
NDB Operator Manual

NDB Operator for Kubernetes

NDB Operator Manual

This is the NDB Operator Manual, which provides information about installing and using NDB Operator 9.4 for
Kubernetes. This Manual covers NDB Operator 9.4 releases through 9.4.0.

The information presented in this guide relating to MySQL NDB Cluster is current for recent releases up to and
including NDB Cluster 9.4. For more information about NDB 9.4, see What is New in MySQL NDB Cluster 9.5.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information—MySQL NDB Operator for Kubernetes. If you are using MySQL NDB Operator with
a Commercial release of MySQL NDB Cluster, see the MySQL NDB Operator 9.5 Commercial Release License
Information User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using MySQL NDB Operator with a Community
release of MySQL NDB Cluster, see the MySQL NDB Operator 9.5 Community Release License Information
User Manual for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Document generated on: 2025-10-25 (revision: 83878)

https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/9.5/en/preface.html#legalnotice
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysql-ndb-operator-9.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-ndb-operator-9.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-ndb-operator-9.5-upl-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-ndb-operator-9.5-upl-en.pdf

Table of Contents
1 Introduction to NDB Operator ... 1
2 Installation of NDB Operator .. 5

2.1 Requirements ... 5
2.2 Obtaining NDB Operator ... 5
2.3 Installing NDB Operator Using Helm .. 5
2.4 Installing NDB Operator Using the YAML File and kubectl ... 6
2.5 Building an NDB Operator Image from Source ... 7
2.6 Post-Installation .. 8
2.7 Upgrading NDB Operator .. 8
2.8 Uninstalling NDB Operator .. 9

3 Deploying NDB Cluster with NDB Operator ... 11
3.1 Setting the NDB Cluster's Configuration ... 11
3.2 Creating an NdbCluster Object .. 12
3.3 Checking NDB Cluster Status and Logs ... 12
3.4 Removing NDB Cluster ... 12

4 Performing Common Tasks with NDB Operator ... 13
4.1 Accessing the NDB Cluster ... 13

4.1.1 Access From Within Kubernetes ... 13
4.1.2 Access From Outside Kubernetes ... 14

4.2 Updating the NDB Cluster Configuration .. 15
4.3 Using NdbClusterPodSpec .. 16

5 NDB Operator CRD Reference ... 17
5.1 NdbCluster Resource .. 17
5.2 NdbClusterCondition Resource .. 17
5.3 NdbClusterConditionType .. 17
5.4 NdbClusterPodSpec Resource ... 17
5.5 NdbClusterSpec Resource ... 18
5.6 NdbClusterStatus Resource ... 19
5.7 NdbDataNodeSpec Resource .. 19
5.8 NdbManagementNodeSpec Resource .. 20
5.9 NdbMysqldSpec Resource ... 20

6 Contributing to NDB Operator .. 23
6.1 Reporting Issues and Requesting Enhancements ... 23
6.2 Contributing Code ... 23

iii

iv

Chapter 1 Introduction to NDB Operator

MySQL NDB Cluster, the distributed version of MySQL, is implemented as a collection of processes or
nodes of the following three types:

• Management nodes (ndb_mgmd): Provision of configuration data

• Data nodes (ndbmtd): User data storage

• SQL nodes (mysqld): SQL frontend to the data nodes.

NDB Operator provides services that allow for connections of the following two types:

• Connections to NDB Cluster management nodes by applications which use the MGM API such as
ndb_mgm and ndb_config.

• Connections to NDB Cluster SQL nodes by MySQL client applications such as mysql.

NDB Operator currently does not provide a mechanism for NDB API applications to connect directly
to the NDB Cluster data nodes. This means that NDB utility programs such as ndb_select_all and
ndb_restore are not supported under NDB Operator.

See NDB Cluster Core Concepts, for more information about NDB Cluster node processes. See also
NDB Cluster Programs.

Deploying MySQL Cluster in a Kubernetes cluster requires scheduling these nodes onto different pods
using multiple workload resources, as well as time and effort to choose and create the right type of
workload resources in a configuration that takes full advantage of the redundancy and fault tolerance
features found in both NDB Cluster and Kubernetes Cluster.

NDB Operator is the Kubernetes Operator for MySQL NDB Cluster, and is intended to simplify the
task of deploying and managing MySQL Cluster in a Kubernetes Cluster. A Kubernetes operator is
an application having operational knowledge of another application. It can be deployed within the
Kubernetes Cluster after which it can begin monitoring the endpoints in which they are interested,
and making changes to the application being managed. NDB Operator makes it possible to deploy,
manage, and makes changes to an NDB Cluster with a minimum of human intervention.

