```
const void* getTablespaceData
(void) const
```

Parameters. `None`.

Return value. A pointer to the data.

2.3.37.41 `Table::getTablespaceDataLen()`

Description. This method is used to get the length of the table's tablespace data.

Signature.

```
Uint32 getTablespaceDataLen
(void) const
```

Parameters. `None`.

Return value. The length of the data, as a 32-bit unsigned integer.

2.3.37.42 `Table::getTablespaceNames()`

Description. This method gets a pointer to the names of the tablespaces used in the table fragments.

Signature.
The Table Class

const void* getTablespaceNames
{
    void
}

Parameters. None.
Return value. Returns a pointer to the tablespace name data.

2.3.37.43 Table::getTablespaceNamesLen()

Description. This method gets the length of the tablespace name data returned by getTablespaceNames(). (See Section 2.3.37.42, “Table::getTablespaceNames()”.)

Signature.

Uint32 getTablespaceNamesLen
{
    void
} const

Parameters. None.
Return value. Returns the length of the name data, in bytes, as a 32-bit unsigned integer.

2.3.37.44 Table::hasDefaultValues()

Description. Used to determine whether the table has any columns that are defined with non-NULL default values.

To read and write default column values, use Column::getDefaultValue() and Column::setDefaultValue().

Signature.

bool hasDefaultValues
{
    void
} const

Parameters. None.
Return value. Returns true if the table has any non-NULL columns with default values, otherwise false.

2.3.37.45 Table::setDefaultNoPartitionsFlag()

Description. This method sets an indicator that determines whether the default number of partitions is used for the table.

Signature.

void setDefaultNoPartitionsFlag
{
    Uint32 indicator
} const

Parameters. This method takes a single argument indicator, a 32-bit unsigned integer.
Return value. None.

2.3.37.46 Table::setExtraMetadata()
**The Table Class**

**Description.** Store packed extra metadata for this table. The data is packed without any modification into the buffer of the given Table object.

**Signature.**

```c
int setExtraMetadata
(
 Uint32 version,
 const void* data,
 Uint32 length
)
```

**Parameters.** The three parameters used by this method are listed here:

- **version**: As used in NDB Cluster code, 1 means that the extra metadata contains a .frm file (BLOB) as in NDB 7.6 and earlier; 2 indicates that it is serialized dictionary information as in NDB 8.0. You should be aware that this is merely a convention, and the values can be application-specific, as desired.

- **data**: The actual data to be stored as metadata.

- **length**: The length of the data to be stored.

**Return value.** 0 on success. Any other value indicates failure; in this case, the value is an error code indicating indicating the type of error.

Added in NDB 8.0.13.

**2.3.37.47 Table::setFragmentCount()**

**Description.** Sets the number of table fragments.

**Signature.**

```c
void setFragmentCount
(
 Uint32 count
)
```

**Parameters.** `count` is the number of fragments to be used for the table.

**Return value.** None.

**2.3.37.48 Table::setFragmentData()**

**Description.** This method writes an array containing the following fragment information:

- Fragment ID
- Node group ID
- Fragment State

**Signature.**

```c
void setFragmentData
(
 const void* data,
 Uint32 len
)
```

**Parameters.** This method takes the following two parameters:

- A pointer to the fragment `data` to be written
• The length (\textit{len}) of this data, in bytes, as a 32-bit unsigned integer

\textbf{Return value.} \textit{None.}

\textbf{2.3.37.49 Table::setFragmentType()}

\textbf{Description.} This method sets the table's fragmentation type.

\textbf{Signature.}

\begin{verbatim}
void setFragmentType
    (FragmentType fragmentType)
\end{verbatim}

\textbf{Parameters.} This method takes one argument, a \texttt{FragmentType} value. See \textbf{Section 2.3.31.1, "Object::FragmentType"}, for more information.

\textbf{Return value.} \textit{None.}

\textbf{2.3.37.50 Table::setFrm()}

\textbf{Description.} This method is used to write data to this table's .FRM file.

\textbf{Signature.}

\begin{verbatim}
void setFrm
    (const void* data, Uint32 len)
\end{verbatim}

\textbf{Parameters.} This method takes the following two arguments:

• A pointer to the \texttt{data} to be written.

• The length (\textit{len}) of the data.

\textbf{Return value.} \textit{None.}

\textbf{2.3.37.51 Table::setHashMap()}

\textbf{Description.} Set a hash map for the table.

\textbf{Signature.}

\begin{verbatim}
int setHashMap
    (const class HashMap &)
\end{verbatim}

\textbf{Parameters.} A reference to the hash map.

\textbf{Return value.} Returns 0 on success; on failure, returns -1 and sets error.

\textbf{2.3.37.52 Table::setKValue()}

\textbf{Description.} This sets the \texttt{KValue}, a hashing parameter.

\textbf{Signature.}

\begin{verbatim}
void setKValue
\end{verbatim}
Parameters.  \textit{kValue} is an integer. Currently the only permitted value is 6. In a future version this may become a variable parameter.

Return value.  \textit{None}.

2.3.37.53 \texttt{Table::setLinearFlag()}

Description.

Signature.

\begin{verbatim}
void setLinearFlag
  (  
    Uint32 \textit{flag} 
  )
\end{verbatim}

Parameters.  The \textit{flag} is a 32-bit unsigned integer.

Return value.  \textit{None}.

2.3.37.54 \texttt{Table::setLogging()}

Description.  Toggles the table's logging state. See \texttt{Section 2.3.37.18, "Table::getLogging()."}

Signature.

\begin{verbatim}
void setLogging
  (  
    \textit{bool} \textit{enable} 
  )
\end{verbatim}

Parameters.  If \textit{enable} is \texttt{true}, then logging for this table is enabled; if it is \texttt{false}, then logging is disabled.

Return value.  \textit{None}.

2.3.37.55 \texttt{Table::setMaxLoadFactor()}

Description.  This method sets the maximum load factor when splitting the containers in the local hash tables.

Signature.

\begin{verbatim}
void setMaxLoadFactor
  (  
    \textit{int} \textit{max} 
  )
\end{verbatim}

Parameters.  This method takes a single parameter \textit{max}, an integer representation of a percentage (for example, 45 represents 45 percent). For more information, see \texttt{Section 2.3.37.19, "Table::getMaxLoadFactor()."}

\centerline{\textbf{Caution}}

This should never be greater than the minimum load factor.

Return value.  \textit{None}.

2.3.37.56 \texttt{Table::setMaxRows()}

```
Description. This method sets the maximum number of rows that can be held by the table.

Signature.

```c
void setMaxRows
{
    Uint64 maxRows
}
```

Parameters. `maxRows` is a 64-bit unsigned integer that represents the maximum number of rows to be held in the table.

Return value. `None`.

2.3.37.57 Table::setMinLoadFactor()

Description. This method sets the minimum load factor when reduction of the hash table begins.

Signature.

```c
void setMinLoadFactor
{
    int min
}
```

Parameters. This method takes a single parameter `min`, an integer representation of a percentage (for example, 45 represents 45 percent). For more information, see Section 2.3.37.21, "Table::getMinLoadFactor()".

Return value. `None`.

2.3.37.58 Table::setName()

Description. This method sets the name of the table.

Note

This is the only `set *()` method of Table whose effects are visible to MySQL.

Signature.

```c
void setName
{
    const char* name
}
```

Parameters. `name` is the (new) name of the table.

Return value. `None`.

2.3.37.59 Table::setObjectType()

Description. This method did not work as intended, and was removed in NDB 7.5.0 (Bug #47960, Bug #11756088).

Signature.

```c
void setObjectType
{
    Object::Type type
}
```
The Table Class

Parameters. The desired object type. This must be one of the Type values listed in Section 2.3.3.6, “Object::Type”.

Return value. None.

2.3.37.60 Table::setPartitionBalance()

Description. Sets the table’s partition balancing scheme.

Signature.

```c
void setPartitionBalance
  (Object::PartitionBalance scheme)
```

Parameters. scheme is the partition balancing scheme to be used for the table. This is a value of type PartitionBalance.

Return value. None.

Prior to NDB 7.5.4, this method was known as setFragmentCountType().

2.3.37.61 Table::setRangeListData()

Description. This method sets an array containing information that maps range values and list values to fragments. This is essentially a sorted map consisting of fragment-ID/value pairs. For range partitions there is one pair per fragment. For list partitions it could be any number of pairs, but at least as many pairs as there are fragments.

Signature.

```c
void setRangeListData
  (const void* data, Uint32 len)
```

Parameters. This method requires the following two parameters:

• A pointer to the range or list data containing the ID/value pairs
• The length (len) of this data, as a 32-bit unsigned integer.

Return value. None.

2.3.37.62 Table::setRowChecksumIndicator()

Description. Set the row checksum indicator.

Signature.

```c
void setRowChecksumIndicator
  (bool value) const
```

Parameters. A true/false value.

Return value. None.

2.3.37.63 Table::setRowGCIIndicator()
Description. *Sets the row GCI indicator.*

Signature.

```cpp
void setRowGCIIndicator
{   
    bool value
} const
```

Parameters. A `true/false` value.

Return value. None.

2.3.37.64 Table::setSingleUserMode()

Description. Sets a `SingleUserMode` for the table.

Signature.

```cpp
void setSingleUserMode
{   
    enum SingleUserMode
}
```

Parameters. A `SingleUserMode` value.

Return value. None.

2.3.37.65 Table::setStatusInvalid()

Description. Forces the table's status to be invalidated.

Signature.

```cpp
void setStatusInvalid
{   
    void
} const
```

Parameters. None.

Return value. None.

2.3.37.66 Table::setTablespace()

Description. This method sets the tablespace for the table.

Signatures.

Using the name of the tablespace:

```cpp
void setTablespace
{   
    const char* name
}
```

Using a `Tablespace` object:

```cpp
void setTablespace
{   
    const class Tablespace& tablespace
}
```

Parameters. This method can be called with a single argument, which can be of either one of these two types:
1. The name of the tablespace (a string).
2. A reference to an existing Tablespace instance.

See Section 2.3.38, “The Tablespace Class”.

Return value. None.

2.3.37.67 Table::setTablespaceData()

Description. This method sets the tablespace information for each fragment, and includes a tablespace ID and a tablespace version.

Signature.

```cpp
void setTablespaceData
(  
    const void* data,
    Uint32 len
)
```

Parameters. This method requires the following two parameters:

- A pointer to the data containing the tablespace ID and version
- The length (len) of this data, as a 32-bit unsigned integer.

Return value. None.

2.3.37.68 Table::setTablespaceNames()

Description. Sets the names of the tablespaces used by the table fragments.

Signature.

```cpp
void setTablespaceNames
(  
    const void* data
    Uint32 len
)
```

Parameters. This method takes the following two parameters:

- A pointer to the tablespace names data
- The length (len) of the names data, as a 32-bit unsigned integer.

Return value. None.

2.3.37.69 Table::SingleUserMode

Description. Single user mode specifies access rights to the table when single user mode is in effect.

Enumeration values. Possible values for SingleUserMode are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SingleUserModeLocked</td>
<td>The table is locked (unavailable).</td>
</tr>
<tr>
<td>SingleUserModeReadOnly</td>
<td>The table is available in read-only mode.</td>
</tr>
</tbody>
</table>
The Tablespace Class

Name

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SingleUserModeReadWrite</td>
<td>The table is available in read-write mode.</td>
</tr>
</tbody>
</table>

2.3.37.70 Table::validate()

Description. This method validates the definition for a new table prior to its being created, and executes the `Table::aggregate()` method, as well as performing additional checks. `validate()` is called automatically when a table is created or retrieved. For this reason, it is usually not necessary to call `aggregate()` or `validate()` directly.

Warning
Even after the `validate()` method is called, there may still exist errors which can be detected only by the NDB kernel when the table is actually created.

Note
This method was added in MySQL 5.1.12 (see Bug #21690).

Signature.

```cpp
int validate
{
    struct NdbError& error
}
```

Parameters. A reference to an `NdbError` object.

Return value. An integer, whose value is 0 on success, and -1 if the table is in an inconsistent state. In the latter case, the `error` is also set.

2.3.38 The Tablespace Class

This section discusses the `Tablespace` class and its public members.

Parent class. `NdbDictionary`

Child classes. `None`

Description. The `Tablespace` class models an NDB Cluster Disk Data tablespace, which contains the datafiles used to store Cluster Disk Data. For an overview of Cluster Disk Data and their characteristics, see CREATE TABLESPACE Statement, in the MySQL Manual.

Note
Currently, only unindexed column data can be stored on disk. Indexes and indexes columns are always stored in memory.

NDB Cluster prior to MySQL 5.1 does not support Disk Data storage, and so does not support tablespaces; thus the `Tablespace` class is unavailable for NDB API applications written against these older releases.

Methods. The following table lists the public methods of this class and the purpose or use of each method:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablespace()</td>
<td>Class constructor</td>
</tr>
</tbody>
</table>
The Tablespace Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~Tablespace()</td>
<td>Virtual destructor method</td>
</tr>
<tr>
<td>getAutoGrowSpecification()</td>
<td>Used to obtain the AutoGrowSpecification structure associated with the tablespace</td>
</tr>
<tr>
<td>getDefaulLogfileGroup()</td>
<td>Gets the name of the tablespace's default log file group</td>
</tr>
<tr>
<td>getDefaulLogfileGroupId()</td>
<td>Gets the ID of the tablespace's default log file group</td>
</tr>
<tr>
<td>getExtentSize()</td>
<td>Gets the extent size used by the tablespace</td>
</tr>
<tr>
<td>getName()</td>
<td>Gets the name of the tablespace</td>
</tr>
<tr>
<td>getObjectId()</td>
<td>Gets the object ID of a Tablespace instance</td>
</tr>
<tr>
<td>getObjectStatus()</td>
<td>Used to obtain the Object::Status of the Tablespace instance for which it is called</td>
</tr>
<tr>
<td>getObjectVersion()</td>
<td>Gets the object version of the Tablespace object for which it is invoked</td>
</tr>
<tr>
<td>setAutoGrowSpecification()</td>
<td>Used to set the auto-grow characteristics of the tablespace</td>
</tr>
<tr>
<td>setDefaultLogfileGroup()</td>
<td>Sets the tablespace's default log file group</td>
</tr>
<tr>
<td>setExtentSize()</td>
<td>Sets the size of the extents used by the tablespace</td>
</tr>
<tr>
<td>setName()</td>
<td>Sets the name for the tablespace</td>
</tr>
</tbody>
</table>

Types. The Tablespace class defines no public types of its own; however, two of its methods make use of the AutoGrowSpecification data structure.

2.3.38.1 Tablespace Constructor

Description. These methods are used to create a new instance of Tablespace, or to copy an existing one.

Note

The Dictionary class also supplies methods for creating and dropping tablespaces.

Signatures.

- **New instance:**

  ```cpp
  Tablespace()
  ```

- **Copy constructor:**

  ```cpp
  Tablespace(const Tablespace& tablespace)
  ```

Parameters. New instance: None. Copy constructor: a reference to an existing Tablespace instance.

Return value. A Tablespace object.

Destractor. The class defines a virtual destructor ~Tablespace() which takes no arguments and returns no value.

2.3.38.2 Tablespace::getAutoGrowSpecification()

Description.
Signature.

```cpp
const AutoGrowSpecification& getAutoGrowSpecification(
    void
) const
```

Parameters.

None.

Return value.

A reference to the structure which describes the tablespace auto-grow characteristics; for details, see Section 2.3.1, “The AutoGrowSpecification Structure”.

2.3.38.3 Tablespace::getDefaultLogfileGroup()

Description.

This method retrieves the name of the tablespace’s default log file group.

Note

Alternatively, you may wish to obtain the ID of the default log file group; see Section 2.3.38.4, “Tablespace::getDefaultLogfileGroupId()”.

Signature.

```cpp
const char* getDefaultLogfileGroup(
    void
) const
```

Parameters.

None.

Return value.

The name of the log file group (string value as character pointer).

2.3.38.4 Tablespace::getDefaultLogfileGroupId()

Description.

This method retrieves the ID of the tablespace’s default log file group.

Note

You can also obtain directly the name of the default log file group rather than its ID; see Section 2.3.38.3, “Tablespace::getDefaultLogfileGroup()”, for more information.

Signature.

```cpp
Uint32 getDefaultLogfileGroupId(
    void
) const
```

Parameters.

None.

Return value.

The ID of the log file group, as an unsigned 32-bit integer.

2.3.38.5 Tablespace::getExtentSize()

Description.

This method is used to retrieve the extent size—that is the size of the memory allocation units—used by the tablespace.

Note

The same extent size is used for all datafiles contained in a given tablespace.
2.3.38.6 Tablespace::getObjectId()

Description. This method retrieves the tablespace's object ID.

Signature.

virtual int getObjectId
 (void) const

Parameters. None.

Return value. The object ID, as an integer.

2.3.38.7 Tablespace::getName()

Description. This method retrieves the name of the tablespace.

Signature.

const char* getName
 (void) const

Parameters. None.

Return value. The name of the tablespace, a string value (as a character pointer).

2.3.38.8 Tablespace::getObjectStatus()

Description. This method is used to retrieve the object status of a tablespace.

Signature.

virtual Object::Status getObjectStatus
 (void) const

Parameters. None.

Return value. An Object::Status value.

2.3.38.9 Tablespace::getObjectVersion()

Description. This method gets the tablespace object version (see NDB Schema Object Versions).

Signature.

virtual int getObjectVersion
2.3.38.10 Tablespace::setAutoGrowSpecification()

Description. This method is used to set the auto-grow characteristics of the tablespace.

Signature.

```cpp
void setAutoGrowSpecification
{
    const AutoGrowSpecification& autoGrowSpec
}
```

Parameters. This method takes a single parameter, an `AutoGrowSpecification` data structure.

Return value. `None`.

2.3.38.11 Tablespace::setDefaultLogfileGroup()

Description. This method is used to set a tablespace's default log file group.

Signature. This method can be called in two different ways. The first of these uses the name of the log file group, as shown here:

```cpp
void setDefaultLogfileGroup
{
    const char* name
}
```

This method can also be called by passing it a reference to a `LogfileGroup` object:

```cpp
void setDefaultLogfileGroup
{
    const class LogfileGroup& lGroup
}
```

Note

There is no method for setting a log file group as the default for a tablespace by referencing the log file group's ID. (In other words, there is no set *() method corresponding to `getDefaultLogfileGroupId()`.)

Parameters. Either the `name` of the log file group to be assigned to the tablespace, or a reference `lGroup` to this log file group.

Return value. `None`.

2.3.38.12 Tablespace::setExtentSize()

Description. This method sets the tablespace's extent size.

Signature.

```cpp
void setExtentSize
{
    Uint32 size
}
Parameters. The \textit{size} to be used for this tablespace's extents, in bytes.

Return value. \textit{None}.  

2.3.38.13 Tablespace::setName()

Description. This method sets the name of the tablespace.

Signature.

\begin{verbatim}
void setName
  (   
    const char* \textit{name}
  ) const
\end{verbatim}

Parameters. The \textit{name} of the tablespace, a string (character pointer).

Return value. \textit{None}.  

2.3.39 The Undofile Class

The section discusses the \texttt{Undofile} class and its public methods.

\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{Parent class.} & \texttt{NdbDictionary} \\
\textbf{Child classes.} & \textit{None} \\
\hline
\end{tabular}
\end{center}

Description. The \texttt{Undofile} class models an NDB Cluster Disk Data undofile, which stores data used for rolling back transactions.

\begin{note}
Currently, only unindexed column data can be stored on disk. Indexes and indexes columns are always stored in memory.

NDB Cluster prior to MySQL 5.1 does not support Disk Data storage, and so does not support undo files; thus the \texttt{Undofile} class is unavailable for NDB API applications written against these older releases.
\end{note}

Methods. The following table lists the public methods of this class and the purpose or use of each method:

\begin{center}
\begin{tabular}{|l|l|}
\hline
\textbf{Name} & \textbf{Description} \\
\hline
\texttt{Undofile()} & Class constructor \\
\texttt{~Undofile()} & Virtual destructor \\
\texttt{getFileSize()} & Removed in NDB 7.5.0 (Bug \#47960, Bug \#11756088) \\
\texttt{getLogfileGroup()} & Gets the name of the log file group to which the undo file belongs \\
\texttt{getLogfileGroupId()} & Gets the ID of the log file group to which the undo file belongs \\
\texttt{getNode()} & Removed in NDB 7.5.0 (Bug \#47960, Bug \#11756088) \\
\texttt{getObjectId()} & Gets the undo file's object ID \\
\texttt{getObjectStatus()} & Gets the undo file's \texttt{Status} \\
\texttt{getObjectVersion()} & Gets the undo file's object version \\
\texttt{getPath()} & Gets the undo file's file system path \\
\texttt{getSize()} & Gets the size of the undo file \\
\hline
\end{tabular}
\end{center}
### The Undofile Class

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setLogfileGroup()</td>
<td>Sets the undo file's log file group using the name of the log file group or a reference to the corresponding <code>LogfileGroup</code> object.</td>
</tr>
<tr>
<td>setNode()</td>
<td>Removed in NDB 7.5.0 (Bug #47960, Bug #11756088)</td>
</tr>
<tr>
<td>setPath()</td>
<td>Sets the file system path for the undo file</td>
</tr>
<tr>
<td>setSize()</td>
<td>Sets the undo file's size</td>
</tr>
</tbody>
</table>

**Types.** The `Undofile` class defines no public types.

#### 2.3.39.1 Undofile Constructor

**Description.** The class constructor can be used to create a new `Undofile` instance, or to copy an existing one.

**Signatures.** Creates a new instance:

```cpp
Undofile
{
 void
}
```

Copy constructor:

```cpp
Undofile
{
 const Undofile& undoFile
}
```

**Parameters.** New instance: `None`. The copy constructor takes a single argument—a reference to the `Undofile` object to be copied.

**Return value.** An `Undofile` object.

**Destructor.** The class defines a virtual destructor which takes no arguments and has the return type `void`.

#### 2.3.39.2 Undofile::getFileNo()

**Description.** This method did not work as intended, and was removed in NDB 7.5.0 (Bug #47960, Bug #11756088).

**Signature.**

```cpp
Uint32 getFileNo
{
 void
} const
```

**Parameters.** `None`.

**Return value.** The number of the undo file, as an unsigned 32-bit integer.

#### 2.3.39.3 Undofile::getLogfileGroup()

**Description.** This method retrieves the name of the log file group to which the undo file belongs.

**Signature.**

```cpp
const char* getLogfileGroup
{
 void
}
```
The Undofile Class

2.3.39.4 Undofile::getLogfileGroupId()

Description.  This method retrieves the ID of the log file group to which the undo file belongs.

Note
It is also possible to obtain the name of the log file group directly. See Section 2.3.39.3, “Undofile::getLogfileGroup()”

Signature.

```
Uint32 getLogfileGroupId
 (void) const
```

Parameters.  None.

Return value.  The ID of the log file group, as an unsigned 32-bit integer.

2.3.39.5 Undofile::getNode()

Description.  This method did not work as intended, and was removed in NDB 7.5.0 (Bug #47960, Bug #11756088).

Signature.

```
Uint32 getNode
 (void) const
```

Parameters.  None.

Return value.  The node ID, as an unsigned 32-bit integer.

2.3.39.6 Undofile::getObjectId()

Description.  This method retrieves the undo file's object ID.

Signature.

```
virtual int getObjectId
 (void) const
```

Parameters.  None.

Return value.  The object ID, as an integer.

2.3.39.7 Undofile::getObjectStatus()

Description.  This method is used to retrieve the object status of an undo file.

Signature.

```
virtual Object::Status getObjectStatus
```
The Undofile Class

2.3.39.8 Undofile::getObjectVersion()

Description. This method gets the undo file's object version (see NDB Schema Object Versions).

Signature.

```cpp
virtual int getObjectVersion()
{
 void
} const
```

Parameters. None.

Return value. An Object::Status value.

2.3.39.9 Undofile::getPath()

Description. This method retrieves the path matching the location of the undo file on the data node's file system.

Signature.

```cpp
const char* getPath()
{
 void
} const
```

Parameters. None.

Return value. The file system path, a string (as a character pointer).

2.3.39.10 Undofile::getSize()

Description. This method gets the size of the undo file in bytes.

Signature.

```cpp
Uint64 getSize()
{
 void
} const
```

Parameters. None.

Return value. The size in bytes of the undo file, as an unsigned 64-bit integer.

2.3.39.11 Undofile::setLogfileGroup()

Description. Given either a name or an object reference to a log file group, the setLogfileGroup() method assigns the undo file to that log file group.

Signature. Using a log file group name:

```cpp
void setLogfileGroup
{
 const char* name
```
Using a reference to an instance of LogfileGroup:

```cpp
void setLogfileGroup(
 const class LogfileGroup & logfileGroup
)
```

**Parameters.** The *name* of the log file group (a character pointer), or a reference to a LogfileGroup instance.

**Return value.** *None.*

### 2.3.39.12 Undofile::setNode()

**Description.** This method did not work as intended, and was removed in NDB 7.5.0 (Bug #47960, Bug #11756088).

**Signature.**

```cpp
void setNode(
 Uint32 nodeId
)
```

**Parameters.** The *nodeId* of the data node where the undo file is to be placed; this is an unsigned 32-bit integer.

**Return value.** *None.*

### 2.3.39.13 Undofile::setPath()

**Description.** This method is used to set the file system path of the undo file on the data node where it resides.

**Signature.**

```cpp
void setPath(
 const char* path
)
```

**Parameters.** The desired *path* to the undo file.

**Return value.** *None.*

### 2.3.39.14 Undofile::setSize()

**Description.** Sets the size of the undo file in bytes.

**Signature.**

```cpp
void setSize(
 Uint64 size
)
```

**Parameters.** The intended *size* of the undo file in bytes, as an unsigned 64-bit integer.

**Return value.** *None.*

## 2.4 NDB API Errors and Error Handling
Handling NDB API Errors

This section contains a discussion of error handling in NDB API applications as well as listing listings of the most common NDB error codes and messages, along with their classifications and likely causes for which they might be raised.

For information about the NdbError structure, which is used to convey error information to NDB API applications, see Section 2.3.20, “The NdbError Structure”.

Important
It is strongly recommended that you not depend on specific error codes in your NDB API applications, as they are subject to change over time. Instead, you should use the NdbError::Status and error classification in your source code, or consult the output of perror --ndb error_code to obtain information about a specific error code.

If you find a situation in which you need to use a specific error code in your application, please file a bug report at http://bugs.mysql.com/ so that we can update the corresponding status and classification.

2.4.1 Handling NDB API Errors

This section describes how NDB API errors can be detected and mapped onto particular operations.

NDB API errors can be generated in either of two ways:

- When an operation is defined
- When an operation is executed

Errors raised during operation definition. Errors generated during operation definition result in a failure return code from the method called. The actual error can be determined by examining the relevant NdbOperation object, or the operation’s NdbTransaction object.

Errors raised during operation execution. Errors occurring during operation execution cause the transaction of which they are a part to be aborted unless the AO_IgnoreError abort option is set for the operation.

By default, read operations are run with AO_IgnoreError, and write operations are run with AbortOnError, but this can be overridden by the user. When an error during execution causes a transaction to be aborted, the execute() method returns a failure return code. If an error is ignored due to AO_IgnoreError being set on the operation, the execute() method returns a success code, and the user must examine all operations for failure using NdbOperation::getNdbError(). For this reason, the return value of getNdbError() should usually be checked, even if execute() returns success. If the client application does not keep track of NdbOperation objects during execution, then NdbTransaction::getNextCompletedOperation() can be used to iterate over them.

You should also be aware that use of NdbBlob can result in extra operations being added to the batches executed. This means that, when iterating over completed operations using getNextCompletedOperation(), you may encounter operations related to NdbBlob objects which were not defined by your application.

Note
A read whose LockMode is CommittedRead cannot be AbortOnError. In this case, it is always be IgnoreError.

In all cases where operation-specific errors arise, an execution error with an operation is marked against both the operation and the associated transaction object. Where there are multiple operation errors in a single NdbTransaction::execute() call, due to operation batching and the use of
AO_IgnoreError, only the first is marked against the NdbTransaction object. The remaining errors are recorded against the corresponding NdbOperation objects only.

It is also possible for errors to occur during execution—such as a data node failure—which are marked against the transaction object, but not against the underlying operation objects. This is because these errors apply to the transaction as a whole, and not to individual operations within the transaction.

For this reason, applications should use NdbTransaction::getNdbError() as the first way to determine whether an NdbTransaction::execute() call failed. If the batch of operations being executed included operations with the AO_IgnoreError abort option set, then it is possible that there were multiple failures, and the completed operations should be checked individually for errors using NdbOperation::getNdbError().

**Implicit NdbTransaction::execute() calls in scan and BLOB methods.** Scan operations are executed in the same way as other operations, and also have implicit execute() calls within the NdbScanOperation::nextResult() method. When NdbScanOperation::nextResult() indicates failure (that is, if the method returns -1), the transaction object should be checked for an error. The NdbScanOperation may also contain the error, but only if the error is not operation-specific.

Some BLOB manipulation methods also have implicit internal execute() calls, and so can experience operation execution failures at these points. The following NdbBlob methods can generate implicit execute() calls; this means that they also require checks of the NdbTransaction object for errors via NdbTransaction::getNdbError() if they return an error code:

- setNull()
- truncate()
- readData()
- writeData()

**Summary.** In general, it is possible for an error to occur during execution (resulting in a failure return code) when calling any of the following methods:

- NdbTransaction::execute()
- NdbBlob::setNull()
- NdbBlob::truncate()
- NdbBlob::readData()
- NdbBlob::writeData()
- NdbScanOperation::nextResult()

**Note**

This method does not perform an implicit execute() call. The NdbBlob methods can cause other defined operations to be executed when these methods are called; however, nextResult() calls do not do so.

If this happens, the NdbTransaction::getNdbError() method should be called to identify the first error that occurred. When operations are batched, and there are IgnoreError operations in the batch, there may be multiple operations with errors in the transaction. These can be found by using NdbTransaction::getNextCompletedOperation() to iterate over the set of completed operations, calling NdbOperation::getNdbError() for each operation.

When IgnoreError has been set on any operations in a batch of operations to be executed, the NdbTransaction::execute() method indicates success even where errors have actually
occurred, as long as none of these errors caused a transaction to be aborted. To determine whether there were any ignored errors, the transaction error status should be checked using `NdbTransaction::getNdbError()`. *Only if this indicates success can you be certain that no errors occurred.* If an error code is returned by this method, and operations were batched, then you should iterate over all completed operations to find all the operations with ignored errors.

**Example (pseudocode).** We begin by executing a transaction which may have batched operations and a mix of `AO_IgnoreError` and `AbortOnError` abort options:

```plaintext
int execResult= NdbTransaction.execute(args);
```

![Note]

For the number and permitted values of `args`, see Section 2.3.30.6, “NdbTransaction::execute()”.

Next, because errors on `AO_IgnoreError` operations do not affect `execResult`—that is, the value returned by `execute()`—we check for errors on the transaction:

```plaintext
NdbError err= NdbTransaction.getNdbError();
if (err.code != 0)
{
 An nonzero value for the error code means that an error was raised on the transaction. This could be due to any of the following conditions:

 • A transaction-wide error, such as a data node failure, that caused the transaction to be aborted
 • A single operation-specific error, such as a constraint violation, that caused the transaction to be aborted
 • A single operation-specific ignored error, such as no data found, that did not cause the transaction to be aborted
 • The first of many operation-specific ignored errors, such as no data found when batching, that did not cause the transaction to be aborted
 • First of a number of operation-specific ignored errors such as no data found (when batching) before an aborting operation error (transaction aborted)

 if (execResult != 0)
 {
 }
}
```

The transaction has been aborted. The recommended strategy for handling the error in this case is to test the transaction error status and take appropriate action based on its value:

```plaintext
switch (err.status)
{
 case value1:
 // statement block handling value1 ...
 case value2:
 // statement block handling value2 ...
 // (etc. ...)
 case valueN:
 // statement block handling valueN ...
}
```

Since the transaction was aborted, it is generally necessary to iterate over the completed operations (if any) and find the errors raised by each only if you wish to do so for reporting purposes.
else
{

The transaction itself was not aborted, but there must be one or more ignored errors. In this case, you
should iterate over the operations to determine what happened and handle the cause accordingly.
}

To handle a `NdbScanOperation::nextResult()` which returns -1, indicating that the operation
failed (omitting cases where the operation was successful):

```c
int nextrc= NdbScanOperation.nextResult(args);
```

Note
For the number and permitted values of `args`, see Section 2.3.29.6, “NdbScanOperation::nextResult()”.

```c
if (nextrc == -1)
{

First, you should check the `NdbScanOperation` object for any errors:

```c
NdbError err= NdbScanOperation.getNdbError();
if (err.code == 0)
{

No error was found in the scan operation; the error must belong to the transaction as whole.
}
```

```c
err= NdbTransaction.getNdbError();
```

Now you can handle the error based on the error status:

```c
switch (err.status)
{
    case value1:
        // statement block handling value1 ...
    case value2:
        // statement block handling value2 ...
        // (etc. ...)}
    case valueN:
        // statement block handling valueN ...
}
```

For information about NDB API error classification and status codes, see Section 2.4.4, “NDB Error
Classifications”. While you should not rely on a specific error code or message text in your NDB API
applications—since error codes and messages are both subject to change over time—it can be useful
to check error codes and messages to help determine why a particular failure occurred. For more
information about these, see Section 2.4.2, “NDB Error Codes: by Type”. For more about `NdbError`
and the types of information which can be obtained from `NdbError` objects, see Section 2.3.20, “The
NdbError Structure”.

2.4.2 NDB Error Codes: by Type

This section contains a number of error code lists, one for each type of NDB API error. The error types
include the following:
• No error
• Application error
• Scan application error
• Configuration or application error (currently unused)
• No data found
• Constraint violation
• Schema error
• User defined error
• Insufficient space
• Temporary Resource error
• Node Recovery error
• Overload error
• Timeout expired
• Node shutdown
• Internal temporary
• Unknown result error
• Unknown error code (currently unused)
• Internal error
• Function not implemented

The information in each list includes, for each error:
• The NDB error code
• The corresponding MySQL error code
• The NDB classification code

See Section 2.4.4, “NDB Error Classifications”, for the meanings of these classification codes.
• The text of the error message

Similar errors have been grouped together in each list. Each list is ordered alphabetically.

You can always obtain the latest error codes and information from the file storage/ndb/src/ndbapi/ndberror.cpp. (In previous releases of NDB Cluster, this file was named ndberror.c.)

These types are also shown in the error_status column of the ndbinfo.error_messages table.

2.4.2.1 No error

The following list enumerates all NDB errors of type NE (No error).

```
0      MySQL error.  0
       Error message.  No error
```
2.4.2.2 Application error

The following list enumerates all NDB errors of type AE (Application error).

<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL error</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1233</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1302</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1306</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1329</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1342</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1343</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1344</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1345</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1346</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1347</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1348</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1349</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1701</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>Code</td>
<td>Error Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>1702</td>
<td>MySQL error.</td>
<td>Node already connected</td>
</tr>
<tr>
<td>1704</td>
<td>MySQL error.</td>
<td>Node type mismatch</td>
</tr>
<tr>
<td>21000</td>
<td>MySQL error.</td>
<td>HA_ERR_CANNOT_ADD_FOREIGN</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Create foreign key failed - parent key is primary key and on-update-cascade is not allowed</td>
</tr>
<tr>
<td>21026</td>
<td>MySQL error.</td>
<td>HA_ERR_CANNOT_ADD_FOREIGN</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Create foreign key failed in NDB - parent index is not unique index</td>
</tr>
<tr>
<td>21033</td>
<td>MySQL error.</td>
<td>HA_ERR_CANNOT_ADD_FOREIGN</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Create foreign key failed in NDB - No parent row found</td>
</tr>
<tr>
<td>21034</td>
<td>MySQL error.</td>
<td>HA_ERR_CANNOT_ADD_FOREIGN</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Create foreign key failed - child table has Blob or Text column and on-delete-cascade is not allowed</td>
</tr>
<tr>
<td>21040</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Drop foreign key failed in NDB - foreign key not found</td>
</tr>
<tr>
<td>21060</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Build foreign key failed in NDB - foreign key not found</td>
</tr>
<tr>
<td>21080</td>
<td>MySQL error.</td>
<td>HA_ERR_ROW_IS_REFERENCED</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Drop table not allowed in NDB - referenced by foreign key on another table</td>
</tr>
<tr>
<td>21081</td>
<td>MySQL error.</td>
<td>HA_ERR_DROP_INDEX_FK</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Drop index not allowed in NDB - used as parent index of a foreign key</td>
</tr>
<tr>
<td>21082</td>
<td>MySQL error.</td>
<td>HA_ERR_DROP_INDEX_FK</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Drop index not allowed in NDB - used as child index of a foreign key</td>
</tr>
<tr>
<td>21090</td>
<td>MySQL error.</td>
<td>HA_ERR_CANNOT_ADD_FOREIGN</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Create foreign key failed in NDB - name contains invalid character (/)</td>
</tr>
<tr>
<td>242</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Zero concurrency in scan</td>
</tr>
<tr>
<td>244</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>Code</td>
<td>Error message</td>
<td>Type</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>261</td>
<td>Too high concurrency in scan</td>
<td>DMEC</td>
</tr>
<tr>
<td>269</td>
<td>DML count in transaction exceeds config parameter MaxDMLOperationsPerTransaction/MaxNoOfConcurrentOperations</td>
<td>DMEC</td>
</tr>
<tr>
<td>281</td>
<td>No condition and attributes to read in scan</td>
<td>HA_ERR_NO_CONNECTION</td>
</tr>
<tr>
<td>299</td>
<td>Operation not allowed due to cluster shutdown in progress</td>
<td>DMEC</td>
</tr>
<tr>
<td>311</td>
<td>Undefined partition used in setPartitionId</td>
<td>DMEC</td>
</tr>
<tr>
<td>320</td>
<td>Invalid no of nodes specified for new nodegroup</td>
<td>DMEC</td>
</tr>
<tr>
<td>321</td>
<td>Invalid nodegroup id</td>
<td>DMEC</td>
</tr>
<tr>
<td>322</td>
<td>Invalid node(s) specified for new nodegroup, node already in nodegroup</td>
<td>DMEC</td>
</tr>
<tr>
<td>323</td>
<td>Invalid nodegroup id, nodegroup already existing</td>
<td>DMEC</td>
</tr>
<tr>
<td>324</td>
<td>Invalid node(s) specified for new nodegroup, no node in nodegroup is started</td>
<td>DMEC</td>
</tr>
<tr>
<td>325</td>
<td>Invalid node(s) specified for new nodegroup, node ID invalid or undefined</td>
<td>DMEC</td>
</tr>
<tr>
<td>4004</td>
<td>Attribute name or id not found in the table</td>
<td>DMEC</td>
</tr>
<tr>
<td>4100</td>
<td>Status Error in NDB</td>
<td>DMEC</td>
</tr>
<tr>
<td>4101</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>Code</td>
<td>Error message</td>
<td>Type</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>4102</td>
<td>No connections to NDB available and connect failed</td>
<td>MySQL</td>
</tr>
<tr>
<td>4103</td>
<td>Type in NdbTamper not correct</td>
<td>MySQL</td>
</tr>
<tr>
<td>4104</td>
<td>No schema connections to NDB available and connect failed</td>
<td>MySQL</td>
</tr>
<tr>
<td>4105</td>
<td>Ndb Init in wrong state, destroy Ndb object and create a new</td>
<td>MySQL</td>
</tr>
<tr>
<td>4106</td>
<td>Too many Ndb objects</td>
<td>MySQL</td>
</tr>
<tr>
<td>4114</td>
<td>All Not NULL attribute have not been defined</td>
<td>MySQL</td>
</tr>
<tr>
<td>4116</td>
<td>Transaction is already completed</td>
<td>MySQL</td>
</tr>
<tr>
<td>4117</td>
<td>Operation was not defined correctly, probably missing a key</td>
<td>MySQL</td>
</tr>
<tr>
<td>4118</td>
<td>Could not start transporter, configuration error</td>
<td>MySQL</td>
</tr>
<tr>
<td>4120</td>
<td>Parameter error in API call</td>
<td>MySQL</td>
</tr>
<tr>
<td>4121</td>
<td>Scan already complete</td>
<td>MySQL</td>
</tr>
<tr>
<td>4122</td>
<td>Cannot set name twice for an Ndb object</td>
<td>MySQL</td>
</tr>
<tr>
<td>4123</td>
<td>Cannot set name after Ndb object is initialised</td>
<td>MySQL</td>
</tr>
<tr>
<td>417</td>
<td>Free percent out of range. Allowed range is 1-99</td>
<td>MySQL</td>
</tr>
<tr>
<td>4200</td>
<td>Bad operation reference - double unlock</td>
<td>MySQL</td>
</tr>
</tbody>
</table>
Error message: Status Error when defining an operation

4201 MySQL error: DMEC

Error message: Variable Arrays not yet supported

4202 MySQL error: DMEC

Error message: Set value on tuple key attribute is not allowed

4203 MySQL error: DMEC

Error message: Trying to set a NOT NULL attribute to NULL

4204 MySQL error: DMEC

Error message: Set value and Read/Delete Tuple is incompatible

4205 MySQL error: DMEC

Error message: No Key attribute used to define tuple

4206 MySQL error: DMEC

Error message: Not allowed to equal key attribute twice

4207 MySQL error: DMEC

Error message: Key size is limited to 4092 bytes

4208 MySQL error: DMEC

Error message: Trying to read a non-stored attribute

4209 MySQL error: DMEC

Error message: Length parameter in equal/setValue is incorrect

4210 MySQL error: DMEC

Error message: Ndb sent more info than the length he specified

4211 MySQL error: DMEC

Error message: Inconsistency in list of NdbRecAttr-objects

4212 MySQL error: DMEC

Error message: Ndb reports NULL value on Not NULL attribute

4213 MySQL error: DMEC

Error message: Not all data of an attribute has been received

4214 MySQL error: DMEC

Error message: Not all attributes have been received

4215 MySQL error: DMEC

Error message: More data received than reported in TCKEYCONF message
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4216</td>
<td>MySQL error</td>
<td>More than 8052 bytes in setValue cannot be handled</td>
</tr>
<tr>
<td>4217</td>
<td>MySQL error</td>
<td>It is not allowed to increment any other than unsigned ints</td>
</tr>
<tr>
<td>4218</td>
<td>MySQL error</td>
<td>Currently not allowed to increment NULL-able attributes</td>
</tr>
<tr>
<td>4219</td>
<td>MySQL error</td>
<td>Maximum size of interpretative attributes are 64 bits</td>
</tr>
<tr>
<td>4220</td>
<td>MySQL error</td>
<td>Maximum size of interpretative attributes are 64 bits</td>
</tr>
<tr>
<td>4221</td>
<td>MySQL error</td>
<td>Trying to jump to a non-defined label</td>
</tr>
<tr>
<td>4222</td>
<td>MySQL error</td>
<td>Label was not found, internal error</td>
</tr>
<tr>
<td>4223</td>
<td>MySQL error</td>
<td>Not allowed to create jumps to yourself</td>
</tr>
<tr>
<td>4224</td>
<td>MySQL error</td>
<td>Not allowed to jump to a label in a different subroutine</td>
</tr>
<tr>
<td>4225</td>
<td>MySQL error</td>
<td>All primary keys defined, call setValue/getValue</td>
</tr>
<tr>
<td>4226</td>
<td>MySQL error</td>
<td>Bad number when defining a label</td>
</tr>
<tr>
<td>4227</td>
<td>MySQL error</td>
<td>Bad number when defining a subroutine</td>
</tr>
<tr>
<td>4228</td>
<td>MySQL error</td>
<td>Illegal interpreter function in scan definition</td>
</tr>
<tr>
<td>4229</td>
<td>MySQL error</td>
<td>Illegal register in interpreter function definition</td>
</tr>
<tr>
<td>4230</td>
<td>MySQL error</td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4231</td>
<td>MySQL error. Illegal state when calling getValue, probably not a read</td>
<td></td>
</tr>
<tr>
<td>4232</td>
<td>MySQL error. Illegal state when calling interpreter routine</td>
<td></td>
</tr>
<tr>
<td>4233</td>
<td>MySQL error. Parallelism can only be between 1 and 240</td>
<td></td>
</tr>
<tr>
<td>4234</td>
<td>MySQL error. Calling execute (synchronous) when already prepared asynchronous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transaction exists</td>
<td></td>
</tr>
<tr>
<td>4235</td>
<td>MySQL error. Illegal to call setValue in this state</td>
<td></td>
</tr>
<tr>
<td>4236</td>
<td>MySQL error. No callback from execute</td>
<td></td>
</tr>
<tr>
<td>4237</td>
<td>MySQL error. Trigger name too long</td>
<td></td>
</tr>
<tr>
<td>4238</td>
<td>MySQL error. Too many triggers</td>
<td></td>
</tr>
<tr>
<td>4239</td>
<td>MySQL error. Trigger not found</td>
<td></td>
</tr>
<tr>
<td>4240</td>
<td>MySQL error. Trigger with given name already exists</td>
<td></td>
</tr>
<tr>
<td>4241</td>
<td>MySQL error. Unsupported trigger type</td>
<td></td>
</tr>
<tr>
<td>4242</td>
<td>MySQL error. Index name too long</td>
<td></td>
</tr>
<tr>
<td>4243</td>
<td>MySQL error. Too many indexes</td>
<td></td>
</tr>
<tr>
<td>4244</td>
<td>MySQL error. Index not found</td>
<td></td>
</tr>
<tr>
<td>4245</td>
<td>MySQL error. Illegal index/trigger create/drop/alter request</td>
<td></td>
</tr>
<tr>
<td>4246</td>
<td>MySQL error. Trigger/index name invalid</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>4249</td>
<td>MySQL error. DMEC</td>
<td>Invalid table</td>
</tr>
<tr>
<td>4250</td>
<td>MySQL error. DMEC</td>
<td>Invalid index type or index logging option</td>
</tr>
<tr>
<td>4251</td>
<td>MySQL error. HA_ERR_FOUND_DUPP_UNIQUE</td>
<td>Cannot create unique index, duplicate keys found</td>
</tr>
<tr>
<td>4252</td>
<td>MySQL error. DMEC</td>
<td>Failed to allocate space for index</td>
</tr>
<tr>
<td>4253</td>
<td>MySQL error. DMEC</td>
<td>Failed to create index table</td>
</tr>
<tr>
<td>4254</td>
<td>MySQL error. DMEC</td>
<td>Table not an index table</td>
</tr>
<tr>
<td>4255</td>
<td>MySQL error. DMEC</td>
<td>Hash index attributes must be specified in same order as table attributes</td>
</tr>
<tr>
<td>4256</td>
<td>MySQL error. DMEC</td>
<td>Must call Ndb::init() before this function</td>
</tr>
<tr>
<td>4257</td>
<td>MySQL error. DMEC</td>
<td>Tried to read too much - too many getValue calls</td>
</tr>
<tr>
<td>4258</td>
<td>MySQL error. DMEC</td>
<td>Cannot create unique index, duplicate attributes found in definition</td>
</tr>
<tr>
<td>4259</td>
<td>MySQL error. DMEC</td>
<td>Invalid set of range scan bounds</td>
</tr>
<tr>
<td>4264</td>
<td>MySQL error. DMEC</td>
<td>Invalid usage of blob attribute</td>
</tr>
<tr>
<td>4265</td>
<td>MySQL error. DMEC</td>
<td>The method is not valid in current blob state</td>
</tr>
<tr>
<td>4266</td>
<td>MySQL error. DMEC</td>
<td>Invalid blob seek position</td>
</tr>
<tr>
<td>4271</td>
<td>MySQL error. DMEC</td>
<td>Invalid index object, not retrieved via getIndex()</td>
</tr>
<tr>
<td>4272</td>
<td>MySQL error. DMEC</td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>4275</td>
<td>MySQL Error</td>
<td>DMEC, Table definition has undefined column</td>
</tr>
<tr>
<td>4276</td>
<td>MySQL Error</td>
<td>DMEC, The blob method is incompatible with operation type or lock mode</td>
</tr>
<tr>
<td>4277</td>
<td>MySQL Error</td>
<td>DMEC, Missing NULL ptr in end of keyData list</td>
</tr>
<tr>
<td>4278</td>
<td>MySQL Error</td>
<td>DMEC, Key part len is to small for column</td>
</tr>
<tr>
<td>4279</td>
<td>MySQL Error</td>
<td>DMEC, Supplied buffer to small</td>
</tr>
<tr>
<td>4280</td>
<td>MySQL Error</td>
<td>DMEC, Malformed string</td>
</tr>
<tr>
<td>4281</td>
<td>MySQL Error</td>
<td>DMEC, Inconsistent key part length</td>
</tr>
<tr>
<td>4282</td>
<td>MySQL Error</td>
<td>DMEC, Too many keys specified for key bound in scanIndex</td>
</tr>
<tr>
<td>4283</td>
<td>MySQL Error</td>
<td>DMEC, range_no not strictly increasing in ordered multi-range index scan</td>
</tr>
<tr>
<td>4284</td>
<td>MySQL Error</td>
<td>DMEC, key_record in index scan is not an index ndbrecord</td>
</tr>
<tr>
<td>4285</td>
<td>MySQL Error</td>
<td>DMEC, Cannot mix NdbRecAttr and NdbRecord methods in one operation</td>
</tr>
<tr>
<td>4286</td>
<td>MySQL Error</td>
<td>DMEC, NULL NdbRecord pointer</td>
</tr>
<tr>
<td>4287</td>
<td>MySQL Error</td>
<td>DMEC, Invalid range_no (must be < 4096)</td>
</tr>
<tr>
<td>4288</td>
<td>MySQL Error</td>
<td>DMEC, The key_record and attribute_record in primary key operation do not belong to the same table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blob handle for column not available</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4289</td>
<td>MySQL error</td>
<td>APIs version mismatch or wrong sizeof(NdbDictionary::RecordSpecification)</td>
</tr>
<tr>
<td>4290</td>
<td>MySQL error</td>
<td>APIs missing column specification in NdbDictionary::RecordSpecification</td>
</tr>
<tr>
<td>4291</td>
<td>MySQL error</td>
<td>Duplicate column specification in NdbDictionary::RecordSpecification</td>
</tr>
<tr>
<td>4292</td>
<td>MySQL error</td>
<td>NdbRecord for tuple access is not an index key NdbRecord</td>
</tr>
<tr>
<td>4293</td>
<td>MySQL error</td>
<td>Error returned from application scanIndex() callback</td>
</tr>
<tr>
<td>4294</td>
<td>MySQL error</td>
<td>Scan filter is too large, discarded</td>
</tr>
<tr>
<td>4295</td>
<td>MySQL error</td>
<td>Column is NULL in Get/SetValueSpec structure</td>
</tr>
<tr>
<td>4296</td>
<td>MySQL error</td>
<td>Invalid AbortOption</td>
</tr>
<tr>
<td>4297</td>
<td>MySQL error</td>
<td>Invalid or unsupported OperationOptions structure</td>
</tr>
<tr>
<td>4298</td>
<td>MySQL error</td>
<td>Invalid or unsupported ScanOptions structure</td>
</tr>
<tr>
<td>4299</td>
<td>MySQL error</td>
<td>Incorrect combination of ScanOption flags, extraGetValues ptr and numExtraGetValues</td>
</tr>
<tr>
<td>4300</td>
<td>MySQL error</td>
<td>Tuple Key Type not correct</td>
</tr>
<tr>
<td>4301</td>
<td>MySQL error</td>
<td>Fragment Type not correct</td>
</tr>
<tr>
<td>4302</td>
<td>MySQL error</td>
<td>Minimum Load Factor not correct</td>
</tr>
<tr>
<td>4303</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4304</td>
<td>Maximum Load Factor not correct</td>
<td></td>
</tr>
<tr>
<td>4305</td>
<td>Maximum Load Factor smaller than Minimum</td>
<td></td>
</tr>
<tr>
<td>4306</td>
<td>K value must currently be set to 6</td>
<td></td>
</tr>
<tr>
<td>4307</td>
<td>Memory Type not correct</td>
<td></td>
</tr>
<tr>
<td>4308</td>
<td>Invalid table name</td>
<td></td>
</tr>
<tr>
<td>4309</td>
<td>Attribute Size not correct</td>
<td></td>
</tr>
<tr>
<td>4310</td>
<td>Fixed array too large, maximum 64000 bytes</td>
<td></td>
</tr>
<tr>
<td>4311</td>
<td>Attribute Type not correct</td>
<td></td>
</tr>
<tr>
<td>4312</td>
<td>Storage Mode not correct</td>
<td></td>
</tr>
<tr>
<td>4313</td>
<td>Null Attribute Type not correct</td>
<td></td>
</tr>
<tr>
<td>4314</td>
<td>Index only storage for non-key attribute</td>
<td></td>
</tr>
<tr>
<td>4315</td>
<td>Storage Type of attribute not correct</td>
<td></td>
</tr>
<tr>
<td>4316</td>
<td>No more key attributes allowed after defining variable length key attribute</td>
<td></td>
</tr>
<tr>
<td>4317</td>
<td>Key attributes are not allowed to be NULL attributes</td>
<td></td>
</tr>
<tr>
<td>4318</td>
<td>Too many primary keys defined in table</td>
<td></td>
</tr>
<tr>
<td>4319</td>
<td>Invalid attribute name or number</td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4319</td>
<td>MySQL error. DMEC createAttribute called at erroneous place</td>
<td></td>
</tr>
<tr>
<td>4322</td>
<td>MySQL error. DMEC Attempt to define distribution key when not prepared to</td>
<td></td>
</tr>
<tr>
<td>4323</td>
<td>MySQL error. DMEC Distribution Key set on table but not defined on first attribute</td>
<td></td>
</tr>
<tr>
<td>4324</td>
<td>MySQL error. DMEC Attempt to define distribution group when not prepared to</td>
<td></td>
</tr>
<tr>
<td>4325</td>
<td>MySQL error. DMEC Distribution Group set on table but not defined on first attribute</td>
<td></td>
</tr>
<tr>
<td>4326</td>
<td>MySQL error. DMEC Distribution Group with erroneous number of bits</td>
<td></td>
</tr>
<tr>
<td>4327</td>
<td>MySQL error. DMEC Distribution key is only supported on part of primary key</td>
<td></td>
</tr>
<tr>
<td>4328</td>
<td>MySQL error. DMEC Disk memory attributes not yet supported</td>
<td></td>
</tr>
<tr>
<td>4329</td>
<td>MySQL error. DMEC Variable stored attributes not yet supported</td>
<td></td>
</tr>
<tr>
<td>4335</td>
<td>MySQL error. DMEC Only one autoincrement column allowed per table. Having a table without primary key uses an autoincremented hidden key, i.e. a table without a primary key can not have an autoincremented column</td>
<td></td>
</tr>
<tr>
<td>4340</td>
<td>MySQL error. DMEC Result or attribute record must be a base table ndbrecord, not an index ndbrecord</td>
<td></td>
</tr>
<tr>
<td>4341</td>
<td>MySQL error. DMEC Not all keys read when using option SF_OrderBy</td>
<td></td>
</tr>
<tr>
<td>4342</td>
<td>MySQL error. DMEC Scan defined but not prepared</td>
<td></td>
</tr>
<tr>
<td>4343</td>
<td>MySQL error. DMEC</td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>4400</td>
<td>Table with blobs does not support refresh</td>
<td></td>
</tr>
<tr>
<td>4401</td>
<td>Only one schema operation per schema transaction</td>
<td></td>
</tr>
<tr>
<td>4402</td>
<td>No schema operation defined before calling execute</td>
<td></td>
</tr>
<tr>
<td>4410</td>
<td>Schema transaction is already started</td>
<td></td>
</tr>
<tr>
<td>4411</td>
<td>Schema transaction not possible until upgrade complete</td>
<td></td>
</tr>
<tr>
<td>4412</td>
<td>Schema transaction is not started</td>
<td></td>
</tr>
<tr>
<td>4501</td>
<td>Insert in hash table failed when getting table information from Ndb</td>
<td></td>
</tr>
<tr>
<td>4502</td>
<td>GetValue not allowed in Update operation</td>
<td></td>
</tr>
<tr>
<td>4503</td>
<td>GetValue not allowed in Insert operation</td>
<td></td>
</tr>
<tr>
<td>4504</td>
<td>SetValue not allowed in Read operation</td>
<td></td>
</tr>
<tr>
<td>4505</td>
<td>NULL value not allowed in primary key search</td>
<td></td>
</tr>
<tr>
<td>4506</td>
<td>Missing getValue/setValue when calling execute</td>
<td></td>
</tr>
<tr>
<td>4507</td>
<td>Missing operation request when calling execute</td>
<td></td>
</tr>
<tr>
<td>4508</td>
<td>GetValue not allowed for NdbRecord defined operation</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
</tbody>
</table>
| 4509 | MySQL error. DMEC
Error message. Non SF_MultiRange scan cannot have more than one bound |
| 4510 | MySQL error. DMEC
Error message. User specified partition id not allowed for scan takeover operation |
| 4511 | MySQL error. DMEC
Error message. Blobs not allowed in NdbRecord delete result record |
| 4512 | MySQL error. DMEC
Error message. Incorrect combination of OperationOptions optionsPresent, extraGet/SetValues ptr and numExtraGet/SetValues |
| 4513 | MySQL error. DMEC
Error message. Only one scan bound allowed for non-NdbRecord setBound() API |
| 4514 | MySQL error. DMEC
Error message. Can only call setBound/equal() for an NdbIndexScanOperation |
| 4515 | MySQL error. DMEC
Error message. Method not allowed for NdbRecord, use OperationOptions or ScanOptions structure instead |
| 4516 | MySQL error. DMEC
Error message. Illegal instruction in interpreted program |
| 4517 | MySQL error. DMEC
Error message. Bad label in branch instruction |
| 4518 | MySQL error. DMEC
Error message. Too many instructions in interpreted program |
| 4519 | MySQL error. DMEC
Error message. NdbInterpretedCode::finalise() not called |
| 4520 | MySQL error. DMEC
Error message. Call to undefined subroutine |
| 4521 | MySQL error. DMEC
Error message. Call to undefined subroutine, internal error |
| 4522 | MySQL error. DMEC
Error message. setBound() called twice for same key |
<p>| 4523 | MySQL error. DMEC |</p>
<table>
<thead>
<tr>
<th>Code</th>
<th>Error message</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4524</td>
<td>Pseudo columns not supported by NdbRecord</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4535</td>
<td>NdbInterpretedCode is for different table</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4536</td>
<td>Attempt to set bound on non key column</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4537</td>
<td>NdbScanFilter constructor taking NdbOperation is not supported for NdbRecord</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4538</td>
<td>Wrong API. Use NdbInterpretedCode for NdbRecord operations</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4539</td>
<td>NdbInterpretedCode instruction requires that table is set</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4540</td>
<td>NdbInterpretedCode not supported for operation type</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4542</td>
<td>Attempt to pass an Index column to createRecord. Use base table columns only</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4543</td>
<td>Unknown partition information type</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4544</td>
<td>Duplicate partitioning information supplied</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4545</td>
<td>Wrong partitionInfo type for table</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4546</td>
<td>Invalid or Unsupported PartitionInfo structure</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4547</td>
<td>Explicit partitioning info not allowed for table and operation</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4548</td>
<td>RecordSpecification has overlapping offsets</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>RecordSpecification has too many elements</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>Code</td>
<td>Error Description</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4549</td>
<td>MySQL error. getLockHandle only supported for primary key read with a lock</td>
<td></td>
</tr>
<tr>
<td>4550</td>
<td>MySQL error. Cannot releaseLockHandle until operation executed</td>
<td></td>
</tr>
<tr>
<td>4551</td>
<td>MySQL error. NdbLockHandle already released</td>
<td></td>
</tr>
<tr>
<td>4552</td>
<td>MySQL error. NdbLockHandle does not belong to transaction</td>
<td></td>
</tr>
<tr>
<td>4553</td>
<td>MySQL error. NdbLockHandle original operation not executed successfully</td>
<td></td>
</tr>
<tr>
<td>4554</td>
<td>MySQL error. NdbBlob can only be closed from Active state</td>
<td></td>
</tr>
<tr>
<td>4555</td>
<td>MySQL error. NdbBlob cannot be closed with pending operations</td>
<td></td>
</tr>
<tr>
<td>4556</td>
<td>MySQL error. RecordSpecification has illegal value in column_flags</td>
<td></td>
</tr>
<tr>
<td>4557</td>
<td>MySQL error. Column types must be identical when comparing two columns</td>
<td></td>
</tr>
<tr>
<td>4600</td>
<td>MySQL error. Transaction is already started</td>
<td></td>
</tr>
<tr>
<td>4601</td>
<td>MySQL error. Transaction is not started</td>
<td></td>
</tr>
<tr>
<td>4602</td>
<td>MySQL error. You must call getNdbOperation before executeScan</td>
<td></td>
</tr>
<tr>
<td>4603</td>
<td>MySQL error. There can only be ONE operation in a scan transaction</td>
<td></td>
</tr>
<tr>
<td>4604</td>
<td>MySQL error. takeOverScanOp, to take over a scanned row one must explicitly request keyinfo on readTuples call</td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>4605</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4607</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4608</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4609</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4707</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4708</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4709</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4710</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4711</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4712</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4714</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4715</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4716</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4717</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>4720</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>4723</td>
<td>MySQL error</td>
<td>NDB_INDEX_STAT_PREFIX partly missing or invalid</td>
</tr>
<tr>
<td>4724</td>
<td>MySQL error</td>
<td>Mysqld: index stats request ignored due to recent error</td>
</tr>
<tr>
<td>4725</td>
<td>MySQL error</td>
<td>Mysqld: index stats request aborted by stats thread</td>
</tr>
<tr>
<td>720</td>
<td>MySQL error</td>
<td>Index stats were deleted by another process</td>
</tr>
<tr>
<td>763</td>
<td>MySQL error</td>
<td>Attribute name reused in table definition</td>
</tr>
<tr>
<td>771</td>
<td>MySQL error</td>
<td>DDL is not supported with mixed data-node versions</td>
</tr>
<tr>
<td>776</td>
<td>MySQL error</td>
<td>Given NODEGROUP doesn't exist in this cluster</td>
</tr>
<tr>
<td>777</td>
<td>MySQL error</td>
<td>Index created on temporary table must itself be temporary</td>
</tr>
<tr>
<td>778</td>
<td>MySQL error</td>
<td>Cannot create a temporary index on a non-temporary table</td>
</tr>
<tr>
<td>789</td>
<td>MySQL error</td>
<td>A temporary table or index must be specified as not logging</td>
</tr>
<tr>
<td>793</td>
<td>MySQL error</td>
<td>Logfile group not found</td>
</tr>
<tr>
<td>794</td>
<td>MySQL error</td>
<td>Object definition too big</td>
</tr>
<tr>
<td>798</td>
<td>MySQL error</td>
<td>Schema feature requires data node upgrade</td>
</tr>
<tr>
<td>823</td>
<td>MySQL error</td>
<td>A disk table must not be specified as no logging</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>829</td>
<td>MySQL error</td>
<td>Too much attrinfo from application in tuple manager</td>
</tr>
<tr>
<td>831</td>
<td>MySQL error</td>
<td>Corrupt data received for insert/update</td>
</tr>
<tr>
<td>850</td>
<td>MySQL error</td>
<td>Too many nullable/bitfields in table definition</td>
</tr>
<tr>
<td>851</td>
<td>MySQL error</td>
<td>Too long or too short default value</td>
</tr>
<tr>
<td>874</td>
<td>MySQL error</td>
<td>Fixed-size column offset exceeded max. Use VARCHAR or COLUMN_FORMAT DYNAMIC for memory-stored columns</td>
</tr>
<tr>
<td>876</td>
<td>MySQL error</td>
<td>Too much attrinfo (e.g. scan filter) for scan in tuple manager</td>
</tr>
<tr>
<td>877</td>
<td>MySQL error</td>
<td>Stack overflow in interpreter</td>
</tr>
<tr>
<td>878</td>
<td>MySQL error</td>
<td>Stack underflow in interpreter</td>
</tr>
<tr>
<td>879</td>
<td>MySQL error</td>
<td>More than 65535 instructions executed in interpreter</td>
</tr>
<tr>
<td>880</td>
<td>MySQL error</td>
<td>Tried to read too much - too many getValue calls</td>
</tr>
<tr>
<td>884</td>
<td>MySQL error</td>
<td>Stack overflow in interpreter</td>
</tr>
<tr>
<td>885</td>
<td>MySQL error</td>
<td>Stack underflow in interpreter</td>
</tr>
<tr>
<td>886</td>
<td>MySQL error</td>
<td>More than 65535 instructions executed in interpreter</td>
</tr>
<tr>
<td>892</td>
<td>MySQL error</td>
<td>Unsupported type in scan filter</td>
</tr>
<tr>
<td>Code</td>
<td>Error Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>897</td>
<td>MySQL error</td>
<td>Update attempt of primary key via ndbcluster internal api (if this occurs via the MySQL server it is a bug, please report)</td>
</tr>
<tr>
<td>912</td>
<td>MySQL error</td>
<td>Index stat scan requested with wrong lock mode</td>
</tr>
<tr>
<td>913</td>
<td>MySQL error</td>
<td>Invalid index for index stats update</td>
</tr>
<tr>
<td>920</td>
<td>MySQL error</td>
<td>Row operation defined after refreshTuple()</td>
</tr>
<tr>
<td>INVALID_BLOCK_NAME</td>
<td>MySQL error</td>
<td>Invalid block name</td>
</tr>
<tr>
<td>INVALID_ERROR_NUMBER</td>
<td>MySQL error</td>
<td>Invalid error number. Should be >= 0.</td>
</tr>
<tr>
<td>INVALID_TRACE_NUMBER</td>
<td>MySQL error</td>
<td>Invalid trace number.</td>
</tr>
<tr>
<td>NODE_NOT_API_NODE</td>
<td>MySQL error</td>
<td>The specified node is not an API node.</td>
</tr>
<tr>
<td>NODE_SHUTDOWN_IN_PROGRESS</td>
<td>MySQL error</td>
<td>Node shutdown in progress</td>
</tr>
<tr>
<td>NODE_SHUTDOWN_WOULD_CAUSE_SYSTEM_CRASH</td>
<td>MySQL error</td>
<td>Node shutdown would cause system crash</td>
</tr>
<tr>
<td>NO_CONTACT_WITH_DB_NODES</td>
<td>MySQL error</td>
<td>No contact with database nodes</td>
</tr>
<tr>
<td>NO_CONTACT_WITH_PROCESS</td>
<td>MySQL error</td>
<td>No contact with the process (dead ?).</td>
</tr>
<tr>
<td>OPERATION_NOT_ALLOWED_START_STOP</td>
<td>MySQL error</td>
<td>Operation not allowed while nodes are starting or stopping.</td>
</tr>
<tr>
<td>QRY_BATCH_SIZE_TOO_SMALL</td>
<td>MySQL error</td>
<td>Batch size for sub scan cannot be smaller than number of fragments.</td>
</tr>
<tr>
<td>QRY_CHAR_OPERAND_TRUNCATED</td>
<td>MySQL error</td>
<td>Character operand was right truncated</td>
</tr>
<tr>
<td>Error Code</td>
<td>Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>QRY_CHAR_PARAMETER_TRUNCATED</td>
<td>MySQL error.</td>
<td>Character Parameter was right truncated</td>
</tr>
<tr>
<td>QRY_DEFINITION_TOO_LARGE</td>
<td>MySQL error.</td>
<td>Query definition too large.</td>
</tr>
<tr>
<td>QRY_EMPTY_PROJECTION</td>
<td>MySQL error.</td>
<td>Query has operation with empty projection.</td>
</tr>
<tr>
<td>QRY_HAS ZERO OPERATIONS</td>
<td>MySQL error.</td>
<td>Query definition should have at least one operation.</td>
</tr>
<tr>
<td>QRY_ILLEGAL_STATE</td>
<td>MySQL error.</td>
<td>Query is in illegal state for this operation.</td>
</tr>
<tr>
<td>QRY_IN_ERROR_STATE</td>
<td>MySQL error.</td>
<td>A previous query operation failed, which you missed to catch.</td>
</tr>
<tr>
<td>QRY_MULTIPLE_PARENTS</td>
<td>MySQL error.</td>
<td>Multiple 'parents' specified in linkedValues for this operation</td>
</tr>
<tr>
<td>QRY_MULTIPLE_SCAN_SORTED</td>
<td>MySQL error.</td>
<td>Query with multiple scans may not be sorted.</td>
</tr>
<tr>
<td>QRY_NEST NOT SUPPORTED</td>
<td>MySQL error.</td>
<td>FirstInner/Upper has to be an ancestor or a sibling</td>
</tr>
<tr>
<td>QRY_NUM OPERAND_RANGE</td>
<td>MySQL error.</td>
<td>Numeric operand out of range</td>
</tr>
<tr>
<td>QRY_OJ NOT SUPPORTED</td>
<td>MySQL error.</td>
<td>Outer joined scans not supported by data nodes.</td>
</tr>
<tr>
<td>QRY_OPERAND_ALREADY_BOUND</td>
<td>MySQL error.</td>
<td>Can't use same operand value to specify different column values</td>
</tr>
<tr>
<td>QRY_OPERAND HAS WRONG TYPE</td>
<td>MySQL error.</td>
<td>Incompatible datatype specified in operand argument</td>
</tr>
<tr>
<td>QRY_PARAMETER HAS WRONG TYPE</td>
<td>MySQL error.</td>
<td>Parameter value has an incompatible datatype</td>
</tr>
<tr>
<td>QRY_REQ ARG IS NULL</td>
<td>MySQL error.</td>
<td></td>
</tr>
</tbody>
</table>
2.4.2.3 No data found

The following list enumerates all NDB errors of type ND (No data found).
2.4.2.4 Constraint violation

The following list enumerates all NDB errors of type CV (Constraint violation).

255
MySQL error. HA_ERR_NO REFERENCED ROW
Error message. Foreign key constraint violated: No parent row found

256
MySQL error. HA_ERR_ROW IS REFERENCED
Error message. Foreign key constraint violated: Referenced row exists

630
MySQL error. HA_ERR_FOUND DUPP KEY
Error message. Tuple already existed when attempting to insert

2.4.2.5 Schema error

The following list enumerates all NDB errors of type SE (Schema error).

1224
MySQL error. HA_WRONG CREATE OPTION
Error message. Too many fragments

1225
MySQL error. DMEC
Error message. Table not defined in local query handler

1226
MySQL error. HA_ERR NO SUCH TABLE
Error message. Table is being dropped

1227
MySQL error. HA WRONG CREATE OPTION
Error message. Invalid schema version

1228
MySQL error. DMEC
Error message. Cannot use drop table for drop index

1229
MySQL error. DMEC
Error message. Too long frm data supplied

1231
MySQL error. DMEC
<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL error</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1232</td>
<td>DMEC</td>
<td>Invalid table or index to scan</td>
</tr>
<tr>
<td>1407</td>
<td>DMEC</td>
<td>Invalid table or index to scan</td>
</tr>
<tr>
<td>1415</td>
<td>DMEC</td>
<td>Subscription not found in subscriber manager</td>
</tr>
<tr>
<td>1417</td>
<td>DMEC</td>
<td>Subscription not unique in subscriber manager</td>
</tr>
<tr>
<td>1418</td>
<td>DMEC</td>
<td>Table in subscription not defined, probably dropped</td>
</tr>
<tr>
<td>1419</td>
<td>DMEC</td>
<td>Subscription dropped, no new subscribers allowed</td>
</tr>
<tr>
<td>1421</td>
<td>DMEC</td>
<td>Subscription already dropped</td>
</tr>
<tr>
<td>1422</td>
<td>DMEC</td>
<td>Partially connected API in NdbOperation::execute()</td>
</tr>
<tr>
<td>1423</td>
<td>DMEC</td>
<td>Out of subscription records</td>
</tr>
<tr>
<td>1424</td>
<td>DMEC</td>
<td>Out of table records in SUMA</td>
</tr>
<tr>
<td>1425</td>
<td>DMEC</td>
<td>Out of MaxNoOfConcurrentSubOperations</td>
</tr>
<tr>
<td>1426</td>
<td>DMEC</td>
<td>Subscription being defined...while trying to stop subscriber</td>
</tr>
<tr>
<td>1503</td>
<td>DMEC</td>
<td>No such subscriber</td>
</tr>
<tr>
<td>1504</td>
<td>DMEC</td>
<td>Out of logbuffer memory(specify smaller undo_buffer_size or increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>1508</td>
<td>MySQL error.</td>
<td>DMEC Out of file records</td>
</tr>
<tr>
<td>1509</td>
<td>MySQL error.</td>
<td>DMEC File system error, check if path, permissions etc</td>
</tr>
<tr>
<td>1512</td>
<td>MySQL error.</td>
<td>DMEC File read error</td>
</tr>
<tr>
<td>1514</td>
<td>MySQL error.</td>
<td>DMEC Currently there is a limit of one logfile group</td>
</tr>
<tr>
<td>1515</td>
<td>MySQL error.</td>
<td>DMEC Currently there is a 4G limit of one undo/datafile in 32-bit host</td>
</tr>
<tr>
<td>1516</td>
<td>MySQL error.</td>
<td>DMEC File too small</td>
</tr>
<tr>
<td>1517</td>
<td>MySQL error.</td>
<td>DMEC Insufficient disk page buffer memory. Increase DiskPageBufferMemory or reduce data file size.</td>
</tr>
<tr>
<td>20019</td>
<td>MySQL error.</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
</tr>
<tr>
<td>20020</td>
<td>MySQL error.</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
</tr>
<tr>
<td>20021</td>
<td>MySQL error.</td>
<td>HA_ERR_TABLE_DEF_CHANGED</td>
</tr>
<tr>
<td>21022</td>
<td>MySQL error.</td>
<td>DMEC Create foreign key failed in NDB - parent table is not table</td>
</tr>
<tr>
<td>21023</td>
<td>MySQL error.</td>
<td>DMEC Create foreign key failed in NDB - invalid parent table version</td>
</tr>
<tr>
<td>21024</td>
<td>MySQL error.</td>
<td>DMEC Create foreign key failed in NDB - child table is not table</td>
</tr>
<tr>
<td>21025</td>
<td>MySQL error.</td>
<td>DMEC Create foreign key failed in NDB - invalid child table version</td>
</tr>
<tr>
<td>21027</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL Error</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>21028</td>
<td>DMEC</td>
<td>Create foreign key failed in NDB - invalid parent index version</td>
</tr>
<tr>
<td>21029</td>
<td>DMEC</td>
<td>Create foreign key failed in NDB - child index is not index</td>
</tr>
<tr>
<td>21041</td>
<td>DMEC</td>
<td>Create foreign key failed in NDB - invalid child index version</td>
</tr>
<tr>
<td>21042</td>
<td>DMEC</td>
<td>Drop foreign key failed in NDB - invalid foreign key version</td>
</tr>
<tr>
<td>21061</td>
<td>DMEC</td>
<td>Drop foreign key failed in NDB - foreign key not found in TC</td>
</tr>
<tr>
<td>241</td>
<td>HA_ERR_TABLE_DEF_CHANGED</td>
<td>Build foreign key failed in NDB - invalid foreign key version</td>
</tr>
<tr>
<td>283</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
<td>Invalid schema object version</td>
</tr>
<tr>
<td>284</td>
<td>HA_ERR_TABLE_DEF_CHANGED</td>
<td>Table is being dropped</td>
</tr>
<tr>
<td>285</td>
<td>HA_ERR_TABLE_DEF_CHANGED</td>
<td>Table not defined in transaction coordinator</td>
</tr>
<tr>
<td>4713</td>
<td>DMEC</td>
<td>Unknown table error in transaction coordinator</td>
</tr>
<tr>
<td>703</td>
<td>DMEC</td>
<td>Column defined in event does not exist in table</td>
</tr>
<tr>
<td>704</td>
<td>DMEC</td>
<td>Invalid table format</td>
</tr>
<tr>
<td>705</td>
<td>DMEC</td>
<td>Attribute name too long</td>
</tr>
<tr>
<td>707</td>
<td>DMEC</td>
<td>Table name too long</td>
</tr>
<tr>
<td></td>
<td>DMEC</td>
<td>No more table metadata records (increase MaxNoOfTables)</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>708</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>No more attribute metadata records (increase MaxNoOfAttributes)</td>
</tr>
<tr>
<td>709</td>
<td>MySQL error.</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>No such table existed</td>
</tr>
<tr>
<td>710</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Internal: Get by table name not supported, use table id.</td>
</tr>
<tr>
<td>712</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>No more hashmap metadata records</td>
</tr>
<tr>
<td>723</td>
<td>MySQL error.</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>No such table existed</td>
</tr>
<tr>
<td>736</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Unsupported array size</td>
</tr>
<tr>
<td>737</td>
<td>MySQL error.</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Attribute array size too big</td>
</tr>
<tr>
<td>738</td>
<td>MySQL error.</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Record too big</td>
</tr>
<tr>
<td>739</td>
<td>MySQL error.</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Unsupported primary key length</td>
</tr>
<tr>
<td>740</td>
<td>MySQL error.</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Nullable primary key not supported</td>
</tr>
<tr>
<td>741</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Unsupported alter table</td>
</tr>
<tr>
<td>743</td>
<td>MySQL error.</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Unsupported character set in table or index</td>
</tr>
<tr>
<td>744</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Character string is invalid for given character set</td>
</tr>
<tr>
<td>745</td>
<td>MySQL error.</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Distribution key not supported for char attribute (use binary attribute)</td>
</tr>
<tr>
<td>750</td>
<td>MySQL error.</td>
<td>IE</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Invalid file type</td>
</tr>
<tr>
<td>751</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>Code</td>
<td>Error Message</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>752</td>
<td>MySQL error.</td>
<td>DMEC Out of file records</td>
</tr>
<tr>
<td>753</td>
<td>MySQL error.</td>
<td>IE Invalid file format</td>
</tr>
<tr>
<td>754</td>
<td>MySQL error.</td>
<td>IE Invalid filegroup for file</td>
</tr>
<tr>
<td>755</td>
<td>MySQL error.</td>
<td>HA_MISSING_CREATE_OPTION Invalid filegroup version when creating file</td>
</tr>
<tr>
<td>756</td>
<td>MySQL error.</td>
<td>DMEC Invalid tablespace</td>
</tr>
<tr>
<td>757</td>
<td>MySQL error.</td>
<td>DMEC Index on disk column is not supported</td>
</tr>
<tr>
<td>758</td>
<td>MySQL error.</td>
<td>DMEC Varsize bitfield not supported</td>
</tr>
<tr>
<td>759</td>
<td>MySQL error.</td>
<td>DMEC Tablespace has changed</td>
</tr>
<tr>
<td>760</td>
<td>MySQL error.</td>
<td>DMEC Invalid tablespace version</td>
</tr>
<tr>
<td>761</td>
<td>MySQL error.</td>
<td>DMEC File already exists,</td>
</tr>
<tr>
<td>762</td>
<td>MySQL error.</td>
<td>DMEC Unable to drop table as backup is in progress</td>
</tr>
<tr>
<td>764</td>
<td>MySQL error.</td>
<td>HA_WRONG_CREATE_OPTION Unable to alter table as backup is in progress</td>
</tr>
<tr>
<td>765</td>
<td>MySQL error.</td>
<td>DMEC Invalid extent size</td>
</tr>
<tr>
<td>766</td>
<td>MySQL error.</td>
<td>DMEC Out of filegroup records</td>
</tr>
<tr>
<td>767</td>
<td>MySQL error.</td>
<td>DMEC Cant drop file, no such file</td>
</tr>
<tr>
<td>768</td>
<td>MySQL error.</td>
<td>DMEC Cant drop filegroup, no such filegroup</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
<td>MySQL Error</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>769</td>
<td>Cant drop filegroup, filegroup is used</td>
<td>DMEC</td>
</tr>
<tr>
<td>770</td>
<td>Drop undofile not supported, drop logfile group instead</td>
<td>DMEC</td>
</tr>
<tr>
<td>773</td>
<td>Cant drop file, file is used</td>
<td>DMEC</td>
</tr>
<tr>
<td>774</td>
<td>Out of string memory, please modify StringMemory config parameter</td>
<td>DMEC</td>
</tr>
<tr>
<td>779</td>
<td>Invalid schema object for drop</td>
<td>DMEC</td>
</tr>
<tr>
<td>790</td>
<td>Create file is not supported when Diskless=1</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td>791</td>
<td>Invalid hash map</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td>792</td>
<td>Too many total bits in bitfields</td>
<td>DMEC</td>
</tr>
<tr>
<td>796</td>
<td>Default value for primary key column not supported</td>
<td>DMEC</td>
</tr>
<tr>
<td>799</td>
<td>Out of schema transaction memory</td>
<td>HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td>881</td>
<td>Non default partitioning without partitions</td>
<td>DMEC</td>
</tr>
<tr>
<td>906</td>
<td>Unable to create table, out of data pages. (increase DataMemory)</td>
<td>DMEC</td>
</tr>
<tr>
<td>907</td>
<td>Unsupported attribute type in index</td>
<td>DMEC</td>
</tr>
<tr>
<td>910</td>
<td>Unsupported character set in table or index</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

Error message. Index is being dropped

911
MySQL error. DMEC
Error message. Index stat scan requested on index with unsupported key size

2.4.2.6 Schema object already exists

The following list enumerates all NDB errors of type OE (Schema object already exists).

4244
MySQL error. HA_ERR_TABLE_EXIST
Error message. Index or table with given name already exists

721
MySQL error. HA_ERR_TABLE_EXIST
Error message. Schema object with given name already exists

746
MySQL error. DMEC
Error message. Event name already exists

2.4.2.7 User defined error

The following list enumerates all NDB errors of type UD (User defined error).

1321
MySQL error. DMEC
Error message. Backup aborted by user request

4260
MySQL error. DMEC
Error message. NdbScanFilter: Operator is not defined in NdbScanFilter::Group

4261
MySQL error. DMEC
Error message. NdbScanFilter: Column is NULL

4262
MySQL error. DMEC
Error message. NdbScanFilter: Condition is out of bounds

2.4.2.8 Insufficient space

The following list enumerates all NDB errors of type IS (Insufficient space).

1303
MySQL error. DMEC
Error message. Out of resources

1412
MySQL error. DMEC
Error message. Can't accept more subscribers, out of space in pool

1416
MySQL error. DMEC
Error message. Can't accept more subscriptions, out of space in pool
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1601</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>Out of extents, tablespace full</td>
</tr>
<tr>
<td>1602</td>
<td>MySQL error. DMEC</td>
<td></td>
</tr>
<tr>
<td>1603</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>Table fragment fixed data reference has reached maximum possible value (specify MAXROWS or increase no of partitions)</td>
</tr>
<tr>
<td>1604</td>
<td>MySQL error. DMEC</td>
<td>Error -1 from get_page</td>
</tr>
<tr>
<td>1605</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>Out of page request records when allocating disk record</td>
</tr>
<tr>
<td>1606</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>Out of extent records when allocating disk record</td>
</tr>
<tr>
<td>623</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>623</td>
</tr>
<tr>
<td>624</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>624</td>
</tr>
<tr>
<td>625</td>
<td>MySQL error. HA_ERR_INDEX_FILE_FULL</td>
<td>Table fragment hash index has reached maximum possible size</td>
</tr>
<tr>
<td>633</td>
<td>MySQL error. HA_ERR_INDEX_FILE_FULL</td>
<td>Out of memory in Ndb Kernel, hash index part (increase DataMemory)</td>
</tr>
<tr>
<td>640</td>
<td>MySQL error. DMEC</td>
<td>Too many hash indexes (should not happen)</td>
</tr>
<tr>
<td>747</td>
<td>MySQL error. DMEC</td>
<td>Out of event records</td>
</tr>
<tr>
<td>826</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>Too many tables and attributes (increase MaxNoOfAttributes or MaxNoOfTables)</td>
</tr>
<tr>
<td>827</td>
<td>MySQL error. HA_ERR_RECORD_FILE_FULL</td>
<td>Out of memory in Ndb Kernel, table data (increase DataMemory)</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

889 MySQL error. HA_ERR_RECORD_FILE_FULL
Error message. Table fragment fixed data reference has reached maximum possible value (specify MAXROWS or increase no of partitions)

902 MySQL error. HA_ERR_RECORD_FILE_FULL
Error message. Out of memory in Ndb Kernel, ordered index data (increase DataMemory)

903 MySQL error. HA_ERR_INDEX_FILE_FULL
Error message. Too many ordered indexes (increase MaxNoOfOrderedIndexes)

904 MySQL error. HA_ERR_INDEX_FILE_FULL
Error message. Out of fragment records (increase MaxNoOfOrderedIndexes)

905 MySQL error. DMEC
Error message. Out of attribute records (increase MaxNoOfAttributes)

908 MySQL error. DMEC
Error message. Invalid ordered index tree node size

2.4.2.9 Temporary Resource error

The following list enumerates all NDB errors of type **TR** (Temporary Resource error).

1217 MySQL error. DMEC
Error message. Out of operation records in local data manager (increase SharedGlobalMemory)

1218 MySQL error. DMEC
Error message. Send Buffers overloaded in NDB kernel

1220 MySQL error. DMEC
Error message. REDO log files overloaded (increase FragmentLogFileSize)

1222 MySQL error. DMEC
Error message. Out of transaction markers in LQH, increase SharedGlobalMemory

1234 MySQL error. DMEC
Error message. REDO log files overloaded (increase disk hardware)

1350 MySQL error. DMEC
Error message. Backup failed: file already exists (use 'START BACKUP <backup id>')
<table>
<thead>
<tr>
<th>Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1411</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Subscriber manager busy with adding/removing a subscriber</td>
</tr>
<tr>
<td>1413</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Subscriber manager busy with adding the subscription</td>
</tr>
<tr>
<td>1414</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Subscriber manager has subscribers on this subscription</td>
</tr>
<tr>
<td>1420</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Subscriber manager busy with adding/removing a table</td>
</tr>
<tr>
<td>1501</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Out of undo space</td>
</tr>
<tr>
<td>20000</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Query aborted due out of operation records</td>
</tr>
<tr>
<td>20006</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Query aborted due to out of LongMessageBuffer</td>
</tr>
<tr>
<td>20008</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Query aborted due to out of query memory</td>
</tr>
<tr>
<td>20015</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Query aborted due to out of row memory</td>
</tr>
<tr>
<td>21020</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Create foreign key failed in NDB - no more object records</td>
</tr>
<tr>
<td>217</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>217</td>
</tr>
<tr>
<td>218</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Out of LongMessageBuffer</td>
</tr>
<tr>
<td>219</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>219</td>
</tr>
<tr>
<td>221</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
<td>Too many concurrently fired triggers, increase SharedGlobalMemory</td>
</tr>
<tr>
<td>233</td>
<td>MySQL error.</td>
<td>DMEC</td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>245</td>
<td>MySQL error.</td>
<td>DMEC. Out of operation records in transaction coordinator (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>251</td>
<td>MySQL error.</td>
<td>DMEC. Too many active scans, increase MaxNoOfConcurrentScans</td>
</tr>
<tr>
<td>273</td>
<td>MySQL error.</td>
<td>DMEC. Out of frag location records in TC (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>275</td>
<td>MySQL error.</td>
<td>DMEC. Out of transaction markers databuffer in TC, increase SharedGlobalMemory</td>
</tr>
<tr>
<td>279</td>
<td>MySQL error.</td>
<td>DMEC. Out of transaction records for complete phase (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>2810</td>
<td>MySQL error.</td>
<td>DMEC. Out of transaction markers in TC, increase SharedGlobalMemory</td>
</tr>
<tr>
<td>2811</td>
<td>MySQL error.</td>
<td>DMEC. No space left on the device</td>
</tr>
<tr>
<td>2815</td>
<td>MySQL error.</td>
<td>DMEC. Error with file permissions, please check file system</td>
</tr>
<tr>
<td>288</td>
<td>MySQL error.</td>
<td>DMEC. Error in reading files, please check file system</td>
</tr>
<tr>
<td>289</td>
<td>MySQL error.</td>
<td>DMEC. Out of index operations in transaction coordinator (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>291</td>
<td>MySQL error.</td>
<td>DMEC. Out of transaction buffer memory in TC (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>293</td>
<td>MySQL error.</td>
<td>DMEC. Out of scanfrag records in TC (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>312</td>
<td>MySQL error.</td>
<td>DMEC. Out of attribute buffers in TC block, increase SharedGlobalMemory</td>
</tr>
<tr>
<td>Error Code</td>
<td>MySQL error</td>
<td>Error message</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4021</td>
<td>DMEC</td>
<td>Out of LongMessageBuffer</td>
</tr>
<tr>
<td>4022</td>
<td>DMEC</td>
<td>Out of Send Buffer space in NDB API</td>
</tr>
<tr>
<td>4032</td>
<td>DMEC</td>
<td>Out of Send Buffer space in NDB API</td>
</tr>
<tr>
<td>414</td>
<td>DMEC</td>
<td>Out of Send Buffer space in NDB API</td>
</tr>
<tr>
<td>418</td>
<td>DMEC</td>
<td>Out of Send Buffer space in NDB API</td>
</tr>
<tr>
<td>419</td>
<td>DMEC</td>
<td>Out of transaction buffers in LQH, increase LongSignalMemory</td>
</tr>
<tr>
<td>488</td>
<td>DMEC</td>
<td>Out of signal memory, increase LongSignalMemory</td>
</tr>
<tr>
<td>489</td>
<td>DMEC</td>
<td>Too many active scans</td>
</tr>
<tr>
<td>490</td>
<td>DMEC</td>
<td>Too many active scans</td>
</tr>
<tr>
<td>748</td>
<td>DMEC</td>
<td>Busy during read of event table</td>
</tr>
<tr>
<td>780</td>
<td>DMEC</td>
<td>Too many schema transactions</td>
</tr>
<tr>
<td>783</td>
<td>DMEC</td>
<td>Too many schema operations</td>
</tr>
<tr>
<td>784</td>
<td>DMEC</td>
<td>Invalid schema transaction state</td>
</tr>
<tr>
<td>785</td>
<td>DMEC</td>
<td>Schema object is busy with another schema transaction</td>
</tr>
<tr>
<td>788</td>
<td>DMEC</td>
<td>Schema object is busy with another schema transaction</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>805</td>
<td>MySQL error. Missing schema operation at takeover of schema transaction</td>
<td></td>
</tr>
<tr>
<td>830</td>
<td>MySQL error. Out of attrinfo records in tuple manager, increase LongSignalMemory</td>
<td></td>
</tr>
<tr>
<td>873</td>
<td>MySQL error. Out of add fragment operation records</td>
<td></td>
</tr>
<tr>
<td>899</td>
<td>MySQL error. Out of transaction memory in local data manager, ordered index data (increase SharedGlobalMemory)</td>
<td></td>
</tr>
<tr>
<td>909</td>
<td>MySQL error. Rowid already allocated</td>
<td></td>
</tr>
<tr>
<td>915</td>
<td>MySQL error. Out of transaction memory in local data manager, ordered scan operation (increase SharedGlobalMemory)</td>
<td></td>
</tr>
<tr>
<td>918</td>
<td>MySQL error. No free index stats op</td>
<td></td>
</tr>
<tr>
<td>919</td>
<td>MySQL error. Cannot prepare index stats update</td>
<td></td>
</tr>
<tr>
<td>921</td>
<td>MySQL error. Cannot execute index stats update</td>
<td></td>
</tr>
<tr>
<td>923</td>
<td>MySQL error. Out of transaction memory in local data manager, copy tuples (increase SharedGlobalMemory)</td>
<td></td>
</tr>
<tr>
<td>924</td>
<td>MySQL error. Out of UNDO buffer memory (increase UNDO_BUFFER_SIZE)</td>
<td></td>
</tr>
<tr>
<td>925</td>
<td>MySQL error. Out of transaction memory in local data manager, stored procedure record (increase SharedGlobalMemory)</td>
<td></td>
</tr>
<tr>
<td>926</td>
<td>MySQL error. Out of transaction memory in local data manager, acc scan operation (increase SharedGlobalMemory)</td>
<td></td>
</tr>
</tbody>
</table>
2.4.2.10 Node Recovery error

The following list enumerates all NDB errors of type NR (Node Recovery error).

<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL error</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1204</td>
<td>MySQL error</td>
<td>Temporary failure, distribution changed</td>
</tr>
<tr>
<td>1405</td>
<td>MySQL error</td>
<td>Subscriber manager busy with node recovery</td>
</tr>
<tr>
<td>1427</td>
<td>MySQL error</td>
<td>Api node died, when SUB_START_REQ reached node</td>
</tr>
<tr>
<td>20016</td>
<td>MySQL error</td>
<td>Query aborted due to node failure</td>
</tr>
<tr>
<td>250</td>
<td>MySQL error</td>
<td>Node where lock was held crashed, restart scan transaction</td>
</tr>
<tr>
<td>286</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4002</td>
<td>MySQL error</td>
<td>Send to NDB failed</td>
</tr>
<tr>
<td>4007</td>
<td>MySQL error</td>
<td>Send to ndbd node failed</td>
</tr>
<tr>
<td>4010</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4013</td>
<td>MySQL error</td>
<td>Request timed out in waiting for node failure</td>
</tr>
<tr>
<td>4025</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4027</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4028</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4029</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4031</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4033</td>
<td>MySQL error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4035</td>
<td>MySQL error</td>
<td>Send to NDB failed</td>
</tr>
<tr>
<td>4115</td>
<td>MySQL error</td>
<td>Cluster temporary unavailable</td>
</tr>
<tr>
<td>4119</td>
<td>MySQL error</td>
<td>Transaction was committed but all read information was not received due to node crash</td>
</tr>
<tr>
<td>499</td>
<td>MySQL error</td>
<td>Simple/dirty read failed due to node failure</td>
</tr>
<tr>
<td>631</td>
<td>MySQL error</td>
<td>Scan take over error, restart scan transaction</td>
</tr>
<tr>
<td>786</td>
<td>MySQL error</td>
<td>Scan take over error, restart scan transaction</td>
</tr>
</tbody>
</table>

2.4.2.11 Overload error

The following list enumerates all NDB errors of type OL *(Overload error)*.

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1221</td>
<td>MySQL error</td>
<td>REDO buffers overloaded (increase RedoBuffer)</td>
</tr>
<tr>
<td>1518</td>
<td>MySQL error</td>
<td>IO overload error</td>
</tr>
<tr>
<td>4006</td>
<td>MySQL error</td>
<td>Connect failure - out of connection objects (increase MaxNoOfConcurrentTransactions)</td>
</tr>
<tr>
<td>410</td>
<td>MySQL error</td>
<td>REDO log files overloaded (decrease TimeBetweenLocalCheckpoints or increase NoOfFragmentLogFiles)</td>
</tr>
<tr>
<td>677</td>
<td>MySQL error</td>
<td>Index UNDO buffers overloaded (increase UndoIndexBuffer)</td>
</tr>
<tr>
<td>701</td>
<td>MySQL error</td>
<td>System busy with other schema operation</td>
</tr>
</tbody>
</table>
711 MySQL error. DMEC
 Error message. System busy with node restart, schema operations not allowed
891 MySQL error. DMEC
 Error message. Data UNDO buffers overloaded (increase UndoDataBuffer)

2.4.2.12 Timeout expired

The following list enumerates all NDB errors of type TO (Timeout expired).
237 MySQL error. HA_ERR_LOCK_WAIT_TIMEOUT
 Error message. Transaction had timed out when trying to commit it
266 MySQL error. HA_ERR_LOCK_WAIT_TIMEOUT
 Error message. Time-out in NDB, probably caused by deadlock
4351 MySQL error. DMEC
 Error message. Timeout/deadlock during index build
5024 MySQL error. DMEC
 Error message. Time-out due to node shutdown not starting in time
5025 MySQL error. DMEC
 Error message. Time-out due to node shutdown not completing in time

2.4.2.13 Node shutdown

The following list enumerates all NDB errors of type NS (Node shutdown).
1223 MySQL error. DMEC
 Error message. Read operation aborted due to node shutdown
270 MySQL error. DMEC
 Error message. Transaction aborted due to node shutdown
280 MySQL error. DMEC
 Error message. Transaction aborted due to node shutdown
4023 MySQL error. DMEC
 Error message. Transaction aborted due to node shutdown
4030 MySQL error. DMEC
 Error message. Transaction aborted due to node shutdown
4034 MySQL error. DMEC
 Error message. Transaction aborted due to node shutdown
2.4.2.14 Internal temporary

The following list enumerates all NDB errors of type IT (Internal temporary).

1703 MySQL error. DMEC
Error message. Node failure handling not completed

1705 MySQL error. DMEC
Error message. Not ready for connection allocation yet

702 MySQL error. DMEC
Error message. Request to non-master

787 MySQL error. DMEC
Error message. Schema transaction aborted

2.4.2.15 Unknown result error

The following list enumerates all NDB errors of type UR (Unknown result error).

4008 MySQL error. DMEC
Error message. Receive from NDB failed

4009 MySQL error. HA_ERR_NO_CONNECTION
Error message. Cluster Failure

4012 MySQL error. DMEC
Error message. Request ndbd time-out, maybe due to high load or communication problems

2.4.2.16 Internal error

The following list enumerates all NDB errors of type IE (Internal error).

1300 MySQL error. DMEC
Error message. Undefined error

1301 MySQL error. DMEC
Error message. Backup issued to not master (reissue command to master)

1304 MySQL error. DMEC
Error message. Sequence failure

1305 MySQL error. DMEC
Error message. Backup definition not implemented

1322 MySQL error. DMEC
Error message. Backup already completed

1323 MySQL error. DMEC
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1323</td>
<td>MySQL error</td>
<td>Backup log buffer full</td>
</tr>
<tr>
<td>1324</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1325</td>
<td>MySQL error</td>
<td>File or scan error</td>
</tr>
<tr>
<td>1326</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1327</td>
<td>MySQL error</td>
<td>Backup aborted due to node failure</td>
</tr>
<tr>
<td>1340</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1349</td>
<td>MySQL error</td>
<td>No replica to scan on this node (internal index stats error)</td>
</tr>
<tr>
<td>1428</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1429</td>
<td>MySQL error</td>
<td>Subscriber node undefined in SubStartReq (config change?)</td>
</tr>
<tr>
<td>1502</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1505</td>
<td>MySQL error</td>
<td>Filegroup already exists</td>
</tr>
<tr>
<td>1506</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1507</td>
<td>MySQL error</td>
<td>Invalid filegroup version</td>
</tr>
<tr>
<td>1510</td>
<td>MySQL error</td>
<td>File no already inuse</td>
</tr>
<tr>
<td>1511</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>1513</td>
<td>MySQL error</td>
<td>Out of memory</td>
</tr>
<tr>
<td>1700</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>327</td>
<td>MySQL error</td>
<td>Undefined error</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Type</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>20001</td>
<td>MySQL error</td>
<td>DMEC 20001 Error message: Query aborted due to empty query tree</td>
</tr>
<tr>
<td>20002</td>
<td>MySQL error</td>
<td>DMEC 20002 Error message: Query aborted due to invalid request</td>
</tr>
<tr>
<td>20003</td>
<td>MySQL error</td>
<td>DMEC 20003 Error message: Query aborted due to unknown query operation</td>
</tr>
<tr>
<td>20004</td>
<td>MySQL error</td>
<td>DMEC 20004 Error message: Query aborted due to invalid tree node specification</td>
</tr>
<tr>
<td>20005</td>
<td>MySQL error</td>
<td>DMEC 20005 Error message: Query aborted due to invalid tree parameter specification</td>
</tr>
<tr>
<td>20007</td>
<td>MySQL error</td>
<td>DMEC 20007 Error message: Query aborted due to invalid pattern</td>
</tr>
<tr>
<td>20009</td>
<td>MySQL error</td>
<td>DMEC 20009 Error message: Query aborted due to query node too big</td>
</tr>
<tr>
<td>20010</td>
<td>MySQL error</td>
<td>DMEC 20010 Error message: Query aborted due to query node parameters too big</td>
</tr>
<tr>
<td>20011</td>
<td>MySQL error</td>
<td>DMEC 20011 Error message: Query aborted due to both tree and parameters contain interpreted program</td>
</tr>
<tr>
<td>20012</td>
<td>MySQL error</td>
<td>DMEC 20012 Error message: Query aborted due to invalid tree parameter specification: Key parameter bits mismatch</td>
</tr>
<tr>
<td>20013</td>
<td>MySQL error</td>
<td>DMEC 20013 Error message: Query aborted due to invalid tree parameter specification: Incorrect key parameter count</td>
</tr>
<tr>
<td>20014</td>
<td>MySQL error</td>
<td>DMEC 20014 Error message: Query aborted due to internal error</td>
</tr>
<tr>
<td>20017</td>
<td>MySQL error</td>
<td>DMEC 20017 Error message: Query aborted due to invalid node count</td>
</tr>
<tr>
<td>20018</td>
<td>MySQL error</td>
<td>DMEC 20018 Error message: Query aborted due to index fragment not found</td>
</tr>
<tr>
<td>202</td>
<td>MySQL error</td>
<td>DMEC 202 Error message: 202</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. 203</td>
</tr>
<tr>
<td>207</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. 207</td>
</tr>
<tr>
<td>208</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. 208</td>
</tr>
<tr>
<td>209</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. Communication problem, signal error</td>
</tr>
<tr>
<td>21021</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. Create foreign key failed in NDB - invalid request</td>
</tr>
<tr>
<td>21030</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. Create foreign key failed in NDB - object already exists in TC</td>
</tr>
<tr>
<td>21031</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. Create foreign key failed in NDB - no more object records in TC</td>
</tr>
<tr>
<td>21032</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. Create foreign key failed in NDB - invalid request to TC</td>
</tr>
<tr>
<td>220</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. 220</td>
</tr>
<tr>
<td>230</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. 230</td>
</tr>
<tr>
<td>232</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. 232</td>
</tr>
<tr>
<td>238</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. 238</td>
</tr>
<tr>
<td>240</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. Invalid data encountered during foreign key trigger execution</td>
</tr>
<tr>
<td>271</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>Error message. Simple Read transaction without any attributes to read</td>
</tr>
<tr>
<td>272</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td>Code</td>
<td>Error message</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>276</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>277</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>278</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>287</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>290</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>292</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>294</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>295</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>298</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>306</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4000</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4001</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4005</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4011</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4107</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>4108</td>
<td>MySQL error.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4109</td>
<td>Faulty operation type</td>
</tr>
<tr>
<td>4110</td>
<td>Faulty primary key attribute length</td>
</tr>
<tr>
<td>4111</td>
<td>Faulty length in ATTRINFO signal</td>
</tr>
<tr>
<td>4113</td>
<td>Status Error in NdbConnection</td>
</tr>
<tr>
<td>416</td>
<td>Too many operations received</td>
</tr>
<tr>
<td>4263</td>
<td>Bad state handling unlock request</td>
</tr>
<tr>
<td>4267</td>
<td>Invalid blob attributes or invalid blob parts table</td>
</tr>
<tr>
<td>4268</td>
<td>Corrupted blob value</td>
</tr>
<tr>
<td>4269</td>
<td>Error in blob head update forced rollback of transaction</td>
</tr>
<tr>
<td>4270</td>
<td>No connection to ndb management server</td>
</tr>
<tr>
<td>4273</td>
<td>Unknown blob error</td>
</tr>
<tr>
<td>4274</td>
<td>No blob table in dict cache</td>
</tr>
<tr>
<td>4320</td>
<td>Corrupted main table PK in blob operation</td>
</tr>
<tr>
<td>4321</td>
<td>Cannot use the same object twice to create table</td>
</tr>
<tr>
<td>4344</td>
<td>Only DBDICT and TRIX can send requests to TRIX</td>
</tr>
<tr>
<td>Code</td>
<td>Error Type</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>4345</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4346</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4347</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4348</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4349</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4350</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4718</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4719</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4721</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4722</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>4731</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>632</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>706</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>749</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>772</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td>Error message.</td>
</tr>
<tr>
<td>781</td>
<td>MySQL error.</td>
</tr>
</tbody>
</table>
NDB Error Codes: by Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>782</td>
<td>Invalid schema transaction key from NDB API</td>
</tr>
<tr>
<td>795</td>
<td>Invalid schema transaction id from NDB API</td>
</tr>
<tr>
<td>809</td>
<td>Out of LongMessageBuffer in DICT</td>
</tr>
<tr>
<td>812</td>
<td></td>
</tr>
<tr>
<td>833</td>
<td></td>
</tr>
<tr>
<td>871</td>
<td></td>
</tr>
<tr>
<td>882</td>
<td></td>
</tr>
<tr>
<td>883</td>
<td></td>
</tr>
<tr>
<td>887</td>
<td></td>
</tr>
<tr>
<td>888</td>
<td></td>
</tr>
<tr>
<td>890</td>
<td></td>
</tr>
<tr>
<td>896</td>
<td>Tuple corrupted - wrong checksum or column data in invalid format</td>
</tr>
<tr>
<td>901</td>
<td>Inconsistent ordered index. The index needs to be dropped and recreated</td>
</tr>
<tr>
<td>914</td>
<td>Invalid index stats request</td>
</tr>
<tr>
<td>916</td>
<td>Invalid index stats sys tables</td>
</tr>
</tbody>
</table>
2.4.2.17 Function not implemented

The following list enumerates all NDB errors of type NI (Function not implemented).

<table>
<thead>
<tr>
<th>Code</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4003</td>
<td>Function not implemented yet</td>
</tr>
<tr>
<td>797</td>
<td>Wrong fragment count for fully replicated table</td>
</tr>
</tbody>
</table>

2.4.3 NDB Error Codes: Single Listing

This section lists all NDB errors, ordered by NDB error code. Each listing also includes the error's NDB error type, the corresponding MySQL Server error, and the text of the error message.

- **0**: Error type not found
 - Error message: No error
- **1204**: Node Recovery error
 - Error message: Temporary failure, distribution changed
- **1217**: Temporary Resource error
 - Error message: Out of operation records in local data manager (increase SharedGlobalMemory)
- **1218**: Temporary Resource error
 - Error message: Send Buffers overloaded in NDB kernel
- **1220**: Temporary Resource error
 - Error message: REDO log files overloaded (increase FragmentLogFileSize)
NDB Error Codes: Single Listing

NDB error type. Overload error

Error message. REDO buffers overloaded (increase RedoBuffer)

1222

MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Out of transaction markers in LQH, increase SharedGlobalMemory

1223

MySQL error. DMEC

NDB error type. Node shutdown

Error message. Read operation aborted due to node shutdown

1224

MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Too many fragments

1225

MySQL error. DMEC

NDB error type. Schema error

Error message. Table not defined in local query handler

1226

MySQL error. HA_ERR_NO_SUCH_TABLE

NDB error type. Schema error

Error message. Table is being dropped

1227

MySQL error. HA_WRONG_CREATE_OPTION

NDB error type. Schema error

Error message. Invalid schema version

1228

MySQL error. DMEC

NDB error type. Schema error

Error message. Cannot use drop table for drop index

1229

MySQL error. DMEC

NDB error type. Schema error

Error message. Too long frm data supplied

1231

MySQL error. DMEC

NDB error type. Schema error

Error message. Invalid table or index to scan
<table>
<thead>
<tr>
<th>Code</th>
<th>MySQL error</th>
<th>NDB error type</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1232</td>
<td>MySQL error</td>
<td>Schema error</td>
<td>Invalid table or index to scan</td>
</tr>
<tr>
<td>1233</td>
<td>MySQL error</td>
<td>Application error</td>
<td>Table read-only</td>
</tr>
<tr>
<td>1234</td>
<td>MySQL error</td>
<td>Temporary Resource error</td>
<td>REDO log files overloaded (increase disk hardware)</td>
</tr>
<tr>
<td>1300</td>
<td>MySQL error</td>
<td>Internal error</td>
<td>Undefined error</td>
</tr>
<tr>
<td>1301</td>
<td>MySQL error</td>
<td>Internal error</td>
<td>Backup issued to not master (reissue command to master)</td>
</tr>
<tr>
<td>1302</td>
<td>MySQL error</td>
<td>Application error</td>
<td>A backup is already running</td>
</tr>
<tr>
<td>1303</td>
<td>MySQL error</td>
<td>Insufficient space</td>
<td>Out of resources</td>
</tr>
<tr>
<td>1304</td>
<td>MySQL error</td>
<td>Internal error</td>
<td>Sequence failure</td>
</tr>
<tr>
<td>1305</td>
<td>MySQL error</td>
<td>Internal error</td>
<td>Backup definition not implemented</td>
</tr>
<tr>
<td>1306</td>
<td>MySQL error</td>
<td>Application error</td>
<td>Backup not supported in diskless mode (change Diskless)</td>
</tr>
<tr>
<td>1321</td>
<td>MySQL error</td>
<td>Application error</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>MySQL Error</td>
<td>NDB Error Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>1322</td>
<td>DMEC</td>
<td>User defined error</td>
<td>Backup aborted by user request</td>
</tr>
<tr>
<td>1323</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Backup already completed</td>
</tr>
<tr>
<td>1324</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Backup log buffer full</td>
</tr>
<tr>
<td>1325</td>
<td>DMEC</td>
<td>Internal error</td>
<td>File or scan error</td>
</tr>
<tr>
<td>1326</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Backup aborted due to node failure</td>
</tr>
<tr>
<td>1327</td>
<td>DMEC</td>
<td>Internal error</td>
<td>1327</td>
</tr>
<tr>
<td>1329</td>
<td>DMEC</td>
<td>Application error</td>
<td>Backup during software upgrade not supported</td>
</tr>
<tr>
<td>1340</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Backup undefined error</td>
</tr>
<tr>
<td>1342</td>
<td>DMEC</td>
<td>Application error</td>
<td>Backup failed to allocate buffers (check configuration)</td>
</tr>
<tr>
<td>1343</td>
<td>DMEC</td>
<td>Application error</td>
<td></td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

1344

MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to setup fs buffers (check configuration)

1345

MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to allocate tables (check configuration)

1346

MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to insert file header (check configuration)

1347

MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to insert table list (check configuration)

1348

MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to allocate file record (check configuration)

1349

MySQL error. DMEC

NDB error type. Application error

Error message. Backup failed to allocate attribute record (check configuration)

1350

MySQL error. DMEC

NDB error type. Temporary Resource error

Error message. Backup failed: file already exists (use 'START BACKUP <backup id>')

1405

MySQL error. DMEC

NDB error type. Node Recovery error

Error message. Subscriber manager busy with node recovery

1407

MySQL error. DMEC

NDB error type. Schema error
<table>
<thead>
<tr>
<th>Error Code</th>
<th>NDB Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1411</td>
<td>Temporary Resource error</td>
<td>Subscription not found in subscriber manager</td>
</tr>
<tr>
<td>1412</td>
<td>Temporary Resource error</td>
<td>Subscriber manager busy with adding/removing a subscriber</td>
</tr>
<tr>
<td>1413</td>
<td>Temporary Resource error</td>
<td>Can't accept more subscribers, out of space in pool</td>
</tr>
<tr>
<td>1414</td>
<td>Temporary Resource error</td>
<td>Subscriber manager busy with adding the subscription</td>
</tr>
<tr>
<td>1415</td>
<td>Schema error</td>
<td>Subscriber manager has subscribers on this subscription</td>
</tr>
<tr>
<td>1416</td>
<td>Insufficient space</td>
<td>Subscription not unique in subscriber manager</td>
</tr>
<tr>
<td>1417</td>
<td>Schema error</td>
<td>Can't accept more subscriptions, out of space in pool</td>
</tr>
<tr>
<td>1418</td>
<td>Schema error</td>
<td>Table in subscription not defined, probably dropped</td>
</tr>
<tr>
<td>1419</td>
<td>Schema error</td>
<td>Subscription dropped, no new subscribers allowed</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Message</td>
<td>MySQL Error</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>1420</td>
<td>Subscription already dropped</td>
<td>DMEC</td>
</tr>
<tr>
<td>1421</td>
<td>Partially connected API in NdbOperation::execute()</td>
<td>DMEC</td>
</tr>
<tr>
<td>1422</td>
<td>Out of subscription records</td>
<td>DMEC</td>
</tr>
<tr>
<td>1423</td>
<td>Out of table records in SUMA</td>
<td>DMEC</td>
</tr>
<tr>
<td>1424</td>
<td>Out of MaxNoOfConcurrentSubOperations</td>
<td>DMEC</td>
</tr>
<tr>
<td>1425</td>
<td>Subscription being defined...while trying to stop subscriber</td>
<td>DMEC</td>
</tr>
<tr>
<td>1426</td>
<td>No such subscriber</td>
<td>DMEC</td>
</tr>
<tr>
<td>1427</td>
<td>Api node died, when SUB_START_REQ reached node</td>
<td>DMEC</td>
</tr>
<tr>
<td>1428</td>
<td>No replica to scan on this node (internal index stats error)</td>
<td>DMEC</td>
</tr>
<tr>
<td>1429</td>
<td></td>
<td>DMEC</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

NDB error type. Internal error
Error message. Subscriber node undefined in SubStartReq (config change?)

1501
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Out of undo space

1502
MySQL error. DMEC
NDB error type. Internal error
Error message. Filegroup already exists

1503
MySQL error. DMEC
NDB error type. Schema error
Error message. Out of filegroup records

1504
MySQL error. DMEC
NDB error type. Schema error
Error message. Out of logbuffer memory (specify smaller undo_buffer_size or increase SharedGlobalMemory)

1505
MySQL error. DMEC
NDB error type. Internal error
Error message. Invalid filegroup

1506
MySQL error. DMEC
NDB error type. Internal error
Error message. Invalid filegroup version

1507
MySQL error. DMEC
NDB error type. Internal error
Error message. File no already inuse

1508
MySQL error. DMEC
NDB error type. Schema error
Error message. Out of file records

1509
MySQL error. DMEC
NDB error type. Schema error
Error message. File system error, check if path, permissions etc

1510
MySQL error. DMEC
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1511</td>
<td>Internal error</td>
<td>File meta data error</td>
</tr>
<tr>
<td>1512</td>
<td>Internal error</td>
<td>Out of memory</td>
</tr>
<tr>
<td>1513</td>
<td>Internal error</td>
<td>File group not online</td>
</tr>
<tr>
<td>1514</td>
<td>Schema error</td>
<td>Currently there is a limit of one logfile group</td>
</tr>
<tr>
<td>1515</td>
<td>Schema error</td>
<td>Currently there is a 4G limit of one undo/data-file in 32-bit host</td>
</tr>
<tr>
<td>1516</td>
<td>Schema error</td>
<td>File too small</td>
</tr>
<tr>
<td>1517</td>
<td>Schema error</td>
<td>Insufficient disk page buffer memory. Increase DiskPageBufferMemory or reduce data file size.</td>
</tr>
<tr>
<td>1518</td>
<td>Overload error</td>
<td>IO overload error</td>
</tr>
<tr>
<td>1601</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>1602</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Out of extents, tablespace full</td>
</tr>
<tr>
<td>Error Code</td>
<td>MySQL Error Type</td>
<td>NDB Error Type</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>1603</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>1604</td>
<td>DMEC</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>1605</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>1606</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>1700</td>
<td>DMEC</td>
<td>Internal error</td>
</tr>
<tr>
<td>1701</td>
<td>DMEC</td>
<td>Application error</td>
</tr>
<tr>
<td>1702</td>
<td>DMEC</td>
<td>Application error</td>
</tr>
<tr>
<td>1703</td>
<td>DMEC</td>
<td>Internal temporary</td>
</tr>
<tr>
<td>1704</td>
<td>DMEC</td>
<td>Application error</td>
</tr>
<tr>
<td>1705</td>
<td>DMEC</td>
<td>Application error</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal temporary</td>
<td>Not ready for connection allocation yet</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
<td>Query aborted due out of operation records</td>
</tr>
<tr>
<td>20000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20001</td>
<td></td>
<td></td>
<td>Internal error</td>
<td>Query aborted due to empty query tree</td>
</tr>
<tr>
<td>20002</td>
<td></td>
<td></td>
<td>Internal error</td>
<td>Query aborted due to invalid request</td>
</tr>
<tr>
<td>20003</td>
<td></td>
<td></td>
<td>Internal error</td>
<td>Query aborted due to unknown query operation</td>
</tr>
<tr>
<td>20004</td>
<td></td>
<td></td>
<td>Internal error</td>
<td>Query aborted due to invalid tree node specification</td>
</tr>
<tr>
<td>20005</td>
<td></td>
<td></td>
<td>Internal error</td>
<td>Query aborted due to invalid tree parameter specification</td>
</tr>
<tr>
<td>20006</td>
<td></td>
<td></td>
<td>Temporary Resource error</td>
<td>Query aborted due to out of LongMessageBuffer</td>
</tr>
<tr>
<td>20007</td>
<td></td>
<td></td>
<td>Internal error</td>
<td>Query aborted due to invalid pattern</td>
</tr>
<tr>
<td>20008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

344
<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL error.</th>
<th>NDB error type.</th>
<th>Error message.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20009</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
<td>Query aborted due to out of query memory</td>
</tr>
<tr>
<td>20010</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Query aborted due to query node too big</td>
</tr>
<tr>
<td>20011</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Query aborted due to both tree and parameters contain interpreted program</td>
</tr>
<tr>
<td>20012</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Query aborted due to invalid tree parameter specification: Key parameter bits mismatch</td>
</tr>
<tr>
<td>20013</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Query aborted due to invalid tree parameter specification: Incorrect key parameter count</td>
</tr>
<tr>
<td>20014</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Query aborted due to internal error</td>
</tr>
<tr>
<td>20015</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
<td>Query aborted due to out of row memory</td>
</tr>
<tr>
<td>20016</td>
<td>DMEC</td>
<td>Node Recovery error</td>
<td>Query aborted due to node failure</td>
</tr>
<tr>
<td>NDB error type.</td>
<td>Error message.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal error</td>
<td>Query aborted due to invalid node count</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20018</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Internal error</td>
<td>Query aborted due to index fragment not found</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20019</td>
<td>MySQL error.</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
<td></td>
</tr>
<tr>
<td>Schema error</td>
<td>Query table not defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20020</td>
<td>MySQL error.</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
<td></td>
</tr>
<tr>
<td>Schema error</td>
<td>Query table is being dropped</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20021</td>
<td>MySQL error.</td>
<td>HA_ERR_TABLE_DEF_CHANGED</td>
<td></td>
</tr>
<tr>
<td>Schema error</td>
<td>Query table definition has changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Internal error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error message.</td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Internal error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error message.</td>
<td>203</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Internal error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error message.</td>
<td>207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Internal error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error message.</td>
<td>208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Internal error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error message.</td>
<td>Communication problem, signal error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21000</td>
<td>MySQL error.</td>
<td>HA_ERR_CANNOT_ADD_FOREIGN</td>
<td></td>
</tr>
<tr>
<td>Application error</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

Error message. Create foreign key failed - parent key is primary key and on-update-cascade is not allowed

21020
MySQL error. DMEC
NDB error type. Temporary Resource error

Error message. Create foreign key failed in NDB - no more object records

21021
MySQL error. DMEC
NDB error type. Internal error

Error message. Create foreign key failed in NDB - invalid request

21022
MySQL error. DMEC
NDB error type. Schema error

Error message. Create foreign key failed in NDB - parent table is not table

21023
MySQL error. DMEC
NDB error type. Schema error

Error message. Create foreign key failed in NDB - invalid parent table version

21024
MySQL error. DMEC
NDB error type. Schema error

Error message. Create foreign key failed in NDB - child table is not table

21025
MySQL error. DMEC
NDB error type. Schema error

Error message. Create foreign key failed in NDB - invalid child table version

21026
MySQL error. HA_ERR_CANNOT_ADD_FOREIGN
NDB error type. Application error

Error message. Create foreign key failed in NDB - parent index is not unique index

21027
MySQL error. DMEC
NDB error type. Schema error

Error message. Create foreign key failed in NDB - invalid parent index version

21028
MySQL error. DMEC
NDB error type. Schema error
NDB Error Codes: Single Listing

Error message. Create foreign key failed in NDB - child index is not index

21029 MySQL error. DMEC
NDB error type. Schema error
Error message. Create foreign key failed in NDB - invalid child index version

21030 MySQL error. DMEC
NDB error type. Internal error
Error message. Create foreign key failed in NDB - object already exists in TC

21031 MySQL error. DMEC
NDB error type. Internal error
Error message. Create foreign key failed in NDB - no more object records in TC

21032 MySQL error. DMEC
NDB error type. Internal error
Error message. Create foreign key failed in NDB - invalid request to TC

21033 MySQL error. HA_ERR_CANNOT_ADD_FOREIGN
NDB error type. Application error
Error message. Create foreign key failed in NDB - No parent row found

21034 MySQL error. HA_ERR_CANNOT_ADD_FOREIGN
NDB error type. Application error
Error message. Create foreign key failed - child table has Blob or Text column and on-delete-cascade is not allowed

21040 MySQL error. DMEC
NDB error type. Application error
Error message. Drop foreign key failed in NDB - foreign key not found

21041 MySQL error. DMEC
NDB error type. Schema error
Error message. Drop foreign key failed in NDB - invalid foreign key version

21042 MySQL error. DMEC
NDB error type. Schema error
NDB Error Codes: Single Listing

Error message. Drop foreign key failed in NDB - foreign key not found in TC

21060
MySQL error. DMEC
NDB error type. Application error
Error message. Build foreign key failed in NDB - foreign key not found

21061
MySQL error. DMEC
NDB error type. Schema error
Error message. Build foreign key failed in NDB - invalid foreign key version

21080
MySQL error. HA_ERR_ROW_IS_REFERENCED
NDB error type. Application error
Error message. Drop table not allowed in NDB - referenced by foreign key on another table

21081
MySQL error. HA_ERR_DROP_INDEX_FK
NDB error type. Application error
Error message. Drop index not allowed in NDB - used as parent index of a foreign key

21082
MySQL error. HA_ERR_DROP_INDEX_FK
NDB error type. Application error
Error message. Drop index not allowed in NDB - used as child index of a foreign key

21090
MySQL error. HA_ERR_CANNOT_ADD_FOREIGN
NDB error type. Application error
Error message. Create foreign key failed in NDB - name contains invalid character (/)

217
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. 217

218
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Out of LongMessageBuffer

219
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. 219
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 220 | **MySQL error.** DMEC
NDB error type. Internal error
Error message. 220 |
| 221 | **MySQL error.** DMEC
NDB error type. Temporary Resource error
Error message. Too many concurrently fired triggers, increase SharedGlobalMemory |
| 230 | **MySQL error.** DMEC
NDB error type. Internal error
Error message. 230 |
| 232 | **MySQL error.** DMEC
NDB error type. Internal error
Error message. 232 |
| 233 | **MySQL error.** DMEC
NDB error type. Temporary Resource error
Error message. Out of operation records in transaction coordinator (increase SharedGlobalMemory) |
| 237 | **MySQL error.** HA_ERR_LOCK_WAIT_TIMEOUT
NDB error type. Timeout expired
Error message. Transaction had timed out when trying to commit it |
| 238 | **MySQL error.** DMEC
NDB error type. Internal error
Error message. 238 |
| 240 | **MySQL error.** DMEC
NDB error type. Internal error
Error message. Invalid data encountered during foreign key trigger execution |
| 241 | **MySQL error.** HA_ERR_TABLE_DEF_CHANGED
NDB error type. Schema error
Error message. Invalid schema object version |
| 242 | **MySQL error.** DMEC
NDB error type. Application error
Error message. Zero concurrency in scan |
244 MySQL error. DMEC
 NDB error type. Application error
 Error message. Too high concurrency in scan

245 MySQL error. DMEC
 NDB error type. Temporary Resource error
 Error message. Too many active scans, increase MaxNoOfConcurrentScans

250 MySQL error. DMEC
 NDB error type. Node Recovery error
 Error message. Node where lock was held crashed, restart scan transaction

251 MySQL error. DMEC
 NDB error type. Temporary Resource error
 Error message. Out of frag location records in TC (increase SharedGlobalMemory)

255 MySQL error. HA_ERR_NO_REFERENCED_ROW
 NDB error type. Constraint violation
 Error message. Foreign key constraint violated: No parent row found

256 MySQL error. HA_ERR_ROW_IS_REFERENCED
 NDB error type. Constraint violation
 Error message. Foreign key constraint violated: Referenced row exists

261 MySQL error. DMEC
 NDB error type. Application error
 Error message. DML count in transaction exceeds config parameter MaxDMLOperationsPerTransaction/MaxNoOfConcurrentOperations

266 MySQL error. HA_ERR_LOCK_WAIT_TIMEOUT
 NDB error type. Timeout expired
 Error message. Time-out in NDB, probably caused by deadlock

269 MySQL error. DMEC
 NDB error type. Application error
 Error message. No condition and attributes to read in scan

270 MySQL error. DMEC
<table>
<thead>
<tr>
<th>NDB error type.</th>
<th>Error message.</th>
<th>MySQL error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node shutdown</td>
<td>Transaction aborted due to node shutdown</td>
<td>DMEC</td>
</tr>
<tr>
<td>Internal error</td>
<td>Simple Read transaction without any attributes to read</td>
<td>DMEC</td>
</tr>
<tr>
<td>Internal error</td>
<td>Update operation without any attributes to update</td>
<td>DMEC</td>
</tr>
<tr>
<td>Temporary Resource error</td>
<td>Out of transaction markers in TC, increase SharedGlobalMemory</td>
<td>DMEC</td>
</tr>
<tr>
<td>Temporary Resource error</td>
<td>Out of transaction records for complete phase (increase SharedGlobalMemory)</td>
<td>DMEC</td>
</tr>
<tr>
<td>Internal error</td>
<td>276</td>
<td>DMEC</td>
</tr>
<tr>
<td>Internal error</td>
<td>277</td>
<td>DMEC</td>
</tr>
<tr>
<td>Internal error</td>
<td>278</td>
<td>DMEC</td>
</tr>
<tr>
<td>Temporary Resource error</td>
<td>Out of transaction markers in TC, increase SharedGlobalMemory</td>
<td>DMEC</td>
</tr>
<tr>
<td>Error Code</td>
<td>MySQL Error Type</td>
<td>NDB Error Type</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>280</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>281</td>
<td>MySQL error</td>
<td>HA_ERR_NO_CONNECTION</td>
</tr>
<tr>
<td>2810</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>2811</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>2815</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>283</td>
<td>MySQL error</td>
<td>HA_ERR_NO_SUCH_TABLE</td>
</tr>
<tr>
<td>284</td>
<td>MySQL error</td>
<td>HA_ERR_TABLE_DEF_CHANGED</td>
</tr>
<tr>
<td>285</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>286</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>287</td>
<td>MySQL error</td>
<td>DMEC</td>
</tr>
<tr>
<td>Error code</td>
<td>Error message</td>
<td>MySQL error</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>288</td>
<td>Index corrupted</td>
<td>DMEC</td>
</tr>
<tr>
<td>289</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>290</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>291</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>292</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>293</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>294</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>295</td>
<td></td>
<td>DMEC</td>
</tr>
<tr>
<td>298</td>
<td></td>
<td>DMEC</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

299 MySQL error. DMEC
NDB error type. Application error
Error message. Operation not allowed or aborted due to single user mode

306 MySQL error. DMEC
NDB error type. Internal error
Error message. Out of fragment records in DIH

311 MySQL error. DMEC
NDB error type. Application error
Error message. Undefined partition used in setPartitionId

312 MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Out of LongMessageBuffer

320 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid no of nodes specified for new nodegroup

321 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid nodegroup id

322 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid node(s) specified for new nodegroup, node already in nodegroup

323 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid nodegroup id, nodegroup already existing

324 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid node(s) specified for new nodegroup, no node in nodegroup is started

325 MySQL error. DMEC
NDB error type. Application error
<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL error</th>
<th>NDB error type</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Invalid node(s) specified for new nodegroup, node ID invalid or undefined</td>
</tr>
<tr>
<td>4001</td>
<td>DMEC</td>
<td>Internal error</td>
<td>MEMORY ALLOCATION ERROR</td>
</tr>
<tr>
<td>4002</td>
<td>DMEC</td>
<td>Node Recovery error</td>
<td>Signal Definition Error</td>
</tr>
<tr>
<td>4003</td>
<td>DMEC</td>
<td>Function not implemented</td>
<td>Send to NDB failed</td>
</tr>
<tr>
<td>4004</td>
<td>DMEC</td>
<td>Application error</td>
<td>Function not implemented yet</td>
</tr>
<tr>
<td>4005</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Internal Error in NdbApi</td>
</tr>
<tr>
<td>4006</td>
<td>DMEC</td>
<td>Overload error</td>
<td>Connect failure - out of connection objects (increase MaxNoOfConcurrentTransactions)</td>
</tr>
<tr>
<td>4007</td>
<td>DMEC</td>
<td>Node Recovery error</td>
<td>Send to ndbd node failed</td>
</tr>
<tr>
<td>4008</td>
<td>DMEC</td>
<td>Unknown result error</td>
<td>Receive from NDB failed</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>MySQL ID</td>
<td>NDB Error Type</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>4009</td>
<td>MySQL error.</td>
<td>HA_ERR_NO_CONNECTION</td>
<td>Unknown result error</td>
</tr>
<tr>
<td>4010</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Node Recovery error</td>
</tr>
<tr>
<td>4011</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Internal error</td>
</tr>
<tr>
<td>4012</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Unknown result error</td>
</tr>
<tr>
<td>4013</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Node Recovery error</td>
</tr>
<tr>
<td>4021</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
</tr>
<tr>
<td>4022</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
</tr>
<tr>
<td>4023</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Node shutdown</td>
</tr>
<tr>
<td>4025</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Node Recovery error</td>
</tr>
<tr>
<td>Code</td>
<td>MySQL error.</td>
<td>NDB error type.</td>
<td>Error message.</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>4027</td>
<td>MySQL error.</td>
<td>Node Recovery error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4028</td>
<td>MySQL error.</td>
<td>Node Recovery error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4029</td>
<td>MySQL error.</td>
<td>Node Recovery error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4030</td>
<td>MySQL error.</td>
<td>Node shutdown</td>
<td>Transaction aborted due to node shutdown</td>
</tr>
<tr>
<td>4031</td>
<td>MySQL error.</td>
<td>Node Recovery error</td>
<td>Node failure caused abort of transaction</td>
</tr>
<tr>
<td>4032</td>
<td>MySQL error.</td>
<td>Temporary Resource error</td>
<td>Out of Send Buffer space in NDB API</td>
</tr>
<tr>
<td>4033</td>
<td>MySQL error.</td>
<td>Node Recovery error</td>
<td>Send to NDB failed</td>
</tr>
<tr>
<td>4034</td>
<td>MySQL error.</td>
<td>Node shutdown</td>
<td>Transaction aborted due to node shutdown</td>
</tr>
<tr>
<td>4035</td>
<td>MySQL error.</td>
<td>Node Recovery error</td>
<td>Cluster temporary unavailable</td>
</tr>
<tr>
<td>410</td>
<td>MySQL error.</td>
<td>Overload error</td>
<td></td>
</tr>
</tbody>
</table>

358
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REDO log files overloaded (decrease TimeBetweenLocalCheckpoints or increase NoOfFragmentLogFiles)</td>
</tr>
<tr>
<td>4101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Status Error in NDB</td>
</tr>
<tr>
<td>4102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Type in NdbTamper not correct</td>
</tr>
<tr>
<td>4103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No schema connections to NDB available and connect failed</td>
</tr>
<tr>
<td>4104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ndb Init in wrong state, destroy Ndb object and create a new</td>
</tr>
<tr>
<td>4105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Too many Ndb objects</td>
</tr>
<tr>
<td>4106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All Not NULL attribute have not been defined</td>
</tr>
<tr>
<td>4107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simple Transaction and Not Start</td>
</tr>
<tr>
<td>4108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Faulty operation type</td>
</tr>
<tr>
<td>4109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>NDB error type.</td>
<td>Error message.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4110</td>
<td>Internal error</td>
<td>Faulty primary key attribute length</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4111</td>
<td>Internal error</td>
<td>Faulty length in ATTRINFO signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4113</td>
<td>Internal error</td>
<td>Status Error in NdbConnection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4114</td>
<td>Application error</td>
<td>Too many operations received</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4115</td>
<td>Node Recovery error</td>
<td>Transaction was committed but all read information was not received due to node crash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4116</td>
<td>Application error</td>
<td>Operation was not defined correctly, probably missing a key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4117</td>
<td>Application error</td>
<td>Could not start transporter, configuration error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4118</td>
<td>Application error</td>
<td>Parameter error in API call</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4119</td>
<td>Node Recovery error</td>
<td>Simple/dirty read failed due to node failure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Type</td>
<td>Error Message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4120</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Scan already complete</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4121</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Cannot set name twice for an Ndb object</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4122</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Cannot set name after Ndb object is initialised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4123</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Free percent out of range. Allowed range is 1-99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>414</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>416</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Internal error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>417</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Bad state handling unlock request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Bad operation reference - double unlock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Out of transaction buffers in LQN, increase LongSignalMemory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Out of signal memory, increase LongSignalMemory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4200</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td>Application error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

4201
MySQL error. DMEC
NDB error type. Application error
Error message. Status Error when defining an operation

4202
MySQL error. DMEC
NDB error type. Application error
Error message. Variable Arrays not yet supported

4203
MySQL error. DMEC
NDB error type. Application error
Error message. Set value on tuple key attribute is not allowed

4204
MySQL error. DMEC
NDB error type. Application error
Error message. Trying to set a NOT NULL attribute to NULL

4205
MySQL error. DMEC
NDB error type. Application error
Error message. No Key attribute used to define tuple

4206
MySQL error. DMEC
NDB error type. Application error
Error message. Not allowed to equal key attribute twice

4207
MySQL error. DMEC
NDB error type. Application error
Error message. Key size is limited to 4092 bytes

4208
MySQL error. DMEC
NDB error type. Application error
Error message. Trying to read a non-stored attribute

4209
MySQL error. DMEC
NDB error type. Application error
Error message. Length parameter in equal/setValue is incorrect
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4210</td>
<td>MySQL error. DMEC. NDB error type. Application error. NDB error. NDB error type. Application error. Error message. Ndb sent more info than the length he specified.</td>
</tr>
<tr>
<td>4213</td>
<td>MySQL error. DMEC. NDB error type. Application error. Error message. Not all data of an attribute has been received.</td>
</tr>
<tr>
<td>4214</td>
<td>MySQL error. DMEC. NDB error type. Application error. Error message. Not all attributes have been received.</td>
</tr>
<tr>
<td>4215</td>
<td>MySQL error. DMEC. NDB error type. Application error. Error message. More data received than reported in TCKEYCONF message.</td>
</tr>
<tr>
<td>4217</td>
<td>MySQL error. DMEC. NDB error type. Application error. Error message. It is not allowed to increment any other than unsigned ints.</td>
</tr>
<tr>
<td>4218</td>
<td>MySQL error. DMEC. NDB error type. Application error. Error message. Currently not allowed to increment NULL-able attributes.</td>
</tr>
<tr>
<td>4219</td>
<td>MySQL error. DMEC.</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Type</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4220</td>
<td>Application error</td>
<td>Maximum size of interpretative attributes are 64 bits</td>
</tr>
<tr>
<td>4221</td>
<td>Application error</td>
<td>Trying to jump to a non-defined label</td>
</tr>
<tr>
<td>4222</td>
<td>Application error</td>
<td>Label was not found, internal error</td>
</tr>
<tr>
<td>4223</td>
<td>Application error</td>
<td>Not allowed to create jumps to yourself</td>
</tr>
<tr>
<td>4224</td>
<td>Application error</td>
<td>Not allowed to jump to a label in a different subroutine</td>
</tr>
<tr>
<td>4225</td>
<td>Application error</td>
<td>All primary keys defined, call setValue/getValue</td>
</tr>
<tr>
<td>4226</td>
<td>Application error</td>
<td>Bad number when defining a label</td>
</tr>
<tr>
<td>4227</td>
<td>Application error</td>
<td>Bad number when defining a subroutine</td>
</tr>
<tr>
<td>4228</td>
<td>Application error</td>
<td></td>
</tr>
</tbody>
</table>

364
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4229</td>
<td>MySQL error</td>
<td>Illegal interpreter function in scan definition</td>
</tr>
<tr>
<td>4230</td>
<td>MySQL error</td>
<td>Illegal register in interpreter function definition</td>
</tr>
<tr>
<td>4231</td>
<td>MySQL error</td>
<td>Illegal state when calling getValue, probably not a read</td>
</tr>
<tr>
<td>4232</td>
<td>MySQL error</td>
<td>Illegal state when calling interpreter routine</td>
</tr>
<tr>
<td>4233</td>
<td>MySQL error</td>
<td>Parallelism can only be between 1 and 240</td>
</tr>
<tr>
<td>4234</td>
<td>MySQL error</td>
<td>Calling execute (synchronous) when already prepared asynchronous transaction exists</td>
</tr>
<tr>
<td>4235</td>
<td>MySQL error</td>
<td>Illegal to call setValue in this state</td>
</tr>
<tr>
<td>4236</td>
<td>MySQL error</td>
<td>No callback from execute</td>
</tr>
<tr>
<td>4237</td>
<td>MySQL error</td>
<td>Trigger name too long</td>
</tr>
<tr>
<td>Code</td>
<td>Error Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>4238</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Trigger not found</td>
</tr>
<tr>
<td>4239</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Trigger with given name already exists</td>
</tr>
<tr>
<td>4240</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Unsupported trigger type</td>
</tr>
<tr>
<td>4241</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Index name too long</td>
</tr>
<tr>
<td>4242</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Too many indexes</td>
</tr>
<tr>
<td>4243</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Index not found</td>
</tr>
<tr>
<td>4244</td>
<td>MySQL error</td>
<td>NDB error type: Schema object already exists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Index or table with given name already exists</td>
</tr>
<tr>
<td>4247</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Illegal index/trigger create/drop/alter request</td>
</tr>
<tr>
<td>4248</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Trigger/index name invalid</td>
</tr>
<tr>
<td>4249</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Invalid table</td>
</tr>
<tr>
<td>4250</td>
<td>MySQL error</td>
<td>NDB error type: Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message: Invalid table</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

NDB error type. Application error
Error message. Invalid index type or index logging option

4251 MySQL error. HA_ERR_FOUND_DUPP_UNIQUE
NDB error type. Application error
Error message. Cannot create unique index, duplicate keys found

4252 MySQL error. DMEC
NDB error type. Application error
Error message. Failed to allocate space for index

4253 MySQL error. DMEC
NDB error type. Application error
Error message. Failed to create index table

4254 MySQL error. DMEC
NDB error type. Application error
Error message. Table not an index table

4255 MySQL error. DMEC
NDB error type. Application error
Error message. Hash index attributes must be specified in same order as table attributes

4256 MySQL error. DMEC
NDB error type. Application error
Error message. Must call Ndb::init() before this function

4257 MySQL error. DMEC
NDB error type. Application error
Error message. Tried to read too much - too many getValue calls

4258 MySQL error. DMEC
NDB error type. Application error
Error message. Cannot create unique index, duplicate attributes found in definition

4259 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid set of range scan bounds
NDB Error Codes: Single Listing

4260 MySQL error. DMEC
NDB error type. User defined error
Error message. NdbScanFilter: Operator is not defined in NdbScanFilter::Group

4261 MySQL error. DMEC
NDB error type. User defined error
Error message. NdbScanFilter: Column is NULL

4262 MySQL error. DMEC
NDB error type. User defined error
Error message. NdbScanFilter: Condition is out of bounds

4263 MySQL error. DMEC
NDB error type. Internal error
Error message. Invalid blob attributes or invalid blob parts table

4264 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid usage of blob attribute

4265 MySQL error. DMEC
NDB error type. Application error
Error message. The method is not valid in current blob state

4266 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid blob seek position

4267 MySQL error. DMEC
NDB error type. Internal error
Error message. Corrupted blob value

4268 MySQL error. DMEC
NDB error type. Internal error
Error message. Error in blob head update forced rollback of transaction
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4269 | MySQL error.
NDB error type. Internal error
Error message. No connection to ndb management server |
| 4270 | MySQL error.
NDB error type. Internal error
Error message. Unknown blob error |
| 4271 | MySQL error.
NDB error type. Application error
Error message. Invalid index object, not retrieved via getindex() |
| 4272 | MySQL error.
NDB error type. Application error
Error message. Table definition has undefined column |
| 4273 | MySQL error.
NDB error type. Internal error
Error message. No blob table in dict cache |
| 4274 | MySQL error.
NDB error type. Internal error
Error message. Corrupted main table PK in blob operation |
| 4275 | MySQL error.
NDB error type. Application error
Error message. The blob method is incompatible with operation type or lock mode |
| 4276 | MySQL error.
NDB error type. Application error
Error message. Missing NULL ptr in end of keyData list |
| 4277 | MySQL error.
NDB error type. Application error
Error message. Key part len is to small for column |
| 4278 | MySQL error.
NDB error type. Application error |
Error message. Supplied buffer to small

4279 MySQL error. DMEC
NDB error type. Application error
Error message. Malformed string

4280 MySQL error. DMEC
NDB error type. Application error
Error message. Inconsistent key part length

4281 MySQL error. DMEC
NDB error type. Application error
Error message. Too many keys specified for key bound in scanIndex

4282 MySQL error. DMEC
NDB error type. Application error
Error message. range_no not strictly increasing in ordered multi-range index scan

4283 MySQL error. DMEC
NDB error type. Application error
Error message. key_record in index scan is not an index ndbrecord

4284 MySQL error. DMEC
NDB error type. Application error
Error message. Cannot mix NdbRecAttr and NdbRecord methods in one operation

4285 MySQL error. DMEC
NDB error type. Application error
Error message. NULL NdbRecord pointer

4286 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid range_no (must be < 4096)

4287 MySQL error. DMEC
NDB error type. Application error
Error message. The key_record and attribute_record in primary key operation do not belong to the same table

4288 MySQL error. DMEC
NDB Error Codes: Single Listing

NDB error type. Application error
Error message. Blob handle for column not available

4289 MySQL error. DMEC
NDB error type. Application error
Error message. API version mismatch or wrong sizeof(NdbDictionary::RecordSpecification)

4290 MySQL error. DMEC
NDB error type. Application error
Error message. Missing column specification in NdbDictionary::RecordSpecification

4291 MySQL error. DMEC
NDB error type. Application error
Error message. Duplicate column specification in NdbDictionary::RecordSpecification

4292 MySQL error. DMEC
NDB error type. Application error
Error message. NdbRecord for tuple access is not an index key NdbRecord

4293 MySQL error. DMEC
NDB error type. Application error
Error message. Error returned from application scanIndex() callback

4294 MySQL error. DMEC
NDB error type. Application error
Error message. Scan filter is too large, discarded

4295 MySQL error. DMEC
NDB error type. Application error
Error message. Column is NULL in Get/SetValueSpec structure

4296 MySQL error. DMEC
NDB error type. Application error
Error message. Invalid AbortOption

4297 MySQL error. DMEC
NDB error type. Application error
NDB Error Codes: Single Listing

Error message. Invalid or unsupported OperationOptions structure
MySQL error. DMEC
NDB error type. Application error
4298

Error message. Invalid or unsupported ScanOptions structure
MySQL error. DMEC
NDB error type. Application error
4299

Error message. Incorrect combination of ScanOption flags, extraGetValues ptr and numExtraGetValues
MySQL error. DMEC
NDB error type. Application error
4300

Error message. Tuple Key Type not correct
MySQL error. DMEC
NDB error type. Application error
4301

Error message. Fragment Type not correct
MySQL error. DMEC
NDB error type. Application error
4302

Error message. Minimum Load Factor not correct
MySQL error. DMEC
NDB error type. Application error
4303

Error message. Maximum Load Factor not correct
MySQL error. DMEC
NDB error type. Application error
4304

Error message. Maximum Load Factor smaller than Minimum
MySQL error. DMEC
NDB error type. Application error
4305

Error message. K value must currently be set to 6
MySQL error. DMEC
NDB error type. Application error
4306

Error message. Memory Type not correct
MySQL error. DMEC
NDB error type. Application error
4307

372
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4308</td>
<td>Invalid table name</td>
</tr>
<tr>
<td>4309</td>
<td>Fixed array too large, maximum 64000 bytes</td>
</tr>
<tr>
<td>4310</td>
<td>Attribute Type not correct</td>
</tr>
<tr>
<td>4311</td>
<td>Storage Mode not correct</td>
</tr>
<tr>
<td>4312</td>
<td>Null Attribute Type not correct</td>
</tr>
<tr>
<td>4313</td>
<td>Index only storage for non-key attribute</td>
</tr>
<tr>
<td>4314</td>
<td>Storage Type of attribute not correct</td>
</tr>
<tr>
<td>4315</td>
<td>No more key attributes allowed after defining variable length key attribute</td>
</tr>
<tr>
<td>4316</td>
<td>Key attributes are not allowed to be NULL attributes</td>
</tr>
<tr>
<td>4317</td>
<td></td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

<table>
<thead>
<tr>
<th>NDB error type</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application error</td>
<td>Too many primary keys defined in table</td>
</tr>
<tr>
<td>Application error</td>
<td>Invalid attribute name or number</td>
</tr>
<tr>
<td>Application error</td>
<td>createAttribute called at erroneus place</td>
</tr>
<tr>
<td>Internal error</td>
<td>Cannot use the same object twice to create table</td>
</tr>
<tr>
<td>Internal error</td>
<td>Trying to start two schema transactions</td>
</tr>
<tr>
<td>Application error</td>
<td>Attempt to define distribution key when not prepared to</td>
</tr>
<tr>
<td>Application error</td>
<td>Distribution Key set on table but not defined on first attribute</td>
</tr>
<tr>
<td>Application error</td>
<td>Attempt to define distribution group when not prepared to</td>
</tr>
<tr>
<td>Application error</td>
<td>Distribution Group set on table but not defined on first attribute</td>
</tr>
</tbody>
</table>

4318 MySQL error. DMEC
4319 MySQL error. DMEC
4320 MySQL error. DMEC
4321 MySQL error. DMEC
4322 MySQL error. DMEC
4323 MySQL error. DMEC
4324 MySQL error. DMEC
4325 MySQL error. DMEC
4326 MySQL error. DMEC
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Message</th>
<th>NDB Error Type</th>
<th>MySQL Error Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4327</td>
<td>Distribution Group with erroneous number of bits</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4328</td>
<td>Distribution key is only supported on part of primary key</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4329</td>
<td>Disk memory attributes not yet supported</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4335</td>
<td>Variable stored attributes not yet supported</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4340</td>
<td>Only one autoincrement column allowed per table. Having a table without primary key uses an autoincremented hidden key, i.e. a table without a primary key can not have an autoincremented column</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4341</td>
<td>Result or attribute record must be a base table ndbrecord, not an index ndbrecord</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4342</td>
<td>Not all keys read when using option SF_OrderBy</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4343</td>
<td>Scan defined but not prepared</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
<tr>
<td>4344</td>
<td>Table with blobs does not support refresh</td>
<td>Application error</td>
<td>DMEC</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

NDB error type. Internal error
Error message. Only DBDICT and TRIX can send requests to TRIX

4345
MySQL error. DMEC
NDB error type. Internal error
Error message. TRIX block is not available yet, probably due to node failure

4346
MySQL error. DMEC
NDB error type. Internal error
Error message. Internal error at index create/build

4347
MySQL error. DMEC
NDB error type. Internal error
Error message. Bad state at alter index

4348
MySQL error. DMEC
NDB error type. Internal error
Error message. Inconsistency detected at alter index

4349
MySQL error. DMEC
NDB error type. Internal error
Error message. Inconsistency detected at index usage

4350
MySQL error. DMEC
NDB error type. Internal error
Error message. Transaction already aborted

4351
MySQL error. DMEC
NDB error type. Timeout expired
Error message. Timeout/deadlock during index build

4400
MySQL error. DMEC
NDB error type. Application error
Error message. Status Error in NdbSchemaCon

4401
MySQL error. DMEC
NDB error type. Application error
Error message. Only one schema operation per schema transaction
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4402</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. No schema operation defined before calling execute</td>
</tr>
<tr>
<td>4410</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. Schema transaction is already started</td>
</tr>
<tr>
<td>4411</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. Schema transaction not possible until upgrade complete</td>
</tr>
<tr>
<td>4412</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. Schema transaction is not started</td>
</tr>
<tr>
<td>4501</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. Insert in hash table failed when getting table information from Ndb</td>
</tr>
<tr>
<td>4502</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. GetValue not allowed in Update operation</td>
</tr>
<tr>
<td>4503</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. GetValue not allowed in Insert operation</td>
</tr>
<tr>
<td>4504</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. SetValue not allowed in Read operation</td>
</tr>
<tr>
<td>4505</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error message. NULL value not allowed in primary key search</td>
</tr>
<tr>
<td>4506</td>
<td>MySQL error.</td>
<td>NDB error type. Application error</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

NDB error type. Application error

Error message. Missing getValue/setValue when calling execute

4507

MySQL error. DMEC

NDB error type. Application error

Error message. Missing operation request when calling execute

4508

MySQL error. DMEC

NDB error type. Application error

Error message. GetValue not allowed for NdbRecord defined operation

4509

MySQL error. DMEC

NDB error type. Application error

Error message. Non SF_MultiRange scan cannot have more than one bound

4510

MySQL error. DMEC

NDB error type. Application error

Error message. User specified partition id not allowed for scan takeover operation

4511

MySQL error. DMEC

NDB error type. Application error

Error message. Blobs not allowed in NdbRecord delete result record

4512

MySQL error. DMEC

NDB error type. Application error

Error message. Incorrect combination of OperationOptions optionsPresent, extraGet/SetValues ptr and numExtraGet/SetValues

4513

MySQL error. DMEC

NDB error type. Application error

Error message. Only one scan bound allowed for non-NdbRecord setBound() API

4514

MySQL error. DMEC

NDB error type. Application error

Error message. Can only call setBound/equal() for an NdbIndexScanOperation

4515

MySQL error. DMEC
<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL Error</th>
<th>NDB Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4516</td>
<td>DMEC</td>
<td>Application error</td>
<td>Method not allowed for NdbRecord, use OperationOptions or ScanOptions structure instead</td>
</tr>
<tr>
<td>4517</td>
<td>DMEC</td>
<td>Application error</td>
<td>Illegal instruction in interpreted program</td>
</tr>
<tr>
<td>4518</td>
<td>DMEC</td>
<td>Application error</td>
<td>Bad label in branch instruction</td>
</tr>
<tr>
<td>4519</td>
<td>DMEC</td>
<td>Application error</td>
<td>Too many instructions in interpreted program</td>
</tr>
<tr>
<td>4520</td>
<td>DMEC</td>
<td>Application error</td>
<td>NdbInterpretedCode::finalise() not called</td>
</tr>
<tr>
<td>4521</td>
<td>DMEC</td>
<td>Application error</td>
<td>Call to undefined subroutine</td>
</tr>
<tr>
<td>4522</td>
<td>DMEC</td>
<td>Application error</td>
<td>Call to undefined subroutine, internal error</td>
</tr>
<tr>
<td>4523</td>
<td>DMEC</td>
<td>Application error</td>
<td>setBound() called twice for same key</td>
</tr>
<tr>
<td>4524</td>
<td>DMEC</td>
<td>Application error</td>
<td>Pseudo columns not supported by NdbRecord</td>
</tr>
<tr>
<td>Error Code</td>
<td>MySQL error.</td>
<td>NDB error type.</td>
<td>Error message.</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4535</td>
<td>DMEC</td>
<td>Application error</td>
<td>NdbInterpretedCode is for different table</td>
</tr>
<tr>
<td>4536</td>
<td>DMEC</td>
<td>Application error</td>
<td>Attempt to set bound on non key column</td>
</tr>
<tr>
<td>4537</td>
<td>DMEC</td>
<td>Application error</td>
<td>NdbScanFilter constructor taking NdbOperation is not supported for NdbRecord</td>
</tr>
<tr>
<td>4538</td>
<td>DMEC</td>
<td>Application error</td>
<td>Wrong API. Use NdbInterpretedCode for NdbRecord operations</td>
</tr>
<tr>
<td>4539</td>
<td>DMEC</td>
<td>Application error</td>
<td>NdbInterpretedCode instruction requires that table is set</td>
</tr>
<tr>
<td>4540</td>
<td>DMEC</td>
<td>Application error</td>
<td>NdbInterpretedCode not supported for operation type</td>
</tr>
<tr>
<td>4542</td>
<td>DMEC</td>
<td>Application error</td>
<td>Attempt to pass an Index column to createRecord. Use base table columns only</td>
</tr>
<tr>
<td>4543</td>
<td>DMEC</td>
<td>Application error</td>
<td>Unknown partition information type</td>
</tr>
<tr>
<td>4544</td>
<td>DMEC</td>
<td>Application error</td>
<td>Duplicate partitioning information supplied</td>
</tr>
<tr>
<td></td>
<td>DMEC</td>
<td>Application error</td>
<td>Wrong partitionInfo type for table</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Type</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td></td>
</tr>
</tbody>
</table>
| 4545 | MySQL error | NDB error type: Application error
Invalid or Unsupported PartitionInfo structure |
| 4546 | MySQL error | NDB error type: Application error
Explicit partitioning info not allowed for table and operation |
| 4547 | MySQL error | NDB error type: Application error
RecordSpecification has overlapping offsets |
| 4548 | MySQL error | NDB error type: Application error
RecordSpecification has too many elements |
| 4549 | MySQL error | NDB error type: Application error
getLockHandle only supported for primary key read with a lock |
| 4550 | MySQL error | NDB error type: Application error
Cannot releaseLockHandle until operation executed |
| 4551 | MySQL error | NDB error type: Application error
NdbLockHandle already released |
| 4552 | MySQL error | NDB error type: Application error
NdbLockHandle does not belong to transaction |
| 4553 | MySQL error | NDB error type: Application error
NdbLockHandle original operation not executed successfully |
| 4554 | MySQL error | NDB error type: Application error |

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>4555</td>
<td>Application</td>
<td>NDBBlob can only be closed from Active state</td>
</tr>
<tr>
<td>4556</td>
<td>Application</td>
<td>NDBBlob cannot be closed with pending operations</td>
</tr>
<tr>
<td>4557</td>
<td>Application</td>
<td>RecordSpecification has illegal value in column_flags</td>
</tr>
<tr>
<td>4600</td>
<td>Application</td>
<td>Transaction is already started</td>
</tr>
<tr>
<td>4601</td>
<td>Application</td>
<td>Transaction is not started</td>
</tr>
<tr>
<td>4602</td>
<td>Application</td>
<td>You must call getNdbOperation before executeScan</td>
</tr>
<tr>
<td>4603</td>
<td>Application</td>
<td>There can only be ONE operation in a scan transaction</td>
</tr>
<tr>
<td>4604</td>
<td>Application</td>
<td>takeOverScanOp, to take over a scanned row one must explicitly request keyinfo on readTuples call</td>
</tr>
<tr>
<td>4605</td>
<td>Application</td>
<td></td>
</tr>
</tbody>
</table>
4607
MySQL error. DMEC
NDB error type. Application error
Error message. You may only call readTuples() once for each operation

4608
MySQL error. DMEC
NDB error type. Application error
Error message. There may only be one operation in a scan transaction

4609
MySQL error. DMEC
NDB error type. Application error
Error message. You can not takeOverScan unless you have used openScanExclusive

4707
MySQL error. DMEC
NDB error type. Application error
Error message. Too many event have been defined

4708
MySQL error. DMEC
NDB error type. Application error
Error message. Event name is too long

4709
MySQL error. DMEC
NDB error type. Application error
Error message. Can't accept more subscribers

4710
MySQL error. DMEC
NDB error type. Application error
Error message. Event not found

4711
MySQL error. DMEC
NDB error type. Application error
Error message. Creation of event failed

4712
MySQL error. DMEC
NDB error type. Application error
Error message. Stopped event operation does not exist. Already stopped?

4713
MySQL error. DMEC
NDB Error Codes: Single Listing

NDB error type. Schema error
Error message. Column defined in event does not exist in table

4714
MySQL error. DMEC

NDB error type. Application error
Error message. Index stats sys tables NDB_INDEX_STAT_PREFIX do not exist

4715
MySQL error. DMEC

NDB error type. Application error
Error message. Index stats for specified index do not exist

4716
MySQL error. DMEC

NDB error type. Application error
Error message. Index stats methods usage error

4717
MySQL error. DMEC

NDB error type. Application error
Error message. Index stats cannot allocate memory

4718
MySQL error. DMEC

NDB error type. Internal error
Error message. Index stats samples data or memory cache is invalid

4719
MySQL error. DMEC

NDB error type. Internal error
Error message. Index stats internal error

4720
MySQL error. DMEC

NDB error type. Application error
Error message. Index stats sys tables NDB_INDEX_STAT_PREFIX partly missing or invalid

4721
MySQL error. DMEC

NDB error type. Internal error
Error message. Mysqld: index stats thread not open for requests
<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
</table>
| 4722 | MySQL error. **DMEC**
| **NDB error type.** Internal error |
| **Error message.** MySQL: index stats entry unexpectedly not found |
| 4723 | MySQL error. **DMEC**
| **NDB error type.** Application error |
| **Error message.** MySQL: index stats request ignored due to recent error |
| 4724 | MySQL error. **DMEC**
| **NDB error type.** Application error |
| **Error message.** MySQL: index stats request aborted by stats thread |
| 4725 | MySQL error. **DMEC**
| **NDB error type.** Application error |
| **Error message.** Index stats were deleted by another process |
| 4731 | MySQL error. **DMEC**
| **NDB error type.** Internal error |
| **Error message.** Event not found |
| 488 | MySQL error. **DMEC**
| **NDB error type.** Temporary Resource error |
| **Error message.** Too many active scans |
| 489 | MySQL error. **DMEC**
| **NDB error type.** Temporary Resource error |
| **Error message.** Out of scan records in LQH, increase SharedGlobalMemory |
| 490 | MySQL error. **DMEC**
| **NDB error type.** Temporary Resource error |
| **Error message.** Too many active scans |
| 499 | MySQL error. **DMEC**
| **NDB error type.** Node Recovery error |
| **Error message.** Scan take over error, restart scan transaction |
| 5024 | MySQL error. **DMEC**
<p>| NDB error type. Timeout expired |</p>
<table>
<thead>
<tr>
<th>Error code</th>
<th>MySQL error</th>
<th>NDB error type</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>5025</td>
<td>DMEC</td>
<td>Timeout expired</td>
<td>Time-out due to node shutdown not starting in time</td>
</tr>
<tr>
<td>623</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Insufficient space</td>
<td>Time-out due to node shutdown not completing in time</td>
</tr>
<tr>
<td>624</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Insufficient space</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>HA_ERR_INDEX_FILE_FULL</td>
<td>Insufficient space</td>
<td>Out of memory in Ndb Kernel, hash index part (increase DataMemory)</td>
</tr>
<tr>
<td>626</td>
<td>HA_ERR_KEY_NOT_FOUND</td>
<td>No data found</td>
<td>Tuple did not exist</td>
</tr>
<tr>
<td>630</td>
<td>HA_ERR_FOUND_DUPP_KEY</td>
<td>Constraint violation</td>
<td>Tuple already existed when attempting to insert</td>
</tr>
<tr>
<td>631</td>
<td>DMEC</td>
<td>Node Recovery error</td>
<td>Scan take over error, restart scan transaction</td>
</tr>
<tr>
<td>632</td>
<td>DMEC</td>
<td>Internal error</td>
<td></td>
</tr>
<tr>
<td>633</td>
<td>HA_ERR_INDEX_FILE_FULL</td>
<td>Insufficient space</td>
<td>Table fragment hash index has reached maximum possible size</td>
</tr>
<tr>
<td>640</td>
<td>DMEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>MySQL error.</td>
<td>NDB error type.</td>
<td>Error message.</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>677</td>
<td>DMEC</td>
<td>Overload error</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>701</td>
<td>DMEC</td>
<td>Overload error</td>
<td>Too many hash indexes (should not happen)</td>
</tr>
<tr>
<td>702</td>
<td>DMEC</td>
<td>Overload error</td>
<td>Index UNDO buffers overloaded (increase UndoIndexBuffer)</td>
</tr>
<tr>
<td>703</td>
<td>DMEC</td>
<td>Schema error</td>
<td>System busy with other schema operation</td>
</tr>
<tr>
<td>704</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Invalid table format</td>
</tr>
<tr>
<td>705</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Attribute name too long</td>
</tr>
<tr>
<td>706</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Table name too long</td>
</tr>
<tr>
<td>707</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Inconsistency during table creation</td>
</tr>
<tr>
<td>708</td>
<td>DMEC</td>
<td>Schema error</td>
<td>No more table metadata records (increase MaxNoOfTables)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schema error</td>
<td>No more attribute metadata records (increase MaxNoOfAttributes)</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Type</td>
<td>Error Message</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------</td>
<td>---------------</td>
</tr>
<tr>
<td>709</td>
<td>MySQL error. HA_ERR_NO_SUCH_TABLE</td>
<td>NDB error type. Schema error</td>
<td>Error message. No such table existed</td>
</tr>
<tr>
<td>710</td>
<td>MySQL error. DMEC</td>
<td>NDB error type. Schema error</td>
<td>Error message. Internal: Get by table name not supported, use table id.</td>
</tr>
<tr>
<td>711</td>
<td>MySQL error. DMEC</td>
<td>NDB error type. Overload error</td>
<td>Error message. System busy with node restart, schema operations not allowed</td>
</tr>
<tr>
<td>712</td>
<td>MySQL error. DMEC</td>
<td>NDB error type. Schema error</td>
<td>Error message. No more hashmap metadata records</td>
</tr>
<tr>
<td>720</td>
<td>MySQL error. DMEC</td>
<td>NDB error type. Application error</td>
<td>Error message. Attribute name reused in table definition</td>
</tr>
<tr>
<td>721</td>
<td>MySQL error. HA_ERR_TABLE_EXIST</td>
<td>NDB error type. Schema object already exists</td>
<td>Error message. Schema object with given name already exists</td>
</tr>
<tr>
<td>723</td>
<td>MySQL error. HA_ERR_NO_SUCH_TABLE</td>
<td>NDB error type. Schema error</td>
<td>Error message. No such table existed</td>
</tr>
<tr>
<td>736</td>
<td>MySQL error. DMEC</td>
<td>NDB error type. Schema error</td>
<td>Error message. Unsupported array size</td>
</tr>
<tr>
<td>737</td>
<td>MySQL error. HA_WRONG_CREATE_OPTION</td>
<td>NDB error type. Schema error</td>
<td>Error message. Attribute array size too big</td>
</tr>
<tr>
<td>738</td>
<td>MySQL error. HA_WRONG_CREATE_OPTION</td>
<td>NDB error type. Schema error</td>
<td>Error message. Record too big</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Type</td>
<td>Error Message</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>739</td>
<td>MySQL</td>
<td>Unsupported primary key length</td>
<td></td>
</tr>
<tr>
<td>740</td>
<td>MySQL</td>
<td>Nullable primary key not supported</td>
<td></td>
</tr>
<tr>
<td>741</td>
<td>DMEC</td>
<td>Unsupported alter table</td>
<td></td>
</tr>
<tr>
<td>743</td>
<td>MySQL</td>
<td>Unsupported character set in table or index</td>
<td></td>
</tr>
<tr>
<td>744</td>
<td>DMEC</td>
<td>Character string is invalid for given character set</td>
<td></td>
</tr>
<tr>
<td>745</td>
<td>MySQL</td>
<td>Distribution key not supported for char attribute (use binary attribute)</td>
<td></td>
</tr>
<tr>
<td>746</td>
<td>DMEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>747</td>
<td>DMEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>748</td>
<td>DMEC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>749</td>
<td>MySQL</td>
<td>Primary Table in wrong state</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>IE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDB error type.</td>
<td>Error message.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Invalid file type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>751</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Out of file records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>752</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Invalid file format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>753</td>
<td>MySQL error.</td>
<td>IE</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Invalid filegroup for file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>754</td>
<td>MySQL error.</td>
<td>IE</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Invalid filegroup version when creating file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>755</td>
<td>MySQL error.</td>
<td>HA_MISSING_CREATE_OPTION</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Invalid tablespace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>756</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Index on disk column is not supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>757</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Varsize bitfield not supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>758</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Tablespace has changed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>759</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Invalid tablespace version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>760</td>
<td>MySQL error.</td>
<td>DMEC</td>
<td></td>
</tr>
<tr>
<td>Schema error.</td>
<td>Schema error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error code</td>
<td>MySQL error</td>
<td>NDB error type</td>
<td>Error message</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>761</td>
<td>DMEC</td>
<td>Schema error</td>
<td>File already exists,</td>
</tr>
<tr>
<td>762</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Unable to drop table as backup is in progress</td>
</tr>
<tr>
<td>763</td>
<td>DMEC</td>
<td>Application error</td>
<td>Unable to alter table as backup is in progress</td>
</tr>
<tr>
<td>764</td>
<td>HA_WRONG_CREATE_OPTION</td>
<td>Schema error</td>
<td>DDL is not supported with mixed data-node versions</td>
</tr>
<tr>
<td>765</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Out of filegroup records</td>
</tr>
<tr>
<td>766</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Cant drop file, no such file</td>
</tr>
<tr>
<td>767</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Cant drop filegroup, no such filegroup</td>
</tr>
<tr>
<td>768</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Cant drop filegroup, filegroup is used</td>
</tr>
<tr>
<td>769</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Drop undofile not supported, drop logfile group instead</td>
</tr>
<tr>
<td>770</td>
<td>DMEC</td>
<td>Schema error</td>
<td></td>
</tr>
</tbody>
</table>

NDB Error Codes: Single Listing
<table>
<thead>
<tr>
<th>Error Code</th>
<th>NDB error type</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>771</td>
<td>Schema error</td>
<td>Cant drop file, file is used</td>
</tr>
<tr>
<td>772</td>
<td>Application error</td>
<td>Given NODEGROUP doesn't exist in this cluster</td>
</tr>
<tr>
<td>773</td>
<td>Schema error</td>
<td>Out of string memory, please modify StringMemory config parameter</td>
</tr>
<tr>
<td>774</td>
<td>Schema error</td>
<td>Invalid schema object for drop</td>
</tr>
<tr>
<td>775</td>
<td>Schema error</td>
<td>Create file is not supported when Diskless=1</td>
</tr>
<tr>
<td>776</td>
<td>Application error</td>
<td>Index created on temporary table must itself be temporary</td>
</tr>
<tr>
<td>777</td>
<td>Application error</td>
<td>Cannot create a temporary index on a non-temporary table</td>
</tr>
<tr>
<td>778</td>
<td>Application error</td>
<td>A temporary table or index must be specified as not logging</td>
</tr>
<tr>
<td>779</td>
<td>Schema error</td>
<td>Invalid undo buffer size</td>
</tr>
</tbody>
</table>
780
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Too many schema transactions

781
MySQL error. DMEC
NDB error type. Internal error
Error message. Invalid schema transaction key from NDB API

782
MySQL error. DMEC
NDB error type. Internal error
Error message. Invalid schema transaction id from NDB API

783
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Too many schema operations

784
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Invalid schema transaction state

785
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Schema object is busy with another schema transaction

786
MySQL error. DMEC
NDB error type. Node Recovery error
Error message. Schema transaction aborted due to node-failure

787
MySQL error. DMEC
NDB error type. Internal temporary
Error message. Schema transaction aborted

788
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Missing schema operation at takeover of schema transaction

789
MySQL error. HA_WRONG_CREATE_OPTION
NDB error type. Application error
Error message. Logfile group not found
NDB Error Codes: Single Listing

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>790</td>
<td>MySQL error. HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Schema error</td>
</tr>
<tr>
<td></td>
<td>Error message. Invalid hashmap</td>
</tr>
<tr>
<td>791</td>
<td>MySQL error. HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Schema error</td>
</tr>
<tr>
<td></td>
<td>Error message. Too many total bits in bitfields</td>
</tr>
<tr>
<td>792</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Schema error</td>
</tr>
<tr>
<td></td>
<td>Error message. Default value for primary key column not supported</td>
</tr>
<tr>
<td>793</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td>Error message. Object definition too big</td>
</tr>
<tr>
<td>794</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td>Error message. Schema feature requires data node upgrade</td>
</tr>
<tr>
<td>795</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Internal error</td>
</tr>
<tr>
<td></td>
<td>Error message. Out of LongMessageBuffer in DICT</td>
</tr>
<tr>
<td>796</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Schema error</td>
</tr>
<tr>
<td></td>
<td>Error message. Out of schema transaction memory</td>
</tr>
<tr>
<td>797</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Function not implemented</td>
</tr>
<tr>
<td></td>
<td>Error message. Wrong fragment count for fully replicated table</td>
</tr>
<tr>
<td>798</td>
<td>MySQL error. DMEC</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Application error</td>
</tr>
<tr>
<td></td>
<td>Error message. A disk table must not be specified as no logging</td>
</tr>
<tr>
<td>799</td>
<td>MySQL error. HA_WRONG_CREATE_OPTION</td>
</tr>
<tr>
<td></td>
<td>NDB error type. Schema error</td>
</tr>
<tr>
<td></td>
<td>Error message. Non default partitioning without partitions</td>
</tr>
<tr>
<td>Code</td>
<td>Error Type</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>805</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>809</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>812</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>823</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>826</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>827</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>829</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>830</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>831</td>
<td>MySQL error.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>833</td>
<td>MySQL error.</td>
</tr>
</tbody>
</table>
Error message. 833
MySQL error. DMEC
NDB error type. Constraint violation
Error message. Illegal null attribute

Error message. 839
MySQL error. DMEC
NDB error type. Constraint violation
Error message. Trying to set a NOT NULL attribute to NULL

Error message. 840
MySQL error. DMEC
NDB error type. Constraint violation
Error message. Trying to set a NOT NULL attribute to NULL

Error message. 850
MySQL error. DMEC
NDB error type. Application error
Error message. Too long or too short default value

Error message. 851
MySQL error. DMEC
NDB error type. Application error
Error message. Too long or too short default value

Error message. 871
MySQL error. DMEC
NDB error type. Internal error
Error message. 871

Error message. 873
MySQL error. DMEC
NDB error type. Temporary Resource error
Error message. Out of transaction memory in local data manager, ordered index data (increase SharedGlobalMemory)

Error message. 874
MySQL error. DMEC
NDB error type. Application error
Error message. Too much attrinfo (e.g. scan filter) for scan in tuple manager

Error message. 876
MySQL error. DMEC
NDB error type. Application error
Error message. 876

Error message. 877
MySQL error. DMEC
NDB error type. Application error
Error message. 877

Error message. 878
MySQL error. DMEC
NDB Error Codes: Single Listing

NDB error type. Application error
Error message. 878

MySQL error. DMEC
NDB error type. Application error
Error message. 879

MySQL error. DMEC
NDB error type. Application error
Error message. 880

MySQL error. DMEC
NDB error type. Application error
Error message. Tried to read too much - too many getValue calls

MySQL error. DMEC
NDB error type. Schema error
Error message. Unable to create table, out of data pages (increase DataMemory)

MySQL error. DMEC
NDB error type. Internal error
Error message. 882

MySQL error. DMEC
NDB error type. Internal error
Error message. 883

MySQL error. DMEC
NDB error type. Application error
Error message. Stack overflow in interpreter

MySQL error. DMEC
NDB error type. Application error
Error message. Stack underflow in interpreter

MySQL error. DMEC
NDB error type. Application error
Error message. More than 65535 instructions executed in interpreter

MySQL error. DMEC
NDB error type. Internal error
Error message. 887
<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL Error</th>
<th>NDB Error Type</th>
<th>Error Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>888</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Internal error</td>
</tr>
<tr>
<td>889</td>
<td>MySQL error</td>
<td>HA_ERR_RECORD_FILE_FULL</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>890</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Internal error</td>
</tr>
<tr>
<td>891</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Overload error</td>
</tr>
<tr>
<td>892</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Application error</td>
</tr>
<tr>
<td>893</td>
<td>MySQL error</td>
<td>HA_ERR_FOUND_DUPP_KEY</td>
<td>Constraint violation</td>
</tr>
<tr>
<td>896</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Internal error</td>
</tr>
<tr>
<td>897</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Application error</td>
</tr>
<tr>
<td>899</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
</tr>
<tr>
<td>901</td>
<td>MySQL error</td>
<td>DMEC</td>
<td>Internal error</td>
</tr>
</tbody>
</table>
NDB Error Codes: Single Listing

Error message. Inconsistent ordered index. The index needs to be dropped and recreated

902 MySQL error. **HA_ERR_RECORD_FILE_FULL**
NDB error type. Insufficient space
Error message. Out of memory in Ndb Kernel, ordered index data (increase DataMemory)

903 MySQL error. **HA_ERR_INDEX_FILE_FULL**
NDB error type. Insufficient space
Error message. Too many ordered indexes (increase MaxNoOfOrderedIndexes)

904 MySQL error. **HA_ERR_INDEX_FILE_FULL**
NDB error type. Insufficient space
Error message. Out of fragment records (increase MaxNoOfOrderedIndexes)

905 MySQL error. **DMEC**
NDB error type. Insufficient space
Error message. Out of attribute records (increase MaxNoOfAttributes)

906 MySQL error. **DMEC**
NDB error type. Schema error
Error message. Unsupported attribute type in index

907 MySQL error. **DMEC**
NDB error type. Schema error
Error message. Unsupported character set in table or index

908 MySQL error. **DMEC**
NDB error type. Insufficient space
Error message. Invalid ordered index tree node size

909 MySQL error. **DMEC**
NDB error type. Temporary Resource error
Error message. Out of transaction memory in local data manager, ordered scan operation (increase SharedGlobalMemory)

910 MySQL error. **HA_ERR_NO_SUCH_TABLE**
NDB error type. Schema error
<table>
<thead>
<tr>
<th>Error Code</th>
<th>MySQL error.</th>
<th>NDB error type.</th>
<th>Error message.</th>
</tr>
</thead>
<tbody>
<tr>
<td>911</td>
<td>DMEC</td>
<td>Schema error</td>
<td>Index is being dropped</td>
</tr>
<tr>
<td>912</td>
<td>DMEC</td>
<td>Application error</td>
<td>Index stat scan requested on index with unsupported key size</td>
</tr>
<tr>
<td>913</td>
<td>DMEC</td>
<td>Application error</td>
<td>Index stat scan requested with wrong lock mode</td>
</tr>
<tr>
<td>914</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Invalid index for index stats update</td>
</tr>
<tr>
<td>915</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
<td>Invalid index stats request</td>
</tr>
<tr>
<td>916</td>
<td>DMEC</td>
<td>Internal error</td>
<td>No free index stats op</td>
</tr>
<tr>
<td>917</td>
<td>DMEC</td>
<td>Internal error</td>
<td>Invalid index stats sys tables data</td>
</tr>
<tr>
<td>918</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
<td>Cannot prepare index stats update</td>
</tr>
<tr>
<td>919</td>
<td>DMEC</td>
<td>Temporary Resource error</td>
<td>Cannot execute index stats update</td>
</tr>
<tr>
<td>Code</td>
<td>MySQL error</td>
<td>NDB error type</td>
<td>Error message</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>920</td>
<td>MySQL error</td>
<td>Application error</td>
<td>Row operation defined after refreshTuple()</td>
</tr>
<tr>
<td>921</td>
<td>MySQL error</td>
<td>Temporary Resource error</td>
<td>Out of transaction memory in local data manager, copy tuples (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>923</td>
<td>MySQL error</td>
<td>Temporary Resource error</td>
<td>Out of UNDO buffer memory (increase UNDO_BUFFER_SIZE)</td>
</tr>
<tr>
<td>924</td>
<td>MySQL error</td>
<td>Temporary Resource error</td>
<td>Out of transaction memory in local data manager, stored procedure record (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>925</td>
<td>MySQL error</td>
<td>Temporary Resource error</td>
<td>Out of transaction memory in local data manager, tup scan operation (increase SharedGlobalMemory)</td>
</tr>
<tr>
<td>926</td>
<td>MySQL error</td>
<td>Temporary Resource error</td>
<td>Out of transaction memory in local data manager, acc scan operation (increase SharedGlobalMemory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>MySQL error</th>
<th>NDB error type</th>
<th>Error message</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVALID_BLOCK_NAME</td>
<td>MySQL error</td>
<td>Application error</td>
<td>Invalid block name</td>
</tr>
<tr>
<td>INVALID_ERROR_NUMBER</td>
<td>MySQL error</td>
<td>Application error</td>
<td>Invalid error number. Should be >= 0.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Error Type</td>
<td>Message</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>INVALID_TRACE_NUMBER</td>
<td>MySQL error, DMEC</td>
<td>Application error, Invalid trace number.</td>
<td></td>
</tr>
<tr>
<td>NODE_NOT_API_NODE</td>
<td>MySQL error, DMEC</td>
<td>Application error, The specified node is not an API node.</td>
<td></td>
</tr>
<tr>
<td>NODE_SHUTDOWN_IN_PROGRESS</td>
<td>MySQL error, DMEC</td>
<td>Application error, Node shutdown in progress</td>
<td></td>
</tr>
<tr>
<td>NODE_SHUTDOWN_WOULD_CAUSE_SYSTEM_CRASH</td>
<td>MySQL error, DMEC</td>
<td>Application error, Node shutdown would cause system crash</td>
<td></td>
</tr>
<tr>
<td>NO_CONTACT_WITH_DB_NODES</td>
<td>MySQL error, DMEC</td>
<td>Application error, No contact with database nodes</td>
<td></td>
</tr>
<tr>
<td>NO_CONTACT_WITH_PROCESS</td>
<td>MySQL error, DMEC</td>
<td>Application error, No contact with the process (dead ?).</td>
<td></td>
</tr>
<tr>
<td>OPERATION_NOT_ALLOWED_START_STOP</td>
<td>MySQL error, DMEC</td>
<td>Application error, Operation not allowed while nodes are starting or stopping.</td>
<td></td>
</tr>
<tr>
<td>QRY_BATCH_SIZE_TOO_SMALL</td>
<td>MySQL error, DMEC</td>
<td>Application error, Batch size for sub scan cannot be smaller than number of fragments.</td>
<td></td>
</tr>
<tr>
<td>QRY_CHAR_OPERAND_TRUNCATED</td>
<td>MySQL error, DMEC</td>
<td>Application error, Character operand was right truncated</td>
<td></td>
</tr>
<tr>
<td>QRY_CHAR_PARAMETER_TRUNCATED</td>
<td>MySQL error, DMEC</td>
<td>Application error, Character operand was right truncated</td>
<td></td>
</tr>
<tr>
<td>Error Code</td>
<td>MySQL error.</td>
<td>NDB error type.</td>
<td>Error message.</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>QRY_DEFINITION_TOO_LARGE</td>
<td>DMEC</td>
<td>Application error</td>
<td>Query definition too large.</td>
</tr>
<tr>
<td>QRY_EMPTY_PROJECTION</td>
<td>DMEC</td>
<td>Application error</td>
<td>Query has operation with empty projection.</td>
</tr>
<tr>
<td>QRY_HASZERO_OPERATIONS</td>
<td>DMEC</td>
<td>Application error</td>
<td>Query definition should have at least one operation.</td>
</tr>
<tr>
<td>QRY_ILLEGAL_STATE</td>
<td>DMEC</td>
<td>Application error</td>
<td>Query is in illegal state for this operation.</td>
</tr>
<tr>
<td>QRY_IN_ERROR_STATE</td>
<td>DMEC</td>
<td>Application error</td>
<td>A previous query operation failed, which you missed to catch.</td>
</tr>
<tr>
<td>QRY_MULTIPLE_PARENTS</td>
<td>DMEC</td>
<td>Application error</td>
<td>Multiple 'parents' specified in linkedValues for this operation.</td>
</tr>
<tr>
<td>QRY_MULTIPLE_SCAN_SORTED</td>
<td>DMEC</td>
<td>Application error</td>
<td>Query with multiple scans may not be sorted.</td>
</tr>
<tr>
<td>QRY_NESTNOT_SUPPORTED</td>
<td>DMEC</td>
<td>Application error</td>
<td>FirstInner/Upper has to be an ancestor or a sibling.</td>
</tr>
<tr>
<td>QRY_NUM_OPERAND_RANGE</td>
<td>DMEC</td>
<td>Application error</td>
<td>Numeric operand out of range.</td>
</tr>
<tr>
<td>Error Code</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_OJ_NOT_SUPPORTED</td>
<td>MySQL error. DMEC NDB error type. Application error Outer joined scans not supported by data nodes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_OPERAND_ALREADY_BOUND</td>
<td>MySQL error. DMEC NDB error type. Application error Can't use same operand value to specify different column values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_OPERAND_HAS_WRONG_TYPE</td>
<td>MySQL error. DMEC NDB error type. Application error Incompatible datatype specified in operand argument</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_PARAMETER_HAS_WRONG_TYPE</td>
<td>MySQL error. DMEC NDB error type. Application error Parameter value has an incompatible datatype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_REQ_ARG_IS_NULL</td>
<td>MySQL error. DMEC NDB error type. Application error Required argument is NULL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_RESULT_ROW_ALREADY_DEFINED</td>
<td>MySQL error. DMEC NDB error type. Application error Result row already defined for NdbQueryOperation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_SCAN_ORDER_ALREADY_SET</td>
<td>MySQL error. DMEC NDB error type. Application error Index scan order was already set in query definition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_SEQUENTIAL_SCAN_SORTED</td>
<td>MySQL error. DMEC NDB error type. Application error Parallelism cannot be restricted for sorted scans.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_TOO_FEW_KEY_VALUES</td>
<td>MySQL error. DMEC NDB error type. Application error All required 'key' values was not specified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRY_TOO_MANY_KEY_VALUES</td>
<td>MySQL error. DMEC NDB error type. Application error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4.4 NDB Error Classifications

NDB error type. Application error
Error message. Too many 'key' or 'bound' values was specified

QRY_UNKNOWN_PARENT MySQL error. DMEC
NDB error type. Application error
Error message. Unknown 'parent' specified in linkedValue

QRY_UNRELATED_INDEX MySQL error. DMEC
NDB error type. Application error
Error message. Specified 'index' does not belong to specified 'table'

QRY_WRONG_INDEX_TYPE MySQL error. DMEC
NDB error type. Application error
Error message. Wrong type of index specified for this operation

QRY_WRONG_OPERATION_TYPE MySQL error. DMEC
NDB error type. Application error
Error message. This method cannot be invoked on this type of operation (lookup/scan/index scan).

SEND_OR_RECEIVE_FAILED MySQL error. DMEC
NDB error type. Application error
Error message. Send to process or receive failed.

SYSTEM_SHUTDOWN_IN_PROGRESS MySQL error. DMEC
NDB error type. Application error
Error message. System shutdown in progress

UNSUPPORTED_NODE_SHUTDOWN MySQL error. DMEC
NDB error type. Application error
Error message. Unsupported multi node shutdown. Abort option required.

WRONG_PROCESS_TYPE MySQL error. DMEC
NDB error type. Application error
Error message. The process has wrong type. Expected a DB process.
The following table lists the classification codes used for NDB API errors, and their descriptions. These can also be found in the file `/storage/ndb/src/ndbapi/ndberror.cpp` (*NDB 7.6 and earlier: ndberror.c*).

Table 2.90 Classification codes for NDB API errors, with corresponding error status and description.

<table>
<thead>
<tr>
<th>Classification Code</th>
<th>Error Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE</td>
<td>Success</td>
<td>No error</td>
</tr>
<tr>
<td>AE</td>
<td>Permanent error</td>
<td>Application error</td>
</tr>
<tr>
<td>CE</td>
<td>Permanent error</td>
<td>Configuration or application error</td>
</tr>
<tr>
<td>ND</td>
<td>Permanent error</td>
<td>No data found</td>
</tr>
<tr>
<td>CV</td>
<td>Permanent error</td>
<td>Constraint violation</td>
</tr>
<tr>
<td>SE</td>
<td>Permanent error</td>
<td>Schema error</td>
</tr>
<tr>
<td>OE</td>
<td>Permanent error</td>
<td>Schema object already exists</td>
</tr>
<tr>
<td>UD</td>
<td>Permanent error</td>
<td>User defined error</td>
</tr>
<tr>
<td>IS</td>
<td>Permanent error</td>
<td>Insufficient space</td>
</tr>
<tr>
<td>TR</td>
<td>Temporary error</td>
<td>Temporary Resource error</td>
</tr>
<tr>
<td>NR</td>
<td>Temporary error</td>
<td>Node Recovery error</td>
</tr>
<tr>
<td>OL</td>
<td>Temporary error</td>
<td>Overload error</td>
</tr>
<tr>
<td>TO</td>
<td>Temporary error</td>
<td>Timeout expired</td>
</tr>
<tr>
<td>NS</td>
<td>Temporary error</td>
<td>Node shutdown</td>
</tr>
<tr>
<td>IT</td>
<td>Temporary error</td>
<td>Internal temporary</td>
</tr>
<tr>
<td>UR</td>
<td>Unknown result</td>
<td>Unknown result error</td>
</tr>
<tr>
<td>UE</td>
<td>Unknown result</td>
<td>Unknown error code</td>
</tr>
<tr>
<td>IE</td>
<td>Permanent error</td>
<td>Internal error</td>
</tr>
<tr>
<td>NI</td>
<td>Permanent error</td>
<td>Function not implemented</td>
</tr>
<tr>
<td>DMEC</td>
<td>Default MySQL error code</td>
<td>Used for NDB errors that are not otherwise mapped to MySQL error codes</td>
</tr>
</tbody>
</table>

In NDB 7.6.4 and later, you can also obtain the descriptions for the classification codes from the `error_classification` column of the `ndbinfo.error_messages` table.

2.5 NDB API Examples

This section provides code examples illustrating how to accomplish some basic tasks using the NDB API.

All of these examples can be compiled and run as provided, and produce sample output to demonstrate their effects.

Note

For an NDB API program to connect to the cluster, the cluster configuration file must have at least one `[api]` section that is not assigned to an SQL node and that can be accessed from the host where the NDB API application runs. You can also use an unassigned `[mysqld]` section for this purpose, although we recommend that you use `[mysqld]` sections for SQL nodes and `[api]` sections.
2.5.1 NDB API Example Using Synchronous Transactions

This example illustrates the use of synchronous transactions in the NDB API. It first creates a database `ndb_examples` and a table `api_simple` (if these objects do not already exist) using the MySQL C API with an SQL node, then performs a series of basic data operations (insert, update, read, and select) on this table using the NDB API.

The compiled program takes two arguments:

1. The path to a MySQL socket file (``mysqld --socket`` option)
2. An NDB Cluster connection string (see NDB Cluster Connection Strings)

The correct output from this program is as follows:

```
ATTR1   ATTR2
 0      10
 1      1
 2      12
Detected that deleted tuple doesn't exist!
 4      14
 5      5
 6      16
 7      7
 8      18
 9      9
```

The source code for this example can be found in `storage/ndb/ndbapi-examples/ndbapi_simple/ndbapi_simple.cpp` in the NDB Cluster source tree, and is reproduced here:

```cpp
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>
#include <stdio.h>
#include <iostream>

static void run_application(MYSQL &, Ndb_cluster_connection &);

#define PRINT_ERROR(code,msg) \
    std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \ 
       << ", code: " << code \ 
       << "", msg: " << msg << "." << std::endl

#define MYSQLERROR(mysql) { \
    PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
    exit(-1); }

#define APIERROR(error) { \
    PRINT_ERROR(error.code,error.message); \
```
int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.\n";
 exit(-1);
 }
 // ndb_init must be called first
 ndb_init();

 // connect to mysql server and cluster and run application
 {
 char * mysqld_sock = argv[1];
 const char *connection_string = argv[2];
 // Object representing the cluster
 Ndb_cluster_connection cluster_connection(connection_string);

 // Connect to cluster management server (ndb_mgmd)
 if (cluster_connection.connect(4 /* retries */, 5 /* delay between retries */, 1 /* verbose */))
 {
 std::cout << "Cluster management server was not ready within 30 secs.\n";
 exit(-1);
 }

 // Optionally connect and wait for the storage nodes (ndbd's)
 if (cluster_connection.wait_until_ready(30,0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }

 // connect to mysql server
 MYSQL mysql;
 if (!mysql_init(&mysql)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", ",", ",",
 0, mysqld_sock, 0))
 MYSQLERROR(mysql);

 // run the application code
 run_application(mysql, cluster_connection);
 }
 ndb_end(0);
 return 0;
}

static void create_table(MYSQL&);
static void do_insert(Ndb&);
static void do_update(Ndb&);
static void do_delete(Ndb&);
static void do_read(Ndb&);
static void run_application(MYSQL& mysql,
 Ndb_cluster_connection &cluster_connection);

/*****************************/
* Connect to database via mysql-c *ndb_examples
/*****************************/
mysql_query(&mysql, "CREATE DATABASE ndb_examples");
if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);
create_table(mysql);

/*****************************/
* Connect to database via NDB API *
NDB API Example Using Synchronous Transactions

// Object representing the database
Ndb myNdb(&cluster_connection, "ndb_examples");
if (myNdb.init()) APIERROR(myNdb.getNdbError());

/*
 * Do different operations on database
 */
do_insert(myNdb);
do_update(myNdb);
do_delete(myNdb);
do_read(myNdb);
}

/**
* Create a table named api_simple if it does not exist *
**/
static void create_table(MYSQL &mysql)
{
 while (mysql_query(&mysql,
 "CREATE TABLE
 " api_simple"
 " (ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,"
 " ATTR2 INT UNSIGNED NOT NULL)"
 " ENGINE=NDB")
 {
 if (mysql_errno(&mysql) == ER_TABLE_EXISTS_ERROR)
 {
 std::cout << "NDB Cluster already has example table: api_simple. " << "Dropping it..." << std::endl;
 mysql_query(&mysql, "DROP TABLE api_simple");
 }
 else MYSQLERROR(mysql);
 }
}

/**
* Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *
**/
static void do_insert(Ndb myNdb)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_simple");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 for (int i = 0; i < 5; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->insertTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i);
 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->insertTuple();
 myOperation->equal("ATTR1", i+5);
 myOperation->setValue("ATTR2", i+5);
 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());
 myNdb.closeTransaction(myTransaction);
 }
}
NDB API Example Using Synchronous Transactions

```c++
static void do_update(Ndb &myNdb) {
  const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
  const NdbDictionary::Table *myTable= myDict->getTable("api_simple");

  if (myTable == NULL) APIERROR(myDict->getNdbError());

  for (int i = 0; i < 10; i+=2) {
    NdbTransaction *myTransaction= myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
    NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
    if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

    myOperation->updateTuple();
    myOperation->equal( "ATTR1", i );
    myOperation->setValue( "ATTR2", i+10);

    if( myTransaction->execute( NdbTransaction::Commit ) == -1 )
      APIERROR(myTransaction->getNdbError());

    myNdb.closeTransaction(myTransaction);
  }
}

static void do_delete(Ndb &myNdb) {
  const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
  const NdbDictionary::Table *myTable= myDict->getTable("api_simple");

  if (myTable == NULL) APIERROR(myDict->getNdbError());

  NdbTransaction *myTransaction= myNdb.startTransaction();
  if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
  NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
  if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

  myOperation->deleteTuple();
  myOperation->equal( "ATTR1", 3 );

  if (myTransaction->execute(NdbTransaction::Commit) == -1)
    APIERROR(myTransaction->getNdbError());

  myNdb.closeTransaction(myTransaction);
}

static void do_read(Ndb &myNdb) {
  const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
  const NdbDictionary::Table *myTable= myDict->getTable("api_simple");

  if (myTable == NULL) APIERROR(myDict->getNdbError());

  std::cout << "ATTR1 ATTR2" << std::endl;
  for (int i = 0; i < 10; i++) {
    NdbTransaction *myTransaction= myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
  }
```
NDB API Example Using Synchronous Transactions and Multiple Clusters

2.5.2 NDB API Example Using Synchronous Transactions and Multiple Clusters

This example demonstrates synchronous transactions and connecting to multiple clusters in a single NDB API application.

The source code for this program may be found in the NDB Cluster source tree, in the file storage/ndb/ndbapi-examples/ndbapi_simple_dual/main.cpp.

Note

The example file was formerly named ndbapi_simple_dual.cpp.

/*
 * ndbapi_simple_dual: Using synchronous transactions in NDB API
 * Correct output from this program is:
 * ATTR1 ATTR2
 * 0 10
 * 1 1
 * 2 12
 * Detected that deleted tuple doesn't exist!
 * 4 14
 * 5 5
 * 6 16
 * 7 7
 * 8 18
 * 9 9
 * ATTR1 ATTR2
 * 0 10
 * 1 1
 * 2 12
 * Detected that deleted tuple doesn't exist!
 * 4 14
 * 5 5
 * 6 16
 * 7 7
 * 8 18
 * 9 9
 */
#endif _WIN32
```c
#include <winsock2.h>
#endif
#include <mysql.h>
#include <NdbApi.hpp>
#include <stdlib.h>
// Used for cout
#include <iostream>

static void run_application(MYSQL &, Ndb_cluster_connection &, const char* table, const char* db);

#define PRINT_ERROR(code,msg) \
   std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
   " , code: " << code \
   ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
   PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
   exit(-1); } \
#define APIERROR(error) { \
   PRINT_ERROR(error.code,error.message); \
   exit(-1); }

int main(int argc, char** argv)
{
    if (argc != 5)
    {
        std::cout << "Arguments are <socket mysqld1> <connect_string cluster 1> <socket mysqld2> <connect_string cluster 2>.
        exit(-1);
    }

    // ndb_init must be called first
    ndb_init();
    {
        char * mysqld1_sock  = argv[1];
        const char *connectstring1 = argv[2];
        char * mysqld2_sock = argv[3];
        const char *connectstring2 = argv[4];

        // Object representing the cluster 1
        Ndb_cluster_connection cluster1_connection(connectstring1);
        MYSQL mysql1;
        // Object representing the cluster 2
        Ndb_cluster_connection cluster2_connection(connectstring2);
        MYSQL mysql2;

        // connect to mysql server and cluster 1 and run application
        // Connect to cluster 1 management server (ndb_mgmd)
        if (cluster1_connection.connect(4 /* retries */, 5 /* delay between retries */, 1 /* verbose */))
        {
            std::cout << "Cluster 1 management server was not ready within 30 secs.\n";
            exit(-1);
        }

        // Optionally connect and wait for the storage nodes (ndbd's)
        if (cluster1_connection.wait_until_ready(30,0) < 0)
        {
            std::cout << "Cluster 1 was not ready within 30 secs.\n";
            exit(-1);
        }

        // connect to mysql server in cluster 1
        if (!mysql_init(&mysql1))
        {
            std::cout << "mysql_init failed\n";
            exit(-1);
        }

        if (!mysql_real_connect(&mysql1, "localhost", "root", "", \
            0, mysqld1_sock, 0) )
            MYSQLERROR(mysql1);

        // connect to mysql server and cluster 2 and run application
        // Connect to cluster management server (ndb_mgmd)
```
if (cluster2_connection.connect(4 /* retries */, 5 /* delay between retries */, 1 /* verbose */)) {
 std::cout << "Cluster 2 management server was not ready within 30 secs.\n";
 exit(-1);
}

// Optionally connect and wait for the storage nodes (ndbd's)
if (cluster2_connection.wait_until_ready(30, 0) < 0) {
 std::cout << "Cluster 2 was not ready within 30 secs.\n";
 exit(-1);
}

// connect to mysql server in cluster 2
if (!mysql_init(&mysql2)) {
 std::cout << "mysql_init failed\n";
 exit(-1);
}

if (!mysql_real_connect(&mysql2, "localhost", "root", ",", ",", 0, mysql2_sock, 0))
 MYSQLERROR(mysql2);

// run the application code
run_application(mysql1, cluster1_connection, "api_simple_dual_1", "ndb_examples");
run_application(mysql2, cluster2_connection, "api_simple_dual_2", "ndb_examples");

// Note: all connections must have been destroyed before calling ndb_end()
ndb_end();

return 0;
}

static void create_table(MYSQL &mysql, const char* table);
static void do_insert(Ndb &ndb, const char* table);
static void do_update(Ndb &ndb, const char* table);
static void do_delete(Ndb &ndb, const char* table);
static void do_read(Ndb &ndb, const char* table);
static void drop_table(MYSQL &mysql, const char* table);

static void run_application(MYSQL &mysql,
 Ndb_cluster_connection &cluster_connection,
 const char* table,
 const char* db)
{
 char db_stmt[256];
 sprintf(db_stmt, "CREATE DATABASE %s\n", db);
 mysql_query(&mysql, db_stmt);
 sprintf(db_stmt, "USE %s", db);
 if (mysql_query(&mysql, db_stmt) != 0) MYSQLERROR(mysql);

 create_table(mysql, table);

 /***/
 * Connect to database via NdbApi
 /***/
 Ndb myNdb(&cluster_connection, db);
 if (myNdb.init()) APIERROR(myNdb.getNdbError());

 /*
 * Do different operations on database
 */
 do_insert(myNdb, table);
 do_update(myNdb, table);
 do_delete(myNdb, table);
 do_read(myNdb, table);
 /*
 * Drop the table
 */
 drop_table(mysql, table);
NDB API Example Using Synchronous Transactions and Multiple Clusters

/* Create a table named by table if it does not exist */
static void create_table(MYSQL &mysql, const char* table) { char create_stmt[256];
 sprintf(create_stmt, "CREATE TABLE %s (
 ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,
 ATTR2 INT UNSIGNED NOT NULL
 ENGINE=NDB", table);
 if (mysql_query(&mysql, create_stmt)) MYSQLERROR(mysql);
}

/**
* Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *
***/
static void do_insert(Ndb &myNdb, const char* table) {
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);
 if (myTable == NULL) APIERROR(myDict->getNdbError());
 for (int i = 0; i < 5; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->insertTuple();
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i);
 myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->insertTuple();
 myOperation->equal("ATTR1", i+5);
 myOperation->setValue("ATTR2", i+5);
 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());
 myNdb.closeTransaction(myTransaction);
 }
}

/***
* Update the second attribute in half of the tuples (adding 10) *
**/ static void do_update(Ndb &myNdb, const char* table) {
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);
 if (myTable == NULL) APIERROR(myDict->getNdbError());
 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->equal("ATTR1", i);
 myOperation->setValue("ATTR2", i+10);
 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());
 myNdb.closeTransaction(myTransaction);
 }
}
myOperation->updateTuple();
myOperation->equal("ATTR1", i);
myOperation->setValue("ATTR2", i+10);

if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
}

/***
* Delete one tuple (the one with primary key 3) *
***/
static void do_delete(Ndb &myNdb, const char* table)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->deleteTuple();
 myOperation->equal("ATTR1", 3);
 if (myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());
 myNdb.closeTransaction(myTransaction);
}

_Read and print all tuples *
******************************/
static void do_read(Ndb &myNdb, const char* table)
{
 const NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable(table);
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 std::cout << "ATTR1 ATTR2" << std::endl;
 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
 NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
 if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
 myOperation->readTuple(NdbOperation::LM_Read);
 myOperation->equal("ATTR1", i);
 NdbRecAttr *myRecAttr= myOperation->getValue("ATTR2", NULL);
 if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());
 if(myTransaction->execute(NdbTransaction::Commit) == -1) {
 if (i == 3) {
 std::cout << "Detected that deleted tuple doesn't exist!" << std::endl;
 } else {
 APIERROR(myTransaction->getNdbError());
 }
 } else {
 }
Prior to NDB 8.0.1, this program could not be run more than once in succession during the same session (Bug #27009386).

2.5.3 NDB API Example: Handling Errors and Retrying Transactions

This program demonstrates handling errors and retrying failed transactions using the NDB API.

The source code for this example can be found in `storage/ndb/ndbapi-examples/ndbapi_retries/ndbapi_retries.cpp` in the NDB Cluster source tree.

There are many ways to program using the NDB API. In this example, we perform two inserts in the same transaction using `NdbTransaction::execute(NoCommit)`.

In NDB API applications, there are two types of failures to be taken into account:

1. **Transaction failures**: If nonpermanent, these can be handled by re-executing the transaction.

2. **Application errors**: These are indicated by `APIERROR`; they must be handled by the application programmer.

```cpp
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>

// Used for cout
#include <iostream>

// Used for sleep (use your own version of sleep)
#include <unistd.h>

#define TIME_TO_SLEEP_BETWEEN_TRANSACTION_RETRIES 1

#define PRINT_ERROR(code,msg) \
    std::cout << "Error in " << __FILE__ << "", line: " << __LINE__ << "", code: " << code << "", msg: " << msg << "." << std::endl

#define MYSQLERROR(mysql) { \
    PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \ 
    exit(-1); } \
```
// APIERROR prints an NdbError object
//
#define APIERROR(error) \
{ std::cout << "API ERROR: " << error.code << " " << error.message \
<< std::endl \
<< " Status: " << error.status \
<< ", Classification: " << error.classification << std::endl \
<< " File: " << __FILE__ \
<< " (Line: " << __LINE__ << ")" << std::endl \
;
}

// TRANSERROR prints all error info regarding an NdbTransaction
//
#define TRANSERROR(ndbTransaction) \
{ NdbError error = ndbTransaction->getNdbError(); \
std::cout << "TRANS ERROR: " << error.code << " " << error.message \
<< std::endl \
<< " Status: " << error.status \
<< ", Classification: " << error.classification << std::endl \
<< " File: " << __FILE__ \
<< " (Line: " << __LINE__ << ")" << std::endl \
;
printTransactionError(ndbTransaction);
}

void printTransactionError(NdbTransaction *ndbTransaction) {
const NdbOperation *ndbOp = NULL;
int i=0;

/**/
/* Print NdbError object of every operations in the transaction */
/**/
while ((ndbOp = ndbTransaction->getNextCompletedOperation(ndbOp)) != NULL) {
NdbError error = ndbOp->getNdbError();
std::cout << " OPERATION " << i++ << ", "
<< error.code << " " << error.message << std::endl
<< " Status: " << error.status
<< ", Classification: " << error.classification << std::endl;
}

// Example insert
// @param myNdb Ndb object representing NDB Cluster
// @param myTransaction NdbTransaction used for transaction
// @param myTable Table to insert into
// @param error NdbError object returned in case of errors
// @return -1 in case of failures, 0 otherwise
int insert(int transactionId, NdbTransaction* myTransaction,
const NdbDictionary::Table *myTable) {
NdbOperation *myOperation; // For other operations

myOperation = myTransaction->getNdbOperation(myTable);
if (myOperation == NULL) return -1;

if (myOperation->insertTuple() ||
myOperation->equal("ATTR1", transactionId) ||
myOperation->setValue("ATTR2", transactionId)) {
APIERROR(myOperation->getNdbError());
exit(-1);
}

return myTransaction->execute(NdbTransaction::NoCommit);
}
NDB API Example: Handling Errors and Retrying Transactions

// Execute function which re-executes (tries 10 times) the transaction
// if there are temporary errors (e.g. the NDB Cluster is overloaded).
// @return -1 failure, 1 success
//
int executeInsertTransaction(int transactionId, Ndb* myNdb,
const NdbDictionary::Table *myTable) {
 int result = 0; // No result yet
int noOfRetriesLeft = 10;
NdbTransaction *myTransaction; // For other transactions
NdbError ndberror;

while (noOfRetriesLeft > 0 && !result) {
 /************************/
 /* Start and execute transaction */
 ************************/
myTransaction = myNdb->startTransaction();
if (myTransaction == NULL) {
 APIERROR(myNdb->getNdbError());
ndberror = myNdb->getNdbError();
result = -1; // Failure
} else if (insert(transactionId, myTransaction, myTable) ||
insert(10000+transactionId, myTransaction, myTable) ||
myTransaction->execute(NdbTransaction::Commit)) {
 TRANSERROR(myTransaction);
ndberror = myTransaction->getNdbError();
result = -1; // Failure
} else {
 result = 1; // Success
}

/*****************************/
/* If failure, then analyze error */
/*****************************/
if (result == -1) {
 switch (ndberror.status) {
 case NdbError::Success:
 break;
 case NdbError::TemporaryError:
 std::cout << "Retrying transaction..." << std::endl;
sleep(TIME_TO_SLEEP_BETWEEN_TRANSACTION_RETRIES);
--noOfRetriesLeft;
result = 0; // No completed transaction yet
break;
 case NdbError::UnknownResult:
 case NdbError::PermanentError:
std::cout << "No retry of transaction..." << std::endl;
result = -1; // Permanent failure
break;
 }
}

/*****************************/
/* Close transaction */
/*****************************/
if (myTransaction != NULL) {
 myNdb->closeTransaction(myTransaction);
}
}

if (result != 1) exit(-1);
return result;

/*****************************/
/* Create a table named api_retries if it does not exist */
/*****************************/
static void create_table(MYSQL &mysql) {
 while (mysql_query(&mysql,
"CREATE TABLE ")
}
NDB API Example: Handling Errors and Retrying Transactions

```cpp
if (r > 0)
    std::cout
    << "Cluster connect failed, possibly resolved with more retries.\n";
    exit(-1);
else if (r < 0)
    std::cout
    << "Cluster connect failed.\n";
    exit(-1);

if (cluster_connection->wait_until_ready(30,30))
    std::cout << "Cluster was not ready within 30 secs." << std::endl;
    exit(-1);

// connect to mysql server
MYSQL mysql;
if ( !mysql_init(&mysql) ) {
    std::cout << "mysql_init failed\n";
    exit(-1);
}
if ( !mysql_real_connect(&mysql, "localhost", "root", ",", ",", 0, mysqld_sock, 0) )
    MYSQLERROR(mysql);

// Connect to database via mysql-c
*******************************/
mysql_query(&mysql, "CREATE DATABASE ndb_examples");
if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);
create_table(mysql);
Ndb* myNdb= new Ndb( cluster_connection,
    "ndb_examples");  // Object representing the database
if (myNdb->init() == -1) {
```
NDB API Basic Scanning Example

```cpp
APIERROR(myNdb->getNdbError());
exit(-1);
}
const NdbDictionary::Dictionary* myDict = myNdb->getDictionary();
const NdbDictionary::Table *myTable = myDict->getTable("api_retries");
if (myTable == NULL)
{
    APIERROR(myDict->getNdbError());
    return -1;
}
/****************************************************************************
* Execute some insert transactions *
****************************************************************************/
std::cout << "Ready to insert rows. You will see notices for temporary "
    "errors, permanent errors, and retries. \n";
for (int i = 10000; i < 20000; i++) {
    executeInsertTransaction(i, myNdb, myTable);
}
std::cout << "Done.\n";
delete myNdb;
delete cluster_connection;
ndb_end(0);
return 0;
```

2.5.4 NDB API Basic Scanning Example

This example illustrates how to use the NDB scanning API. It shows how to perform a scan, how to scan for an update, and how to scan for a delete, making use of the `NdbScanFilter` and `NdbScanOperation` classes.

The source code for this example may found in the NDB Cluster source tree, in the file `storage/ndb/ndbapi-examples/ndbapi_scan/ndbapi_scan.cpp`.

This example makes use of the following classes and methods:

- `Ndb_cluster_connection`:
 - `connect()`
 - `wait_until_ready()`

- `Ndb`:
 - `init()`
 - `getDictionary()`
 - `startTransaction()`
 - `closeTransaction()`

- `NdbTransaction`:
 - `getNdbScanOperation()`
 - `execute()`

- `NdbOperation`:
 - `insertTuple()`
 - `equal()`
NDB API Basic Scanning Example

- getValue()
- setValue()

NdbScanOperation:
- readTuples()
- nextResult()
- deleteCurrentTuple()
- updateCurrentTuple()

NdbDictionary:
- Dictionary::getTable()
- Table::getColumn()
- Column::getLength()

NdbScanFilter:
- begin()
- eq()
- end()

/*
Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/

/*
 ndbapi_scan.cpp:
 * Illustrates how to use the scan api in the NDBAPI.
 * The example shows how to do scan, scan for update and scan for delete
 * using NdbScanFilter and NdbScanOperation
 *
 * Classes and methods used in this example:
 * Ndb_cluster_connection
 * connect()
 * wait_until_ready()
 *
 * Ndb
 * init()
 * getDictionary()
 * startTransaction()
 * closeTransaction()
 *
 * NdbTransaction
 * getNdbScanOperation()
*/
NDB API Basic Scanning Example

* `execute()`
* `NdbScanOperation`
 * `getValue()`
 * `readTuples()`
 * `nextResult()`
 * `deleteCurrentTuple()`
 * `updateCurrentTuple()`
* `const NdbDictionary::Dictionary`
 * `getTable()`
* `const NdbDictionary::Table`
 * `getColumn()`
* `const NdbDictionary::Column`
 * `getLength()`
* `NdbOperation`
 * `insertTuple()`
 * `equal()`
 * `setValue()`
* `NdbScanFilter`
 * `begin()`
 * `eq()`
 * `end()`
* `#ifdef _WIN32`
 * `#include <winsock2.h>`
* `#endif`
 * `#include <mysql.h>`
 * `#include <mysqld_error.h>`
 * `#include <NdbApi.hpp>`
 * `// Used for cout`
 * `#include <iostream>`
 * `#include <string.h>`
 * `#include <stdlib.h>`
 * `#include <config.h>`
 * `#ifdef HAVE_SYS_SELECT_H`
 * `#include <sys/select.h>`
* `#endif`
 * `static void milliSleep(int milliseconds){`
 * `struct timeval sleeptime;`
 * `sleeptime.tv_sec = milliseconds / 1000;`
 * `sleeptime.tv_usec = (milliseconds - (sleeptime.tv_sec * 1000)) * 1000000;`
 * `select(0, 0, 0, 0, &sleeptime);`
 }

 * `#define PRINT_ERROR(code,msg) std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ << ", code: " << code << "
```
  * `#define MYSQLERROR(mysql) { PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); exit(-1); }`
  * `#define APIERROR(error) { PRINT_ERROR(error.code,error.message); exit(-1); }`
struct Car
{
    /**
     * Note memset, so that entire char-fields are cleared
     * as all 20 bytes are significant (as type is char)
     */
    Car() { memset(this, 0, sizeof(* this)); }

    unsigned int reg_no;
    char brand[20];
    char color[20];
};
/**
 * Function to drop table
 */
void drop_table(MYSQL &mysql)
{
    if (mysql_query(&mysql, "DROP TABLE IF EXISTS api_scan"))
        MYSQLERROR(mysql);
}
/**
 * Function to create table
 */
void create_table(MYSQL &mysql)
{
    while (mysql_query(&mysql,
    "CREATE TABLE"
    " api_scan"
    " (REG_NO INT UNSIGNED NOT NULL,"
    " BRAND CHAR(20) NOT NULL,"
    " COLOR CHAR(20) NOT NULL,"
    " PRIMARY KEY USING HASH (REG_NO))"
    " ENGINE=NDB")
    {
        if (mysql_errno(&mysql) != ER_TABLE_EXISTS_ERROR)
            MYSQLERROR(mysql);
        std::cout << "NDB Cluster already has example table: api_scan. "
            << "Dropping it..." << std::endl;
        drop_table(mysql);
    }
}
int populate(Ndb * myNdb)
{
    int i;
    Car cars[15];

    const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
    const NdbDictionary::Table *myTable= myDict->getTable("api_scan");

    if (myTable == NULL)
        APIERROR(myDict->getNdbError());

    /**
     * Five blue mercedes
     */
    for (i = 0; i < 5; i++)
    {
        cars[i].reg_no = i;
        sprintf(cars[i].brand, "Mercedes");
        sprintf(cars[i].color, "Blue");
    }

    /**
     * Five black bmw
     */
    for (i = 5; i < 10; i++)
    {
        cars[i].reg_no = i;
    }
```c
/**
 * Five pink toyotas
 */
for (i = 10; i < 15; i++)
{
 cars[i].reg_no = i;
 sprintf(cars[i].brand, "Toyota");
 sprintf(cars[i].color, "Pink");
}

NdbTransaction* myTrans = myNdb->startTransaction();
if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

for (i = 0; i < 15; i++)
{
 NdbOperation* myNdbOperation = myTrans->getNdbOperation(myTable);
 if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
 myNdbOperation->insertTuple();
 myNdbOperation->equal("REG_NO", cars[i].reg_no);
 myNdbOperation->setValue("BRAND", cars[i].brand);
 myNdbOperation->setValue("COLOR", cars[i].color);
}

int check = myTrans->execute(NdbTransaction::Commit);
myTrans->close();
return check != -1;
}

int scan_delete(Ndb* myNdb, int column, const char * color)
{
 // Scan all records exclusive and delete them one by one
 int retryAttempt = 0;
 int retryMax = 10;
 int deletedRows = 0;
 NdbError err;
 NdbTransaction *myTrans;
 NdbScanOperation *myScanOp;

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 /**
 * Loop as long as :
 * retryMax not reached
 * failed operations due to TEMPORARY errors
 * Exit loop;
 * retryMax reached
 * Permanent error (return -1)
 */
 while (true)
 {
 if (retryAttempt >= retryMax)
 {
 std::cout << "ERROR: has retried this operation " << retryAttempt
```

424
<< "times, failing!" << std::endl;
    return -1;
}

myTrans = myNdb->startTransaction();
if (myTrans == NULL)
{
    const NdbError err = myNdb->getNdbError();
    if (err.status == NdbError::TemporaryError)
    {
        milliSleep(50);
        retryAttempt++;
        continue;
    }
    std::cout << err.message << std::endl;
    return -1;
}
/**
 * Get a scan operation.
 */
myScanOp = myTrans->getNdbScanOperation(myTable);
if (myScanOp == NULL)
{
    std::cout << myTrans->getNdbError().message << std::endl;
    myNdb->closeTransaction(myTrans);
    return -1;
}
/**
 * Define a result set for the scan.
 */
if(myScanOp->readTuples(NdbOperation::LM_Exclusive) != 0)
{
    std::cout << myTrans->getNdbError().message << std::endl;
    myNdb->closeTransaction(myTrans);
    return -1;
}
/**
 * Use NdbScanFilter to define a search criteria
 */
NdbScanFilter filter(myScanOp);
if(filter.begin(NdbScanFilter::AND) < 0 ||
    filter.cmp(NdbScanFilter::COND_EQ, column, color, 20) < 0 ||
    filter.end() < 0)
{
    std::cout << myTrans->getNdbError().message << std::endl;
    myNdb->closeTransaction(myTrans);
    return -1;
}
/**
 * Start scan (NoCommit since we are only reading at this stage);
 */
if(myTrans->execute(NdbTransaction::NoCommit) != 0){
    err = myTrans->getNdbError();
    if(err.status == NdbError::TemporaryError){
        std::cout << myTrans->getNdbError().message << std::endl;
        myNdb->closeTransaction(myTrans);
        milliSleep(50);
        continue;
    }
    std::cout << err.code << std::endl;
    std::cout << myTrans->getNdbError().code << std::endl;
    myNdb->closeTransaction(myTrans);
    return -1;
}
/**
NDB API Basic Scanning Example

* start of loop: nextResult(true) means that "parallelism" number of
* rows are fetched from NDB and cached in NDBAPI
*/
while((check = myScanOp->nextResult(true)) == 0){
    do
    {
        if (myScanOp->deleteCurrentTuple() != 0)
        {
            std::cout << myTrans->getNdbError().message << std::endl;
            myNdb->closeTransaction(myTrans);
            return -1;
        }
        deletedRows++;

        /**
        * nextResult(false) means that the records
        * cached in the NDBAPI are modified before
        * fetching more rows from NDB.
        */
        } while((check = myScanOp->nextResult(false)) == 0);

        /**
        * NoCommit when all cached tuple have been marked for deletion
        */
        if(check != -1)
        {
            check = myTrans->execute(NdbTransaction::NoCommit);
        }

        /**
        * Check for errors
        */
        err = myTrans->getNdbError();
        if(check == -1)
        {
            if(err.status == NdbError::TemporaryError)
            {
                std::cout << myTrans->getNdbError().message << std::endl;
                myNdb->closeTransaction(myTrans);
                milliSleep(50);
                continue;
            }
        }/**
        * End of loop
        */
    }/**
    * Commit all prepared operations
    */
    if(myTrans->execute(NdbTransaction::Commit) == -1)
    {
        if(err.status == NdbError::TemporaryError){
            std::cout << myTrans->getNdbError().message << std::endl;
            myNdb->closeTransaction(myTrans);
            milliSleep(50);
            continue;
        }
    }

    std::cout << myTrans->getNdbError().message << std::endl;
    myNdb->closeTransaction(myTrans);
    return 0;
}

if(myTrans!=0)
{
    std::cout << myTrans->getNdbError().message << std::endl;
    myNdb->closeTransaction(myTrans);
}
return -1;
```c
int scan_update(Ndb* myNdb, int update_column, const char * before_color, const char * after_color)
{
 // Scan all records exclusive and update
 // them one by one
 int retryAttempt = 0;
 const int retryMax = 10;
 int updatedRows = 0;
 int check;
 NdbError err;
 NdbTransaction *myTrans;
 NdbScanOperation *myScanOp;

 const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_scan");

 if (myTable == NULL)
 APIERROR(myDict->getNdbError());

 /**
 * Loop as long as :
 * retryMax not reached
 * failed operations due to TEMPORARY errors
 * Exit loop;
 * retryMax reached
 * Permanent error (return -1)
 */
 while (true)
 {
 if (retryAttempt >= retryMax)
 {
 std::cout << "ERROR: has retried this operation " << retryAttempt
 << " times, failing!" << std::endl;
 return -1;
 }

 myTrans = myNdb->startTransaction();
 if (myTrans == NULL)
 {
 const NdbError err = myNdb->getNdbError();
 if (err.status == NdbError::TemporaryError)
 {
 milliSleep(50);
 retryAttempt++;
 continue;
 }
 std::cout << err.message << std::endl;
 return -1;
 }

 /**
 * Get a scan operation.
 */
 myScanOp = myTrans->getNdbScanOperation(myTable);
 if (myScanOp == NULL)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Define a result set for the scan.
 */
 }

 return updatedRows;
}
```
NDB API Basic Scanning Example

```cpp
if(myScanOp->readTuples(NdbOperation::LM_Exclusive))
{
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
}

/**
 * Use NdbScanFilter to define a search criteria
 */
NdbScanFilter filter(myScanOp) ;
if(filter.begin(NdbScanFilter::AND) < 0 ||
 filter.cmp(NdbScanFilter::COND_EQ, update_column, before_color, 20) <0 ||
 filter.end() <0)
{
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
}

/**
 * Start scan (NoCommit since we are only reading at this stage);
 */
if(myTrans->execute(NdbTransaction::NoCommit) != 0)
{
 err = myTrans->getNdbError();
 if(err.status == NdbError::TemporaryError){
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 milliSleep(50);
 continue;
 }
 std::cout << myTrans->getNdbError().code << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
}

/**
 * start of loop: nextResult(true) means that "parallelism" number of
 * rows are fetched from NDB and cached in NDBAPI
 */
while((check = myScanOp->nextResult(true)) == 0){
 do {
 /**
 * Get update operation
 */
 NdbOperation * myUpdateOp = myScanOp->updateCurrentTuple();
 if (myUpdateOp == 0)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }
 updatedRows++;
 } while((check = myScanOp->nextResult(false)) == 0);

 /**
 * NoCommit when all cached tuple have been updated
 */
 if(check != -1)
 {
```
check = myTrans->execute(NdbTransaction::NoCommit);
}
/**
 * Check for errors
 */
err = myTrans->getNdbError();
if(check == -1)
{
if(err.status == NdbError::TemporaryError){
std::cout << myTrans->getNdbError().message << std::endl;
myNdb->closeTransaction(myTrans);
milliSleep(50);
continue;
}
/**
 * End of loop
 */
}
/**
 * Commit all prepared operations
 */
if(myTrans->execute(NdbTransaction::Commit) == -1)
{
if(err.status == NdbError::TemporaryError){
std::cout << myTrans->getNdbError().message << std::endl;
myNdb->closeTransaction(myTrans);
milliSleep(50);
continue;
}
std::cout << myTrans->getNdbError().message << std::endl;
myNdb->closeTransaction(myTrans);
return 0;
}

if(myTrans!=0)
{
std::cout << myTrans->getNdbError().message << std::endl;
myNdb->closeTransaction(myTrans);
return -1;
}

int scan_print(Ndb * myNdb)
{
// Scan all records exclusive and update
// them one by one
int                  retryAttempt = 0;
const int            retryMax = 10;
int fetchedRows = 0;
int check;
NdbError              err;
NdbTransaction *myTrans;
NdbScanOperation *myScanOp;
/* Result of reading attribute value, three columns:
REG_NO, BRAND, and COLOR
*/
NdbRecAttr*         myRecAttr[3];

const NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
const NdbDictionary::Table *myTable= myDict->getTable("api_scan");

if (myTable == NULL)
    APIERROR(myDict->getNdbError());
NDB API Basic Scanning Example

```cpp
/**
 * Loop as long as :
 * retryMax not reached
 * failed operations due to TEMPORARY errors
 * Exit loop;
 * retryMax reached
 * Permanent error (return -1)
 */
while (true)
{
 if (retryAttempt >= retryMax)
 {
 std::cout << "ERROR: has retried this operation " << retryAttempt
 << " times, failing!" << std::endl;
 return -1;
 }

 myTrans = myNdb->startTransaction();
 if (myTrans == NULL)
 {
 const NdbError err = myNdb->getNdbError();
 if (err.status == NdbError::TemporaryError)
 {
 milliSleep(50);
 retryAttempt++;
 continue;
 }
 std::cout << err.message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /*
 * Define a scan operation.
 * NDBAPI.
 */
 myScanOp = myTrans->getNdbScanOperation(myTable);
 if (myScanOp == NULL)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Read without locks, without being placed in lock queue
 */
 if (myScanOp->readTuples(NdbOperation::LM_CommittedRead) == -1)
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Define storage for fetched attributes.
 * E.g., the resulting attributes of executing
 * myOp->getValue("REG_NO") is placed in myRecAttr[0].
 * No data exists in myRecAttr until transaction has committed!
 */
 myRecAttr[0] = myScanOp->getValue("REG_NO");
 myRecAttr[1] = myScanOp->getValue("BRAND");
 myRecAttr[2] = myScanOp->getValue("COLOR");
 {
 std::cout << myTrans->getNdbError().message << std::endl;
 myNdb->closeTransaction(myTrans);
 return -1;
 }

 /**
 * Start scan (NoCommit since we are only reading at this stage);
 */
```
/*
if(myTrans->execute(NdbTransaction::NoCommit) != 0){
    err = myTrans->getNdbError();
    if(err.status == NdbError::TemporaryError){
        std::cout << myTrans->getNdbError().message << std::endl;
        myNdb->closeTransaction(myTrans);
        milliSleep(50);
        continue;
    }
    std::cout << err.code << std::endl;
    std::cout << myTrans->getNdbError().code << std::endl;
    myNdb->closeTransaction(myTrans);
    return -1;
}
/**
* start of loop: nextResult(true) means that "parallelism" number of
* rows are fetched from NDB and cached in NDBAPI
*/
while((check = myScanOp->nextResult(true)) == 0){
    do {
        fetchedRows++;
    } while((check = myScanOp->nextResult(false)) == 0);
}
myNdb->closeTransaction(myTrans);
return 1;
}*/

/**
* print  REG_NO unsigned int
*/
std::cout << myRecAttr[0]->u_32_value() << "\t";
/**
* print  BRAND character string
*/
std::cout << myRecAttr[1]->aRef() << "\t";
/**
* print  COLOR character string
*/
std::cout << myRecAttr[2]->aRef() << std::endl;
/**
* nextResult(false) means that the records
* cached in the NDBAPI are modified before
* fetching more rows from NDB.
*/
} while((check = myScanOp->nextResult(false)) == 0);
}
myNdb->closeTransaction(myTrans);
return 1;
}

void mysql_connect_and_create(MYSQL & mysql, const char *socket)
{
    bool ok;
    ok = mysql_real_connect(&mysql, "localhost", "root", ",", ",", 0, socket, 0);
    if(ok) {
        mysql_query(&mysql, "CREATE DATABASE ndb_examples");
        ok = ! mysql_select_db(&mysql, "ndb_examples");
    } else {
        MYSQLERROR(mysql);
    }
}

void ndb_run_scan(const char * connectstring)
{
NDB API Basic Scanning Example

```cpp
class Ndb_cluster_connection {
public:
 Ndb_cluster_connection() = default;
 void set_object_creator(const std::function<
 Ndb& (const Ndb_cluster_connection&, const char*)>& creator) {
 creator_ = creator;
 }
private:
 std::function<
 Ndb& (const Ndb_cluster_connection&, const char*)> creator_;
 std::shared_ptr<const NdbDictionary::Dictionary> dict_ = nullptr;
 std::shared_ptr<const NdbDictionary::Dictionary> expired_dict_ = nullptr;
 std::string connectstring_;
 std::chrono::time_point<std::chrono::system_clock> heartbeat_;
 bool heartbeat_reached_;
 std::string storage_version_;
};

class Ndb_cluster_connection {
public:
 Ndb_cluster_connection(const char* connectstring) : connectstring_(connectstring) {
 heartbeat_reached_ = false;
 }
private:
 std::string connectstring_;
 bool heartbeat_reached_;
};

Ndb_cluster_connection cluster_connection(connectstring);
if (cluster_connection.connect(4, 5, 1)) {
 std::cout << "Unable to connect to cluster within 30 secs." << std::endl;
 exit(-1);
}
// Optionally connect and wait for the storage nodes (ndbd's)
if (cluster_connection.wait_until_ready(30, 0) < 0) {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
}

Ndb myNdb(&cluster_connection,"ndb_examples");
if (myNdb.init(1024) == -1) { // Set max 1024 parallel transactions
 APIERROR(myNdb.getNdbError());
 exit(-1);
}

NdbDictionary::Dictionary* myDict = myNdb.getDictionary();
NdbDictionary::Table *t = myDict->getTable("api_scan");
if (t == NULL) {
 std::cout << "Dictionary::getTable() failed.";
 exit(-1);
}
Car car;
if (t->getColumn("COLOR") ->getLength() != sizeof(car.color) || t->getColumn("BRAND") ->getLength() != sizeof(car.brand)) {
 std::cout << "Wrong table definition" << std::endl;
 exit(-1);
}
column_color = t->getColumn("COLOR") ->getColumnNo();

if (populate(&myNdb) > 0) {
 std::cout << "populate: Success!" << std::endl;
}
if (scan_print(&myNdb) > 0) {
 std::cout << "scan_print: Success!" << std::endl;
}
std::cout << "Going to delete all pink cars!" << std::endl;
{
 Car tmp;
 sprintf(tmp.color, "Pink");
 if (scan_delete(&myNdb, column_color, tmp.color) > 0) {
 std::cout << "scan_delete: Success!" << std::endl;
 }
}
if (scan_print(&myNdb) > 0) {
 std::cout << "scan_print: Success!" << std::endl;
}
{
 Car tmp1, tmp2;
 sprintf(tmp1.color, "Blue");
 sprintf(tmp2.color, "Pink");
 if (scan_delete(&myNdb, column_color, tmp1.color) > 0) {
 std::cout << "scan_delete: Success!" << std::endl;
 }
}
```
stdlib::cout << "Going to update all " " cars to " " cars!" std::endl;
if (scan_update(\&myNdb, column_color, tmp1.color, tmp2.color) > 0)
  std::cout << "scan_update: Success!" std::endl << std::endl;
if (scan_print(\&myNdb) > 0)
  std::cout << "scan_print: Success!" std::endl << std::endl;

int main(int argc, char** argv)
{
  if (argc != 3)
  {
    std::cout << "Arguments are <socket mysqld> <connect_string cluster>.
    exit(-1);
  }
  char * mysqld_sock = argv[1];
  const char *connectstring = argv[2];
  MYSQL mysql;
  mysql_init(& mysql);
  mysql_connect_and_create(mysql, mysqld_sock);
  ndb_init();
  ndb_run_scan(connectstring);
  ndb_end(0);
  mysql_close(&mysql);
  return 0;
}

### 2.5.5 NDB API Example: Using Secondary Indexes in Scans

This program illustrates how to use secondary indexes in the NDB API.

The source code for this example may be found in the NDB Cluster source tree, in `storage/ndb/ndbapi-examples/ndbapi_simple_index/main.cpp`.

**Note**

This file was previously named `ndbapi_simple_index.cpp`.

The correct output from this program is shown here:

<table>
<thead>
<tr>
<th>ATTR1</th>
<th>ATTR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Detected that deleted tuple doesn't exist!

4     14
5     5
6     16
7     7
8     18
9     9

The listing for this program is shown here:

```c++
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>

// Used for cout
#include <stdio.h>
#include <iostream>

#define PRINT_ERROR(code, msg) \
 std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
```
```
#include "code.h"

#define MYSQLERROR(mysql) {
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql));
 exit(-1); }
#define APIERROR(error) {
 PRINT_ERROR(error.code, error.message);
 exit(-1); }

int main(int argc, char** argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.
 exit(-1);
 }
 char * mysqld_sock = argv[1];
 const char *connection_string = argv[2];
 ndb_init();
 MYSQL mysql;

 /**
 * Connect to mysql server and create table
 **/
 if (!mysql_init(&mysql))
 {
 std::cout << "mysql_init failed";
 exit(-1);
 }
 if (!mysql_real_connect(&mysql, "localhost", "root", "", "",
 0, mysqld_sock, 0))
 MYSQLERROR(mysql);
 mysql_query(&mysql, "CREATE DATABASE ndb_examples_1");
 if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);

 while (mysql_query(&mysql, "CREATE TABLE" api_simple_index
 " (ATTR1 INT UNSIGNED,"
 " ATTR2 INT UNSIGNED NOT NULL,"
 " PRIMARY KEY USING HASH (ATTR1),"
 " UNIQUE MYINDEXNAME USING HASH (ATTR2))"
 " ENGINE=NDB"))
 {
 if (mysql_errno(&mysql) == ER_TABLE_EXISTS_ERROR)
 {
 std::cout << "NDB Cluster already has example table: api_scan. "
 "Dropping it...";
 } else MYSQLERROR(mysql);
 }

 /**
 * Connect to ndb cluster
 **/
 Ndb_cluster_connection *cluster_connection=
 new Ndb_cluster_connection(connection_string); // Object representing the cluster

 if (cluster_connection->connect(5,3,1))
 {
 std::cout << "Connect to cluster management server failed.\n";
 exit(-1);
 }
 if (cluster_connection->wait_until_ready(30,30))
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }
```

---

434

**NDB API Example: Using Secondary Indexes in Scans**
NDB* myNdb = new Ndb( cluster_connection, "ndb_examples" ); // Object representing the database
if (myNdb->init() == -1) {
    APIERROR(myNdb->getNdbError());
    exit(-1);
}

const NdbDictionary::Dictionary* myDict = myNdb->getDictionary();
const NdbDictionary::Table *myTable = myDict->getTable("api_simple_index");
if (myTable == NULL)
    APIERROR(myDict->getNdbError());
const NdbDictionary::Index *myIndex = myDict->getIndex("MYINDEXNAME$unique","api_simple_index");
if (myIndex == NULL)
    APIERROR(myDict->getNdbError());

/**************************************************************************
* Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),..., (9,9) *
**************************************************************************/
for (int i = 0; i < 5; i++) {
    NdbTransaction *myTransaction = myNdb->startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb->getNdbError());
    NdbOperation *myOperation = myTransaction->getNdbOperation(myTable);
    if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
    myOperation->insertTuple();
    myOperation->equal("ATTR1", i);
    myOperation->setValue("ATTR2", i);
    myOperation = myTransaction->getNdbOperation(myTable);
    if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
    myOperation->insertTuple();
    myOperation->equal("ATTR1", i+5);
    myOperation->setValue("ATTR2", i+5);
    if (myTransaction->execute( NdbTransaction::Commit ) == -1)
        APIERROR(myTransaction->getNdbError());
    myNdb->closeTransaction(myTransaction);
}

/*****************************************
* Read and print all tuples using index *
*****************************************/
std::cout << "ATTR1 ATTR2" << std::endl;
for (int i = 0; i < 10; i++) {
    NdbTransaction *myTransaction = myNdb->startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb->getNdbError());
    NdbIndexOperation *myIndexOperation =
        myTransaction->getNdbIndexOperation(myIndex);
    if (myIndexOperation == NULL) APIERROR(myTransaction->getNdbError());
    myIndexOperation->readTuple(NdbOperation::LM_Read);
    myIndexOperation->equal("ATTR2", i);
    NdbRecAttr *myRecAttr = myIndexOperation->getValue("ATTR1");
    if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());
    if (myTransaction->execute( NdbTransaction::Commit,
                                  NdbOperation::AbortOnError ) != -1)
        printf(" %2d %2d\n", myRecAttr->u_32_value(), i);
    myNdb->closeTransaction(myTransaction);
}

/**************************************************************************
* Update the second attribute in half of the tuples (adding 10) *
**************************************************************************/
for (int i = 0; i < 10; i+=2) {
    NdbTransaction *myTransaction= myNdb->startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

    NdbIndexOperation *myIndexOperation=
        myTransaction->getNdbIndexOperation(myIndex);
    if (myIndexOperation == NULL) APIERROR(myTransaction->getNdbError());

    myIndexOperation->updateTuple();
    myIndexOperation->equal("ATTR2", i );
    myIndexOperation->setValue("ATTR2", i+10);

    if( myTransaction->execute( NdbTransaction::Commit ) == -1 )
        APIERROR(myTransaction->getNdbError());

    myNdb->closeTransaction(myTransaction);
}

/**************************************************************************/  

}  

/******************************
* Read and print all tuples *
*****************************/  

{ std::cout << "ATTR1 ATTR2" << std::endl;
    for (int i = 0; i < 10; i++) {
        NdbTransaction *myTransaction= myNdb->startTransaction();
        if (myTransaction == NULL) APIERROR(myNdb->getNdbError());

        NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
        if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

        myOperation->readTuple(NdbOperation::LM_Read);
        myOperation->equal("ATTR1", i);

        NdbRecAttr *myRecAttr= myOperation->getValue("ATTR2", NULL);
        if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());

        if(myTransaction->execute( NdbTransaction::Commit,
                                  NdbOperation::AbortOnError ) == -1)
            if (i == 3) {
                std::cout << "Detected that deleted tuple doesn't exist!\n"
            } else {
                APIERROR(myTransaction->getNdbError());
            }

        if (i != 3) {
            printf(" %2d    %2d\n", i, myRecAttr->u_32_value());
        }

    myNdb->closeTransaction(myTransaction);
}

2.5.6 NDB API Example: Using NdbRecord with Hash Indexes

This program illustrates how to use secondary indexes in the NDB API with the aid of the NdbRecord interface.

The source code for this example may be found in the NDB Cluster source trees, in the file storage/ndb/ndbapi-examples/ndbapi_s_i_ndbrecord/main.cpp.

When run on a cluster having 2 data nodes, the correct output from this program is as shown here:

```
ATTR1 ATTR2
 0 0 (frag=0)
 1 1 (frag=1)
 2 2 (frag=1)
 3 3 (frag=0)
 4 4 (frag=1)
 5 5 (frag=1)
 6 6 (frag=0)
 7 7 (frag=0)
 8 8 (frag=1)
 9 9 (frag=0)

ATTR1 ATTR2
 0 10
 1 1
 2 12
 4 14
 5 5
 6 16
 7 7
 8 18
 9 9
```

The program listing is shown here:

```
// ndbapi_simple_index_ndbrecord.cpp: Using secondary unique hash indexes
// in NDB API, utilising the NdbRecord interface.
//
// Correct output from this program is (from a two-node cluster):
//
// ATTR1 ATTR2
// 0 0 (frag=0)
// 1 1 (frag=1)
// 2 2 (frag=1)
// 3 3 (frag=0)
// 4 4 (frag=1)
// 5 5 (frag=1)
// 6 6 (frag=0)
// 7 7 (frag=0)
// 8 8 (frag=1)
// 9 9 (frag=0)
//
// ATTR1 ATTR2
// 0 10
// 1 1
// 2 12
// Detected that deleted tuple doesn't exist!
// 4 14
// 5 5
// 6 16
// 7 7
// 8 18
// 9 9
```
#include <mysql.h>
#include <NdbApi.hpp>
// Used for cout
#include <stdio.h>
#include <iostream>
#define PRINT_ERROR(code,msg) \
    std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ \
             << ", code: " << code << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
    PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
    exit(1); } \
#define APIERROR(error) { \
    PRINT_ERROR(error.code,error.message); \
    exit(1); }
/* C struct representing layout of data from table
 * api_s_i_ndbrecord in memory
 * This can make it easier to work with rows in the application,
 * but is not necessary - NdbRecord can map columns to any
 * pattern of offsets.
 * In this program, the same row offsets are used for columns
 * specified as part of a key, and as part of an attribute or
 * result. This makes the example simpler, but is not
 * essential.
 */
struct MyTableRow
{
    unsigned int attr1;
    unsigned int attr2;
};
int main(int argc, char** argv)
{
    if (argc != 3)
        { \
            std::cout << "Arguments are <socket mysqld> <connect_string cluster>.
            exit(1); }
    char * mysqld_sock  = argv[1];
    const char *connection_string = argv[2];
    ndb_init();
    MYSQL mysql;
    /******************************************************************************
     * Connect to mysql server and create table
     * ******************************************************************************/
    { \
        if ( !mysql_init(&mysql) ) \
            { \
                std::cout << "mysql_init failed"; \
                exit(1); } 
        if ( !mysql_real_connect(&mysql, "localhost", "root", ",", "", \
                                  0, mysqld_sock, 0) ) \
            MYSQLERROR(mysql);
        mysql_query(&mysql, "CREATE DATABASE ndb_examples");
        if (mysql_query(&mysql, "USE ndb_examples") != 0)
            MYSQLERROR(mysql);
        mysql_query(&mysql, "DROP TABLE api_s_i_ndbrecord");
        if (mysql_query(&mysql,
            "CREATE TABLE" \
            " api_s_i_ndbrecord" \
            " (ATTR1 INT UNSIGNED," \
            " ATTR2 INT UNSIGNED NOT NULL," \
            " PRIMARY KEY USING HASH (ATTR1)," \
            " UNIQUE MYINDEXNAME USING HASH (ATTR2)" \
            " ENGINE=NDB")
            )
**NDB API Example: Using NdbRecord with Hash Indexes**

```cpp
MYSQLERROR(mysql);

/***/
// Connect to ndb cluster
/***/
Ndb_cluster_connection *cluster_connection =
 new Ndb_cluster_connection(connection_string); // Object representing the cluster
if (cluster_connection->connect(5,3,1))
{
 std::cout << "Connect to cluster management server failed.\n";
 exit(1);
}
if (cluster_connection->wait_until_ready(30,30))
{
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(1);
}
Ndb* myNdb = new Ndb(cluster_connection,
 "ndb_examples"); // Object representing the database
if (myNdb->init() == -1) {
 APIERROR(myNdb->getNdbError());
 exit(1);
}
NdbDictionary::Dictionary* myDict= myNdb->getDictionary();
const NdbDictionary::Table *myTable= myDict->getTable("api_s_i_ndbrecord");
if (myTable == NULL)
 APIERROR(myDict->getNdbError());
const NdbDictionary::Index *myIndex= myDict->getIndex("MYINDEXNAME$unique","api_s_i_ndbrecord");
if (myIndex == NULL)
 APIERROR(myDict->getNdbError());

/* Create NdbRecord descriptors. */
const NdbDictionary::Table *myTable= myDict->getTable("api_s_i_ndbrecord");
if (myTable == NULL)
 APIERROR(myDict->getNdbError());
const NdbDictionary::Index *myIndex= myDict->getIndex("MYINDEXNAME$unique","api_s_i_ndbrecord");
if (myIndex == NULL)
 APIERROR(myDict->getNdbError());

/* Create NdbRecord for primary key lookup. */
NdbDictionary::RecordSpecification spec[2];
spec[0].column= col1;
spec[0].offset= offsetof(MyTableRow, attr1);
 // So that it goes nicely into the struct
spec[0].nullbit_byte_offset= 0;
spec[0].nullbit_bit_in_byte= 0;
const NdbRecord *pk_record=
 myDict->createRecord(myTable, spec, 1, sizeof(spec[0]));
if (pk_record == NULL)
 APIERROR(myDict->getNdbError());

/* Create NdbRecord for all table attributes (insert/read). */
NdbDictionary::RecordSpecification spec[2];
spec[0].column= col1;
spec[0].offset= offsetof(MyTableRow, attr1);
spec[0].nullbit_byte_offset= 0;
spec[0].nullbit_bit_in_byte= 0;
spec[1].column= col2;
spec[1].offset= offsetof(MyTableRow, attr2);
spec[1].nullbit_byte_offset= 0;
spec[1].nullbit_bit_in_byte= 0;
const NdbRecord *attr_record=
 myDict->createRecord(myTable, spec, 1, sizeof(spec[0]));
if (attr_record == NULL)
 APIERROR(myDict->getNdbError());

/* Create NdbRecord for unique key lookup. */
```
NDB API Example: Using NdbRecord with Hash Indexes

```c
spec[0].column = col2;
spec[0].offset = offsetof(MyTableRow, attr2);
spec[0].nullbit_byte_offset = 0;
spec[0].nullbit_bit_in_byte = 0;
const NdbRecord *key_record =
myDict->createRecord(myIndex, spec, 1, sizeof(spec[0]));
if (key_record == NULL)
APIERROR(myDict->getNdbError());
MyTableRow row;

/**
* Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),..., (9,9) *
***/
for (int i = 0; i < 5; i++) {
NdbTransaction *myTransaction = myNdb->startTransaction();
if (myTransaction == NULL) APIERROR(myNdb->getNdbError());
/*
We initialise the row data and pass to each insertTuple operation
The data is copied in the call to insertTuple and so the original
row object can be reused for the two operations.
*/
row.attr1 = row.attr2 = i;
const NdbOperation *myOperation =
myTransaction->insertTuple(attr_record, (const char *)&row);
if (myOperation == NULL)
APIERROR(myTransaction->getNdbError());
row.attr1 = row.attr2 = i + 5;
myOperation =
myTransaction->insertTuple(attr_record, (const char *)&row);
if (myOperation == NULL)
APIERROR(myTransaction->getNdbError());
if (myTransaction->execute(NdbTransaction::Commit) == -1)
APIERROR(myTransaction->getNdbError());
myNdb->closeTransaction(myTransaction);
}
/**
* Read and print all tuples using index *
***/
std::cout << "ATTR1 ATTR2" << std::endl;
for (int i = 0; i < 10; i++) {
NdbTransaction *myTransaction = myNdb->startTransaction();
if (myTransaction == NULL)
APIERROR(myNdb->getNdbError());
/*
The optional OperationOptions parameter to NdbRecord methods
* can be used to specify extra reads of columns which are not in
* the NdbRecord specification, which need to be stored somewhere
* other than specified in the NdbRecord specification, or
* which cannot be specified as part of an NdbRecord (pseudo
* columns)
*/
Uint32 frag;
NdbOperation::GetValueSpec getSpec[1];
getSpec[0].column = NdbDictionary::Column::FRAGMENT;
getSpec[0].appStorage = &frag;
NdbOperation::OperationOptions options;
options.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;
options.extraGetValues = &getSpec[0];
options.numExtraGetValues = 1;
/*
We're going to read using the secondary unique hash index
* Set the value of its column
*/
```
row.attr2= i;

MyTableRow resultRow;

unsigned char mask[1]= { 0x01 }; // Only read ATTR1 into resultRow
const NdbOperation *myOperation=
  myTransaction->readTuple(key_record, (const char*) &row,
  attr_record, (char*) &resultRow,
  NdbOperation::LM_Read, mask,
  &options,
  sizeof(NdbOperation::OperationOptions));
if (myOperation == NULL)
  APIERROR(myTransaction->getNdbError());

if (myTransaction->execute( NdbTransaction::Commit,
  NdbOperation::AbortOnError ) != -1)
  printf(" %2d %2d (frag=%u)
", resultRow.attr1, i, frag);

myNdb->closeTransaction(myTransaction);

/*****************************************************************
* Update the second attribute in half of the tuples (adding 10) *
*****************************************************************/
for (int i = 0; i < 10; i+=2) {
  NdbTransaction *myTransaction= myNdb->startTransaction();
  if (myTransaction == NULL)
    APIERROR(myNdb->getNdbError());
  /* Specify key column to lookup in secondary index */
  row.attr2= i;
  /* Specify new column value to set */
  MyTableRow newRowData;
  newRowData.attr2= i+10;
  unsigned char mask[1]= { 0x02 }; // Only update ATTR2
  const NdbOperation *myOperation=
    myTransaction->updateTuple(key_record, (const char*)&row,
    attr_record,(char*) &newRowData, mask);
  if (myOperation == NULL)
    APIERROR(myTransaction->getNdbError());
  if ( myTransaction->execute( NdbTransaction::Commit ) == -1 )
    APIERROR(myTransaction->getNdbError());
  myNdb->closeTransaction(myTransaction);
}

/*****************************************
* Delete one tuple (the one with unique key 3) *
*******************************************/
{
  NdbTransaction *myTransaction= myNdb->startTransaction();
  if (myTransaction == NULL)
    APIERROR(myNdb->getNdbError());
  row.attr2= 3;
  const NdbOperation *myOperation=
    myTransaction->deleteTuple(key_record, (const char*) &row,
    attr_record);
  if (myOperation == NULL)
    APIERROR(myTransaction->getNdbError());
  if (myTransaction->execute(NdbTransaction::Commit) == -1)
    APIERROR(myTransaction->getNdbError());
  myNdb->closeTransaction(myTransaction);
}
NDB API Example Comparing RecAttr and NdbRecord

This example illustrates the key differences between the old-style NdbRecAttr API and the newer approach using NdbRecord when performing some common tasks in an NDB API application.

The source code can be found in the file storage/ndb/ndbapi-examples/ndbapi_recattr_vs_record/main.cpp in the NDB Cluster source tree.

```cpp
#include <mysql.h>
#include <NdbApi.hpp>
// Used for cout
#include <stdio.h>
#include <iostream>

// Do we use old-style (NdbRecAttr?) or new style (NdbRecord?)
enum ApiType {api_attr, api_record};

static void run_application(MYSQL &, Ndb_cluster_connection &, ApiType);
#define PRINT_ERROR(code,msg) \
 std::cout << "Error in " << __FILE__ \
 << ", line: " << __LINE__ \
 << ", code: " << code \
 << ", msg: " << msg << "\n" << std::endl
#define MYSQLERROR(mysql) { \
 PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
}
```
#include "api.h"
#include <stdio.h>
#include <stdlib.h>

#define APIERROR(error) { 
    PRINT_ERROR(error.code,error.message); 
    exit(-1); 
}

int main(int argc, char** argv)
{
    if (argc != 4)
    {
        std::cout << "Arguments are <socket mysqld> " 
                   "<connect_string cluster> <attr|record> \n";
        exit(-1);
    }
    // ndb_init must be called first
    ndb_init();
    // connect to mysql server and cluster and run application
    char * mysqld_sock = argv[1];
    const char *connection_string = argv[2];
    ApiType accessType=api_attr;

    // Object representing the cluster
    Ndb_cluster_connection cluster_connection(connection_string);

    // Connect to cluster management server (ndb_mgmd)
    if (cluster_connection.connect(4 /* retries */, 
                                    5 /* delay between retries */, 
                                    1 /* verbose */))
    {
        std::cout << "Management server not ready within 30 sec.\n";
        exit(-1);
    }

    // Optionally connect and wait for the storage nodes (ndbd’s)
    if (cluster_connection.wait_until_ready(30,0) < 0)
    {
        std::cout << "Cluster not ready within 30 sec.\n";
        exit(-1);
    }

    // connect to mysql server
    MYSQL mysql;
    if ( !mysql_init(&mysql) ) {
        std::cout << "mysql_init failed\n";
        exit(-1);
    }
    if ( !mysql_real_connect(&mysql, "localhost", "root", 
                             "", 
                             0, mysqld_sock, 0) )
    MYSQLERROR(mysql);
    if (0==strncmp("attr", argv[3], 4))
    {
        accessType=api_attr;
    } else if (0==strncmp("record", argv[3], 6))
    {
        accessType=api_record;
    } else
    {
        std::cout << "Bad access type argument : " 
                   "<" argv[3] << "\n";
        exit(-1);
    }

    // run the application code
    run_application(mysql, cluster_connection, accessType);
}

ndb_end(0);
return 0;
}

static void init_ndbrecord_info(Ndb &);
static void create_table(MYSQL &);
static void do_insert(Ndb &, ApiType);
static void do_update(Ndb &, ApiType);
static void do_delete(Ndb &, ApiType);
static void do_read(Ndb &, ApiType);
static void do_mixed_read(Ndb &);
static void do_mixed_update(Ndb &);
static void do_scan(Ndb &, ApiType);
static void do_mixed_scan(Ndb &);
static void do_indexScan(Ndb &, ApiType);
static void do_mixed_indexScan(Ndb &);
static void do_read_and_delete(Ndb &);
static void do_scan_delete(Ndb &, ApiType);
static void do_all_extras_read(Ndb &myNdb);
static void do_secondary_indexScan(Ndb &myNdb, ApiType accessType);
static void do_secondary_indexScanEqual(Ndb &myNdb, ApiType accessType);
static void do_interpreted_update(Ndb &myNdb, ApiType accessType);
static void do_interpreted_scan(Ndb &myNdb, ApiType accessType);
static void do_read_using_default(Ndb &myNdb);

/* This structure is used describe how we want data read using
 * NDBRecord to be placed into memory. This can make it easier
 * to work with data, but is not essential.
 */
struct RowData
{
    int attr1;
    int attr2;
    int attr3;
};

/* Handy struct for representing the data in the
 * secondary index
 */
struct IndexRow
{
    unsigned int attr3;
    unsigned int attr2;
};

static void run_application(MYSQL &mysql,
        Ndb_cluster_connection &cluster_connection,
        ApiType accessType)
{   
    /********************************************
    * Connect to database via mysql-c       *
    ********************************************/
    mysql_query(&mysql, "CREATE DATABASE ndb_examples");
    if (mysql_query(&mysql, "USE ndb_examples") != 0) MYSQLERROR(mysql);
    create_table(mysql);

    /********************************************
    * Connect to database via NDB API              *
    ********************************************/
    // Object representing the database
    Ndb myNdb(&cluster_connection, "ndb_examples");
    if (myNdb.init()) APIERROR(myNdb.getNdbError());
    init_ndbrecord_info(myNdb);
    /*
    * Do different operations on database     *
    */
    do_insert(myNdb, accessType);
    do_update(myNdb, accessType);
    do_delete(myNdb, accessType);
do_read(myNdb, accessType);
do_mixed_read(myNdb);
do_mixed_update(myNdb);
do_read(myNdb, accessType);
do_scan(myNdb, accessType);
do_mixed_scan(myNdb);
do_indexScan(myNdb, accessType);
do_mixed_indexScan(myNdb);
do_read_and_delete(myNdb);
do_scan_update(myNdb, accessType);
do_scan_delete(myNdb, accessType);
do_scan_lock_reread(myNdb, accessType);
do_all Extras_read(myNdb);
do_secondary_indexScan(myNdb, accessType);
do_secondary_indexScanEqual(myNdb, accessType);
do_scan(myNdb, accessType);
do_interpreted_update(myNdb, accessType);
do_interpreted_scan(myNdb, accessType);
do_read_using_default(myNdb);
do_scan(myNdb, accessType);
}

/**********************************************************
* Create a table named api_recattr_vs_record if it does not exist *
**********************************************************/
static void create_table(MYSQL &mysql)
{
if (mysql_query(&mysql,
"DROP TABLE IF EXISTS"
" api_recattr_vs_record")
MYSQLERROR(mysql);
if (mysql_query(&mysql,
"CREATE TABLE"
" api_recattr_vs_record"
" (ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,"
" ATTR2 INT UNSIGNED NOT NULL,"
" ATTR3 INT UNSIGNED NOT NULL)"
" ENGINE=NDB")
MYSQLERROR(mysql);
/* Add ordered secondary index on 2 attributes, in reverse order */
if (mysql_query(&mysql,
"CREATE INDEX"
" MYINDEXNAME"
" ON api_recattr_vs_record"
" (ATTR3, ATTR2)")
MYSQLERROR(mysql);
}

/* Clunky statics for shared NdbRecord stuff */
static const NdbDictionary::Column *pattr1Col;
static const NdbDictionary::Column *pattr2Col;
static const NdbDictionary::Column *pattr3Col;
static const NdbRecord *pkeyColumnRecord;
static const NdbRecord *pallColsRecord;
static const NdbRecord *pkeyIndexRecord;
static const NdbRecord *psecondaryIndexRecord;
static int attr1ColNum;
static int attr2ColNum;
static int attr3ColNum;

/**********************************************************
* Initialise NdbRecord structures for table and index access *
**********************************************************/
static void init_ndbrecord_info(Ndb &myNdb)
{
/* Here we create various NdbRecord structures for accessing
* data using the tables and indexes on api_recattr_vs_record
*/
NDB API Example Comparing RecAttr and NdbRecord

* We could use the default NdbRecord structures, but then
* we wouldn't have the nice ability to read and write rows
* to and from the RowData and IndexRow structs

```cpp
NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
const NdbDictionary::Table *myTable= myDict->getTable("api_recattr_vs_record");
```

```cpp
NdbDictionary::RecordSpecification recordSpec[3];
```

```cpp
if (myTable == NULL) APIERROR(myDict->getNdbError());
```

```cpp
pattr1Col = myTable->getColumn("ATTR1");
if (pattr1Col == NULL) APIERROR(myDict->getNdbError());
```

```cpp
pattr2Col = myTable->getColumn("ATTR2");
if (pattr2Col == NULL) APIERROR(myDict->getNdbError());
```

```cpp
pattr3Col = myTable->getColumn("ATTR3");
if (pattr3Col == NULL) APIERROR(myDict->getNdbError());
```

```cpp
attr1ColNum = pattr1Col->getColumnNo();
attr2ColNum = pattr2Col->getColumnNo();
attr3ColNum = pattr3Col->getColumnNo();
```

```cpp
// ATTR 1
recordSpec[0].column = pattr1Col;
recordSpec[0].offset = offsetof(RowData, attr1);
recordSpec[0].nullbit_byte_offset = 0; // Not nullable
recordSpec[0].nullbit_bit_in_byte = 0;
```

```cpp
// ATTR 2
recordSpec[1].column = pattr2Col;
recordSpec[1].offset = offsetof(RowData, attr2);
recordSpec[1].nullbit_byte_offset = 0; // Not nullable
recordSpec[1].nullbit_bit_in_byte = 0;
```

```cpp
// ATTR 3
recordSpec[2].column = pattr3Col;
recordSpec[2].offset = offsetof(RowData, attr3);
recordSpec[2].nullbit_byte_offset = 0; // Not nullable
recordSpec[2].nullbit_bit_in_byte = 0;
```

```cpp
/* Create table record with just the primary key column */
```

```cpp
pkeyColumnRecord = myDict->createRecord(myTable, recordSpec, 1, sizeof(recordSpec[0]));
if (pkeyColumnRecord == NULL) APIERROR(myDict->getNdbError());
```

```cpp
/* Create table record with all the columns */
pallColsRecord = myDict->createRecord(myTable, recordSpec, 3, sizeof(recordSpec[0]));
if (pallColsRecord == NULL) APIERROR(myDict->getNdbError());
```

```cpp
/* Create NdbRecord for primary index access */
```

```cpp
const NdbDictionary::Index *myPIndex= myDict->getIndex("PRIMARY", "api_recattr_vs_record");
```

```cpp
if (myPIndex == NULL) APIERROR(myDict->getNdbError());
```

```cpp
pkeyIndexRecord = myDict->createRecord(myPIndex, recordSpec, 1, sizeof(recordSpec[0]));
if (pkeyIndexRecord == NULL) APIERROR(myDict->getNdbError());
```

```cpp
/* Create Index NdbRecord for secondary index access
 * Note that we use the columns from the table to define the index
 * access record */
```

```cpp
const NdbDictionary::Index *mySIndex= myDict->getIndex("MYINDEXNAME", "api_recattr_vs_record");
```
recordSpec[0].column = pattr3Col;
recordSpec[0].offset = offsetof(IndexRow, attr3);
recordSpec[0].nullbit_byte_offset = 0;
recordSpec[0].nullbit_bit_in_byte = 0;

recordSpec[1].column = pattr2Col;
recordSpec[1].offset = offsetof(IndexRow, attr2);
recordSpec[1].nullbit_byte_offset = 0;
recordSpec[1].nullbit_bit_in_byte = 1;

/* Create NdbRecord for accessing via secondary index */
psecondaryIndexRecord =
    myDict->createRecord(mySIndex,
    recordSpec,
    2,
    sizeof(recordSpec[0]));

if (psecondaryIndexRecord == NULL)
    APIERROR(myDict->getNdbError());

/**************************************************************************
* Using 5 transactions, insert 10 tuples in table: (0,0),(1,1),...,(9,9) *
**************************************************************************
static void do_insert(Ndb &myNdb, ApiType accessType)
{
    NdbDictionary::Dictionary* myDict = myNdb.getDictionary();
    const NdbDictionary::Table *myTable =
        myDict->getTable("api_recattr_vs_record");

    std::cout << "Running do_insert\n";

    if (myTable == NULL)
        APIERROR(myDict->getNdbError());

    for (int i = 0; i < 5; i++) {
        NdbTransaction *myTransaction = myNdb.startTransaction();
        if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

        switch (accessType)
        {
        case api_attr :
            {
                NdbOperation *myOperation =
                    myTransaction->getNdbOperation(myTable);
                if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

                myOperation->insertTuple();
                myOperation->equal("ATTR1", i);
                myOperation->setValue("ATTR2", i);
                myOperation->setValue("ATTR3", i);

                myOperation = myTransaction->getNdbOperation(myTable);

                if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
                myOperation->insertTuple();
                myOperation->equal("ATTR1", i+5);
                myOperation->setValue("ATTR2", i+5);
                myOperation->setValue("ATTR3", i+5);
                break;
            }
        case api_record :
            {
                RowData row;
                row.attr1 = row.attr2 = row.attr3 = i;

                const NdbOperation *pop1 =
                    myTransaction->insertTuple(pallColsRecord, (char *) &row);
            }
        }
    }
}
if (pop1 == NULL) APIERROR(myTransaction->getNdbError());
row.attr1= row.attr2= row.attr3= i+5;
const NdbOperation *pop2=
myTransaction->insertTuple(pallColsRecord, (char *) &row);
if (pop2 == NULL) APIERROR(myTransaction->getNdbError());
break;
} default : {
  std::cout << "Bad branch : " << accessType << "\n";
  exit(-1);
}
}
if (myTransaction->execute(NdbTransaction::Commit) == -1)
APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
}
std::cout << "-------\n";
//*****************************************************************
* Update the second attribute in half of the tuples (adding 10) *
//*****************************************************************/
static void do_update(Ndb &myNdb, ApiType accessType)
{
  NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
  const NdbDictionary::Table *myTable=
  myDict->getTable("api_recattr_vs_record");
  std::cout << "Running do_update\n";
  for (int i = 0; i < 10; i+=2) {
    NdbTransaction *myTransaction= myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
    switch (accessType)
    {
        case api_attr :
        {
          NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
          if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
          myOperation->updateTuple();
          myOperation->equal( "ATTR1", i );
          myOperation->setValue( "ATTR2", i+10);
          myOperation->setValue( "ATTR3", i+20);
          break;
        }
        case api_record :
        {
          RowData row;
          row.attr1=i;
          row.attr2=i+10;
          row.attr3=i+20;
          /* Since we’re using an NdbRecord with all columns in it to
           * specify the updated columns, we need to create a mask to
           * indicate that we are only updating attr2 and attr3.
           */
          unsigned char attrMask=(1<<attr2ColNum) | (1<<attr3ColNum);
          const NdbOperation *pop =
          myTransaction->updateTuple(pkeyColumnRecord, (char*) &row,
          pallColsRecord, (char*) &row,
          &attrMask);
          pop1 = pop2 = pop;
          break;
        }
    }
  }
}
if (pop==NULL) APIERROR(myTransaction->getNdbError());
break;
}
default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}
}

if( myTransaction->execute( NdbTransaction::Commit ) == -1 )
    APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
}
std::cout << "-------\n";
};

/***************************************************************************/
/* Delete one tuple (the one with primary key 3) */
/***************************************************************************/
static void do_delete(Ndb &myNdb, ApiType accessType)
{
    NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
    const NdbDictionary::Table *myTable=
        myDict->getTable("api_recattr_vs_record");

    std::cout << "Running do_delete\n";
    if (myTable == NULL)
        APIERROR(myDict->getNdbError());
    NdbTransaction *myTransaction= myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

    switch (accessType)
    {
    case api_attr :
        {
            NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
            if (myOperation == NULL) APIERROR(myTransaction->getNdbError());

            myOperation->deleteTuple();
            myOperation->equal( "ATTR1", 3 );
            break;
        }
    case api_record :
        {
            RowData keyInfo;
            keyInfo.attr1=3;

            const NdbOperation *pop=
                myTransaction->deleteTuple(pkeyColumnRecord,
                    (char*) &keyInfo,
                    pallColsRecord);

            if (pop==NULL) APIERROR(myTransaction->getNdbError());
            break;
        }
    default :
        {
            std::cout << "Bad branch : " << accessType << "\n";
            exit(-1);
        }
    }

    if (myTransaction->execute(NdbTransaction::Commit) == -1)
        APIERROR(myTransaction->getNdbError());
    myNdb.closeTransaction(myTransaction);
NDB API Example Comparing RecAttr and NdbRecord

```cpp
std::cout << "-------\n";
}

/**/
* Update the second attribute in half of the tuples (adding 10) *
**/
static void do_mixed_update(Ndb &myNdb)
{
 /* This method performs an update using a mix of NdbRecord *
 * supplied attributes, and extra setvalues provided by *
 * the OperationOptions structure. *
 */
 std::cout << "Running do_mixed_update (NdbRecord only)\n";
 for (int i = 0; i < 10; i+=2) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 RowData row;
 row.attr1=i;
 row.attr2=i+30;

 /* Only attr2 is updated vian NDBRecord */
 unsigned char attrMask= (1<<attr2ColNum);
 NdbOperation::SetValueSpec setvalspecs[1];

 /* Value to set attr3 to */
 Uint32 dataSource= i + 40;
 setvalspecs[0].column = pattr3Col;
 setvalspecs[0].value = &dataSource;

 NdbOperation::OperationOptions opts;
 opts.optionsPresent= NdbOperation::OperationOptions::OO_SETVALUE;
 opts.extraSetValues= &setvalspecs[0];
 opts.numExtraSetValues= 1;

 // Define mixed operation in one call to NDBAPI
 const NdbOperation *pop =
 myTransaction->updateTuple(pkeyColumnRecord, (char*) &row,
 pallColsRecord, (char*) &row,
 &attrMask,
 &opts);

 if (pop==NULL) APIERROR(myTransaction->getNdbError());

 if(myTransaction->execute(NdbTransaction::Commit) == -1)
 APIERROR(myTransaction->getNdbError());

 myNdb.closeTransaction(myTransaction);
 }
 std::cout << "-------\n";
}

/**/
* Read and print all tuples using PK access *
**/
static void do_read(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
 const NdbDictionary::Table *myTable =
 myDict->getTable("api_recattr_vs_record");

 std::cout << "Running do_read\n";
 if (myTable == NULL)
```
APIERROR(myDict->getNdbError());
std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;
for (int i = 0; i < 10; i++) {
    NdbTransaction *myTransaction= myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
    RowData rowData;
    NdbRecAttr *myRecAttr;
    NdbRecAttr *myRecAttr2;
    switch (accessType)
    {
    case api_attr :
        {
            NdbOperation *myOperation= myTransaction->getNdbOperation(myTable);
            if (myOperation == NULL) APIERROR(myTransaction->getNdbError());
            myOperation->readTuple(NdbOperation::LM_Read);
            myOperation->equal("ATTR1", i);
            myRecAttr= myOperation->getValue("ATTR2", NULL);
            if (myRecAttr == NULL) APIERROR(myTransaction->getNdbError());
            myRecAttr2=myOperation->getValue("ATTR3", NULL);
            if (myRecAttr2 == NULL) APIERROR(myTransaction->getNdbError());
            break;
        }
    case api_record :
        {
            rowData.attr1=i;
            const NdbOperation *pop=
            myTransaction->readTuple(pkeyColumnRecord,
            (char*) &rowData,
            pallColsRecord, // Read PK+ATTR2+ATTR3
            (char*) &rowData);
            if (pop==NULL) APIERROR(myTransaction->getNdbError());
            break;
        }
    default :
        {
            std::cout << "Bad branch : " << accessType << "\n";
            exit(-1);
        }
    }
    if(myTransaction->execute( NdbTransaction::Commit ) == -1)
        APIERROR(myTransaction->getNdbError());
    if (myTransaction->getNdbError().classification == NdbError::NoDataFound)
        if (i == 3)
            std::cout << "Deleted tuple does not exist." << std::endl;
        else
            APIERROR(myTransaction->getNdbError());
    switch (accessType)
    {
    case api_attr :
        {
            if (i != 3) {
                printf(" %2d    %2d    %2d
", i,
                        myRecAttr->u_32_value(),
                        myRecAttr2->u_32_value());
                break;
            }
        }
    case api_record :
    { 

        }

}
if (i != 3) {
    printf(" %2d %2d %2d\n", 
            i,
            rowData.attr2,
            rowData.attr3);
    break;
}
default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}
}
myNdb.closeTransaction(myTransaction);
}
std::cout << "-------\n";

/***************************
 * Read and print all tuples *
 ***************************/
static void do_mixed_read(Ndb &myNdb)
{
    std::cout << "Running do_mixed_read (NdbRecord only)\n";
    std::cout << "ATTR1 ATTR2 ATTR3 COMMIT_COUNT" << std::endl;
    for (int i = 0; i < 10; i++) {
        NdbTransaction *myTransaction= myNdb.startTransaction();
        if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
        RowData rowData;
        NdbRecAttr *myRecAttr3, *myRecAttrCC;
        /* Start with NdbRecord read of ATTR2, and then add 
        * getValue NdbRecAttr read of ATTR3 and Commit count 
        */
        NdbOperation::GetValueSpec extraCols[2];
        extraCols[0].column=pattr3Col;
        extraCols[0].appStorage=NULL;
        extraCols[0].recAttr=NULL;
        extraCols[1].column=NdbDictionary::Column::COMMIT_COUNT;
        extraCols[1].appStorage=NULL;
        extraCols[1].recAttr=NULL;
        NdbOperation::OperationOptions opts;
        opts.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;
        opts.extraGetValues= extraCols[0];
        opts.numExtraGetValues= 2;
        /* We only read attr2 using the normal NdbRecord access */
        unsigned char attrMask= (1<<attr2ColNum);
        // Set PK search criteria
        rowData.attr1= i;
        const NdbOperation *pop=
            myTransaction->readTuple(pkeyColumnRecord,
            (char*) &rowData,
            pallColsRecord, // Read all with mask
            (char*) &rowData,
            NdbOperation::LM_Read,
            &attrMask, // result_mask
            &opts);}
        if (pop==NULL) APIERROR(myTransaction->getNdbError());
}
myRecAttr3 = extraCols[0].recAttr;
myRecAttrCC = extraCols[1].recAttr;

if (myRecAttr3 == NULL) APIERROR(myTransaction->getNdbError());
if (myRecAttrCC == NULL) APIERROR(myTransaction->getNdbError());

if (myTransaction->execute(NdbTransaction::Commit) == -1)
    APIERROR(myTransaction->getNdbError());

if (myTransaction->getNdbError().classification == NdbError::NoDataFound)
    if (i == 3)
        std::cout << "Deleted tuple does not exist." << std::endl;
    else
        APIERROR(myTransaction->getNdbError());

if (i != 3) {
    printf("%2d %2d %2d %d\n",
           rowData.attr1,
           rowData.attr2,
           myRecAttr3->u_32_value(),
           myRecAttrCC->u_32_value());
}

myNdb.closeTransaction(myTransaction);
}

std::cout << "-------\n";

/********************************************
* Read and print all tuples via table scan *
********************************************/
static void do_scan(Ndb &myNdb, ApiType accessType)
{
    NdbDictionary::Dictionary* myDict = myNdb.getDictionary();
    const NdbDictionary::Table *myTable =
        myDict->getTable("api_recattr_vs_record");

    std::cout << "Running do_scan\n";
    if (myTable == NULL)
        APIERROR(myDict->getNdbError());
    std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

    NdbTransaction *myTransaction = myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

    NdbScanOperation *psop;
    NdbRecAttr *recAttrAttr1;
    NdbRecAttr *recAttrAttr2;
    NdbRecAttr *recAttrAttr3;

    switch (accessType)
    {
    case api_attr :
        {
            psop = myTransaction->getNdbScanOperation(myTable);
            if (psop == NULL) APIERROR(myTransaction->getNdbError());

            if (psop->readTuples(NdbOperation::LM_Read) != 0)
                APIERROR(myTransaction->getNdbError());

            recAttrAttr1 = psop->getValue("ATTR1");
            recAttrAttr2 = psop->getValue("ATTR2");
            recAttrAttr3 = psop->getValue("ATTR3");
        }
        break;
case api_record :
{
    /* Note that no row ptr is passed to the NdbRecord scan operation
     * The scan will fetch a batch and give the user a series of pointers
     * to rows in the batch in nextResult() below */
    psop=myTransaction->scanTable(pallColsRecord,
        NdbOperation::LM_Read);

    if (psop == NULL) APIERROR(myTransaction->getNdbError());
    break;
}
default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}
}

if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
    APIERROR(myTransaction->getNdbError());

switch (accessType)
{
    case api_attr :
    {
        while (psop->nextResult(true) == 0)
        {
            printf(" %2d    %2d    %2d\n",
                recAttrAttr1->u_32_value(),
                recAttrAttr2->u_32_value(),
                recAttrAttr3->u_32_value());
        }
        psop->close();
        break;
    }
    case api_record :
    {
        RowData *prowData; // Ptr to point to our data
        int rc=0;

        /* Ask nextResult to update out ptr to point to the next
         * row from the scan */
        while ((rc = psop->nextResult((const char**) &prowData,
            true,
            false)) == 0)
        {
            printf(" %2d    %2d    %2d\n",
                prowData->attr1,
                prowData->attr2,
                prowData->attr3);
        }

        if (rc != 1)  APIERROR(myTransaction->getNdbError());
        psop->close(true);
        break;
    }
    default :
    {
        std::cout << "Bad branch : " << accessType << "\n";
        exit(-1);
    }
}
NDB API Example Comparing RecAttr and NdbRecord

if (myTransaction->execute( NdbTransaction::Commit ) != 0)
    APIERROR(myTransaction->getNdbError());

myNdb.closeTransaction(myTransaction);

std::cout << "-------\n";
}

/***********************************************************/
/* Read and print all tuples via table scan and mixed read */
/***********************************************************/
static void do_mixed_scan(Ndb &myNdb)
{
    std::cout << "Running do_mixed_scan(NdbRecord only)\n";
    std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

    NdbTransaction *myTransaction = myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

    NdbScanOperation *psop;
    NdbRecAttr *recAttr3;

    /* Set mask so that NdbRecord scan reads attr1 and attr2 only */
    unsigned char attrMask = ((1<<attr1ColNum) | (1<<attr2ColNum));

    /* Define extra get value to get attr3 */
    NdbOperation::GetValueSpec extraGets[1];
    extraGets[0].column = pattr3Col;
    extraGets[0].appStorage = 0;
    extraGets[0].recAttr = 0;

    NdbScanOperation::ScanOptions options;
    options.optionsPresent = NdbScanOperation::ScanOptions::SO_GETVALUE;
    options.extraGetValues = &extraGets[0];
    options.numExtraGetValues = 1;

    psop = myTransaction->scanTable(pallColsRecord,
        NdbOperation::LM_Read,
        attrMask,
        &options,
        sizeof(NdbScanOperation::ScanOptions));
    if (psop == NULL) APIERROR(myTransaction->getNdbError());

    /* RecAttr for the extra get has been set by the operation definition */
    recAttr3 = extraGets[0].recAttr;
    if (recAttr3 == NULL) APIERROR(myTransaction->getNdbError());

    if (myTransaction->execute( NdbTransaction::NoCommit ) != 0)
        APIERROR(myTransaction->getNdbError());

    RowData *pRowData; // Ptr to point to our data
    int rc = 0;
    while ((rc = psop->nextResult((const char**) &pRowData,
        true,
        false)) == 0)
    {
        printf(" %2d    %2d    %2d\n",
            pRowData->attr1,
            pRowData->attr2,
            recAttr3->u_32_value());
    }

    if (rc != 1)  APIERROR(myTransaction->getNdbError());

    psop->close(true);

    if (myTransaction->execute( NdbTransaction::Commit ) != 0)
        APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
std::cout << "--------\n";}

/************************************************************
* Read and print all tuples via primary ordered index scan *
************************************************************/
static void do_indexScan(Ndb &myNdb, ApiType accessType)
{
    NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
    const NdbDictionary::Index *myPIndex=
            myDict->getIndex("PRIMARY", "api_recattr_vs_record");
    std::cout << "Running do_indexScan\n";
    if (myPIndex == NULL)
        APIERROR(myDict->getNdbError());
    std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;
    NdbTransaction *myTransaction=myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
    NdbIndexScanOperation *psop;
    /* RecAttrs for NdbRecAttr Api */
    NdbRecAttr *recAttrAttr1;
    NdbRecAttr *recAttrAttr2;
    NdbRecAttr *recAttrAttr3;
    switch (accessType)
    {
    case api_attr :
        
        if (psop==NULL)
            APIERROR(myTransaction->getNdbError());
        /* Multi read range is not supported for the NdbRecAttr scan */
        Uint32 scanFlags= 
            NdbScanOperation::SF_OrderBy | 
            NdbScanOperation::SF_MultiRange | 
            NdbScanOperation::SF_ReadRangeNo;
        if (psop->readTuples(NdbOperation::LM_Read, 
            scanFlags,
            (Uint32) 0, // batch
            (Uint32) 0) != 0) // parallel
            APIERROR (myTransaction->getNdbError());
        /* Add a bound */
        * Tuples where ATTR1 >=2 and < 4
        * 2,[3 deleted]
        Uint32 low=2;
        Uint32 high=4;
        if (psop->setBound("ATTR1", 
            NdbIndexScanOperation::BoundLE, (char*)&low))
            APIERROR (myTransaction->getNdbError());
        if (psop->setBound("ATTR1", 
            NdbIndexScanOperation::BoundGT, (char*)&high))
            APIERROR (myTransaction->getNdbError());
        if (psop->end_of_bound(0))
/* Second bound
* Tuples where ATTR1 > 5 and <=9
* 6, 7, 8, 9
*/
low=5;
high=9;
if (psop->setBound("ATTR1",
NdbIndexScanOperation::BoundLT, (char*)&low))
APIERROR(myTransaction->getNdbError());
if (psop->setBound("ATTR1",
NdbIndexScanOperation::BoundGE, (char*)&high))
APIERROR(myTransaction->getNdbError());
if (psop->end_of_bound(1))
APIERROR(psop->getNdbError());
/* Read all columns */
recAttrAttr1=psop->getValue("ATTR1");
recAttrAttr2=psop->getValue("ATTR2");
recAttrAttr3=psop->getValue("ATTR3");
break;
}
case api_record :
{
/* NdbRecord supports scanning multiple ranges using a
* single index scan operation
*/
Uint32 scanFlags =
NdbScanOperation::SF_OrderBy |
NdbScanOperation::SF_MultiRange |
NdbScanOperation::SF_ReadRangeNo;
NdbScanOperation::ScanOptions options;
options.optionsPresent=NdbScanOperation::ScanOptions::SO_SCANFLAGS;
options.scan_flags=scanFlags;
psop=myTransaction->scanIndex(pkeyIndexRecord,
pallColsRecord,
NdbOperation::LM_Read,
NULL, // no mask; read all columns
// in result record
NULL, // bound defined later
&options,
sizeof(NdbScanOperation::ScanOptions));
if (psop == NULL) APIERROR(myTransaction->getNdbError());
/* Add a bound
* Tuples where ATTR1 >=2 and < 4
* 2, [3 deleted]
*/
Uint32 low=2;
Uint32 high=4;
NdbIndexScanOperation::IndexBound bound;
bound.low_key=(char*)&low;
bound.low_key_count=1;
bound.low_inclusive=true;
bound.high_key=(char*)&high;
bound.high_key_count=1;
bound.high_inclusive=false;
bound.range_no=0;
if (psop->setBound(pkeyIndexRecord, bound))
APIERROR(myTransaction->getNdbError());
/* Second bound
* Tuples where ATTR1 > 5 and <=9
*/
if (psop->setBound("ATTR1", 1,
NdbIndexScanOperation::BoundLT, (char*)&low))
APIERROR(myTransaction->getNdbError());
if (psop->setBound("ATTR1", 1,
NdbIndexScanOperation::BoundGE, (char*)&high))
APIERROR(myTransaction->getNdbError());
if (psop->end_of_bound(1))
APIERROR(psop->getNdbError());
/* Read all columns */
recAttrAttr1=psop->getValue("ATTR1");
recAttrAttr2=psop->getValue("ATTR2");
recAttrAttr3=psop->getValue("ATTR3");
break;
/* 6,7,8,9 */
low=5;
high=9;

bound.low_key=(char*)&low;
bound.low_key_count=1;
bound.low_inclusive=false;
bound.high_key=(char*)&high;
bound.high_key_count=1;
bound.high_inclusive=true;
bound.range_no=1;

if (psop->setBound(pkeyIndexRecord, bound))
    APIERROR(myTransaction->getNdbError());

break;

default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}

if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
    APIERROR(myTransaction->getNdbError());

if (myTransaction->getNdbError().code != 0)
    APIERROR(myTransaction->getNdbError());

switch (accessType)
{
    case api_attr :
    {
        while (psop->nextResult(true) == 0)
        {
            printf(" %2d    %2d    %2d    Range no : %2d\n",
                recAttrAttr1->u_32_value(),
                recAttrAttr2->u_32_value(),
                recAttrAttr3->u_32_value(),
                psop->get_range_no());
        }
        psop->close();

        break;
    }
    case api_record :
    {
        RowData *prowData; // Ptr to point to our data
        int rc=0;

        while ((rc = psop->nextResult((const char**) &prowData,
            true,
            false)) == 0)
        {
            // printf(" PTR : %d\n", (int) prowData);
            printf(" %2d    %2d    %2d    Range no : %2d\n",
                prowData->attr1,
                prowData->attr2,
                prowData->attr3,
                psop->get_range_no());
        }
        if (rc != 1)  APIERROR(myTransaction->getNdbError());
        psop->close(true);

        break;
    }
}
default:
{
    std::cout << "Bad branch: " << accessType << "\n";
    exit(-1);
}

if (myTransaction->execute(NdbTransaction::Commit) != 0)
    APIERROR(myTransaction->getNdbError());

myNdb.closeTransaction(myTransaction);

std::cout << "------\n";

/**************************************************************************
* Read and print all tuples via index scan using mixed NdbRecord access *
**************************************************************************/
static void do_mixed_indexScan(Ndb &myNdb)
{
    NdbDictionary::Dictionary* myDict = myNdb.getDictionary();
    const NdbDictionary::Index *myPIndex =
        myDict->getIndex("PRIMARY", "api_recattr_vs_record");

    std::cout << "Running do_mixed_indexScan\n";

    if (myPIndex == NULL)
        APIERROR(myDict->getNdbError());

    std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

    NdbTransaction *myTransaction = myNdb.beginTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

    NdbIndexScanOperation *psop;
    NdbRecAttr *recAttrAttr3;

    Uint32 scanFlags =
        NdbScanOperation::SF_OrderBy |
        NdbScanOperation::SF_MultiRange |
        NdbScanOperation::SF_ReadRangeNo;

    /* We'll get Attr3 via ScanOptions */
    unsigned char attrMask=((1<<attr1ColNum) | (1<<attr2ColNum));

    NdbOperation::GetValueSpec extraGets[1];
    extraGets[0].column = pattr3Col;
    extraGets[0].appStorage = NULL;
    extraGets[0].recAttr = NULL;

    NdbScanOperation::ScanOptions options;
    options.optionsPresent =
        NdbScanOperation::ScanOptions::SO_SCANFLAGS |
        NdbScanOperation::ScanOptions::SO_GETVALUE;

    options.scan_flags = scanFlags;
    options.extraGetValues = &extraGets[0];
    options.numExtraGetValues = 1;

    psop = myTransaction->scanIndex(pkeyIndexRecord,
        pallColsRecord,
        NdbOperation::LM_Read,
        &attrMask, // mask
        NULL, // bound defined below
        &options,
        sizeof(NdbScanOperation::ScanOptions));

    if (psop == NULL) APIERROR(myTransaction->getNdbError());

    /* Grab RecAttr now */
    recAttrAttr3 = extraGets[0].recAttr;
/* Add a bound
 * ATTR1 >= 2, < 4
 * 2, [3 deleted]
 */
uint32 low=2;
uint32 high=4;

ndb_index_scan_operation::index_bound bound;
bound.low_key=(char*)&low;
bound.low_key_count=1;
bound.low_inclusive=true;
bound.high_key=(char*)&high;
bound.high_key_count=1;
bound.high_inclusive=false;
bound.range_no=0;

if (psop->set_bound(pkey_index_record, bound))
    api_error(my_transaction->get_ndb_error());

/* Second bound
 * ATTR1 > 5, <= 9
 * 6, 7, 9
 */
low=5;
high=9;

bound.low_key=(char*)&low;
bound.low_key_count=1;
bound.low_inclusive=false;
bound.high_key=(char*)&high;
bound.high_key_count=1;
bound.high_inclusive=true;
bound.range_no=1;

if (psop->set_bound(pkey_index_record, bound))
    api_error(my_transaction->get_ndb_error());

if (my_transaction->execute(NdbTransaction::NoCommit) != 0)
    api_error(my_transaction->get_ndb_error());

row_data *prow_data; // Ptr to point to our data
int rc=0;
while ((rc = psop->next_result((const char**) &prow_data,
        true,
        false)) == 0)
{
    printf(" %2d %2d %2d Range no : %2d\n",
         prow_data->attr1,
         prow_data->attr2,
         rec_attr_attr3->u_32_value(),
         psop->get_range_no());
}

if (rc != 1)  api_error(my_transaction->get_ndb_error());
psop->close(true);
if (my_transaction->execute(NdbTransaction::Commit) != 0)
    api_error(my_transaction->get_ndb_error());
my_ndb.close_transaction(my_transaction);
std::cout << "-------\n";
static void do_read_and_delete(Ndb &myNdb)
{
/* This procedure performs a single operation, single round
    trip read and then delete of a tuple, specified by
    * primary key
*/
    std::cout << "Running do_read_and_delete (NdbRecord only)\n";

    NdbTransaction *myTransaction= myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

    RowData row;
    row.attr1=8;
    row.attr2=0; // Don't care
    row.attr3=0; // Don't care

    /* We'll also read some extra columns while we're
       * reading + deleting
    */
    NdbOperation::OperationOptions options;
    NdbOperation::GetValueSpec extraGets[2];
    extraGets[0].column = pattr3Col;
    extraGets[0].appStorage = NULL;
    extraGets[0].recAttr = NULL;
    extraGets[1].column = NdbDictionary::Column::COMMIT_COUNT;
    extraGets[1].appStorage = NULL;
    extraGets[1].recAttr = NULL;

    options.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;
    options.extraGetValues = &extraGets[0];
    options.numExtraGetValues = 2;

    unsigned char attrMask = (1<<attr2ColNum); // Only read Col2 into row
    const NdbOperation *pop=
        myTransaction->deleteTuple(pkeyColumnRecord, // Spec of key used
                                    (char*) &row, // Key information
                                    pallColsRecord, // Spec of columns to read
                                    (char*) &row, // Row to read values into
                                    &attrMask, // Cols to read as part of delete
                                    &options,
                                    sizeof(NdbOperation::OperationOptions));
    if (pop==NULL) APIERROR(myTransaction->getNdbError());

    if (myTransaction->execute(NdbTransaction::Commit) == -1)
        APIERROR(myTransaction->getNdbError());

    std::cout << "ATTR1 ATTR2 ATTR3 COMMITS" << std::endl;
    printf(" %2d    %2d    %2d    %2d\n",
            row.attr1,
            row.attr2,
            extraGets[0].recAttr->u_32_value(),
            extraGets[1].recAttr->u_32_value());

    myNdb.closeTransaction(myTransaction);
    std::cout << "-------\n";]

    /********************************************
    * Read and update all tuples via table scan *
    *********************************************/
    static void do_scan_update(Ndb &myNdb, ApiType accessType)
    {
        NdbDictionary::Dictionary* myDict= myNdb.getDictionary();

        /*********************************************
        * Read and update all tuples via table scan *
        *********************************************
        * Read and update all tuples via table scan *
        *********************************************
        static void do_scan_update(Ndb &myNdb, ApiType accessType)
        {
            NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
            std::cout << "-------\n";]

            /*********************************************
            * Read and update all tuples via table scan *
            *********************************************
            static void do_scan_update(Ndb &myNdb, ApiType accessType)
            {
                NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
                std::cout << "-------\n";]
const NdbDictionary::Table *myTable=
    myDict->getTable("api_recattr_vs_record");
if (myTable == NULL)
    APIERROR(myDict->getNdbError());
std::cout << "Running do_scan_update\n";
NdbTransaction *myTransaction=myNdb.startTransaction();
if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
NdbScanOperation *psop;
NdbRecAttr *recAttrAttr1;
NdbRecAttr *recAttrAttr2;
NdbRecAttr *recAttrAttr3;
switch (accessType)
{
    case api_attr :
    {
        psop=myTransaction->getNdbScanOperation(myTable);
        if (psop == NULL) APIERROR(myTransaction->getNdbError());
        /* When we want to operate on the tuples returned from a
         * scan, we need to request the tuple's keyinfo is
         * returned, with SF_KeyInfo
         */
        if (psop->readTuples(NdbOperation::LM_Read,
            NdbScanOperation::SF_KeyInfo) != 0)
            APIERROR (myTransaction->getNdbError());
        recAttrAttr1=psop->getValue("ATTR1");
        recAttrAttr2=psop->getValue("ATTR2");
        recAttrAttr3=psop->getValue("ATTR3");
        break;
    }
    case api_record :
    {
        NdbScanOperation::ScanOptions options;
        options.optionsPresent= NdbScanOperation::ScanOptions::SO_SCANFLAGS;
        options.scan_flags= NdbScanOperation::SF_KeyInfo;
        psop=myTransaction->scanTable(pallColsRecord,
            NdbOperation::LM_Read,
            NULL,  // mask - read all columns
            &options,
            sizeof(NdbScanOperation::ScanOptions));
        if (psop == NULL) APIERROR(myTransaction->getNdbError());
        break;
    }
    default :
    {
        std::cout << "Bad branch : " << accessType << " \n";
        exit(-1);
    }
}
if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
    APIERROR(myTransaction->getNdbError());
switch (accessType)
{
    case api_attr :
    {
        int result= NEED_TO_FETCH_ROWS;
        Uint32 processed= 0;
    }
while (result == NEED_TO_FETCH_ROWS)
{
  bool fetch=true;
  while ((result = psop->nextResult(fetch)) == GOT_ROW)
  {
    fetch= false;
    Uint32 col2Value=recAttrAttr2->u_32_value();

    NdbOperation *op=psop->updateCurrentTuple();
    if (op==NULL)
      APIERROR(myTransaction->getNdbError());
    op->setValue("ATTR2", (10*col2Value));
    processed++;
  }
  if (result < 0)
    APIERROR(myTransaction->getNdbError());
  if (processed !=0)
    { // Need to execute
      if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
        APIERROR(myTransaction->getNdbError());
      processed=0;
    }
}

psop->close();
break;
}
case api_record :
{
  RowData *prowData; // Ptr to point to our data
  int result= NEED_TO_FETCH_ROWS;
  Uint32 processed=0;

  while (result == NEED_TO_FETCH_ROWS)
  {
    bool fetch= true;
    while ((result = psop->nextResult((const char**) &prowData,
           fetch, false)) == GOT_ROW)
      {
      fetch= false;

      /* Copy row into a stack variable */
      RowData r= *prowData;

      /* Modify attr2 */
      r.attr2*= 10;

      /* Update it */
      const NdbOperation *op = psop->updateCurrentTuple(myTransaction,
                                  pallColsRecord,
          (char*) &r);

      if (op==NULL)
        APIERROR(myTransaction->getNdbError());
      processed ++;
    }
  }
  if (result < 0)
    APIERROR(myTransaction->getNdbError());
  if (processed !=0)
    { /* To get here, there are no more cached scan results,
* and some row updates that we've not sent yet.
* Send them before we try to get another batch, or
* finish.
*/
if (myTransaction->execute( NdbTransaction::NoCommit ) != 0)
    APIERROR(myTransaction->getNdbError());
    processed=0;
}
}
psop->close(true);
break;
default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}
}
if(myTransaction->execute( NdbTransaction::Commit ) !=0)
    APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
std::cout << "-------\n";
}
/*****************************/
* Read all and delete some tuples via table scan *
*******************************/
static void do_scan_delete(Ndb &myNdb, ApiType accessType)
{
    NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
    const NdbDictionary::Table *myTable=
        myDict->getTable("api_recattr_vs_record");

    if (myTable == NULL)
        APIERROR(myDict->getNdbError());
    std::cout << "Running do_scan_delete\n";
    NdbTransaction *myTransaction=myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
    NdbScanOperation *psop;
    NdbRecAttr *recAttrAttr1;

    /* Scan, retrieving first column.
    * Delete particular records, based on first column
    * Read third column as part of delete
    */
    switch (accessType)
    {
    case api_attr :
        {
            psop=myTransaction->getNdbScanOperation(myTable);
            if (psop == NULL) APIERROR(myTransaction->getNdbError());
            /* Need KeyInfo when performing scanning delete */
            if (psop->readTuples(NdbOperation::LM_Read,
                NdbScanOperation::SF_KeyInfo) != 0)
                APIERROR (myTransaction->getNdbError());
            recAttrAttr1=psop->getValue("ATTR1");
            break;
        }
    case api_record :
    {
NdbScanOperation::ScanOptions options;
options.optionsPresent=NdbScanOperation::ScanOptions::SO_SCANFLAGS;
/* Need KeyInfo when performing scanning delete */
options.scan_flags=NdbScanOperation::SF_KeyInfo;

psop=myTransaction->scanTable(pkeyColumnRecord,
NdbOperation::LM_Read,
NULL, // mask
$options,
sizeof(NdbScanOperation::ScanOptions));

if (psop == NULL) APIERROR(myTransaction->getNdbError());
break;
}
default : {
std::cout << "Bad branch : " << accessType << "\n";
exit(-1);
}
}

if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
APIERROR(myTransaction->getNdbError());

switch (accessType)
{
case api_attr :
{
int result= NEED_TO_FETCH_ROWS;
Uint32 processed=0;

while (result == NEED_TO_FETCH_ROWS)
{
bool fetch=true;
while ($(result = psop->nextResult(fetch)) == GOT_ROW)
{
fetch= false;
Uint32 col1Value=recAttrAttr1->u_32_value();

if (col1Value == 2)
{
/* Note : We cannot do a delete pre-read via 
the NdbRecAttr interface. We can only 
delete here. */
if (psop->deleteCurrentTuple())
APIERROR(myTransaction->getNdbError());
processed++;
}
}
if (result < 0)
APIERROR(myTransaction->getNdbError());
if (processed !=0)
{
/* To get here, there are no more cached scan results, 
* and some row deletes that we've not sent yet. 
* Send them before we try to get another batch, or 
* finish. */
if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
APIERROR(myTransaction->getNdbError());
processed=0;
}
}
psop->close();
break;
case api_record:
{
    RowData *prowData; // Ptr to point to our data

    int result= NEED_TO_FETCH_ROWS;
    Uint32 processed=0;

    while (result == NEED_TO_FETCH_ROWS)
    {
        bool fetch=true;

        const NdbOperation* theDeleteOp;
        RowData readRow;
        NdbRecAttr* attr3;
        NdbRecAttr* commitCount;

        while ((result = psop->nextResult((const char**) &prowData,
                                           fetch,
                                           false)) == GOT_ROW)
        {
            fetch = false;

            /* Copy latest row to a stack local */
            RowData r;
            r= *prowData;

            if (r.attr1 == 2)
            {
                /* We're going to perform a read+delete on this row. We'll read attr1 and attr2 via NDBRecord */
                /* and Attr3 and the commit count via extra get values. */
                NdbOperation::OperationOptions options;
                NdbOperation::GetValueSpec extraGets[2];
                extraGets[0].column = pattr3Col;
                extraGets[0].appStorage = NULL;
                extraGets[0].recAttr = NULL;
                extraGets[1].column = NdbDictionary::Column::COMMIT_COUNT;
                extraGets[1].appStorage = NULL;
                extraGets[1].recAttr = NULL;

                options.optionsPresent= NdbOperation::OperationOptions::GO_GETVALUE;
                options.extraGetValues= &extraGets[0];
                options.numExtraGetValues= 2;

                // Read cols 1 + 2 via NDBRecord
                unsigned char attrMask =
                        (1<<attr1ColNum) | (1<<attr2ColNum);

                theDeleteOp =
                    psop->deleteCurrentTuple(myTransaction,
                                             pattr1ColNum,
                                             (char*) &readRow,
                                             &attrMask,
                                             &options,
                                             sizeof(NdbOperation::OperationOptions) );

                if (theDeleteOp==NULL)
                    APIERROR(myTransaction->getNdbError());

                /* Store extra Get RecAttrs */
                attr3= extraGets[0].recAttr;
                commitCount= extraGets[1].recAttr;

                processed ++;
            }
        }
    }

    if (result < 0)
APIERROR(myTransaction->getNdbError());

if (processed != 0) {
    /* To get here, there are no more cached scan results,
     * and some row deletes that we've not sent yet.
     * Send them before we try to get another batch, or
     * finish.
     */
    if (myTransaction->execute( NdbTransaction::NoCommit ) != 0)
        APIERROR(myTransaction->getNdbError());
    processed=0;

    // Let's look at the data just read
    printf("Deleted data\n");
    printf("ATTR1 ATTR2 ATTR3 COMMITS\n");
    printf("%2d %2d %2d %2d\n",
        readRow.attr1,
        readRow.attr2,
        attr3->u_32_value(),
        commitCount->u_32_value());
}
}
psop->close(true);
break;
}
default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}
}

if(myTransaction->execute( NdbTransaction::Commit ) !=0)
    APIERROR(myTransaction->getNdbError());

myNdb.closeTransaction(myTransaction);
std::cout << "-------\n";

/***********************************************************
* Read all tuples via scan, reread one with lock takeover *
***********************************************************/
static void do_scan_lock_reread(Ndb &myNdb, ApiType accessType)
{
    NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
    const NdbDictionary::Table *myTable=
        myDict->getTable("api_recattr_vs_record");

    if (myTable == NULL)
        APIERROR(myDict->getNdbError());

    std::cout << "Running do_scan_lock_reread\n";

    NdbTransaction *myTransaction=myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

    NdbScanOperation *psop;
    NdbRecAttr *recAttrAttr1;

    switch (accessType)
    {
    case api_attr :
    {   psop=myTransaction->getNdbScanOperation(myTable);
if (psop == NULL) APIERROR(myTransaction->getNdbError());
/* Need KeyInfo for lock takeover */
if (psop->readTuples(NdbOperation::LM_Read,
     NdbScanOperation::SF_KeyInfo) != 0)
APIERROR (myTransaction->getNdbError());
recAttrAttr1=psop->getValue("ATTR1");
break;
} case api_record :
{ NdbScanOperation::ScanOptions options;
options.optionsPresent = NdbScanOperation::ScanOptions::SO_SCANFLAGS;
/* Need KeyInfo for lock takeover */
options.scan_flags = NdbScanOperation::SF_KeyInfo;
psop=myTransaction->scanTable(pkeyColumnRecord,
     NdbOperation::LM_Read,
     NULL, // mask
     &options,
     sizeof(NdbScanOperation::ScanOptions));
if (psop == NULL) APIERROR(myTransaction->getNdbError());
break;
} default :
{ std::cout << "Bad branch : " << accessType << "\n";
exit(-1);
}
if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
APIERROR(myTransaction->getNdbError());
switch (accessType)
{ case api_attr :
{ int result= NEED_TO_FETCH_ROWS;
Uint32 processed=0;
NdbRecAttr *attr1, *attr2, *attr3, *commitCount;
while (result == NEED_TO_FETCH_ROWS)
{ bool fetch=true;
while ((result = psop->nextResult(fetch)) == GOT_ROW)
{ fetch= false;
Uint32 col1Value=recAttrAttr1->u_32_value();
if (col1Value == 9)
{ /* Let’s read the rest of the info for it with */
   * a separate operation */
   NdbOperation *op= psop->lockCurrentTuple();
   if (op == NULL)
APIERROR(myTransaction->getNdbError());
   attr1=op->getValue("ATTR1");
   attr2=op->getValue("ATTR2");
   attr3=op->getValue("ATTR3");
   commitCount=op->getValue(NdbDictionary::Column::COMMIT_COUNT);
   processed++;
   }
if (result < 0)
APIERROR(myTransaction->getNdbError());
}
if (processed != 0)
{
    // Need to execute

    if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
        APIERROR(myTransaction->getNdbError());
    processed = 0;

    // Let's look at the whole row...
    printf("Locked and re-read data:\n");
    printf("ATTR1  ATTR2  ATTR3  COMMITS\n");
    printf("%2d  %2d  %2d  %2d\n",
        attr1->u_32_value(),
        attr2->u_32_value(),
        attr3->u_32_value(),
        commitCount->u_32_value());
}
}

psop->close();
break;
}
case api_record :
{
    RowData *prowData; // Ptr to point to our data

    int result = NEED_TO_FETCH_ROWS;
    Uint32 processed = 0;
    RowData rereadData;
    NdbRecAttr *attr3, *commitCount;

    while (result == NEED_TO_FETCH_ROWS)
    {
        bool fetch = true;
        while ((result = psop->nextResult((const char**) &prowData,
            fetch, false)) == GOT_ROW)
        {
            fetch = false;

            /* Copy row to stack local */
            RowData r;
r = *prowData;

            if (r.attr1 == 9)
            {
                /* Perform extra read of this row via lockCurrentTuple */
                /* Read all columns using NdbRecord for attr1 + attr2, */
                /* and extra get values for attr3 and the commit count */
                NdbOperation::OperationOptions options;
                NdbOperation::GetValueSpec extraGets[2];
                extraGets[0].column = pattr3Col;
                extraGets[0].appStorage = NULL;
                extraGets[0].recAttr = NULL;
                extraGets[1].column = NdbDictionary::Column::COMMIT_COUNT;
                extraGets[1].appStorage = NULL;
                extraGets[1].recAttr = NULL;

                options.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;
                options.extraGetValues = &extraGets[0];
                options.numExtraGetValues = 2;

                // Read cols 1 + 2 via NDBRecord
                unsigned char attrMask =
                    (1<<attr1ColNum) | (1<<attr2ColNum);

                const NdbOperation *lockOp =
                    psop->lockCurrentTuple(myTransaction,
                        pallColsRecord,
NDB API Example Comparing RecAttr and NdbRecord

```c
(char *) &rereadData,
&attrMask,
&options,
sizeof(NdbOperation::OperationOptions)
);
if (lockOp == NULL)
 APIERROR(myTransaction->getNdbError());
attr3= extraGets[0].recAttr;
commitCount= extraGets[1].recAttr;
 processed++;
}
if (result < 0)
 APIERROR(myTransaction->getNdbError());
if (processed !=0)
 {
 // Need to execute
 if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
 processed=0;
 // Let's look at the whole row...
 printf("Locked and re-read data:\n\n");
 printf("ATTR1 ATTR2 ATTR3 COMMIT_COUNT\n");
 printf(" %2d %2d %2d %2d\n",
 rereadData.attr1,
 rereadData.attr2,
 attr3->u_32_value(),
 commitCount->u_32_value());

 }
 pson->close(true);
 break;
}
default :

 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
 }
if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
std::cout << "-------\n";

/***
* Read all tuples via primary key, using only extra getValues *

static void do_all_extras_read(Ndb &myNdb)
{
 std::cout << "Running do_all_extras_read(NdbRecord only)\n\n";
 std::cout << "ATTR1 ATTR2 ATTR3 COMMIT_COUNT" << std:end1;
 for (int i = 0; i < 10; i++) {
 NdbTransaction *myTransaction= myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
 RowData rowData;
 NdbRecAttr *myRecAttr1, *myRecAttr2, *myRecAttr3, *myRecAttrCC;
```

/* We read nothing vian NDBRecord, and everything via 'extra' reads */
NdbOperation::GetValueSpec extraCols[4];
extraCols[0].column=pattr1Col;
extraCols[0].appStorage=NULL;
extraCols[0].recAttr=NULL;
extraCols[1].column=pattr2Col;
extraCols[1].appStorage=NULL;
extraCols[1].recAttr=NULL;
extraCols[2].column=pattr3Col;
extraCols[2].appStorage=NULL;
extraCols[2].recAttr=NULL;
extraCols[3].column=NdbDictionary::Column::COMMIT_COUNT;
extraCols[3].appStorage=NULL;
extraCols[3].recAttr=NULL;
NdbOperation::OperationOptions opts;
opts.optionsPresent = NdbOperation::OperationOptions::OO_GETVALUE;
opts.extraGetValues=extraCols[0];
opts.numExtraGetValues=4;
unsigned char attrMask= 0; // No row results required.

// Set PK search criteria
rowData.attr1= i;
const NdbOperation *pop=
  myTransaction->readTuple(pkeyColumnRecord,
      (char*) &rowData,
      pkeyColumnRecord,
      NULL, // null result row
      NdbOperation::LM_Read,
      &attrMask,
      &opts);
if (pop==NULL) APIERROR(myTransaction->getNdbError());
myRecAttr1=extraCols[0].recAttr;
myRecAttr2=extraCols[1].recAttr;
myRecAttr3=extraCols[2].recAttr;
myRecAttrCC=extraCols[3].recAttr;
if (myRecAttr1 == NULL) APIERROR(myTransaction->getNdbError());
if (myRecAttr2 == NULL) APIERROR(myTransaction->getNdbError());
if (myRecAttr3 == NULL) APIERROR(myTransaction->getNdbError());
if (myRecAttrCC == NULL) APIERROR(myTransaction->getNdbError());

if (myTransaction->execute( NdbTransaction::Commit ) == -1)
  APIERROR(myTransaction->getNdbError());
bool deleted= (myTransaction->getNdbError().classification ==
  NdbError::NoDataFound);
if (deleted)
  printf("Detected that deleted tuple %d doesn't exist!\n", i);
else
  {
    printf("%2d %2d %2d %2d \n",
        myRecAttr1->u_32_value(),
        myRecAttr2->u_32_value(),
        myRecAttr3->u_32_value(),
        myRecAttrCC->u_32_value() 
    );
  }
myNdb.closeTransaction(myTransaction);
std::cout << "-------\n";
}

/******************************************************************
* Read and print some tuples via bounded scan of secondary index *
******************************************************************/
static void do_secondary_indexScan(Ndb &myNdb, ApiType accessType)
{
  NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
  const NdbDictionary::Index *mySIndex=
    myDict->getIndex("MYINDEXNAME", "api_recattr_vs_record");

  std::cout << "Running do_secondary_indexScan\n";
  std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

  NdbTransaction *myTransaction=myNdb.startTransaction();
  if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

  NdbIndexScanOperation *psop;
  NdbRecAttr *recAttrAttr1;
  NdbRecAttr *recAttrAttr2;
  NdbRecAttr *recAttrAttr3;

  Uint32 scanFlags =
    NdbScanOperation::SF_OrderBy |
    NdbScanOperation::SF_Descending |
    NdbScanOperation::SF_MultiRange |
    NdbScanOperation::SF_ReadRangeNo;

  switch (accessType)
  {
  case api_attr :
    
    psop=myTransaction->getNdbIndexScanOperation(mySIndex);
    if (psop == NULL) APIERROR(myTransaction->getNdbError());

    if (psop->readTuples(NdbOperation::LM_Read,
        scanFlags,
        (Uint32) 0,          // batch
        (Uint32) 0) != 0)    // parallel
      APIERROR (myTransaction->getNdbError());

    /* Bounds :
       * > ATTR3=6
       * < ATTR3=42
    */
    Uint32 low=6;
    Uint32 high=42;
    if (psop->setBound("ATTR3",
        NdbIndexScanOperation::BoundLT, (char*)&low))
      APIERROR (psop->getNdbError());
    if (psop->setBound("ATTR3",
        NdbIndexScanOperation::BoundGT, (char*)&high))
      APIERROR (psop->getNdbError());

    recAttrAttr1=psop->getValue("ATTR1");
    recAttrAttr2=psop->getValue("ATTR2");
    recAttrAttr3=psop->getValue("ATTR3");
    break;
  }
  case api_record :
  {
    NdbScanOperation::ScanOptions options;
    options.optionsPresent=NdbScanOperation::ScanOptions::SO_SCANFLAGS;
    options.scan_flags=scanFlags;
  
  }
psop=myTransaction->scanIndex(psecondaryIndexRecord,
pallColsRecord,
NdbOperation::LM_Read,
NULL, // mask
NULL, // bound
&options,
sizeof(NdbScanOperation::ScanOptions));

if (psop == NULL) APIERROR(myTransaction->getNdbError());

/* Bounds :
* > ATTR3=6
* < ATTR3=42
*/
Uint32 low=6;
Uint32 high=42;

NdbIndexScanOperation::IndexBound bound;
bound.low_key=(char*)&low;
bound.low_key_count=1;
bound.low_inclusive=false;
bound.high_key=(char*)&high;
bound.high_key_count=1;
bound.high_inclusive=false;
bound.range_no=0;

if (psop->setBound(psecondaryIndexRecord, bound))
    APIERROR(myTransaction->getNdbError());

break;
}
default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}
}

if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
    APIERROR(myTransaction->getNdbError());

// Check rc anyway
if (myTransaction->getNdbError().status != NdbError::Success)
    APIERROR(myTransaction->getNdbError());

switch (accessType)
{
    case api_attr :
    {
        while (psop->nextResult(true) == 0)
        {
            printf(" %2d %2d %2d Range no : %2d\n",
                recAttrAttr1->u_32_value(),
                recAttrAttr2->u_32_value(),
                recAttrAttr3->u_32_value(),
                psop->get_range_no());
        }

        psop->close();
        break;
    }
    case api_record :
    {
        RowData *prowData; // Ptr to point to our data
        int rc=0;

        while (!(rc = psop->nextResult((const char**) &prowData,
                                            true,
                                            false)) == 0)
NDB API Example Comparing RecAttr and NdbRecord

```c
{ // printf(" PTR : %d\n", (int) prowData);
 printf(" %2d %2d %2d Range no : %2d\n",
 prowData->attr1,
 prowData->attr2,
 prowData->attr3,
 psop->get_range_no());
}

if (rc != 1) APIERROR(myTransaction->getNdbError());

psop->close(true);
break;
}
default :
{
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
}
}

if(myTransaction->execute(NdbTransaction::Commit) !=0)
 APIERROR(myTransaction->getNdbError());

myNdb.closeTransaction(myTransaction);

std::cout << "-------\n";
}

//***
* Index scan to read tuples from secondary index using equality bound *

static void do_secondary_indexScanEqual(Ndb &myNdb, ApiType accessType)
{
 NdbDictionary::Dictionary* myDict = myNdb.getDictionary();
 const NdbDictionary::Index *mySIndex =
 myDict->getIndex("MYINDEXNAME", "api_recattr_vs_record");

 std::cout << "Running do_secondary_indexScanEqual\n";
 std::cout << " ATTR1 ATTR2 ATTR3" << std::endl;

 NdbTransaction *myTransaction=myNdb.startTransaction();
 if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

 NdbIndexScanOperation *psop;
 NdbRecAttr *recAttrAttr1;
 NdbRecAttr *recAttrAttr2;
 NdbRecAttr *recAttrAttr3;

 Uint32 scanFlags = NdbScanOperation::SF_OrderBy;
 Uint32 attr3Eq = 44;

 switch (accessType)
 {
 case api_attr :
 {
 psop=myTransaction->getNdbIndexScanOperation(mySIndex);
 if (psop == NULL) APIERROR(myTransaction->getNdbError());

 if (psop->readTuples(NdbOperation::LM_Read,
 scanFlags,
 (Uint32) 0, // batch
 (Uint32) 0) != 0) // parallel
 APIERROR (myTransaction->getNdbError());

 if (psop->setBound("ATTR3",
 NdbIndexScanOperation::BoundEQ, (char*)&attr3Eq))
 APIERROR(myTransaction->getNdbError());
```
NDB API Example Comparing RecAttr and NdbRecord

```cpp
recAttrAttr1 = psop->getValue("ATTR1");
recAttrAttr2 = psop->getValue("ATTR2");
recAttrAttr3 = psop->getValue("ATTR3");
break;
}
case api_record :
{
 NdbScanOperation::ScanOptions options;
 options.optionsPresent = NdbScanOperation::ScanOptions::SO_SCANFLAGS;
 options.scan_flags = scanFlags;
 psop = myTransaction->scanIndex(psecondaryIndexRecord,
 pallColsRecord, // Read all table rows back
 NdbOperation::LM_Read,
 NULL, // mask
 NULL, // bound specified below
 &options,
 sizeof(NdbScanOperation::ScanOptions));
 if (psop == NULL) APIERROR(myTransaction->getNdbError());
 /* Set equality bound via two inclusive bounds */
 NdbIndexScanOperation::IndexBound bound;
 bound.low_key = (char*)&attr3Eq;
 bound.low_key_count = 1;
 bound.low_inclusive = true;
 bound.high_key = (char*)&attr3Eq;
 bound.high_key_count = 1;
 bound.high_inclusive = true;
 bound.range_no = 0;
 if (psop->setBound(psecondaryIndexRecord, bound))
 APIERROR(myTransaction->getNdbError());
 break;
}
default :
{
 std::cout << "Bad branch : " << accessType << "\n";
 exit(-1);
}
}
if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
 APIERROR(myTransaction->getNdbError());
// Check rc anyway
if (myTransaction->getNdbError().status != NdbError::Success)
 APIERROR(myTransaction->getNdbError());
switch (accessType)
{
 case api_attr :
 {
 int res;
 while ((res = psop->nextResult(true)) == GOT_ROW)
 {
 printf("%2d %2d %2d\n",
 recAttrAttr1->u_32_value(),
 recAttrAttr2->u_32_value(),
 recAttrAttr3->u_32_value());
 }
 if (res != NO_MORE_ROWS)
 APIERROR(psop->getNdbError());
 psop->close();
 }
```
case api_record :
{
  RowData *prowData; // Ptr to point to our data
  int rc=0;
  while ((rc = psop->nextResult((const char**) &prowData,
      true,   // fetch
      false)) // forceSend
      == GOT_ROW)
  {
    printf(" %2d    %2d    %2d\n",
      prowData->attr1,
      prowData->attr2,
      prowData->attr3);
  }
  if (rc != NO_MORE_ROWS)
    APIERROR(myTransaction->getNdbError());
  psop->close(true);
  break;
}
default : {
  std::cout << "Bad branch : " << accessType << "\n";
  exit(-1);
}
}
if(myTransaction->execute( NdbTransaction::Commit ) !=0)
  APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
std::cout << "-------\n";

/*********************************
* Interpreted update *
*********************************/
static void do_interpreted_update(Ndb &myNdb, ApiType accessType)
{
  NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
  const NdbDictionary::Table *myTable= myDict->getTable("api_recattr_vs_record");
  const NdbDictionary::Index *myPIndex= myDict->getIndex("PRIMARY", "api_recattr_vs_record");
  std::cout << "Running do_interpreted_update\n";
  if (myTable == NULL)
    APIERROR(myDict->getNdbError());
  if (myPIndex == NULL)
    APIERROR(myDict->getNdbError());
  std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;
  NdbTransaction *myTransaction=myNdb.startTransaction();
  if (myTransaction == NULL) APIERROR(myNdb.getNdbError());
  NdbRecAttr *recAttrAttr1;
  NdbRecAttr *recAttrAttr2;
  NdbRecAttr *recAttrAttr3;
  NdbRecAttr *recAttrAttr11;
  NdbRecAttr *recAttrAttr12;
NdbRecAttr *recAttrAttr13;
RowData rowData;
RowData rowData2;

/* Register aliases */
const Uint32 R1=1, R2=2, R3=3, R4=4, R5=5, R6=6;

switch (accessType)
{
    case api_attr :
    {
        NdbOperation *pop;
pop=myTransaction->getNdbOperation(myTable);

        if (pop == NULL) APIERROR (myTransaction->getNdbError());
        if (pop->interpretedUpdateTuple())
            APIERROR (pop->getNdbError());

        /* Interpreted update on row where ATTR1 == 4 */
        if (pop->equal("ATTR1", 4) != 0)
            APIERROR (pop->getNdbError());

        /* First, read the values of all attributes in the normal way */
        recAttrAttr1=pop->getValue("ATTR1");
        recAttrAttr2=pop->getValue("ATTR2");
        recAttrAttr3=pop->getValue("ATTR3");

        /* Now define interpreted program which will run after the */
        /* values have been read */
        /* This program is rather tortuous and doesn't achieve much other */
        /* than demonstrating control flow, register and some column */
        /* operations */
        // R5= 3
        if (pop->load_const_u32(R5, 3) != 0)
            APIERROR (pop->getNdbError());

        // R1= *ATTR1; R2= *ATTR2; R3= *ATTR3
        if (pop->read_attr("ATTR1", R1) != 0)
            APIERROR (pop->getNdbError());
        if (pop->read_attr("ATTR2", R2) != 0)
            APIERROR (pop->getNdbError());
        if (pop->read_attr("ATTR3", R3) != 0)
            APIERROR (pop->getNdbError());

        // R3= R3-R5
        if (pop->sub_reg(R3, R5, R3) != 0)
            APIERROR (pop->getNdbError());

        // R2= R1+R2
        if (pop->add_reg(R1, R2, R2) != 0)
            APIERROR (pop->getNdbError());

        // *ATTR2= R2
        if (pop->write_attr("ATTR2", R2) != 0)
            APIERROR (pop->getNdbError());

        // *ATTR3 = R3
        if (pop->write_attr("ATTR3", R3) != 0)
            APIERROR (pop->getNdbError());

        // *ATTR3 = 30
        if (pop->subValue("ATTR3", (Uint32)30) != 0)
            APIERROR (pop->getNdbError());

        Uint32 comparisonValue= 10;

        // if *ATTR3 > comparisonValue, goto Label 0
        if (pop->branch_col_lt(pattr3Col->getColumnNo(),
                &comparisonValue,
                sizeof(Uint32),
                Label 0))
            APIERROR (pop->getNdbError());

        break;
    }
}
false,
    0) != 0)
    APIERROR (pop->getNdbError());

    // assert(false)
    // Fail the operation with error 627 if we get here.
    if (pop->interpret_exit_nok(627) != 0)
        APIERROR (pop->getNdbError());

    // Label 0
    if (pop->def_label(0) != 0)
        APIERROR (pop->getNdbError());

    Uint32 comparisonValue2 = 344;
    // if *ATTR2 == comparisonValue, goto Label 1
    if (pop->branch_col_eq(pattr2Col->getColumnNo(),
                            &comparisonValue2,
                            sizeof(Uint32),
                            false,
                            1) != 0)
        APIERROR (pop->getNdbError());

    // assert(false)
    // Fail the operation with error 628 if we get here
    if (pop->interpret_exit_nok(628) != 0)
        APIERROR (pop->getNdbError());

    // Label 1
    if (pop->def_label(1) != 1)
        APIERROR (pop->getNdbError());

    // Optional infinite loop
    // if (pop->branch_label(0) != 0)
    //    APIERROR (pop->getNdbError());

    // R1 = 10
    if (pop->load_const_u32(R1, 10) != 0)
        APIERROR (pop->getNdbError());

    // R3 = 2
    if (pop->load_const_u32(R3, 2) != 0)
        APIERROR (pop->getNdbError());

    // Now call subroutine 0
    if (pop->call_sub(0) != 0)
        APIERROR (pop->getNdbError());

    // *ATTR2 = R2
    if (pop->write_attr("ATTR2", R2) != 0)
        APIERROR (pop->getNdbError());

    // Return ok, we'll move onto an update.
    if (pop->interpret_exit_ok() != 0)
        APIERROR (pop->getNdbError());

    /* Define a final read of the columns after the update */
    recAttrAttr11 = pop->getValue("ATTR1");
    recAttrAttr12 = pop->getValue("ATTR2");
    recAttrAttr13 = pop->getValue("ATTR3");

    // Define any subroutines called by the 'main' program
    // Subroutine 0
    if (pop->def_subroutine(0) != 0)
        APIERROR (pop->getNdbError());

    // R4 = 1
    if (pop->load_const_u32(R4, 1) != 0)
        APIERROR (pop->getNdbError());

    // Label 2
    if (pop->def_label(2) != 2)
APIERROR (pop->getNdbError());

// R3 = R3 - R4
if (pop->sub_reg(R3, R4, R3) != 0)
    APIERROR (pop->getNdbError());

// R2 = R2 + R1
if (pop->add_reg(R2, R1, R2) != 0)
    APIERROR (pop->getNdbError());

// Optional infinite loop
// if (pop->branch_label(2) != 0)
//    APIERROR (pop->getNdbError());

// Loop, subtracting 1 from R4 until R4 < 1
if (pop->branch_ge(R4, R3, 2) != 0)
    APIERROR (pop->getNdbError());

// Jump to label 3
if (pop->branch_label(3) != 0)
    APIERROR (pop->getNdbError());

// assert(false)
// Fail operation with error 629
if (pop->interpret_exit_nok(629) != 0)
    APIERROR (pop->getNdbError());

// Label 3
if (pop->def_label(3) != 3)
    APIERROR (pop->getNdbError());

// Nested subroutine call to sub 2
if (pop->call_sub(2) != 0)
    APIERROR (pop->getNdbError());

// Return from subroutine 0
if (pop->ret_sub() != 0)
    APIERROR (pop->getNdbError());

// Subroutine 1
if (pop->def_subroutine(1) != 1)
    APIERROR (pop->getNdbError());

// R6 = R1 + R2
if (pop->add_reg(R1, R2, R6) != 0)
    APIERROR (pop->getNdbError());

// Return from subroutine 1
if (pop->ret_sub() != 0)
    APIERROR (pop->getNdbError());

// Subroutine 2
if (pop->def_subroutine(2) != 2)
    APIERROR (pop->getNdbError());

// Call backward to subroutine 1
if (pop->call_sub(1) != 0)
    APIERROR (pop->getNdbError());

// Return from subroutine 2
if (pop->ret_sub() != 0)
    APIERROR (pop->getNdbError());

break;
}
case api_record :
{
    const NdbOperation *pop;
    rowData.attr1 = 4;

    /* NdbRecord does not support an updateTuple pre-read or post-read, so
     * we use separate operations for these. */

    break;
}
* Note that this assumes that all operations are executed in
* the order they are defined by NDBAPI, which is not guaranteed. To
* ensure execution order, the application should perform a NoCommit
* execute between operations.
*/

const NdbOperation *op0= myTransaction->readTuple(pkeyColumnRecord,
    (char*) &rowData,
    pallColsRecord,
    (char*) &rowData);

if (op0 == NULL)
    APIERROR (myTransaction->getNdbError());

/* Allocate some space to define an Interpreted program */
const Uint32 numWords= 64;
Uint32 space[numWords];

NdbInterpretedCode stackCode(myTable,
    &space[0],
    numWords);

NdbInterpretedCode *code= &stackCode;

/* Similar program as above, with tortuous control flow and little
* purpose. Note that for NdbInterpretedCode, some instruction
* arguments are in different orders
*/

// R5= 3
if (code->load_const_u32(R5, 3) != 0)
    APIERROR (code->getNdbError());
// R1= *ATTR1; R2= *ATTR2; R3= *ATTR3
if (code->read_attr(R1, pattr1Col) != 0)
    APIERROR (code->getNdbError());
if (code->read_attr(R2, pattr2Col) != 0)
    APIERROR (code->getNdbError());
if (code->read_attr(R3, pattr3Col) != 0)
    APIERROR (code->getNdbError());

// R3= R3-R5
if (code->sub_reg(R3, R3, R5) != 0)
    APIERROR (code->getNdbError());

// R2= R1+R2
if (code->add_reg(R2, R1, R2) != 0)
    APIERROR (code->getNdbError());

// *ATTR2= R2
if (code->write_attr(pattr2Col, R2) != 0)
    APIERROR (code->getNdbError());

// *ATTR3= R3
if (code->write_attr(pattr3Col, R3) != 0)
    APIERROR (code->getNdbError());

// *ATTR3 = *ATTR3 - 30
if (code->sub_val(pattr3Col->getColumnNo(), (Uint32)30) != 0)
    APIERROR (code->getNdbError());

Uint32 comparisonValue= 10;
// if comparisonValue < *ATTR3, goto Label 0
if (code->branch_col_lt(&comparisonValue,
    sizeof(Uint32),
    pattr3Col->getColumnNo(),
    0) != 0)
    APIERROR (code->getNdbError());

// assert(false)
// Fail operation with error 627
if (code->interpret_exit_nok(627) != 0)
APIERROR (code->getNdbError());

// Label 0
if (code->def_label(0) != 0)
    APIERROR (code->getNdbError());

Uint32 comparisonValue2 = 344;

// if *ATTR2 == comparisonValue2, goto Label 1
if (code->branch_col_eq(&comparisonValue2, sizeof(Uint32), pattr2Col->getColumnNo(), 1) != 0)
    APIERROR (code->getNdbError());

// assert(false)
// Fail operation with error 628
if (code->interpret_exit_nok(628) != 0)
    APIERROR (code->getNdbError());

// Label 1
if (code->def_label(1) != 0)
    APIERROR (code->getNdbError());

// R1 = 10
if (code->load_const_u32(R1, 10) != 0)
    APIERROR (code->getNdbError());

// R3 = 2
if (code->load_const_u32(R3, 2) != 0)
    APIERROR (code->getNdbError());

// Call subroutine 0 to effect
// R2 = R2 + (R1*R3)
if (code->call_sub(0) != 0)
    APIERROR (code->getNdbError());

// *ATTR2 = R2
if (code->write_attr(pattr2Col, R2) != 0)
    APIERROR (code->getNdbError());

// Return ok
if (code->interpret_exit_ok() != 0)
    APIERROR (code->getNdbError());

// Subroutine 0
if (code->def_sub(0) != 0)
    APIERROR (code->getNdbError());

// R4 = 1
if (code->load_const_u32(R4, 1) != 0)
    APIERROR (code->getNdbError());

// Label 2
if (code->def_label(2) != 0)
    APIERROR (code->getNdbError());

// R3-R4
if (code->sub_reg(R3, R3, R4) != 0)
    APIERROR (code->getNdbError());

// R2 = R2+R1
if (code->add_reg(R2, R2, R1) != 0)
    APIERROR (code->getNdbError());

// Loop, subtracting 1 from R4 until R4>1
if (code->branch_ge(R3, R4, 2) != 0)
    APIERROR (code->getNdbError());

// Jump to label 3
if (code->branch_label(3) != 0)
    APIERROR (code->getNdbError());
// Fail operation with error 629
if (code->interpret_exit_nok(629) != 0)
    APIERROR (code->getNdbError());

// Label 3
if (code->def_label(3) != 0)
    APIERROR (code->getNdbError());

// Call sub 2
if (code->call_sub(2) != 0)
    APIERROR (code->getNdbError());

// Return from sub 0
if (code->ret_sub() != 0)
    APIERROR (code->getNdbError());

// Subroutine 1
if (code->def_sub(1) != 0)
    APIERROR (code->getNdbError());

// R6 = R1+R2
if (code->add_reg(R6, R1, R2) != 0)
    APIERROR (code->getNdbError());

// Return from subroutine 1
if (code->ret_sub() != 0)
    APIERROR (code->getNdbError());

// Subroutine 2
if (code->def_sub(2) != 0)
    APIERROR (code->getNdbError());

// Call backward to subroutine 1
if (code->call_sub(1) != 0)
    APIERROR (code->getNdbError());

// Return from subroutine 2
if (code->ret_sub() != 0)
    APIERROR (code->getNdbError());

/* Finalise code object
 * This step is essential for NdbInterpretedCode objects
 * and must be done before they can be used.
 */
if (code->finalise() != 0)
    APIERROR (code->getNdbError());

/* Time to define the update operation to use the
 * InterpretedCode object. The same finalised object
 * could be used with multiple operations or even
 * multiple threads
 */
NdbOperation::OperationOptions oo;
oo.optionsPresent=
    NdbOperation::OperationOptions::OO_INTERPRETED;
oo.interpretedCode= code;

unsigned char mask= 0;

pop= myTransaction->updateTuple(pkeyColumnRecord,
    (char*) &rowData,
    pallColsRecord,
    (char*) &rowData,
    (const unsigned char *) &mask,
    // mask - update nothing
    &oo,
    sizeof(NdbOperation::OperationOptions));

if (pop == NULL)
    APIERROR (myTransaction->getNdbError());

// NoCommit execute so we can read the 'after' data.
if (myTransaction->execute(NdbTransaction::NoCommit) != 0)
    APIERROR(myTransaction->getNdbError());

/* Second read op as we can't currently do a 'read after
   * 'interpreted code' read as part of NdbRecord.
   * We are assuming that the order of op definition == order
   * of execution on a single row, which is not guaranteed.
   */
const NdbOperation *pop2=
    myTransaction->readTuple(pkeyColumnRecord,
                            (char*) &rowData,
                            pallColsRecord,
                            (char*) &rowData2);
if (pop2 == NULL)
    APIERROR (myTransaction->getNdbError());
break;
}
default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}
}
if(myTransaction->execute(NdbTransaction::NoCommit) != 0)
    APIERROR(myTransaction->getNdbError());

// Check return code
if (myTransaction->getNdbError().status != NdbError::Success)
    APIERROR(myTransaction->getNdbError());

switch (accessType)
{
    case api_attr :
    {
        printf(" %2d %2d %2d  Before\n"
               " %2d %2d %2d  After\n",
               recAttrAttr1->u_32_value(),
               recAttrAttr2->u_32_value(),
               recAttrAttr3->u_32_value(),
               recAttrAttr11->u_32_value(),
               recAttrAttr12->u_32_value(),
               recAttrAttr13->u_32_value());
        break;
    }
    case api_record :
    {
        printf(" %2d %2d %2d  Before\n"|
               " %2d %2d %2d  After\n",
               rowData.attr1,
               rowData.attr2,
               rowData.attr3,
               rowData2.attr1,
               rowData2.attr2,
               rowData2.attr3);
        break;
    }
    default :
    {
        std::cout << "Bad branch : " << accessType << "\n";
        exit(-1);
    }
}
if(myTransaction->execute(NdbTransaction::Commit) !=0)
    APIERROR(myTransaction->getNdbError());
myNdb.closeTransaction(myTransaction);
std::cout << "-------\n";
static void do_interpreted_scan(Ndb &myNdb, ApiType accessType)
{
    NdbDictionary::Dictionary* myDict = myNdb.getDictionary();
    const NdbDictionary::Table *myTable =
        myDict->getTable("api_recattr_vs_record");

    std::cout << "Running do_interpreted_scan\n";
    if (myTable == NULL)
        APIERROR(myDict->getNdbError());
    std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

    NdbTransaction *myTransaction = myNdb.startTransaction();
    if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

    NdbScanOperation *psop;
    NdbRecAttr *recAttrAttr1;
    NdbRecAttr *recAttrAttr2;
    NdbRecAttr *recAttrAttr3;

    /* Create some space on the stack for the program */
    const Uint32 numWords = 64;
    Uint32 space[numWords];

    NdbInterpretedCode stackCode(myTable,
        &space[0],
        numWords);

    NdbInterpretedCode *code = &stackCode;

    /* RecAttr and NdbRecord scans both use NdbInterpretedCode
     * Let's define a small scan filter of sorts
     */
    Uint32 comparisonValue = 10;

    // Return rows where 10 > ATTR3 (ATTR3 <10)
    if (code->branch_col_gt(&comparisonValue,
            sizeof(Uint32),
            pattr3Col->getColumnNo(),
            0) != 0)
        APIERROR (myTransaction->getNdbError());

    /* If we get here then we don't return this row */
    if (code->interpret_exit_nok() != 0)
        APIERROR (myTransaction->getNdbError());

    /* Label 0 */
    if (code->def_label(0) != 0)
        APIERROR (myTransaction->getNdbError());

    /* Return this row */
    if (code->interpret_exit_ok() != 0)
        APIERROR (myTransaction->getNdbError());

    /* Finalise the Interpreted Program */
    if (code->finalise() != 0)
        APIERROR (myTransaction->getNdbError());

    switch (accessType)
    {
    case api_attr :
    {
        psop=myTransaction->getNdbScanOperation(myTable);
        if (psop == NULL)
APIERROR(myTransaction->getNdbError());

if (psop->readTuples(NdbOperation::LM_Read) != 0)
    APIERROR (myTransaction->getNdbError());

if (psop->setInterpretedCode(code) != 0)
    APIERROR (myTransaction->getNdbError());

recAttrAttr1=psop->getValue("ATTR1");
recAttrAttr2=psop->getValue("ATTR2");
recAttrAttr3=psop->getValue("ATTR3");

break;
}

default :
{
    std::cout << "Bad branch : " << accessType << "\n";
    exit(-1);
}

if(myTransaction->execute( NdbTransaction::NoCommit ) != 0)
    APIERROR(myTransaction->getNdbError());

switch (accessType)
{
    case api_attr :
    {
        while (psop->nextResult(true) == 0)
        {
            printf(" %2d %2d %2d\n", 
                recAttrAttr1->u_32_value(), 
                recAttrAttr2->u_32_value(), 
                recAttrAttr3->u_32_value());
        }

        psop->close();

        break;
    }

    case api_record :
    {
        RowData *prowData; // Ptr to point to our data
        int rc=0;

        while ((rc = psop->nextResult((const char**) &prowData, 
               true, false)) == GOT_ROW)
        {
            printf(" %2d %2d %2d\n", 
                prowData->attr1, 
                prowData->attr2, 
                prowData->attr3);
        }
    }
if (rc != NO_MORE_ROWS) APIERROR(myTransaction->getNdbError());
    ppop->close(true);
    break;
} default:
    { std::cout << "Bad branch : " << accessType << "\n";
      exit(-1);
    }
}

if(myTransaction->execute( NdbTransaction::Commit ) !=0)
    APIERROR(myTransaction->getNdbError());

myNdb.closeTransaction(myTransaction);

std::cout << "-------\n";

/*****************************************************/
/* Read some data using the default NdbRecord objects */
/*****************************************************/
static void do_read_using_default(Ndb &myNdb)
{
    NdbDictionary::Dictionary* myDict= myNdb.getDictionary();
    const NdbDictionary::Table *myTable=
        myDict->getTable("api_recattr_vs_record");

    const NdbRecord* tableRec= myTable->getDefaultRecord();

    if (myTable == NULL)
        APIERROR(myDict->getNdbError());

    std::cout << "Running do_read_using_default_record (NdbRecord only)\n";
    std::cout << "ATTR1 ATTR2 ATTR3" << std::endl;

    /* Allocate some space for the rows to be read into */
    char* buffer= (char*)malloc(NdbDictionary::getRecordRowLength(tableRec));

    if (buffer== NULL)
    {
        printf("Allocation failed\n");
        exit(-1);
    }

    for (int i = 0; i < 10; i++) {
        NdbTransaction *myTransaction= myNdb.startTransaction();
        if (myTransaction == NULL) APIERROR(myNdb.getNdbError());

        char* attr1= NdbDictionary::getValuePtr(tableRec,
            buffer,
            attr1ColNum);
        *(unsigned int*)attr1)= i;

        const NdbOperation *pop= 
            myTransaction->readTuple(tableRec,
                buffer,
                tableRec, // Read everything
                buffer);
        if (pop==NULL) APIERROR(myTransaction->getNdbError());

        if(myTransaction->execute( NdbTransaction::Commit ) == -1)
            APIERROR(myTransaction->getNdbError());

        NdbError err= myTransaction->getNdbError();
        if (err.code != 0)
        { if (err.classification == NdbError::NoDataFound)
std::cout << "Tuple " << i \\
   << " does not exist." << std::endl;
else 
  APIERROR(myTransaction->getNdbError());
}
else 
{
  printf(" %2d    %2d    %2d
", 
    i, 
    *((unsigned int*) NdbDictionary::getValuePtr(tableRec, 
      buffer, 
      attr2ColNum)), 
    *((unsigned int*) NdbDictionary::getValuePtr(tableRec, 
      buffer, 
      attr3ColNum)));
}
myNdb.closeTransaction(myTransaction);
} 
free(buffer);
std::cout << "-------\n";

### 2.5.8 NDB API Event Handling Example

This example demonstrates NDB API event handling.

The source code for this program may be found in the NDB Cluster source tree, in the file `storage/ndb/ndbapi-examples/ndbapi_event/ndbapi_event.cpp`.

```cpp
#include <NdbApi.hpp>

// Used for cout
#include <stdio.h>
#include <iostream>
#include <unistd.h>
#ifdef VM_TRACE
#include <my_global.h>
#endif
#ifndef assert
#include <assert.h>
#endif

/**
 * Assume that there is a table which is being updated by
 * another process (e.g. flexBench -l 0 -stdtables).
 * We want to monitor what happens with column values.
 * Or using the mysql client:
 * shell> mysql -u root
 * mysql> create database ndb_examples;
 * mysql> use ndb_examples;
 * mysql> create table t0
 * (c0 int, c1 int, c2 char(4), c3 char(4), c4 text,
 * primary key(c0, c2)) engine ndb charset latin1)
 * In another window start ndbapi_event, wait until properly started

insert into t0 values (1, 2, 'a', 'b', null);
insert into t0 values (3, 4, 'c', 'd', null);
update t0 set c3 = 'e' where c0 = 1 and c2 = 'a'; -- use pk
update t0 set c3 = 'f'; -- use scan
update t0 set c3 = 'F'; -- use scan update to 'same'
update t0 set c2 = 'g' where c0 = 1; -- update pk part
update t0 set c2 = 'G' where c0 = 1; -- update pk part to 'same'
update t0 set c0 = 5, c2 = 'H' where c0 = 3; -- update full PK
delete from t0;
```
insert ...; update ...; -- see events w/ same pk merged (if -m option)
delete ...; insert ...; -- there are 5 combinations ID IU DI UD UU
update ...; update ...;
-- text requires -m flag
set @a = repeat('a',256); -- inline size
set @b = repeat('b',2000); -- part size
set @c = repeat('c',2000*30); -- 30 parts
-- update the text field using combinations of @a, @b, @c ...

* you should see the data popping up in the example window
*
*/
#define APIERROR(error) 
{ std::cout << "Error in " << __FILE__ << ", line:" << __LINE__ << ", code:" 
<< error.code << ", msg: " << error.message << ":" << std::endl; 
exit(-1); }

int myCreateEvent(Ndb* myNdb,
const char *eventName,
const char *eventTableName,
const char **eventColumnName,
const int noEventColumnName,
bool merge_events);

int main(int argc, char** argv)
{
  if (argc < 3)
  {
    std::cout << "Arguments are <connect_string cluster> <timeout> [m(merge events)|d(debug)].\n";
    exit(-1);
  }
  const char *connection_string = argv[1];
  int timeout = atoi(argv[2]);
  ndb_init();
  bool merge_events = argc > 3 && strchr(argv[3], 'm') != 0;
  #ifdef VM_TRACE
  bool dbug = argc > 3 && strchr(argv[3], 'd') != 0;
  if (dbug) DBUG_PUSH("d:t:"
  if (dbug) putenv("API_SIGNAL_LOG=-");
  #endif
  Ndb_cluster_connection *cluster_connection=
  new Ndb_cluster_connection(connection_string); // Object representing the cluster
  int r = cluster_connection->connect(5 /* retries */,
  3 /* delay between retries */,
  1 /* verbose */); // Object representing the database
  if (r > 0)
  { std::cout << "Cluster connect failed, possibly resolved with more retries.\n";
    exit(-1);
  }
  else if (r < 0)
  { std::cout << "Cluster connect failed.\n";
    exit(-1);
  }
  if (cluster_connection->wait_until_ready(30,30))
  { std::cout << "Cluster was not ready within 30 secs." << std::endl;
    exit(-1);
  }
  Ndb* myNdb= new Ndb(cluster_connection,
  "ndb_examples"); // Object representing the database
}
if (myNdb->init() == -1) APIERROR(myNdb->getNdbError());

const char *eventName= "CHNG_IN_t0";
const char *eventTableName= "t0";
const int noEventColumnName= 5;
const char *eventColumnName[noEventColumnName]=
{ "c0",
  "c1",
  "c2",
  "c3",
  "c4"
};

// Create events
myCreateEvent(myNdb,
  eventName,
  eventTableName,
  eventColumnName,
  noEventColumnName,
  merge_events);

// Normal values and blobs are unfortunately handled differently..
typedef union { NdbRecAttr* ra; NdbBlob* bh; } RA_BH;

int i, j, k, l;
j = 0;
while (j < timeout) {

  // Start "transaction" for handling events
  NdbEventOperation* op;
  printf("create EventOperation\n");
  if ((op = myNdb->createEventOperation(eventName)) == NULL)
    APIERROR(myNdb->getNdbError());
  op->mergeEvents(merge_events);

  printf("get values\n");
  RA_BH recAttr[noEventColumnName];
  RA_BH recAttrPre[noEventColumnName];
  // primary keys should always be a part of the result
  for (i = 0; i < noEventColumnName; i++) {
    if (i < 4) {
      recAttr[i].ra = op->getValue(eventColumnName[i]);
      recAttrPre[i].ra = op->getPreValue(eventColumnName[i]);
    } else if (merge_events) {
      recAttr[i].bh = op->getBlobHandle(eventColumnName[i]);
      recAttrPre[i].bh = op->getPreBlobHandle(eventColumnName[i]);
    }
  }

  // set up the callbacks
  printf("execute\n");
  // This starts changes to "start flowing"
  if (op->execute())
    APIERROR(op->getNdbError());

  NdbEventOperation* the_op = op;

  i = 0;
  while (i < timeout) {
    // printf("now waiting for event...\n");
    int r = myNdb->pollEvents(1000); // wait for event or 1000 ms
    if (r > 0) {
      // printf("got data! %d\n", r);
      while ((op= myNdb->nextEvent())) {
        assert(the_op == op);
        i++;
        switch (op->getEventType()) {
        case NdbDictionary::Event::TE_INSERT:
          printf("%u INSERT", i);
          break;
        case NdbDictionary::Event::TE_DELETE:
          break;
        case NdbDictionary::Event::TE_UPDATE:
          break;
        default:
          break;
        }
      }
    }
  }
}

// NDB API Event Handling Example

489
NDB API Event Handling Example

```c
printf("%u DELETE", i);
break;
case NdbDictionary::Event::TE_UPDATE:
 printf("%u UPDATE", i);
 break;
default:
 abort(); // should not happen
}
 printf(" gci=%d\n", (int)op->getGCI());
for (k = 0; k <= 1; k++) {
 printf(k == 0 ? "post: " : "pre : ");
 for (l = 0; l < noEventColumnName; l++) {
 if (l < 4) {
 NdbRecAttr* ra = k == 0 ? recAttr[l].ra : recAttrPre[l].ra;
 if (ra->isNULL() >= 0) { // we have a value
 if (ra->isNULL() == 0) { // we have a non-null value
 if (l < 2)
 printf("%5u", ra->u_32_value());
 else
 printf("%5.4s", ra->aRef());
 } else
 printf("%5s", "NULL");
 } else
 printf("%5s", "-"); // no value
 } else if (merge_events) {
 int isNull;
 NdbBlob* bh = k == 0 ? recAttr[l].bh : recAttrPre[l].bh;
 bh->getDefined(isNull);
 if (isNull >= 0) { // we have a value
 if (! isNull) { // we have a non-null value
 Uint64 length = 0;
 bh->getLength(length);
 // read into buffer
 unsigned char* buf = new unsigned char [length];
 memset(buf, 'X', length);
 Uint32 n = length;
 bh->readData(buf, n); // n is in/out
 assert(n == length);
 // pretty-print
 bool first = true;
 Uint32 i = 0;
 while (i < n) {
 uint c = buf[i++];
 Uint32 m = 1;
 while (i < n && buf[i] == c)
 i++, m++;
 if (! first)
 printf("+");
 printf("%u%c", m, c);
 first = false;
 }
 printf("%d\n", n);
 delete [] buf;
 } else
 printf("%5s", "NULL");
 } else
 printf("%5s", "); // no value
 }
 printf("\n");
 } else // else printf("timed out (%i)\n", timeout);
 }
 // don't want to listen to events anymore
 if (myNdb->dropEventOperation(the_op)) APIERROR(myNdb->getNdbError());
 the_op = 0;
 j++;
}
```
NDB API Example: Basic BLOB Handling

```cpp
NdbDictionary::Dictionary *myDict = myNdb->getDictionary();
if (!myDict) APIERROR(myNdb->getNdbError());
// remove event from database
if (myDict->dropEvent(eventName)) APIERROR(myDict->getNdbError());
}
delete myNdb;
delete cluster_connection;
ndb_end(0);
return 0;
}

int myCreateEvent(Ndb* myNdb,
const char *eventName,
const char *eventTableName,
const char **eventColumnNames,
const int noEventColumnNames,
bool merge_events)
{
NdbDictionary::Dictionary *myDict = myNdb->getDictionary();
if (!myDict) APIERROR(myNdb->getNdbError());
const NdbDictionary::Table *table = myDict->getTable(eventTableName);
if (!table) APIERROR(myDict->getNdbError());
NdbDictionary::Event myEvent(eventName, *table);
myEvent.addTableEvent(NdbDictionary::Event::TE_ALL);
// myEvent.addTableEvent(NdbDictionary::Event::TE_INSERT);
// myEvent.addTableEvent(NdbDictionary::Event::TE_UPDATE);
// myEvent.addTableEvent(NdbDictionary::Event::TE_DELETE);
myEvent.addEventColumns(noEventColumnNames, eventColumnNames);
myEvent.mergeEvents(merge_events);
// Add event to database
if (myDict->createEvent(myEvent) == 0)
 myEvent.print();
else if (myDict->getNdbError().classification ==
 NdbError::SchemaObjectExists) {
 printf("Event creation failed, event exists\n");
 printf("dropping Event...\n");
 if (myDict->dropEvent(eventName)) APIERROR(myDict->getNdbError());
 // try again
 // Add event to database
 if (myDict->createEvent(myEvent)) APIERROR(myDict->getNdbError());
 else
 APIERROR(myDict->getNdbError());

 return 0;
}
```

2.5.9 NDB API Example: Basic BLOB Handling

This example illustrates the manipulation of a BLOB column in the NDB API. It demonstrates how to perform insert, read, and update operations, using both inline value buffers as well as read and write methods.

The source code can be found in the file `storage/ndb/ndbapi-examples/ndbapi_blob/ndbapi_blob.cpp` in the NDB Cluster source tree.

Note

While the MySQL data type used in the example is actually TEXT, the same principles apply.

/*
ndbapi_blob.cpp:
Illustrates the manipulation of BLOB (actually TEXT in this example).
*/
NDB API Example: Basic BLOB Handling

Shows insert, read, and update, using both inline value buffer and read/write methods.
*/

#ifdef _WIN32
#include <winsock2.h>
#endif
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>
#include <stdlib.h>
#include <string.h>
/* Used for cout. */
#include <iostream>
#include <stdio.h>
#include <ctype.h>

#define PRINT_ERROR(code,msg) \
    std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ << \
              " code: " << code << \
              " msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { \
    PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); \
    exit(-1); }
#define APIERROR(error) { \
    PRINT_ERROR(error.code,error.message); \
    exit(-1); }

/* Quote taken from Project Gutenberg. */
const char *text_quote="Just at this moment, somehow or other, they began to run.

  Alice never could quite make out, in thinking it over afterwards, how it was that they began: all she remembers is, they were running hand in hand, and the Queen went so fast that it was all she could do to keep up with her: and still the Queen kept crying 'Faster! Faster!' but Alice felt she COULD NOT go faster, though she had not breath left to say so.

  The most curious part of the thing was, that the trees and the other things round them never changed their places at all: however fast they went, they never seemed to pass anything. 'I wonder if all the things move along with us?' thought poor puzzled Alice. And the Queen seemed to guess her thoughts, for she cried, 'Faster! Don't try to talk!'

  Not that Alice had any idea of doing THAT. She felt as if she would never be able to talk again, she was getting so much out of breath: and still the Queen cried 'Faster! Faster!' and dragged her along. 'Are we nearly there?' Alice managed to pant out at last. 'Nearly there!' the Queen repeated. 'Why, we passed it ten minutes ago! Faster!' And they ran on for a time in silence, with the wind whistling in Alice's ears, and almost blowing her hair off her head, she fancied.

  'Now! Now!' cried the Queen. 'Faster! Faster!' And they went so fast that at last they seemed to skim through the air, hardly touching the ground with their feet, till suddenly, just as Alice was getting quite exhausted, they stopped, and she found herself sitting on the ground, breathless and giddy.

  The Queen propped her up against a tree, and said kindly, 'You may rest a little now.' Alice looked round her in great surprise. 'Why, I do believe we've been under this tree the whole time! Everything's just as..."
"it was!"
""
'Of course it is,' said the Queen, 'what would you have it?"
"
'Well, in OUR country,' said Alice, still panting a little,
'you'd generally get to somewhere else--if you ran very fast"
"for a long time, as we've been doing.'"
"
'A slow sort of country!' said the Queen. 'Now, HERE, you see,
'it takes all the running YOU can do, to keep in the same place.
"If you want to get somewhere else, you must run at least twice as
"fast as that!'"
"
'I'd rather not try, please!' said Alice. 'I'm quite content"
"to stay here--only I AM so hot and thirsty!'"
"
"-- Lewis Carroll, 'Through the Looking-Glass'."

/
* Function to drop table.
*/
void drop_table(MYSQL &mysql)
{
  if (mysql_query(&mysql, "DROP TABLE api_blob"))
    MYSQLERROR(mysql);
}

/*
 * Functions to create table.
 */
int try_create_table(MYSQL &mysql)
{
  return mysql_query(&mysql,
    "CREATE TABLE
      api_blob
        (my_id INT UNSIGNED NOT NULL,
         my_text TEXT NOT NULL,
         PRIMARY KEY USING HASH (my_id))
      ENGINE=NDB");
}

void create_table(MYSQL &mysql)
{
  if (try_create_table(mysql))
  {
    if (mysql_errno(&mysql) != ER_TABLE_EXISTS_ERROR)
      MYSQLERROR(mysql);
    std::cout << "NDB Cluster already has example table: api_blob. ">
      " Dropping it..." << std::endl;
    //*****************************
    // Recreate table *
    //*****************************
    drop_table(mysql);
    if (try_create_table(mysql))
      MYSQLERROR(mysql);
  }
}

int populate(Ndb *myNdb)
{
  const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
  const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
  if (myTable == NULL)
    APIERROR(myDict->getNdbError());

  NdbTransaction *myTrans= myNdb->startTransaction();
  if (myTrans == NULL)
    APIERROR(myNdb->getNdbError());

  NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
  if (myNdbOperation == NULL)
NDB API Example: Basic BLOB Handling

APIERROR(myTrans->getNdbError());
myNdbOperation->insertTuple();
myNdbOperation->equal("my_id", 1);
NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
if (myBlobHandle == NULL)
  APIERROR(myNdbOperation->getNdbError());
myBlobHandle->setValue(text_quote, strlen(text_quote));

int check= myTrans->execute(NdbTransaction::Commit);
myTrans->close();
return check != -1;
}

int update_key(Ndb *myNdb)
{
  /*
  * Uppercase all characters in TEXT field, using primary key operation.
  * Use piece-wise read/write to avoid loading entire data into memory
  * at once.
  */
  const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
  const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
  if (myTable == NULL)
    APIERROR(myDict->getNdbError());

  NdbTransaction *myTrans= myNdb->startTransaction();
  if (myTrans == NULL)
    APIERROR(myNdb->getNdbError());

  NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
  if (myNdbOperation == NULL)
    APIERROR(myTrans->getNdbError());
  myNdbOperation->updateTuple();
  myNdbOperation->equal("my_id", 1);
  NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
  if (myBlobHandle == NULL)
    APIERROR(myNdbOperation->getNdbError());

  /* Execute NoCommit to make the blob handle active. */
  if (-1 == myTrans->execute(NdbTransaction::NoCommit))
    APIERROR(myTrans->getNdbError());

  Uint64 length= 0;
  if (-1 == myBlobHandle->getLength(length))
    APIERROR(myBlobHandle->getNdbError());

  /*
  * A real application should use a much larger chunk size for
  * efficiency, preferably much larger than the part size, which
  * defaults to 2000. 64000 might be a good value.
  */
  #define CHUNK_SIZE 100

  int chunk;
  char buffer[CHUNK_SIZE];
  for (chunk= (length-1)/CHUNK_SIZE; chunk >=0; chunk--)
  {
    Uint64 pos= chunk*CHUNK_SIZE;
    Uint32 chunk_length= CHUNK_SIZE;
    if (pos + chunk_length > length)
      chunk_length= length - pos;

    /* Read from the end back, to illustrate seeking. */
    if (-1 == myBlobHandle->setPos(pos))
      APIERROR(myBlobHandle->getNdbError());
    if (-1 == myBlobHandle->readData(buffer, chunk_length))
      APIERROR(myBlobHandle->getNdbError());
    int res= myTrans->execute(NdbTransaction::NoCommit);
    if (-1 == res)
      APIERROR(myTrans->getNdbError());

    /* Uppercase everything. */
NDB API Example: Basic BLOB Handling

```c
for (Uint64 j= 0; j < chunk_length; j++)
 buffer[j] = toupper(buffer[j]);

if (-1 == myBlobHandle->setPos(pos))
 APIERROR(myBlobHandle->getNdbError());
if (-1 == myBlobHandle->writeData(buffer, chunk_length))
 APIERROR(myBlobHandle->getNdbError());
/* Commit on the final update. */
if (-1 == myTrans->execute(chunk ?
 NdbTransaction::NoCommit :
 NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
}
myNdb->closeTransaction(myTrans);
return 1;
}

int update_scan(Ndb *myNdb)
{
 /*
 * Lowercase all characters in TEXT field, using a scan with
 * updateCurrentTuple().
 */
 char buffer[10000];

 const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
 const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
 if (myTable == NULL)
 APIERROR(myDict->getNdbError());
 NdbTransaction *myTrans= myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());
 NdbScanOperation *myScanOp= myTrans->getNdbScanOperation(myTable);
 if (myScanOp == NULL)
 APIERROR(myTrans->getNdbError());
 myScanOp->readTuples(NdbOperation::LM_Exclusive);
 NdbBlob *myBlobHandle= myScanOp->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myScanOp->getNdbError());
 if (myBlobHandle->getValue(buffer, sizeof(buffer))
 APIERROR(myBlobHandle->getNdbError());
/* Start the scan. */
if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());
int res;
for (;;)
{
 res= myScanOp->nextResult(true);
 if (res==1)
 break; // Scan done.
 else if (res)
 APIERROR(myScanOp->getNdbError());
 Uint64 length= 0;
 if (myBlobHandle->getLength(length) == -1)
 APIERROR(myBlobHandle->getNdbError());
/* Lowercase everything. */
for (Uint64 j= 0; j < length; j++)
 buffer[j] = tolower(buffer[j]);
 NdbOperation *myUpdateOp= myScanOp->updateCurrentTuple();
 if (myUpdateOp == NULL)
 APIERROR(myTrans->getNdbError());
 NdbBlob *myBlobHandle2= myUpdateOp->getBlobHandle("my_text");
```
if (myBlobHandle2 == NULL)
    APIERROR(myUpdateOp->getNdbError());
if (myBlobHandle2->setValue(buffer, length))
    APIERROR(myBlobHandle2->getNdbError());
if (-1 == myTrans->execute(NdbTransaction::NoCommit))
    APIERROR(myTrans->getNdbError());
}
if (-1 == myTrans->execute(NdbTransaction::Commit))
    APIERROR(myTrans->getNdbError());
myNdb->closeTransaction(myTrans);
return 1;
}

struct ActiveHookData {
    char buffer[10000];
    Uint32 readLength;
};

int myFetchHook(NdbBlob* myBlobHandle, void* arg)
{
    ActiveHookData *ahd= (ActiveHookData *)arg;
    ahd->readLength= sizeof(ahd->buffer) - 1;
    return myBlobHandle->readData(ahd->buffer, ahd->readLength);
}

int fetch_key(Ndb *myNdb)
{
    /*
    Fetch and show the blob field, using setActiveHook().
    */
    const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
    const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
    if (myTable == NULL)
        APIERROR(myDict->getNdbError());
    NdbTransaction *myTrans= myNdb->startTransaction();
    if (myTrans == NULL)
        APIERROR(myNdb->getNdbError());
    NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
    if (myNdbOperation == NULL)
        APIERROR(myTrans->getNdbError());
    myNdbOperation->readTuple();
    myNdbOperation->equal("my_id", 1);
    NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
    if (myBlobHandle == NULL)
        APIERROR(myNdbOperation->getNdbError());
    struct ActiveHookData ahd;
    if (myBlobHandle->setActiveHook(myFetchHook, &ahd) == -1)
        APIERROR(myBlobHandle->getNdbError());
    /*
    Execute Commit, but calling our callback set up in setActiveHook()
    before actually committing.
    */
    if (-1 == myTrans->execute(NdbTransaction::Commit))
        APIERROR(myTrans->getNdbError());
    myNdb->closeTransaction(myTrans);
    /* Our fetch callback will have been called during the execute(). */
    ahd.buffer[ahd.readLength]= '\0';
    std::cout << "Fetched data:" << std::endl << ahd.buffer << std::endl;
    return 1;
}
int update2_key(Ndb *myNdb) {
    char buffer[10000];
    /* Simple setValue() update. */
    const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
    const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
    if (myTable == NULL)
        APIERROR(myDict->getNdbError());

    NdbTransaction *myTrans= myNdb->startTransaction();
    if (myTrans == NULL)
        APIERROR(myNdb->getNdbError());

    NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
    if (myNdbOperation == NULL)
        APIERROR(myTrans->getNdbError());
    myNdbOperation->updateTuple();
    myNdbOperation->equal("my_id", 1);
    NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
    if (myBlobHandle == NULL)
        APIERROR(myNdbOperation->getNdbError());
    memset(buffer, ' ', sizeof(buffer));
    if (myBlobHandle->setValue(buffer, sizeof(buffer)) == -1)
        APIERROR(myBlobHandle->getNdbError());
    if (-1 == myTrans->execute(NdbTransaction::Commit))
        APIERROR(myTrans->getNdbError());

    myNdb->closeTransaction(myTrans);
    return 1;
}

int delete_key(Ndb *myNdb) {
    /* Deletion of blob row. */
    const NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
    const NdbDictionary::Table *myTable= myDict->getTable("api_blob");
    if (myTable == NULL)
        APIERROR(myDict->getNdbError());

    NdbTransaction *myTrans= myNdb->startTransaction();
    if (myTrans == NULL)
        APIERROR(myNdb->getNdbError());

    NdbOperation *myNdbOperation= myTrans->getNdbOperation(myTable);
    if (myNdbOperation == NULL)
        APIERROR(myTrans->getNdbError());
    myNdbOperation->deleteTuple();
    myNdbOperation->equal("my_id", 1);
    if (-1 == myTrans->execute(NdbTransaction::Commit))
        APIERROR(myTrans->getNdbError());

    myNdb->closeTransaction(myTrans);
    return 1;
}

void mysql_connect_and_create(const char *socket) {
    MYSQL mysql;
    bool ok;

    mysql_init(&mysql);
    ok = mysql_real_connect(&mysql, "localhost", "root", "", "", 0, socket, 0);
    if(ok) {
        mysql_query(&mysql, "CREATE DATABASE ndb_examples");
        ok = ! mysql_select_db(&mysql, "ndb_examples");
    }
}
NDB API Example: Handling BLOB Columns and Values Using NdbRecord

```cpp
if(ok) {
 create_table(mysql);
} mysql_close(&mysql);
if(! ok) MYSQLERROR(mysql);

void ndb_run_blob_operations(const char *connectstring)
{
 /* Connect to ndb cluster. */
 Ndb_cluster_connection cluster_connection(connectstring);
 if (cluster_connection.connect(4, 5, 1))
 {
 std::cout << "Unable to connect to cluster within 30 secs." << std::endl;
 exit(-1);
 }
 /* Optionally connect and wait for the storage nodes (ndbd's). */
 if (cluster_connection.wait_until_ready(30, 0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.\n";
 exit(-1);
 }
 Ndb myNdb(&cluster_connection,"ndb_examples");
 if (myNdb.init(1024) == -1) { // Set max 1024 parallel transactions
 APIERROR(myNdb.getNdbError());
 exit(-1);
 }
 if(populate(&myNdb) > 0)
 std::cout << "populate: Success!" << std::endl;
 if(update_key(&myNdb) > 0)
 std::cout << "update_key: Success!" << std::endl;
 if(update_scan(&myNdb) > 0)
 std::cout << "update_scan: Success!" << std::endl;
 if(fetch_key(&myNdb) > 0)
 std::cout << "fetch_key: Success!" << std::endl;
 if(update2_key(&myNdb) > 0)
 std::cout << "update2_key: Success!" << std::endl;
 if(delete_key(&myNdb) > 0)
 std::cout << "delete_key: Success!" << std::endl;
}

int main(int argc, char**argv)
{
 if (argc != 3)
 {
 std::cout << "Arguments are <socket mysqld> <connect_string cluster>.
";
 exit(-1);
 }
 char *mysqld_sock = argv[1];
 const char *connectstring = argv[2];
 mysql_connect_and_create(mysqld_sock);
 ndb_init();
 ndb_run_blob_operations(connectstring);
 ndb_end(0);
 return 0;
}
```

2.5.10 NDB API Example: Handling BLOB Columns and Values Using NdbRecord
This example illustrates the manipulation of a BLOB column in the NDB API using the NdbRecord interface. It demonstrates how to perform insert, read, and update operations, using both inline value buffers as well as read and write methods. It can be found in the file `storage/ndb/ndbapi-examples/ndbapi_blob_ndbrecord/main.cpp` in the NDB Cluster source trees.

**Note**
While the MySQL data type used in the example is actually TEXT, the same principles apply.

```c++
/*
 ndbapi_blob_ndbrecord

 Illustrates the manipulation of BLOB (actually TEXT in this example).
 This example uses the NdbRecord style way of accessing tuples.

 Shows insert, read, and update, using both inline value buffer and
 read/write methods.
*/
#endif
#include <winsock2.h>
#include <mysql.h>
#include <mysqld_error.h>
#include <NdbApi.hpp>
/* Used for cout. */
#include <iostream>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
/**
 * Helper debugging macros
 */
#define PRINT_ERROR(code,msg) std::cout << "Error in " << __FILE__ << ", line: " << __LINE__ << ", code: " << code << ", msg: " << msg << "." << std::endl
#define MYSQLERROR(mysql) { PRINT_ERROR(mysql_errno(&mysql),mysql_error(&mysql)); exit(-1); }
#define APIERROR(error) { PRINT_ERROR(error.code,error.message); exit(-1); }
/* Quote taken from Project Gutenberg. */
const char *text_quote=
"Just at this moment, somehow or other, they began to run.

 Alice never could quite make out, in thinking it over afterwards, how it was that they began: all she remembers is,
 that they were running hand in hand, and the Queen went so fast that it was all she could do to keep up with her: and still the Queen kept crying 'Faster! Faster!' but Alice felt she COULD NOT go faster, though she had not breath left to say so."

 The most curious part of the thing was, that the trees and the other things round them never changed their places at all:
 however fast they went, they never seemed to pass anything. 'I wonder if all the things move along with us?' thought poor Alice. And the Queen seemed to guess her thoughts, for she cried, 'Faster! Don't try to talk!'"

 Not that Alice had any idea of doing THAT. She felt as if she would never be able to talk again, she was getting so much out of breath and still the Queen cried 'Faster! Faster!' and dragged her along. 'Are we nearly there?' Alice managed to pant out at last."
```

499
Nearly there!' the Queen repeated. 'Why, we passed it ten
minutes ago! Faster!' And they ran on for a time in silence,
with the wind whistling in Alice's ears, and almost blowing her
hair off her head, she fancied.

'Now! Now!' cried the Queen. 'Faster! Faster!' And they went so fast that at last they seemed to skim through the air,
hardly touching the ground with their feet, till suddenly, just as Alice was getting quite exhausted, they stopped, and she found herself sitting on the ground, breathless and giddy.

The Queen propped her up against a tree, and said kindly, 'You may rest a little now.'

Alice looked round her in great surprise. 'Why, I do believe we've been under this tree the whole time! Everything's just as it was!'

'Of course it is,' said the Queen, 'what would you have it?'

'Well, in OUR country,' said Alice, still panting a little, 'you'd generally get to somewhere else—if you ran very fast for a long time, as we've been doing.'

'A slow sort of country!' said the Queen. 'Now, HERE, you see, it takes all the running YOU can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!'

'I'd rather not try, please!' said Alice. 'I'm quite content to stay here—only I AM so hot and thirsty!'

-- Lewis Carroll, 'Through the Looking-Glass'.

NdbRecord objects.

const NdbRecord *key_record; // For specifying table key
const NdbRecord *blob_record; // For accessing blob
const NdbRecord *full_record; // All columns, for insert

/* C struct representing the row layout */
struct MyRow
{
  unsigned int myId;

  /* Pointer to Blob handle for operations on the blob column
  * Space must be left for it in the row, but a pointer to the
  * blob handle can also be obtained via calls to
  * NdbOperation::getBlobHandle()
  */
  NdbBlob* myText;
};

static void setup_records(Ndb *myNdb)
{
  NdbDictionary::RecordSpecification spec[2];

  NdbDictionary::Dictionary *myDict= myNdb->getDictionary();
  const NdbDictionary::Table *myTable= myDict->getTable("api_blob_ndbrecord");
  if (myTable == NULL)
    APIERROR(myDict->getNdbError());
  const NdbDictionary::Column *col1= myTable->getColumn("my_id");
  if (col1 == NULL)
    APIERROR(myDict->getNdbError());
  const NdbDictionary::Column *col2= myTable->getColumn("my_text");
  if (col2 == NULL)
    APIERROR(myDict->getNdbError());

  spec[0].column= col1;
  spec[0].offset= offsetof(MyRow, myId);
  spec[0].nullbit_byte_offset= 0;
spec[0].nullbit_bit_in_byte = 0;
spec[1].column = col2;
spec[1].offset = offsetof(MyRow, myText);
spec[1].nullbit_byte_offset = 0;
spec[1].nullbit_bit_in_byte = 0;

key_record = myDict->createRecord(myTable, &spec[0], 1, sizeof(spec[0]));
if (key_record == NULL)
    APIERROR(myDict->getNdbError());
blob_record = myDict->createRecord(myTable, &spec[1], 1, sizeof(spec[0]));
if (blob_record == NULL)
    APIERROR(myDict->getNdbError());
full_record = myDict->createRecord(myTable, &spec[0], 2, sizeof(spec[0]));
if (full_record == NULL)
    APIERROR(myDict->getNdbError());
}

/*
 * Function to drop table.
 */
void drop_table(MYSQL &mysql)
{
    if (mysql_query(&mysql, "DROP TABLE api_blob_ndbrecord"))
        MYSQLERROR(mysql);
}

/*
 * Functions to create table.
 */
int try_create_table(MYSQL &mysql)
{
    return mysql_query(&mysql,
        "CREATE TABLE" api_blob_ndbrecord
        "  (my_id INT UNSIGNED NOT NULL," my_text TEXT NOT NULL," primary key using hash (my_id)"
        " ENGINE=NDB");
}

void create_table(MYSQL &mysql)
{
    if (try_create_table(mysql))
    {
        if (mysql_errno(&mysql) != ER_TABLE_EXISTS_ERROR)
            MYSQLERROR(mysql);
        std::cout << "NDB Cluster already has example table: api_blob_ndbrecord. " << "Dropping it..." << std::endl;
        /******************
        * Recreate table *
        ******************/
        drop_table(mysql);
        if (try_create_table(mysql))
            MYSQLERROR(mysql);
    }
}

int populate(Ndb *myNdb)
{
    MyRow row;
    NdbTransaction *myTrans= myNdb->startTransaction();
    if (myTrans == NULL)
        APIERROR(myNdb->getNdbError());
    row.myId= 1;
    const NdbOperation *myNdbOperation= myTrans->insertTuple(full_record, (const char*) &row);
    if (myNdbOperation == NULL)
        APIERROR(myTrans->getNdbError());
    NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
if (myBlobHandle == NULL)
    APIERROR(myNdbOperation->getNdbError());
myBlobHandle->setValue(text_quote, strlen(text_quote));

int check= myTrans->execute(NdbTransaction::Commit);
myTrans->close();
return check != -1;
}

int update_key(Ndb *myNdb)
{
    MyRow row;
    /*
    Uppercase all characters in TEXT field, using primary key operation.
    Use piece-wise read/write to avoid loading entire data into memory
    at once.
    */

    NdbTransaction *myTrans= myNdb->startTransaction();
    if (myTrans == NULL)
        APIERROR(myNdb->getNdbError());
    row.myId= 1;
    const NdbOperation *myNdbOperation=
        myTrans->updateTuple(key_record,
            (const char*) &row,
            blob_record,
            (const char*) &row);
    if (myNdbOperation == NULL)
        APIERROR(myTrans->getNdbError());
    NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
    if (myBlobHandle == NULL)
        APIERROR(myNdbOperation->getNdbError());
    /* Execute NoCommit to make the blob handle active so
    * that we can determine the actual Blob length
    */
    if (-1 == myTrans->execute(NdbTransaction::NoCommit))
        APIERROR(myTrans->getNdbError());
    Uint64 length= 0;
    if (-1 == myBlobHandle->getLength(length))
        APIERROR(myBlobHandle->getNdbError());
    /*
    A real application should use a much larger chunk size for
    efficiency, preferably much larger than the part size, which
    defaults to 2000. 64000 might be a good value.
    */
#define CHUNK_SIZE 100
    int chunk;
    char buffer[CHUNK_SIZE];
    for (chunk= (length-1)/CHUNK_SIZE; chunk >=0; chunk--)
    {
        Uint64 pos= chunk*CHUNK_SIZE;
        Uint32 chunk_length= CHUNK_SIZE;
        if (pos + chunk_length > length)
            chunk_length= length - pos;
        /* Read from the end back, to illustrate seeking. */
        if (-1 == myBlobHandle->setPos(pos))
            APIERROR(myBlobHandle->getNdbError());
        if (-1 == myBlobHandle->readData(buffer, chunk_length))
            APIERROR(myBlobHandle->getNdbError());
        int res= myTrans->execute(NdbTransaction::NoCommit);
        if (-1 == res)
            APIERROR(myTrans->getNdbError());
```c
/* Uppercase everything. */
for (Uint64 j = 0; j < chunk_length; j++)
 buffer[j] = toupper(buffer[j]);

if (-1 == myBlobHandle->setPos(pos))
 APIERROR(myBlobHandle->getNdbError());
if (-1 == myBlobHandle->writeData(buffer, chunk_length))
 APIERROR(myBlobHandle->getNdbError());
/* Commit on the final update. */
if (-1 == myTrans->execute(chunk ?
 NdbTransaction::NoCommit :
 NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
}
myNdb->closeTransaction(myTrans);
return 1;
}

int update_scan(Ndb *myNdb)
{
 /* Lowercase all characters in TEXT field, using a scan with
 updateCurrentTuple(). */
 char buffer[10000];

 NdbTransaction *myTrans = myNdb->startTransaction();
 if (myTrans == NULL)
 APIERROR(myNdb->getNdbError());

 NdbScanOperation *myScanOp =
 myTrans->scanTable(blob_record, NdbOperation::LM_Exclusive);
 if (myScanOp == NULL)
 APIERROR(myTrans->getNdbError());
 NdbBlob *myBlobHandle = myScanOp->getBlobHandle("my_text");
 if (myBlobHandle == NULL)
 APIERROR(myScanOp->getNdbError());
 if (myBlobHandle->getValue(buffer, sizeof(buffer)))
 APIERROR(myBlobHandle->getNdbError());

 /* Start the scan. */
 if (-1 == myTrans->execute(NdbTransaction::NoCommit))
 APIERROR(myTrans->getNdbError());

 const MyRow *out_row;
 int res;
 for (;;) {
 res = myScanOp->nextResult((const char**)&out_row, true, false);
 if (res == 1)
 break; // Scan done.
 else if (res)
 APIERROR(myScanOp->getNdbError());

 Uint64 length = 0;
 if (myBlobHandle->getLength(length) == -1)
 APIERROR(myBlobHandle->getNdbError());

 /* Lowercase everything. */
 for (Uint64 j = 0; j < length; j++)
 buffer[j] = tolower(buffer[j]);
 /* 'Take over' the row locks from the scan to a separate
 * operation for updating the tuple */
 const NdbOperation *myUpdateOp =
 myScanOp->updateCurrentTuple(myTrans,
 blob_record,
 (const char*)out_row);
```
if (myUpdateOp == NULL)  
    APIERROR(myTrans->getNdbError());  
NdbBlob *myBlobHandle2= myUpdateOp->getBlobHandle("my_text");  
if (myBlobHandle2 == NULL)  
    APIERROR(myUpdateOp->getNdbError());  
if (myBlobHandle2->setValue(buffer, length))  
    APIERROR(myBlobHandle2->getNdbError());  
if (-1 == myTrans->execute(NdbTransaction::NoCommit))  
    APIERROR(myTrans->getNdbError());  
}  
if (-1 == myTrans->execute(NdbTransaction::Commit))  
    APIERROR(myTrans->getNdbError());  
myNdb->closeTransaction(myTrans);  
    return 1;  
}  

struct ActiveHookData {  
    char buffer[10000];  
    Uint32 readLength;  
};  

int myFetchHook(NdbBlob* myBlobHandle, void* arg)  
{  
    ActiveHookData *ahd= (ActiveHookData *)arg;  
    ahd->readLength= sizeof(ahd->buffer) - 1;  
    return myBlobHandle->readData(ahd->buffer, ahd->readLength);  
}  

int fetch_key(Ndb *myNdb)  
{  
/* Fetch a blob without specifying how many bytes  
* to read up front, in one execution using  
* the 'ActiveHook' mechanism.  
* The supplied ActiveHook procedure is called when  
* the Blob handle becomes 'active'. At that point  
* the length of the Blob can be obtained, and buffering  
* arranged, and the data read requested.  
*/  
/* Separate rows used to specify key and hold result */  
MyRow key_row;  
MyRow out_row;  
/*  
* Fetch and show the blob field, using setActiveHook().  
*/  
NdbTransaction *myTrans= myNdb->startTransaction();  
if (myTrans == NULL)  
    APIERROR(myNdb->getNdbError());  
key_row.myId= 1;  
out_row.myText= NULL;  
const NdbOperation *myNdbOperation=  
    myTrans->readTuple(key_record,  
        (const char*) &key_row,  
        blob_record,  
        (char*) &out_row);  
if (myNdbOperation == NULL)  
    APIERROR(myTrans->getNdbError());  
/* This time, we'll get the blob handle from the row, because  
* we can. Alternatively, we could use the normal mechanism  
* of calling getBlobHandle().  
*/  
NdbBlob *myBlobHandle= out_row.myText;
if (myBlobHandle == NULL)
    APIERROR(myNdbOperation->getNdbError());
struct ActiveHookData ahd;
if (myBlobHandle->setActiveHook(myFetchHook, &ahd) == -1)
    APIERROR(myBlobHandle->getNdbError());
/
    Execute Commit, but calling our callback set up in setActiveHook()
    before actually committing.
    */
if (-1 == myTrans->execute(NdbTransaction::Commit))
    APIERROR(myTrans->getNdbError());
myNdb->closeTransaction(myTrans);
/* Our fetch callback will have been called during the execute(). */
ahd.buffer[ahd.readLength] = '\0';
std::cout << "Fetched data:" << std::endl << ahd.buffer << std::endl;
return 1;
}

int update2_key(Ndb *myNdb)
{
    char buffer[10000];
    MyRow row;
    
    /* Simple setValue() update specified before the
    * Blob handle is made active
    */
    NdbTransaction *myTrans= myNdb->startTransaction();
    if (myTrans == NULL)
        APIERROR(myNdb->getNdbError());
    row.myId= 1;
    const NdbOperation *myNdbOperation=
        myTrans->updateTuple(key_record,
            (const char*)&row,
            blob_record,
            (char*) &row);
    if (myNdbOperation == NULL)
        APIERROR(myNdbOperation->getNdbError());
    NdbBlob *myBlobHandle= myNdbOperation->getBlobHandle("my_text");
    if (myBlobHandle == NULL)
        APIERROR(myBlobHandle->getNdbError());
    memset(buffer, ' ', sizeof(buffer));
    if (myBlobHandle->setValue(buffer, sizeof(buffer)) == -1)
        APIERROR(myBlobHandle->getNdbError());
    if (-1 == myTrans->execute(NdbTransaction::Commit))
        APIERROR(myTrans->getNdbError());
    myNdb->closeTransaction(myTrans);
    return 1;
}

int delete_key(Ndb *myNdb)
{
    MyRow row;
    
    /* Deletion of row containing blob via primary key. */
    NdbTransaction *myTrans= myNdb->startTransaction();
    if (myTrans == NULL)
        APIERROR(myNdb->getNdbError());
    row.myId= 1;
    const NdbOperation *myNdbOperation= myTrans->deleteTuple(key_record,
        (const char*)&row,
NDB API Example: Handling BLOB Columns and Values Using NdbRecord

```c
if (myNdbOperation == NULL)
 APIERROR(myTrans->getNdbError());
if (-1 == myTrans->execute(NdbTransaction::Commit))
 APIERROR(myTrans->getNdbError());
myNdb->closeTransaction(myTrans);
return 1;
}

void mysql_connect_and_create(const char *socket)
{
 MYSQL mysql;
 bool ok;
 mysql_init(&mysql);
 ok = mysql_real_connect(&mysql, "localhost", "root", "", ",", 0, socket, 0);
 if(ok) {
 mysql_query(&mysql, "CREATE DATABASE ndb_examples");
 ok = ! mysql_select_db(&mysql, "ndb_examples");
 }
 if(ok) {
 create_table(mysql);
 }
 mysql_close(&mysql);
 if(! ok) MYSQLERROR(mysql);
}

void ndb_run_ndbrecord_blob_operations(const char *connectstring)
{
 /* Connect to ndb cluster. */
 Ndb_cluster_connection cluster_connection(connectstring);
 if (cluster_connection.connect(4, 5, 1))
 {
 std::cout << "Unable to connect to cluster within 30 secs." << std::endl;
 exit(-1);
 }
 /* Optionally connect and wait for the storage nodes (ndbd's). */
 if (cluster_connection.wait_until_ready(30, 0) < 0)
 {
 std::cout << "Cluster was not ready within 30 secs.
 exit(-1);
 }
 Ndb myNdb(&cluster_connection,"ndb_examples");
 if (myNdb.init(1024) == -1) {
 // Set max 1024 parallel transactions
 APIERROR(myNdb.getNdbError());
 exit(-1);
 }
 setup_records(&myNdb);
 if(populate(&myNdb) > 0)
 std::cout << "populate: Success!" << std::endl;
 if(update_key(&myNdb) > 0)
 std::cout << "update_key: Success!" << std::endl;
 if(update_scan(&myNdb) > 0)
 std::cout << "update_scan: Success!" << std::endl;
 if(fetch_key(&myNdb) > 0)
 std::cout << "fetch_key: Success!" << std::endl;
 if(update2_key(&myNdb) > 0)
 std::cout << "update2_key: Success!" << std::endl;
 if(delete_key(&myNdb) > 0)
```
2.5.11 NDB API Simple Array Example

This program inserts **CHAR**, **VARCHAR**, and **BINARY** column data into a table by constructing `aRef` objects using local functions. It then reads the columns back and extracts the data from them using local functions.

This example assumes you have a table named `api_array_simple`, created as follows:

```sql
CREATE TABLE api_array_simple (
 ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY,
 ATTR2 CHAR(20) NOT NULL,
 ATTR3 VARCHAR(20) NOT NULL,
 ATTR4 VARCHAR(500) NOT NULL,
 ATTR5 BINARY(20) NOT NULL,
 ATTR6 VARBINARY(20) NOT NULL,
 ATTR7 VARBINARY(500) NOT NULL
) ENGINE NDB CHARSET latin1;
```

Note

This program uses a number of utilities which can be found in `storage/ndb/ndbapi-examples/common/`. See Section 2.5.14, "Common Files for NDB API Array Examples", for listings of these.

The example file can be found as `ndbapi_array_simple/ndbapi_array_simple.cpp` in the NDB 7.3.8, NDB 7.4.3, or later NDB Cluster source distribution's `storage/ndb/ndbapi-examples` directory. (Bug #70550, Bug #17592990)
int attr1;
/* CHAR(20) - fixed length, no additional length bytes */
char attr2[20];
/* VARCHAR(20) - requires one additional length byte (length < 256) */
char attr3[1 + 20];
/* VARCHAR(500) - requires two additional length bytes (length > 256) */
char attr4[2 + 500];
/* BINARY(20) - fixed length, requires no additional length byte */
char attr5[20];
/* VARBINARY(20) - requires one additional length byte (length < 256) */
char attr6[1 + 20];
/* VARBINARY(20) - requires one additional length byte (length > 256) */
char attr7[2 + 500];

/* extracts the length and the start byte of the data stored */
static int get_byte_array(const NdbRecAttr* attr,
const char*& first_byte,
size_t& bytes)
{
const NdbDictionary::Column::ArrayType array_type = 
attr->getColumn()->getArrayType();
const size_t attr_bytes = attr->get_size_in_bytes();
const char* aRef = attr->aRef();
string result;
switch (array_type) {
  case NdbDictionary::Column::ArrayTypeFixed:
  /* No prefix length is stored in aRef. Data starts from aRef's first byte
   * data might be padded with blank or null bytes to fill the whole column
   */
    first_byte = aRef;
    bytes = attr_bytes;
    return 0;
  case NdbDictionary::Column::ArrayTypeShortVar:
  /* First byte of aRef has the length of data stored
   * Data starts from second byte of aRef
   */
    first_byte = aRef + 1;
    bytes = (size_t)(aRef[0]);
    return 0;
  case NdbDictionary::Column::ArrayTypeMediumVar:
  /* First two bytes of aRef has the length of data stored
   * Data starts from third byte of aRef
   */
    first_byte = aRef + 2;
    bytes = (size_t)(aRef[1]) * 256 + (size_t)(aRef[0]);
    return 0;
  default:
    first_byte = NULL;
    bytes = 0;
    return -1;
}

/*
Extracts the string from given NdbRecAttr
Uses get_byte_array internally
*/
static int get_string(const NdbRecAttr* attr, string& str)
{
  size_t attr_bytes;
  const char* data_start_ptr = NULL;

  /* get stored length and data using get_byte_array */
  if(get_byte_array(attr, data_start_ptr, attr_bytes) == 0)
  {
    /* we have length of the string and start location */
    str= string(data_start_ptr, attr_bytes);
  }
}
if (attr->getType() == NdbDictionary::Column::Char) {
    /* Fixed Char : remove blank spaces at the end */
    size_t endpos = str.find_last_not_of(" ");
    if (string::npos != endpos)
        
        str = str.substr(0, endpos + 1);
}
}
return 0;

// Do a cleanup of all inserted tuples
static void do_cleanup(Ndb & ndb) {
    const NdbDictionary::Dictionary *dict = ndb.getDictionary();
    const NdbDictionary::Table *table = dict->getTable("api_array_simple");
    if (table == NULL) APIERROR(dict->getNdbError());
    NdbTransaction *transaction = ndb.startTransaction();
    if (transaction == NULL) APIERROR(ndb.getNdbError());
    for (int i = 0; i <= 20; i++)
        
        NdbOperation *myOperation = transaction->getNdbOperation(table);
        if (myOperation == NULL) APIERROR(transaction->getNdbError());
        myOperation->deleteTuple();
        myOperation->equal("ATTR1", i);
}
if (transaction->execute(NdbTransaction::Commit) != 0)
    
    APIERROR(transaction->getNdbError());
ndb.closeTransaction(transaction);

/***************************************************************
* Use one transaction and insert 21 rows in one batch *
***************************************************************
static void do_insert(Ndb & ndb) {
    const NdbDictionary::Dictionary *dict = ndb.getDictionary();
    const NdbDictionary::Table *table = dict->getTable("api_array_simple");
    if (table == NULL) APIERROR(dict->getNdbError());
    NdbTransaction *transaction = ndb.startTransaction();
    if (transaction == NULL) APIERROR(ndb.getNdbError());
    /* Create and initialize sample data */
    const string meter = 50 * string("''''-,,,,|");  
    const string space = 20 * string(" ");
    unsigned char binary_meter[500];
    for (unsigned i = 0; i < 500; i++)
        
        binary_meter[i] = (unsigned char)(i % 256);
    vector<NdbOperation *> operations;
    for (int i = 0; i <= 20; i++)
        
        RowData data;
        NdbOperation *myOperation = transaction->getNdbOperation(table);
        if (myOperation == NULL) APIERROR(transaction->getNdbError());
        data.attr1 = i;
        
        // Fill CHAR(20) with 'i' chars from meter
        strncpy (data.attr2, meter.c_str(), i);
        // Pad it with space up to 20 chars
strncpy (data.attr2 + i, space.c_str(), 20 - i);

// Fill VARCHAR(20) with 'i' chars from meter. First byte is
// reserved for length field. No padding is needed.
strncpy (data.attr3 + 1, meter.c_str(), i);
// Set the length byte
data.attr3[0] = (char)i;

// Fill VARCHAR(20) with 20*i chars from meter. First two bytes
// are reserved for length field. No padding is needed.
strncpy (data.attr4 + 2, meter.c_str(), 20*i);
// Set the length bytes
data.attr4[0] = (char)(20*i % 256);
data.attr4[1] = (char)(20*i / 256);

// Fill BINARY(20) with 'i' bytes from binary_meter.
memcpy(data.attr5, binary_meter, i);
// Pad with 0 up to 20 bytes.
memset(data.attr5 + i, 0, 20 - i);

// Fill VARCHAR(500) with 20*i chars from meter. First byte
// is reserved for length field. No padding is needed.
strncpy (data.attr6 + 1, binary_meter, 20*i);
// Set the length byte
data.attr6[0] = (char)i;

// Fill VARCHAR(500) with 'i' bytes from binary_meter. First two
// bytes are reserved for length filed. No padding is needed.
memcpy(data.attr7 + 2, binary_meter, 20*i);
// Set the length bytes
data.attr7[0] = (char)(20*i % 256);
data.attr7[1] = (char)(20*i / 256);

myOperation->insertTuple();
myOperation->equal("ATTR1", data.attr1);
myOperation->setValue("ATTR2", data.attr2);
myOperation->setValue("ATTR3", data.attr3);
myOperation->setValue("ATTR4", data.attr4);
myOperation->setValue("ATTR5", data.attr5);
myOperation->setValue("ATTR6", data.attr6);
myOperation->setValue("ATTR7", data.attr7);

operations.push_back(myOperation);
}

// Now execute all operations in one batch, and check for errors.
if (transaction->execute( NdbTransaction::Commit ) != 0)
{
    for (size_t i = 0; i < operations.size(); i++)
    {
        const NdbError err= operations[i]->getNdbError();
        if(err.code != NdbError::Success)
        {
            cout << "Error inserting Row : " << i << endl;
            PRINT_ERROR(err.code, err.message);
        }
    }
    APIERROR(transaction->getNdbError());
}
ndb.closeTransaction(transaction);

*/

Reads the row with id = 17
Retrieves an prints value of the [VAR]CHAR/BINARY
*/
static void do_read(Ndb& ndb)
{
    const NdbDictionary::Dictionary* dict= ndb.getDictionary();
    const NdbDictionary::Table* table= dict->getTable("api_array_simple");
    if (table == NULL) APIERROR(dict->getNdbError());
NdbTransaction *transaction = ndb.startTransaction();
if (transaction == NULL) APIERROR(ndb.getNdbError());

NdbOperation *operation = transaction->getNdbOperation(table);
if (operation == NULL) APIERROR(transaction->getNdbError());

/* create and execute a read operation */
operation->readTuple(NdbOperation::LM_Read);
operation->equal("ATTR1", 17);

vector<NdbRecAttr*> attr;
const int column_count = table->getNoOfColumns();
attr.reserve(column_count);
attr.push_back(nullptr);
for (int i = 1; i < column_count; i++)
{
    attr.push_back(operation->getValue(i, NULL));
    if (attr[i] == NULL) APIERROR(transaction->getNdbError());
}

if(transaction->execute( NdbTransaction::Commit ) == -1)
    APIERROR(transaction->getNdbError());

/* print the fetched data */
cout << "Row ID : 17\n";
for (int i = 1; i < column_count; i++)
{
    if (attr[i] != NULL)
    {
        NdbDictionary::Column::Type column_type = attr[i]->getType();
        cout << "Column id: " << i << ", name: " << attr[i]->getColumn()->getName() << ", size: " << attr[i]->getSizeInBytes() << ", type: " << column_type_to_string(attr[i]->getType());
        switch (column_type) {
        case NdbDictionary::Column::Char:
            case NdbDictionary::Column::Varchar:
            case NdbDictionary::Column::Longvarchar:
            {
                /* for char columns the actual string is printed */
                string str;
                get_string(attr[i], str);
                cout << ", stored string length: " << str.length() << ", value: " << str << endl;
            }
            break;
        case NdbDictionary::Column::Binary:
        case NdbDictionary::Column::Varbinary:
        case NdbDictionary::Column::Longvarbinary:
        {
            /* for binary columns the sum of all stored bytes is printed */
            const char* first;
            size_t count;
            get_byte_array(attr[i], first, count);
            int sum = 0;
            for (const char* byte = first; byte < first + count; byte++)
            {
                sum += (int)(*byte);
            }
            cout << ", stored bytes length: " << count << ", sum of byte array: " << sum << endl;
        }
        break;
        default:
            cout << ", column type \"" << column_type_to_string(attr[i]->getType()) << \"\" not covered by this example" << endl;
            break;
        }
    }
}
Prior to NDB 8.0.1, this program could not be run more than once in succession during the same session (Bug #27009386).

### 2.5.12 NDB API Simple Array Example Using Adapter

This program inserts **CHAR**, **VARCHAR**, and **BINARY** column data into a table by constructing `aRef` objects using array adapters of the type defined in `common/array_adapter.hpp` (see Section 2.5.14, “Common Files for NDB API Array Examples”). It then reads the columns back and extracts the data, again using array adapters.

The example uses the table shown here:
CREATE TABLE api_array_using_adapter (  
  ATTR1 INT UNSIGNED NOT NULL PRIMARY KEY, 
  ATTR2 CHAR(20) NOT NULL, 
  ATTR3 VARCHAR(20) NOT NULL, 
  ATTR4 VARCHAR(500) NOT NULL, 
  ATTR5 BINARY(20) NOT NULL, 
  ATTR6 VARBINARY(20) NOT NULL, 
  ATTR7 VARBINARY(500) NOT NULL  
) ENGINE NDB CHARSET latin1;

The example file can be found as ndbapi_array_using_adapter/ndbapi_array_using_adapter.cpp in the NDB 7.3.8, NDB 7.4.3, or later NDB Cluster source distribution's storage/ndb/ndbapi-examples directory. (Bug #70550, Bug #17592990)

#include <NdbApi.hpp>
#include <iostream>
#include <vector>
#include <cstdlib>
#include <cstring>
using namespace std;

/*
   See Section 2.5.14, "Common Files for NDB API Array Examples",
   for listings of these utilities.
*/
#include "../common/error_handling.hpp"
#include "../common/array_adapter.hpp"
#include "../common/ndb_util.hpp"
#include "../common/util.hpp"

// Do a cleanup of all inserted rows
static void do_cleanup(Ndb& ndb)
{
  const NdbDictionary::Dictionary* dict = ndb.getDictionary();

  const NdbDictionary::Table *table = dict->getTable("api_array_using_adapter");
  if (table == NULL)
    APIERROR(dict->getNdbError());

  NdbTransaction *transaction= ndb.startTransaction();
  if (transaction == NULL)
    APIERROR(ndb.getNdbError());

  // Delete all 21 rows using a single transaction
  for (int i = 0; i <= 20; i++)
  {
    NdbOperation* myOperation = transaction->getNdbOperation(table);
    if (myOperation == NULL)
      APIERROR(transaction->getNdbError());
    myOperation->deleteTuple();
    myOperation->equal("ATTR1", i);
  }

  if (transaction->execute(NdbTransaction::Commit) != 0)
    APIERROR(transaction->getNdbError());
  ndb.closeTransaction(transaction);
}

// Use one transaction and insert 21 rows in one batch.
static void do_insert(Ndb& ndb)
{
  const NdbDictionary::Dictionary* dict = ndb.getDictionary();
  const NdbDictionary::Table *table = dict->getTable("api_array_using_adapter");

  if (table == NULL)
    APIERROR(dict->getNdbError());

  // Get a column object for each CHAR/VARCHAR/BINARY/VARBINARY column
  // to insert into.
const NdbDictionary::Column *column2 = table->getColumn("ATTR2");
if (column2 == NULL)
{
    APIERROR(dict->getNdbError());
}

const NdbDictionary::Column *column3 = table->getColumn("ATTR3");
if (column3 == NULL)
{
    APIERROR(dict->getNdbError());
}

const NdbDictionary::Column *column4 = table->getColumn("ATTR4");
if (column4 == NULL)
{
    APIERROR(dict->getNdbError());
}

const NdbDictionary::Column *column5 = table->getColumn("ATTR5");
if (column5 == NULL)
{
    APIERROR(dict->getNdbError());
}

const NdbDictionary::Column *column6 = table->getColumn("ATTR6");
if (column6 == NULL)
{
    APIERROR(dict->getNdbError());
}

const NdbDictionary::Column *column7 = table->getColumn("ATTR7");
if (column7 == NULL)
{
    APIERROR(dict->getNdbError());
}

// Create a read/write attribute adapter to be used for all
// CHAR/VARCHAR/BINARY/VARBINARY columns.
ReadWriteArrayAdapter attr_adapter;

// Create and initialize sample data.
const string meter = 50 * string("''''-,,,,|"));
unsigned char binary_meter[500];
for (unsigned i = 0; i < 500; i++)
{
    binary_meter[i] = (unsigned char)(i % 256);
}

NdbTransaction *transaction= ndb.startTransaction();
if (transaction == NULL) APIERROR(ndb.getNdbError());

// Create 21 operations and put a reference to them in a vector to
// be able to find failing operations.
vector<NdbOperation*> operations;
for (int i = 0; i <= 20; i++)
{
    NdbOperation* operation = transaction->getNdbOperation(table);
    if (operation == NULL) APIERROR(transaction->getNdbError());
    operation->insertTuple();
    operation->equal("ATTR1", i);
    /* use ReadWrite Adapter to convert string to aRefs */
    ReadWriteArrayAdapter::ErrorType error;
    char *attr2_aRef = attr_adapter.make_aRef(column2, meter.substr(0,i), error);
    PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success,
        "make_aRef failed for ATTR2");
    operation->setValue("ATTR2", attr2_aRef);
    char *attr3_aRef;
attr3_aRef = attr_adapter.make_aRef(column3, meter.substr(0,i), error);
PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success, "make_aRef failed for ATTR3");
operation->setValue("ATTR3", attr3_aRef);

char* attr4_aRef;
attr4_aRef = attr_adapter.make_aRef(column4, meter.substr(0,20*i), error);
PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success, "make_aRef failed for ATTR4");
operation->setValue("ATTR4", attr4_aRef);

char* attr5_aRef;
char* attr5_first;
attr_adapter.allocate_in_bytes(column5, attr5_aRef, attr5_first, i, error);
PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success, "allocate_in_bytes failed for ATTR5");
memcpy(attr5_first, binary_meter, i);
operation->setValue("ATTR5", attr5_aRef);

char* attr6_aRef;
char* attr6_first;
attr_adapter.allocate_in_bytes(column6, attr6_aRef, attr6_first, i, error);
PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success, "allocate_in_bytes failed for ATTR6");
memcpy(attr6_first, binary_meter, i);
operation->setValue("ATTR6", attr6_aRef);

char* attr7_aRef;
char* attr7_first;
attr_adapter.allocate_in_bytes(column7, attr7_aRef, attr7_first, 20*i, error);
PRINT_IF_NOT_EQUAL(error, ReadWriteArrayAdapter::Success, "allocate_in_bytes failed for ATTR7");
memcpy(attr7_first, binary_meter, 20*i);
operation->setValue("ATTR7", attr7_aRef);
operations.push_back(operation);
}

// Now execute all operations in one batch, and check for errors.
if (transaction->execute(NdbTransaction::Commit ) != 0)
{
for (size_t i = 0; i < operations.size(); i++)
{
const NdbError err = operations[i]->getNdbError();
if(err.code != NdbError::Success)
{
    cout << "Error inserting Row : " << i << endl;
    PRINT_ERROR(err.code, err.message);
}
}              
APIERROR(transaction->getNdbError());
}
ndb.closeTransaction(transaction);
}

/*
 Reads the row with id = 17
Retrieves an prints value of the [VAR]CHAR/BINARY using array_adapter
*/
static void do_read(Ndb& ndb)
{
const NdbDictionary::Dictionary* dict= ndb.getDictionary();
const NdbDictionary::Table* table= dict->getTable("api_array_using_adapter");
if (table == NULL) APIERROR(dict->getNdbError());

NdbTransaction *transaction= ndb.startTransaction();
if (transaction == NULL) APIERROR(ndb.getNdbError());

NdbOperation *operation= transaction->getNdbOperation(table);
if (operation == NULL) APIERROR(transaction->getNdbError());
operation->readTuple(NdbOperation::LM_Read);
operation->equal("ATTR1", 17);

vector<NdbRecAttr*> attr;
const int column_count= table->getNoOfColumns();
attr.reserve(column_count);

attr.push_back(nullptr);
for (int i= 1; i < column_count; i++)
{  
  attr.push_back(operation->getValue(i, NULL));
  if (attr[i] == NULL) APIERROR(transaction->getNdbError());
}

if(transaction->execute( NdbTransaction::Commit ) == -1)
  APIERROR(transaction->getNdbError());

/* Now use an array adapter to read the data from columns */
const ReadOnlyArrayAdapter attr_adapter;
ReadOnlyArrayAdapter::ErrorType error;

/* print the fetched data */
cout << "Row ID : 17\n";
for (int i= 1; i < column_count; i++)
{  
  if (attr[i] != NULL)
  {
    NdbDictionary::Column::Type column_type = attr[i]->getType();
    cout << "Column id: " << i  
         << ", name: " << attr[i]->getColumn()->getName()  
         << ", size: " << attr[i]->get_size_in_bytes()  
         << ", type: " << column_type_to_string(attr[i]->getType());
    if(attr_adapter.is_binary_array_type(column_type))
    {  
      /* if column is [VAR]BINARY, get the byte array and print their sum */
      const char* data_ptr;
      size_t data_length;
      attr_adapter.get_byte_array(attr[i], data_ptr,
                               data_length, error);
      if(error == ReadOnlyArrayAdapter::Success)
      {  
        int sum = 0;
        for (size_t j = 0; j < data_length; j++)
          sum += (int)(data_ptr[j]);
        cout << ", stored bytes length: " << data_length  
             << ", sum of byte array: " << sum << endl;
      }
      else
        cout << ", error fetching value.\n" << endl;
    }
    else
      cout << ", error fetching value.\n" << endl;
  }
  else
  {  
    /* if the column is [VAR]CHAR, retrieve the string and print */
    std::string value= attr_adapter.get_string(attr[i], error);
    if(error == ReadOnlyArrayAdapter::Success)
    {  
      cout << ", stored string length: " << value.length()  
           << ", value: " << value  
           << endl;
    }
    else
      cout << ", error fetching value.\n" << endl;
  }
}

ndb.closeTransaction(transaction);

static void run_application(Ndb_cluster_connection &cluster_connection,
                           const char* database_name)
Prior to NDB 8.0.1, this program could not be run more than once in succession during the same session (Bug #27009386).

2.5.13 Timestamp2 Example

The file timestamp2.cpp reproduced in this section provides an example of working in NDB API applications with the "new" MySQL temporal data types supporting fractional seconds that were implemented in MySQL 5.6, and in NDB 7.3 and NDB 7.4.

For more information working with MySQL temporal and other data types in the NDB API, see Section 2.1.3.2, "NDB API Handling of MySQL Data Types".

```cpp
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <NdbApi.hpp>
#include <string>
```
#include <unistd.h>

#define NDB_ANYVALUE_FOR_NOLOGGING 0x8000007f

using namespace std;

int setTimestamp(NdbOperation* op,
    const NdbDictionary::Column* col,
    unsigned int value)
{
    if (col->getType() == NDB_TYPE_TIMESTAMP)
    {
        /* Set as 32-bit int in host layout */
        return op->setValue(col->getName(), value);
    }
    else if (col->getType() == NDB_TYPE_TIMESTAMP2)
    {
        /* Set as 64 bit big-endian value */
        //assert(col->getPrecision() == 0);
        Uint64 ts = 0;
        unsigned char* bytes = (unsigned char*) &ts;
        bytes[0] = value >> 24 & 0xff;
        bytes[1] = value >> 16 & 0xff;
        bytes[2] = value >>  8 & 0xff;
        bytes[3] = value & 0xff;
        return op->setValue(col->getName(), ts);
    }
    else
    {
        cout << "Bad type for column " << col->getType() << std::endl;
        exit(1);
    }
}

unsigned int readTimestamp(NdbRecAttr* recAttr)
{
    if (recAttr->getType() == NDB_TYPE_TIMESTAMP)
    {
        /* Timestamp is in native 32 bit layout */
        return recAttr->u_32_value();
    }
    else if (recAttr->getType() == NDB_TYPE_TIMESTAMP2)
    {
        /* Timestamp is in big-endian layout */
        //assert(recAttr->getColumn()->getPrecision() == 0);
        Uint64 ts2 = recAttr->u_64_value();
        const unsigned char* bytes = (const unsigned char*) &ts2;
        const unsigned int ts =
            (Uint64(bytes[0]) << 24) +
            (Uint64(bytes[1]) << 16) +
            (Uint64(bytes[2]) <<  8) +
            (Uint64(bytes[3]));
        return ts;
    }
    else
    {
        cout << "Error with timestamp column type : "
            << recAttr->getType() << std::endl;
        exit(1);
    }
}

void insert(string connectString)
{
    Ndb_cluster_connection *cluster_connection = new Ndb_cluster_connection(connectString.c_str());
    if(cluster_connection->connect(5,5,1))
        cout << "Cannot connect to Cluster using connectstring: " << connectString << std::endl;
    exit(1);
}
if(cluster_connection->wait_until_ready(30,0) < 0) {
    cout << "Cluster was not ready within 30 seconds" << endl;
}

Ndb *myNdb = new Ndb(cluster_connection, "myndb_user_data");
if(myNdb->init(1024) == -1) {
    cout << "Error: Cannot initialize NDB object" << endl;
    exit(-1);
}

const NdbDictionary::Dictionary *dict = myNdb->getDictionary();
if (dict == NULL) {
    cout << "Error: Cannot fetch NndDictionary" << endl;
    exit(0);
}

const NdbDictionary::Table *timestampTable = dict->getTable("TIMESTAMP_TEST");
if (timestampTable == NULL) {
    cout << "Error: Cannot fetch MYNDB table" << endl;
    exit(0);
}

NdbTransaction *trans = myNdb->startTransaction();
if (trans == NULL) {
    cout << "Error: Cannot start new transaction" << endl;
    exit(1);
}

NdbOperation *myOperation = trans->getNdbOperation(timestampTable);
if (myOperation == NULL) {
    cout << "Error: Cannot get new operation" << endl;
    exit(1);
}

myOperation->insertTuple();

Uint64 value;
myNdb->getAutoIncrementValue(timestampTable, value, (Uint32)32);
myOperation->setValue("KEY_COL", value);

time_t timestamp = time(NULL);
setTimestamp(myOperation, timestampTable->getColumn("createTimestamp"), timestamp);
setTimestamp(myOperation, timestampTable->getColumn("modifyTimestamp"), timestamp);
//disable binlogging
myOperation->setAnyValue(NDB_ANYVALUE_FOR_NOLOGGING);

if(trans->execute(NdbTransaction::Commit) != 0) {
    cout << "Error: " << trans->getNdbError().message << endl;
    exit(1);
}

myNdb->closeTransaction(trans);
delete myNdb;
delete cluster_connection;
}

void fetch_from_database(string connectString) {
    Ndb_cluster_connection *cluster_connection = new Ndb_cluster_connection(connectString.c_str());
    if(cluster_connection->connect(5,5,1)) {
        cout << "Cannot connect to Cluster using connectstring: " << endl;
        }
exit(1);
}

if(cluster_connection->wait_until_ready(30,0) < 0) {
    cout << "Cluster was not ready within 30 seconds" << endl;
}

Ndb *myNdb = new Ndb(cluster_connection, "myndb_user_data");
if(myNdb->init(1024) == -1){
    cout << "Error: Cannot initialize NDB object" << endl;
    exit(-1);
}

const NdbDictionary::Dictionary *dict = myNdb->getDictionary();
if (dict == NULL) {
    cout << "Error: Cannot fetch NdbDictionary" << endl;
    exit(0);
}

const NdbDictionary::Table *timestampTable = dict->getTable("TIMESTAMP_TEST");
if (timestampTable == NULL) {
    cout << "Error: Cannot fetch MYNDB table" << endl;
    exit(0);
}

NdbTransaction *trans = myNdb->startTransaction();
if (trans == NULL) {
    cout << "Error: Cannot start new transaction" << endl;
    exit(1);
}

NdbScanOperation *myOperation = trans->getNdbScanOperation(timestampTable);
if (myOperation == NULL) {
    cout << "Error: Cannot get new operation" << endl;
    exit(1);
}

if (myOperation->readTuples(NdbOperation::LM_Exclusive) == -1){
    cout << "Error: " << trans->getNdbError().message << endl;
    exit(0);
}

NdbRecAttr *recAttrs[3];
recAttrs[0] = myOperation->getValue("KEY_COL");
recAttrs[1] = myOperation->getValue("createTimestamp");
recAttrs[2] = myOperation->getValue("modifyTimestamp");
    cout << "Error: " << trans->getNdbError().message << endl;
    exit(0);
}

if(trans->execute(NdbTransaction::NoCommit) != 0) {
    cout << "Error: " << trans->getNdbError().message << endl;
    exit(1);
}

int check;
while((check = myOperation->nextResult(true)) == 0){
    do {
        cout << recAttrs[0]->u_32_value() << "\t";
        cout << readTimestamp(recAttrs[1]) << "\t";
        cout << readTimestamp(recAttrs[2]) << std::endl;
    } while((check = myOperation->nextResult(false)) == 0);
}

myNdb->closeTransaction(trans);
delete myNdb;
int main(int argc, char **argv) {
    cout << "Timestamp test application!!!!" << endl;
    //fetch parameters
    string connectString;
    if (argc < 2) {
        cout << "Please provide connect string for PLDB" << endl;
        exit(1);
    }
    connectString = argv[1];
    ndb_init();
    insert(connectString);
    fetch_from_database(connectString);
    ndb_end(0);
    return EXIT_SUCCESS;
}

2.5.14 Common Files for NDB API Array Examples

In NDB 7.3.8, NDB 7.4.3, or later NDB Cluster source distribution, the `storage/ndb/ndbapi-examples` directory contains four header files with utilities for use in example NDB API programs. (Bug #70550, Bug #17592990) The names of these files are listed here:

- **array_adapter.hpp**: Contains utility classes for converting between C++ style strings or byte arrays and the format used by NDB internally for VARCHAR, CHAR, and VARBINARY types.
- **error_handling.hpp**: Contains error handling functions.
- **ndb_util.hpp**: Defines a `column_type_to_string()` function which handles NDB column types.
- **util.hpp**: Provides a method for generating strings of arbitrary length.

Following in this section are source listings for each of the header files.

array_adapter.hpp

```cpp
#ifndef ARRAY_ADAPTER_HPP
#define ARRAY_ADAPTER_HPP

#include <algorithm>
#include <assert.h>

/*
Utility classes to convert between C++ strings/byte arrays and the internal format used for [VAR]CHAR/BINARY types.

Base class that can be used for read operations. The column type is taken from the NdbRecAttr object, so only one object is needed to convert from different [VAR]CHAR/BINARY types. No additional memory is allocated.
*/

class ReadOnlyArrayAdapter {
public:
 ReadOnlyArrayAdapter() {}

 enum ErrorType { Success,
 InvalidColumnType,
 InvalidArrayType,
 ... }
```
Common Files for NDB API Array Examples

InvalidNullColumn,
InvalidNullAttribute,
InvalidNullRef,
BytesOutOfRange,
UnknownError;

/*
Return a C++ string from the aRef() value of attr. This value
will use the column and column type from attr. The advantage is
for reading; the same ArrayAdapter can be used for multiple
columns. The disadvantage is; passing an attribute not of
[VAR]CHAR/BINARY type will result in a traditional exit(-1)
*/
std::string get_string(const NdbRecAttr* attr,
ErrorType& error) const;

/* Calculate the first_byte and number of bytes in aRef for attr */
void get_byte_array(const NdbRecAttr* attr,
const char*& first_byte,
size_t& bytes,
ErrorType& error) const;

/* Check if a column is of type [VAR]BINARY */
bool is_binary_array_type(const NdbDictionary::Column::Type t) const;

/* Check if a column is of type [VAR]BINARY or [VAR]CHAR */
bool is_array_type(const NdbDictionary::Column::Type t) const;

private:
/* Disable copy constructor */
ReadOnlyArrayAdapter(const ReadOnlyArrayAdapter& a) {} ;

/* Extension to ReadOnlyArrayAdapter to be used together with
insert/write/update operations. Memory is allocated for each
call to make_aRef or allocate_in_bytes. The memory allocated will
be deallocated by the destructor. To save memory, the scope of an
instance of this class should not be longer than the life time of
the transaction. On the other hand, it must be long enough for the
usage of all references created */
class ReadWriteArrayAdapter : public ReadOnlyArrayAdapter {
public:
ReadWriteArrayAdapter() {}

/* Destructor, the only place where memory is deallocated */
~ReadWriteArrayAdapter();

/*
Create a binary representation of the string 's' and return a
pointer to it. This pointer can later be used as argument to for
example setValue
*/
char* make_aRef(const NdbDictionary::Column* column,
std::string s,
ErrorType& error);

/*
Allocate a number of bytes suitable for this column type. aRef
can later be used as argument to for example setValue. first_byte
is the first byte to store data to. bytes is the number of bytes
to allocate
*/
void allocate_in_bytes(const NdbDictionary::Column* column,
char*& aRef,
char*& first_byte,
size_t bytes,
ErrorType& error);

private:
/* Disable copy constructor */
ReadWriteArrayAdapter(const ReadWriteArrayAdapter& a) :ReadOnlyArrayAdapter() {}

/* Record of allocated char arrays to delete by the destructor */
std::vector<char*> aRef_created;
};

inline ReadWriteArrayAdapter::~ReadWriteArrayAdapter()
{
    for (std::vector<char*>::iterator i = aRef_created.begin();
        i != aRef_created.end(); ++i) {
        delete [] *i;
    }
}

char* ReadWriteArrayAdapter::make_aRef(const NdbDictionary::Column* column,
std::string input,
ErrorType& error)
{
    char* new_ref;
    char* data_start;

    /* Allocate bytes and push them into the aRef_created vector.
    After this operation, new_ref has a complete aRef to use in insertion
    and data_start has ptr from which data is to be written.
    The new_aRef returned is padded completely with blank spaces. */
allocate_in_bytes(column, new_ref, data_start, input.length(), error);

    if(error != Success)
    {
        return NULL;
    }

    /* Copy the input string into aRef's data pointer
    without affecting remaining blank spaces at end. */
strncpy(data_start, input.c_str(), input.length());

    return new_ref;
}

void ReadWriteArrayAdapter::
allocate_in_bytes(const NdbDictionary::Column* column,
char*& aRef,
char*& first_byte,
size_t bytes,
ErrorType& error)
{
    bool is_binary;
    char zero_char;
    NdbDictionary::Column::ArrayType array_type;
    size_t max_length;

    /* unless there is going to be any problem */
error = Success;

    if (column == NULL)
    {
        error = InvalidNullColumn;
aRef = NULL;
    first_byte = NULL;
return;
if (!is_array_type(column->getType()))
{
    error = InvalidColumnType;
    aRef = NULL;
    first_byte = NULL;
    return;
}

is_binary = is_binary_array_type(column->getType());
zero_char = (is_binary ? 0 : ' ');
array_type = column->getArrayType();
max_length = column->getLength();

if (bytes > max_length)
{
    error = BytesOutOfRange;
    aRef = NULL;
    first_byte = NULL;
    return;
}

switch (array_type) {
    case NdbDictionary::Column::ArrayTypeFixed:
        /* no need to store length bytes */
        aRef = new char[max_length];
        first_byte = aRef;
        /* pad the complete string with blank space (or) null bytes */
        for (size_t i=0; i < max_length; i++) {
            aRef[i] = zero_char;
        }
        break;
    case NdbDictionary::Column::ArrayTypeShortVar:
        /* byte length stored over first byte. no padding required */
        aRef = new char[1 + bytes];
        first_byte = aRef + 1;
        aRef[0] = (char)bytes;
        break;
    case NdbDictionary::Column::ArrayTypeMediumVar:
        /* byte length stored over first two bytes. no padding required */
        aRef = new char[2 + bytes];
        first_byte = aRef + 2;
        aRef[0] = (char)(bytes % 256);
        aRef[1] = (char)(bytes / 256);
        break;
}
    aRef_created.push_back(aRef);
}

std::string ReadOnlyArrayAdapter::get_string(const NdbRecAttr* attr,
                                           ErrorType& error) const
{
    size_t attr_bytes = 0;
    const char* data_ptr = NULL;
    std::string result = "";

    /* get the beginning of data and its size.. */
    get_byte_array(attr, data_ptr, attr_bytes, error);

    if (error != Success)
    {
        return result;
    }

    /*..and copy the value into result */
    result = string(data_ptr, attr_bytes);

    /* special treatment for FixedArrayType to eliminate padding characters */
    if (attr->getColumn()->getArrayType() == NdbDictionary::Column::ArrayTypeFixed)
    {
        // code here
    }
}
char padding_char = ' ';  
std::size_t last = result.find_last_not_of(padding_char);  
result = result.substr(0, last+1);  
}

return result;

} 

void 
ReadOnlyArrayAdapter::
get_byte_array(const NdbRecAttr* attr,  
const char*& data_ptr,  
size_t& bytes,  
ErrorType& error) const
{
/* unless there is a problem */
error= Success;

if (attr == NULL)
{
    error = InvalidNullAttribute;
    return;
}

if (!is_array_type(attr->getType()))
{
    error = InvalidColumnType;
    return;
}

const NdbDictionary::Column::ArrayType array_type =  
    attr->getColumn()->getArrayType();  
const size_t attr_bytes = attr->get_size_in_bytes();  
const char* aRef = attr->aRef();

if(aRef == NULL)
{
    error= InvalidNullaRef;
    return;
}

switch (array_type) {
case NdbDictionary::Column::ArrayTypeFixed:
    /* no length bytes stored with aRef */
data_ptr = aRef;
    bytes = attr_bytes;
    break;
case NdbDictionary::Column::ArrayTypeShortVar:
    /* first byte of aRef has length of the data */
data_ptr = aRef + 1;
    bytes = (size_t)(aRef[0]);
    break;
case NdbDictionary::Column::ArrayTypeMediumVar:
    /* first two bytes of aRef has length of the data */
data_ptr = aRef + 2;
    bytes = (size_t)(aRef[1]) * 256 + (size_t)(aRef[0]);
    break;
default:
    /* should never reach here */
data_ptr = NULL;
    bytes = 0;
    error = InvalidArrayType;
    break;
}

bool 
ReadOnlyArrayAdapter::
is_binary_array_type(const NdbDictionary::Column::Type t) const
{
bool is_binary;

switch (t)
{
  case NdbDictionary::Column::Binary:
  case NdbDictionary::Column::Varbinary:
  case NdbDictionary::Column::Longvarbinary:
    is_binary = true;
    break;
  default:
    is_binary = false;
  }
  return is_binary;
}

bool ReadOnlyArrayAdapter::is_array_type(const NdbDictionary::Column::Type t) const
{
  bool is_array;
  switch (t)
  {
    case NdbDictionary::Column::Binary:
    case NdbDictionary::Column::Varbinary:
    case NdbDictionary::Column::Longvarbinary:
    case NdbDictionary::Column::Char:
    case NdbDictionary::Column::Varchar:
    case NdbDictionary::Column::Longvarchar:
      is_array = true;
      break;
    default:
      is_array = false;
    }
    return is_array;
}
#endif // #ifndef ARRAY_ADAPTER_HPP

error_handling.hpp

#ifndef ERROR_HANDLING_HPP
#define ERROR_HANDLING_HPP

template <typename T>
inline static void print_if_not_equal(T got,
  T expected,
  const char* msg,
  const char* file,
  int line)
{
  std::cout << "Got value " << got << " instead of expected value " << expected
  " in " << file << ";" << line;
}

#define PRINT_IF_NOT_EQUAL(got, expected, msg) {                        
  if (got != expected) {                                              
    print_if_not_equal(got, expected, msg, __FILE__, __LINE__);       
    exit(-1);                                                         
  }                                                                   
}

#define PRINT_ERROR(code,msg)                                           
  std::cout << "Error in " << __FILE__ << "; line: " << __LINE__       
  " ; " << code 
  " ; msg: " << msg << "." << std::endl

#define APIERROR(error) {                
  PRINT_ERROR(error.code,error.message); 
  exit(-1); }

526
#ifndef NDB_UTIL_HPP
#define NDB_UTIL_HPP

#include <NdbApi.hpp>
#include <string>
#include <sstream>

static const std::string column_type_to_string(NdbDictionary::Column::Type type)
{
    switch (type) {
    case NdbDictionary::Column::Undefined:
        return "Undefined";
    case NdbDictionary::Column::Tinyint:
        return "Tinyint";
    case NdbDictionary::Column::Tinyunsigned:
        return "Tinyunsigned";
    case NdbDictionary::Column::Smallint:
        return "Smallint";
    case NdbDictionary::Column::Smallunsigned:
        return "Smallunsigned";
    case NdbDictionary::Column::Mediumint:
        return "Mediumint";
    case NdbDictionary::Column::Mediumunsigned:
        return "Mediumunsigned";
    case NdbDictionary::Column::Int:
        return "Int";
    case NdbDictionary::Column::Unsigned:
        return "Unsigned";
    case NdbDictionary::Column::BigInt:
        return "BigInt";
    case NdbDictionary::Column::Bigunsigned:
        return "Bigunsigned";
    case NdbDictionary::Column::Float:
        return "Float";
    case NdbDictionary::Column::Double:
        return "Double";
    case NdbDictionary::Column::Olddecimal:
        return "Olddecimal";
    case NdbDictionary::Column::Olddecimalunsigned:
        return "Olddecimalunsigned";
    case NdbDictionary::Column::Decimal:
        return "Decimal";
    case NdbDictionary::Column::Decimalunsigned:
        return "Decimalunsigned";
    case NdbDictionary::Column::Char:
        return "Char";
    case NdbDictionary::Column::Varchar:
        return "Varchar";
    case NdbDictionary::Column::Binary:
        return "Binary";
    case NdbDictionary::Column::Varbinary:
        return "Varbinary";
    case NdbDictionary::Column::Datetime:
        return "Datetime";
    case NdbDictionary::Column::Date:
        return "Date";
    case NdbDictionary::Column::Blob:
        return "Blob";
    case NdbDictionary::Column::Text:
        return "Text";
    case NdbDictionary::Column::Bit:
        return "Bit";
    case NdbDictionary::Column::Longvarchar:
        return "Longvarchar";
    case NdbDictionary::Column::Longvarbinary:
        return "Longvarbinary";
    case NdbDictionary::Column::Time:
        return "Time";
    }

#endif
#include <string>

/* Return a string containing 'n' copies of the string 's'. */
static std::string operator * (unsigned n, const std::string& s) {
    std::string result;
    result.reserve(n * s.length());
    for (unsigned i = 0; i < n; i++) {
        result.append(s);
    }
    return result;
}

// #ifndef UTIL_HPP

util.hpp

return "Time";
case NdbDictionary::Column::Year:
    return "Year";
case NdbDictionary::Column::Timestamp:
    return "Timestamp";
case NdbDictionary::Column::Time2:
    return "Time2";
case NdbDictionary::Column::Datetime2:
    return "Datetime2";
case NdbDictionary::Column::Timestamp2:
    return "Timestamp2";
default:
    {  
        std::string str;
        std::stringstream s(str);
        s << "Unknown type: " << type;
        return s.str();
    }
}
#endif
Chapter 3 The MGM API

Table of Contents

3.1 MGM API Concepts .......................................................... 529
  3.1.1 Working with Log Events ........................................ 530
  3.1.2 Structured Log Events ............................................. 530
3.2 MGM API Function Listing ............................................. 531
  3.2.1 Log Event Functions ............................................... 531
  3.2.2 MGM API Error Handling Functions .......................... 534
  3.2.3 Management Server Handle Functions ....................... 536
  3.2.4 Management Server Connection Functions ................... 537
  3.2.5 Cluster Status Functions ....................................... 542
  3.2.6 Functions for Starting & Stopping Nodes .................... 544
  3.2.7 Cluster Log Functions .......................................... 549
  3.2.8 Backup Functions ................................................ 551
  3.2.9 Single-User Mode Functions .................................... 552
3.3 MGM API Data Types .................................................... 552
  3.3.1 The ndb_mgm_node_type Type .................................. 552
  3.3.2 The ndb_mgm_node_status Type ................................ 553
  3.3.3 The ndb_mgm_error Type .................................... 553
  3.3.4 The Ndb_logevent_type Type ................................... 553
  3.3.5 The ndb_mgm_event_severity Type ........................... 558
  3.3.6 The ndb_logevent_handle_error Type ......................... 558
  3.3.7 The ndb_mgm_event_category Type ......................... 558
3.4 MGM API Structures .................................................. 559
  3.4.1 The ndb_logevent Structure ................................. 559
  3.4.2 The ndb_mgm_node_state Structure ......................... 564
  3.4.3 The ndb_mgm_cluster_state Structure ....................... 565
  3.4.4 The ndb_mgm_reply Structure ................................ 565
3.5 MGM API Errors ...................................................... 565
  3.5.1 Request Errors .................................................... 566
  3.5.2 Node ID Allocation Errors ..................................... 566
  3.5.3 Service Errors ................................................... 566
  3.5.4 Backup Errors ................................................... 566
  3.5.5 Single User Mode Errors ...................................... 567
  3.5.6 General Usage Errors .......................................... 567
3.6 MGM API Examples ..................................................... 567
  3.6.1 Basic MGM API Event Logging Example ..................... 567
  3.6.2 MGM API Event Handling with Multiple Clusters .......... 569

This chapter discusses the NDB Cluster Management API, a C language API that is used for administrative tasks such as starting and stopping Cluster nodes, backups, and logging. It also covers MGM API concepts, programming constructs, and event types.

3.1 MGM API Concepts

Each MGM API function needs a management server handle of type NdbMgmHandle. This handle is created by calling the function ndb_mgm_create_handle() and freed by calling ndb_mgm_destroy_handle().

See Section 3.2.3.1, "ndb_mgm_create_handle()", and Section 3.2.3.4, "ndb_mgm_destroy_handle()", for more information about these two functions.
Working with Log Events

Important
You should not share an NdbMgmHandle between threads. While it is possible to do so (if you implement your own locks), this is not recommended; each thread should use its own management server handle.

A function can return any of the following:

- An integer value, with a value of -1 indicating an error.
- A nonconstant pointer value. A NULL value indicates an error; otherwise, the return value must be freed by the programmer.
- A constant pointer value, with a NULL value indicating an error. The returned value should not be freed.

Error conditions can be identified by using the appropriate error-reporting functions ndb_mgm_get_latest_error() and ndb_mgm_error().

Here is an example using the MGM API (without error handling for brevity's sake):

```c
NdbMgmHandle handle= ndb_mgm_create_handle();
ndb_mgm_connect(handle, 0, 0, 0);
struct ndb_mgm_cluster_state *state= ndb_mgm_get_status(handle);
for(int i=0; i < state->no_of_nodes; i++)
{
 struct ndb_mgm_node_state *node_state= &state->node_states[i];
 printf("node with ID=%d ", node_state->node_id);
 if(node_state->version != 0)
 printf("connected\n");
 else
 printf("not connected\n");

 free((void*)state);
}
ndb_mgm_destroy_handle(&handle);
```

3.1.1 Working with Log Events

Data nodes and management servers regularly and on specific occasions report on various log events that occur in the cluster. These log events are written to the cluster log. Optionally an MGM API client may listen to these events using the method ndb_mgm_listen_event(). Each log event belongs to a category ndb_mgm_event_category) and has a severity ndb_mgm_event_severity associated with it. Each log event also has a level (0-15) associated with it.

Which log events that come out is controlled with ndb_mgm_listen_event(), ndb_mgm_set_clusterlog_loglevel(), and ndb_mgm_set_clusterlog_severity_filter().

This is an example showing how to listen to events related to backup:

```c
int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP, 0 };
int fd = ndb_mgm_listen_event(handle, filter);
```

3.1.2 Structured Log Events

The following steps are involved:

1. Create an NdbLogEventHandle using ndb_mgm_create_logevent_handle().
2. Wait for and store log events using ndb_logevent_get_next().
3. The log event data is available in the structure ndb_logevent. The data which is specific to a particular event is stored in a union between structures; use ndb_logevent::type to decide which structure is valid.
The following sample code demonstrates listening to events related to backups:

```c
int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP, 0 };
NdbLogEventHandle le_handle = ndb_mgm_create_logevent_handle(handle, filter);
struct ndb_logevent le;
int r = ndb_logevent_get_next(le_handle, &le, 0);
if(r < 0)
 /* error */
else if(r == 0)
 /* no event */
switch(le.type)
{
 case NDB_LE_BackupStarted:
 ... le.BackupStarted.starting_node;
 ... le.BackupStarted.backup_id;
 break;
 case NDB_LE_BackupFailedToStart:
 ... le.BackupFailedToStart.error;
 break;
 case NDB_LE_BackupCompleted:
 ... le.BackupCompleted.stop_gci;
 break;
 case NDB_LE_BackupAborted:
 ... le.BackupStarted.backup_id;
 break;
 default:
 break;
}
```

For more information, see Section 3.2.1, “Log Event Functions”.

Available log event types are listed in Section 3.3.4, “The Ndb_logevent_type Type”, as well as in the file `/storage/ndb/include/mgmapi/ndb_logevent.h` in the NDB Cluster sources.

### 3.2 MGM API Function Listing

This section covers the structures and functions used in the MGM API. Listings are grouped by purpose or use.

#### 3.2.1 Log Event Functions

This section discusses functions that are used for listening to log events.

##### 3.2.1.1 ndb_mgm_listen_event()

**Description.** This function is used to listen to log events, which are read from the return file descriptor. Events use a text-based format, the same as in the cluster log.

**Signature.**

```c
int ndb_mgm_listen_event(
 NdbMgmHandle handle,
 const int filter[])
```

**Parameters.** This function takes two arguments:

- An `NdbMgmHandle handle`.
- A `filter` which consists of a series of `{level, ndb_mgm_event_category}` pairs (in a single array) that are pushed to a file descriptor. Use 0 for the level to terminate the list.

**Return value.** The file descriptor from which events are to be read.

##### 3.2.1.2 ndb_mgm_create_logevent_handle()
Log Event Functions

**Description.**  This function is used to create a log event handle.

**Signature.**

```c
NdbLogEventHandle ndb_mgm_create_logevent_handle
{
 NdbMgmHandle handle,
 const int filter[]
}
```

**Parameters.**  This function takes two arguments:

- An `NdbMgmHandle handle`.

- A `filter` which consists of a series of `{level, ndb_mgm_event_category}` pairs (in a single array) that are pushed to a file descriptor. Use 0 for the level to terminate the list.

**Return value.**  A log event handle.

### 3.2.1.3 ndb_mgm_destroy_logevent_handle()

**Description.**  Use this function to destroy a log event handle when there is no further need for it.

**Signature.**

```c
void ndb_mgm_destroy_logevent_handle
{
 NdbLogEventHandle* handle
}
```

**Parameters.**  A pointer to a log event handle `handle`.

**Return value.**  None.

### 3.2.1.4 ndb_logevent_get_fd()

**Description.**  This function retrieves a file descriptor from an `NdbMgmLogEventHandle`; this descriptor can be used in (for example) an application `select()` call.

**Warning**

Do not attempt to read from the file descriptor returned by this function; this can cause the descriptor to become corrupted.

**Signature.**

```c
int ndb_logevent_get_fd
{
 const NdbLogEventHandle handle
}
```

**Parameters.**  A `LogEventHandle`.

**Return value.**  A file descriptor. In the event of failure, -1 is returned.

### 3.2.1.5 ndb_logevent_get_next()

**Description.**  This function is used to retrieve the next log event, using data from the event to fill in the supplied `ndb_logevent` structure.

**Signature.**

```c
int ndb_logevent_get_next
```
Log Event Functions

Important

Prior to NDB 7.3.2, the log event's ndb_mgm_event_category was cast to an enum type. This behavior, although incorrect, interfered with existing applications and was reinstated in NDB 7.3.7; a new function exhibiting the corrected behavior ndb_logevent_get_next2() was added in these releases.

Parameters. Three parameters are expected by this function:

• An NdbLogEventHandle

• A pointer to an ndb_logevent data structure

• The number of milliseconds to wait for the event before timing out; passing 0 for this parameter causes the function to block until the next log event is received

Return value. The value returned by this function is interpreted as follows: If the return value is less than or equal to zero, then the logevent is not altered or affected in any way.

• > 0: The event exists, and it data was retrieved into the logevent

• 0: A timeout occurred while waiting for the event (more than timeout milliseconds elapsed)

• < 0: An error occurred.

3.2.1.6 ndb_logevent_get_next2()

Description. This function is used to retrieve the next log event, using data from the event to fill in the supplied ndb_logevent structure.

ndb_logevent_get_next2() was added in NDB 7.3.7. It is intended to serve as a replacement for ndb_logevent_get_next() which corrects that function's handling of the structure's ndb_mgm_event_category, for applications which do not require backward compatibility. It is otherwise identical to ndb_logevent_get_next().

Signature.

```c
int ndb_logevent_get_next2
(const NdbLogEventHandle handle,
 struct ndb_logevent* logevent,
 unsigned timeout
)
```

Parameters. Three parameters are expected by this function:

• An NdbLogEventHandle

• A pointer to an ndb_logevent data structure

• The number of milliseconds to wait for the event before timing out; passing 0 for this parameter causes the function to block until the next log event is received

Return value. The value returned by this function is interpreted as follows: If the return value is less than or equal to zero, then the logevent is not altered or affected in any way.

• > 0: The event exists, and it data was retrieved into the logevent
MGM API Error Handling Functions

- 0: A timeout occurred while waiting for the event (more than \textit{timeout} milliseconds elapsed)
- \textless 0: An error occurred.

### 3.2.1.7 \texttt{ndb\_logevent\_get\_latest\_error()}

**Description.** This function retrieves the error code from the most recent error.

**Note**
You may prefer to use \texttt{ndb\_logevent\_get\_latest\_error\_msg()} instead. See Section 3.2.1.8, “ndb\_logevent\_get\_latest\_error\_msg()”

**Signature.**

```c
int ndb_logevent_get_latest_error
{
 const NdbLogEventHandle handle
}
```

**Parameters.** A log event handle.

**Return value.** An error code.

### 3.2.1.8 \texttt{ndb\_logevent\_get\_latest\_error\_msg()}

**Description.** Retrieves the text of the most recent error obtained while trying to read log events.

**Signature.**

```c
const char* ndb_logevent_get_latest_error_msg
{
 const NdbLogEventHandle handle
}
```

**Parameters.** A log event handle.

**Return value.** The text of the error message.

### 3.2.2 MGM API Error Handling Functions

The MGM API functions used for error handling are discussed in this section.

Each MGM API error is characterised by an error code and an error message. There may also be an error description that may provide additional information about the error. The API provides functions to obtain this information in the event of an error.

#### 3.2.2.1 \texttt{ndb\_mgm\_get\_latest\_error()}

**Description.** This function is used to get the latest error code associated with a given management server handle.

Prior to NDB 7.4.8, this function was not safe for use with \texttt{NULL}. In later versions, \texttt{ndb\_mgm\_get\_latest\_error()} is null-safe but returns an arbitrary value. (Bug \#78130, Bug \#21651706)

**Signature.**

```c
int ndb_mgm_get_latest_error
{
 const NdbMgmHandle handle
}
```

**Parameters.** An \texttt{NdbMgmHandle}.

534
Return value. An error code corresponding to an `ndb_mgm_error` value. You can obtain the related error message using `ndb_mgm_get_latest_error_msg()`.

### 3.2.2.2 ndb_mgm_get_latest_error_msg()

**Description.** This function is used to obtain the latest general error message associated with an `NdbMgmHandle`.

Prior to NDB 7.4.8, this function was not safe for use with `NULL`. In later versions, `ndb_mgm_get_latest_error_msg()` is null-safe but returns an arbitrary value. (Bug #78130, Bug #21651706)

**Signature.**

```c
const char* ndb_mgm_get_latest_error_msg
 (const NdbMgmHandle handle)
```

**Parameters.** An `NdbMgmHandle`.

**Return value.** The error message text. More specific information can be obtained using `ndb_mgm_get_latest_error_desc()`.

### 3.2.2.3 ndb_mgm_get_latest_error_desc()

**Description.** Get the most recent error description associated with an `NdbMgmHandle`; this description provides additional information regarding the error message.

Prior to NDB 7.4.8, this function was not safe for use with `NULL`. In later versions, `ndb_mgm_get_latest_error_desc()` is null-safe but returns an arbitrary value. (Bug #78130, Bug #21651706)

**Signature.**

```c
const char* ndb_mgm_get_latest_error_desc
 (const NdbMgmHandle handle)
```

**Parameters.** An `NdbMgmHandle`.

**Return value.** The error description text.

### 3.2.2.4 ndb_mgm_set_error_stream()

**Description.** The function can be used to set the error output stream.

**Signature.**

```c
void ndb_mgm_set_error_stream
 (NdbMgmHandle handle, FILE* file)
```

**Parameters.** This function requires two parameters:

- An `NdbMgmHandle`
- A pointer to the file to which errors are to be sent.

**Return value.** None.
3.2.3 Management Server Handle Functions

This section contains information about the MGM API functions used to create and destroy management server handles.

3.2.3.1 ndb_mgm_create_handle()

**Description.** This function is used to create a handle to a management server.

**Signature.**

```c
NdbMgmHandle ndb_mgm_create_handle
{
 void
}
```

**Parameters.** None.

**Return value.** An `NdbMgmHandle`.

3.2.3.2 ndb_mgm_set_name()

**Description.** This function can be used to set a name for the management server handle, which is then reported in the Cluster log.

**Signature.**

```c
void ndb_mgm_set_name
{
 NdbMgmHandle handle,
 const char* name
}
```

**Parameters.** This function takes two arguments:

- A management server `handle`.
- The desired `name` for the `handle`.

**Return value.** None.

3.2.3.3 ndb_mgm_set_ignore_sigpipe()

**Description.** The MGM API by default installs a signal handler that ignores all SIGPIPE signals that might occur when writing to a socket that has been closed or reset. An application that provides its own handler for SIGPIPE should call this function after creating the management server handle and before using the handle to connect to the management server. (In other words, call this function after using `ndb_mgm_create_handle()` but before calling `ndb_mgm_connect()`, which causes the MGM API's SIGPIPE handler to be installed unless overridden.)

**Signature.**

```c
int ndb_mgm_set_ignore_sigpipe
{
 NdbMgmHandle handle,
 int ignore = 1
}
```

**Parameters.** This function takes two parameters:

- A management server handle
- An integer value which determines whether to ignore SIGPIPE errors. Set this to 1 (the default) to cause the MGM API to ignore SIGPIPE; set to zero if you wish for SIGPIPE to propagate to your MGM API application.
3.2.3.4 ndb_mgm_destroy_handle()

Description. This function destroys a management server handle

Signature.

```c
void ndb_mgm_destroy_handle
 (NdbMgmHandle* handle)
```

Parameters. A pointer to the NdbMgmHandle to be destroyed.

Return value. None.

3.2.4 Management Server Connection Functions

This section discusses MGM API functions that are used to initiate, configure, and terminate connections to an NDB management server.

3.2.4.1 ndb_mgm_get_connectstring()

Description. This function retrieves the connection string used for a connection.

Note

This function returns the default connection string if no call to ndb_mgm_set_connectstring() has been performed. In addition, the returned connection string may be formatted slightly differently than the original in that it may contain specifiers not present in the original.

The connection string format is the same as that discussed for Section 3.2.4.10, “ndb_mgm_set_connectstring()”.

Signature.

```c
const char* ndb_mgm_get_connectstring
 (NdbMgmHandle handle,
 char* buffer,
 int size)
```

Parameters. This function takes three arguments:

- An NdbMgmHandle.
- A pointer to a buffer in which to place the result.
- The size of the buffer.

Return value. The connection string—this is the same value that is pushed to the buffer.

3.2.4.2 ndb_mgm_get_configuration_nodeid()

Description. This function gets the ID of the node to which the connection is being (or was) made.

Signature.

```c
int ndb_mgm_get_configuration_nodeid
 ()
```
### Management Server Connection Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Signature</th>
<th>Parameters</th>
<th>Return value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NdbMgmHandle handle</td>
<td></td>
<td></td>
<td>A management server handle.</td>
<td>A node ID.</td>
</tr>
<tr>
<td>ndb_mgm_get_connected_port()</td>
<td>This function retrieves the number of the port used by the connection.</td>
<td>int ndb_mgm_get_connected_port(NdbMgmHandle handle)</td>
<td>A port number.</td>
<td></td>
</tr>
<tr>
<td>ndb_mgm_get_connected_host()</td>
<td>This function is used to obtain the name of the host to which the connection is made.</td>
<td>const char* ndb_mgm_get_connected_host(NdbMgmHandle handle)</td>
<td>A host name.</td>
<td></td>
</tr>
<tr>
<td>ndb_mgm_get_version()</td>
<td>Given a management server handle, this function gets NDB engine and MySQL Server version information for the indicated management server.</td>
<td>int ndb_mgm_get_version(NdbMgmHandle handle, int* major, int* minor, int* build, int length, char* string)</td>
<td></td>
<td>ndb_mgm_get_version() returns an integer: 0 on success; any nonzero value indicates an error.</td>
</tr>
</tbody>
</table>
3.2.4.6 ndb_mgm_is_connected()

**Description.** Used to determine whether a connection has been established.

**Note**
This function does not determine whether or not there is a “live” management server at the other end of the connection. Use ndb_mgm_check_connection() to accomplish that task.

**Signature.**

```
int ndb_mgm_is_connected
(NdbMgmHandle handle
)
```

**Parameters.** A management server handle.

**Return value.** This function returns an integer, whose value is interpreted as follows:

- 0: Not connected to the management node.
- Any nonzero value: A connection has been established with the management node.

3.2.4.7 ndb_mgm_check_connection()

**Description.** This function can be used to determine whether a management server is running on a given connection from a management client.

**Signature.**

```
int ndb_mgm_check_connection
(NdbMgmHandle handle
)
```

**Parameters.** An NdbMgmHandle (see Section 3.1, “MGM API Concepts”).

**Return value.** In NDB 7.5 and later, this function returns 0 on success, -1 when the handle is null, and -2 when not connected.

In NDB 7.4 and earlier, this function returned -1 in the event of an error; otherwise it returned 0, even when the management server handle was NULL, or when the connection check failed (Bug #53242, Bug #11760802).

3.2.4.8 ndb_mgm_number_of_mgmd_in_connect_string()

**Description.** This is a convenience function which provides an easy way to determine the number of management servers referenced in a connection string as set using ndb_mgm_set_connectstring().

**Signature.**

```
int ndb_mgm_number_of_mgmd_in_connect_string
(NdbMgmHandle handle
)
```

**Parameters.** A management handle (NdbMgmHandle).

**Return value.** On success, a nonnegative integer; a negative integer indicates failure.

3.2.4.9 ndb_mgm_set_bindaddress()
Description. This function makes it possible to set a local bind address for the management server. If used, it must be called before connecting to the management server.

Signature.

```c
int ndb_mgm_set_bindaddress
{
 NdbMgmHandle handle,
 const char* address
}
```

Parameters. This function takes two parameters:

- A management handle (`NdbMgmHandle`).
- A string `address` of the form `host[:port]`.

Return value. Returns an integer:

- `0` indicates success
- Any nonzero value indicates failure (the address was not valid)

Important

Errors caused by binding an otherwise valid local address are not reported until the connection to the management is actually attempted.

3.2.4.10 `ndb_mgm_set_connectstring()`

Description. This function is used to set the connection string for a management server connection to a node.

Signature.

```c
int ndb_mgm_set_connectstring
{
 NdbMgmHandle handle,
 const char* connection_string
}
```

Parameters. `ndb_mgm_set_connectstring()` takes two parameters:

- A management server `handle`.
- A `connection_string` whose format is shown here:

```markdown
connection_string :=
[nodeid-specification,]host-specification[,host-specification]
```

`ndb_mgm_get_connectstring()` also uses this format for connection strings.

It is possible to establish connections with multiple management servers using a single connection string.

```markdown
nodeid-specification := nodeid=id
host-specification := host[:port]
```

`id`, `port`, and `host` are defined as follows:

- `id`: An integer greater than 0 identifying a node in `config.ini`.
- `port`: An integer referring to a standard Unix port.
- `host`: A string containing a valid network host address.
3.2.4.11 ndb_mgm_set_configuration_nodeid()

Description. This function sets the connection node ID.

Signature.

```c
int ndb_mgm_set_configuration_nodeid
(NdbMgmHandle handle,
 int id
)
```

Parameters. This function requires two parameters:

- An NdbMgmHandle.
- The id of the node to connect to.

Return value. This function returns -1 in the event of failure.

3.2.4.12 ndb_mgm_set_timeout()

Description. Normally, network operations time out after 60 seconds. This function permits you to vary this time.

**Important**

The timeout set by this function applies not only to establishing network connections, but to every operation requiring communication using a network connection. This includes each network read or write performed by any MGM API function, NDB API method call, or ndb_mgm client command.

Signature.

```c
int ndb_mgm_set_timeout
(NdbMgmHandle handle,
 unsigned int timeout
)
```

Parameters. This function takes two parameters:

- A management server handle (NdbMgmHandle).
- An amount of time to wait before timing out, expressed in milliseconds.

Return value. Returns 0 on success, with any other value representing failure.

3.2.4.13 ndb_mgm_connect()

Description. This function establishes a connection to a management server specified by the connection string set by Section 3.2.4.10, “ndb_mgm_set_connectstring()”.

Signature.

```c
int ndb_mgm_connect
(NdbMgmHandle handle,
 int retries,
 int delay,
 int verbose
)
```
Cluster Status Functions

### Parameters
This function takes 4 arguments:

- A management server *handle*.
- The number of *retries* to make when attempting to connect. 0 for this value means that one connection attempt is made.
- The number of seconds to *delay* between connection attempts.
- If *verbose* is 1, then a message is printed for each connection attempt.

### Return value
This function returns -1 in the event of failure.

#### 3.2.4.14 ndb_mgm_disconnect()

**Description.** This function terminates a management server connection.

**Signature.**
```
int ndb_mgm_disconnect
(
 NdbMgmHandle handle
)
```

**Parameters.** An NdbMgmHandle.

**Return value.** Returns -1 if unable to disconnect.

### 3.2.5 Cluster Status Functions

This section discusses how to obtain status information from NDB Cluster nodes.

#### 3.2.5.1 ndb_mgm_get_status()

**Description.** This function is used to obtain the status of the nodes in an NDB Cluster.

**Note**
The caller must free the pointer returned by this function.

**Signature.**
```
struct ndb_mgm_cluster_state* ndb_mgm_get_status
(
 NdbMgmHandle handle
)
```

**Parameters.** This function takes a single parameter, a management server handle.

**Return value.** A pointer to an ndb_mgm_cluster_state data structure.

#### 3.2.5.2 ndb_mgm_get_status2()

**Description.** This function is similar to ndb_mgm_get_status(), in that it is used to obtain the status of the nodes in an NDB Cluster. However, ndb_mgm_get_status2() allows one to specify the type or types of nodes (ndb_mgm_node_type) to be checked.

**Note**
The caller must free the pointer returned by this function.

**Signature.**
Struct Cluster Status Functions

```c
struct ndb_mgm_cluster_state* ndb_mgm_get_status2(
 NdbMgmHandle handle,
 const enum ndb_mgm_node_type types[])
```

**Parameters.**  This function takes two parameters:

- A management server handle `handle`
- A pointer to array of the node types to be checked. These are `ndb_mgm_node_type` values. The array should be terminated by an element of type `NDB_MGM_NODE_TYPE_UNKNOWN`.

**Return value.**  A pointer to an `ndb_mgm_cluster_state` data structure.

### 3.2.5.3 ndb_mgm_dump_state()

**Description.** This function can be used to dump debugging information to the cluster log. The NDB Cluster management client `DUMP` command is a wrapper for this function.

**Important**

`ndb_mgm_dump_state()`, like the `DUMP` command, can cause a running NDB Cluster to malfunction or even to fail completely if it is used improperly. Be sure to consult the relevant documentation before using this function. For more information on the `DUMP` command, and for a listing of current `DUMP` codes and their effects, see NDB Cluster Management Client DUMP Commands.

**Signature.**

```c
int ndb_mgm_dump_state(
 NdbMgmHandle handle,
 int nodeId,
 const int* arguments,
 int numberOfArguments,
 struct ndb_mgm_reply* reply)
```

**Parameters.** This function takes the following parameters:

- A management server handle (`NdbMgmHandle`)
- The `nodeId` of a cluster data node.
- An array of `arguments`. The first of these is the `DUMP` code to be executed. Subsequent arguments can be passed in this array if needed by or desired for the corresponding `DUMP` command.
- The `numberOfArguments` to be passed.
- An `ndb_mgm_reply`, which contains a return code along with a response or error message.

**Return value.** 0 on success; otherwise, an error code.

**Example.** The following example has the same result as running `2 DUMP 1000` in the management client:

```c
// [...]
#include <mgmapi_debug.h>
// [...]
struct ndb_mgm_reply reply;
int args[1];
int stat, arg_count, node_id;
args[0] = 1000;
```
arg_count = 1;
node_id = 2;
stat = ndb_mgm_dump_state(h, node_id, args, arg_count, &reply);

3.2.6 Functions for Starting & Stopping Nodes

The MGM API provides several functions which can be used to start, stop, and restart one or more Cluster data nodes. These functions are discussed in this section.

Starting, Stopping, and Restarting Nodes. You can start, stop, and restart Cluster nodes using the following functions, which are described in more detail in the next few sections.

- Starting Nodes. Use `ndb_mgm_start()`.
- Stopping Nodes. Use `ndb_mgm_stop()`, `ndb_mgm_stop2()`, `ndb_mgm_stop3()`, or `ndb_mgm_stop4()`.

Normally, you cannot use any of these functions to stop a node while other nodes are starting. You can override this restriction using `ndb_mgm_stop4()` with the `force` parameter set to 1.

- Restarting Nodes. Use `ndb_mgm_restart()`, `ndb_mgm_restart2()`, `ndb_mgm_restart3()`, or `ndb_mgm_restart4()`.

Normally, you cannot use any of these functions to restart a node while other nodes are starting. You can override this restriction using `ndb_mgm_restart4()` with the `force` parameter set to 1.

3.2.6.1 ndb_mgm_start()

Description. This function can be used to start one or more Cluster nodes. The nodes to be started must have been started with the no-start option (`-n`), meaning that the data node binary was started and is waiting for a `START` management command which actually enables the node.

Signature.

```c
int ndb_mgm_start
{
 NdbMgmHandle handle,
 int number,
 const int* list
}
```

Parameters. `ndb_mgm_start()` takes 3 parameters:

- An `NdbMgmHandle`.
- A `number` of nodes to be started. Use 0 to start all of the data nodes in the cluster.
- A `list` of the node IDs of the nodes to be started.

Return value. The number of nodes actually started; in the event of failure, -1 is returned.

3.2.6.2 ndb_mgm_stop()

Description. This function stops one or more data nodes.

Signature.

```c
int ndb_mgm_stop
{
 NdbMgmHandle handle,
 int number,
 const int* list
}
```
Parameters. \texttt{ndb\_mgm\_stop()} takes 3 parameters: Calling this function is equivalent to calling \texttt{ndb\_mgm\_stop2(handle, number, list, 0)}.

- An \texttt{NdbMgmHandle}.
- The \texttt{number} of nodes to be stopped. Use \texttt{0} to stop all of the data nodes in the cluster.
- A \texttt{list} of the node IDs of the nodes to be stopped.

Return value. The number of nodes actually stopped; in the event of failure, \texttt{-1} is returned.

3.2.6.3 \texttt{ndb\_mgm\_stop2()}

Description. Like \texttt{ndb\_mgm\_stop()}, this function stops one or more data nodes. However, it offers the ability to specify whether or not the nodes shut down gracefully.

Signature.

```c
int ndb_mgm_stop2
(n
 NdbMgmHandle handle,
 int number,
 const int* list,
 int abort)
```

Parameters. \texttt{ndb\_mgm\_stop2()} takes 4 parameters:

- An \texttt{NdbMgmHandle}.
- The \texttt{number} of nodes to be stopped. Use \texttt{0} to stop all of the data nodes in the cluster.
- A \texttt{list} of the node IDs of the nodes to be stopped.
- The value of \texttt{abort} determines how the nodes will be shut down. \texttt{1} indicates the nodes will shut down immediately; \texttt{0} indicates that the nodes will stop gracefully.

Return value. The number of nodes actually stopped; in the event of failure, \texttt{-1} is returned.

3.2.6.4 \texttt{ndb\_mgm\_stop3()}

Description. Like \texttt{ndb\_mgm\_stop()} and \texttt{ndb\_mgm\_stop2()}, this function stops one or more data nodes. Like \texttt{ndb\_mgm\_stop2()}, it offers the ability to specify whether the nodes should shut down gracefully. In addition, it provides for a way to check to see whether disconnection is required prior to stopping a node.

Signature.

```c
int ndb_mgm_stop3
(n
 NdbMgmHandle handle,
 int number,
 const int* list,
 int abort,
 int* disconnect)
```

Parameters. \texttt{ndb\_mgm\_stop3()} takes 5 parameters:

- An \texttt{NdbMgmHandle}.
- The \texttt{number} of nodes to be stopped. Use \texttt{0} to stop all of the data nodes in the cluster.
- A \texttt{list} of the node IDs of the nodes to be stopped.
• The value of \texttt{abort} determines how the nodes will be shut down. 1 indicates the nodes will shut down immediately; 0 indicates that the nodes will stop gracefully.

• If \texttt{disconnect} returns 1 (true), this means the you must disconnect before you can apply the command to stop. For example, disconnecting is required when stopping the management server to which the handle is connected.

\textbf{Return value.} The number of nodes actually stopped; in the event of failure, -1 is returned.

3.2.6.5 \texttt{ndb\_mgm\_stop4()}

\textbf{Description.} Like the other \texttt{ndb\_mgm\_stop*()} functions, this function stops one or more data nodes. Like \texttt{ndb\_mgm\_stop2()}, it offers the ability to specify whether the nodes should shut down gracefully; like \texttt{ndb\_mgm\_stop3()}, it provides for a way to check to see whether disconnection is required prior to stopping a node. In addition, it is possible to force the node to shut down even if this would cause the cluster to become nonviable.

\textbf{Signature.}

\begin{verbatim}
int ndb_mgm_stop4
  (NdbMgmHandle handle,
   int number,
   const int* list,
   int abort,
   int force,
   int* disconnect)
\end{verbatim}

\textbf{Parameters.} \texttt{ndb\_mgm\_stop4()} takes 6 parameters:

• An \texttt{NdbMgmHandle}.

• The \texttt{number} of nodes to be stopped. Use 0 to stop all of the data nodes in the cluster.

• A \texttt{list} of the node IDs of the nodes to be stopped.

• The value of \texttt{abort} determines how the nodes will be shut down. 1 indicates the nodes will shut down immediately; 0 indicates that the nodes will stop gracefully.

• The value of \texttt{force} determines the action to be taken in the event that the shutdown of a given node would cause an incomplete cluster. 1 causes the node—and the entire cluster—to be shut down in such cases, 0 means the node will not be shut down.

  Setting \texttt{force} equal to 1 also makes it possible to stop a node even while other nodes are starting. (Bug #58451)

• If \texttt{disconnect} returns 1 (true), this means the you must disconnect before you can apply the command to stop. For example, disconnecting is required when stopping the management server to which the handle is connected.

\textbf{Return value.} The number of nodes actually stopped; in the event of failure, -1 is returned.

3.2.6.6 \texttt{ndb\_mgm\_restart()}

\textbf{Description.} This function can be used to restart one or more Cluster data nodes.

\textbf{Signature.}

\begin{verbatim}
int ndb_mgm_restart
  (NdbMgmHandle handle,
   int number,
   const int* list)
\end{verbatim}
Parameters. \texttt{ndb\_mgm\_restart()} takes 3 parameters:

- An \texttt{NdbMgmHandle}.
- The \textit{number} of nodes to be stopped. Use \texttt{0} to stop all of the data nodes in the cluster.
- A \texttt{list} of the node IDs of the nodes to be stopped.

Calling this function is equivalent to calling

\begin{verbatim}
ndb_mgm_restart2(handle, number, list, 0, 0, 0);
\end{verbatim}

See Section 3.2.6.7, “ndb\_mgm\_restart2()”, for more information.

Return value. The number of nodes actually restarted; \texttt{-1} on failure.

3.2.6.7 \texttt{ndb\_mgm\_restart2()}

Description. Like \texttt{ndb\_mgm\_restart()}, this function can be used to restart one or more Cluster data nodes. However, \texttt{ndb\_mgm\_restart2()} provides additional restart options, including initial restart, waiting start, and immediate (forced) restart.

Signature.

\begin{verbatim}
int ndb_mgm_restart2
  (
    NdbMgmHandle handle,
    int number,
    const int* list,
    int initial
    int nostart,
    int abort
  )
\end{verbatim}

Parameters. \texttt{ndb\_mgm\_restart2()} takes 6 parameters:

- An \texttt{NdbMgmHandle}.
- The \textit{number} of nodes to be stopped. Use \texttt{0} to stop all of the data nodes in the cluster.
- A \texttt{list} of the node IDs of the nodes to be stopped.
- If \texttt{initial} is true (\texttt{1}), then each node undergoes an initial restart—that is, its file system is removed.
- If \texttt{nostart} is true, then the nodes are not actually started, but instead are left ready for a start command.
- If \texttt{abort} is true, then the nodes are restarted immediately, bypassing any graceful restart.

Return value. The number of nodes actually restarted; \texttt{-1} on failure.

3.2.6.8 \texttt{ndb\_mgm\_restart3()}

Description. Like \texttt{ndb\_mgm\_restart2()}, this function can be used to cause an initial restart, waiting restart, and immediate (forced) restart on one or more Cluster data nodes. However, \texttt{ndb\_mgm\_restart3()} provides the additional options of checking whether disconnection is required prior to the restart.

Signature.

\begin{verbatim}
int ndb_mgm_restart3
\end{verbatim}
Functions for Starting & Stopping Nodes

Parameters. \textit{ndb\_mgm\_restart3()} takes 7 parameters:

- An \texttt{NdbMgmHandle}.
- The \texttt{number} of nodes to be stopped. Use \texttt{0} to stop all of the data nodes in the cluster.
- A \texttt{list} of the node IDs of the nodes to be stopped.
- If \texttt{initial} is true (\texttt{1}), then each node undergoes an initial restart—that is, its file system is removed.
- If \texttt{nostart} is true, then the nodes are not actually started, but instead are left ready for a start command.
- If \texttt{abort} is true, then the nodes are forced to restart immediately without performing a graceful restart.
- If \texttt{disconnect} returns \texttt{1} (true), this means the you must disconnect before you can apply the command to restart. For example, disconnecting is required when stopping the management server to which the handle is connected.

Return value. The number of nodes actually restarted; \texttt{-1} on failure.

\textbf{3.2.6.9 \textit{ndb\_mgm\_restart4}()}

Description. Like the other \textit{ndb\_mgm\_restart*()} functions, this function restarts one or more data nodes. Like \textit{ndb\_mgm\_restart2()} , it can be used to cause an initial restart, waiting restart, and immediate (forced) restart on one or more NDB Cluster data nodes; like \textit{ndb\_mgm\_stop3()} it provides for a way to check to see whether disconnection is required prior to stopping a node. In addition, it is possible to force the node to restart even if this would cause a restart of the cluster.

Signature.

\begin{verbatim}
int ndb_mgm_restart4
(  
   NdbMgmHandle handle,
   int number,
   const int* list,
   int initial
   int nostart,
   int abort,
   int* disconnect
)
\end{verbatim}

Parameters. \textit{ndb\_mgm\_restart4()} takes 7 parameters:

- An \texttt{NdbMgmHandle}.
- The \texttt{number} of nodes to be stopped. Use \texttt{0} to stop all of the data nodes in the cluster.
- A \texttt{list} of the node IDs of the nodes to be stopped.
- If \texttt{initial} is true (\texttt{1}), then each node undergoes an initial restart—that is, its file system is removed.
• If `nostart` is true, then the nodes are not actually started, but instead are left ready for a start command.

• If `abort` is true, then the nodes are forced to restart immediately without performing a graceful restart.

• The value of `force` determines the action to be taken in the event that the loss of a given node due to restarting would cause an incomplete cluster.

  1 causes the node—and the entire cluster—to be restarted in such cases, 0 means that the node will not be restarted.

  Setting `force` equal to 1 also makes it possible to restart a node even while other nodes are starting. (Bug #58451)

• If `disconnect` returns 1 (true), this means the you must disconnect before you can apply the command to restart. For example, disconnecting is required when stopping the management server to which the handle is connected.

**Return value.** The number of nodes actually restarted; -1 on failure.

### 3.2.7 Cluster Log Functions

This section covers the functions available in the MGM API for controlling the output of the cluster log.

#### 3.2.7.1 `ndb_mgm_get_clusterlog_severity_filter()`

**Description.** This function is used to retrieve the cluster log severity filter currently in force.

**Signature.**

```c
int ndb_mgm_get_clusterlog_severity_filter
(NdbMgmHandle handle,
 struct ndb_mgm_severity* severity,
 unsigned int size
)
```

**Parameters.**

• An `NdbMgmHandle`.

• A vector `severity` of seven (NDB_MGM_EVENT_SEVERITY_ALL) elements, each of which is an `ndb_mgm_severity` structure, where each element contains 1 if a severity indicator is enabled and 0 if not. A severity level is stored at position `ndb_mgm_clusterlog_level`; for example the error level is stored at position NDB_MGM_EVENT_SEVERITY_ERROR. The first element (position NDB_MGM_EVENT_SEVERITY_ON) in the vector signals whether the cluster log is disabled or enabled.

• The `size` of the vector (NDB_MGM_EVENT_SEVERITY_ALL).

**Return value.** The number of returned severities, or -1 in the event of an error.

#### 3.2.7.2 `ndb_mgm_set_clusterlog_severity_filter()`

**Description.** This function is used to set a cluster log severity filter.

**Signature.**

```c
int ndb_mgm_set_clusterlog_severity_filter
(NdbMgmHandle handle,
 enum ndb_mgm_event_severity severity,
)
```
Cluster Log Functions

```c
int enable,
struct ndb_mgm_reply* reply
}
```

**Parameters.** This function takes 4 parameters:

- A management server `handle`.
- A cluster log `severity` to filter.
- A flag to `enable` or disable the filter; 1 enables and 0 disables the filter.
- A pointer to an `ndb_mgm_reply` structure for a reply message.

**Return value.** The function returns -1 in the event of failure.

### 3.2.7.3 `ndb_mgm_get_clusterlog_loglevel()`

**Description.** This function is used to obtain log category and level information, and is thread-safe.

**Signature.**

```c
int ndb_mgm_get_clusterlog_loglevel
{
 NdbMgmHandle handle,
 struct ndb_mgm_loglevel* loglevel,
 unsigned int size
}
```

**Parameters.** `ndb_mgm_get_clusterlog_loglevel()` takes the following parameters:

- A management `handle`(NdbMgmHandle).
- A `loglevel` (log level) vector consisting of twelve elements, each of which is an `ndb_mgm_loglevel` structure and which represents a log level of the corresponding category.
- The `size` of the vector (MGM_LOGLEVELS).

**Return value.** This function returns the number of returned loglevels or -1 in the event of an error.

### 3.2.7.4 `ndb_mgm_set_clusterlog_loglevel()`

**Description.** This function is used to set the log category and levels for the cluster log.

**Signature.**

```c
int ndb_mgm_set_clusterlog_loglevel
{
 NdbMgmHandle handle,
 int id,
 enum ndb_mgm_event_category category,
 int level,
 struct ndb_mgm_reply* reply
}
```

**Parameters.** This function takes 5 parameters:

- An `NdbMgmHandle`.
- The `id` of the node affected.
- An event `category`; this is one of the values listed in Section 3.3.7, “The `ndb_mgm_event_category Type`”.
- A logging `level`.
- A pointer to an `ndb_mgm_reply` structure for the `reply` message.
Return value. In the event of an error, this function returns -1.

3.2.8 Backup Functions

This section covers the functions provided in the MGM API for starting and stopping backups.

3.2.8.1 ndb_mgm_start_backup()

Description. This function is used to initiate a backup of an NDB Cluster.

Signature.

```c
int ndb_mgm_start_backup
 (NdbMgmHandle handle,
 int wait,
 unsigned int* id,
 struct ndb_mgm_reply* reply)
```

Parameters. This function requires 4 parameters:

- A management server `handle` (an `NdbMgmHandle`).
- A `wait` flag, with the following possible values:
  - 0: Do not wait for confirmation of the backup.
  - 1: Wait for the backup to be started.
  - 2: Wait for the backup to be completed.
- A backup `id` to be returned by the function.
- A pointer to an `ndb_mgm_reply` structure to accommodate a `reply`.

Note

No backup `id` is returned if `wait` is set equal to 0.

- A pointer to an `ndb_mgm_reply` structure to accommodate a `reply`.

Return value. In the event of failure, the function returns -1.

3.2.8.2 ndb_mgm_abort_backup()

Description. This function is used to stop a Cluster backup.

Signature.

```c
int ndb_mgm_abort_backup
 (NdbMgmHandle handle,
 unsigned int id,
 struct ndb_mgm_reply* reply)
```

Parameters. This function takes 3 parameters:

- An `NdbMgmHandle`.
- The `id` of the backup to be aborted.
- A pointer to an `ndb_mgm_reply` structure.

Return value. In case of an error, this function returns -1.
3.2.9 Single-User Mode Functions

The MGM API makes it possible for the programmer to put the cluster into single-user mode—and to return it to normal mode again—from within an application. This section covers the functions that are used for these operations.

3.2.9.1 ndb_mgm_enter_single_user()

Description.   This function is used to enter single-user mode on a given node.

Signature.

```c
int ndb_mgm_enter_single_user
 (NdbMgmHandle handle,
 unsigned int id,
 struct ndb_mgm_reply* reply)
```

Parameters.   This function takes 3 parameters:

- An `NdbMgmHandle`.
- The `id` of the node to be used in single-user mode.
- A pointer to an `ndb_mgm_reply` structure, used for a `reply` message.

Return value.   Returns -1 in the event of failure.

3.2.9.2 ndb_mgm_exit_single_user()

Description.   This function is used to exit single-user mode and to return to normal operation.

Signature.

```c
int ndb_mgm_exit_single_user
 (NdbMgmHandle handle,
 struct ndb_mgm_reply* reply)
```

Parameters.   This function requires 2 arguments:

- An `NdbMgmHandle`.
- A pointer to an `ndb_mgm_reply`.

Return value.   Returns -1 in case of an error.

3.3 MGM API Data Types

This section discusses the data types defined by the MGM API.

Note

The types described in this section are all defined in the file `/storage/ndb/include/mgmapi/mgmapi.h`, with the exception of `Ndb_logevent_type`, `ndb_mgm_event_severity`, `ndb_mgm_logevent_handle_error`, and `ndb_mgm_event_category`, which are defined in `/storage/ndb/include/mgmapi/ndb_logevent.h`.

3.3.1 The ndb_mgm_node_type Type
The ndb_mgm_node_status Type

Description. This is used to classify the different types of nodes in an NDB Cluster.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

Table 3.1 Type ndb_mgm_node_type values and descriptions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_NODE_TYPE_UNKNOWN</td>
<td>Unknown</td>
</tr>
<tr>
<td>NDB_MGM_NODE_TYPE_API</td>
<td>API Node (SQL node)</td>
</tr>
<tr>
<td>NDB_MGM_NODE_TYPE_NDB</td>
<td>Data node</td>
</tr>
<tr>
<td>NDB_MGM_NODE_TYPE_MGM</td>
<td>Management node</td>
</tr>
</tbody>
</table>

3.3.2 The ndb_mgm_node_status Type

Description. This type describes a Cluster node's status.

Enumeration values. Possible values are shown, along with descriptions, in the following table:

Table 3.2 Type ndb_mgm_node_status values and descriptions.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_NODE_STATUS_UNKNOWN</td>
<td>The node's status is not known</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_NO_CONTACT</td>
<td>The node cannot be contacted</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_NOT_STARTED</td>
<td>The node has not yet executed the startup protocol</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_STARTING</td>
<td>The node is executing the startup protocol</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_STARTED</td>
<td>The node is running</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_SHUTTING_DOWN</td>
<td>The node is shutting down</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_RESTARTING</td>
<td>The node is restarting</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_SINGLEUSER</td>
<td>The node is running in single-user (maintenance) mode</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_RESUME</td>
<td>The node is in resume mode</td>
</tr>
<tr>
<td>NDB_MGM_NODE_STATUS_CONNECTED</td>
<td>The node is connected</td>
</tr>
</tbody>
</table>

3.3.3 The ndb_mgm_error Type

Description. The values for this type are the error codes that may be generated by MGM API functions. These may be found in Section 3.5, “MGM API Errors”.

See also Section 3.2.2.1, “ndb_mgm_get_latest_error()”, for more information.

3.3.4 The Ndb_logevent_type Type

Description. These are the types of log events available in the MGM API, grouped by event category. (See Section 3.3.7, “The ndb_mgm_event_category Type”.)

Enumeration values. Possible values are shown, along with descriptions, in the following table:
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_LE_Connected</td>
<td>The node has connected</td>
<td>NDB_MGM_EVENT_CATEGORY_CONNECTION</td>
</tr>
<tr>
<td>NDB_LE_Disconnected</td>
<td>The node was disconnected</td>
<td>NDB_MGM_EVENT_CATEGORY_CONNECTION</td>
</tr>
<tr>
<td>NDB_LE_CommunicationClosed</td>
<td>Communication with the node has been closed</td>
<td>NDB_MGM_EVENT_CATEGORY_CONNECTION</td>
</tr>
<tr>
<td>NDB_LE_CommunicationOpened</td>
<td>Communication with the node has been started</td>
<td>NDB_MGM_EVENT_CATEGORY_CONNECTION</td>
</tr>
<tr>
<td>NDB_LE_ConnectedApiVersion</td>
<td>The API version used by an API node; in the case of a MySQL server (SQL node), this is the same as displayed by <code>SELECT VERSION()</code></td>
<td>NDB_MGM_EVENT_CATEGORY_CONNECTION</td>
</tr>
<tr>
<td>NDB_LE_GlobalCheckpointStarted</td>
<td>A global checkpoint has been started</td>
<td>NDB_MGM_EVENT_CATEGORY_CHECKPOINT</td>
</tr>
<tr>
<td>NDB_LE_GlobalCheckpointCompleted</td>
<td>A global checkpoint has been completed</td>
<td>NDB_MGM_EVENT_CATEGORY_CHECKPOINT</td>
</tr>
<tr>
<td>NDB_LE_LocalCheckpointStarted</td>
<td>The node has begun a local checkpoint</td>
<td>NDB_MGM_EVENT_CATEGORY_CHECKPOINT</td>
</tr>
<tr>
<td>NDB_LE_LocalCheckpointCompleted</td>
<td>The node has completed a local checkpoint</td>
<td>NDB_MGM_EVENT_CATEGORY_CHECKPOINT</td>
</tr>
<tr>
<td>NDB_LE_LCPStoppedInCalcKeepGci</td>
<td>The local checkpoint was aborted, but the last global checkpoint was preserved</td>
<td>NDB_MGM_EVENT_CATEGORY_CHECKPOINT</td>
</tr>
<tr>
<td>NDB_LE_LCPFragmentCompleted</td>
<td>Copying of a table fragment was completed</td>
<td>NDB_MGM_EVENT_CATEGORY_CHECKPOINT</td>
</tr>
<tr>
<td>NDB_LE_NDBStartStarted</td>
<td>The node has begun to start</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_NDBStartCompleted</td>
<td>The node has completed the startup process</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_STTORYRecived</td>
<td>The node received an STTORY signal, indicating that the reading of configuration data is underway; see Configuration Read Phase (STTORY Phase -1), and STTORY Phase 0, for more information</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_StartPhaseCompleted</td>
<td>A node start phase has been completed</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_CM_REGCONF</td>
<td>The node has received a CM_REGCONF signal; see STTORY Phase 1, for more information</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_CM_REGREF</td>
<td>The node has received a CM_REGREF signal; see STTORY Phase 1, for more information</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_FIND_NEIGHBOURS</td>
<td>The node has discovered its neighboring nodes in the cluster</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_NDBStopStarted</td>
<td>The node is beginning to shut down</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
<td>Category</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>NDB_LE_NDBStopCompleted</td>
<td>Node shutdown completed</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_NDBStopForced</td>
<td>The node is being forced to shut down (usually indicates a severe problem in the cluster)</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_NDBStopAborted</td>
<td>The node is being forced to continue running; this happens, for example, when a STOP command was issued in the management client for a node such that the cluster would no longer be able to keep all data available if the node were shut down</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_StartREDOlog</td>
<td>Redo logging has been started</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_StartLog</td>
<td>Logging has started</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_UNDORecordsExecuted</td>
<td>The node has read and executed all records from the redo log</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_StartReport</td>
<td>The node is issuing a start report</td>
<td>NDB_MGM_EVENT_CATEGORY_STARTUP</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyDict</td>
<td>The node is copying the data dictionary</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyDistr</td>
<td>The node is copying data distribution information</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyFragsStarted</td>
<td>The node is copying table fragments</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyFragDone</td>
<td>The node has completed copying a table fragment</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyFragCompleted</td>
<td>The node has completed copying all necessary table fragments</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_NodeFailCompleted</td>
<td>All (remaining) nodes have been notified of the failure of a data node</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_NODE_FAILREP</td>
<td>A data node has failed</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_ArbitState</td>
<td>This event is used to report on the current state of arbitration in the cluster</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_ArbitResult</td>
<td>This event is used to report on the outcome of node arbitration</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_GCP_TakeoverStarted</td>
<td>The node is attempting to become the master node (to assume responsibility for GCPs)</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
<td>Category</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>NDB_LE_GCP_TakeoverCompleted</td>
<td>The node has become the master (and assumed responsibility for GCPs)</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_LCP_TakeoverStarted</td>
<td>The node is attempting to become the master node (to assume responsibility for LCPs)</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_LCP_TakeoverCompleted</td>
<td>The node has become the master (and assumed responsibility for LCPs)</td>
<td>NDB_MGM_EVENT_CATEGORY_NODE_RESTART</td>
</tr>
<tr>
<td>NDB_LE_TransReportCounters</td>
<td>This indicates a report of transaction activity, which is given approximately once every 10 seconds</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_OperationReportCounters</td>
<td>Indicates a report on the number of operations performed by this node (also provided approximately once every 10 seconds)</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_TableCreated</td>
<td>A new table has been created</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_UndoLogBlocked</td>
<td>Undo logging is blocked because the log buffer is close to overflowing</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_JobStatistic</td>
<td>...</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_SendBytesStatistic</td>
<td>Indicates a report of the average number of bytes transmitted per send operation by this node</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_ReceiveBytesStatistic</td>
<td>Indicates a report of the average number of bytes received per send operation to this node</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_MemoryUsage</td>
<td>A DUMP 1000 command has been issued to this node, and it is reporting its memory usage in turn</td>
<td>NDB_MGM_EVENT_CATEGORY_STATISTIC</td>
</tr>
<tr>
<td>NDB_LE_TransporterError</td>
<td>A transporter error has occurred; see NDB Transporter Errors, for transporter error codes and messages</td>
<td>NDB_MGM_EVENT_CATEGORY_ERROR</td>
</tr>
<tr>
<td>NDB_LE_TransporterWarning</td>
<td>A potential problem is occurring in the transporter; see NDB Transporter Errors, for transporter error codes and messages</td>
<td>NDB_MGM_EVENT_CATEGORY_ERROR</td>
</tr>
<tr>
<td>NDB_LE_MissedHeartbeat</td>
<td>Indicates a data node has missed a heartbeat expected from another data node</td>
<td>NDB_MGM_EVENT_CATEGORY_ERROR</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
<td>Category</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>NDB_LE_DeadDueToHeartbeat</td>
<td>A data node has missed at least 3 heartbeats in succession from another data node, and is reporting that it can no longer communicate with that data node</td>
<td>NDB_MGM_EVENT_CATEGORY_ERROR</td>
</tr>
<tr>
<td>NDB_LE_WarningEvent</td>
<td>Indicates a warning message</td>
<td>NDB_MGM_EVENT_CATEGORY_ERROR</td>
</tr>
<tr>
<td>NDB_LE_SentHeartbeat</td>
<td>A node heartbeat has been sent</td>
<td>NDB_MGM_EVENT_CATEGORY_INFO</td>
</tr>
<tr>
<td>NDB_LE_CreateLogBytes</td>
<td>Indicates an informational message</td>
<td>NDB_MGM_EVENT_CATEGORY_INFO</td>
</tr>
<tr>
<td>NDB_LE_InfoEvent</td>
<td>The cluster has entered or exited single user mode</td>
<td>NDB_MGM_EVENT_CATEGORY_INFO</td>
</tr>
<tr>
<td>NDB_LE_SingleUser</td>
<td></td>
<td>NDB_MGM_EVENT_CATEGORY_INFO</td>
</tr>
<tr>
<td>NDB_LE_EventBufferStatus</td>
<td>This type of event indicates potentially excessive usage of the event buffer</td>
<td>NDB_MGM_EVENT_CATEGORY_INFO</td>
</tr>
<tr>
<td>NDB_LE_EventBufferStatus2</td>
<td>Provides improved reporting of event buffer status; added in NDB 7.5.1</td>
<td>NDB_MGM_EVENT_CATEGORY_INFO</td>
</tr>
<tr>
<td>NDB_LE_BackupStarted</td>
<td>A backup has been started</td>
<td>NDB_MGM_EVENT_CATEGORY_BACKUP</td>
</tr>
<tr>
<td>NDB_LE_BackupFailedToStart</td>
<td>A backup has failed to start</td>
<td>NDB_MGM_EVENT_CATEGORY_BACKUP</td>
</tr>
<tr>
<td>NDB_LE_BackupCompleted</td>
<td>A backup has been completed successfully</td>
<td>NDB_MGM_EVENT_CATEGORY_BACKUP</td>
</tr>
<tr>
<td>NDB_LE_BackupAborted</td>
<td>A backup in progress was terminated by the user</td>
<td>NDB_MGM_EVENT_CATEGORY_BACKUP</td>
</tr>
</tbody>
</table>
3.3.5 The ndb_mgm_event_severity Type

**Description.** These are the log event severities used to filter the cluster log by `ndb_mgm_set_clusterlog_severity_filter()`, and to filter listening to events by `ndb_mgm_listen_event()`.

**Enumeration values.** Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_ILLEGAL_EVENT_SEVERITY</td>
<td>Invalid event severity specified</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_ON</td>
<td>Cluster logging is enabled</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_DEBUG</td>
<td>Used for NDB Cluster development only</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_INFO</td>
<td>Informational messages</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_WARNING</td>
<td>Conditions that are not errors as such, but that might require special handling</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_ERROR</td>
<td>Nonfatal error conditions that should be corrected</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_CRITICAL</td>
<td>Critical conditions such as device errors or out of memory errors</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_ALERT</td>
<td>Conditions that require immediate attention, such as corruption of the cluster</td>
</tr>
<tr>
<td>NDB_MGM_EVENT_SEVERITY_ALL</td>
<td>All severity levels</td>
</tr>
</tbody>
</table>

See Section 3.2.7.2, “ndb_mgm_set_clusterlog_severity_filter()”, and Section 3.2.1.1, “ndb_mgm_listen_event()”, for information on how this type is used by those functions.

3.3.6 The ndb_logevent_handle_error Type

**Description.** This type is used to describe log event errors.

**Enumeration values.** Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_LEH_NO_ERROR</td>
<td>No error</td>
</tr>
<tr>
<td>NDB_LEH_READ_ERROR</td>
<td>Read error</td>
</tr>
<tr>
<td>NDB_LEH_MISSING_EVENT_SPECIFIER</td>
<td>Invalid, incomplete, or missing log event specification</td>
</tr>
<tr>
<td>NDB_LEH_UNKNOWN_EVENT_TYPE</td>
<td>Unknown log event type</td>
</tr>
<tr>
<td>NDB_LEH_UNKNOWN_EVENT_VARIABLE</td>
<td>Unknown log event variable</td>
</tr>
<tr>
<td>NDB_LEH_INTERNAL_ERROR</td>
<td>Internal error</td>
</tr>
<tr>
<td>NDB_LEH_CONNECTION_ERROR</td>
<td>Connection error, or lost connection with management server</td>
</tr>
</tbody>
</table>

*NDB_LEH_CONNECTION_ERROR* was added in NDB 7.4.13 and NDB 7.5.4. (BUG #19474782)

3.3.7 The ndb_mgm_event_category Type
**MGM API Structures**

**Description.** These are the log event categories referenced in Section 3.3.4, “The Ndb_logevent_type Type”. They are also used by the MGM API functions `ndb_mgm_set_clusterlog_loglevel()` and `ndb_mgm_listen_event()`.

**Enumeration values.** Possible values are shown, along with descriptions, in the following table:

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_ILLEGAL_EVENTCATEGORY</td>
<td>Invalid log event category</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_STARTUP</td>
<td>Log events occurring during startup</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_SHUTDOWN</td>
<td>Log events occurring during shutdown</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_STATISTIC</td>
<td>Statistics log events</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_CHECKPOINT</td>
<td>Log events related to checkpoints</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_NODE_RESTART</td>
<td>Log events occurring during node restart</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_CONNECTION</td>
<td>Log events relating to connections between cluster nodes</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_BACKUP</td>
<td>Log events relating to backups</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_CONGESTION</td>
<td>Log events relating to congestion</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_INFO</td>
<td>Uncategorised log events (severity level INFO)</td>
</tr>
<tr>
<td>NDB_MGM_EVENTCATEGORY_ERROR</td>
<td>Uncategorised log events (severity level WARNING, ERROR, CRITICAL, or ALERT)</td>
</tr>
</tbody>
</table>

See Section 3.2.7.4, “ndb_mgm_set_clusterlog_loglevel()”, and Section 3.2.1.1, “ndb_mgm_listen_event()”, for more information.

### 3.4 MGM API Structures

This section covers the programming structures available in the MGM API.

#### 3.4.1 The ndb_logevent Structure

**Description.** This structure models a Cluster log event, and is used for storing and retrieving log event information.

**Definition.** `ndb_logevent` has 8 members, the first 7 of which are shown in the following list:

- **void* handle**: An `NdbLogEventHandle`, set by `ndb_logevent_get_next()`. This handle is used only for purposes of comparison.
- **type**: Tells which type of event (Ndb_logevent_type) this is.
- **unsigned time**: The time at which the log event was registered with the management server.
- **category**: The log event category (ndb_mgm_event_category).
- **severity**: The log event severity (ndb_mgm_event_severity).
- **unsigned level**: The log event level. This is a value in the range of 0 to 15, inclusive.
- **unsigned source_nodeid**: The node ID of the node that reported this event.

The 8th member of this structure contains data specific to the log event, and is dependent on its type. It is defined as the union of a number of data structures, each corresponding to a log event type. Which structure to use is determined by the value of `type`, and is shown in the following table:
### Table 3.7 Type Ndb_logevent_type values and structures used

<table>
<thead>
<tr>
<th>Ndb_logevent_type Value</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_LE_Connected</td>
<td>Connected:</td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
</tr>
<tr>
<td>NDB_LE_Disconnected</td>
<td>Disconnected:</td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
</tr>
<tr>
<td>NDB_LE_CommunicationClosed</td>
<td>CommunicationClosed:</td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
</tr>
<tr>
<td>NDB_LE_CommunicationOpened</td>
<td>CommunicationOpened:</td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
</tr>
<tr>
<td>NDB_LE_ConnectedApiVersion</td>
<td>ConnectedApiVersion:</td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
</tr>
<tr>
<td></td>
<td>unsigned version</td>
</tr>
<tr>
<td>NDB_LE_GlobalCheckpointStarted</td>
<td>GlobalCheckpointStarted:</td>
</tr>
<tr>
<td></td>
<td>unsigned gci</td>
</tr>
<tr>
<td>NDB_LE_GlobalCheckpointCompleted</td>
<td>GlobalCheckpointCompleted:</td>
</tr>
<tr>
<td></td>
<td>unsigned gci</td>
</tr>
<tr>
<td>NDB_LE_LocalCheckpointStarted</td>
<td>LocalCheckpointStarted:</td>
</tr>
<tr>
<td></td>
<td>unsigned lci</td>
</tr>
<tr>
<td></td>
<td>unsigned keep_gci</td>
</tr>
<tr>
<td></td>
<td>unsigned restore_gci</td>
</tr>
<tr>
<td>NDB_LE_LocalCheckpointCompleted</td>
<td>LocalCheckpointCompleted:</td>
</tr>
<tr>
<td></td>
<td>unsigned lci</td>
</tr>
<tr>
<td>NDB_LE_LCPStoppedInCalcKeepGci</td>
<td>LCPStoppedInCalcKeepGci:</td>
</tr>
<tr>
<td></td>
<td>unsigned data</td>
</tr>
<tr>
<td>NDB_LE_LCPFragmentCompleted</td>
<td>LCPFragmentCompleted:</td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
</tr>
<tr>
<td></td>
<td>unsigned table_id</td>
</tr>
<tr>
<td></td>
<td>unsigned fragment_id</td>
</tr>
<tr>
<td>NDB_LE_UndoLogBlocked</td>
<td>UndoLogBlocked:</td>
</tr>
<tr>
<td></td>
<td>unsigned acc_count</td>
</tr>
<tr>
<td></td>
<td>unsigned tup_count</td>
</tr>
<tr>
<td>NDB_LE_NDBStartStarted</td>
<td>NDBStartStarted:</td>
</tr>
<tr>
<td></td>
<td>unsigned version</td>
</tr>
<tr>
<td>NDB_LE_NDBStartCompleted</td>
<td>NDBStartCompleted:</td>
</tr>
<tr>
<td></td>
<td>unsigned version</td>
</tr>
<tr>
<td>NDB_LE_STTORRYRecieved</td>
<td>STTORRYRecieved:</td>
</tr>
<tr>
<td></td>
<td>[NONE]</td>
</tr>
<tr>
<td>NDB_LE_StartPhaseCompleted</td>
<td>StartPhaseCompleted:</td>
</tr>
<tr>
<td></td>
<td>unsigned phase</td>
</tr>
<tr>
<td></td>
<td>unsigned starttype</td>
</tr>
<tr>
<td>NDB_LE_CM_REGCONF</td>
<td>CM_REGCONF:</td>
</tr>
<tr>
<td>Ndb_logevent_type</td>
<td>Structure</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NDB_LE_CM_REGREF</td>
<td>CM_REGREF:</td>
</tr>
<tr>
<td>NDB_LE_FND_NEIGHBOURS</td>
<td>FIND_NEIGHBOURS:</td>
</tr>
<tr>
<td>NDB_LE_NDBStopStarted</td>
<td>NDBStopStarted:</td>
</tr>
<tr>
<td>NDB_LE_NDBStopCompleted</td>
<td>NDBStopCompleted:</td>
</tr>
<tr>
<td>NDB_LE_NDBStopForced</td>
<td>NDBStopForced:</td>
</tr>
<tr>
<td>NDB_LE_NDBStopAborted</td>
<td>NDBStopAborted:</td>
</tr>
<tr>
<td>NDB_LE_StarlREDOlog</td>
<td>StarlREDOlog:</td>
</tr>
<tr>
<td>NDB_LE_StarlLog</td>
<td>StarlLog:</td>
</tr>
<tr>
<td>NDB_LE_UNDORecordsExecuted</td>
<td>UNDORecordsExecuted:</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyDict</td>
<td>NR_CopyDict:</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyDistr</td>
<td>NR_CopyDistr:</td>
</tr>
</tbody>
</table>
### The ndb_logevent Structure

<table>
<thead>
<tr>
<th>ndb_logevent_type</th>
<th>Value</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_LE_NR_CopyFagsStarted</td>
<td>NR_CopyFagsStarted</td>
<td>unsigned dest_node</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyFragDone</td>
<td>NR_CopyFragDone</td>
<td>unsigned dest_node unsigned table_id unsigned fragment_id</td>
</tr>
<tr>
<td>NDB_LE_NR_CopyFagsCompleted</td>
<td>NR_CopyFagsCompleted</td>
<td>unsigned dest_node</td>
</tr>
<tr>
<td>NDB_LE_NodeFailCompleted</td>
<td>NodeFailCompleted</td>
<td>unsigned block unsigned failed_node unsigned completing_node</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(For block and completing_node, 0 is interpreted as “all”.)</td>
</tr>
<tr>
<td>NDB_LE_NODE_FAILREP</td>
<td>NODE_FAILREP</td>
<td>unsigned failed_node unsigned failure_state</td>
</tr>
<tr>
<td>NDB_LE_ArbitState</td>
<td>ArbitState</td>
<td>unsigned code unsigned arbit_node unsigned ticket_0 unsigned ticket_1</td>
</tr>
<tr>
<td>NDB_LE_ArbitResult</td>
<td>ArbitResult</td>
<td>unsigned code unsigned arbit_node unsigned ticket_0 unsigned ticket_1</td>
</tr>
<tr>
<td>NDB_LE_GCP_TakeoverStarted</td>
<td>GCP_TakeoverStarted</td>
<td>[NONE]</td>
</tr>
<tr>
<td>NDB_LE_GCP_TakeoverCompleted</td>
<td>GCP_TakeoverCompleted</td>
<td>[NONE]</td>
</tr>
<tr>
<td>NDB_LE_LCP_TakeoverStarted</td>
<td>LCP_TakeoverStarted</td>
<td>[NONE]</td>
</tr>
<tr>
<td>NDB_LE_TransReportCounters</td>
<td>TransReportCounters</td>
<td>unsigned trans_count unsigned commit_count unsigned read_count unsigned simple_read_count unsigned write_count unsigned attrinfo_count unsigned conc_op_count unsigned abort_count unsigned scan_count unsigned range_scan_count</td>
</tr>
<tr>
<td>NDB_LE_OperationReportCounters</td>
<td>OperationReportCounters</td>
<td>unsigned ops</td>
</tr>
<tr>
<td>NDB_LE_TableCreated</td>
<td>TableCreated</td>
<td></td>
</tr>
<tr>
<td>Ndb_logevent_type Value</td>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_JobStatistic</td>
<td>JobStatistic:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned mean_loop_count</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_SendDateStatistic</td>
<td>SendBytesStatistic:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned to_node</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned mean_sent_bytes</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_ReceiveBytesStatistic</td>
<td>ReceiveBytesStatistic:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned from_node</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned mean_received_bytes</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_MemoryUsage</td>
<td>MemoryUsage:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>int gth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned page_size_kb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned pages_used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned pages_total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned block</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_TransporterError</td>
<td>TransporterError:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned to_node</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned code</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_TransporterWarning</td>
<td>TransporterWarning:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned to_node</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned code</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_MissedHeartbeat</td>
<td>MissedHeartbeat:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned count</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_DeadDueToHeartbeat</td>
<td>DeadDueToHeartbeat:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_WarningEvent</td>
<td>WarningEvent:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[NOT YET IMPLEMENTED]</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_SendDate</td>
<td>SentHeartbeat:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_CreateLogBytes</td>
<td>CreateLogBytes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned node</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_InfoEvent</td>
<td>InfoEvent:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[NOT YET IMPLEMENTED]</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_EventBufferStatus</td>
<td>EventBufferStatus:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned usage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned alloc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned max</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned apply_gci_l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned apply_gci_h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned latest_gci_l</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned latest_gci_h</td>
<td></td>
</tr>
<tr>
<td>NDB_LE_EventBufferStatus2</td>
<td>EventBufferStatus2:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned usage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned alloc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unsigned max</td>
<td></td>
</tr>
</tbody>
</table>
### The ndb_mgm_node_state Structure

**Ndb_logevent_type Value**

<table>
<thead>
<tr>
<th>Structure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned latest_consumed_epoch_l</td>
<td></td>
</tr>
<tr>
<td>unsigned latest_consumed_epoch_h</td>
<td></td>
</tr>
<tr>
<td>unsigned latest_buffered_epoch_l</td>
<td></td>
</tr>
<tr>
<td>unsigned latest_buffered_epoch_h</td>
<td></td>
</tr>
<tr>
<td>unsigned ndb_reference</td>
<td></td>
</tr>
<tr>
<td>unsigned report_reason</td>
<td></td>
</tr>
</tbody>
</table>

The `report_reason` is one of `NO_REPORT`, `COMPLETELY_BUFFERING`, `PARTIALLY_DISCARDING`, `COMPLETELY_DISCARDING`, `PARTIALLY_BUFFERING`, `BUFFERED_EPOCHS_OVER_THRESHOLD`, `ENOUGH_FREE_EVENTBUFFER`, or `LOW_FREE_EVENTBUFFER`; see [Event Buffer Reporting in the Cluster Log](#) for descriptions of these values.

**NDB_LE_BackupStarted**

BackupStarted:

- unsigned starting_node
- unsigned backup_id

**NDB_LE_BackupFailedToStart**

BackupFailedToStart:

- unsigned starting_node
- unsigned error

**NDB_LE_BackupCompleted**

BackupCompleted:

- unsigned starting_node
- unsigned backup_id
- unsigned start_gci
- unsigned stop_gci
- unsigned n_records
- unsigned n_log_records
- unsigned n_bytes
- unsigned n_log_bytes

**NDB_LE_BackupAborted**

BackupAborted:

- unsigned starting_node
- unsigned backup_id
- unsigned error

**NDB_LE_SingleUser**

SingleUser:

- unsigned type
- unsigned node_id

**NDB_LE_StartReport**

StartReport:

- unsigned report_type
- unsigned remaining_time
- unsigned bitmask_size
- unsigned bitmask_data[1]

### 3.4.2 The ndb_mgm_node_state Structure

**Description.** Provides information on the status of a Cluster node.

**Definition.** This structure contains the following members:

- `int node_id`: The cluster node’s node ID.
- `enum ndb_mgm_node_type node_type`: The node type.

See Section 3.3.1, “The ndb_mgm_node_type Type”, for permitted values.
### The ndb_mgm_cluster_state Structure

- **enum ndb_mgm_node_status node_status**: The node's status.
  
  See Section 3.3.2, “The ndb_mgm_node_status Type”, for permitted values.

- **int start_phase**: The start phase.
  
  This is valid only if the `node_type` is `NDB_MGM_NODE_TYPE_NDB` and the `node_status` is `NDB_MGM_NODE_STATUS_STARTING`.

- **int dynamic_id**: The ID for heartbeats and master takeover.
  
  Valid only for data (ndbd) nodes.

- **int node_group**: The node group to which the node belongs.
  
  Valid only for data (ndbd) nodes.

- **int version**: Internal version number.

- **int connect_count**: The number of times this node has connected to or disconnected from the management server.

- **char connect_address[]**: The IP address of this node as seen by the other nodes in the cluster.

- **int mysql_version**: The MySQL version number, expressed as an integer (for example: 80022). Applies only to SQL nodes.

- **int is_single_user**: The node ID of the API or SQL node having exclusive access when the cluster is in single user mode. Does not otherwise apply. Added in NDB 8.0.17.

#### 3.4.3 The ndb_mgm_cluster_state Structure

**Description.** Provides information on the status of all Cluster nodes. This structure is returned by `ndb_mgm_get_status()`.

**Definition.** This structure has the following two members:

- **int no_of_nodes**: The number of elements in the `node_states` array.

- **struct ndb_mgm_node_state node_states[]**: An array containing the states of the nodes.
  
  Each element of this array is an `ndb_mgm_node_state` structure.

  See Section 3.2.5.1, “ndb_mgm_get_status()”.

#### 3.4.4 The ndb_mgm_reply Structure

**Description.** Contains response information, consisting of a response code and a corresponding message, from the management server.

**Definition.** This structure contains two members, as shown here:

- **int return_code**: For a successful operation, this value is 0; otherwise, it contains an error code.
  
  For error codes, see Section 3.3.3, “The ndb_mgm_error Type”.

- **char message[256]**: contains the text of the response or error message.

  See Section 3.2.2.1, “ndb_mgm_get_latest_error()”, and Section 3.2.2.2, “ndb_mgm_get_latest_error_msg()”.

#### 3.5 MGM API Errors

The following sections list the values of MGM errors by type. There are six types of MGM errors:
1. request errors
2. node ID allocation errors
3. service errors
4. backup errors
5. single user mode errors
6. general usage errors

There is only one general usage error.

### 3.5.1 Request Errors

These are errors generated by failures to connect to a management server.

**Table 3.8 Request errors generated by management server connection failures.**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_ILLEGAL_CONNECT_STRING</td>
<td>Invalid connection string</td>
</tr>
<tr>
<td>NDB_MGM_ILLEGAL_SERVER_HANDLE</td>
<td>Invalid management server handle</td>
</tr>
<tr>
<td>NDB_MGM_ILLEGAL_SERVER_REPLY</td>
<td>Invalid response from management server</td>
</tr>
<tr>
<td>NDB_MGM_ILLEGAL_NUMBER_OF_NODES</td>
<td>Invalid number of nodes</td>
</tr>
<tr>
<td>NDB_MGM_ILLEGAL_NODE_STATUS</td>
<td>Invalid node status</td>
</tr>
<tr>
<td>NDB_MGM_OUT_OF_MEMORY</td>
<td>Memory allocation error</td>
</tr>
<tr>
<td>NDB_MGM_SERVER_NOT_CONNECTED</td>
<td>Management server not connected</td>
</tr>
<tr>
<td>NDB_MGM_COULD_NOT_CONNECT_TO_SOCKET</td>
<td>Not able to connect to socket</td>
</tr>
</tbody>
</table>

### 3.5.2 Node ID Allocation Errors

These errors result from a failure to assign a node ID to a cluster node.

**Table 3.9 Node ID allocation errors resulting from failure to assign a node ID**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_ALLOCID_ERROR</td>
<td>Generic error; may be possible to retry and recover</td>
</tr>
<tr>
<td>NDB_MGM_ALLOCID_CONFIG_MISMATCH</td>
<td>Non-recoverable generic error</td>
</tr>
</tbody>
</table>

### 3.5.3 Service Errors

These errors result from the failure of a node or cluster to start, shut down, or restart.

**Table 3.10 Service errors resulting from failure of a node or cluster to start, shut down, or restart**

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_START_FAILED</td>
<td>Startup failure</td>
</tr>
<tr>
<td>NDB_MGM_STOP_FAILED</td>
<td>Shutdown failure</td>
</tr>
<tr>
<td>NDB_MGM_RESTART_FAILED</td>
<td>Restart failure</td>
</tr>
</tbody>
</table>

### 3.5.4 Backup Errors

These are errors which result from problems with initiating or aborting backups.
### 3.5.5 Single User Mode Errors

These errors result from failures to enter or exit single user mode.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_COULD_NOT_ENTER_SINGLE_USER_MODE</td>
<td>Unable to enter single-user mode</td>
</tr>
<tr>
<td>NDB_MGM_COULD_NOT_EXIT_SINGLE_USER_MODE</td>
<td>Unable to exit single-user mode</td>
</tr>
</tbody>
</table>

### 3.5.6 General Usage Errors

This is a general error type for errors which are otherwise not classifiable.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB_MGM_USAGE_ERROR</td>
<td>General usage error</td>
</tr>
</tbody>
</table>

### 3.6 MGM API Examples

This section contains MGM API coding examples.

#### 3.6.1 Basic MGM API Event Logging Example

This example shows the basics of handling event logging using the MGM API.

The source code for this program may be found in the NDB Cluster source tree, in the file `storage/ndb/ndbapi-examples/mgmapi_logevent/main.cpp`.

```c
#include <mysql.h>
#include <ndbapi/NdbApi.hpp>
#include <mgmapi.h>
#include <stdio.h>
#include <stdlib.h>

/*
 * export LD_LIBRARY_PATH=../../../../libmysql_r/.libs:../../src/.libs
 */
#define MGMERROR(h)ources

 stkerr, "code: %d msg: %s",
 ndb_mgm_get_latest_error(h),
 ndb_mgm_get_latest_error_msg(h));
 exit(-1);
}

#define LOGEVENTERROR(h)

 tckerr, "code: %d msg: %s",
 ndb_logevent_get_latest_error(h),
 ndb_logevent_get_latest_error_msg(h));
 exit(-1);
}

#define make_uint64(a,b) ((Uint64)(a)) + (((Uint64)(b)) << 32))

int main(int argc, char** argv)
```
Basic MGM API Event Logging Example

```c
NdbMgmHandle h;
NdbLogEventHandle le;
int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP,
 15, NDB_MGM_EVENT_CATEGORY_CONNECTION,
 15, NDB_MGM_EVENT_CATEGORY_NODE_RESTART,
 15, NDB_MGM_EVENT_CATEGORY_STARTUP,
 15, NDB_MGM_EVENT_CATEGORY_ERROR,
 0 };
struct ndb_logevent event;

if (argc < 2)
{
 printf("Arguments are <connect_string cluster> [iterations].\n");
 exit(-1);
}
const char *connectstring = argv[1];
int iterations = -1;
if (argc > 2)
 iterations = atoi(argv[2]);
ndb_init();

h= ndb_mgm_create_handle();
if (h == 0)
{
 printf("Unable to create handle\n");
 exit(-1);
}
if (ndb_mgm_set_connectstring(h, connectstring) == -1)
{
 printf("Unable to set connection string\n");
 exit(-1);
}
if (ndb_mgm_connect(h,0,0,0)) MGMERROR(h);

le= ndb_mgm_create_logevent_handle(h, filter);
if (le == 0) MGMERROR(h);

while (iterations-- != 0)
{
 int timeout= 1000;
 int r= ndb_logevent_get_next(le,&event,timeout);
 if (r == 0)
 printf("No event within %d milliseconds\n", timeout);
 else if (r < 0)
 LOGEVENTERROR(le)
 else
 {
 switch (event.type) {
 case NDB_LE_BackupStarted:
 printf("Node %d: BackupStarted\n", event.source_nodeid);
 printf(" Starting node ID: %d\n", event.BackupStarted.starting_node);
 printf(" Backup ID: %d\n", event.BackupStarted.backup_id);
 break;
 case NDB_LE_BackupStatus:
 printf("Node %d: BackupStatus\n", event.source_nodeid);
 printf(" Starting node ID: %d\n", event.BackupStarted.starting_node);
 printf(" Backup ID: %d\n", event.BackupStarted.backup_id);
 printf(" Data written: %llu bytes (%llu records)\n",
 make_uint64(event.BackupStatus.n_bytes_lo,
 event.BackupStatus.n_bytes_hi),
 make_uint64(event.BackupStatus.n_records_lo,
 event.BackupStatus.n_records_hi));
 printf(" Log written: %llu bytes (%llu records)\n",
 make_uint64(event.BackupStatus.n_log_bytes_lo,
 event.BackupStatus.n_log_bytes_hi),
 make_uint64(event.BackupStatus.n_log_records_lo,
 event.BackupStatus.n_log_records_hi));
 break;
 case NDB_LE_BackupCompleted:
 printf("Node %d: BackupCompleted\n", event.source_nodeid);
 printf(" Backup ID: %d\n", event.BackupStarted.backup_id);
```
printf("  Data written: %llu bytes (%llu records)\n", make_uint64(event.BackupCompleted.n_bytes, event.BackupCompleted.n_bytes_hi), make_uint64(event.BackupCompleted.n_records, event.BackupCompleted.n_records_hi));
printf("  Log written: %llu bytes (%llu records)\n", make_uint64(event.BackupCompleted.n_log_bytes, event.BackupCompleted.n_log_bytes_hi), make_uint64(event.BackupCompleted.n_log_records, event.BackupCompleted.n_log_records_hi));
break;
  case NDB_LE_BackupAborted:
    printf("Node %d: BackupAborted\n", event.source_nodeid);
    break;
  case NDB_LE_BackupFailedToStart:
    printf("Node %d: BackupFailedToStart\n", event.source_nodeid);
    break;
  case NDB_LE_NodeFailCompleted:
    printf("Node %d: NodeFailCompleted\n", event.source_nodeid);
    break;
  case NDB_LE_ArbitResult:
    printf("Node %d: ArbitResult\n", event.source_nodeid);
    printf(\" code %d, arbit_node %d\n\", event.ArbitResult.code & 0xffff, event.ArbitResult.arbit_node);
    break;
  case NDB_LE_DeadDueToHeartbeat:
    printf("Node %d: DeadDueToHeartbeat\n", event.source_nodeid);
    printf(" node %d\n", event.DeadDueToHeartbeat.node);
    break;
  case NDB_LE_Connected:
    printf("Node %d: Connected\n", event.source_nodeid);
    printf(" node %d\n", event.Connected.node);
    break;
  case NDB_LE_Disconnected:
    printf("Node %d: Disconnected\n", event.source_nodeid);
    printf(" node %d\n", event.Disconnected.node);
    break;
  case NDB_LE_NDBStartCompleted:
    printf("Node %d: StartCompleted\n", event.source_nodeid);
    printf(" version %d.%d.%d\n", event.NDBStartCompleted.version >> 16 & 0xff, event.NDBStartCompleted.version >> 8 & 0xff, event.NDBStartCompleted.version >> 0 & 0xff);
    break;
  case NDB_LE_ArbitState:
    printf("Node %d: ArbitState\n", event.source_nodeid);
    printf(\" code %d, arbit_node %d\n\", event.ArbitState.code & 0xffff, event.ArbitState.arbit_node);
    break;
    default:
      break;
  }
}
ndb_mgm_destroy_logevent_handle(&le);
ndb_mgm_destroy_handle(&h);
ndb_end(0);
return 0;
}

3.6.2 MGM API Event Handling with Multiple Clusters

This example shown in this section illustrates the handling of log events using the MGM API on multiple clusters in a single application.
The source code for this program may be found in the NDB Cluster source tree, in the file `storage/ndb/ndbapi-examples/mgmapi_logevent2/main.cpp`.

Note
This file was previously named `mgmapi_logevent2.cpp`.

```c
#include <mysql.h>
#include <ndbapi/NdbApi.hpp>
#include <mgmapi.h>
#include <stdio.h>
#include <stdlib.h>

/*
 * export LD_LIBRARY_PATH=../../libmysql_r/.libs:../../ndb/src/.libs
 */

#define MGMERROR(h) \
{ \
 fprintf(stderr, "code: %d msg: %s\n", \
 ndb_mgm_get_latest_error(h), \
 ndb_mgm_get_latest_error_msg(h)); \
 exit(-1); \
}

#define LOGEVENTERROR(h) \
{ \
 fprintf(stderr, "code: %d msg: %s\n", \
 ndb_logevent_get_latest_error(h), \
 ndb_logevent_get_latest_error_msg(h)); \
 exit(-1); \
}

int main(int argc, char** argv)
{
 NdbMgmHandle h1,h2;
 NdbLogEventHandle le1,le2;
 int filter[] = { 15, NDB_MGM_EVENT_CATEGORY_BACKUP, \n 15, NDB_MGM_EVENT_CATEGORY_CONNECTION, \n 15, NDB_MGM_EVENT_CATEGORY_NODE_RESTART, \n 15, NDB_MGM_EVENT_CATEGORY_STARTUP, \n 15, NDB_MGM_EVENT_CATEGORY_ERROR, \n 0 }; \n struct ndb_logevent event1, event2;

 if (argc < 3)
 {
 printf("Arguments are <connect_string cluster 1>, <connect_string cluster 2> \[<iterations>].\n");
 exit(-1);
 }
 const char *connectstring1 = argv[1];
 const char *connectstring2 = argv[2];
 int iterations = -1;
 if (argc > 3)
 iterations = atoi(argv[3]);
 ndb_init();

 h1= ndb_mgm_create_handle();
 h2= ndb_mgm_create_handle();
 if (h1 == 0 || h2 == 0)
 {
 printf("Unable to create handle\n");
 exit(-1);
 }
 if (ndb_mgm_set_connectstring(h1, connectstring1) == -1 || \
 ndb_mgm_set_connectstring(h2, connectstring2))
 {
 printf("Unable to set connection string\n");
 exit(-1);
 }
 if (argc >= 4)
 {
 printf("Arguments are <connect_string cluster 1>, <connect_string cluster 2> \[<iterations>].\n"");
 exit(-1);
 }
 return 0;
}
```

570
if (ndb_mgm_connect(h1,0,0,0)) MGMERROR(h1);
if (ndb_mgm_connect(h2,0,0,0)) MGMERROR(h2);

if ((le1= ndb_mgm_create_logevent_handle(h1, filter)) == 0) MGMERROR(h1);
if ((le2= ndb_mgm_create_logevent_handle(h1, filter)) == 0) MGMERROR(h2);

while (iterations-- != 0)
{
    int timeout= 1000;
    int r1= ndb_logevent_get_next(le1,&event1,timeout);
    if (r1 == 0)
        printf("No event within %d milliseconds\n", timeout);
    else if (r1 < 0)
        LOGEVENTERROR(le1)
    else
    {
        switch (event1.type) {
        case NDB_LE_BackupStarted:
            printf("Node %d: BackupStarted\n", event1.source_nodeid);
            printf(" Starting node ID: %d\n", event1.BackupStarted.starting_node);
            printf(" Backup ID: %d\n", event1.BackupStarted.backup_id);
            break;
        case NDB_LE_BackupCompleted:
            printf("Node %d: BackupCompleted\n", event1.source_nodeid);
            printf(" Backup ID: %d\n", event1.BackupStarted.backup_id);
            break;
        case NDB_LE_BackupAborted:
            printf("Node %d: BackupAborted\n", event1.source_nodeid);
            break;
        case NDB_LE_BackupFailedToStart:
            printf("Node %d: BackupFailedToStart\n", event1.source_nodeid);
            break;
        case NDB_LE_NodeFailCompleted:
            printf("Node %d: NodeFailCompleted\n", event1.source_nodeid);
            break;
        case NDB_LE_ArbitResult:
            printf("Node %d: ArbitResult\n", event1.source_nodeid);
            printf(" code %d, arbit_node %d\n",
                    event1.ArbitResult.code & 0xffff,
                    event1.ArbitResult.arbit_node);
            break;
        case NDB_LE_DeadDueToHeartbeat:
            printf("Node %d: DeadDueToHeartbeat\n", event1.source_nodeid);
            printf(" node %d\n", event1.DeadDueToHeartbeat.node);
            break;
        case NDB_LE_Connected:
            printf("Node %d: Connected\n", event1.source_nodeid);
            printf(" node %d\n", event1.Connected.node);
            break;
        case NDB_LE_Disconnected:
            printf("Node %d: Disconnected\n", event1.source_nodeid);
            printf(" node %d\n", event1.Disconnected.node);
            break;
        case NDB_LE_NDBStartCompleted:
            printf("Node %d: StartCompleted\n", event1.source_nodeid);
            printf(" version %d.%d.%d\n",
                    event1.NDBStartCompleted.version >> 16 & 0xff,
                    event1.NDBStartCompleted.version >> 8 & 0xff,
                    event1.NDBStartCompleted.version >> 0 & 0xff);
            break;
        case NDB_LE_ArbitState:
            printf("Node %d: ArbitState\n", event1.source_nodeid);
            printf(" code %d, arbit_node %d\n",
                    event1.ArbitState.code & 0xffff,
                    event1.ArbitState.arbit_node);
            break;
        default:
            break;
        }
int r2 = ndb_logevent_get_next(le1, &event2, timeout);
if (r2 == 0)
    printf("No event within %d milliseconds\n", timeout);
else if (r2 < 0)
    LOGEVENTERROR(le2)
else
    switch (event2.type) {
    case NDB_LE_BackupStarted:
        printf("Node %d: BackupStarted\n", event2.source_nodeid);
        printf(" Starting node ID: %d\n", event2.BackupStarted.starting_node);
        printf(" Backup ID: %d\n", event2.BackupStarted.backup_id);
        break;
    case NDB_LE_BackupCompleted:
        printf("Node %d: BackupCompleted\n", event2.source_nodeid);
        printf(" Backup ID: %d\n", event2.BackupCompleted.backup_id);
        break;
    case NDB_LE_BackupAborted:
        printf("Node %d: BackupAborted\n", event2.source_nodeid);
        break;
    case NDB_LE_BackupFailedToStart:
        printf("Node %d: BackupFailedToStart\n", event2.source_nodeid);
        break;
    case NDB_LE_NodeFailCompleted:
        printf("Node %d: NodeFailCompleted\n", event2.source_nodeid);
        break;
    case NDB_LE_ArbitResult:
        printf("Node %d: ArbitResult\n", event2.source_nodeid);
        printf(" code %d, arbit_node %d\n",
                event2.ArbitResult.code & 0xffff,
                event2.ArbitResult.arbit_node);
        break;
    case NDB_LE_DeadDueToHeartbeat:
        printf("Node %d: DeadDueToHeartbeat\n", event2.source_nodeid);
        printf(" node %d\n", event2.DeadDueToHeartbeat.node);
        break;
    case NDB_LE_Connected:
        printf("Node %d: Connected\n", event2.source_nodeid);
        printf(" node %d\n", event2.Connected.node);
        break;
    case NDB_LE_Disconnected:
        printf("Node %d: Disconnected\n", event2.source_nodeid);
        printf(" node %d\n", event2.Disconnected.node);
        break;
    case NDB_LE_NDBStartCompleted:
        printf("Node %d: StartCompleted\n", event2.source_nodeid);
        printf(" version %d.%d.%d\n",
                event2.NDBStartCompleted.version >> 16 & 0xff,
                event2.NDBStartCompleted.version >> 8 & 0xff,
                event2.NDBStartCompleted.version >> 0 & 0xff);
        break;
    case NDB_LE_ArbitState:
        printf("Node %d: ArbitState\n", event2.source_nodeid);
        printf(" code %d, arbit_node %d\n",
                event2.ArbitState.code & 0xffff,
                event2.ArbitState.arbit_node);
        break;
    default:
        break;
    }
}

ndb_mgm_destroy_logevent_handle(sle1);
ndb_mgm_destroy_logevent_handle(sle2);
ndb_mgm_destroy_handle(sh1);
ndb_mgm_destroy_handle(sh2);
ndb_end(0);
return 0;
}
Chapter 4 MySQL NDB Cluster Connector for Java

Table of Contents

4.1 MySQL NDB Cluster Connector for Java: Overview ...................................................... 575
  4.1.1 MySQL NDB Cluster Connector for Java Architecture ........................................ 575
  4.1.2 Java and NDB Cluster .......................................................... 575
  4.1.3 The ClusterJ API and Data Object Model .......................................................... 577
4.2 Using MySQL NDB Cluster Connector for Java ........................................................ 578
  4.2.1 Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java ........ 578
  4.2.2 Using ClusterJ .................................................................................. 581
  4.2.3 Using Connector/J with NDB Cluster ............................................................... 589
4.3 ClusterJ API Reference ......................................................................................... 589
  4.3.1 com.mysql.clusterj .............................................................................. 589
  4.3.2 com.mysql.clusterj.annotation .......................................................... 635
  4.3.3 com.mysql.clusterj.query ....................................................................... 642
  4.3.4 Constant field values .............................................................................. 648
4.4 MySQL NDB Cluster Connector for Java: Limitations and Known Issues .................... 649

This chapter discusses using NDB Cluster with MySQL NDB Cluster Connector for Java, also known as ClusterJ.

ClusterJ is a high level database API that is similar in style and concept to object-relational mapping persistence frameworks such as Hibernate and JPA. Because ClusterJ does not use the MySQL Server to access data in NDB Cluster, it can perform some operations much more quickly than can be done using JDBC. ClusterJ supports primary key and unique key operations and single-table queries; it does not support multi-table operations, including joins.

4.1 MySQL NDB Cluster Connector for Java: Overview

This section provides a conceptual and architectural overview of the APIs available using the MySQL NDB Cluster Connector for Java.

4.1.1 MySQL NDB Cluster Connector for Java Architecture

MySQL NDB Cluster Connector for Java, also known as ClusterJ, is a Java API for writing applications against NDB Cluster. It is one among different access paths and styles of access to NDB Cluster data. Section 4.1.2, “Java and NDB Cluster”, describes each of those APIs in more detail.

MySQL NDB Cluster Connector for Java is included with all NDB Cluster source and binary releases. Building MySQL NDB Cluster Connector for Java from source can be done as part of building NDB Cluster; however, it can also be built with Maven.

4.1.2 Java and NDB Cluster

A NDB Cluster is defined as one or more MySQL Servers providing access to an NDBCLUSTER storage engine—that is, to a set of NDB Cluster data nodes (ndbd processes). There are three main access paths from Java to NDBCLUSTER, listed here:

- **JDBC** and **mysqld.** JDBC works by sending SQL statements to the MySQL Server and returning result sets. When using JDBC, you must write the SQL, manage the connection, and copy any data from the result set that you want to use in your program as objects. The JDBC implementation most often used with the MySQL Server is MySQL Connector/J.
Java Persistence API (JPA) and JDBC. JPA uses JDBC to connect to the MySQL Server. Unlike JDBC, JPA provides an object view of the data in the database.

ClusterJ. ClusterJ uses a JNI bridge to the NDB API for direct access to NDB. It employs a style of data access that is based on a domain object model, similar in many ways to that employed by JPA. ClusterJ does not depend on the MySQL Server for data access.

These paths are shown in the following API stack diagram:

Figure 4.1 Java Access Paths To NDB

JDBC and mysqld. Connector/J provides standard access through the MySQL JDBC driver. Using Connector/J, JDBC applications can be written to work with a MySQL server acting as an NDB Cluster SQL node in much the same way that other Connector/J applications work with any other MySQL Server instance.

For more information, see Section 4.2.3, “Using Connector/J with NDB Cluster”.

ClusterJ. ClusterJ is a native Java Connector for NDB (or NDBCLUSTER), the storage engine for NDB Cluster, in the style of Hibernate, JPA, and JDO. Like other persistence frameworks, ClusterJ uses the Data Mapper pattern, in which data is represented as domain objects, separate from business logic, mapping Java classes to database tables stored in the NDBCLUSTER storage engine.

Note

The NDBCLUSTER storage engine is often referred to (in MySQL documentation and elsewhere) simply as NDB. The terms NDB and NDBCLUSTER are synonymous, and you can use either ENGINE=NDB or ENGINE=NDBCLUSTER in a CREATE TABLE statement to create a clustered table.

ClusterJ does not need to connect to a mysqld process, having direct access to NDBCLUSTER using a JNI bridge that is included in the dynamic library libnbdclient. However, unlike JDBC, ClusterJ does not support table creation and other data definition operations; these must be performed by some other means, such as JDBC or the mysql client. Also, ClusterJ is limited to queries on single tables, and does not support relations or inheritance; you should use another kind of access paths if you need support for those features in your applications.
4.1.3 The ClusterJ API and Data Object Model

This section discusses the ClusterJ API and the object model used to represent the data handled by the application.

**Application Programming Interface.** The ClusterJ API depends on 4 main interfaces: `Session`, `SessionFactory`, `Transaction`, and `QueryBuilder`.

**Session interface.** All access to NDB Cluster data is done in the context of a session. The `Session` interface represents a user's or application's individual connection to an NDB Cluster. It contains methods for the following operations:

- Finding persistent instances by primary key
- Creating, updating, and deleting persistent instances
- Getting a query builder (see `com.mysql.clusterj.query.QueryBuilder`)
- Getting the current transaction (see `com.mysql.clusterj.Transaction`).

**SessionFactory interface.** Sessions are obtained from a `SessionFactory`, of which there is typically a single instance for each NDB Cluster that you want to access from the Java VM. `SessionFactory` stores configuration information about the cluster, such as the hostname and port number of the NDB Cluster management server. It also stores parameters regarding how to connect to the cluster, including connection delays and timeouts. For more information about SessionFactory and its use in a ClusterJ application, see Getting the SessionFactory and getting a Session.

**Transaction interface.** Transactions are not managed by the `Session` interface; like other modern application frameworks, ClusterJ separates transaction management from other persistence methods. Transaction demarcation might be done automatically by a container or in a web server servlet filter. Removing transaction completion methods from `Session` facilitates this separation of concerns.

The `Transaction` interface supports the standard begin, commit, and rollback behaviors required by a transactional database. In addition, it enables the user to mark a transaction as being rollback-only, which makes it possible for a component that is not responsible for completing a transaction to indicate that—due to an application or database error—the transaction must not be permitted to complete normally.

**QueryBuilder interface.** The `QueryBuilder` interface makes it possible to construct criteria queries dynamically, using domain object model properties as query modeling elements. Comparisons between parameters and database column values can be specified, including equal, greater and less than, between, and in operations. These comparisons can be combined using methods corresponding to the Boolean operators AND, OR, and NOT. Comparison of values to `NULL` is also supported.

**Data model.** ClusterJ provides access to data in NDB Cluster using domain objects, similar in many ways to the way that JPA models data.

In ClusterJ, the domain object mapping has the following characteristics:

- All tables map to persistent interfaces. For every NDB table in the cluster, ClusterJ uses one or more interfaces. In many cases, a single interface is used; but for cases where different columns are needed by different parts of the application, multiple interfaces can be mapped to the same table.

However, the classes themselves are not persistent.

- Users map a subset of columns to persistent properties in interfaces. Thus, all properties map to columns; however, not all columns necessarily map to properties.

All ClusterJ property names default to column names. The interface provides getter and setter methods for each property, with predictable corresponding method names.
• Annotations on interfaces define mappings.

The user view of the application environment and domain objects is illustrated in the following diagram, which shows the logical relationships among the modeling elements of the ClusterJ interfaces:

**Figure 4.2 ClusterJ User View Of Application And Environment**

The `SessionFactory` is configured by a properties object that might have been loaded from a file or constructed dynamically by the application using some other means (see Section 4.2.2.1, “Executing ClusterJ Applications and Sessions”).

The application obtains `Session` instances from the `SessionFactory`, with at most one thread working with a `Session` at a time. A thread can manage multiple `Session` instances if there is some application requirement for multiple connections to the database.

Each session has its own collection of domain objects, each of which represents the data from one row in the database. The domain objects can represent data in any of the following states:

• New; not yet stored in the database
• Retrieved from the database; available to the application
• Updated; to be stored back in the database
• To be deleted from the database

### 4.2 Using MySQL NDB Cluster Connector for Java

This section provides basic information about building and running Java applications using MySQL NDB Cluster Connector for Java (ClusterJ).

#### 4.2.1 Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java

This section discusses how to obtain ClusterJ sources and binaries, and how to compile, install, and get started with ClusterJ.

**Obtaining and Installing MySQL NDB Cluster Connector for Java.** You can obtain the most recent NDB Cluster release, which includes ClusterJ, from downloads.mysql.com. The installation instructions given in NDB Cluster Installation also install ClusterJ.
Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java

Building and installing MySQL NDB Cluster Connector for Java from source.

You can build and install ClusterJ as part of building and installing NDB Cluster, which always requires you to configure the build using the CMake option `WITH_NDBCLUSTER_STORAGE_ENGINE` (or its alias `WITH_NDBCLUSTER`).

A typical CMake command for configuring a build for NDB Cluster that supports ClusterJ might look like this:

```
cmake .. -DWITH_BOOST=/usr/local/boost_1_59_0 -DWITH_NDBCLUSTER=ON
```

The `WITH_NDB_JAVA` option is enabled by default, which means ClusterJ is be built together with NDB Cluster by the above command. However, if CMake cannot find the location of Java on your system, the configuration process is going to fail; use the `WITH_CLASSPATH` option to provide the Java classpath if needed. Also, because ClusterJ uses the `ucs2` character set for internal storage and ClusterJ cannot be built without it, if you ever use the `WITH_EXTRA_CHARSET` CMake option and change its value from the default setting of `all`, you should make sure that `ucs2` is specified in the character set list passed to the option. For information about other CMake options that can be used, see `option_cmake_with_ndbcluster`.

After configuring the build with CMake, run `make` and `make install` as you normally would to compile and install the NDB Cluster software.

MySQL NDB Cluster Connector for Java jar files.

Following the installation, these ClusterJ jar files can be found in the folder `share/java` under the MySQL installation directory (which is `/usr/local/mysql` by default for Linux platforms):

- `clusterj-api-version.jar`: This is the compile-time jar file, required for compiling ClusterJ application code.
- `clusterj-version.jar`: This is the runtime library required for executing ClusterJ applications.
- `clusterj-test-version.jar`: This is the ClusterJ test suite, required for testing your ClusterJ installation.

Building ClusterJ with Maven

The source files for ClusterJ are configured as Maven projects, allowing easy compilation and installation using Maven. Assuming you have obtained the NDB Cluster source and already compiled and installed NDB Cluster and ClusterJ following the instructions given above, these are the steps to take:

1. Add the file path for the folder that contains the NDB client library (`libndbclient.so`) as a property named `ndbclient.lib` to your local Maven `settings.xml` file (found in the local Maven repository, which is usually `/home/username/.m2` for Linux platforms). The client library is to be found under the `lib` folder in the NDB Cluster's installation folder. If `settings.xml` does not exist in your local Maven repository, create one. This is how a simple `settings.xml` file containing the `ndbclient.lib` property looks like:

```xml
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <profile>
 <id>jni-library</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <ndbclient.lib>/NDB_Cluster_installation_directory/lib/ndbclient.lib</ndbclient.lib>
 </properties>
 </profile>
 </profiles>
</settings>
```
Getting, Installing, and Setting Up MySQL NDB Cluster Connector for Java

2. Go to the build directory you created when compiling NDB Cluster (which is `bld` in the sample steps in Build the Distribution), and then to the `storage/ndb/clusterj` folder under it. Run the `mvn_install_ndbjtie.sh` script in the folder:

```
./mvn_install_ndbjtie.sh
```

It installs `ndbjtie.jar`, which provides the JNI layer for ClusterJ and is required for building ClusterJ.

3. Install ClusterJ with Maven by running `mvn install` in the `storage/ndb/clusterj` directory:

```
mvn install
```

This causes ClusterJ to be built, with the resulting `.jar` files installed in the local Maven repository.

**Note**

You can skip the tests that takes place towards the end of the installation process by adding the option `skipTests` to the command:

```
mvn install -DskipTests
```

This prevents your installation from failing because you have not yet set up the testing environment.

**Building ClusterJ with Maven in IDEs**

Because the source files for ClusterJ are configured as Maven projects, you can easily import them into your favorite Maven-enabled IDEs, customize them, and rebuild them as needed by following these steps:

1. Make sure that your IDE’s support for Maven is enabled. You might need to install a Maven plugin for the purpose.

2. Follow step 1 and 2 in Building ClusterJ with Maven, which make the ClusterJ source ready to be used with Maven.

3. Import ClusterJ as a Maven project. This is how to do it in some popular IDEs:

   **In NetBeans:**
   - In the main menu, choose File > Open Project. The Open Project dialogue box appears
   - In the Open Project dialogue box, browse to the `storage/ndb` folder under the build directory (see step 2 in Building ClusterJ with Maven); select the `clusterj` folder, which has the Maven icon ( ) beside it, and click Open Project. The ClusterJ Aggregate project is imported, with ClusterJ API, ClusterJ Core, ClusterJ Test Suite, ClusterJ Tie, and ClusterJ Unit Test Framework imported as subprojects under Modules.
   - Work with the ClusterJ projects like you would with any other Maven projects in NetBeans. Any changes to the source code go into the source tree from which you compiled NDB Cluster to create the build directory.

   **In Eclipse:**
   - In the main menu, choose File > Import. The Import dialogue box appears
   - In the Import dialogue box, select Maven > Existing Maven Projects for import wizard and click Next. The Import Maven Projects dialogue box appears.
• In the **Import Maven Projects** dialogue box, browse to the `storage/ndb` folder under the build directory (see step 2 in **Building ClusterJ with Maven**); select the `clusterj` folder and click **Select Folder**. The `clusterj-aggregate` project, as well as its subprojects `clusterj-api`, `clusterj-core`, `clusterj-test`, `clusterj-tie` and `clusterj-unit`, appear in the **Maven Projects** dialogue box. Click **Select All** and then **Finish**. All the ClusterJ projects are imported.

• Work with the ClusterJ projects like you would with any other Maven projects in Eclipse.

### 4.2.2 Using ClusterJ

This section provides basic information for writing, compiling, and executing applications that use ClusterJ. For the API documentation for ClusterJ, see Section 4.3, “ClusterJ API Reference”.

**Requirements.** ClusterJ requires Java 1.7 or 1.8. **NDB Cluster must be compiled with ClusterJ support**; NDB Cluster binaries supplied by Oracle include ClusterJ support. If you are building NDB Cluster from source, see **Building and installing MySQL NDB Cluster Connector for Java from source**, for information on configuring the build to enable ClusterJ support.

To compile applications that use ClusterJ, you either need to have the `clusterj-api` jar file in your classpath, or use a Maven dependency manager to install and configure the ClusterJ library in your project.

To run applications that use ClusterJ, you need the `clusterj` runtime jar file; in addition, `libndbclient` must be in the directory specified by `java.library.path`. Section 4.2.2.1, “Executing ClusterJ Applications and Sessions”, provides more information about these requirements.

#### 4.2.2.1 Executing ClusterJ Applications and Sessions

In this section, we discuss how to start ClusterJ applications and the ClusterJ application environment.

** Executing a ClusterJ application.** All of the ClusterJ jar files are normally found in `share/mysql/java/` in the MySQL installation directory. When executing a ClusterJ application, you must set the classpath to point to these files. In addition, you must set `java.library.path` variable to point to the directory containing the Cluster `ndbclient` library, normally found in `lib/mysql` (also in the MySQL installation directory). Thus you might execute a ClusterJ program `MyClusterJApp` in a manner similar to what is shown here:

```
shell> java -classpath /usr/local/mysql/share/mysql/java/clusterj.jar \
 -Djava.library.path=/usr/local/mysql/lib MyClusterJApp
```

**Note**
The precise locations of the ClusterJ jar files and of `libndbclient` depend on how the NDB Cluster software was installed. See Installation Layouts, for more information.

ClusterJ encourages you to use different jar files at compile time and runtime. This is to remove the ability of applications to access implementation artifacts accidentally. ClusterJ is intended to be independent of the NDB Cluster software version, whereas the `ndbclient` layer is version-specific. This makes it possible to maintain a stable API, so that applications written against it using a given NDB Cluster version continue to run following an upgrade of the cluster to a new version.

**Getting the SessionFactory and getting a Session.** `SessionFactory` is the source of all ClusterJ sessions that use a given NDB Cluster. Usually, there is only a single `SessionFactory` per NDB Cluster, per Java Virtual Machine.

`SessionFactory` can be configured by setting one or more properties. The preferred way to do this is by putting these in a properties file, like this:
Using ClusterJ

```java
com.mysql.clusterj.connectstring=localhost:1186
com.mysql.clusterj.database=mydb
```

The name of the properties file is arbitrary; however, by convention, such files are named with a `.properties` extension. For ClusterJ applications, it is customary to name the file `clusterj.properties`.

After editing and saving the file, you can load its contents into an instance of `Properties`, as shown here:

```java
File propsFile = new File("clusterj.properties");
InputStream inStream = new FileInputStream(propsFile);
Properties props = new Properties();
props.load(inStream);
```

It is also possible to set these properties directly, without the use of a properties file:

```java
Properties props = new Properties();
props.put("com.mysql.clusterj.connectstring", "localhost:1186");
props.put("com.mysql.clusterj.database", "mydb");
```

Once the properties have been set and loaded (using either of the techniques just shown), you can obtain a `SessionFactory`, and then from that a `Session` instance. For this, you use the `SessionFactory`'s `getSession()` method, as shown here:

```java
SessionFactory factory = ClusterJHelper.getSessionFactory(props);
Session session = factory.getSession();
```

It is usually sufficient to set and load the `com.mysql.clusterj.connectstring` and `com.mysql.clusterj.database` properties (and these properties, along with `com.mysql.clusterj.max.transactions`, cannot be changed after starting the `SessionFactory`). For a complete list of available `SessionFactory` properties and usual values, see `com.mysql.clusterj.Constants`.

**Note**

`Session` instances must not be shared among threads. Each thread in your application should use its own instance of `Session`.

For `com.mysql.clusterj.connectstring`, we use the default NDB Cluster connection string `localhost:1186` (see [NDB Cluster Connection Strings](#), for more information). For the value of `com.mysql.clusterj.database`, we use `mydb` in this example, but this value can be the name of any database containing NDB tables. For a listing of all `SessionFactory` properties that can be set in this manner, see `com.mysql.clusterj.Constants`.

**Error Handling and Reconnection.** Errors that occur while using ClusterJ should be handled by the application with a common error handler. The handler needs to be able to detect and distinguish among three types of errors, and handle them accordingly:

- **Normal errors**: These are errors at the application level (for example, those to deal with duplicate key, foreign key constraint, or timeout). They should be handled in application-specific ways, and, if resolved, the application can continue with the transaction.

- **Unexpected errors**: These are failures to work with the cluster that cannot be accounted for by the conditions of the application, but are nonfatal. The application should close the ClusterJ session and reopen a new one.

- **Connectivity errors**: These are errors like error 4009 and 4010, which indicate a network outage. There are two possible scenarios, depending on whether the automatic reconnection feature...
Using ClusterJ

(available for NDB Cluster 7.5.7, 7.6.3, and for later releases in the 7.5 and 7.6 series) has been enabled:

• **Automatic reconnection is enabled**: The feature is enabled when the connection property `com.mysql.clusterj.connection.reconnect.timeout` has been set to a positive number, which specifies a reconnection timeout in seconds.

When ClusterJ detects a disconnect with the NDB Cluster, it changes the State of the `SessionFactory` from OPEN to RECONNECTING; the `SessionFactory` then waits for the application to close all the sessions, and then attempts to reconnect the application to the NDB Cluster by closing all connections in the connection pool and recreating the pool using the original pool properties. After reestablishing all the connections, the State of the `SessionFactory` becomes OPEN again, and the application can now obtain sessions.

The `SessionFactory.getState()` method returns the State of the `SessionFactory`, which is one of OPEN, RECONNECTING, or CLOSED. Trying to obtain a session when the State is not OPEN results in a `ClusterJUserException`, with the message Session factory is not open.

If the application does not close all sessions by the end of the timeout period specified with `com.mysql.clusterj.connection.reconnect.timeout`, the `SessionFactory` closes any open sessions forcibly (which might result in loss of resources), and then attempts connection.

• **Automatic reconnection is not enabled**: This is when the connection property `com.mysql.clusterj.connection.reconnect.timeout` has not been set, or it has been set to zero (this is also the case for older NDB Cluster releases that do not support the automatic reconnection feature).

ClusterJ does not attempt to reconnect to the NDB Cluster once the connection is lost. The application should close all sessions and then restart the `SessionFactory`. The restarting of the `SessionFactory` can be an automatic application function or a manual intervention. In either case, the code should wait until all sessions have been closed (that is, the public method `getConnectionPoolSessionCounts()` in the `SessionFactory` interface returns zeros for all pooled connections). Then the `SessionFactory` can be closed and reopened, and the application can obtain sessions again.

Instead of enabling the feature and waiting for ClusterJ to detect a disconnection and attempt a reconnection, you can also have the application itself initiate the reconnection process upon the detection of a connection error by calling the `SessionFactory.reconnect(int timeout)` method: that triggers the reconnection process described above, but uses the timeout argument of the `reconnect()` method as the time limit for having all open sessions closed.

**Logging.** ClusterJ uses Java logging. Here are some default settings for the ClusterJ logging, which are specified in the `logging.properties` file and can be modified there:

• Logging level is set at `INFO` for all classes.

• Using `java.util.logging.FileHandler` as the handler.

• Default level for `java.util.logging.FileHandler` is set at `FINEST`

• Using `java.util.logging.SimpleFormatter` as the formatter for the handler.

• Log files are put inside the `target` directory under the current working directory, and file names are, generally, in the pattern of `logNum`, where `Num` is a unique number for resolving file name conflicts (see the Java documentation for `java.util.logging.FileHandler` for details).

The `logging.properties` file is located by default in the current working directory, but the location can be changed by specifying the system property `java.util.logging.config.file` when you start Java.
4.2.2 Creating tables

ClusterJ’s main purpose is to read, write, and update row data in an existing database, rather than to perform DDL. You can create the employee table that matches this interface, using the following CREATE TABLE statement, in a MySQL client application such as mysql.

```sql
CREATE TABLE employee (
 id INT NOT NULL PRIMARY KEY,
 first VARCHAR(64) DEFAULT NULL,
 last VARCHAR(64) DEFAULT NULL,
 municipality VARCHAR(64) DEFAULT NULL,
 started DATE DEFAULT NULL,
 ended DATE DEFAULT NULL,
 department INT NOT NULL DEFAULT 1,
 UNIQUE KEY idx_u_hash (last,first USING HASH),
 KEY idx_municipality (municipality)
) ENGINE=NDBCLUSTER;
```

Now that the table has been created in NDB Cluster, you can map a ClusterJ interface to it using annotations. We show you how to do this in the next section.

4.2.3 Annotations

In ClusterJ (as in JPA), annotations are used to describe how the interface is mapped to tables in a database. An annotated interface looks like this:

```java
@PersistenceCapable(table="employee")
@Index(name="idx_uhash")
public interface Employee {
 @PrimaryKey
 int getId();
 void setId(int id);
 String getFirst();
 void setFirst(String first);
 String getLast();
 void setLast(String last);
 @Column(name="municipality")
 @Index(name="idx_municipality")
 String getCity();
 void setCity(String city);
 Date getStarted();
 void setStarted(Date date);
 Date getEnded();
 void setEnded(Date date);
 Integer getDepartment();
 void setDepartment(Integer department);
}
```

This interface maps seven columns: id, first, last, municipality, started, ended, and department. The annotation @PersistenceCapable(table="employee") is used to let ClusterJ know which database table to map the Employee to (in this case, the employee table). The @Column annotation is used because the city property name implied by the getCity() and setCity() methods is different from the mapped column name municipality. The annotations @PrimaryKey and @Index inform ClusterJ about indexes in the database table.

The implementation of this interface is created dynamically by ClusterJ at runtime. When the newInstance() method is called, ClusterJ creates an implementation class for the Employee interface; this class stores the values in an internal object array.

ClusterJ does not require an annotation for every attribute. ClusterJ automatically detects the primary keys of tables; while there is an annotation in ClusterJ to permit the user to describe the primary keys
of a table (see previous example), when specified, it is currently ignored. (The intended use of this
annotation is for the generation of schemas from the domain object model interfaces, but this is not yet
supported.)

The annotations themselves must be imported from the ClusterJ API. They can be found in package
com.mysql.clusterj.annotation, and can be imported like this:

```java
import com.mysql.clusterj.annotation.Column;
import com.mysql.clusterj.annotation.Index;
import com.mysql.clusterj.annotation.PersistenceCapable;
import com.mysql.clusterj.annotation.PrimaryKey;
```

### 4.2.2.4 ClusterJ Basic Operations

In this section, we describe how to perform operations basic to ClusterJ applications, including the
following:

- Creating new instances, setting their properties, and saving them to the database
- Performing primary key lookups (reads)
- Updating existing rows and saving the changes to the database
- Deleting rows from the database
- Constructing and executing queries to fetch a set of rows meeting certain criteria from the database

#### Creating new rows.

To insert a new row into the table, first create a new instance of `Employee`. This can be accomplished by calling the `Session` method `newInstance()`, as shown here:

```java
Employee newEmployee = session.newInstance(Employee.class);
```

Set the `Employee` instance properties corresponding with the desired `employee` table columns. For
example, the following sets the `id`, `firstName`, `lastName`, and `started` properties.

```java
emp.setId(988);
newEmployee.setFirstName("John");
newEmployee.setLastName("Jones");
newEmployee.setStarted(new Date());
```

Once you are satisfied with the changes, you can persist the `Employee` instance, causing a new row
containing the desired values to be inserted into the `employee` table, like this:

```java
session.persist(newEmployee);
```

If autocommit is on, and a row with the same `id` as this instance of `Employee` already exists in
the database, the `persist()` method fails. If autocommit is off and a row with the same `id` as
this `Employee` instance already exists in the database, the `persist()` method succeeds but a
subsequent `commit()` fails.

If you want the data to be saved even though the row already exists, use the `savePersistent()`
method instead of the `persist()` method. The `savePersistent()` method updates an existing
instance or creates a new instance as needed, without throwing an exception.

Values that you have not specified are stored with their Java default values (`0` for integral types, `0.0`
for numeric types, and `null` for reference types).

#### Primary key lookups.

You can find an existing row in an `NDB` table using the `Session's find()`
method, like this:

```java
Employee theEmployee = session.find(Employee.class, 988);
```

This is equivalent to the primary key lookup query `SELECT * FROM employee WHERE id = 988.`
ClusterJ also supports compound primary keys. The `find()` method can take an object array as a key, where the components of the object array are used to represent the primary key columns in the order they were declared. In addition, queries are optimized to detect whether columns of the primary key are specified as part of the query criteria, and if so, a primary key lookup or scan is executed as a strategy to implement the query.

**Note**

ClusterJ also supports multiple column ordered btree and unique hash indexes. As with primary keys, if a query specifies values for ordered or unique index fields, ClusterJ optimizes the query to use the index for scanning the table.

NDB Cluster automatically spreads table data across multiple data nodes. For some operations—find, insert, delete, and update—it is more efficient to tell the cluster on which data node the data is physically located, and to have the transaction execute on that data node. ClusterJ automatically detects the partition key; if the operation can be optimized for a specific data node, ClusterJ automatically starts the transaction on that node.

**Update and save a row.** To update the value of a given column in the row that we just obtained as `theEmployee`, use the `set*()` method whose name corresponds to the name of that column. For example, to update the `started` date for this `Employee`, use the `Employee's setStarted()` method, as shown here:

```java
theEmployee.setStarted(new Date(getMillisFor(2010, 01, 04)));
```

**Note**

For convenience, we use in this example a method `getMillisFor()`, which is defined as shown here, in the file `AbstractClusterJModelTest.java` (found in the `storage/ndb/clusterj/clusterj-test/src/main/java/testsuite/clusterj` directory of the NDB Cluster source tree):

```java
/** Convert year, month, day into milliseconds after the Epoch, UTC.
 * Set hours, minutes, seconds, and milliseconds to zero.
 * @param year the year
 * @param month the month (0 for January)
 * @param day the day of the month
 * @return */

protected static long getMillisFor(int year, int month, int day) {
 Calendar calendar = Calendar.getInstance();
 calendar.clear();
 calendar.set(Calendar.YEAR, year);
 calendar.set(Calendar.MONTH, month);
 calendar.set(Calendar.DATE, day);
 calendar.set(Calendar.HOUR, 0);
 calendar.set(Calendar.MINUTE, 0);
 calendar.set(Calendar.SECOND, 0);
 calendar.set(Calendar.MILLISECOND, 0);
 long result = calendar.getTimeInMillis();
 return result;
}
```

See the indicated file for further information.

You can update additional columns by invoking other `Employee` setter methods, like this:

```java
theEmployee.setDepartment(3);
```

To save the changed row back to the NDB Cluster database, use the `Session's updatePersistent()` method, like this:

```java
session.updatePersistent(theEmployee);
```
Deleting rows. You can delete a single row easily using the `deletePersistent()` method of `Session`. In this example, we find the employee whose ID is 13, then delete this row from the `employee` table:

```java
Employee exEmployee = session.find(Employee.class, 13);
session.deletePersistent(exEmployee);
System.out.println("Deleted employee named " + exEmployee.getFirst() + " " + exEmployee.getLast() + ".");
```

There also exists a method for deleting multiple rows, which provides two options:

1. Delete all rows from a table.
2. Delete an arbitrary collection of rows.

Both kinds of multi-row delete can be performed using the `deletePersistentAll()` method. The first variant of this method acts on a `Class`. For example, the following statement deletes all rows from the `employee` table and returns the number of rows deleted, as shown here:

```java
int numberDeleted = session.deletePersistentAll(Employee);
System.out.println("There used to be " + numberDeleted + " employees, but now there are none.");
```

The call to `deletePersistentAll()` just shown is equivalent to issuing the SQL statement `DELETE FROM employee` in the `mysql` client.

deiPlePersistentAll() can also be used to delete a collection of rows, as shown in this example:

```java
// Assemble the collection of rows to be deleted...
List<Employee> redundancies = new ArrayList<Employee>();
for (int i = 1000; i < 2000; i += 100) {
 Employee redundant = session.newInstance(Employee.class);
 redundant.setId(i);
 redundancies.add(redundant);
}
numberDeleted = session.deletePersistentAll(redundancies);
System.out.println("Deleted " + numberDeleted + " rows.");
```

It is not necessary to find the instances in the database before deleting them.

Writing queries. The ClusterJ `QueryBuilder` interface is used to instantiate queries. The process begins with obtaining an instance of `QueryBuilder`, which is supplied by the current `Session`; we can then obtain a `QueryDefinition`, as shown here:

```java
QueryBuilder builder = session.getQueryBuilder();
QueryDomainType<Employee> domain = builder.createQueryDefinition(Employee.class);
```

This is then used to set a column for comparison by the query. Here, we show how to prepare a query that compares the value of the `employee` table’s `department` column with the constant value 8.

```java
domain.where(domain.get("department").equal(domain.param("department")));
Query<Employee> query = session.createQuery(domain);
query.setParameter("department", 8);
```

To obtain the results from the query, invoke the `Query`’s `getResultList()` method, as shown here:

```java
List<Employee> results = query.getResultList();
```
The return value is a `List` that you can iterate over to retrieve and process the rows in the usual manner.

**Transactions.** The `Transaction` interface can optionally be used to bound transactions, via the following methods:

- `begin()`: Begin a transaction.
- `commit()`: Commit a transaction.
- `rollback()`: Roll back a transaction.

It is also possible using `Transaction` to check whether the transaction is active (via the `isActive()` method, and to get and set a rollback-only flag (using `getRollbackOnly()` and `setRollbackOnly()`, respectively).

If you do not use the `Transaction` interface, methods in `Session` that affect the database—such as `persist()`, `deletePersistent()`, `updatePersistent()`, and so on—are automatically enclosed in a database transaction.

### 4.2.2.5 ClusterJ Mappings Between MySQL and Java Data Types

ClusterJ provides mappings for all of the common MySQL database types to Java types. Java object wrappers of primitive types should be mapped to nullable database columns.

**Note**

Since Java does not have native unsigned data types, `UNSIGNED` columns should be avoided in table schemas if possible.

**Compatibility with JDBC mappings.** ClusterJ is implemented so as to be bug-compatible with the JDBC driver in terms of mapping from Java types to the database. That is, if you use ClusterJ to store or retrieve data, you obtain the same value as if you used the JDBC driver directly or through JPA.

The following tables show the mappings used by ClusterJ between common Java data types and MySQL column types. Separate tables are provided for numeric, floating-point, and variable-width types.

#### Numeric types.

This table shows the ClusterJ mappings between Java numeric data types and MySQL column types:

<table>
<thead>
<tr>
<th>Java Data Type</th>
<th>MySQL Column Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean, Boolean</td>
<td>BIT(1)</td>
</tr>
<tr>
<td>byte, Byte</td>
<td>BIT(1) to BIT(8), TINYINT</td>
</tr>
<tr>
<td>short, Short</td>
<td>BIT(1) to BIT(16), SMALLINT, YEAR</td>
</tr>
<tr>
<td>int, Integer</td>
<td>BIT(1) to BIT(32), INT</td>
</tr>
<tr>
<td>long, Long</td>
<td>BIT(1) to BIT(64), BIGINT, BIGINT UNSIGNED</td>
</tr>
<tr>
<td>float, Float</td>
<td>FLOAT</td>
</tr>
<tr>
<td>double, Double</td>
<td>DOUBLE</td>
</tr>
<tr>
<td>java.math.BigDecimal</td>
<td>NUMERIC, DECIMAL</td>
</tr>
<tr>
<td>java.math.BigInteger</td>
<td>NUMERIC (precision = 0), DECIMAL (precision = 0)</td>
</tr>
</tbody>
</table>

**Date and time types.** The following table shows the ClusterJ mappings between Java date and time data types and MySQL column types:
### Using Connector/J with NDB Cluster

<table>
<thead>
<tr>
<th>Java Data Type</th>
<th>MySQL Column Type</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>java.util.Date</code></td>
<td>DATETIME, TIMESTAMP, TIME, DATE</td>
</tr>
<tr>
<td><code>java.sql.Date</code></td>
<td>DATE</td>
</tr>
<tr>
<td><code>java.sql.Time</code></td>
<td>TIME</td>
</tr>
<tr>
<td><code>java.sql.Timestamp</code></td>
<td>DATETIME, TIMESTAMP</td>
</tr>
</tbody>
</table>

**Note**

ClusterJ maps the MySQL `YEAR` type to a Java `short` (or `java.lang.Short`), as shown in the first table in this section.

`java.util.Date` represents date and time similar to the way in which Unix does so, but with more precision and a larger range. Where Unix represents a point in time as a 32-bit signed number of seconds since the Unix Epoch (01 January 1970), Java uses a 64-bit signed number of milliseconds since the Epoch.

**Variable-width types.** The following table shows the ClusterJ mappings between Java data types and MySQL variable-width column types:

<table>
<thead>
<tr>
<th>Java Data Type</th>
<th>MySQL Column Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>CHAR, VARCHAR, TEXT</td>
</tr>
<tr>
<td>byte[]</td>
<td>BINARY, VARBINARY, BLOB</td>
</tr>
</tbody>
</table>

**Note**

No translation binary data is performed when mapping from MySQL `BINARY`, `VARBINARY`, or `BLOB` column values to Java byte arrays. Data is presented to the application exactly as it is stored.

#### 4.2.3 Using Connector/J with NDB Cluster

JDBC clients of an NDB Cluster data source, and using Connector/J 5.0.6 (or later), accept `jdbc:mysql:loadbalance://` URLs (see Configuration Properties for Connector/J), with which you can take advantage of the ability to connect with multiple MySQL servers to achieve load balancing and failover.

However, while Connector/J does not depend on the MySQL client libraries, it does require a connection to a MySQL Server, which ClusterJ does not. JDBC also does not provide any object mappings for database objects, properties, or operations, or any way to persist objects.

See MySQL Connector/J 5.1 Developer Guide, for general information about using Connector/J.

#### 4.3 ClusterJ API Reference

The following sections contain specifications for ClusterJ packages, interfaces, classes, and methods.

##### 4.3.1 com.mysql.clusterj

Provides classes and interfaces for using NDB Cluster directly from Java.

- A class for bootstrapping
• Interfaces for use in application programs
• Classes to define exceptions

This package contains three main groups of classes and interfaces:

### 4.3.1.1 Major Interfaces

ClusterJ provides these major interfaces for use by application programs:

- `com.mysql.clusterj.SessionFactory`
- `com.mysql.clusterj.Session`
- `com.mysql.clusterj.Transaction`
- `com.mysql.clusterj.query.QueryBuilder`
- `com.mysql.clusterj.Query`

**Bootstrapping**

The helper class `com.mysql.clusterj.ClusterJHelper` contains methods for creating the `com.mysql.clusterj.SessionFactory`. **Bootstrapping** is the process of identifying an NDB Cluster and obtaining the SessionFactory for use with the cluster. There is one SessionFactory per cluster per Java VM.

### SessionFactory

The `com.mysql.clusterj.SessionFactory` is configured via properties, which identify the NDB Cluster that the application connects to:

- `com.mysql.clusterj.connectstring` identifies the ndb_mgmd host name and port
- `com.mysql.clusterj.connect.retries` is the number of retries when connecting
- `com.mysql.clusterj.connect.delay` is the delay in seconds between connection retries
- `com.mysql.clusterj.connect.verbose` tells whether to display a message to System.out while connecting
- `com.mysql.clusterj.connect.timeout.before` is the number of seconds to wait until the first node responds to a connect request
- `com.mysql.clusterj.connect.timeout.after` is the number of seconds to wait until the last node responds to a connect request
- `com.mysql.clusterj.connect.database` is the name of the database to use

```java
File propsFile = new File("clusterj.properties");
InputStream inStream = new FileInputStream(propsFile);
Properties props = new Properties();
props.load(inStream);
SessionFactory sessionFactory = ClusterJHelper.getSessionFactory(props);
```

### Session

The `com.mysql.clusterj.Session` represents the user's individual connection to the cluster. It contains methods for:

- finding persistent instances by primary key
- persistent instance factory (newInstance)
- persistent instance life cycle management (persist, remove)
- getting the QueryBuilder
- getting the Transaction (currentTransaction)

```java
Session session = sessionFactory.getSession();
Employee existing = session.find(Employee.class, 1);
if (existing != null) {
 session.remove(existing);
}
Employee newemp = session.newInstance(Employee.class);
```
The **com.mysql.clusterj.Transaction** allows users to combine multiple operations into a single database transaction. It contains methods to:

- begin a unit of work
- commit changes from a unit of work
- roll back all changes made since the unit of work was begun
- mark a unit of work for rollback only
- get the rollback status of the current unit of work

```java
Transaction tx = session.currentTransaction();
 tx.begin();
 Employee existing = session.find(Employee.class, 1);
 Employee newemp = session.newInstance(Employee.class);
 newemp.initialize(2, "Craig", 146000.00);
 session.persist(newemp);
 tx.commit();
```

**QueryBuilder** The **com.mysql.clusterj.query.QueryBuilder** allows users to build queries. It contains methods to:

- define the Domain Object Model to query
- compare properties with parameters using:
  - equal
  - lessThan
  - greaterThan
  - lessEqual
  - greaterEqual
  - between
  - in
- combine comparisons using "and", "or", and "not" operators

```java
QueryBuilder builder = session.getQueryBuilder();
 QueryDomainType<Employee> qemp = builder.createQueryDefinition(Employee.class);
 Predicate service = qemp.get("yearsOfService").greaterThan(qemp.param("service"));
 Predicate salary = qemp.get("salary").lessEqual(qemp.param("salaryCap"));
 qemp.where(service.and(salary));
 Query<Employee> query = session.createQuery(qemp);
 query.setParameter("service", 10);
 query.setParameter("salaryCap", 180000.00);
 List<Employee> results = query.getResultList();
```

### 4.3.1.2 ClusterJDatastoreException

**ClusterJUserException** represents a database error. The underlying cause of the exception is contained in the "cause".

#### Synopsis

```java
public class ClusterJDatastoreException, extends ClusterJException {
```
// Public Constructors

public ClusterJDatastoreException(String message);

public ClusterJDatastoreException(String msg, int code, int mysqlCode, int status, int classification);

public ClusterJDatastoreException(String message, Throwable t);

public ClusterJDatastoreException(Throwable t);

// Public Methods

public int getClassification();

public int getCode();

public int getMysqlCode();

public int getStatus();

Methods inherited from com.mysql.clusterj.ClusterJException: printStackTrace

Methods inherited from java.lang.Throwable: addSuppressed, fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, getSuppressed, initCause, setStackTrace, toString

Methods inherited from java.lang.Object: equals, getClass, hashCode, notify, notifyAll, wait

getClassification()

public int getClassification();

Get the classification

getCode()

public int getCode();

Get the code

Since 7.3.15, 7.4.13, 7.5.4

getMysqlCode()

public int getMysqlCode();

Get the mysql code

Since 7.3.15, 7.4.13, 7.5.4

getAddress()
4.3.1.3 ClusterJDatastoreException.Classification

Helper class for getClassification().

```java
import com.mysql.clusterj.ClusterJDatastoreException.Classification;

Classification c = Classification.lookup(datastoreException.getClassification());
System.out.println("exceptionClassification " + c + " with value " + c.value);
```

**Synopsis**

```java
public static final class ClusterJDatastoreException.Classification,
 extends Enum<Classification> {

 public static final Classification ApplicationError ;
 public static final Classification ConstraintViolation ;
 public static final Classification FunctionNotImplemented ;
 public static final Classification InsufficientSpace ;
 public static final Classification InternalError ;
 public static final Classification InternalTemporary ;
 public static final Classification NoDataFound ;
 public static final Classification NoError ;
 public static final Classification NodeRecoveryError ;
 public static final Classification NodeShutdown ;
 public static final Classification OverloadError ;
 public static final Classification SchemaError ;
 public static final Classification SchemaObjectExists ;
 public static final Classification TemporaryResourceError ;
 public static final Classification TimeoutExpired ;
 public static final Classification UnknownErrorCode ;
 public static final Classification UnknownResultError ;
 public static final Classification UserDefinedError ;

 // Public Static Methods

 public static Classification lookup(
 int value);

```
public static Classification valueOf(String name);

public static Classification[] values();

Methods inherited from java.lang.Enum: compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Methods inherited from java.lang.Object: getClass, notify, notifyAll, wait

Since 7.3.15, 7.4.13, 7.5.4

lookup(int)

public static Classification lookup(int value);

Get the Classification enum for a value returned by ClusterJDatastoreException.getClassification().

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>the classification returned by getClassification()</td>
</tr>
<tr>
<td>return</td>
<td>the Classification for the error</td>
</tr>
</tbody>
</table>

### 4.3.1.4 ClusterJException

ClusterJException is the base for all ClusterJ exceptions. Applications can catch ClusterJException to be notified of all ClusterJ reported issues.

- User exceptions are caused by user error, for example providing a connect string that refers to an unavailable host or port.
  - If a user exception is detected during bootstrapping (acquiring a SessionFactory), it is thrown as a fatal exception. `com.mysql.clusterj.ClusterJFatalUserException`
  - If an exception is detected during initialization of a persistent interface, for example annotating a column that doesn’t exist in the mapped table, it is reported as a user exception. `com.mysql.clusterj.ClusterJUserException`

- Datastore exceptions report conditions that result from datastore operations after bootstrapping. For example, duplicate keys on insert, or record does not exist on delete. `com.mysql.clusterj.ClusterJDatastoreException`

- Internal exceptions report conditions that are caused by errors in implementation. These exceptions should be reported as bugs. `com.mysql.clusterj.ClusterJFatalInternalException`

Exceptions are in three general categories: User exceptions, Datastore exceptions, and Internal exceptions.

**Synopsis**

```java
public class ClusterJException,
 extends RuntimeException {
 // Public Constructors
 public ClusterJException(String message);
 public ClusterJException(String message, Throwable t);
```
public ClusterJException{
    Throwable t);

    public synchronized void printStackTrace(
        PrintStream s);
}

Direct known subclasses: com.mysql.clusterj.ClusterJDatastoreException,
    com.mysql.clusterj.ClusterJFatalException,
    com.mysql.clusterj.ClusterJUserException

Methods inherited from java.lang.Throwable: addSuppressed, fillInStackTrace, getCause,
    getLocalizedMessage, getMessage, getStackTrace, getSuppressed, initCause,
    printStackTrace, setStackTrace, toString

Methods inherited from java.lang.Object: equals, getClass, hashCode, notify, notifyAll,
    wait

4.3.1.5 ClusterJFatalException

ClusterJFatalException represents an exception that is not recoverable.

Synopsis

public class ClusterJFatalException{
    // Public Constructors
    public ClusterJFatalException(
        String string);
    public ClusterJFatalException(
        String string,
        Throwable t);  
    public ClusterJFatalException(
        Throwable t);
}

Direct known subclasses: com.mysql.clusterj.ClusterJFatalInternalException,
    com.mysql.clusterj.ClusterJFatalUserException

Methods inherited from com.mysql.clusterj.ClusterJException: printStackTrace

Methods inherited from java.lang.Throwable: addSuppressed, fillInStackTrace, getCause,
    getLocalizedMessage, getMessage, getStackTrace, getSuppressed, initCause,
    setStackTrace, toString

Methods inherited from java.lang.Object: equals, getClass, hashCode, notify, notifyAll,
    wait

4.3.1.6 ClusterJFatalInternalException

ClusterJFatalInternalException represents an implementation error that the user cannot recover from.

Synopsis

public class ClusterJFatalInternalException{
    // Public Constructors
    public ClusterJFatalInternalException(
        String string);
4.3.1.7 ClusterJFatalUserException

ClusterJFatalUserException represents a user error that is unrecoverable, such as programming errors in persistent classes or missing resources in the execution environment.

Synopsis

```java
public class ClusterJFatalUserException,
 extends ClusterJFatalException {
 // Public Constructors
 public ClusterJFatalUserException(
 String string);
 public ClusterJFatalUserException(
 String string,
 Throwable t);
 public ClusterJFatalUserException(
 Throwable t);
}
```

4.3.1.8 ClusterJHelper

ClusterJHelper provides helper methods to bridge between the API and the implementation.

Synopsis

```java
public class ClusterJHelper {
 // Public Constructors
 public ClusterJHelper();
 // Public Static Methods
 public static boolean getBooleanProperty(
 String propertyName,
 String def);
}
```
public static T getServiceInstance(
    Class<T> cls);

public static T getServiceInstance(
    Class<T> cls,
    ClassLoader loader);

public static T getServiceInstance(
    Class<T> cls,
    String implementationClassName);

public static T getServiceInstance(
    Class<T> cls,
    String implementationClassName,
    ClassLoader loader);

public static List<T> getServiceInstances(
    Class<T> cls,
    ClassLoader loader,
    StringBuffer errorMessages);

public static SessionFactory getSessionFactory(
    Map props);

public static SessionFactory getSessionFactory(
    Map props,
    ClassLoader loader);

public static String getStringProperty(
    String propertyName,
    String def);

public static Dbug newDbug();

Methods inherited from java.lang.Object: equals, getClass, hashCode, notify, notifyAll, toString, wait

define (String, String)

public static boolean getBooleanProperty(
    String propertyName,
    String def);

Get the named boolean property from either the environment or system properties. If the property is not 'true' then return false.

Table 4.5 getBooleanProperty(String, String)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>propertyName</td>
<td>the name of the property</td>
</tr>
<tr>
<td>def</td>
<td>the default if the property is not set</td>
</tr>
<tr>
<td>return</td>
<td>the system property if it is set via -D or the system environment</td>
</tr>
</tbody>
</table>

define (Class<T>)

public static T getServiceInstance(
    Class<T> cls);

Locate a service implementation by services lookup of the context class loader.

Table 4.6 getServiceInstance(Class<T>)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the class of the factory</td>
</tr>
</tbody>
</table>
 getServiceInstance(Class<T>, ClassLoader)

```java
public static T getServiceInstance(
 Class<T> cls,
 ClassLoader loader);
```

Locate a service implementation for a service by services lookup of a specific class loader. The first service instance found is returned.

**Table 4.7 getServiceInstance(Class<T>, ClassLoader)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the class of the factory</td>
</tr>
<tr>
<td>loader</td>
<td>the class loader for the factory implementation</td>
</tr>
<tr>
<td>return</td>
<td>the service instance</td>
</tr>
</tbody>
</table>

getServiceInstance(Class<T>, String)

```java
public static T getServiceInstance(
 Class<T> cls,
 String implementationClassName);
```

Locate a service implementation for a service. If the implementation name is not null, use it instead of looking up. If the implementation class is not loadable or does not implement the interface, throw an exception. Use the ClusterJHelper class loader to find the service.

**Table 4.8 getServiceInstance(Class<T>, String)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td></td>
</tr>
<tr>
<td>implementationClassName</td>
<td>the implementation instance for a service</td>
</tr>
<tr>
<td>implementationClassName</td>
<td></td>
</tr>
<tr>
<td>loader</td>
<td></td>
</tr>
<tr>
<td>return</td>
<td></td>
</tr>
</tbody>
</table>

getServiceInstance(Class<T>, String, ClassLoader)

```java
public static T getServiceInstance(
 Class<T> cls,
 String implementationClassName,
 ClassLoader loader);
```

Locate a service implementation for a service. If the implementation name is not null, use it instead of looking up. If the implementation class is not loadable or does not implement the interface, throw an exception.

**Table 4.9 getServiceInstance(Class<T>, String, ClassLoader)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td></td>
</tr>
<tr>
<td>implementationClassName</td>
<td>name of implementation class to load</td>
</tr>
<tr>
<td>loader</td>
<td>the ClassLoader to use to find the service</td>
</tr>
<tr>
<td>return</td>
<td>the implementation instance for a service</td>
</tr>
</tbody>
</table>

getServiceInstances(Class<T>, ClassLoader, StringBuffer)
Locate all service implementations by services lookup of a specific class loader. Implementations in the services file are instantiated and returned. Failed instantiations are remembered in the errorMessages buffer.

### Table 4.10 `getServiceImplInstances(Class<T>, ClassLoader, StringBuffer)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the class of the factory</td>
</tr>
<tr>
<td>loader</td>
<td>the class loader for the factory implementation</td>
</tr>
<tr>
<td>errorMessages</td>
<td>a buffer used to hold the error messages</td>
</tr>
<tr>
<td>return</td>
<td>the service instance</td>
</tr>
</tbody>
</table>

### `getSessionFactory(Map)`

```java
public static SessionFactory getSessionFactory(
 Map props);
```

Locate a SessionFactory implementation by services lookup. The class loader used is the thread's context class loader.

### Table 4.11 `getSessionFactory(Map)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>props</td>
<td>properties of the session factory</td>
</tr>
<tr>
<td>return</td>
<td>the session factory</td>
</tr>
</tbody>
</table>

**Exceptions**

- `ClusterFatalUserException` if the connection to the cluster cannot be made

### `getSessionFactory(Map, ClassLoader)`

```java
public static SessionFactory getSessionFactory(
 Map props,
 ClassLoader loader);
```

Locate a SessionFactory implementation by services lookup of a specific class loader. The properties are a Map that might contain implementation-specific properties plus standard properties.

### Table 4.12 `getSessionFactory(Map, ClassLoader)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>props</td>
<td>the properties for the factory</td>
</tr>
<tr>
<td>loader</td>
<td>the class loader for the factory implementation</td>
</tr>
<tr>
<td>return</td>
<td>the session factory</td>
</tr>
</tbody>
</table>

**Exceptions**

- `ClusterFatalUserException` if the connection to the cluster cannot be made

### `getStringProperty(String, String)`

```java
public static String getStringProperty(
 String propertyName,
 String def);
```
Get the named String property from either the environment or system properties.

Table 4.13 `getStringProperty(String, String)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>propertyName</td>
<td>the name of the property</td>
</tr>
<tr>
<td>def</td>
<td>the default if the property is not set</td>
</tr>
<tr>
<td>return</td>
<td>the system property if it is set via -D or the system environment</td>
</tr>
</tbody>
</table>

`newDbug()`

```java
public static Dbug newDbug();
```

Return a new `Dbug` instance.

Table 4.14 `newDbug()`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>a new <code>Dbug</code> instance</td>
</tr>
</tbody>
</table>

4.3.1.9 `ClusterJUserException`

`ClusterJUserException` represents a user programming error.

**Synopsis**

```java
public class ClusterJUserException, extends ClusterJException {
 // Public Constructors
 public ClusterJUserException(String message);
 public ClusterJUserException(String message, Throwable t);
 public ClusterJUserException(Throwable t);
}
```

**Methods inherited from `com.mysql.clusterj.ClusterJException`**:

- `printStackTrace`

**Methods inherited from `java.lang.Throwable`**:

- `addSuppressed`, `fillInStackTrace`, `getCause`, `getLocalizedMessage`, `getMessage`, `getStackTrace`, `getSuppressed`, `initCause`, `setStackTrace`, `toString`

**Methods inherited from `java.lang.Object`**:

- `equals`, `getClass`, `hashCode`, `notify`, `notifyAll`, `wait`

4.3.1.10 `ColumnMetadata`

```java
public interface ColumnMetadata {
 // Public Methods
 public abstract String charsetName();
 public abstract ColumnType columnType();
 public abstract boolean isPartitionKey();
 public abstract boolean isPrimaryKey();
 public abstract Class<?> javaType();
}
```
public abstract int maximumLength();
public abstract String name();
public abstract boolean nullable();
public abstract int number();
public abstract int precision();
public abstract int scale();
}

charsetName()

public abstract String charsetName();

Return the charset name.

Table 4.15 charsetName()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the charset name</td>
</tr>
</tbody>
</table>

columnType()

public abstract ColumnType columnType();

Return the type of the column.

Table 4.16 columnType()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the type of the column</td>
</tr>
</tbody>
</table>

isPartitionKey()

public abstract boolean isPartitionKey();

Return whether this column is a partition key column.

Table 4.17 isPartitionKey()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>true if this column is a partition key column</td>
</tr>
</tbody>
</table>

isPrimaryKey()

public abstract boolean isPrimaryKey();

Return whether this column is a primary key column.

Table 4.18 isPrimaryKey()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>true if this column is a primary key column</td>
</tr>
</tbody>
</table>

javaType()

public abstract Class<?> javaType();

Return the java type of the column.
### javaType()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the java type of the column</td>
</tr>
</tbody>
</table>

### maximumLength()

```java
public abstract int maximumLength();
```

Return the maximum number of bytes that can be stored in the column after translating the characters using the character set.

### name()

```java
public abstract String name();
```

Return the name of the column.

### nullable()

```java
public abstract boolean nullable();
```

Return whether this column is nullable.

### number()

```java
public abstract int number();
```

Return the column number. This number is used as the first parameter in the get and set methods of DynamicColumn.

### precision()

```java
public abstract int precision();
```

Return the precision of the column.
scale()

```java
public abstract int scale();
```

Return the scale of the column.

### Table 4.25 scale()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the scale of the column</td>
</tr>
</tbody>
</table>

#### 4.3.1.11 ColumnType

This class enumerates the column types for columns in ndb.

**Synopsis**

```java
public final class ColumnType,
 extends Enum<ColumnType> {
 // Public Static Fields
 public static final ColumnType
 Bigint;
 public static final ColumnType
 Bigunsigned;
 public static final ColumnType
 Binary;
 public static final ColumnType
 Bit;
 public static final ColumnType
 Blob;
 public static final ColumnType
 Char;
 public static final ColumnType
 Date;
 public static final ColumnType
 Datetime;
 public static final ColumnType
 Datetime2;
 public static final ColumnType
 Decimal;
 public static final ColumnType
 Decimalunsigned;
 public static final ColumnType
 Double;
 public static final ColumnType
 Float;
 public static final ColumnType
 Int;
 public static final ColumnType
 Longvarbinary;
 public static final ColumnType
 Longvarchar;
```
public static final ColumnType Mediumint;
public static final ColumnType Mediumunsigned;
public static final ColumnType Olddecimal;
public static final ColumnType Olddecimalunsigned;
public static final ColumnType Smallint;
public static final ColumnType Smallunsigned;
public static final ColumnType Text;
public static final ColumnType Time;
public static final ColumnType Time2;
public static final ColumnType Timestamp;
public static final ColumnType Timestamp2;
public static final ColumnType Tinyint;
public static final ColumnType Tinyunsigned;
public static final ColumnType Undefined;
public static final ColumnType Unsigned;
public static final ColumnType Varbinary;
public static final ColumnType Varchar;
public static final ColumnType Year;

// Public Static Methods

public static ColumnType valueOf(String name);
public static ColumnType[] values();

Methods inherited from java.lang.Enum: compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Methods inherited from java.lang.Object: getClass, notify, notifyAll, wait

4.3.1.12 Constants

Constants used in the ClusterJ project.
Synopsis

```java
public interface Constants {
 // Public Static Fields

 public static final String DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES = "256, 10240, 102400, 1048576";
 public static final int DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE = 10;
 public static final long DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START = 1L;
 public static final long DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP = 1L;
 public static final int DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY = 5;
 public static final int DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES = 4;
 public static final int DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER = 20;
 public static final int DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE = 30;
 public static final int DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM = 30000;
 public static final int DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE = 0;
 public static final String DEFAULT_PROPERTY_CLUSTER_DATABASE = "test";
 public static final int DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS = 4;
 public static final int DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD = 8;
 public static final int DEFAULT_PROPERTY_CONNECTION_POOL_SIZE = 1;
 public static final int DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT = 0;
 public static final String ENV_CLUSTERJ_LOGGER_FACTORY_NAME = "CLUSTERJ_LOGGER_FACTORY";
 public static final String PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
```
public static final String PROPERTY_CLUSTER_CONNECTION_SERVICE = "com.mysql.clusterj.connection.service";

public static final String PROPERTY_CLUSTER_CONNECTSTRING = "com.mysql.clusterj.connectstring";

public static final String PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE = "com.mysql.clusterj.connect.autoincrement.batchsize";

public static final String PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START = "com.mysql.clusterj.connect.autoincrement.offset";

public static final String PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP = "com.mysql.clusterj.connect.autoincrement.increment";

public static final String PROPERTY_CLUSTER_CONNECT_DELAY = "com.mysql.clusterj.connect.delay";

public static final String PROPERTY_CLUSTER_CONNECT_RETRIES = "com.mysql.clusterj.connect.retries";

public static final String PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER = "com.mysql.clusterj.connect.timeout.after";

public static final String PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE = "com.mysql.clusterj.connect.timeout.before";

public static final String PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM = "com.mysql.clusterj.connect.timeout.mgm";

public static final String PROPERTY_CLUSTER_CONNECT_VERBOSE = "com.mysql.clusterj.connect.verbose";

public static final String PROPERTY_CLUSTER_DATABASE = "com.mysql.clusterj.database";

public static final String PROPERTY_CLUSTER_MAX_TRANSACTIONS = "com.mysql.clusterj.max.transactions";

public static final String PROPERTY_CONNECTION_POOL_NODEIDS = "com.mysql.clusterj.connection.pool.nodeids";

public static final String PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD = "com.mysql.clusterj.connection.pool.recv.thread.activation.threshold";

public static final String PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS = "com.mysql.clusterj.connection.pool.recv.thread.cpuids";

public static final String PROPERTY_CONNECTION_POOL_SIZE = "com.mysql.clusterj.connection.pool.size";

public static final String PROPERTY_CONNECTION_RECONNECT_TIMEOUT = "com.mysql.clusterj.byte.buffer.pool.sizes";
= "com.mysql.clusterj.connection.reconnect.timeout";

public static final String
PROPERTY_DEFER_CHANGES
= "com.mysql.clusterj.defer.changes";

public static final String
PROPERTY_JDBC_DRIVER_NAME
= "com.mysql.clusterj.jdbc.driver";

public static final String
PROPERTY_JDBC_PASSWORD
= "com.mysql.clusterj.jdbc.password";

public static final String
PROPERTY_JDBC_URL
= "com.mysql.clusterj.jdbc.url";

public static final String
PROPERTY_JDBC_USERNAME
= "com.mysql.clusterj.jdbc.username";

public static final String
SESSION_FACTORY_SERVICE_CLASS_NAME
= "com.mysql.clusterj.SessionFactoryService";

public static final String
SESSION_FACTORY_SERVICE_FILE_NAME
= "META-INF/services/com.mysql.clusterj.SessionFactoryService";

}

DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES

public static final String
DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES
= "256, 10240, 102400, 1048576";

The default value of the byte buffer pool sizes property: 256, 10K, 100K, 1M

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE

public static final int
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE
= 10;

The default value of the connection autoincrement batch size property

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START

public static final long
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START
= 1L;

The default value of the connection autoincrement start property

DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP

public static final long
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP
= 1L;

The default value of the connection autoincrement step property

DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY

public static final int
DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY
= 5;
The default value of the connection delay property

```java
public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES
 = 4;
```

The default value of the connection retries property

```java
public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
 = 20;
```

The default value of the connection timeout after property

```java
public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
 = 30;
```

The default value of the connection timeout before property

```java
public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
 = 30000;
```

The default value of the connection timeout mgm property

```java
public static final int
 DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE
 = 0;
```

The default value of the connection verbose property

```java
public static final String
 DEFAULT_PROPERTY_CLUSTER_DATABASE
 = "test";
```

The default value of the database property

```java
public static final int
 DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS
 = 4;
```

The default value of the maximum number of transactions property

```java
public static final int
 DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
 = 8;
```

The default value of the receive thread activation threshold

```java
DEFAULT_PROPERTY_CONNECTION_POOL_SIZE
```
The default value of the connection pool size property

```java
public static final int DEFAULT_PROPERTY_CONNECTION_POOL_SIZE = 1;
```

The default value of the connection pool size property

**DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT**

```java
public static final int DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT = 0;
```

Since 7.5.7

The default value of the connection reconnect timeout property. The default means that the automatic reconnection due to network failures is disabled.

**ENV_CLUSTERJ_LOGGER_FACTORY_NAME**

```java
public static final String ENV_CLUSTERJ_LOGGER_FACTORY_NAME = "CLUSTERJ_LOGGER_FACTORY";
```

The name of the environment variable to set the logger factory

**PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES**

```java
public static final String PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES = "com.mysql.clusterj.byte.buffer.pool.sizes";
```

The name of the byte buffer pool sizes property. To disable buffer pooling for blob objects, set the value of this property to "1". With this setting, buffers will be allocated and freed (and cleaned if possible) immediately after being used for blob data transfer.

**PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE**

```java
public static final String PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE = "com.mysql.clusterj.connect.autoincrement.batchsize";
```

The name of the connection autoincrement batch size property.

**PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START**

```java
public static final String PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START = "com.mysql.clusterj.connect.autoincrement.offset";
```

The name of the connection autoincrement start property.

**PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP**

```java
public static final String PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP = "com.mysql.clusterj.connect.autoincrement.increment";
```

The name of the connection autoincrement step property.

**PROPERTY_CLUSTER_CONNECT_DELAY**

```java
public static final String PROPERTY_CLUSTER_CONNECT_DELAY = "com.mysql.clusterj.connect.delay";
```

The name of the connection delay property. For details, see `Ndb_cluster_connection::connect()`
PROPERTY_CLUSTER_CONNECT_RETRIES

public static final String
PROPERTY_CLUSTER_CONNECT_RETRIES
    = "com.mysql.clusterj.connect.retries";

The name of the connection retries property. For details, see Ndb_cluster_connection::connect() 

PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER

public static final String
PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER
    = "com.mysql.clusterj.connect.timeout.after";

The name of the connection timeout after property. For details, see Ndb_cluster_connection::wait_until_ready()

PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE

public static final String
PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE
    = "com.mysql.clusterj.connect.timeout.before";

The name of the connection timeout before property. For details, see Ndb_cluster_connection::wait_until_ready()

PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM

public static final String
PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM
    = "com.mysql.clusterj.connect.timeout.mgm";

The name of the initial timeout for cluster connection to connect to MGM before connecting to data nodes Ndb_cluster_connection::set_timeout()

PROPERTY_CLUSTER_CONNECT_VERBOSE

public static final String
PROPERTY_CLUSTER_CONNECTVERBOSE
    = "com.mysql.clusterj.connect.verbose";

The name of the connection verbose property. For details, see Ndb_cluster_connection::connect() 

PROPERTY_CLUSTER_CONNECTION_SERVICE

public static final String
PROPERTY_CLUSTER_CONNECTION_SERVICE
    = "com.mysql.clusterj.connection.service";

The name of the connection service property

PROPERTY_CLUSTER_CONNECTSTRING

public static final String
PROPERTY_CLUSTER_CONNECTSTRING
    = "com.mysql.clusterj.connectstring";

The name of the connection string property. For details, see Ndb_cluster_connection constructor

PROPERTY_CLUSTER_DATABASE

public static final String
PROPERTY_CLUSTER_DATABASE
    = "com.mysql.clusterj.database";

The name of the database property. For details, see the catalogName parameter in the Ndb constructor. Ndb constructor
**PROPERTY_CLUSTER_MAX_TRANSACTIONS**

```java
public static final String PROPERTY_CLUSTER_MAX_TRANSACTIONS
 = "com.mysql.clusterj.max.transactions";
```

The name of the maximum number of transactions property. For details, see [Ndb::init()](#).

**PROPERTY_CONNECTION_POOL_NODEIDS**

```java
public static final String PROPERTY_CONNECTION_POOL_NODEIDS
 = "com.mysql.clusterj.connection.pool.nodeids";
```

The name of the connection pool node ids property. There is no default. This is the list of node ids to force the connections to be assigned to specific node ids. If this property is specified and connection pool size is not the default, the number of node ids of the list must match the connection pool size, or the number of node ids must be 1 and node ids will be assigned to connections starting with the specified node id.

**PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD**

```java
public static final String PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD
 = "com.mysql.clusterj.connection.pool.recv.thread.activation.threshold";
```

The receive thread activation threshold for all connections in the connection pool. The default is no activation threshold.

**PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS**

```java
public static final String PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS
 = "com.mysql.clusterj.connection.pool.recv.thread.cpuids";
```

The cpu binding of the receive threads for the connections in the connection pool. The default is no cpu binding for receive threads. If this property is specified and connection pool size is not the default (1), the number of cpuids of the list must match the connection pool size.

**PROPERTY_CONNECTION_POOL_SIZE**

```java
public static final String PROPERTY_CONNECTION_POOL_SIZE
 = "com.mysql.clusterj.connection.pool.size";
```

The name of the connection pool size property. This is the number of connections to create in the connection pool. The default is 1 (all sessions share the same connection; all requests for a SessionFactory with the same connect string and database will share a single SessionFactory). A setting of 0 disables pooling; each request for a SessionFactory will receive its own unique SessionFactory.

**PROPERTY_CONNECTION_RECONNECT_TIMEOUT**

```java
public static final String PROPERTY_CONNECTION_RECONNECT_TIMEOUT
 = "com.mysql.clusterj.connection.reconnect.timeout";
```

Since 7.5.7

The number of seconds to wait for all sessions to be closed when reconnecting a SessionFactory due to network failures. The default, 0, indicates that the automatic reconnection to the cluster due to network failures is disabled. Reconnection can be enabled by using the method SessionFactory.reconnect(int timeout) and specifying a new timeout value.

**PROPERTY_DEFER_CHANGES**
The flag for deferred inserts, deletes, and updates

**PROPERTY_DEFER_CHANGES**

```java
public static final String PROPERTY_DEFER_CHANGES
 = "com.mysql.clusterj.defer.changes";
```

The name of the jdbc driver

**PROPERTY_JDBC_DRIVER_NAME**

```java
public static final String PROPERTY_JDBC_DRIVER_NAME
 = "com.mysql.clusterj.jdbc.driver";
```

The jdbc password

**PROPERTY_JDBC_PASSWORD**

```java
public static final String PROPERTY_JDBC_PASSWORD
 = "com.mysql.clusterj.jdbc.password";
```

The jdbc url

**PROPERTY_JDBC_URL**

```java
public static final String PROPERTY_JDBC_URL
 = "com.mysql.clusterj.jdbc.url";
```

The jdbc username

**PROPERTY_JDBC_USERNAME**

```java
public static final String PROPERTY_JDBC_USERNAME
 = "com.mysql.clusterj.jdbc.username";
```

The name of the session factory service interface

**SESSION_FACTORY_SERVICE_CLASS_NAME**

```java
public static final String SESSION_FACTORY_SERVICE_CLASS_NAME
 = "com.mysql.clusterjSessionFactoryService";
```

The name of the files with names of implementation classes for session factory service

**SESSION_FACTORY_SERVICE_FILE_NAME**

```java
public static final String SESSION_FACTORY_SERVICE_FILE_NAME
 = "META-INF/services/com.mysql.clusterjSessionFactoryService";
```

### 4.3.1.13 Dbug

Dbug allows clusterj applications to enable the DBUG functionality in cluster ndbapi library. The dbug state is a control string that consists of flags separated by colons. Flags are:

- d set the debug flag
- a[,filename] append debug output to the file
- A[,filename] like a[,filename] but flush the output after each operation
- df[,keyword[,keyword...]] enable output from macros with specified keywords
• D[,tenths] delay for specified tenths of a second after each operation
• f[,function[,function...]] limit output to the specified list of functions
• F mark each output with the file name of the source file
• i mark each output with the process id of the current process
• g[,function[,function...]] profile specified list of functions
• L mark each output with the line number of the source file
• n mark each output with the current function nesting depth
• N mark each output with a sequential number
• o[filename] overwrite debug output to the file
• O[filename] like o[filename] but flush the output after each operation
• p[,pid[,pid...]] limit output to specified list of process ids
• P mark each output with the process name
• r reset the indentation level to zero
• t[,depth] limit function nesting to the specified depth
• T mark each output with the current timestamp

For example, the control string to trace calls and output debug information only for "jointx" and overwrite the contents of file "*/tmp/dbug/jointx", use "t,d,jointx:o,*/tmp/dbug/jointx". The above can be written as ClusterJHelper.newDbug().trace().debug("jointx").output("*/tmp/dbug/jointx").set();

Synopsis

```java
public interface Dbug {
 // Public Methods

 public abstract Dbug append(
 String fileName);

 public abstract Dbug debug(
 String string);

 public abstract Dbug debug(
 String[] strings);

 public abstract Dbug flush();

 public abstract String get();

 public abstract Dbug output(
 String fileName);

 public abstract void pop();

 public abstract void print(
 String keyword,
 String message);

 public abstract void push();

 public abstract void push(
 String state);

 public abstract void set();
}
```
public abstract void set(String state);  
public abstract Dbug trace();
}

**append(String)**

public abstract Dbug append(String fileName);

Specify the file name for debug output (append).

**Table 4.26 append(String)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fileName</td>
<td>the name of the file</td>
</tr>
<tr>
<td>return</td>
<td>this</td>
</tr>
</tbody>
</table>

**debug(String)**

public abstract Dbug debug(String string);

Set the list of debug keywords.

**Table 4.27 debug(String)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>the comma separated debug keywords</td>
</tr>
<tr>
<td>return</td>
<td>this</td>
</tr>
</tbody>
</table>

**debug(String[])**

public abstract Dbug debug(String[] strings);

Set the list of debug keywords.

**Table 4.28 debug(String[])**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>strings</td>
<td>the debug keywords</td>
</tr>
<tr>
<td>return</td>
<td>this</td>
</tr>
</tbody>
</table>

**flush()**

public abstract Dbug flush();

Force flush after each output operation.

**Table 4.29 flush()**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>this</td>
</tr>
</tbody>
</table>

**get()**

public abstract String get();

Return the current state.
Table 4.30 get()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the current state</td>
</tr>
</tbody>
</table>

output(String)

```java
public abstract Debug output(
 String fileName);
```

Specify the file name for debug output (overwrite).

Table 4.31 output(String)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fileName</td>
<td>the name of the file</td>
</tr>
<tr>
<td>return</td>
<td>this</td>
</tr>
</tbody>
</table>

pop()

```java
public abstract void pop();
```

Pop the current state. The new state will be the previously pushed state.

print(String, String)

```java
public abstract void print(
 String keyword,
 String message);
```

Print debug message.

push()

```java
public abstract void push();
```

Push the current state as defined by the methods.

push(String)

```java
public abstract void push(
 String state);
```

Push the current state and set the parameter as the new state.

Table 4.32 push(String)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>the new state</td>
</tr>
</tbody>
</table>

set()

```java
public abstract void set();
```

Set the current state as defined by the methods.

set(String)

```java
public abstract void set(
 String state);
```

Set the current state from the parameter.
Table 4.33 `set(String)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>the new state</td>
</tr>
</tbody>
</table>

**trace()**

```java
public abstract Dbug trace();
```

Set the trace flag.

Table 4.34 `trace()`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>this</td>
</tr>
</tbody>
</table>

4.3.1.14 DynamicObject

```java
public abstract class DynamicObject {
 // Public Constructors
 public DynamicObject();

 // Public Methods
 public final ColumnMetadata[] columnMetadata();
 public final DynamicObjectDelegate delegate();
 public final void delegate(DynamicObjectDelegate delegate);
 public Boolean found();
 public final Object get(int columnNumber);
 public final void set(int columnNumber, Object value);
 public String table();
}
```

Methods inherited from java.lang.Object: equals, getClass, hashCode, notify, notifyAll, toString, wait

4.3.1.15 DynamicObjectDelegate

```java
public interface DynamicObjectDelegate {
 // Public Methods
 public abstract ColumnMetadata[] columnMetadata();
 public abstract Boolean found();
 public abstract void found(Boolean found);
 public abstract Object get(int columnNumber);
 public abstract void release();
 public abstract void set(int columnNumber, Object value);
}
```
4.3.16 LockMode

Lock modes for read operations.

- **SHARED**: Set a shared lock on rows
- **EXCLUSIVE**: Set an exclusive lock on rows
- **READ_COMMITTED**: Set no locks but read the most recent committed values

**Synopsis**

```java
public final class LockMode,
 extends Enum<LockMode> { // Public Static Fields
 public static final LockMode
 EXCLUSIVE;
 public static final LockMode
 READ_COMMITTED;
 public static final LockMode
 SHARED;
 // Public Static Methods
 public static LockMode
 valueOf(String name);
 public static LockMode[]
 values();
}
```

Methods inherited from java.lang.Enum: compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Methods inherited from java.lang.Object: getClass, notify, notifyAll, wait

4.3.17 Query

A Query instance represents a specific query with bound parameters. The instance is created by the method

```java
com.mysql.clusterj.Session.<T>createQuery(com.mysql.clusterj.query.QueryDefinition<T>)
```

**Synopsis**

```java
public interface Query<E> { // Public Static Fields
 public static final String
 INDEX_USED = "IndexUsed";
 public static final String
 SCAN_TYPE = "ScanType";
 public static final String
 SCAN_TYPE_INDEX_SCAN = "INDEX_SCAN";
 public static final String
 SCAN_TYPE_PRIMARY_KEY
```
public static final String SCAN_TYPE_TABLE_SCAN = "TABLE_SCAN";

public static final String SCAN_TYPE_UNIQUE_KEY = "UNIQUE_KEY";

// Public Methods

public abstract int deletePersistentAll();

public abstract Results<E> execute(Object parameter);

public abstract Results<E> execute(Object[] parameters);

public abstract Results<E> execute(Map<String, ?> parameters);

public abstract Map<String, Object> explain();

public abstract List<E> getResultList();

public abstract void setLimits(long skip, long limit);

public abstract void setOrdering(Ordering ordering, String[] orderingFields);

public abstract void setParameter(String parameterName, Object value);

INDEX_USED

public static final String INDEX_USED = "IndexUsed";

The query explain index used key

SCAN_TYPE

public static final String SCAN_TYPE = "ScanType";

The query explain scan type key

SCAN_TYPE_INDEX_SCAN

public static final String SCAN_TYPE_INDEX_SCAN = "INDEX_SCAN";

The query explain scan type value for index scan

SCAN_TYPE_PRIMARY_KEY

public static final String SCAN_TYPE_PRIMARY_KEY = "PRIMARY_KEY";

618
The query explain scan type value for primary key

**SCAN_TYPE_TABLE_SCAN**

```java
public static final String
 SCAN_TYPE_TABLE_SCAN
 = "TABLE_SCAN";
```

The query explain scan type value for table scan

**SCAN_TYPE_UNIQUE_KEY**

```java
public static final String
 SCAN_TYPE_UNIQUE_KEY
 = "UNIQUE_KEY";
```

The query explain scan type value for unique key

`deletePersistentAll()`

```java
public abstract int deletePersistentAll();
```

Delete the instances that satisfy the query criteria.

**Table 4.35 deletePersistentAll()**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the number of instances deleted</td>
</tr>
</tbody>
</table>

`execute(Map<String, ?>)`

```java
public abstract Results<E> execute(
 Map<String, ?> parameters);
```

Execute the query with one or more named parameters. Parameters are resolved by name.

**Table 4.36 execute(Map<String, ?>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td>the parameters</td>
</tr>
<tr>
<td>return</td>
<td>the result</td>
</tr>
</tbody>
</table>

`execute(Object...)`

```java
public abstract Results<E> execute(
 Object[] parameters);
```

Execute the query with one or more parameters. Parameters are resolved in the order they were declared in the query.

**Table 4.37 execute(Object...)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td>the parameters</td>
</tr>
<tr>
<td>return</td>
<td>the result</td>
</tr>
</tbody>
</table>

`execute(Object)`

```java
public abstract Results<E> execute(
 Object parameter);
```

Execute the query with exactly one parameter.
Table 4.38 execute(Object)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter</td>
<td>the parameter</td>
</tr>
<tr>
<td>return</td>
<td>the result</td>
</tr>
</tbody>
</table>

**explain()**

```java
public abstract Map<String, Object> explain();
```

Explain how this query will be or was executed. If called before binding all parameters, throws ClusterJUserException. Return a map of key:value pairs that explain how the query will be or was executed. Details can be obtained by calling toString on the value. The following keys are returned:

- **ScanType**: the type of scan, with values:
  - PRIMARY_KEY: the query used key lookup with the primary key
  - UNIQUE_KEY: the query used key lookup with a unique key
  - INDEX_SCAN: the query used a range scan with a non-unique key
  - TABLE_SCAN: the query used a table scan
- **IndexUsed**: the name of the index used, if any

Table 4.39 explain()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the data about the execution of this query</td>
</tr>
</tbody>
</table>

**Exceptions**

- **ClusterJUserException**: if not all parameters are bound

**getResultSet()**

```java
public abstract List<E> getResultSet();
```

Get the results as a list.

Table 4.40 getResultSet()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the result</td>
</tr>
</tbody>
</table>

**Exceptions**

- **ClusterJUserException**: if not all parameters are bound
- **ClusterJDatastoreException**: if an exception is reported by the datastore

**setLimits(long, long)**

```java
public abstract void setLimits(
 long skip,
 long limit);
```

Set limits on results to return. The execution of the query is modified to return only a subset of results. If the filter would normally return 100 instances, skip is set to 50, and limit is set to 40, then the first 50 results that would have been returned are skipped, the next 40 results are returned and the remaining 10 results are ignored.
Skip must be greater than or equal to 0. Limit must be greater than or equal to 0. Limits may not be used with deletePersistentAll.

Table 4.41 setLimits(long, long)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>skip</td>
<td>the number of results to skip</td>
</tr>
<tr>
<td>limit</td>
<td>the number of results to return after skipping; use Long.MAX_VALUE for no limit.</td>
</tr>
</tbody>
</table>

setOrdering(Query.Ordering, String...)

```java
public abstract void setOrdering(
 Ordering ordering,
 String[] orderingFields);
```

Set ordering for the results of this query. The execution of the query is modified to use an index previously defined.

- There must be an index defined on the columns mapped to the ordering fields, in the order of the ordering fields.
- There must be no gaps in the ordering fields relative to the index.
- All ordering fields must be in the index, but not all fields in the index need be in the ordering fields.
- If an “in” predicate is used in the filter on a field in the ordering, it can only be used with the first field.
- If any of these conditions is violated, ClusterJUserException is thrown when the query is executed.

If an “in” predicate is used, each element in the parameter defines a separate range, and ordering is performed within that range. There may be a better (more efficient) index based on the filter, but specifying the ordering will force the query to use an index that contains the ordering fields.

Table 4.42 setOrdering(Query.Ordering, String...)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ordering</td>
<td>either Ordering.ASCENDING or Ordering.DESCENDING</td>
</tr>
<tr>
<td>orderingFields</td>
<td>the fields to order by</td>
</tr>
</tbody>
</table>

setParameter(String, Object)

```java
public abstract void setParameter(
 String parameterName,
 Object value);
```

Set the value of a parameter. If called multiple times for the same parameter, silently replace the value.

Table 4.43 setParameter(String, Object)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameterName</td>
<td>the name of the parameter</td>
</tr>
<tr>
<td>value</td>
<td>the value for the parameter</td>
</tr>
</tbody>
</table>

4.3.1.18 Query.Ordering

Ordering

Synopsis

```java
public static final class Query.Ordering,
```
extends Enum<Ordering> {
  // Public Static Fields
  public static final Ordering ASCENDING;
  public static final Ordering DESCENDING;
  // Public Static Methods
  public static Ordering.valueOf(String name);
  public static Ordering[] values();
}

Methods inherited from java.lang.Enum: compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Methods inherited from java.lang.Object: getClass, notify, notifyAll, wait

4.3.1.19 Results
Results of a query.

Synopsis

public interface Results<E>, extends Iterable<E> {
  // Public Methods
  public abstract Iterator<E> iterator();
}

iterator()

public abstract Iterator<E> iterator();

Specified by: Method iterator in interface Iterable

Get an iterator over the results of a query.

Table 4.44 iterator()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the iterator</td>
</tr>
</tbody>
</table>

4.3.1.20 Session

Session is the primary user interface to the cluster. Session extends AutoCloseable so it can be used in the try-with-resources pattern. This pattern allows the application to create a session in the try declaration and regardless of the outcome of the try/catch/finally block, clusterj will clean up and close the session. If the try block exits with an open transaction, the transaction will be rolled back before the session is closed.

Synopsis

public interface Session, extends AutoCloseable {
  // Public Methods
  public abstract void close();
  public abstract Query<T> createQuery();
}
QueryDefinition<T> qd);

public abstract Transaction currentTransaction();

public abstract void deletePersistent(
    Class<T> cls,
    Object key);

public abstract void deletePersistent(
    Object instance);

public abstract int deletePersistentAll(
    Class<T> cls);

public abstract void deletePersistentAll(
    Iterable<?> instances);

public abstract T find(
    Class<T> cls,
    Object key);

public abstract void flush();

public abstract Boolean found(
    Object instance);

public abstract QueryBuilder getQueryBuilder();

public abstract boolean isClosed();

public abstract T load(
    T instance);

public abstract T makePersistent(
    T instance);

public abstract Iterable<?> makePersistentAll(
    Iterable<?> instances);

public abstract void markModified(
    Object instance,
    String fieldName);

public abstract T newInstance(
    Class<T> cls);

public abstract T newInstance(
    Class<T> cls,
    Object key);

public abstract void persist(
    Object instance);

public abstract T release(
    T obj);

public abstract void remove(
    Object instance);

public abstract T savePersistent(
    T instance);

public abstract Iterable<?> savePersistentAll(
    Iterable<?> instances);

public abstract void setLockMode(
    LockMode lockmode);

public abstract void setPartitionKey(
    Class<?> cls,
    Object key);
public abstract String unloadSchema(Class<?> cls);
public abstract void updatePersistent(Object instance);
public abstract void updatePersistentAll(Iterable<?> instances);
}

close()
public abstract void close();

Specified by: Method close in interface AutoCloseable

createQuery(QueryDefinition<T>)
public abstract Query<T> createQuery(QueryDefinition<T> qd);

Create a Query from a QueryDefinition.

Table 4.45 createQuery(QueryDefinition<T>)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>qd</td>
<td>the query definition</td>
</tr>
<tr>
<td>return</td>
<td>the query instance</td>
</tr>
</tbody>
</table>

currentTransaction()
public abstract Transaction currentTransaction();

Get the current com.mysql.clusterj.Transaction.

Table 4.46 currentTransaction()
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the transaction</td>
</tr>
</tbody>
</table>

deletePersistent(Class<T>, Object)
public abstract void deletePersistent(Class<T> cls, Object key);

Delete an instance of a class from the database given its primary key. For single-column keys, the key parameter is a wrapper (e.g. Integer). For multi-column keys, the key parameter is an Object[] in which elements correspond to the primary keys in order as defined in the schema.

Table 4.47 deletePersistent(Class<T>, Object)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the interface or dynamic class</td>
</tr>
<tr>
<td>key</td>
<td>the primary key</td>
</tr>
</tbody>
</table>

deletePersistent(Object)
Delete the instance from the database. Only the id field is used to determine which instance is to be deleted. If the instance does not exist in the database, an exception is thrown.

**Table 4.48 deletePersistent(Object)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance to delete</td>
</tr>
</tbody>
</table>

**deletePersistentAll(Class<T>)**

```java
public abstract int deletePersistentAll(
 Class<T> cls);
```

Delete all instances of this class from the database. No exception is thrown even if there are no instances in the database.

**Table 4.49 deletePersistentAll(Class<T>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the interface or dynamic class</td>
</tr>
<tr>
<td>return</td>
<td>the number of instances deleted</td>
</tr>
</tbody>
</table>

**deletePersistentAll(Iterable<?>)**

```java
public abstract void deletePersistentAll(
 Iterable<?> instances);
```

Delete all parameter instances from the database.

**Table 4.50 deletePersistentAll(Iterable<?>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instances</td>
<td>the instances to delete</td>
</tr>
</tbody>
</table>

**find(Class<T>, Object)**

```java
public abstract T find(
 Class<T> cls,
 Object key);
```

Find a specific instance by its primary key. The key must be of the same type as the primary key defined by the table corresponding to the cls parameter. The key parameter is the wrapped version of the primitive type of the key, e.g. Integer for INT key types, Long for BIGINT key types, or String for char and varchar types. For multi-column primary keys, the key parameter is an Object[], each element of which is a component of the primary key. The elements must be in the order of declaration of the columns (not necessarily the order defined in the CONSTRAINT ... PRIMARY KEY clause) of the CREATE TABLE statement.

**Table 4.51 find(Class<T>, Object)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the interface or dynamic class to find an instance of</td>
</tr>
<tr>
<td>key</td>
<td>the key of the instance to find</td>
</tr>
<tr>
<td>return</td>
<td>the instance of the interface or dynamic class with the specified key</td>
</tr>
</tbody>
</table>

**flush()**

```java
public abstract void flush();
```
Flush deferred changes to the back end. Inserts, deletes, loads, and updates are sent to the back end.

**found(Object)**

```java
public abstract Boolean found(Object instance);
```

Was the row corresponding to this instance found in the database?

**Table 4.52 found(Object)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance corresponding to the row in the database</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>return</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• null if the instance is null or was created via newInstance and never loaded;</td>
<td></td>
</tr>
<tr>
<td>• true if the instance was returned from a find or query or created via newInstance and successfully loaded;</td>
<td></td>
</tr>
<tr>
<td>• false if the instance was created via newInstance and not found.</td>
<td></td>
</tr>
</tbody>
</table>

*See Also*  
load(T)  , newInstance(java.lang.Class<T>, java.lang.Object)

**getQueryBuilder()**

```java
public abstract QueryBuilder getQueryBuilder();
```

Get a QueryBuilder.

**Table 4.53 getQueryBuilder()**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the query builder</td>
</tr>
</tbody>
</table>

**isClosed()**

```java
public abstract boolean isClosed();
```

Is this session closed?

**Table 4.54 isClosed()**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>true if the session is closed</td>
</tr>
</tbody>
</table>

**load(T)**

```java
public abstract T load(T instance);
```

Load the instance from the database into memory. Loading is asynchronous and will be executed when an operation requiring database access is executed: find, flush, or query. The instance must have been returned from find or query; or created via session.newInstance and its primary key initialized.

**Table 4.55 load(T)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance to load</td>
</tr>
<tr>
<td>return</td>
<td>the instance</td>
</tr>
</tbody>
</table>

*See Also*  
found(java.lang.Object)
### makePersistent(T)

```java
public abstract T makePersistent(T instance);
```

Insert the instance into the database. If the instance already exists in the database, an exception is thrown.

**Table 4.56 makePersistent(T)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance to insert</td>
</tr>
<tr>
<td>return</td>
<td>the instance</td>
</tr>
</tbody>
</table>

**See Also**

- `savePersistent(T)`

### makePersistentAll(Iterable<?>)

```java
public abstract Iterable<?> makePersistentAll(Iterable<?> instances);
```

Insert the instances into the database.

**Table 4.57 makePersistentAll(Iterable<?>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instances</td>
<td>the instances to insert.</td>
</tr>
<tr>
<td>return</td>
<td>the instances</td>
</tr>
</tbody>
</table>

### markModified(Object, String)

```java
public abstract void markModified(Object instance, String fieldName);
```

Mark the field in the object as modified so it is flushed.

**Table 4.58 markModified(Object, String)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the persistent instance</td>
</tr>
<tr>
<td>fieldName</td>
<td>the field to mark as modified</td>
</tr>
</tbody>
</table>

### newInstance(Class<T>)

```java
public abstract T newInstance(Class<T> cls);
```

Create an instance of an interface or dynamic class that maps to a table.

**Table 4.59 newInstance(Class<T>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the interface for which to create an instance</td>
</tr>
<tr>
<td>return</td>
<td>an instance that implements the interface</td>
</tr>
</tbody>
</table>

### newInstance(Class<T>, Object)

```java
public abstract T newInstance(Class<T> cls, Object key);
```
Create an instance of an interface or dynamic class that maps to a table and set the primary key of the new instance. The new instance can be used to create, delete, or update a record in the database.

**Table 4.60 newInstance(Class<T>, Object)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the interface for which to create an instance</td>
</tr>
<tr>
<td>return</td>
<td>an instance that implements the interface</td>
</tr>
</tbody>
</table>

**persist(Object)**

```java
class com.mysql.clusterj
```

public abstract void persist(
    Object instance);

Insert the instance into the database. This method has identical semantics to makePersistent.

**Table 4.61 persist(Object)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance to insert</td>
</tr>
</tbody>
</table>

**release(T)**

```java
class com.mysql.clusterj
```

public abstract T release(
    T obj);

Release resources associated with an instance. The instance must be a domain object obtained via session.newInstance(T.class), find(T.class), or query; or Iterable, or array T[]. Resources released can include direct buffers used to hold instance data. Released resources may be returned to a pool.

**Table 4.62 release(T)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj</td>
<td>a domain object of type T, an Iterable, or array T[]</td>
</tr>
<tr>
<td>return</td>
<td>the input parameter</td>
</tr>
</tbody>
</table>

**Exceptions**

- **ClusterJUserException** if the instance is not a domain object T, Iterable, or array T[], or if the object is used after calling this method.

**remove(Object)**

```java
class com.mysql.clusterj
```

public abstract void remove(
    Object instance);

Delete the instance from the database. This method has identical semantics to deletePersistent.

**Table 4.63 remove(Object)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance to delete</td>
</tr>
</tbody>
</table>

**savePersistent(T)**

```java
class com.mysql.clusterj
```

public abstract T savePersistent(
    T instance);

Save the instance in the database without checking for existence. The id field is used to determine which instance is to be saved. If the instance exists in the database it will be updated. If the instance does not exist, it will be created.
Table 4.64 `savePersistent(T)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance to update</td>
</tr>
</tbody>
</table>

`savePersistentAll(Iterable<?>)`

```java
public abstract Iterable<?> savePersistentAll(Iterable<?> instances);
```

Update all parameter instances in the database.

Table 4.65 `savePersistentAll(Iterable<?>)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instances</td>
<td>the instances to update</td>
</tr>
</tbody>
</table>

`setLockMode(LockMode)`

```java
public abstract void setLockMode(LockMode lockmode);
```

Set the lock mode for read operations. This will take effect immediately and will remain in effect until this session is closed or this method is called again.

Table 4.66 `setLockMode(LockMode)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lockmode</td>
<td>the LockMode</td>
</tr>
</tbody>
</table>

`setPartitionKey(Class<?>, Object)`

```java
public abstract void setPartitionKey(Class<?> cls,
 Object key);
```

Set the partition key for the next transaction. The key must be of the same type as the primary key defined by the table corresponding to the `cls` parameter. The key parameter is the wrapped version of the primitive type of the key, e.g. `Integer` for `INT` key types, `Long` for `BIGINT` key types, or `String` for `char` and `varchar` types. For multi-column primary keys, the key parameter is an `Object[]`, each element of which is a component of the primary key. The elements must be in the order of declaration of the columns (not necessarily the order defined in the `CONSTRAINT ... PRIMARY KEY` clause) of the `CREATE TABLE` statement.

Table 4.67 `setPartitionKey(Class<?>, Object)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>the primary key of the mapped table</td>
</tr>
</tbody>
</table>

Exceptions

- `ClusterJUserException` if a transaction is enlisted
- `ClusterJUserException` if a partition key is null
- `ClusterJUserException` if called twice in the same transaction
- `ClusterJUserException` if a partition key is the wrong type

`unloadSchema(Class<?>)`

```java
public abstract String unloadSchema(Class<?> cls);
```
Unload the schema definition for a class. This must be done after the schema definition has changed in the database due to an alter table command. The next time the class is used the schema will be reloaded.

**Table 4.68 unloadSchema(Class<?>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the class for which the schema is unloaded</td>
</tr>
<tr>
<td>return</td>
<td>the name of the schema that was unloaded</td>
</tr>
</tbody>
</table>

**updatePersistent(Object)**

```java
public abstract void updatePersistent(
 Object instance);
```

Update the instance in the database without necessarily retrieving it. The id field is used to determine which instance is to be updated. If the instance does not exist in the database, an exception is thrown. This method cannot be used to change the primary key.

**Table 4.69 updatePersistent(Object)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance</td>
<td>the instance to update</td>
</tr>
</tbody>
</table>

**updatePersistentAll(Iterable<?>)**

```java
public abstract void updatePersistentAll(
 Iterable<?> instances);
```

Update all parameter instances in the database.

**Table 4.70 updatePersistentAll(Iterable<?>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>instances</td>
<td>the instances to update</td>
</tr>
</tbody>
</table>

**4.3.1.21 SessionFactory**

SessionFactory represents a cluster.

**Synopsis**

```java
public interface SessionFactory {
 // Public Methods
 public abstract void close();
 public abstract State currentState();
 public abstract List<Integer> getConnectionPoolSessionCounts();
 public abstract int getRecvThreadActivationThreshold();
 public abstract short[] getRecvThreadCPUIds();
 public abstract Session getSession();
 public abstract Session getSession(Map properties);
 public abstract void reconnect();
 public abstract void reconnect(int timeout);
```
public abstract void setRecvThreadActivationThreshold(int threshold);
public abstract void setRecvThreadCPUids(short[] cpuids);
}

close()

public abstract void close();

Close this session factory. Release all resources. Set the current state to Closed. When closed, calls to getSession will throw ClusterJUserException.

currentState()

public abstract State currentState();

Get the current state of this session factory.

Since 7.5.7

See Also com.mysql.clusterj.SessionFactory.State

getConnectionPoolSessionCounts()

public abstract List<Integer> getConnectionPoolSessionCounts();

Get a list containing the number of open sessions for each connection in the connection pool.

Since 7.3.14, 7.4.12, 7.5.2

getRecvThreadActivationThreshold()

public abstract int getRecvThreadActivationThreshold();

Get the receive thread activation threshold for all connections in the connection pool. 16 or higher means that receive threads are never used as receivers. 0 means that the receive thread is always active, and that retains poll rights for its own exclusive use, effectively blocking all user threads from becoming receivers. In such cases care should be taken to ensure that the receive thread does not compete with the user thread for CPU resources; it is preferable for it to be locked to a CPU for its own exclusive use. The default is 8.

Since 7.5.7

getRecvThreadCPUids()

public abstract short[] getRecvThreadCPUids();

Get receive thread bindings to cpus for all connections in the connection pool. If a receive thread is not bound to a cpu, the corresponding value will be -1.

Since 7.5.7

getSession()

public abstract Session getSession();

Create a Session to use with the cluster, using all the properties of the SessionFactory.

Table 4.71 getSession()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the session</td>
</tr>
</tbody>
</table>
getSession(Map)

```java
public abstract Session getSession(
 Map properties);
```

Create a session to use with the cluster, overriding some properties. Properties
PROPERTY_CLUSTER_CONNECTSTRING, PROPERTY_CLUSTER_DATABASE, and
PROPERTY_CLUSTER_MAX_TRANSACTIONS may not be overridden.

Table 4.72 getSession(Map)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>properties</td>
<td>overriding some properties for this session</td>
</tr>
<tr>
<td>return</td>
<td>the session</td>
</tr>
</tbody>
</table>

reconnect()

```java
public abstract void reconnect();
```

Reconnect this session factory using the most recent timeout value specified. The timeout may have
been specified in the original session factory properties or may have been changed by an application
call to reconnect(int timeout).

See Also
reconnect(int)

Since
7.5.7

reconnect(int)

```java
public abstract void reconnect(
 int timeout);
```

Disconnect and reconnect this session factory using the specified timeout value and change the
saved timeout value. This is a heavyweight method and should be used rarely. It is intended for
cases where the process in which clusterj is running has lost connectivity to the cluster and is not
able to function normally. Reconnection is done in several phases. First, the session factory is set to
state Reconnecting and a reconnect thread is started to manage the reconnection procedure. In the
Reconnecting state, the getSession methods throw ClusterJUserException and the connection pool
is quiesced until all sessions have closed. If sessions fail to close normally after timeout seconds, the
sessions are forced to close. Next, all connections in the connection pool are closed, which frees their
connection slots in the cluster. Finally, the connection pool is recreated using the original connection
pool properties and the state is set to Open. The reconnection procedure is asynchronous. To observe
the progress of the procedure, use the methods currentState and getConnectionPoolSessionCounts. If
the timeout value is non-zero, automatic reconnection will be done by the clusterj implementation upon
recognizing that a network failure has occurred. If the timeout value is 0, automatic reconnection is
disabled. If the current state of this session factory is Reconnecting, this method silently does nothing.

Table 4.73 reconnect(int)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>the timeout value in seconds; 0 to disable automatic reconnection</td>
</tr>
</tbody>
</table>

Since
7.5.7

setRecvThreadActivationThreshold(int)

```java
public abstract void setRecvThreadActivationThreshold(
 int threshold);
```

Set the receive thread activation threshold for all connections in the connection pool. 16 or higher
means that receive threads are never used as receivers. 0 means that the receive thread is always
active, and that retains poll rights for its own exclusive use, effectively blocking all user threads from becoming receivers. In such cases care should be taken to ensure that the receive thread does not compete with the user thread for CPU resources; it is preferable for it to be locked to a CPU for its own exclusive use. The default is 8.

Exceptions

ClusterJUserException if the value is negative
ClusterJFatalInternalException if the method fails due to some internal reason.

Since 7.5.7

setRecvThreadCPUIds(short[])

Bind receive threads to cpuids for all connections in the connection pool. Specify -1 to unset receive thread cpu binding for a connection. The cpuid must be between 0 and the number of cpus in the machine.

Exceptions

ClusterJUserException if the cpuid is illegal or if the number of elements in cpuids is not equal to the number of connections in the connection pool.
ClusterJFatalInternalException if the binding fails due to some internal reason.

Since 7.5.7

4.3.1.22 SessionFactory.State

State of this session factory

Synopsis

```java
public static final class SessionFactory.State,
 extends Enum<State> {

 // Public Static Fields
 public static final State Closed;
 public static final State Open;
 public static final State Reconnecting;

 // Public Static Methods
 public static State valueOf(String name);
 public static State[] values();
}
```

Methods inherited from java.lang.Enum: compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Methods inherited from java.lang.Object: getClass, notify, notifyAll, wait

Since 7.5.7

4.3.1.23 SessionFactoryService
This interface defines the service to create a SessionFactory from a Map<String, String> of properties.

**Synopsis**

```java
public interface SessionFactoryService {
 // Public Methods
 public abstract SessionFactory getSessionFactory(
 Map<String, String> props);
}
```

`getSessionFactory(Map<String, String>)`

```java
public abstract SessionFactory getSessionFactory(
 Map<String, String> props);
```

Create or get a session factory. If a session factory with the same value for PROPERTY_CLUSTER_CONNECTSTRING has already been created in the VM, the existing factory is returned, regardless of whether other properties of the factory are the same as specified in the Map.

**Table 4.74 getSessionFactory(Map<String, String>)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>props</td>
<td>the properties for the session factory, in which the keys are defined in Constants and the values describe the environment</td>
</tr>
<tr>
<td>return</td>
<td>the session factory</td>
</tr>
</tbody>
</table>

**See Also**  
com.mysql.clusterj.Constants

### 4.3.1.24 Transaction

Transaction represents a user transaction active in the cluster.

**Synopsis**

```java
public interface Transaction {
 // Public Methods
 public abstract void begin();
 public abstract void commit();
 public abstract boolean getRollbackOnly();
 public abstract boolean isActive();
 public abstract void rollback();
 public abstract void setRollbackOnly();
}
```

**begin()**

```java
public abstract void begin();
```

Begin a transaction.

**commit()**

```java
public abstract void commit();
```

Commit a transaction.
getRollbackOnly()

```java
public abstract boolean getRollbackOnly();
```

Has this transaction been marked for rollback only?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>true if the transaction has been marked for rollback only</td>
</tr>
</tbody>
</table>

isActive()

```java
public abstract boolean isActive();
```

Is there a transaction currently active?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>true if a transaction is active</td>
</tr>
</tbody>
</table>

rollback()

```java
public abstract void rollback();
```

Roll back a transaction.

setRollbackOnly()

```java
public abstract void setRollbackOnly();
```

Mark this transaction as rollback only. After this method is called, commit() will roll back the transaction and throw an exception; rollback() will roll back the transaction and not throw an exception.

4.3.2 com.mysql.clusterj.annotation

This package provides annotations for domain object model interfaces mapped to database tables.

4.3.2.1 Column

Annotation for a column in the database.

Synopsis

```java
@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention

class Column {
 public String name ;
 public String allowsNull ;
 public String defaultValue ;
}
```

allowsNull

Whether the column allows null values to be inserted. This overrides the database definition and requires that the application provide non-null values for the database column.
Table 4.77 allowsNull

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>whether the column allows null values to be inserted</td>
</tr>
</tbody>
</table>

defaultValue

Default value for this column.

Table 4.78 defaultValue

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the default value for this column</td>
</tr>
</tbody>
</table>

name

Name of the column.

Table 4.79 name

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the name of the column</td>
</tr>
</tbody>
</table>

4.3.2.2 Columns

Annotation for a group of columns. This annotation is used for multi-column structures such as indexes and keys.

Synopsis

```java
@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD, java.lang.annotation.ElementType.TYPE}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Columns {
 public Column[] value ;
}
```

value

The columns annotation information.

Table 4.80 value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the columns</td>
</tr>
</tbody>
</table>

4.3.2.3 Extension

Annotation for a non-standard extension.

Synopsis

```java
@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) public @interface Extension {
 public String vendorName ;
 public String key ;
 public String value ;
}
```
key

The key for the extension (required).

Table 4.81 key

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the key</td>
</tr>
</tbody>
</table>

value

The value for the extension (required).

Table 4.82 value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the value</td>
</tr>
</tbody>
</table>

vendorName

Vendor that the extension applies to (required to make the key unique).

Table 4.83 vendorName

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the vendor</td>
</tr>
</tbody>
</table>

4.3.2.4 Extensions

Annotation for a group of extensions.

Synopsis

```java
@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD})
@Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME)
public @interface Extensions {
 Extension[] value ;
}
```

value

The extensions.

Table 4.84 value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the extensions</td>
</tr>
</tbody>
</table>

4.3.2.5 Index

Annotation for a database index.

Synopsis

```java
@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD})
public String
name ;
```
public String unique;
public Column[] columns;
}

columns

Columns that compose this index.

Table 4.85 columns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>columns that compose this index</td>
</tr>
</tbody>
</table>

name

Name of the index

Table 4.86 name

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the name of the index</td>
</tr>
</tbody>
</table>

unique

Whether this index is unique

Table 4.87 unique

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>whether this index is unique</td>
</tr>
</tbody>
</table>

4.3.2.6 Indices

Annotation for a group of indices. This is used on a class where there are multiple indices defined.

Synopsis

```java
@Target(value=java.lang.annotation.ElementType.TYPE) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Indices {
 public Index[] value;
}
```

columns

The indices.

Table 4.88 value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>The indices</td>
</tr>
</tbody>
</table>

4.3.2.7 Lob

Annotation for a Large Object (lob). This annotation can be used with byte[] and InputStream types for binary columns; and with String and InputStream types for character columns.
Synopsis

@Target({java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Lob {
}

4.3.2.8 NotPersistent

Annotation to specify that the member is not persistent. If used, this is the only annotation allowed on a member.

Synopsis

@Target({java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface NotPersistent {
}

4.3.2.9 NullValue

Enumeration of the "null-value" behavior values. This behavior is specified in the @Persistent annotation.

Synopsis

public final class NullValue, extends Enum<NullValue> {
    // Public Static Fields
    public static final NullValue DEFAULT;
    public static final NullValue EXCEPTION;
    public static final NullValue NONE;
    // Public Static Methods
    public static NullValue valueOf(String name);
    public static NullValue[] values();
}

Methods inherited from java.lang.Enum: compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf

Methods inherited from java.lang.Object: getClass, notify, notifyAll, wait

4.3.2.10 PartitionKey

Annotation on a class or member to define the partition key. If annotating a class or interface, either a single column or multiple columns can be specified. If annotating a member, neither column nor columns should be specified.

Synopsis

@Target({java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) public @interface PartitionKey {
    public String column;
    public Column[] columns;
}
column

Name of the column to use for the partition key

Table 4.89 column

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the name of the column to use for the partition key</td>
</tr>
</tbody>
</table>

columns

The column(s) for the partition key

Table 4.90 columns

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the column(s) for the partition key</td>
</tr>
</tbody>
</table>

4.3.2.11 PersistenceCapable

Annotation for whether the class or interface is persistence-capable.

Synopsis

```java
@Target(value=java.lang.annotation.ElementType.TYPE) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface PersistenceCapable {
 public String table ;
 public String database ;
 public String schema ;
}
```

4.3.2.12 PersistenceModifier

Enumeration of the persistence-modifier values for a member.

Synopsis

```java
public final class PersistenceModifier, extends Enum<PersistenceModifier> {
 // Public Static Fields
 public static final PersistenceModifier NONE ;
 public static final PersistenceModifier PERSISTENT ;
 public static final PersistenceModifier UNSPECIFIED ;
 // Public Static Methods
 public static PersistenceModifier valueOf(String name);
 public static PersistenceModifier[] values();
}
```

Methods inherited from java.lang.Enum: compareTo, equals, getDeclaringClass, hashCode, name, ordinal, toString, valueOf
Methods inherited from java.lang.Object: getClass, notify, notifyAll, wait

4.3.2.13 Persistent

Annotation for defining the persistence of a member.

Synopsis

```java
@Target(value={java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD}) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME) public @interface Persistent {
 public String nullValue;
 public String primaryKey;
 public String column;
 public Extension[] extensions;
}
```

column

Column name where the values are stored for this member.

Table 4.91 column

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the name of the column</td>
</tr>
</tbody>
</table>

extensions

Non-standard extensions for this member.

Table 4.92 extensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the non-standard extensions</td>
</tr>
</tbody>
</table>

nullValue

Behavior when this member contains a null value.

Table 4.93 nullValue

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the behavior when this member contains a null value</td>
</tr>
</tbody>
</table>

primaryKey

Whether this member is part of the primary key for the table. This is equivalent to specifying @PrimaryKey as a separate annotation on the member.

Table 4.94 primaryKey

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>whether this member is part of the primary key</td>
</tr>
</tbody>
</table>

4.3.2.14 PrimaryKey
Annotation on a member to define it as a primary key member of a class or persistent interface.

**Synopsis**

```java
@Target(value={java.lang.annotation.ElementType.TYPE, java.lang.annotation.ElementType.FIELD, java.lang.annotation.ElementType.METHOD})
@Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME)
public @interface PrimaryKey {
 public String name;
 public String column;
 public Column[] columns;
}
```

column

Name of the column to use for the primary key

**Table 4.95 column**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the name of the column to use for the primary key</td>
</tr>
</tbody>
</table>

columns

The column(s) for the primary key

**Table 4.96 columns**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the column(s) for the primary key</td>
</tr>
</tbody>
</table>

name

Name of the primary key constraint

**Table 4.97 name**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the name of the primary key constraint</td>
</tr>
</tbody>
</table>

**4.3.2.15 Projection**

Annotation on a type to define it as a projection of a table. Only the columns mapped to persistent fields/methods will be used when performing operations on the table.

**Synopsis**

```java
@Target(value=java.lang.annotation.ElementType.TYPE) @Retention(value=java.lang.annotation.RetentionPolicy.RUNTIME)
```

**4.3.3 com.mysql.clusterj.query**

Provides interfaces for building queries for ClusterJ.

**4.3.3.1 Predicate**

Used to combine multiple predicates with boolean operations.
Synopsis

public interface Predicate {
    // Public Methods
    public abstract Predicate and(Predicate predicate);
    public abstract Predicate not();
    public abstract Predicate or(Predicate predicate);
}

and(Predicate)

public abstract Predicate and(Predicate predicate);

Combine this Predicate with another, using the "and" semantic.

Table 4.98 and(Predicate)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicate</td>
<td>the other predicate</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate combining both Predicates</td>
</tr>
</tbody>
</table>

not()

public abstract Predicate not();

Negate this Predicate.

Table 4.99 not()

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>this predicate</td>
</tr>
</tbody>
</table>

or(Predicate)

public abstract Predicate or(Predicate predicate);

Combine this Predicate with another, using the "or" semantic.

Table 4.100 or(Predicate)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicate</td>
<td>the other predicate</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate combining both Predicates</td>
</tr>
</tbody>
</table>

4.3.3.2 PredicateOperand

PredicateOperand represents a column or parameter that can be compared to another

Synopsis

public interface PredicateOperand {
    // Public Methods
    public abstract Predicate between();
}
between(PredicateOperand, PredicateOperand)

public abstract Predicate between(
    PredicateOperand lower,
    PredicateOperand upper);

Return a Predicate representing comparing this to another using "between" semantics.

Table 4.101 between(PredicateOperand, PredicateOperand)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower</td>
<td>another PredicateOperand</td>
</tr>
<tr>
<td>upper</td>
<td>another PredicateOperand</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate</td>
</tr>
</tbody>
</table>

equal(PredicateOperand)

public abstract Predicate equal(
    PredicateOperand other);

Return a Predicate representing comparing this to another using "equal to" semantics.

Table 4.102 equal(PredicateOperand)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>the other PredicateOperand</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate</td>
</tr>
</tbody>
</table>

greaterEqual(PredicateOperand)

public abstract Predicate greaterEqual(
    PredicateOperand other);

Return a Predicate representing comparing this to another using "greater than or equal to" semantics.
### greaterEqual(PredicateOperand)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>the other PredicateOperand</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate</td>
</tr>
</tbody>
</table>

### greaterThan(PredicateOperand)

```java
public abstract Predicate greaterThan(
 PredicateOperand other);
```

Return a Predicate representing comparing this to another using "greater than" semantics.

### in(PredicateOperand)

```java
public abstract Predicate in(
 PredicateOperand other);
```

Return a Predicate representing comparing this to a collection of values using "in" semantics.

### isNotNull()

```java
public abstract Predicate isNotNull();
```

Return a Predicate representing comparing this to not null.

### isNull()

```java
public abstract Predicate isNull();
```

Return a Predicate representing comparing this to null.

### lessEqual(PredicateOperand)

```java
public abstract Predicate lessEqual(
 PredicateOperand other);
```

Return a Predicate representing comparing this to another using "less than or equal to" semantics.
Table 4.108 `lessEqual(PredicateOperand)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>the other PredicateOperand</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate</td>
</tr>
</tbody>
</table>

`lessThan(PredicateOperand)`

```java
public abstract Predicate lessThan(
 PredicateOperand other);
```

Return a Predicate representing comparing this to another using "less than" semantics.

Table 4.109 `lessThan(PredicateOperand)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>the other PredicateOperand</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate</td>
</tr>
</tbody>
</table>

`like(PredicateOperand)`

```java
public abstract Predicate like(
 PredicateOperand other);
```

Return a Predicate representing comparing this to another using "like" semantics.

Table 4.110 `like(PredicateOperand)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>other</td>
<td>another PredicateOperand</td>
</tr>
<tr>
<td>return</td>
<td>a new Predicate</td>
</tr>
</tbody>
</table>

4.3.3.3 QueryBuilder

QueryBuilder represents a factory for queries.

Synopsis

```java
public interface QueryBuilder {
 // Public Methods
 public abstract QueryDomainType<T> createQueryDefinition(
 Class<T> cls);
}
```

See Also: `getQueryBuilder()`

`createQueryDefinition(Class<T>)`

```java
public abstract QueryDomainType<T> createQueryDefinition(
 Class<T> cls);
```

Create a QueryDefinition to define queries.

Table 4.111 `createQueryDefinition(Class<T>)`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cls</td>
<td>the class of the type to be queried</td>
</tr>
<tr>
<td>return</td>
<td>the QueryDomainType to define the query</td>
</tr>
</tbody>
</table>
4.3.3.4 QueryDefinition

QueryDefinition allows users to define queries.

Synopsis

```java
public interface QueryDefinition<E> {
 // Public Methods
 public abstract Predicate not(Predicate predicate);
 public abstract PredicateOperand param(String parameterName);
 public abstract QueryDefinition<E> where(Predicate predicate);
}
```

**not(Predicate)**

```java
public abstract Predicate not(Predicate predicate);
```

Convenience method to negate a predicate.

**Table 4.112 not(Predicate)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicate</td>
<td>the predicate to negate</td>
</tr>
<tr>
<td>return</td>
<td>the inverted predicate</td>
</tr>
</tbody>
</table>

**param(String)**

```java
public abstract PredicateOperand param(String parameterName);
```

Specify a parameter for the query.

**Table 4.113 param(String)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameterName</td>
<td>the name of the parameter</td>
</tr>
<tr>
<td>return</td>
<td>the PredicateOperand representing the parameter</td>
</tr>
</tbody>
</table>

**where(Predicate)**

```java
public abstract QueryDefinition<E> where(Predicate predicate);
```

Specify the predicate to satisfy the query.

**Table 4.114 where(Predicate)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predicate</td>
<td>the Predicate</td>
</tr>
<tr>
<td>return</td>
<td>this query definition</td>
</tr>
</tbody>
</table>

4.3.3.5 QueryDomainType

QueryDomainType represents the domain type of a query. The domain type validates property names that are used to filter results.
Synopsis

```java
public interface QueryDomainType<E>,
 extends QueryDefinition<E> {
 // Public Methods
 public abstract PredicateOperand get(
 String propertyName);
 public abstract Class<E> getType();
}
```

**get(String)**

```
public abstract PredicateOperand get(
 String propertyName);
```

Get a PredicateOperand representing a property of the domain type.

**Table 4.115 get(String)**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>propertyName</td>
<td>the name of the property</td>
</tr>
<tr>
<td>return</td>
<td>a representation the value of the property</td>
</tr>
</tbody>
</table>

**getType()**

```
public abstract Class<E> getType();
```

Get the domain type of the query.

**Table 4.116 getType()**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>the domain type of the query</td>
</tr>
</tbody>
</table>

### 4.3.4 Constant field values

**4.3.4.1 com.mysql.clusterj.***

**Table 4.117 com.mysql.clusterj.***

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES</td>
<td>&quot;256, 10240, 102400, 1048576&quot;</td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_DATABASE</td>
<td>&quot;test&quot;</td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CONNECTION_POOL_SIZE</td>
<td></td>
</tr>
<tr>
<td>DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT</td>
<td></td>
</tr>
<tr>
<td>ENV_CLUSTERJ_LOGGER_FACTORY_NAME</td>
<td>&quot;CLUSTERJ_LOGGER_FACTORY&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES</td>
<td>&quot;mysql.clusterj.byte.buffer.pool.sizes&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECTION_SERVICE</td>
<td>&quot;com.mysql.clusterj.connection.service&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECTSTRING</td>
<td>&quot;com.mysql.clusterj.connectstring&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE</td>
<td>&quot;com.mysql.clusterj.connect.autoincrement.batchsize&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_OFFSET</td>
<td>&quot;com.mysql.clusterj.connect.autoincrement.offset&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_INCREMENT</td>
<td>&quot;com.mysql.clusterj.connect.autoincrement.increment&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_DELAY</td>
<td>&quot;com.mysql.clusterj.connect.delay&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_RETRIES</td>
<td>&quot;com.mysql.clusterj.connect.retries&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER</td>
<td>&quot;com.mysql.clusterj.connect.timeout.after&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE</td>
<td>&quot;com.mysql.clusterj.connect.timeout.before&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM</td>
<td>&quot;com.mysql.clusterj.connect.timeout.mgm&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_CONNECT_VERBOSE</td>
<td>&quot;com.mysql.clusterj.connect.verbose&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_DATABASE</td>
<td>&quot;com.mysql.clusterj.database&quot;</td>
</tr>
<tr>
<td>PROPERTY_CLUSTER_MAX_TRANSACTIONS</td>
<td>&quot;com.mysql.clusterj.max.transactions&quot;</td>
</tr>
<tr>
<td>PROPERTY_CONNECTION_POOL_NODEIDS</td>
<td>&quot;com.mysql.clusterj.connection.pool.nodeids&quot;</td>
</tr>
<tr>
<td>PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD</td>
<td>&quot;com.mysql.clusterj.connection.pool.recv.thread.activation.threshold&quot;</td>
</tr>
<tr>
<td>PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS</td>
<td>&quot;com.mysql.clusterj.connection.pool.recv.thread.cpuids&quot;</td>
</tr>
<tr>
<td>PROPERTY_CONNECTION_POOL_SIZE</td>
<td>&quot;com.mysql.clusterj.connection.pool.size&quot;</td>
</tr>
<tr>
<td>PROPERTY_CONNECTION_RECONNECT_TIMEOUT</td>
<td>&quot;com.mysql.clusterj.connection.reconnect.timeout&quot;</td>
</tr>
<tr>
<td>PROPERTY_DEFER_CHANGES</td>
<td>&quot;com.mysql.clusterj.defer.changes&quot;</td>
</tr>
<tr>
<td>PROPERTY_JDBC_DRIVER_NAME</td>
<td>&quot;com.mysql.clusterj.jdbc.driver&quot;</td>
</tr>
<tr>
<td>PROPERTY_JDBC_PASSWORD</td>
<td>&quot;com.mysql.clusterj.jdbc.password&quot;</td>
</tr>
<tr>
<td>PROPERTY_JDBC_URL</td>
<td>&quot;com.mysql.clusterj.jdbc.url&quot;</td>
</tr>
<tr>
<td>PROPERTY_JDBC_USERNAME</td>
<td>&quot;com.mysql.clusterj.jdbc.username&quot;</td>
</tr>
<tr>
<td>SESSION_FACTORY_SERVICE_CLASS_NAME</td>
<td>&quot;META-INF/services/com.mysql.clusterjSessionFactoryService&quot;</td>
</tr>
<tr>
<td>SESSION_FACTORY_SERVICE_FILE_NAME</td>
<td>&quot;META-INF/services/com.mysql.clusterjSessionFactoryService&quot;</td>
</tr>
</tbody>
</table>

Table 4.118 com.mysql.clusterj.*

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX_USED</td>
<td>&quot;IndexUsed&quot;</td>
</tr>
<tr>
<td>SCAN_TYPE</td>
<td>&quot;ScanType&quot;</td>
</tr>
<tr>
<td>SCAN_TYPE_INDEX_SCAN</td>
<td>&quot;INDEX_SCAN&quot;</td>
</tr>
<tr>
<td>SCAN_TYPE_PRIMARY_KEY</td>
<td>&quot;PRIMARY_KEY&quot;</td>
</tr>
<tr>
<td>SCAN_TYPE_TABLE_SCAN</td>
<td>&quot;TABLE_SCAN&quot;</td>
</tr>
<tr>
<td>SCAN_TYPE_UNIQUE_KEY</td>
<td>&quot;UNIQUE_KEY&quot;</td>
</tr>
</tbody>
</table>

4.4 MySQL NDB Cluster Connector for Java: Limitations and Known Issues
This section discusses the limitations and known issues in the MySQL NDB Cluster Connector for Java APIs.

**Known issues in ClusterJ:**

- **Joins:** With ClusterJ, queries are limited to single tables. This is not a problem with JPA or JDBC, both of which support joins.

- **Database views:** Because MySQL database views do not use the NDB storage engine, ClusterJ applications cannot "see" views, and thus cannot access them. To work with views using Java, you should use JPA or JDBC.

- **Relations and inheritance:** ClusterJ does not support relations or inheritance. Tables are mapped one-to-one onto domain classes, and only single-table operations are supported. NDB tables for NDB Cluster 7.3 and later support foreign keys, and foreign key constraints are enforced when using ClusterJ for inserts, updates, and deletes.

- **TIMESTAMP:** Currently, ClusterJ does not support the TIMESTAMP data type for a primary key field.

**Known issues in JDBC and Connector/J:** For information about limitations and known issues with JDBC and Connector/J, see JDBC API Implementation Notes, and Troubleshooting Connector/J Applications.

**Known issues in NDB Cluster:** For information about limitations and other known issues with NDB Cluster, see Known Limitations of NDB Cluster.
5.1 MySQL NoSQL Connector for JavaScript Overview

This connector differs in a number of key respects from most other MySQL Connectors and APIs. The interface is asynchronous, following the built-in Node.js event model. In addition, it employs a domain object model for data storage. Applications retrieve data in the form of fully-instantiated objects, rather than as rows and columns.

The MySQL Node.js adapter includes 2 drivers. The \texttt{ndb} driver accesses the \texttt{NDB} storage engine directly, using the \texttt{NDB} API (see Chapter 2, The NDB API). No MySQL Server is required for the \texttt{ndb} driver. The \texttt{mysql} driver uses a MySQL Server for its data source, and depends on the \texttt{node-mysql} Node.js module from https://github.com/felixge/node-mysql/. Regardless of the driver in use, no SQL statements are required; when using the Connector for JavaScript, Node.js applications employ data objects for all requests made to the database.

5.2 Installing the JavaScript Connector

This section covers basic installation and setup of the MySQL JavaScript Connector and its prerequisites. The Connector requires both Node.js and NDB Cluster to be installed first; you can install these in either order. In addition, the \texttt{mysql-js} adapter requires the \texttt{node-mysql} driver. Building the Connector also requires that your system have a working C++ compiler such as \texttt{gcc} or Microsoft Visual Studio.

To install all of the prerequisites for the JavaScript Connector, including \texttt{node-mysql}, you should perform the following steps:

1. \texttt{Node.js}. If you do not already have Node.js installed on your system, you can obtain it from http://nodejs.org/download/. In addition to source code, prebuilt binaries and installers are available for a number of platforms. Many Linux distributions also have Node.js in their repositories (you may need to add an alternative repository in your package manager).
NDB 7.3.1 requires Node.js version 0.7.9 or earlier, due to dependency on node-waf. NDB 7.3.2 and later use node-gyp (see https://npmjs.org/package/node-gyp), and should work with Node.js 0.8.0 and later.

Regardless of the method by which you obtain Node.js, keep in mind that the architecture of the version you install must match that of the NDB Cluster binaries you intend to use; you cannot, for example, install the JavaScript Connector using 64-bit Node.js and 32-bit NDB Cluster. If you do not know the architecture of your existing Node.js installation, you can determine this by checking the value of global.process.arch.

2. **NDB Cluster.** If NDB Cluster, including all header and library files, is not already installed on the system, install it (see NDB Cluster Installation).

   As mentioned previously, you must make sure that the architecture (32-bit or 64-bit) is the same for both NDB Cluster and Node.js. You can check the architecture of an existing NDB Cluster installation in the output of ndb_mgm -V.

3. **node-mysql driver.** The mysql-js adapter also requires a working installation of the node-mysql driver from https://github.com/felixge/node-mysql/. You can install the driver using the Node.js npm install command; see the project website for the recommended version and package identifier.

Once the requirements just listed are met, you can find the files needed to install the MySQL Connector for JavaScript in share/nodejs in the NDB Cluster installation directory. (If you installed NDB Cluster as an RPM, this is /usr/share/mysql/nodejs.) To use the Node.js npm tool to perform a “best-guess” installation without any user intervention, change to the share/nodejs directory, then use npm as shown here:

```
shell> npm install .
```

The final period (.) character is required. Note that you must run this command in share/node.js in the NDB Cluster installation directory.

You can test your installation using the supplied test program. This requires a running NDB Cluster, including a MySQL Server with a database named test. The mysql client executable must be in the path.

To run the test suite, change to the test directory, then execute command shown here:

```
shell> node driver
```

By default, all servers are run on the local machine using default ports; this can be changed by editing the file test/test_connection.js, which is generated by running the test suite. If this file is not already present (see Bug #16967624), you can copy share/nodejs/test/lib/test_connection.js to the test directory for this purpose.

If you installed NDB Cluster to a nondefault location, you may need to export the LD_LIBRARY_PATH to enable the test suite. The test suite also requires that the test database be available on the MySQL server.

NDB 7.3.1 also provided an alternative build script in share/node.js/setup; this was removed in NDB 7.3.2 and later NDB Cluster 7.3 releases.

### 5.3 Connector for JavaScript API Documentation

This section contains prototype descriptions and other information for the MySQL Connector for JavaScript.

#### 5.3.1 Batch

This class represents a batch of operations.
Batch extends Context

execute(Function(Object error) callback);

Execute this batch. When a batch is executed, all operations are executed; the callback for each operation is called when that operation is executed (operations are not performed in any particular order). The execute() function’s callback is also called.

A batch is executed in the context of the session’s current state: this is autocommit if a transaction has not been started; this also includes the default lock mode and the partition key.

clear();

Clear this batch without affecting the transaction state. After being cleared, the batch is still valid, but all operations previously defined are removed; this restores the batch to a clean state.

The callbacks for any operations that are defined for this batch are called with an error indicating that the batch has been cleared.

This function requires no arguments.

getSession();

Get the session from which this batch was created.

This function requires no arguments.

### 5.3.2 Context

Context is the supertype of Session and Batch. It contains functions that are executed immediately if called from a session, or when the batch is executed.

The Mynode implementation does not have any concept of a user and does not define any such property.

find(Function constructor, Object keys, Function(Object error, Object instance[, ...]) callback[, ...]);
find(String tableName, Object keys, Function(Object error, Object instance[, ...]) callback[, ...]);

Find a specific instance based on a primary key or unique key value.

You can use one of two versions of this function. In the first version, the constructor parameter is the constructor function of a mapped domain object. Alternatively, you can use the tableName instead, in the second variant of the function.

For both versions of find(), the keys may be of any type. A key must uniquely identify a single row in the database. If keys is a simple type (number or string), then the parameter type must be the same type as or compatible with the primary key type of the mapped object. Otherwise, properties are taken from the parameter and matched against property names in the mapping. Primary key properties are used if all are present, and other properties ignored. If keys cannot be used to identify the primary key, property names corresponding to unique key columns are used instead. If no complete primary or unique key properties are found, an error is reported. The returned object is loaded based on the mapping and the current values in the database.

For multi-column primary or unique keys, all key fields must be set.

load(Object instance, Function(Object error) callback);

Load a specific instance by matching its primary or unique key with a database row, without creating a new domain object. (This is unlike find(), which creates a new, mapped domain object.)

The instance must have its primary or unique key value or values set. The mapped values in the object are loaded based on the current values in the database. Unmapped properties in the object are not changed.
Primary key properties are used if all are present, and all other properties are ignored; otherwise, property names corresponding to unique key columns are used. If no complete primary or unique key properties can be found, an error is reported.

The `callback` function is called with the parameters provided when the operation has completed. The `error` is the Node.js `Error` object; see Section 5.3.4, “Errors”, for more information.

```javascript
persist(Object instance, Function(Object error) callback);
persist(Function constructor, Object values, Function(Object error) callback);
persist(String tableName, Object values, Function(Object error) callback);
```

Insert an instance into the database, unless the instance already exists in the database, in which case an exception is reported to a `callback` function. Autogenerated values are present in the instance when the `callback` is executed.

The role of an instance to be persisted can be fulfilled in any of three ways: by an instance object; by a constructor, with parameters, for a mapped domain object; or by table name and values to be inserted.

In all three cases, the `callback` function is called with the parameters provided, if any, when the operation has completed. The `error` is the Node.js `Error` object; see Section 5.3.4, “Errors”, for more information.

```javascript
remove(Object instance, Function(Object error) callback);
remove(Function constructor, Object keys, Function(Object error) callback);
remove(String tableName, Object keys, Function(Object error) callback);
```

Delete an instance of a class from the database by a primary or unique key.

There are three versions of `remove()`; these allow you to delete an instance by referring to the `instance` object, to a `constructor` function, or by name of the table. The `instance` object must contain key values that uniquely identify a single row in the database. Otherwise, if the `keys` supplied with the function constructor or table name is a simple type (Number or String), then the parameter type must be of either the same type as or a type compatible with the primary key type of the mapped object. If `keys` is not a simple type, properties are taken from the parameter and matched against property names in the mapping. Primary key properties are used if all are present, and other properties ignored. If `keys` does not identify the primary key, property names corresponding to unique key columns are used instead. If no complete primary or unique key properties are found, an error is reported to the `callback`.

All three versions of `remove()` call the `callback` function with the parameters provided, if any, when the operation is complete. The `error` object is a Node.js `Error`; see Section 5.3.4, “Errors”, for error codes.

```javascript
update(Object instance, Function(Object error) callback);
update(Function constructor, keys, values, Function(Object error) callback);
update(String tableName, keys, values, Function(Object error) callback);
```

Update an instance in the database with the supplied `values` without retrieving it. The primary key is used to determine which instance is updated. If the instance does not exist in the database, an exception is reported in the `callback`.

As with the methods previously shown for persisting instances in and removing them from the database, `update()` exists in three variations, which allow you to use the `instance` as an object, an object `constructor` with `keys`, or by `tableName` and `keys`.

Unique key fields of the `keys` object determine which `instance` is to be updated. The `values` object provides values to be updated. If the `keys` object contains all fields corresponding to the primary key, the primary key identifies the instance. If not, unique keys are chosen is a nondeterministic manner.
Converter

**Note**

update() cannot be used to change the primary key.

```javascript
save(Object instance, Function(Object error) callback);
save(Function constructor, Object values, Function(Object error) callback);
save(String tableName, Object values, Function(Object error) callback);
```

Save an instance in the database without checking for its existence. If the instance already exists, it is updated (as if you had used update()); otherwise, it is created (as if persist() had been used). The instance id property is used to determine which instance should be saved. As with update(), persist(), and remove(), this method allows you to specify the instance using an object, object constructor, or table name.

All three versions of the save() method call the callback function with any parameters provided when the operation has been completed. The error is a Node.js Error object; see Section 5.3.4, “Errors”, for error codes and messages.

```javascript
Boolean isBatch()
```

Context also exposes an isBatch() instance method, which returns true if this Context is a Batch, and false if it is a Session. isBatch() takes no arguments.

### 5.3.3 Converter

Converter classes convert between JavaScript types and MySQL types. If the user supplies a JavaScript converter, it used to read and write to the database.

Converters have several purposes, including the following:

- To convert between MySQL DECIMAL types and a user's preferred JavaScript fixed-precision utility library
- To convert between MySQL BIGINT types and a user's preferred JavaScript big number utility library
- To serialize arbitrary application objects into character or binary columns

The ndb back end also uses converters to support SET and ENUM columns. (The mysql back end does not use these.)

A Converter class has the interface defined here:

```javascript
function Converter() {}

Converter.prototype = {
 "toDB" : function(obj) { },
 "fromDB" : function(val) { }
};
```

The Converter must implement the following two functions:

1. toDB(obj): Convert an application object obj into a form that can be stored in the database.
2. fromDB(val): Convert a value val read from the database into application object format.

Each function returns the result of the conversion.

Converter invocations are chained in the following ways:

- When writing to the database, first the registered FieldConverter, if any, is invoked. Later, any registered TypeConverter is invoked.
- When reading from the database, first the registered `TypeConverter`, if any, is invoked. Later, any registered `FieldConverter` is invoked.

### 5.3.4 Errors

The `Errors` object contains the error codes and message exposed by the MySQL Node.js adapters.

```javascript
var Errors;

Errors = {
 /* Standard-defined classes, SQL-99 */
 "02000" : "No Data",

 // connection errors
 "08000" : "Connection error",
 "08001" : "Unable to connect to server",
 "08004" : "Connection refused",

 // data errors
 "22000" : "Data error",
 "22001" : "String too long",
 "22003" : "Numeric value out of range",
 "22008" : "Invalid datetime",

 // Constraint violations
 // 23000 includes both duplicate primary key and duplicate unique key
 "23000" : "Integrity Constraint Violation",

 // misc. errors
 "25000" : "Invalid Transaction State",
 "2C000" : "Invalid character set name",
 "42S02" : "Table not found",
 "IM001" : "Driver does not support this function",

 /* Implementation-defined classes (NDB) */
 "NDB00" : "Refer to ndb_error for details"
};
```

### 5.3.5 Mynode

This class is used to generate and obtain information about sessions (`Session` objects). To create an instance, use the Node.js `require()` function with the driver name, like this:

```javascript
var nosql = require("mysql-js");
```

`ConnectionProperties` can be used to retrieve or set the connection properties for a given session. You can obtain a complete set of default connection properties for a given adapter using the `ConnectionProperties` constructor, shown here, with the name of the adapter (a string) used as the value of `nameOrProperties`:

```javascript
ConnectionProperties(nameOrProperties);
```

You can also create your own `ConnectionProperties` object by supplying a list of property names and values to a new `ConnectionProperties` object in place of the adapter name. Then you can use this object to set the connection properties for a new session, as shown here:

```javascript
var NdbConnectionProperties = {
 "implementation" : "ndb",
 "ndb_connectstring" : "localhost:1186",
 "database" : "test",
 "mysql_user" : "root",
 "ndb_connect_retries" : 4,
 "ndb_connect_delay" : 5,
 "ndb_connect_verbose" : 0,
 "linger_on_close_msec": 500,
};
```
"use_ndb_async_api" : false,
    "ndb_session_pool_min" : 4,
    "ndb_session_pool_max" : 100,
};

var sharePath = '/usr/local/mysql/share/nodejs';      // path to share/nodejs
var nosql = require(sharePath);
var dbProperties = nosql.ConnectionProperties(NdbConnectionProperties);

It is also possible to obtain an object with the adapter's default connection properties, after which you can update a selected number of these properties, then use the modified object to set connection properties for the session, as shown here:

var sharePath = '/usr/local/mysql/share/nodejs';      // path to share/nodejs
var spi   = require(sharePath + '/Adapter/impl/SPI'); // under share/nodejs
var serviceProvider         = spi.getDBServiceProvider('ndb');
var NdbConnectionProperties = serviceProvider.getDefaultConnectionProperties();
NdbConnectionProperties.mysql_user = 'nodejs_user';
NdbConnectionProperties.database   = 'my_nodejs_db';
var dbProperties = nosql.ConnectionProperties(NdbConnectionProperties);

The `ConnectionProperties` object includes the following properties:

- **implementation**: For Node.js applications using NDB Cluster, this is always “ndb”.
- **ndb_connectstring**: NDB Cluster connection string used to connect to the management server.
- **database**: Name of the MySQL database to use.
- **mysql_user**: MySQL user name.
- **ndb_connect_retries**: Number of times to retry a failed connection before timing out; use a number less than 0 for this to keep trying the connection without ever stopping.
- **ndb_connect_delay**: Interval in seconds between connection retries.
- **ndb_connect_verbose**: 1 or 0; 1 enables extra console output during connection.
- **linger_on_close_msec**: When a client closes a `DBConnectionPool`, the underlying connection is kept open for this many milliseconds in case another client tries to reuse it.
- **use_ndb_async_api**: If true, some operations are executed using asynchronous calls for improved concurrency. If false, the number of operations in transit is limited to one per worker thread.
- **ndb_session_pool_min**: Minimum number of `DBSession` objects per `NdbConnectionPool`.
- **ndb_session_pool_max**: Maximum number of `DBSession` objects per `NdbConnectionPool`.

Each `NdbConnectionPool` maintains a pool of `DBSession` objects, along with their underlying `Ndb` objects. This parameter, together with `ndb_session_pool_min`, sets guidelines for the size of that pool.

The `TableMapping` constructor is also visible as a top-level function. You can get the mapping either by name, or by using an existing mapping:

```
TableMapping(tableName);
TableMapping(tableMapping);
```

Connect to the data source and get a `Session` in the `callback` function. This is equivalent to calling `connect()` (see later in this section), and then calling `getSession()` on the `SessionFactory` that is returned in the callback function.
Executing this method could result in connections being made to many other nodes on the network, waiting for them to become ready, and making multiple requests to them. You should avoid opening new sessions unnecessarily for this reason.

The implementation member of the `properties` object determines the implementation of the `Session`.

If `mappings` is undefined, null, or an empty array, no mappings are loaded or validated. In this case, any required mappings are loaded and validated when needed during execution. If `mappings` contains a string or a constructor function, the metadata for the table (or mapped table) is loaded from the database and validated against the requirements of the mapping.

Multiple tables and constructors may be passed to `openSession()` as elements in an array.

```javascript
connect(properties, mappings, Function(err, SessionFactory) callback);
```

Connect to the data source to obtain a `SessionFactory` in the `callback` function. In order to obtain a `Session`, you must then call `getSession()` on this `SessionFactory`, whose implementation is determined by the implementation member of the `properties` object.

If `mappings` is undefined, null, or an empty array, no mappings are loaded or validated. In this case, any required mappings are loaded and validated when needed. If `mappings` contains a string or a constructor function, the metadata for the table (or mapped table) is loaded from the database and validated against the requirements of the mapping.

Multiple tables and constructors may be passed as elements in an array.

```javascript
Array getOpenSessionFactories();
```

Get an array of all the `SessionFactory` objects that have been created by this module.

The following functions are part of the public API but are not intended for application use. They form part of the contract between `Mynode` and `SessionFactory`.

- `Connection()`
- `getConnectionKey()`
- `getConnection()`
- `newConnection()`
- `deleteFactory()`

### 5.3.6 Session

A session is the main user access path to the database. The `Session` class models such a session.

```javascript
getMapping(Object parameter, Function(Object err, Object mapping) callback);
```

Get the mappings for a table or class.

The `parameter` may be a table name, a mapped constructor function, or a domain object. This function returns a fully resolved `TableMapping` object.

```javascript
Batch createBatch();
```
SessionFactory

Creates a new, empty batch for collecting multiple operations to be executed together. In an application, you can invoke this function similarly to what is shown here:

```javascript
var nosql = require("mysql-js");
var myBatch = nosql.createBatch();
```

Array listBatches();

Return an array whose elements consist of all current batches belonging to this session.

```javascript
Transaction currentTransaction();
```

Get the current Transaction.

```javascript
void close(Function(Object error) callback);
```

Close this session. Must be called when the session is no longer needed.

```javascript
boolean isClosed();
```

Returns true if this session is closed.

```javascript
void setLockMode(String lockMode);
```

Set the lock mode for read operations. This takes effect immediately and remains in effect until the session is closed or this method is called again. `lockMode` must be one of 'EXCLUSIVE', 'SHARED', OR 'NONE'.

```javascript
Array listTables(databaseName, callback);
```

List all tables in database `databaseName`.

```javascript
TableMetadata getTableMetadata(String databaseName, String tableName, callback);
```

Fetch metadata for table `tableName` in database `databaseName`.

### 5.3.7 SessionFactory

This class is used to generate and manage sessions. A Session provides a context for database transactions and operations. Each independent user should have its own session.

```javascript
openSession(Object mappings, Function(Object error, Session session) callback);
```

Open a database session object. Table `mappings` are validated at the beginning of the session. Resources required for sessions are allocated in advance; if those resources are not available, the method returns an error in the callback.

```javascript
Array getOpenSessions();
```

Get all open sessions that have been created by this SessionFactory.

```javascript
close(Function(Error err));
```

Close the connection to the database. This ensures proper disconnection. The function passed in is called when the close operation is complete.

### 5.3.8 TableMapping and FieldMapping

A TableMapping describes the mapping of a domain object in the application to a table stored in the database. A default table mapping is one which maps each column in a table to a field of the same name.

```javascript
TableMapping = {
 String table : "*",
 String database : "*",
 boolean mapAllColumns : true,
}```
TableMetadata

The `table` and `data` members are the names of the table and database, respectively. `mapAllColumns`, if true, creates a default `FieldMapping` for all columns not listed in `fields`, such that all columns not explicitly mapped are given a default mapping to a field of the same name. `fields` holds an array of `FieldMapping` objects; this can also be a single `FieldMapping`.

A `FieldMapping` describes a single field in a domain object. There is no public constructor for this object; you can create a `FieldMapping` using `TableMapping.mapField()`, or you can use `FieldMapping` literals can be used directly in the `TableMapping` constructor.

```javascript
FieldMapping = {
  fieldName : '',
  columnName : '',
  persistent : true,
  converter : null
};
```

`fieldName` and `columnName` are the names of the field and the column where this field are stored, respectively, in the domain object. If `persistent` is true (the default), the field is stored in the database. `converter` specifies a `Converter` class, if any, to use with this field (defaults to null).

The `TableMapping` constructor can take either the name of a table (possibly qualified with the database name) or a `TableMapping` literal.

```javascript
TableMapping mapField(String fieldName, [String columnName], [Converter converter], [Boolean persistent])
```

Create a field mapping for a named field of a mapped object. The only mandatory parameter is `fieldName`, which provides the name a field in a JavaScript application object. The remaining parameters are optional, and may appear in any order. The current `TableMapping` object is returned.

`columnName` specifies the name of the database column that maps to this object field. If omitted, `columnName` defaults to the same value as `fieldName`. A `converter` can be used to supply a `Converter` class that performs custom conversion between JavaScript and database data types. The default is null. `persistent` specifies whether the field is persisted to the database, and defaults to true.

```javascript
TableMapping applyToClass(Function constructor)
```

Attach a `TableMapping` to a `constructor` for mapped objects. After this is done, any object created from the constructor will qualify as a mapped instance, which several forms of the relevant `Session` and `Batch` methods can be used.

For example, an application can construct an instance that is only partly complete, then use `Session.load()` to populate it with all mapped fields from the database. After the application modifies the instance, `Session.save()` saves it back. Similarly, `Session.find()` can take the mapped constructor, retrieve an object based on keys, and then use the constructor to create a fully-fledged domain object.

5.3.9 TableMetadata

A `TableMetadata` object represents a table. This is the object returned in the `getTable()` callback. `indexes[0]` represents the table's intrinsic primary key.
The `ColumnMetadata` object represents a table column.

ColumnMetadata = {
 /* Required Properties */
 name : "", // column name
 columnNumber : -1, // position of column in table, and in columns array
 columnType : "", // a ColumnTypes value
 isIntegral : false, // true if column is some variety of INTEGER type
 isNullable : false, // true if NULLABLE
 isInPrimaryKey : false, // true if column is part of PK
 isInPartitionKey : false, // true if column is part of partition key
 columnSpace : 0, // buffer space required for encoded stored value
 defaultValue : null, // default value for column; null for default NULL;
 // undefined for no default; or a type-appropriate
 // value for column
 /* Optional Properties, depending on columnType */
 /* Group A: Numeric */
 isUnsigned : false, // true for UNSIGNED
 intSize : null, // 1,2,3,4, or 8 if column type is INT
 scale : 0, // DECIMAL scale
 precision : 0, // DECIMAL precision
 isAutoincrement : false, // true for AUTO_INCREMENT columns
 /* Group B: Non-numeric */
 length : 0, // CHAR or VARCHAR length in characters
 isBinary : false, // true for BLOB/BINARY/VARBINARY
 charsetNumber : 0, // internal number of charset
 charsetName : "", // name of charset
};

An `IndexMetadata` object represents a table index. The `indexes` array of `TableMetadata` contains one `IndexMetadata` object per table index.

NDB implements a primary key as both an ordered index and a unique index, and might be viewed through the NDB API adapter as two indexes, but through a MySQL adapter as a single index that is both unique and ordered. We tolerate this discrepancy and note that the implementation in `Adapter/api` must treat the two descriptions as equivalent.

IndexMetadata = {
 name : "", // Index name; undefined for PK
 isPrimaryKey : true, // true for PK; otherwise undefined
 isUnique : true, // true or false
 isOrdered : true, // true or false; can scan if true
 columns : null, // an ordered array of column numbers
};

The `ColumnMetadata` object's `columnType` must be a valid `ColumnTypes` value, as shown in this object's definition here:

ColumnTypes = [
 "TINYINT",
 "SMALLINT",
 "MEDIUMINT",
 "INT",
 "BIGINT",
 "FLOAT",
 "DOUBLE",
 "DECIMAL",
 "CHAR",
 "VARCHAR",
 "BLOB",
 "TEXT",
 "DATE",
 "TIME",
 "DATETIME",
]
5.3.10 Transaction

A transaction is always either automatic or explicit. If it is automatic, (autocommit), every operation is performed as part of a new transaction that is automatically committed.

Beginning, committing, and rolling back a transaction

begin();

Begin a transaction. No arguments are required. If a transaction is already active, an exception is thrown.

commit(Function(Object error) callback);

Commit a transaction.

This method takes as its sole argument a callback function that returns an error object.

rollback(Function(Object error) callback);

Roll back a transaction. Errors are reported in the callback function.

Transaction information methods

Boolean isActive();

Determine whether or not a given transaction is currently active. Returns true if a transaction is active, and false otherwise.

isActive() requires no arguments.

setRollbackOnly();

Mark the transaction as rollback-only. Once this is done, commit() rolls back the transaction and throws an exception; rollback() rolls the transaction back, but does not throw an exception. To mark a transaction as rollback-only, call the setRollbackOnly() method, as shown here.

This method is one-way; a transaction marked as rollback-only cannot be unmarked. Invoking setRollbackOnly() while in autocommit mode throws an exception. This method requires no arguments.

boolean getRollbackOnly();

Determine whether a transaction has been marked as rollback-only. Returns true if the transaction has been so marked. setRollbackOnly() takes no arguments.

5.4 Using the MySQL JavaScript Connector: Examples

This section contains a number of examples performing basic database operations such as retrieving, inserting, or deleting rows from a table. The source for these files can also be found in share/nodejs/samples, under the NDB Cluster installation directory.

5.4.1 Requirements for the Examples

The software requirements for running the examples found in the next few sections are as follows:

- A working Node.js installation
- Working installations of the ndb and mysql-js adapters
Requirements for the Examples

- The `mysql-js` adapter also requires a working installation of the `node-mysql` driver from https://github.com/felixge/node-mysql/.

Section 5.2, "Installing the JavaScript Connector", describes the installation process for all three of these requirements.

Sample database, table, and data. All of the examples use a sample table named `tweet`, in the `test` database. This table is defined as in the following `CREATE TABLE` statement:

```sql
CREATE TABLE IF NOT EXISTS tweet  (
    id CHAR(36) NOT NULL PRIMARY KEY,
    author VARCHAR(20),
    message VARCHAR(140),
    date_created TIMESTAMP,
    KEY idx_btree_date_created (date_created),
    KEY idx_btree_author(author)
) ENGINE=NDB;
```

The `tweet` table can be created by running the included SQL script `create.sql` in the `mysql` client. You can do this by invoking `mysql` in your system shell, as shown here:

```
shell> mysql < create.sql
```

All of the examples also make use of two modules defined in the file `lib.js`, whose contents are reproduced here:

```javascript
/* FILE: lib.js */
"use strict";

var udebug = unified_debug.getLogger("samples/lib.js");
var exec = require("child_process").exec;
var SQL = {};

/* Pseudo random UUID generator */
var randomUUID = function() {
    return 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx'.replace(/\[xy\]/g, function(c) {
        var r = Math.random()*16|0, v = c == 'x' ? r : (r&0x3|0x8);
        return v.toString(16);
    });
};

/* Tweet domain object model */
var Tweet = function(author, message) {
    this.id = randomUUID();
    this.date_created = new Date();
    this.author = author;
    this.message = message;
};

/* SQL DDL Utilities */
var runSQL = function(sqlPath, source, callback) {
    function childProcess(error, stdout, stderr) {
        udebug.log('harness runSQL process completed.');
        udebug.log(source + ' stdout: ' + stdout);
        udebug.log(source + ' stderr: ' + stderr);
        if (error !== null) {
            console.log(source + 'exec error: ' + error);
        } else {
            udebug.log(source + ' exec OK');
        }
        if(callback) {
            callback(error);
        }
    }
    var sql = sqlPath + ' -u root -p';
    exec(sql, childProcess);  
};
```
var p = mysql_conn_properties;
var cmd = 'mysql';
if(p) {
 if(p.mysql_socket) { cmd += " --socket=" + p.mysql_socket; }
 else if(p.mysql_port) { cmd += " --port=" + p.mysql_port; }
 if(p.mysql_host) { cmd += " -h " + p.mysql_host; }
 if(p.mysql_user) { cmd += " -u " + p.mysql_user; }
 if(p.mysql_password) { cmd += " --password=" + p.mysql_password; }
}
 cmd += ' <' + sqlPath;
udebug.log('harness runSQL forking process...');
var child = exec(cmd, childProcess);
);
SQL.create = function(suite, callback) {
 var sqlPath = path.join(suite.path, 'create.sql');
 udebug.log_detail("createSQL path: " + sqlPath);
 runSQL(sqlPath, 'createSQL', callback);
};
SQL.drop = function(suite, callback) {
 var sqlPath = path.join(suite.path, 'drop.sql');
 udebug.log_detail("dropSQL path: " + sqlPath);
 runSQL(sqlPath, 'dropSQL', callback);
};

/* Exports from this module */
exports.SQL = SQL
exports.Tweet = Tweet;

Finally, a module used for random data generation is included in the file ndb_loader/lib/RandomData.js, shown here:

FILE: RandomData.js
var assert = require("assert");

function RandomIntGenerator(min, max) {
 assert(max > min);
 var range = max - min;
 this.next = function() {
 var x = Math.floor(Math.random() * range);
 return min + x;
 }
}

function SequentialIntGenerator(startSeq) {
 var seq = startSeq - 1;
 this.next = function() {
 seq += 1;
 return seq;
 }
}

function RandomFloatGenerator(min, max, prec, scale) {
 assert(max > min);
 this.next = function() {
 var x = Math.random(); /* fixme! */
 return 100 * x;
 }
}

function RandomCharacterGenerator() {
 var intGenerator = new RandomIntGenerator(32, 126);
 this.next = function() {

Requirements for the Examples

```javascript
return String.fromCharCode(intGenerator.next());
}
}

function RandomVarcharGenerator(length) {
    var lengthGenerator = new RandomIntGenerator(0, length),
        characterGenerator = new RandomCharacterGenerator();
    this.next = function() {
        var i = 0,
            str = "",
            len = lengthGenerator.next();
        for(; i < len ; i++) str += characterGenerator.next();
        return str;
    }
}

function RandomCharGenerator(length) {
    var characterGenerator = new RandomCharacterGenerator();
    this.next = function() {
        var i = 0,
            str = ""
        for(; i < length ; i++) str += characterGenerator.next();
        return str;
    }
}

function RandomDateGenerator() {
    var generator = new RandomIntGenerator(0, Date.now());
    this.next = function() {
        return new Date(generator.next());
    }
}

function RandomGeneratorForColumn(column) {
    var g = {},
        min, max, bits;
    switch(column.columnType.toLocaleUpperCase()) {
        case "TINYINT":
        case "SMALLINT":
        case "MEDIUMINT":
        case "INT":
        case "BIGINT":
            if(column.isInPrimaryKey) {
                g = new SequentialIntGenerator(0);
            } else {
                bits = column.intSize * 8;
                max = column.isUnsigned ? Math.pow(2,bits)-1 : Math.pow(2, bits-1);
                min = column.isUnsigned ? 0 : 1 - max;
                g = new RandomIntGenerator(min, max);
            }
            break;
        case "FLOAT":
        case "DOUBLE":
        case "DECIMAL":
            g = new RandomFloatGenerator(0, 100000); // fixme
            break;
        case "CHAR":
            g = new RandomCharGenerator(column.length);
            break;
        case "VARCHAR":
            g = new RandomVarcharGenerator(column.length);
            break;
        case "TIMESTAMP":
            g = new RandomIntGenerator(0, Math.pow(2,32)-1);
            break;
        case "YEAR":
            break;
    }
```
Example: Finding Rows

```javascript
function RandomRowGenerator(table) {
  var i = 0,
  generators = [];
  for(; i < table.columns.length ; i++) {
    generators[i] = RandomGeneratorForColumn(table.columns[i]);
  }

  this.newRow = function() {
    var n, col, row = {};
    for(n = 0; n < table.columns.length ; n++) {
      col = table.columns[n];
      row[col.name] = generators[n].next();
    }
    return row;
  };
}
exports.RandomRowGenerator = RandomRowGenerator;
exports.RandomGeneratorForColumn = RandomGeneratorForColumn;
```

5.4.2 Example: Finding Rows

```javascript
# FILE: find.js
var nosql = require('..');
var lib = require('./lib.js');
var adapter = 'ndb';
global.mysql_conn_properties = {};
var user_args = [];

// *** program starts here ***
// analyze command line
var usageMessage =
  "Usage: node find key\n" +
  " -h or --help: print this message\n" +
  " -d or --debug: set the debug flag\n" +
  " --mysql_socket=value: set the mysql socket\n" +
  " --mysql_port=value: set the mysql port\n" +
  " --mysql_host=value: set the mysql host\n" +
  " --mysql_user=value: set the mysql user\n" +
  " --mysql_password=value: set the mysql password\n" +
  " --detail: set the detail debug flag\n" +
  " --adapter=<adapter>: run on the named adapter (e.g. ndb or mysql)\n";

// handle command line arguments
var i, exit, val, values;
```
for(i = 2; i < process.argv.length ; i++) {
 val = process.argv[i];
 switch (val) {
 case '--debug':
 case '-d':
 unified_debug.on();
 unified_debug.level_debug();
 break;
 case '--detail':
 unified_debug.on();
 unified_debug.level_detail();
 break;
 case '--help':
 case '-h':
 exit = true;
 break;
 default:
 values = val.split('=');
 if (values.length === 2) {
 switch (values[0]) {
 case '--adapter':
 adapter = values[1];
 break;
 case '--mysql_socket':
 mysql_conn_properties.mysql_socket = values[1];
 break;
 case '--mysql_port':
 mysql_conn_properties.mysql_port = values[1];
 break;
 case '--mysql_host':
 mysql_conn_properties.mysql_host = values[1];
 break;
 case '--mysql_user':
 mysql_conn_properties.mysql_user = values[1];
 break;
 case '--mysql_password':
 mysql_conn_properties.mysql_password = values[1];
 break;
 default:
 console.log('Invalid option ' + val);
 exit = true;
 }
 } else {
 user_args.push(val);
 }
 }
}

if (user_args.length !== 1) {
 console.log(usageMessage);
 process.exit(0);
};

if (exit) {
 console.log(usageMessage);
 process.exit(0);
}

console.log('Running find with adapter', adapter, user_args);
//create a database properties object
var dbProperties = nosql.ConnectionProperties(adapter);

// create a basic mapping
var annotations = new nosql.TableMapping('tweet').applyToClass(lib.Tweet);

//check results of find
var onFind = function(err, object) {
 console.log('onFind.');
 if (err) {
 console.log(err);
 } else {
5.4.3 Inserting Rows

```javascript
var nosql = require('..');
var lib = require('./lib.js');
var adapter = 'ndb';
global.mysql_conn_properties = {};

var user_args = [];
// *** program starts here ***
// analyze command line
var usageMessage =
"Usage: node insert author message\n"
+ "-h or --help: print this message\n" +
+ "-d or --debug: set the debug flag\n" +
+ "--mysql_socket=value: set the mysql socket\n" +
+ "--mysql_port=value: set the mysql port\n" +
+ "--mysql_host=value: set the mysql host\n" +
+ "--mysql_user=value: set the mysql user\n" +
+ "--mysql_password=value: set the mysql password\n" +
+ "--detail: set the detail debug flag\n" +
+ "--adapter=<adapter>: run on the named adapter (e.g. ndb or mysql)\n"
;
// handle command line arguments
var i, exit, val, values;
for(i = 2; i < process.argv.length ; i++) {
  val = process.argv[i];
  switch (val) {
    case '--debug':
      unified_debug.on();
      unified_debug.level_debug();
      break;
    case '--detail':
      unified_debug.on();
      unified_debug.level_detail();
      break;
    case '--help':
      exit = true;
      break;
    default:
      values = val.split('=');
      if (values.length === 2) {
        switch (values[0]) {
          case '--adapter':
            adapter = values[1];
          ```
break;
case '--mysql_socket':
 mysql_conn_properties.mysql_socket = values[1];
 break;
case '--mysql_port':
 mysql_conn_properties.mysql_port = values[1];
 break;
case '--mysql_host':
 mysql_conn_properties.mysql_host = values[1];
 break;
case '--mysql_user':
 mysql_conn_properties.mysql_user = values[1];
 break;
case '--mysql_password':
 mysql_conn_properties.mysql_password = values[1];
 break;
default:
 console.log('Invalid option ' + val);
 exit = true;
} else {
 user_args.push(val);
}
}

if (user_args.length !== 2) {
 console.log(usageMessage);
 process.exit(0);
}

if (exit) {
 console.log(usageMessage);
 process.exit(0);
}

console.log('Running insert with adapter', adapter, user_args);
// create a database properties object
var dbProperties = nosql.ConnectionProperties(adapter);

// create a basic mapping
var annotations = new nosql.TableMapping('tweet').applyToClass(lib.Tweet);

// check results of insert
var onInsert = function(err, object) {
 console.log('onInsert. ');
 if (err) {
 console.log(err);
 } else {
 console.log('Inserted: ' + JSON.stringify(object));
 }
 process.exit(0);
};

// insert an object
var onSession = function(err, session) {
 if (err) {
 console.log('Error onSession. ');
 console.log(err);
 } else {
 var data = new lib.Tweet(user_args[0], user_args[1]);
 session.persist(data, onInsert, data);
 }
};

// connect to the database
nosql.openSession(dbProperties, annotations, onSession);
5.4.4 Deleting Rows

```javascript
FILE: delete.js

var nosql = require('..');
var lib = require('./lib.js');
var adapter = 'ndb';
global.mysql_conn_properties = {};

var user_args = [];
// *** program starts here ***

// analyze command line
var usageMessage =
  "Usage: node delete message-id\n" +
  " -d or --debug: set the debug flag\n" +
  " --mysql_socket=value: set the mysql socket\n" +
  " --mysql_port=value: set the mysql port\n" +
  " --mysql_host=value: set the mysql host\n" +
  " --mysql_user=value: set the mysql user\n" +
  " --mysql_password=value: set the mysql password\n" +
  " --adapter=<adapter>: run on the named adapter (e.g. ndb or mysql)\n"
;

// handle command line arguments
var i, exit, val, values;
for(i = 2; i < process.argv.length ; i++) {
  val = process.argv[i];
  switch (val) {
    case '--debug':
    case '-d':
      unified_debug.on();
      unified_debug.level_debug();
      break;
    case '--detail':
    case '-d':
      unified_debug.on();
      unified_debug.level_detail();
      break;
    case '--help':
    case '-h':
      exit = true;
      break;
    default:
      values = val.split('=');
      if (values.length === 2) {
        switch (values[0]) {
          case '--adapter':
            adapter = values[1];
            break;
          case '--mysql_socket':
            mysql_conn_properties.mysql_socket = values[1];
            break;
          case '--mysql_port':
            mysql_conn_properties.mysql_port = values[1];
            break;
          case '--mysql_host':
            mysql_conn_properties.mysql_host = values[1];
            break;
          case '--mysql_user':
            mysql_conn_properties.mysql_user = values[1];
            break;
          case '--mysql_password':
            mysql_conn_properties.mysql_password = values[1];
            break;
          default:
            console.log('Invalid option ' + val);
            exit = true;
        }
      }
  }
}
```
Deleting Rows

```javascript
if (user_args.length !== 1) {
    console.log(usageMessage);
    process.exit(0);
}
if (exit) {
    console.log(usageMessage);
    process.exit(0);
}

console.log('Running delete with adapter', adapter, user_args);
//create a database properties object
var dbProperties = nosql.ConnectionProperties(adapter);

// create a basic mapping
var annotations = new nosql.TableMapping('tweet').applyToClass(lib.Tweet);

// check results of delete
var onDelete = function(err, object) {
    console.log('onDelete.
    if (err) {
        console.log(err);
    } else {
        console.log('Deleted: ' + JSON.stringify(object));
    }
    process.exit(0);
};

// delete an object
var onSession = function(err, session) {
    if (err) {
        console.log('Error onSession.');
        console.log(err);
        process.exit(0);
    } else {
        var tweet = new lib.Tweet();
        tweet.id = user_args[0];
        session.remove(tweet, onDelete, user_args[0]);
    }
};

// connect to the database
nosql.openSession(dbProperties, annotations, onSession);
```
Chapter 6 ndbmemcache—Memcache API for NDB Cluster

Table of Contents

6.1 Overview ... 673
6.2 Compiling NDB Cluster with Memcache Support ... 673
6.3 memcached command line options ... 674
6.4 NDB Engine Configuration ... 674
6.5 Memcache protocol commands ... 680
6.6 The memcached log file .. 682
6.7 Known Issues and Limitations of ndbmemcache ... 683

This section provides information about the Memcache API for NDB Cluster, which makes it possible to access NDB Cluster data using the memcache protocol.

6.1 Overview

Memcached is a distributed in-memory caching server using a simple text-based protocol, commonly used for key-value data stores, with clients available for many platforms and programming languages. The most recent release of the memcached server is available from memcached.org.

The Memcache API for NDB Cluster is implemented as a loadable storage engine for memcached version 1.6 and later, which employs a storage engine architecture. This API can be used to provide a persistent NDB Cluster data store which is accessible employing the memcache protocol. It is also possible for the memcached server to provide a strictly defined interface to existing NDB Cluster tables such that an administrator can control exactly which tables and columns are referenced by particular memcache keys and values, and which operations are allowed on these keys and values.

The standard memcached caching engine is included in the NDB Cluster distribution. Each memcache server, in addition to providing direct access to data stored in NDB Cluster, is able to cache data locally and serve (some) requests from this local cache. As with table and column mappings, cache policies are configurable based on a prefix of a memcache key.

6.2 Compiling NDB Cluster with Memcache Support

Support for the Memcache API is built automatically using the memcached and libevent sources included in the NDB Cluster sources when compiling NDB from source. By default, make install places the memcached binary in the NDB Cluster installation bin directory, and the ndbmemcache engine shared object file ndb_engine.so in the installation lib directory.

You can disable use of the bundled memcached when building ndbmemcache, by using -DWITH_BUNDLED_MEMCACHED=OFF; you can instead use your own system’s memcached server and sources, installed in path, with -DWITH_BUNDLED_MEMCACHED=OFF -DMEMCACHED_HOME=path. You can also cause your system's version of libevent to be used, rather than the version bundled with NDB Cluster, by using the -DWITH_BUNDLED_LIBEVENT=OFF option.

For additional information about CMake options relating to ndbmemcache support, see Options for Compiling NDB Cluster.

For general information about building NDB Cluster, see Building NDB Cluster from Source on Linux, and Compiling and Installing NDB Cluster from Source on Windows. For information about building MySQL Server from source, see Installing MySQL from Source, as well as MySQL Source-Configuration Options.
6.3 memcached command line options

The following list contains memcached command line options that are of particular interest or usefulness when working with ndbmemcache.

- **-E so_file**

 Specifies an engine (module) to be dynamically loaded on startup by memcached (version 1.6 or later).

 If this option is not specified, memcached tries to load the default engine, which provides the same caching engine as used in memcached 1.4 and previous versions.

 To load the NDB engine, use this option as shown here:

  ```bash
  -E /path/to/ndb_engine.so
  ```

- **-e "configuration_string"**

 Specifies options for use by the loaded engine. Options are given as `option=value` pairs separated by semicolons. The complete string should be quoted to prevent the possibility that the shell might interpret the semicolon as a command separator. All options to be passed to the NDB memcached engine must be specified in this fashion, as shown in the following example:

  ```bash
  shell> memcached -E lib/ndb_engine.so -e "connectstring=maddy:1186;role=dev"
  ```

 See Section 6.4, “NDB Engine Configuration” for a list of NDB memcached engine configuration options.

- **-t number_of_worker_threads**

 Sets the number of worker threads to be used by memcached. Because memcached uses an event-driven model in which each worker thread should be able to saturate a CPU core, the number of worker threads should be approximately the same as the number of CPU cores that memcached is to use.

 In some cases, adding worker threads does not improve performance unless you also provide additional connections to NDB Cluster. The default (4 memcached threads and 2 cluster connections) should work in most cases.

- **-p tcp_port**

 The default TCP port is port 11211.

- **-U udb_port**

 The default UDP port is port 11211. Setting this option to 0 disables UDP support.

- **-h**

 Causes memcached to print help information.

For general information memcached command line options, see the documentation at http://code.google.com/p/memcached/wiki/NewStart.

6.4 NDB Engine Configuration

NDB memcache engine configuration options:

The NDB engine supports the following configuration options for use with `memcache -e` (see Section 6.3, “memcached command line options”):

- **debug={true|false}**
Enables writing of debug tracing output to stderr or the memcached log file, as shown in this example:

```
shell> memcached -E lib/ndb_engine.so -e "debug=true"
```

Because the debug output can be quite large, you should enable this option as a diagnostic tool only, and not in production.

By default, this option is `false`.

- **connectstring=connect_string**

 This option takes as its value an NDB Cluster connection string (see NDB Cluster Connection Strings) pointing to the primary NDB Cluster—that is, the NDB Cluster in which the ndbmemcache configuration database is stored, as shown here:

  ```
  shell > memcached -E lib/ndb_engine.so -e "connectstring=sam:1186;debug=true"
  ```

 The default value is `localhost:1186`.

- **reconf={true|false}**

 Enables online reconfiguration (reloading of the configuration stored in the ndbmemcache information database).

 This option is enabled (`true`) by default.

- **role=role_name**

 Sets the role assumed by this memcached server. A role corresponds to a set of key-prefix mappings described in the ndbmemcache configuration database, identified by a `role_name` found in the ndbmemcache.memcache_server_roles table.

 The default role is `default_role`.

 An example is shown here:

  ```
  shell> memcached -E lib/ndb_engine.so -e "role=db-only"
  ```

- **scheduler=scheduler_name:scheduler_options**

 This option controls some advanced aspects of how the NDB engine sends requests to NDB Cluster. The `scheduler_name` of the default scheduler or S-scheduler is `S`. An S-scheduler option takes the form of a single letter followed by a number; multiple S-scheduler options are separated by commas.

 In most cases, the default value `S:c0,f0,t1` is sufficient.

 These S-scheduler options are described in the following list:

 - **c**: Number of connections to NDB. Possible values are in the range 0-4 inclusive, with 0 (the default) causing this number to be calculated automatically. Using 1, 2, 3, or 4 causes that number of connections to be created.

 - **f**: Can be either 0 or 1; setting to 1 enables force-send. The default is 0 (force-send disabled).

 - **t**: Sets the send-thread timer to 1-10 milliseconds (inclusive). The default is 1.

Initial Configuration.

When a the NDB engine starts up, its most important command-line arguments are the cluster connection string and server role. The connection string is used to connect to a particular cluster, called the primary cluster, which contains a configuration schema. The tables in the configuration schema are read to retrieve a set of key-prefix mappings for the given server role (see the ndbmemcache configuration schema). Those mappings instruct the server how to respond to memcache operations.
on particular keys, based on the leftmost part of the key. For instance, they may specify that data is
stored in particular columns of a certain table. This table may be stored in the same cluster as the
configuration schema, or in a different cluster. A memcache server may have connections to several
different clusters, and many memcache servers may connect to a single cluster but with a variety of
roles.

The ndbmemcache configuration schema. When the memcache NDB engine starts up, it
connects to a cluster, and looks for the ndbmemcache configuration schema there. If the schema is not
found, it shuts down.

The schema is described (with full comments) in the file ndb_memcache_metadata.sql

The main concept of the schema is a key-prefix mapping. This takes a prefix of a memcache key and
maps it to a specific container table, on a particular cluster, with a particular cache policy.

A server role is defined as a set of key-prefix mappings that a memcached server will implement.

Whenever a memcached server is started with a particular server role (from the command-line
arguments), that server role must exist in the ndbmemcache.server_roles table.

The following table lists table names and descriptions for tables that belong to the ndbmemcache
configuration schema.

Table 6.1 ndbmemcache configuration schema, table names and descriptions

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>meta</td>
<td>The meta table describes the version number of the ndbmemcache tables. It should be considered as a read-only table.</td>
</tr>
<tr>
<td>ndb_clusters</td>
<td>For each cluster, this table holds a numeric cluster-id and a connection string. The microsec_rtt column is used for performance tuning. It is recommended to use the default value of this column. See Autotuning.</td>
</tr>
<tr>
<td>cache_policies</td>
<td>This table maps a policy name to a set of get, set, delete, and flush policies. The policy_name column is used as the key (there is no numeric policy id). Additional information about cache policies can found in the text following the table.</td>
</tr>
<tr>
<td>containers</td>
<td>The containers table describes how the memcached server can use a database table to store data. Additional information about containers can be found in the text following the table.</td>
</tr>
<tr>
<td>memcache_server_roles</td>
<td>The memcache_server_roles table maps a role name to a numeric ID and a max_tps specifier, which is used for performance tuning. See Autotuning. It is recommended to use the default value. This table also has an update_timestamp column. This column can be updated to enable online reconfiguration. See Online reconfiguration. Additional information about server roles can be found in the text following the table.</td>
</tr>
<tr>
<td>key_prefixes</td>
<td>In this table, the leftmost part of a memcache key is paired with a cluster ID, container, and cache policy to make a key prefix mapping. Additional information about key prefix mappings can be found in the text following the table.</td>
</tr>
</tbody>
</table>

Cache policies. There are four policy types: get_policy, set_policy, delete_policy, and flush_from_db. These are described in the following paragraphs.

get_policy determines how the memcached server interprets GET commands. Possible values and their meanings are shown in the following list:
NDB Engine Configuration

• **cache_only**: The server searches in its local cache only.

• **ndb_only**: The server searches in the NDB Cluster database only.

• **caching**: The server searches the local cache first, then the NDB Cluster database.

• **disabled**: GET commands are not permitted.

The **set_policy** determines how the memcached server interprets SET, INSERT, and REPLACE commands. Possible **set_policy** values and their meanings are listed here:

• **cache_only**: The server updates the value in its local cache only.

• **ndb_only**: The server updates the value stored in NDB Cluster only.

• **caching**: The server updates the value stored in NDB Cluster, and then stores a copy of that value in its local cache.

• **disabled**: SET, INSERT, and REPLACE commands are not allowed.

The **delete_policy** describes how the memcached server interprets DELETE commands. It can take on the values shown and described in the following list:

• **cache_only**: The server deletes the value from its local cache only.

• **ndb_only**: The server deletes the value from the NDB Cluster database only.

• **caching**: The server deletes the value from both the database and its local cache.

• **disabled**: DELETE operations are not allowed.

The **flush_from_db** determines how the memcached server interprets a FLUSH_ALL command with regard to data stored in the NDB Cluster database, as shown here:

• **true**: FLUSH_ALL commands cause data to be deleted from the NDB Cluster database.

• **false**: FLUSH_ALL commands do not affect the NDB Cluster database.

containers table columns. The columns in the **containers** table are described in the following list:

• **name**: Name of container; primary key of table.

• **db_schema**: Name of database (schema) holding container table.

• **db_table**: table name of container table.

• **key_columns**: List of columns that map to the memcache key. Most keys are one-part keys, but a key can have up to four parts, in which case multiple columns are listed and separated by commas.

• **value_columns**: List of columns that map to the memcache value. It can also contain a comma-separated list of up to 16 value columns.

• **flags**: Currently unimplemented; it is intended hold either a numeric value which is used as the memcache **FLAGS** value for the entire container, or the name of that column of the container table used to store this value.

• **increment_column**: Name of the column in the container table which stores the numeric value used in memcached **INCR** and **DECR** operations. If set, this must be a **BIGINT UNSIGNED** column.

• **cas_column**: Name of the column in the container table storing the memcache CAS value. If set, it must be a **BIGINT UNSIGNED** column.
NDB Engine Configuration

- **expire_time_column**: Currently unimplemented.

Key mappings.

- **server_role_id** is a numeric server role identifier which references the memcache_server_roles table
- **key_prefix** is a string that corresponds to the leftmost part of the memcache key. If this string is empty, then the defined prefix will be the "default prefix". The default prefix matches any memcache key that does not match some more specific prefix.
- **cluster_id** is an int that references the ndb_clusters table
- **policy** is a string that references a policy name in the cache_policies table
- **container** is a container name that references the containers table

The following table lists table names and descriptions for non-configuration ndbmemcache logging and container tables.

Table 6.2 ndbmemcache logging and container tables not for configuration, with descriptions

<table>
<thead>
<tr>
<th>Table Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>last_memcached_signon</td>
<td>This table is not part of the configuration schema, but is an informative logging table. It records the most recent login time of each memcached server using the configuration.</td>
</tr>
<tr>
<td>ndb_node_id</td>
<td>is an int recording the API node id of the server</td>
</tr>
<tr>
<td>hostname</td>
<td>is the hostname of the memcached server</td>
</tr>
<tr>
<td>server_role</td>
<td>is the role assigned to the server at signon time</td>
</tr>
<tr>
<td>signon_time</td>
<td>is a timestamp recording the memcached startup time</td>
</tr>
<tr>
<td>demo_table</td>
<td>demo_table is the container table used with default key prefix in the default server role. It is used to demonstrate SET and GET operations as well as INCR, DECR, and CAS, with one key column and one value column.</td>
</tr>
<tr>
<td>demo_table_tabs</td>
<td>demo_table_tabs is the container table for the "demo_tabs" container, which is used with the key prefix "t:" in the default server role. It is used to demonstrate one key column with multiple value columns. In memcache operations, the value columns are represented as a tab-separated list of values.</td>
</tr>
</tbody>
</table>

Predefined configuration objects

Predefined clusters. A single ndb_cluster record is predefined, referring to the primary cluster (the one where configuration data is stored) as cluster id 0. Id 0 should always be reserved for the primary cluster.

Predefined cache policies

- "memcache-only" : a policy in which all memcache operations are to use local cache only
- "ndb-only" : a policy in which all memcache operations use the NDB Cluster database, except for FLUSH_ALL, which is disabled
- "caching" : a policy with get_policy, set_policy, and delete_policy all set to "caching". FLUSH_ALL is disabled.
• "caching-with-local-deletes": a policy in which get_policy and set_policy are set to caching, but delete_policy is set to "cache-only", and FLUSH_ALL is disabled.

• "ndb-read-only": a policy in which get_policy is set to ndb_only, so that memcache GET operations use the database, but all other memcache operations are disabled

• "ndb-test": a policy like "ndb-only" with the difference that FLUSH_ALL is allowed (flush_from_db) is true. This is the only predefined policy with flush_from_db enabled. This policy is enabled by default for the default server role, so that the entire memcache command set can be demonstrated.

Predefined containers

• "demo_table": a container using the table ndbmemcache.demo_table as a container table

• "demo_tabs": a container using the table ndbmemcache.demo_table_tabs as a container table

Predefined memcache server roles and their key prefixes

• "default_role" (role id 0)
 "": The empty (default) prefix uses the ndb-test policy and the demo_table container
 "mc:" Memcache keys beginning with "mc:" are treated according to the memcache-only cache policy
 "t:" Memcache keys beginning with "t:" use the ndb-test cache policy and the demo_tabs container

• The "db-only" role (role id 1)
 "": the empty (default) prefix uses the ndb-only role and demo_table container
 The "t:" prefix uses the ndb-only role and demo_tabs container

• The "mc-only" role (role id 2)
 "": The empty (default) prefix uses local caching only for all keys

• The "ndb-caching" role (role id 3)
 "": The empty (default) prefix uses the "caching" cache policy and "demo_table" container for all keys

Configuration versioning and upgrade.
The configuration schema is versioned, and the version number is stored in the ndbmemcache.meta table. The NDB Engine begins the configuration process by reading the schema version number from this table. As a rule, newer versions of the NDB engine will remain compatible with older versions of the configuration schema.

STABILITY NOTE: consider this section "unstable" & subject to change

Performance Tuning.
Two parameters are used to tune performance of the NDB memcache engine. The parameters are stored in the configuration schema: the "usec_rtt" value of a particular cluster, and the "max_tps" value of a memcache server role. These values are currently used in two ways: to configure the number of connections to each cluster, and to configure a particular fixed number of concurrent operations supported from each connection.

Autotuning. Autotuning uses an estimated round trip time between cluster data nodes and a target rate of throughput to determine the ideal number of cluster connections and transactions per connection for a given workload. Autotuning parameters are described in the next few paragraphs.

• usec_rtt: The round trip time, in microseconds, between cluster nodes. The default value is 250, which is typical for an NDB Cluster on a local switched ethernet. To represent a cluster with higher inter-node latency (wider area), a higher value should be used.
• **max_tps**: The desired throughput from a server. This value is a heuristic, and does not in any way express either a floor or a ceiling on the actual throughput obtained. The default value (100000) is reasonable in most cases.

These values are used, as described in the next few paragraphs, to calculate an optimum number of cluster connections with a given transactions-per-second capacity.

Number of cluster connections. The NDB Engine scheduler attempts to open 1 cluster connection per 50000 transactions per second (TPS). This behavior can be overridden by using a scheduler configuration string (see Section 6.4, "NDB Engine Configuration"). If the scheduler fails to open a second or subsequent connection to a cluster—for example, because a node id is not available—this is not a fatal error; it will run with only the connections actually opened.

Number of transactions per connection. We assume that a transaction takes 5 times the cluster round trip time to complete. We can obtain the total number of in-flight transactions by dividing the server's **max_tps** by 5 * **rtt** (in seconds). These in-flight transaction objects are evenly distributed among the cluster connections.

Tuning example. The following example starts with the default values **usec_rtt** = 250 and **max_tps** = 100000, and assumes a memcached server with 4 worker threads.

- 100000 TPS divided by 50000 is 2, and the server opens two NDB cluster connections.
- Transaction time in microseconds = 250 µs round trip time * 5 round trips = 1250 µs.
- Transactions per connection per second = 1000000 / tx_time_in_µsec = 1000000 / 1250 = 800.
- Total Ndb objects = max_tps / tx_per_ndb_per_sec = 100000 / 800 = 125.
- 125 Ndb objects / 2 connections = 63 Ndb objects per connection (rounding upward).
- (Rounding upward once more) each of 4 worker threads gets 32 Ndb objects

Online reconfiguration.

It is possible to reconfigure the key-prefix mappings of a running NDB engine without restarting it. This is done by committing a change to the configuration schema, and then updating the **update_timestamp** column of a particular server role in the memcache server roles table. The updating of the timestamp causes an event trigger to fire, so that the memcache server receives notification of the event.

Online reconfiguration can be disabled by using the **-e reconf=false** option on the command line.

Online reconfiguration can be used to connect to new clusters and to create new key-prefix mappings. However, it cannot be used to reset autotuning values on existing connections.

Online reconfiguration is a risky operation that could result in memcache server crashes or data corruption, and is used extensively in the mysql test suite. However, it is not recommended for reconfiguring a production server under load.

The **stats reconf** command can be run before and after online reconfiguration to verify that the version number of the running configuration has increased. Verification of reconfiguration is also written into the memcached log file.

6.5 Memcache protocol commands

The NDB engine supports the complete set of memcache protocol commands. When a newly installed server is started with the default server role and configuration schema, you should be able to run **memcapable**, a memcache-server verification tool, and see all tests pass. After a configuration has been customized, however—for instance, by disabling the FLUSH_ALL command—some **memcapable** tests are expected to fail.
GET, SET, ADD, REPLACE, and DELETE operations. Each of these operations is always performed according to a cache policy associated with the memcache key prefix. It may operate on a locally cached item, an item stored in the database, or both. If an operation has been disabled for the prefix, the developer should be sure to test the disabled operation, since it may fail silently, or with a misleading response code.

CAS. CAS, in the memcache protocol, refers to a “compare and set” value, which is used as a sort of version number on a cached value, and enables some optimistic application behavior.

If a container includes a CAS column, the ndb engine will generate a unique CAS ID every time it writes a data value, and store it in the CAS column.

Some memcache operations include CAS checks, such as the ASCII CAS update which has the semantics “update this value, but only if its CAS id matches the CAS id in the request”. These operations are supported by the NDB engine. The check of the stored CAS ID against the application's CAS ID is performed in an atomic operation on the NDB data node. This allows CAS checks to work correctly even when multiple memcached servers access the same key-value pair.

If CAS ID checks are in use, and additional NDB Cluster APIs other than memcached are being used to manipulate the data, then the applications using those APIs are responsible for invalidating the stored CAS IDs whenever they update data. They can do this by setting the stored CAS ID value to 0 or NULL.

The CAS ID is generated using a scheme that attempts to prevent different servers from generating overlapping IDs. This scheme can be considered a best effort, but not a guarantee, of uniqueness. The scheme constructs an initial CAS as follows:

- Part of the 32-bit Cluster GCI from the primary cluster at memcached startup time is used for the high-order bits of the 64-bit CAS ID
- Part of the unique cluster node id in the primary cluster used when fetching configuration is used for middle-order bits of the CAS ID
- An incrementing counter in the low-order bits of the CAS ID is at least 28-bits wide.

While the NDB engine generates one sequence of CAS IDs, the default engine—used for caching values in local memcached servers—generates a different sequence. Not all combinations of CAS behavior and cache policies have been tested, so any application developer wishing to use CAS should thoroughly test whether a particular configuration behaves as desired.

FLUSH_ALL. FLUSH_ALL is implemented as follows: First, the NDB engine iterates over all configured key-prefixes. For any prefix whose cache policy enables a database flush (flush_from_db is true), it performs a scanning delete of every row in that prefix’s container table. Other prefixes are ignored. This can be a slow operation if the table is large, and some memcache clients may time out before the DELETE operation is complete. After all database deletes are complete, the FLUSH_ALL command is forwarded to the standard caching engine, which sets a flag invalidating all cached data.

INCR and DECR. All INCR and DECR operations are pushed down to the NDB data nodes and performed atomically there. This allows multiple memcached servers to increment or decrement the same key and be guaranteed a unique value each time.

The INCR and DECR operations have clearer and more useful semantics in the binary memcache protocol than in the ASCII protocol. The binary protocol is recommended.

The memcached ASCII protocol introduces some ambiguities in the handling of INCR and DECR, and forces the NDB engine to work in dup_numbers mode, in which the value_column and the math_column must mirror each other.

dup_numbers mode is enabled for key prefixes that meet all of the following conditions:
6.6 The memcached log file

- The container includes a math column, AND
- The container includes a single value column, AND
- The data type of the value column is non-numeric

In `dup_numbers` mode, the following special behavior applies:

- Whenever an ASCII `SET`, `ADD`, or `REPLACE` command sets a value that could be interpreted as numeric, and the container defines a math_column, then the text value is stored in the value column and the numeric value is also stored in the math column.
- Whenever an ASCII `INCR` or `DECR` command is performed, the text value in that container's value column is set to `NULL`.
- Whenever a memcached `GET` command is issued, and the container's value column is `NULL`, but the container's math column is not `NULL`, then the math value is returned to the client.

APPEND and PREPEND. The memcache `APPEND` and `PREPEND` operations are implemented as a single transaction which involves a read of the existing value with an exclusive lock, followed by a write of the new value. The read and write are grouped atomically into a transaction, but unlike `INCR` and `DECR`, which can run natively on the data nodes, `APPEND` and `PREPEND` are executed inside the memcached server. This means that multiple memcached servers can contend to `APPEND` and `PREPEND` the same value, and that no updates will be lost, but this contention relies on locking behavior that could cause noticeably increased latency.

STATS. A memcached server can provide many sets of statistics; use `STATS KEYWORD` from a login shell.

All statistics usually available from the memcached 1.6 core and the default engine are available. For instance, `STATS`, `STATS SLABS`, and `STATS SETTINGS` are all currently supported as described in the memcached documentation. Some special sets of statistics are available from the `NDB` engine, using the `STATS` commands described in the following list:

- **STATS NDB:** Returns NDB API statistics for each NDB cluster connection. These are the same internal statistics which are available as system status variables from the MySQL Server. See [NDB API Statistics Counters and Variables](#), for more information.
- **STATS SCHEDULER:** Returns statistics for the S scheduler. All of these statistics are reported on the cluster connection level.
 - `cl%d.conn%d.sent_operations`: Records the number of operations sent from the connection's send thread to the cluster data nodes.
 - `cl%d.conn%d.batches`: Records the number of operation batches sent from the send thread to the data nodes. Each batch contains one or more operations. `sent_operations / batches` can be used to compute the average batch size.
 - `cl%d.conn%d.timeout_races`: This records a rare race condition that may occur in the send thread. It is expected to be 0, or to be a very low number compared to `sent_operations`.
 - **stats reconf:** If the NDB engine is currently loading a new configuration, command returns the single-line message `Loading revno`, where `revno` is the version number of the configuration being loaded.

Otherwise, this command returns the statistical message `Running revno`.

`revno` starts at 1 when the memcached server begins running, and is incremented by 1 for each online reconfiguration.
Whenever the NDB memcache engine is initialized, it writes a message including a timestamp and version number to its log file, as shown here:

```
12-Oct-2011 13:40:00 PDT NDB Memcache 8.0.21-ndb-8.0.21 started
[MySQL 8.0.21-ndb-8.0.21]
```

It also logs its attempt to connect to a primary cluster:

```
Contacting primary management server (localhost:1186) ...
Company: Connected to "localhost:1186" as node id 4.
```

Upon successfully fetching initial configuration data, the memcache engine logs a summary message describing the configuration similar to what is shown here:

```
Retrieved 3 key prefixes for server role "default_role"
The default behavior is that:
GET uses NDB only
SET uses NDB only
DELETE uses NDB only
The 2 explicitly defined key prefixes are "mc:" () and "t:" (demo_table_tabs)
Server started with 4 threads.
```

The memcache engine also logs the establishment of each additional cluster connection, as shown here:

```
Connected to "" as node id 5.
```

A priming the pump... message indicates that the engine is about to prefetch a pool of transaction objects (API Connect Records). It is followed by a done ... message indicating how much time was used by prefetching. The server is not ready to respond to clients until after the prefetching is completed.

```
Priming the pump ...
Scheduler: using 2 connections to cluster 0
Scheduler: starting for 1 cluster; c0,f0,t1
done [0.579 sec].
```

Once the NDB engine has finished initializing, memcached prints a message verifying that the engine was loaded, and enumerating some of its features:

```
Loaded engine: NDB Memcache 8.0.21-ndb-8.0.21
Supplying the following features: compare and swap, persistent storage, LRU
```

If online reconfiguration is enabled, the NDB engine logs each reconfiguration, along with a summary of the new configuration, similar to what is shown here:

```
Received update to server role default_role
Retrieved 3 key prefixes for server role "default_role".
The default behavior is that:
GET uses NDB only
SET uses NDB only
DELETE uses NDB only.
The 2 explicitly defined key prefixes are "mc:" () and "t:" (demo_table_tabs)
ONLINE RECONFIGURATION COMPLETE
```

On shutdown, memcached logs the shutdown sequence's initialization and completion, and the NDB engine's scheduler logs its own shutdown as well:

```
Initiating shutdown
Shutting down scheduler.
Shutdown completed.
```

6.7 Known Issues and Limitations of ndbmemcache

This section provides information about known issues with and design limitations of the Memcache API for NDB Cluster.
Known Issues and Limitations of ndbmemcache

Problems with AUTO_INCREMENT. ndbmemcache bypasses the NDB storage engine’s mechanism for handling AUTO_INCREMENT columns. This means that, when you insert rows using ndbmemcache into a table having an AUTO_INCREMENT column, this column is not automatically updated. This can lead to duplicate key errors when inserts are performed later using SQL in a MySQL client application such as mysql.

To work around this issue, you can employ a sequence generator as described here.

Online schema changes not supported. The memcached daemon does not detect online schema changes; after making such changes, you must restart the memcached daemon before the updated schema can be used by your application.

Fractional seconds. ndbmemcache supports the use of fractional seconds with the TIME, DATE, and DATETIME data types as implemented in MySQL 5.6.4 and later.
Index

A
AbortOption (NdbOperation data type), 187
ACC
 and NDB Kernel, 12
defined, 3
Access Manager
defined, 3
ActiveHook (NdbBlob data type), 128
addColumn() (method of Index), 87
addColumn() (method of Table), 252
addColumnNames() (method of Index), 87
addEventColumn() (method of Event), 67
addEventColumns() (method of Event), 67
addTableEvent() (method of Event), 68
add_reg() (method of NdbInterpretedCode), 167
add_val() (method of NdbInterpretedCode), 167
aggregate() (method of Table), 252
allowsNull (ClusterJ), 635
and (ClusterJ), 643
Annotations (ClusterJ)
 Column, 635
 Columns, 636
 Extension, 636
 Extensions, 637
 Index, 637
 Indices, 638
 Lob, 638
 NotPersistent, 639
 PartitionKey, 639
 PersistenceCapable, 640
 Persistent, 641
 PrimaryKey, 642
 Projection, 642
API documentation
 JavaScript, 652
API node
defined, 3
append (ClusterJ), 614
application-level partitioning, 115
applications
 structure, 4
applyToClass() (method of TableMapping), 660
aRef() (method of NdbRecAttr), 199
ArrayType (Column data type), 28
AutoGrowSpecification
 NDB API structure, 26
AUTO_INCREMENT
 ndbmemcache, 684

B
backup
defined, 2
Batch class (Connector for JavaScript), 652
Batch.clear(), 653
Batch.execute(), 653
Batch.getSession(), 653
begin (ClusterJ), 634
begin() (method of NdbScanFilter), 207
begin() (method of Transaction), 662
beginSchemaTrans() (method of Dictionary), 49
between (ClusterJ), 644
BinaryCondition (NdbScanFilter data type), 207
BLOB handling
 example, 491
 example (using NdbRecord), 498
blobsFirstBlob() (method of NdbBlob), 128
blobsNextBlob() (method of NdbBlob), 129
BoundType (NdbIndexScanOperation data type), 155
branch_col_and_mask_eq_mask() (method of NdbInterpretedCode), 168
branch_col_and_mask_eq_zero() (method of NdbInterpretedCode), 168
branch_col_and_mask_ne_mask() (method of NdbInterpretedCode), 169
branch_col_and_mask_ne_zero() (method of NdbInterpretedCode), 169
branch_col_eq() (method of NdbInterpretedCode), 170
branch_col_eq_null() (method of NdbInterpretedCode), 171
branch_col_ge() (method of NdbInterpretedCode), 171
branch_col_gt() (method of NdbInterpretedCode), 172
branch_col_le() (method of NdbInterpretedCode), 172
branch_col_like() (method of NdbInterpretedCode), 173
branch_col_lt() (method of NdbInterpretedCode), 174
branch_col_ne() (method of NdbInterpretedCode), 174
branch_col_ne_null() (method of NdbInterpretedCode), 175
branch_col_nolike() (method of NdbInterpretedCode), 176
branch_eq() (method of NdbInterpretedCode), 176
branch_eq_null() (method of NdbInterpretedCode), 176
branch_ge() (method of NdbInterpretedCode), 177
branch_gt() (method of NdbInterpretedCode), 177
branch_label() (method of NdbInterpretedCode), 177
branch_le() (method of NdbInterpretedCode), 178
branch_lt() (method of NdbInterpretedCode), 178
branch_ne() (method of NdbInterpretedCode), 178
branch_ne_null() (method of NdbInterpretedCode), 179

C
call_sub() (method of NdbInterpretedCode), 179
charsetName (ClusterJ), 601
char_value() (method of NdbRecAttr), 199
checkpoint
defined, 2
Classes (ClusterJ)
 ClusterJDatastoreException.Classification, 593
 ClusterJHelper, 596
 ColumnType, 603
 DynamicObject, 616
 LockMode, 617
 NullValue, 639

685
PersistenceModifier, 640
Query.Ordering, 621
SessionFactory.State, 633
Classification (NdbError data type), 142
clear() (method of Batch), 653
clearError() (method of NdbEventOperation), 145
clone() (method of NdbRecAttr), 200
close (ClusterJ), 624, 631
close() (method of NdbBlob), 129
close() (method of NdbScanOperation), 215
close() (method of NdbTransaction), 224
close() (method of Session), 659
close() (method of SessionFactory), 659
closeTransaction() (method of Ndb), 100
ClusterJ
defined, 575
ClusterJDatastoreException (ClusterJ), 591
ClusterJDatastoreException.Classification (ClusterJ), 593
ClusterJException (ClusterJ), 594
ClusterJFatalException (ClusterJ), 595
ClusterJFatalInternalException (ClusterJ), 595
ClusterJFatalUserException (ClusterJ), 596
ClusterJHelper (ClusterJ), 596
ClusterJUserException (ClusterJ), 600
cmp() (method of NdbScanFilter), 208
coding examples
MGM API, 567
NDB API, 406
Column
and NDB Cluster replication, 28
NDB API class, 26
Column (ClusterJ), 635
column (ClusterJ), 640, 641, 642
Column::ArrayType, 28
Column::equal(), 31
Column::getArrayType(), 31
Column::getCharset(), 32
Column::getColumnNo(), 32
Column::getDefaultValue(), 32
Column::getInlineSize(), 33
Column::getLength(), 33
Column::getName(), 33
Column::getNullable(), 33
Column::getPartitionKey(), 34
Column::getPartSize(), 34
Column::getPrecision(), 35
Column::getPrimaryKey(), 35
Column::getSizeInBytesForRecord(), 36
Column::getStorageType(), 36
Column::setScale(), 37
Column::setArrayType(), 37
Column::setCharset(), 37
Column::setDefaultValue(), 37
Column::setLength(), 38
Column::setName(), 38
Column::setNullable(), 39
Column::setPartitionKey(), 39
Column::setPartSize(), 39
Column::setPrecision(), 40
Column::setPrimaryKey(), 40
Column::setScale(), 41
Column::setStorageType(), 41
Column::setStripeSize(), 41
Column::setType(), 41
Column::StorageType, 28
Column::Type, 29
ColumnMetadata (ClusterJ), 600
ColumnMetadata class (Connector for JavaScript), 661
Columns (ClusterJ), 636
columns (ClusterJ), 638, 640, 642
columnType (ClusterJ), 601
ColumnType (ClusterJ), 603
Commit
defined, 5
commit (ClusterJ), 634
commit() (method of Transaction), 662
commitStatus() (method of NdbTransaction), 224
CommitStatusType (NdbTransaction data type), 225
computeHash() (method of Ndb), 100
concurrency control, 13
connect() (method of Mynode), 658
connect() (method of Ndb_cluster_connection), 118
connecting to multiple clusters
example, 411, 569
ConnectionProperties() object (Node.js), 656
Connector for JavaScript, 651
Batch class, 652
ColumnMetadata class, 661
concepts, 651
Context class, 653
Converter class, 655
CPU architecture, 652
Errors, 656
dependencies, 662
FieldMapping class, 660
installing, 651
Mynode, 656
prerequisites, 651
Session class, 658
SessionFactory class, 659
TableMapping class, 659
TableMetadata class, 660
test program, 652
Transaction class, 662
Connector/J
known issues, 650
Constants (ClusterJ), 604
containers table (ndbmemcache), 677
Context class (Connector for JavaScript), 653
Context.find(), 653
Context.isBatch(), 655
Context.load(), 653
Context.persist(), 654
Context.remove(), 654
Context.save(), 655
Context.update(), 654
Converter class (Connector for JavaScript), 655
copy() (method of NdbInterpretedCode), 179
CPU architecture
Connector for JavaScript, 652
createBatch() (method of Session), 658
createDatatable() (method of Dictionary), 49
createEvent() (method of Dictionary), 50
createForeignKey() (method of Dictionary), 50
createIndex() (method of Dictionary), 50
createLogfileGroup() (method of Dictionary), 51
createQuery (ClusterJ), 624
createQueryDefinition (ClusterJ), 646
createRecord() (method of Dictionary), 51
createTable() (method of Dictionary), 52
createTablespace() (method of Dictionary), 52
createUndofile() (method of Dictionary), 53
currentState (ClusterJ), 631
currentTransaction (ClusterJ), 624
currentTransaction() (method of Session), 659

D
data node
 defined, 3
Datafile
 NDB API class, 42
Datafile::getFilen(), 43
Datafile::getNode(), 44
Datafile::getObjectId(), 44
Datafile::getObjectStatus(), 44
Datafile::getObjectVersion(), 44
Datafile::getPath(), 44
Datafile::getSize(), 45
Datafile::getTablespace(), 45
Datafile::getTablespaceId(), 45
Datafile::setNode(), 46
Datafile::setPath(), 46
Datafile::setSize(), 46
Datafile::setTablespace(), 46
Dbg (ClusterJ), 612
debug (ClusterJ), 614, 614
defaultValue (ClusterJ), 636
DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES (ClusterJ), 607
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE (ClusterJ), 607
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_START (ClusterJ), 607
DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP (ClusterJ), 607
DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY (ClusterJ), 607
DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER_MGM (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE_MGM (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_DATABASE (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_CONNECTION_POOL_RECV_THREAD_POOL_SIZE (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_CONNECTION_POOL_SIZE (ClusterJ), 608
DEFAULT_PROPERTY_CLUSTER_CONNECTION_RECONNECT_TIMEOUT (ClusterJ), 609
def_label() (method of NdbInterpretedCode), 179
def_sub() (method of NdbInterpretedCode), 180
deleteCurrentTuple() (method of NdbScanOperation), 215
deletePersistent (ClusterJ), 624, 624
deletePersistentAll (ClusterJ), 619, 625, 625
deleteTuple() (method of NdbIndexOperation), 153
deleteTuple() (method of NdbOperation), 187
deleteTuple() (method of NdbTransaction), 225
Dictionary
 NDB API class, 47
Dictionary::beginSchemaTrans(), 49
Dictionary::create() methods
 and NDB Cluster replication, 48
Dictionary::createDatatable(), 49
Dictionary::createEvent(), 50
Dictionary::createForeignKey(), 50
Dictionary::createHashMap(), 50
Dictionary::createIndex(), 50
Dictionary::createLogfileGroup(), 51
Dictionary::createTable(), 52
Dictionary::createTablespace(), 52
Dictionary::createUndofile(), 52
Dictionary::dropDatatable(), 53
Dictionary::dropEvent(), 53
Dictionary::dropForeignKey(), 53
Dictionary::dropHashMap(), 54
Dictionary::dropIndex(), 54
Dictionary::dropLogfileGroup(), 54
Dictionary::dropTable(), 54
Dictionary::dropTablespace(), 55
Dictionary::dropUndofile(), 55
Dictionary::endSchemaTrans(), 55
Dictionary::getTable(), 56
Dictionary::getDatatable(), 56
Dictionary::getDefaultHashMap(), 56
Dictionary::getEvent(), 56
Dictionary::getFilenK(), 56
Dictionary::getHashMap(), 57
Dictionary::getIndex(), 57
Dictionary::getLogfileGroup(), 57
Dictionary::getNdbError(), 58
Dictionary::getTable(), 58
Dictionary::getTablespace(), 58
Dictionary::getUndofile(), 59
Dictionary::hasSchemaTrans(), 59
Dictionary::initDefaultHashMap(), 59
Dictionary::invalidateIndex(), 60
Dictionary::invalidateTable(), 60
Dictionary::List
 NDB API class, 97
Dictionary::List::Element
 NDB API structure, 63
Dictionary::listIndexes(), 61
Dictionary::listObjects(), 61
Dictionary::prepareHashMap(), 61
Dictionary::releaseRecord(), 62
Dictionary::removeCachedIndex(), 62
Dictionary::removeCachedTable(), 62
Dictionary::SchemaTransFlag, 55
distribution awareness, 114
double_value() (method of NdbRecAttr), 200
dropDatafile() (method of Dictionary), 53
dropEvent() (method of Dictionary), 53
dropEventOperation() (method of Ndb), 102
dropForeignKey() (method of Dictionary), 53
dropIndex() (method of Dictionary), 54
dropLogFileGroup() (method of Dictionary), 54
dropTable() (method of Dictionary), 54
dropTablespace() (method of Dictionary), 55
DynamicObject (ClusterJ), 616
DynamicObjectDelegate (ClusterJ), 616

E
Element
 NDB API structure, 63
Elements (ClusterJ)
 allowsNull, 635
column, 640, 641, 642
columns, 638, 640, 642
defaultValue, 636
extensions, 641
key, 637
name, 636, 638, 642
nullValue, 641
primaryKey, 641
unique, 638
value, 636, 637, 637, 638
vendorName, 637
end() (method of NdbScanFilter), 209
endSchemaTrans() (method of Dictionary), 55
end_of_bound() (method of NdbIndexScanOperation), 155
ENV_CLUSTERJ_LOGGER_FACTORY_NAME
 (ClusterJ), 609
eq() (method of NdbScanFilter), 209
equal (ClusterJ), 644
equal() (method of Column), 31
equal() (method of HashMap), 85
equal() (method of NdbOperation), 187
equal() (method of Table), 253
error classification (defined), 141
error classifications, 405
error code (defined), 141
Error code types, 285
Error codes, 285
error detail message (defined), 141
error handling
 example, 416
 overview, 10
error message (defined), 141
Error status, 141
error types
 in applications, 416
errors
 classifying, 405
 MGM API, 565
 NDB API, 281
Errors (Connector for JavaScript), 656
ER_DDL, 73
Event
 NDB API class, 65
event reporting
 DDL, 73
event subscriptions
 lifetime, 101
Event::addEventColumn(), 67
Event::addEventColumns(), 67
Event::addTableEvent(), 68
Event::EventDurability, 68
Event::EventReport, 69
Event::getDurability(), 69
Event::getEventColumn(), 70
Event::getName(), 70
Event::getNoOfEventColumns(), 70
Event::getObjId(), 71
Event::getObjStatus(), 70
Event::getObjVersion(), 71
Event::getReport(), 71
Event::getTable(), 71
Event::getTableEvent(), 72
Event::getTableName(), 72
Event::mergeEvents(), 72
Event::setDurability(), 73
Event::setName(), 73
Event::setReport(), 73
Event::setTable(), 74
Event::TableEvent, 74
EventBufferMemoryUsage
 NDB API structure, 75
EventDurability (Event data type), 68
EventReport (Event data type), 69
events
 example, 569
 handling
 example, 487
examples
 Connector for JavaScript, 662
Exceptions (ClusterJ)
 ClusterJDatastoreException, 591
 ClusterJException, 594
 ClusterJFatalException, 595
 ClusterJFatalInternalException, 595
 ClusterJFatalUserException, 596
 ClusterJUserException, 600

execute (ClusterJ), 619, 619, 619
execute() (method of Batch), 653
execute() (method of NdbEventOperation), 145
execute() (method of NdbTransaction), 226
executePendingBlobOps() (method of NdbTransaction), 227
explain (ClusterJ), 620
Extension (ClusterJ), 636
Extensions (ClusterJ), 637
extensions (ClusterJ), 641

F
FieldMapping class (Connector for JavaScript), 660

Fields (ClusterJ)
 DEFAULT_PROPERTY_CLUSTER_BYTE_BUFFER_POOL_SIZES, 607
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_BATCH_SIZE, 607
 DEFAULT_PROPERTY_CLUSTER_CONNECT_AUTO_INCREMENT_STEP, 607
 DEFAULT_PROPERTY_CLUSTER_CONNECT_DELAY, 608
 DEFAULT_PROPERTY_CLUSTER_CONNECT_RETRIES, 608
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_AFTER, 608
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_BEFORE, 608
 DEFAULT_PROPERTY_CLUSTER_CONNECT_TIMEOUT_MGM, 608
 DEFAULT_PROPERTY_CLUSTER_CONNECT_VERBOSE, 608
 DEFAULT_PROPERTY_CLUSTER_DATABASE, 608
 DEFAULT_PROPERTY_CLUSTER_MAX_TRANSACTIONS, 608
 DEFAULT_PROPERTY_CONNECTION_POOL_NODEIDS, 611
 DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_ACTIVATION_THRESHOLD, 611
 DEFAULT_PROPERTY_CONNECTION_POOL_RECV_THREAD_CPUIDS, 611
 DEFAULT_PROPERTY_CONNECTION_POOL_SIZE, 611
 DEFAULT_PROPERTY_CONNECTION_RECONNECT_TIMEOUT, 611
 DEFAULT_PROPERTY_DEFER_CHANGES, 611
 DEFAULT_PROPERTY_JDBC_DRIVER_NAME, 612
 DEFAULT_PROPERTY_JDBC_PASSWORD, 612
 DEFAULT_PROPERTY_JDBC_URL, 612
 DEFAULT_PROPERTY_JDBC_USERNAME, 612
 FINALISE, 180
 FIND, 197
 FLOAT_VALUE, 200
 FLUSH, 614
 FIND_INDEX, 614
 FIND_INDEX_SCAN, 618
 SCAN_TYPE, 618
 SCAN_TYPE_INDEX_SCAN, 618
 SCAN_TYPE_PRIMARY_KEY, 618
 SCAN_TYPE_TABLE_SCAN, 619
 SCAN_TYPE_UNIQUE_KEY, 619
 SESSION_FACTORY_SERVICE_CLASS_NAME, 612
 SESSION_FACTORY_SERVICE_FILE_NAME, 612
 finalise() (method of NdbInterpretedCode), 180
 find() (method of Context), 653
 float_value() (method of NdbRecAttr), 200
 flush (ClusterJ), 614, 625
 ForeignKey
 NDB API class, 75
 ForeignKey(), 76
 ForeignKey() (ForeignKey constructor), 76
 ForeignKey::getChildColumnCount(), 78
 ForeignKey::getChildColumnName(), 78
 ForeignKey::getChildTable(), 78
 ForeignKey::getChildIndex(), 78

getServiceInstances (ClusterJ), 598
getSession (ClusterJ), 631, 632
getSession() (method of Batch), 653
getSessionFactory (ClusterJ), 599, 599, 634
getSize() (method of Datafile), 45
gets() (method of Undofile), 280
getSizeInBytesForRecord() (method of Column), 36
getSorted() (method of NdbIndexScanOperation), 156
getState() (method of NdbBlob), 132
getState() (method of NdbEventOperation), 148
getStatus (ClusterJ), 592
getStorageType() (method of Column), 36
getStringProperty (ClusterJ), 599
getStripeSize() (method of Column), 36
getTable() (method of Dictionary), 58
getTable() (method of Event), 71
getTable() (method of Index), 90
getTable() (method of NdbInterpretedCode), 180
getTable() (method of NdbOperation), 191
gtableEvent() (method of Event), 72
getTableId() (method of Table), 262
gTableMetadata() (method of Session), 659
getTableName() (method of Dictionary), 58
getTableName() (method of Event), 71
getTableName() (method of Index), 90
getTableName() (method of NdbOperation), 191
getTransactionId() (method of NdbTransaction), 231
getType (ClusterJ), 648
ggetType() (method of Column), 37
ggetType() (method of Index), 90
getType() (method of NdbOperation), 192
ggetType() (method of NdbRecAttr), 201
getUndoBufferSize() (method of LogfileGroup), 95
getUndoFileSize() (method of Dictionary), 59
getUndoFreeWords() (method of LogfileGroup), 95
getValue() (method of NdbBlob), 132
getValue() (method of NdbEventOperation), 149
getValuePtr() (method of NdbDictionary), 139
getAutoReconnect() (method of Ndb_cluster_connection), 118
get_latest_error() (method of Ndb_cluster_connection), 119
get_latest_error_msg() (method of Ndb_cluster_connection), 119
get_max_adaptive_send_time() (method of Ndb_cluster_connection), 119
get_max_recursive_connections() (method of Ndb_cluster_connection), 119
get_next_ndb_object() (method of Ndb_cluster_connection), 119
get_num_recv_threads() (method of Ndb_cluster_connection), 120
get_range_no() (method of NdbIndexScanOperation), 156
get_size_in_bytes() (method of NdbRecAttr), 200
get_system_name() (method of Ndb_cluster_connection), 120
grant tables
 and NDB API applications, 2
greaterEqual (ClusterJ), 644
greaterThan (ClusterJ), 645
Group (NdbScanFilter data type), 212
gt() (method of NdbScanFilter), 212

H
hasDefaultValues() (method of Table), 264
hasError() (method of NdbEventOperation), 149
HashMap
 NDB API class, 82
HashMap constructor, 83
HashMap::equal(), 85
HashMap::getMapLen(), 84
HashMap::getMapValues(), 85
HashMap::getName(), 84
HashMap::getObjectId(), 86
HashMap::getObjectStatus(), 85
HashMap::getObjectVersion(), 85
HashMap::setName(), 84
hasSchemaTrans() (method of Dictionary), 59

I
 in (ClusterJ), 645
Index
 NDB API class, 86
Index (ClusterJ), 637
Index::addColumn(), 87
Index::addColumnName(), 87
Index::addColumnNames(), 88
Index::get Colum(), 88
Index::getLogging(), 88
Index::getName(), 89
Index::getNoOfColumns(), 89
Index::getObjectId(), 90
Index::getObjectStatus(), 89
Index::getConfigVersion(), 89
Index::getTable(), 90
Index::getType(), 90
Index::setTable(), 91
Index::setType(), 91

692
Index::Type, 91
IndexBound
NDB API structure, 92
INDEX_USED (ClusterJ), 618
Indices (ClusterJ), 638
init() (method of Ndb), 107
initDefaultHashMap() (method of Dictionary), 59
initial node restart defined, 3
insertTuple() (method of NdbOperation), 193
insertTuple() (method of NdbTransaction), 232
int32_value() (method of NdbRecAttr), 201
int64_value() (method of NdbRecAttr), 202
int8_value() (method of NdbRecAttr), 201
integer comparison methods (of NdbScanFilter class), 206
Interfaces (ClusterJ)
ColumnMetadata, 600
Constants, 604
Dbug, 612
DynamicObjectDelegate, 616
Predicate, 642
PredicateOperand, 643
Query, 617
QueryBuilder, 646
QueryDefinition, 647
QueryDomainType, 647
Results, 622
Session, 622
SessionFactory, 630
SessionFactoryService, 634
Transaction, 634
interpret_exit_last_row() (method of NdbInterpretedCode), 181
interpret_exit_nok() (method of NdbInterpretedCode), 181
interpret_exit_ok() (method of NdbInterpretedCode), 182
invalidateIndex() (method of Dictionary), 60
is ACTIVE (Clusterj), 635
is Batch() (method of Context), 655
is Closed (ClusterJ), 626
is Closed() (method of Session), 659
is Consistent() (method of Ndb), 108
is Consistent() (method of NdbEventOperation), 150
is ConsistentGCI() (method of Ndb), 108
is EmptyEpoch() (method of NdbEventOperation), 150
is ErrorEpoch() (method of NdbEventOperation), 150
is ExpectingHigherQueuedEpochs() (method of Ndb), 108
is false() (method of NdbScanFilter), 210
is Not Null (ClusterJ), 645
is not null() (method of NdbScanFilter), 210
is Null (ClusterJ), 645
is Null() (method of NdbDictionary), 140
is NULL() (method of NdbRecAttr), 202
is NULL() (method of NdbScanFilter), 210
is Overrun() (method of NdbEventOperation), 151
is PartitionKey (ClusterJ), 601
is PrimaryKey (ClusterJ), 601
is True() (method of NdbScanFilter), 211
iteration
Ndb objects, 119
iterator (ClusterJ), 622
J
Java, 575
JavaScript, 651
API documentation, 652
javaType (ClusterJ), 601
JDBC
known issues, 650
K
key (ClusterJ), 637
Key_part_ptr
NDB API structure, 97
L
LCP (Local Checkpoint)
defined, 2
le() (method of NdbScanFilter), 213
lessEqual (ClusterJ), 645
lessThan (ClusterJ), 646
like (ClusterJ), 646
List
NDB API class, 97
listBatches() (method of Session), 659
listIndexes() (method of Dictionary), 61
listObjects() (method of Dictionary), 61
listTables() (method of Session), 659
load (ClusterJ), 626
load () (method of Context), 653
load_const_null() (method of NdbInterpretedCode), 182
load_const_u16() (method of NdbInterpretedCode), 182
load_const_u32() (method of NdbInterpretedCode), 182
load const_u64() (method of NdbInterpretedCode), 183
load (ClusterJ), 638
lock handles
NDB API, 189, 237
lock handling
and scan operations, 10
lockCurrentTuple() (method of NdbScanOperation), 217
locking and transactions
NDB API, 189
LockMode (ClusterJ), 617
LockMode (NdbOperation data type), 194
lock ndb_objects() (method of ndb_cluster_connection), 121

693
LogFileGroup
 NDB API class, 92
LogFileGroup::getAutoGrowSpecification(), 94
LogFileGroup::getName(), 94
LogFileGroup::getObjectId(), 94
LogFileGroup::getObjectStatus(), 95
LogFileGroup::getObjectVersion(), 95
LogFileGroup::getUndoBufferSize(), 95
LogFileGroup::getUndoFreeWords(), 95
LogFileGroup::setAutoGrowSpecification(), 96
LogFileGroup::setName(), 96
LogFileGroup::setUndoBufferSize(), 96
lookup (ClusterJ), 594
lt() (method of NdbScanFilter), 213

M
makePersistent (ClusterJ), 627
makePersistentAll (ClusterJ), 627
management (MGM) node
defined, 3
mapField() (method of TableMapping), 660
markModified (ClusterJ), 627
maximumLength (ClusterJ), 602
medium_value() (method of NdbRecAttr), 202
memcache commands
 ndbmemcache, 680
mergeEvents() (method of Event), 72
mergeEvents() (method of NdbEventOperation), 151
Methods (ClusterJ)
 and, 643
 append, 614
 begin, 634
 between, 644
 charsetName, 601
 close, 624, 631
 columnType, 601
 commit, 634
 createQuery, 624
 createQueryDefinition, 646
 currentState, 631
 currentTransaction, 624
 debug, 614, 614
deletePersistent, 624, 624
deletePersistentAll, 619, 625, 625
equal, 644
execute, 619, 619, 619
explain, 620
find, 625
flush, 614, 625
found, 626
get, 614, 648
getBooleanProperty, 597
getClassification, 592
code, 592
getConnectionPoolSessionCounts, 631
getMysqlCode, 592
getQueryBuilder, 626
getRecvThreadActivationThreshold, 631
getRecvThreadCPUIds, 631
getResultList, 620
getRollbackOnly, 635
getServiceInstance, 597, 598, 598, 598
getServiceInstances, 598
getSession, 631, 632
getSessionFactory, 599, 599, 634
getStatus, 592
getStringProperty, 599
type, 648
greaterEqual, 644
greaterThan, 645
in, 645
isActive, 635
isClosed, 626
NotNull, 645
isNull, 645
isPartitionKey, 601
isPrimaryKey, 601
iterator, 622
javaType, 601
lessEqual, 645
lessThan, 646
like, 646
load, 626
lookup, 594
makePersistent, 627
makePersistentAll, 627
markModified, 627
maximumLength, 602
name, 602
newInstance, 627, 627
not, 643, 647
nullable, 602
number, 602
or, 643
output, 615
param, 647
persist, 628
pop, 615
precision, 602
print, 615
push, 615, 615
reconnect, 632, 632
release, 628
remove, 628
rollback, 635
savePersistent, 628
savePersistentAll, 629
scale, 603
set, 615, 615
setLimits, 620
setLockMode, 629
setOrdering, 621
setParameter, 621
setPartitionKey, 629
setRecvThreadActivationThreshold, 632
MGM API
 coding examples, 567
 errors, 565
multiple clusters, 115
multiple clusters, connecting to example, 411, 569
Mynode (Connector for JavaScript), 656
Mynode.connect(), 658
Mynode.ConnectionProperties(), 656
Mynode.getOpenSessionProperties(), 658
Mynode.openSession(), 657
MySQL NDB Cluster Connector for Java, 575
and foreign keys, 650
and joins, 650
and TIMESTAMP, 650
and views, 650
known issues, 649, 650
MySQL privileges
 and NDB API applications, 2

N
name (ClusterJ), 602, 636, 638, 642
NDB
 defined, 3
 record structure, 12
Ndb
 NDB API class, 97
NDB API
 and MySQL privileges, 2
coding examples, 406
defined, 4
errors, 282
lock handles, 189, 237
NDB API classes
 overview, 4
NDB Cluster
 benchmarks, 6
 configuration (ndbmemcache), 674
 memcache, 673
 ndbmemcache, 673
 Node.js, 651
 performance, 6
NDB Cluster replication
 and Column, 28
 and Dictionary::create*() methods, 48
Ndb::closeTransaction(), 100
Ndb::computeHash(), 100
Ndb::dropEventOperation(), 101
Ndb::EventBufferMemoryUsage
 NDB API structure, 75
Ndb::getDatabaseName(), 102
Ndb::getDictionary(), 102
Ndb::getGCIEventOperations(), 103
Ndb::getHighestQueuedEpoch(), 104
Ndb::getLatestGCI(), 104
Ndb::getNdbError(), 105
Ndb::getNdbErrorDetail(), 105
Ndb::getNdbObjectId(), 106
Ndb::geteventbuffer_free_percent(), 103
Ndb::getEventBufferMemoryUsage(), 104
Ndb::init(), 107
Ndb::isConsistent(), 108
Ndb::isConsistentGCI(), 108
Ndb::isExpectingHigherQueuedEpochs(), 108
Ndb::Key_part_ptr
 NDB API structure, 97
Ndb::nextEvent(), 109
Ndb::getNextEvent2(), 109
Ndb::Partition Spec
 NDB API structure, 245
Ndb::pollEvents(), 110
Ndb::pollEvents2(), 111
Ndb::setDatabaseName(), 111
Ndb::setDatabaseSchemaName(), 111
Ndb::setNdbObjectName(), 113
Ndb::set_eventbuffer_free_percent(), 112
Ndb::set_eventbuf_max_alloc(), 112
Ndb::startTransaction(), 113
NdbBlob
 close(), 129
 NDB API class, 126
NdbBlob::ActiveHook type, 128
NdbBlob::blobsFirstBlob(), 128
NdbBlob::blobsNextBlob(), 129
NdbBlob::getBlobEventName(), 128
NdbBlob::getBlobTableName(), 130
NdbBlob::getColumn(), 130
NdbBlob::getLength(), 130
NdbBlob::getPos(), 130
NdbBlob::getNdbError(), 131
NdbBlob::getNdbOperation(), 131
NdbBlob::getNull(), 131
NdbBlob::getPos(), 132
NdbBlob::getState(), 132
NdbBlob::getValue(), 132
NdbBlob::getVersion(), 133
NdbBlob::readData(), 133
NdbBlob::setActiveHook(), 133
NdbBlob::setNull(), 134
NdbBlob::setPos(), 134
NdbBlob::setVersion(), 134
NdbBlob::State type, 135
NdbBlob::truncate(), 135
NdbBlob::writeData(), 135
NdbDictionary
 NDB API class, 136
NdbDictionary::Auto GrowSpecification
 NDB API structure, 26
NdbDictionary::Column
NDB API class, 26
NdbDictionary::Dictionary
NDB API class, 47
NdbDictionary::Event
NDB API class, 65
NdbDictionary::getEmptyBitmask(), 137
NdbDictionary::getFirstAttrId(), 137
NdbDictionary::getNullBitOffset(), 138
NdbDictionary::getOffset(), 138
NdbDictionary::getRecordIndexName(), 138
NdbDictionary::getRecordRowLength(), 138
NdbDictionary::getRecordTableName(), 139
NdbDictionary::getRecordType(), 139
NdbDictionary::getValuePtr(), 139
NdbDictionary::Index
NDB API class, 86
NdbDictionary::isNull(), 140
NdbDictionary::LogfileGroup
NDB API class, 92
NdbDictionary::Object
NDB API class, 239
NdbDictionary::RecordSpecification
NDB API structure, 247
NdbDictionary::setNull(), 140
NdbDictionary::Table
NDB API class, 249
NdbDictionary::Tablespace
NDB API class, 272
NdbDictionary::Undofile
NDB API class, 277
NdbError
NDB API structure, 140
NdbError::Classification type, 142
NdbError::Status type, 143
NdbEventOperation
NDB API class, 143
NdbEventOperation::clearError(), 145
NdbEventOperation::execute(), 145
NdbEventOperation::getBlobHandle(), 145
NdbEventOperation::getEpoch(), 146
NdbEventOperation::getEventType(), 146
NdbEventOperation::getEventType2(), 146
NdbEventOperation::getGCI(), 147
NdbEventOperation::getLatestGCI(), 147
NdbEventOperation::getNdbError(), 147
NdbEventOperation::getPreBlobHandle(), 148
NdbEventOperation::getPreValue(), 148
NdbEventOperation::getState(), 148
NdbEventOperation::getValue(), 149
NdbEventOperation::hasError(), 149
NdbEventOperation::isConsistent(), 150
NdbEventOperation::isEmptyEpoch(), 150
NdbEventOperation::isEmptyEpoch(), 150
NdbEventOperation::mergeEvents(), 151
NdbEventOperation::State, 151
NdbEventOperation::tableFragmentationChanged(), 152
NdbEventOperation::tableFrmChanged(), 152
NdbEventOperation::tableNameChanged(), 152
NdbIndexOperation
NDB API class, 153
NdbIndexOperation class
example, 7
NdbIndexOperation::deleteTuple(), 153
NdbIndexOperation::getIndex(), 154
NdbIndexOperation::readTuple(), 154
NdbIndexOperation::updateTuple(), 154
NdbIndexScanOperation
NDB API class, 154
NdbIndexScanOperation::BoundType, 155
NdbIndexScanOperation::end_of_bound(), 155
NdbIndexScanOperation::getDescending(), 156
NdbIndexScanOperation::getSorted(), 156
NdbIndexScanOperation::get_range_no(), 156
NdbIndexScanOperation::IndexBound
NDB API structure, 92
NdbIndexScanOperation::readTuples(), 156
NdbIndexScanOperation::reset_bounds(), 157
NdbInterpretedCode
NDB API class, 159
NdbInterpretedCode register-loading methods, 161
NdbInterpretedCode() (constructor), 166
NdbInterpretedCode::add_reg(), 167
NdbInterpretedCode::add_val(), 167
NdbInterpretedCode::branch_col_and_mask_eq_mask(), 168
NdbInterpretedCode::branch_col_and_mask_eq_zero(), 168
NdbInterpretedCode::branch_col_and_mask_ne_mask(), 169
NdbInterpretedCode::branch_col_and_mask_ne_zero(), 169
NdbInterpretedCode::branch_col_eq(), 170
NdbInterpretedCode::branch_col_eq_null(), 171
NdbInterpretedCode::branch_col_ge(), 171
NdbInterpretedCode::branch_col_gt(), 172
NdbInterpretedCode::branch_col_le(), 172
NdbInterpretedCode::branch_col_like(), 173
NdbInterpretedCode::branch_col_lt(), 174
NdbInterpretedCode::branch_col_ne(), 174
NdbInterpretedCode::branch_col_ne_null(), 174
NdbInterpretedCode::branch_col_notlike(), 175
NdbInterpretedCode::branch_col_eq(), 175
NdbInterpretedCode::branch_col_eq_null(), 176
NdbInterpretedCode::branch_col_ge(), 176
NdbInterpretedCode::branch_col_gt(), 177
NdbInterpretedCode::branch_col_le(), 177
NdbInterpretedCode::branch_col_like(), 177
NdbInterpretedCode::branch_col_lt(), 178
NdbInterpretedCode::branch_col_ne(), 178
NdbInterpretedCode::branch_col_notlike(), 178
NdbInterpretedCode::branch_col_eq(), 179
NdbInterpretedCode::branch_col_eq_null(), 179
NdbInterpretedCode::branch_col_ge(), 179
NdbInterpretedCode::branch_col_gt(), 179
NdbInterpretedCode::branch_col_le(), 179
NdbInterpretedCode::branch_col_like(), 179
NdbInterpretedCode::branch_col_lt(), 179
NdbInterpretedCode::branch_col_ne(), 179
NdbInterpretedCode::branch_col_notlike(), 179
NdbInterpretedCode::call_sub(), 179
NdbInterpretedCode::copy(), 179
NdbInterpretedCode::def_label(), 179
NdbInterpretedCode::def_sub(), 180
NdbInterpretedCode::finalise(), 180
NdbInterpretedCode::getNdbError(), 180
NdbInterpretedCode::getTable(), 180
NdbInterpretedCode::getWordsUsed(), 181
NdbInterpretedCode::interpret_exit_last_row(), 181
NdbInterpretedCode::interpret_exit_nok(), 181
NdbInterpretedCode::interpret_exit_ok(), 182
NdbInterpretedCode::load_const_null(), 182
NdbInterpretedCode::load_const_u16(), 182
NdbInterpretedCode::load_const_u32(), 182
NdbInterpretedCode::load_const_u64(), 183
NdbInterpretedCode::read_attr(), 183
NdbInterpretedCode::ret_sub(), 184
NdbInterpretedCode::sub_reg(), 184
NdbInterpretedCode::sub_val(), 184
NdbInterpretedCode::write_attr(), 185
NdbLockHandle defined, 190
NdbLockHandle using, 189
ndbmemcache, 673
AUTO_INCREMENT columns, 684
availability, 673
cache policies, 676
compiling, 673
configuration, 674, 675, 678, 679, 680
configuration tables, 676, 677
configuration versioning, 679
enabling support for, 673
fractional seconds, 684
known issues, 683
limitations, 683
log file, 682
memcache commands, 680
memcache protocol, 680
memcached options, 674
metadata, 676
online configuration, 680
performance, 679, 680
schema changes, 684
server_roles table, 676
starting, 675
upgrades, 679
NdbMgmHandle, 529, 536, 536, 537
NdbOperation
NDB API class, 185
NdbOperation class
example, 6
NdbOperation::AbortOption, 186
NdbOperation::deleteTuple(), 187
NdbOperation::equal(), 187
NdbOperation::getBlobHandle(), 189
NdbOperation::getLockHandle(), 189
NdbOperation::getLockMode(), 190
NdbOperation::getNdbError(), 190
NdbOperation::getNdbErrorLine(), 191
NdbOperation::getNdbTransaction(), 191
NdbOperation::getTable(), 191
NdbOperation::getTableName(), 191
NdbOperation::getType(), 192
NdbOperation::getValue(), 192
NdbOperation::GetValueSpec
NDB API structure, 82
NdbOperation::insertTuple(), 193
NdbOperation::LockMode, 194
NdbOperation::NdbIndexOperation
NDB API class, 153
NdbOperation::NdbScanOperation
NDB API class, 214
NdbOperation::OperationOptions
NDB API structure, 243
NdbOperation::readTuple(), 194
NdbOperation::setValue(), 194
NdbOperation::SetValueSpec
NDB API structure, 249
NdbOperation::Type, 196
NdbOperation::updateTuple(), 197
NdbOperation::writeTuple(), 197
NdbRecAttr
NDB API class, 197
NdbRecAttr class, 197
NdbRecAttr::aRef(), 199
NdbRecAttr::char_value(), 199
NdbRecAttr::clone(), 200
NdbRecAttr::double_value(), 200
NdbRecAttr::float_value(), 200
NdbRecAttr::getColumn(), 201
NdbRecAttr::getType(), 201
NdbRecAttr::get_size_in_bytes(), 200
NdbRecAttr::int32_value(), 201
NdbRecAttr::int64_value(), 202
NdbRecAttr::int8_value(), 202
NdbRecAttr::isNULL(), 202
NdbRecAttr::medium_value(), 202
NdbRecAttr::short_value(), 203
NdbRecAttr::u_32_value(), 203
NdbRecAttr::u_64_value(), 203
NdbRecAttr::u_8_value(), 203
NdbRecAttr::u_char_value(), 204
NdbRecAttr::u_medium_value(), 204
NdbRecAttr::u_short_value(), 204
NdbRecord
example, 437, 498
NDB API interface, 204
obtaining column size for, 36
NdbScanFilter
NDB API class, 205
NdbScanFilter class
integer comparison methods, 206
NdbScanFilter::begin(), 206
NdbScanFilter::BinaryCondition, 207
NdbScanFilter::cmp(), 208
NdbScanFilter::end(), 209
NdbScanFilter::eq(), 209
NdbScanFilter::get(), 211
NdbScanFilter::getNdbError(), 211
NdbScanFilter::getNdbOperation(), 212
NdbScanFilter::Group, 212
NdbScanFilter::gt(), 212
NdbScanFilter::isfalse(), 210
NdbScanFilter::isnotnull(), 210
NdbScanFilter::isNull(), 210
NdbScanFilter::istru(), 211
NdbScanFilter::lt(), 213
NdbScanFilter::ne(), 213
NdbScanFilter::operator()(), 212

NdbScanOperation

- NDB API class, 214
- NdbScanOperation::close(), 215
- NdbScanOperation::deleteCurrentTuple(), 215
- NdbScanOperation::getNdbTransaction(), 216
- NdbScanOperation::getPruned(), 216
- NdbScanOperation::lockCurrentTuple(), 217
- NdbScanOperation::operator()(), 217
- NdbScanOperation::NdbIndexScanOperation
 - NDB API class, 154
 - NdbScanOperation::close(), 215

- NdbScanOperation::nextResult(), 218
- NdbScanOperation::readTuples(), 218
- NdbScanOperation::restart(), 220
- NdbScanOperation::ScanFlag, 220
- NdbScanOperation::ScanOptions
 - NDB API structure, 247
- NdbScanOperation::updateCurrentTuple(), 221

NdbTransaction

- NDB API class, 222
- NdbTransaction class methods
 - using, 5
 - NdbTransaction::AbortOption (OBSOLETE), 187
 - NdbTransaction::close(), 224
 - NdbTransaction::commitStatus(), 224
 - NdbTransaction::CommitStatusType, 225
 - NdbTransaction::deleteTuple(), 225
 - NdbTransaction::ExecType, 226
 - NdbTransaction::execute(), 226
 - NdbTransaction::executePendingBlobOps(), 227
 - NdbTransaction::getGCI(), 227
 - NdbTransaction::getMaxPendingBlobReadBytes(), 228
 - NdbTransaction::getMaxPendingBlobWriteBytes(), 228
 - NdbTransaction::getNdbError(), 229
 - NdbTransaction::getNdbErrorLine(), 229
 - NdbTransaction::getNdbOperation(), 229
 - NdbTransaction::getNdbIndexOperation(), 230
 - NdbTransaction::getNdbIndexScanOperation(), 230
 - NdbTransaction::getNdbOperation(), 230
 - NdbTransaction::getNdbScanOperation(), 231
 - NdbTransaction::getNextCompletedOperation(), 231
 - NdbTransaction::getTransactionId(), 231
 - NdbTransaction::insertTuple(), 232
 - NdbTransaction::readTuple(), 232
 - NdbTransaction::refresh(), 234
 - NdbTransaction::releaseLockHandle(), 234
 - NdbTransaction::scanIndex(), 234
 - NdbTransaction::scanTable(), 235
 - NdbTransaction::setMaxPendingBlobWriteBytes(), 236
 - NdbTransaction::setMaxPendingBlobWriteBytes(), 236
 - NdbTransaction::setNdbErrorLine(), 229
 - NdbTransaction::unlock(), 227
 - NdbTransaction::updateTuple(), 227
 - NdbTransaction::writeTuple(), 238

Ndb_cluster_connection

- get_max_adaptive_send_time() method, 119
- get_next_ndb_object() method, 119
- get_num_recv_threads(), 120
- get_recv_thread_activation_threshold(), 120
- get_system_name(), 120
- NDB API class, 115
- set_max_adaptive_send_time(), 122
- set_num_recv_threads(), 122
- set_recv_thread_activation_threshold(), 123
- set_recv_thread_cpu(), 124
- set_service_uri(), 123
- unset_recv_thread_cpu(), 125

unlock ndb_objects() method, 121
unlock ndb_objects() method, 125

Ndb_cluster_connection::connect(), 118
Ndb_cluster_connection::get_auto_reconnect(), 118
Ndb_cluster_connection::get_latest_error(), 118
Ndb_cluster_connection::get_latest_error_msg(), 119
Ndb_cluster_connection::set_auto_reconnect(), 121
Ndb_cluster_connection::set_data_node_neighbour(), 121
Ndb_cluster_connection::set_name(), 122
Ndb_cluster_connection::set_optimized_node_selection(), 123
Ndb_cluster_connection::set_timeout(), 124
Ndb_cluster_connection::wait_until_ready(), 125
nbd_end()

NDB API function, 19
nbd_init()

NDB API function, 19

ndb_logevent

- ndb_logevent_get_fd() function (MGM API), 532
- ndb_logevent_get_latest_error() function (MGM API), 534
- ndb_logevent_get_latest_error_msg() function (MGM API), 534
- ndb_logevent_get_next() function (MGM API), 532
- ndb_logevent_get_next2() function (MGM API), 533
- ndb_logevent_handle_error_type (MGM API), 558
- ndb_logevent_type (MGM API), 553
- ndb_memcache_metadata.sql, 676
- ndb_mgm_abort_backup() function (MGM API), 551
- ndb_mgm_cluster_state structure (MGM API), 565
- ndb_mgm_connect() function (MGM API), 541
- ndb_mgm_create_handle() function (MGM API), 536
- ndb_mgm_create_logevent_handle() function (MGM API), 531, 532
- ndb_mgm_destroy_handle() function (MGM API), 537
- ndb_mgm_destroy_logevent_handle() function (MGM API), 532
ndb_mgm_disconnect() function (MGM API), 542
ndb_mgm_dump_state() function (MGM API), 543
ndb_mgm_enter_single_user() function (MGM API), 552
ndb_mgm_error type (MGM API), 553
ndb_mgm_event_category type (MGM API), 558
ndb_mgm_event_severity type (MGM API), 558
ndb_mgm_exit_single_user() function (MGM API), 552
ndb_mgm_get_clusterlog_loglevel() function (MGM API), 550
ndb_mgm_get_clusterlog_severity_filter() function (MGM API), 549
ndb_mgm_get_configuration_nodeid() function (MGM API), 537
ndb_mgm_get_connected_host() function (MGM API), 538
ndb_mgm_get_connected_port() function (MGM API), 538
ndb_mgm_get_connectstring() function (MGM API), 537
ndb_mgm_get_latest_error() function (MGM API), 534
ndb_mgm_get_latest_error_desc() function (MGM API), 535
ndb_mgm_get_latest_error_msg() function (MGM API), 535
ndb_mgm_get_loglevel_clusterlog() function (MGM API), DEPRECATED, 550
ndb_mgm_get_status() function (MGM API), 542
ndb_mgm_get_status2() function (MGM API), 542
ndb_mgm_get_version() function (MGM API), 538
ndb_mgm_is_connected() function (MGM API), 539
ndb_mgm_node_state structure (MGM API), 564
ndb_mgm_node_status type (MGM API), 553
ndb_mgm_node_type type (MGM API), 552
ndb_mgm_number_of_mgmd_in_connect_string() function (MGM API), 557
ndb_mgm_reply structure (MGM API), 559
ndb_mgm_restart() function (MGM API), 546
ndb_mgm_restart2() function (MGM API), 547
ndb_mgm_restart3() function (MGM API), 547
ndb_mgm_restart4() function (MGM API), 548
ndb_mgm_set_bindaddress() function (MGM API), 549
ndb_mgm_set_clusterlog_loglevel() function (MGM API), 550
ndb_mgm_set_clusterlog_severity_filter() function (MGM API), 549
ndb_mgm_set_configuration_nodeid() function (MGM API), 541
ndb_mgm_set_connectstring() function (MGM API), 540
ndb_mgm_set_error_stream() function (MGM API), 535
ndb_mgm_set_ignore_sigpipe() function (MGM API), 536
ndb_mgm_set_name() function (MGM API), 536
ndb_mgm_set_timeout() function (MGM API), 541
ndb_mgm_start() function (MGM API), 544
ndb_mgm_start_backup() function (MGM API), 551
ndb_mgm_stop() function (MGM API), 544
ndb_mgm_stop2() function (MGM API), 545
ndb_mgm_stop3() function (MGM API), 545
ndb_mgm_stop4() function (MGM API), 546
ne() (method of NdbScanFilter), 213
newDbug (ClusterJ), 600
newInstance (ClusterJ), 627
nextEvent() (method of Ndb), 109
nextEvent2() (method of Ndb), 109
nextResult() (method of NdbScanOperation), 218
NoCommit
defined, 5
node
defined, 3
node failure
defined, 3
node restart
defined, 3
Node.js, 651
not (ClusterJ), 643, 647
NotPersistent (ClusterJ), 639
nullable (ClusterJ), 602
nullValue (ClusterJ), 639
nullValue (ClusterJ), 641
number (ClusterJ), 602

O
Object
NDB API class, 239
Object::Datafile
NDB API class, 42
Object::ForeignKey
NDB API class, 75
Object::FragmentType, 240
Object::getObjectId(), 242
Object::getObjectStatus(), 243
Object::getObjectVersion(), 243
Object::HashMap
NDB API class, 83
Object::PartitionBalance, 240
Object::State, 241
Object::Status, 241
Object::Store, 241
Object::Type, 242
obtaining ndbmemcache, 673
openSession() (method of Mynode), 657
openSession() (method of SessionFactory), 659
OperationOptions
NDB API structure, 243
operations
defined, 5
scanning, 8
single-row, 6
transactions and, 6
or (ClusterJ), 643
output (ClusterJ), 615

699
used for updates or deletes, 9
with lock handling, 10
ScanFlag (NdbScanOperation data type), 220
scanIndex() (method of NdbTransaction), 234
ScanOptions
NDB API structure, 247
scans
performing with NdbScanFilter and
NdbScanOperation, 420
types supported, 1
using secondary indexes
example, 433
example (using NdbRecord), 437
scanTable() (method of NdbTransaction), 235
SCAN_TYPE (ClusterJ), 618
SCAN_TYPE_INDEX.Scan (ClusterJ), 618
SCAN_TYPE_PRIMARY_KEY (ClusterJ), 618
SCAN_TYPE_TABLE.Scan (ClusterJ), 619
SCAN_TYPE_UNIQUE_KEY (ClusterJ), 619
schema changes
ndbmemcache, 684
Schema transactions, 49
schema transactions
and Dictionary::prepareHashMap() method, 61
SchemaTransFlag, 55
server_roles table (ndbmemcache), 676
Session (ClusterJ), 622
Session class (Connector for JavaScript), 658
Session.close(), 659
Session.createBatch(), 658
Session.currentTransaction(), 659
Session.getMapping(), 658
Session.getTableMetadata(), 659
Session.isClosed(), 659
Session.listBatches(), 659
Session.listTables(), 659
Session.setLockMode(), 659
SessionFactory (ClusterJ), 630
SessionFactory class (Connector for JavaScript), 659
SessionFactory.close(), 659
SessionFactory.openSession(), 659
SessionFactoryState (ClusterJ), 633
SessionFactoryService (ClusterJ), 633
SESSION_FACTORY_SERVICE_CLASS_NAME
(ClusterJ), 612
SESSION_FACTORY_SERVICE_FILE_NAME
(ClusterJ), 612
set (ClusterJ), 615, 615
setActiveHook() (method of NdbBlob), 133
setArrayType() (method of Column), 37
setAutoGrowSpecification() (method of Column), 37
setAutoGrowSpecification() (method of LogfileGroup), 96
setAutoGrowSpecification() (method of Tablespace), 276
setCharsetName() (method of Column), 37
setChild() (method of ForeignKey), 80
setDatabaseName() (method of Ndb), 111
setDefaultLogfileGroupName() (method of Tablespace), 276
setDefaultNoPartitionsFlag() (method of Table), 264
setDefaultValue() (method of Column), 37
setDurability() (method of Event), 73
setEventBufferQueueEmptyEpoch() (method of Ndb), 112
setExtentSize() (method of Tablespace), 276
setExtraMetadata() (method of Table), 265
setFragmentCount() (method of Table), 265
setFragmentData() (method of Table), 265
setFragmentType() (method of Table), 266
setFrm() (method of Table), 266
setHashMap() (method of Table), 266
setKValue() (method of Table), 266
setLimits() (ClusterJ), 620
setLinearFlag() (method of Table), 267
setLockMode (ClusterJ), 629
setLockMode() (method of Session), 659
setLogfileGroup() (method of Undofile), 280
setLogging() (method of Table), 267
setMap() (method of HashMap), 84
setMaxPendingBlobReadBytes() (method of NdbTransaction), 236
setMaxPendingBlobWriteBytes() (method of NdbTransaction), 236
setMaxRows() (method of Table), 268
setMaxPendingBlobReadBytes() (method of Table), 268
setName() (method of Column), 38
setName() (method of Event), 73
setName() (method of ForeignKey), 80
setName() (method of HashMap), 84
setName() (method of Index), 91
setName() (method of LogfileGroup), 96
setName() (method of Table), 268
setName() (method of Tablespace), 277
setNdbObjectName() (method of Ndb), 113
setNode() (method of Datafile), 46
setNode() (method of Undofile), 281
setNull() (method of NdbBlob), 134
setNull() (method of NdbDictionary), 140
setNullable() (method of Column), 39
setObjectType() (method of Table), 268
setOnDeleteAction() (method of ForeignKey), 81
setOnUpdateAction() (method of ForeignKey), 80
setOrdering (ClusterJ), 621
setParameter (ClusterJ), 621
setParent() (method of ForeignKey), 80
setPartitionBalance() (method of Table), 269
setPartitionKey (ClusterJ), 629
setPartitionKey() (method of Column), 39
setPartSize() (method of Column), 39
setPath() (method of Datafile), 46
setPath() (method of Undofile), 281
setPos() (method of NdbBlob), 134
setPrecision() (method of Column), 40
setPrimaryKey() (method of Column), 40
setRangeListData() (method of Table), 269
setRecvThreadActivationThreshold (ClusterJ), 632
setRecvThreadCPUIds (ClusterJ), 633
setReport() (method of Event), 73
setRollbackOnly (ClusterJ), 635
setRollbackOnly() (method of Transaction), 662
setRowChecksumIndicator() (method of Table), 269
setRowGCIIndicator() (method of Table), 270
setScale() (method of Column), 41
setSchemaObjectOwnerChecks(), 237
setSchemaObjectOwnerChecks() (method of NdbTransaction), 237
setSingleUserMode() (method of Table), 270
setSize() (method of Datafile), 46
setSize() (method of Undofile), 281
setStatusInvalid() (method of Table), 270
setStorageType() (method of Column), 41
setStripeSize() (method of Column), 41
setTable() (method of Event), 74
setTable() (method of Index), 91
setTablespace() (method of Datafile), 46
setTablespace() (method of Table), 270
setTablespaceData() (method of Table), 271
setTablespaceNames() (method of Table), 271
setType() (method of Column), 41
setType() (method of Index), 91
setUndoBufferSize() (method of LogfileGroup), 96
setAutoReconnect() (method of Ndb_cluster_connection), 121
setDataNodeNeighbour() (method of Ndb_cluster_connection), 121
setEventbufferFreePercent() (method of Ndb), 113
setMaxBufferMaxAlloc() (method of Ndb), 112
setMaxAdaptiveSendTime() (method of Ndb_cluster_connection), 122
setName() (method of Ndb_cluster_connection), 122
setNumRecvThreads() (method of Ndb_cluster_connection), 122
setOptimizedNodeSelection() (method of Ndb_cluster_connection), 123
setRecvThreadActivationThreshold() (method of Ndb_cluster_connection), 120, 123
setRecvThreadCpu() (method of Ndb_cluster_connection), 124
setServiceUri() (method of Ndb_cluster_connection), 123
setTimeout() (method of Ndb_cluster_connection), 124
short_value() (method of NdbRecAttr), 203
SingleUserMode (Table data type), 271
State (NdbBlob data type), 135
State (NdbEventOperation data type), 151
State (Object data type), 241
Status (NdbError data type), 143
Status (Object data type), 241
StorageType (Column data type), 28
Store (Object data type), 241
sub_reg() (method of NdbInterpretedCode), 184
sub_val() (method of NdbInterpretedCode), 184
system crash
defined, 3
system restart
defined, 3

T
Table
getExtraMetadata(), 254
getSingleUserMode(), 262
NDB API class, 249
setExtraMetadata(), 264
setSingleUserMode(), 270
Table::addColumn(), 252
Table::aggregate(), 252
Table::equal(), 253
Table::getColumn(), 253
Table::getDefaultNoPartitionsFlag(), 254
Table::getFragmentCount(), 254
Table::getFragmentData(), 255
Table::getFragmentDataLen(), 255
Table::getFragmentNodes(), 255
Table::getFragmentType(), 256
Table::getFrmData(), 256
Table::getFrmLength(), 256
Table::getHashMap(), 256
Table::getKValue(), 257
Table::getLinearFlag(), 257
Table::getLogging(), 257
Table::getMaxLoadFactor(), 257
Table::getMaxRows(), 258
Table::getMinLoadFactor(), 258
Table::getNoOfColumns(), 258
Table::getNoOfPrimaryKeys(), 259
Table::getObjectId(), 259
Table::getObjectStatus(), 259
Table::getObjectType(), 259
Table::getObjectVersion(), 260
Table::getPartitionBalance(), 260
Table::getPartitionBalanceString(), 260
Table::getPartitionId(), 260
Table::getPrimaryKey(), 261
Table::getRangeListData(), 261
Table::getRangeListDataLen(), 261
Table::getRowChecksumIndicator(), 261
Table::getRowGCIIndicator(), 262
Table::getTableId(), 262
Table::getTablespace(), 262
Table::getTablespaceData(), 263
Table::getTablespaceDataLen(), 263
Table::getTablespaceNames(), 263
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table::getTablespaceNamesLen()</td>
<td>264</td>
</tr>
<tr>
<td>Table::hasDefaultValues()</td>
<td>264</td>
</tr>
<tr>
<td>Table::setDefaultNoPartitionsFlag()</td>
<td>264</td>
</tr>
<tr>
<td>Table::setFragmentCount()</td>
<td>265</td>
</tr>
<tr>
<td>Table::setFragmentData()</td>
<td>265</td>
</tr>
<tr>
<td>Table::setFragmentType()</td>
<td>266</td>
</tr>
<tr>
<td>Table::setFrm()</td>
<td>266</td>
</tr>
<tr>
<td>Table::setHashMap()</td>
<td>266</td>
</tr>
<tr>
<td>Table::setKValue()</td>
<td>266</td>
</tr>
<tr>
<td>Table::setLinearFlag()</td>
<td>266</td>
</tr>
<tr>
<td>Table::setLogging()</td>
<td>267</td>
</tr>
<tr>
<td>Table::setMaxLoadFactor()</td>
<td>267</td>
</tr>
<tr>
<td>Table::setMaxRows()</td>
<td>267</td>
</tr>
<tr>
<td>Table::setName()</td>
<td>267</td>
</tr>
<tr>
<td>Table::setObjectType()</td>
<td>268</td>
</tr>
<tr>
<td>Table::setPartitionBalance()</td>
<td>269</td>
</tr>
<tr>
<td>Table::setRangeListData()</td>
<td>269</td>
</tr>
<tr>
<td>Table::setRowChecksumIndicator()</td>
<td>269</td>
</tr>
<tr>
<td>Table::setRowGCIIndicator()</td>
<td>269</td>
</tr>
<tr>
<td>Table::setStatusInvalid()</td>
<td>270</td>
</tr>
<tr>
<td>Table::setTablespace()</td>
<td>270</td>
</tr>
<tr>
<td>Table::setTablespaceData()</td>
<td>271</td>
</tr>
<tr>
<td>Table::setTablespaceNames()</td>
<td>271</td>
</tr>
<tr>
<td>Table::SingleUserMode</td>
<td>271</td>
</tr>
<tr>
<td>Table::validate()</td>
<td>272</td>
</tr>
<tr>
<td>TableEvent (Event data type)</td>
<td>74</td>
</tr>
<tr>
<td>tableFragmentationChanged() (method of NdbEventOperation)</td>
<td>152</td>
</tr>
<tr>
<td>tableFrmChanged() (method of NdbEventOperation)</td>
<td>152</td>
</tr>
<tr>
<td>TableMapping class (Connector for JavaScript)</td>
<td>659</td>
</tr>
<tr>
<td>TableMapping.applyToClass()</td>
<td>660</td>
</tr>
<tr>
<td>TableMapping.mapField()</td>
<td>660</td>
</tr>
<tr>
<td>TableMetadata class (Connector for JavaScript)</td>
<td>660</td>
</tr>
<tr>
<td>tableNameChanged() (method of NdbEventOperation)</td>
<td>152</td>
</tr>
<tr>
<td>Tablespace</td>
<td>272</td>
</tr>
<tr>
<td>Tablespace::getAutoGrowSpecification()</td>
<td>273</td>
</tr>
<tr>
<td>Tablespace::getDefaultLogFileGroup()</td>
<td>274</td>
</tr>
<tr>
<td>Tablespace::getDefaultLogFileGroupId()</td>
<td>274</td>
</tr>
<tr>
<td>Tablespace::getExtentSize()</td>
<td>274</td>
</tr>
<tr>
<td>Tablespace::getName()</td>
<td>275</td>
</tr>
<tr>
<td>Tablespace::getObjectId()</td>
<td>275</td>
</tr>
<tr>
<td>Tablespace::getObjectStatus()</td>
<td>275</td>
</tr>
<tr>
<td>Tablespace::getObjectVersion()</td>
<td>275</td>
</tr>
<tr>
<td>Tablespace::getAutoGrowSpecification()</td>
<td>276</td>
</tr>
<tr>
<td>Tablespace::getDefaultLogFileGroup()</td>
<td>276</td>
</tr>
<tr>
<td>Tablespace::getExtentSize()</td>
<td>276</td>
</tr>
<tr>
<td>Tablespace::setName()</td>
<td>277</td>
</tr>
<tr>
<td>TC and NDB Kernel, 12</td>
<td></td>
</tr>
<tr>
<td>defined, 4</td>
<td></td>
</tr>
<tr>
<td>selecting, 12</td>
<td></td>
</tr>
<tr>
<td>threading, 13</td>
<td></td>
</tr>
<tr>
<td>trace (ClusterJ), 616</td>
<td></td>
</tr>
<tr>
<td>Transaction (ClusterJ), 634</td>
<td></td>
</tr>
</tbody>
</table>

Transaction Coordinator

- defined, 4
- transaction coordinator, 114
- Transaction.begin(), 662
- Transaction.commit(), 662
- Transaction.getRollbackOnly(), 662
- Transaction.isActive(), 662
- Transaction.rollback(), 662
- Transaction.setRollbackOnly(), 662

Tablespace

- NDB API class, 272
- Tablespace::getAutoGrowSpecification(), 273
- Tablespace::getDefaultLogFileGroup(), 274
- Tablespace::getDefaultLogFileGroupId(), 274
- Tablespace::getExtentSize(), 274
- Tablespace::getName(), 275
- Tablespace::getObjectId(), 275
- Tablespace::getObjectStatus(), 275
- Tablespace::getObjectVersion(), 275
- Tablespace::setAutoGrowSpecification(), 276
- Tablespace::setDefaultLogFileGroup(), 276
- Tablespace::setExtentSize(), 276
- Tablespace::setName(), 277

Transaction

- Transaction (ClusterJ), 634
- Transaction class (Connector for JavaScript), 662
- Transaction Coordinator
 - defined, 4
 - transaction coordinator, 114
 - Transaction.begin(), 662
 - Transaction.commit(), 662
 - Transaction.getRollbackOnly(), 662
 - Transaction.isActive(), 662
 - Transaction.rollback(), 662
 - Transaction.setRollbackOnly(), 662

Transactions and Locking

- NDB API, 189
- transporter
 - defined, 3
- truncate() (method of NdbBlob), 135
- TUP and NDB Kernel, 12
 - defined, 3
- Tuple Manager
 - defined, 3
- Type (Column data type), 29
- Type (Index data type), 91
- Type (NdbOperation data type), 196
- Type (Object data type), 242

U

Undofile

- NDB API class, 277
- Undofile::getFileNo(), 278
- Undofile::getLogfileGroup(), 278
- Undofile::getLogfileGroupId(), 279
- Undofile::getNode(), 279
- Undofile::getObjectId(), 279
- Undofile::getObjectStatus(), 279
- Undofile::getObjectVersion(), 280
- Undofile::getPath(), 280
- Undofile::getSize(), 280
- Undofile::setLogFileGroup(), 280
- Undofile::setNodeId(), 281
- Undofile::setPath(), 281
- Undofile::setSize(), 281
- unique (ClusterJ), 638
- unloadSchema (ClusterJ), 629
- unlock() (method of NDbTransaction), 237
- unlock_ndb_objects() (method of ndb_cluster_connection), 125
- unset_recv_thread_cpu() (method of NDb_cluster_connection), 125
- update() (method of Context), 654
updateCurrentTuple() (method of NdbScanOperation), 221
updatePersistent (ClusterJ), 630
updatePersistentAll (ClusterJ), 630
updateTuple() (method of NdbIndexOperation), 154
updateTuple() (method of NdbOperation), 197
updateTuple() (method of NdbTransaction), 237
u_32_value() (method of NdbRecAttr), 203
u_64_value() (method of NdbRecAttr), 203
u_8_value() (method of NdbRecAttr), 203
u_char_value() (method of NdbRecAttr), 204
u_medium_value() (method of NdbRecAttr), 204
u_short_value() (method of NdbRecAttr), 204

V
validate() (method of Table), 272
value (ClusterJ), 636, 637, 637, 638
vendorName (ClusterJ), 637
version information
 in MGM API, 538
visibility of database objects
 and MySQL Server, 28, 48

W
wait_until_ready() (method of Ndb_cluster_connection), 125
where (ClusterJ), 647
writeData() (method of NdbBlob), 135
writeTuple() (method of NdbOperation), 197
writeTuple() (method of NdbTransaction), 238
write_attr() (method of NdbInterpretedCode), 185