To represent an NDB Cluster, we define an Ndb Custom Resource Definition (CRD) in the Kubernetes
cluster. A custom object of kind Ndb can now be created in the Kubernetes cluster, representing the
configuration of a desired NDB Cluster setup to be deployed. NDB Operator watches for any changes
to such custom objects and, based on the changes to this object, deploys and maintains the NDB
Cluster nodes in the Kubernetes cluster.

NDB Operator runs a reconciliation loop at regular intervals whenever there is a change to an Ndb
custom resource, as shown in the following diagram:

1

https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/ndbapi/en/
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-basics.html
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-programs.html

Figure 1.1 NDB Operator reconciliation loop

Each time through the loop, the operator compares the desired state (the values from the custom
resource in the Kubernetes cluster) with the current state (the actual state of the MySQL Cluster
installation in the Kubernetes cluster). If the current and desired states do not match, the operator
makes incremental changes to the MySQL Cluster installation to move it closer to the desired state;
this is repeated if and as necessary over multiple iterations until the MySQL Cluster has the desired
state. In this fashion, NDB Operator is able to monitor the NDB Cluster and to ensure that it is running
as expected.

NDB Operator architecture:

2

Figure 1.2 NDB Operator architecture

3

4

Chapter 2 Installation of NDB Operator

Table of Contents
2.1 Requirements ... 5
2.2 Obtaining NDB Operator ... 5
2.3 Installing NDB Operator Using Helm .. 5
2.4 Installing NDB Operator Using the YAML File and kubectl .. 6
2.5 Building an NDB Operator Image from Source ... 7
2.6 Post-Installation .. 8
2.7 Upgrading NDB Operator .. 8
2.8 Uninstalling NDB Operator .. 9

The NDB Operator and related resources can be installed in a Kubernetes cluster using either the helm
chart or the included single YAML installation file. Both of these rely on an NDB Operator image being
accessible to the Kubernetes cluster. It is also possible to build the NDB Operator image from source,
then use that image to run NDB Operator in the Kubernetes cluster.

2.1 Requirements
NDB Operator requires a Kubernetes cluster of version 1.19.0 or greater. Older versions of Kubernetes
are not supported; NDB Operator may not work as expected with these, if at all.

NDB Operator works with MySQL NDB Cluster 8.0.26 and later. Earlier releases of NDB Cluster are
not supported.

For additional requirements for building NDB Operator from source, see Section 2.5, “Building an NDB
Operator Image from Source”.

2.2 Obtaining NDB Operator
You can obtain the latest release of NDB Operator from the following locations:

• https://dev.mysql.com/downloads/ndb-operator/

• ArtifactHub (Helm charts; see Section 2.3, “Installing NDB Operator Using Helm”)

• Oracle Container Registry (Docker container image; see Section 2.4, “Installing NDB Operator Using
the YAML File and kubectl”)

• https://github.com/mysql/mysql-ndb-operator (source code; see Section 2.5, “Building an NDB
Operator Image from Source”)

For information about upgrading an existing NDB Operator installation, see Section 2.7, “Upgrading
NDB Operator”

2.3 Installing NDB Operator Using Helm
You can install NDB Operator with the Helm package manager for Kubernetes using the Helm chart
included in the NDB Operator distribution to create the necessary Custom Resource Definitions (CRDs)
and to deploy NDB Operator (together with the web hook server) in a Kubernetes cluster. You can set
a number of options in the Helm chart affecting the installation; these are described later in this section.

The remainder of this section assumes that Helm is available on the system. If Helm is not already
present, see https://helm.sh/docs/intro/install/ for information about obtaining and installing it.

The NDB Operator Helm repository is hosted at https://mysql.github.io/mysql-ndb-
operator/. To add the chart repository, execute the following commands:

5

https://dev.mysql.com/downloads/ndb-operator/
https://artifacthub.io/packages/helm/mysql-ndb-operator/ndb-operator
https://container-registry.oracle.com/
https://github.com/mysql/mysql-ndb-operator
https://helm.sh/docs/intro/install/

Installing NDB Operator Using the YAML File and kubectl

> helm repo add ndb-operator-repo https://mysql.github.io/mysql-ndb-operator/
> helm repo update

To install the chart with the release name ndbop, use helm install as shown here:

> helm install --namespace=ndb-operator --create-namespace ndbop ndb-operator-repo/ndb-operator

To install NDB Operator from the source code, use the helm install command as shown here:

> helm install ndbop deploy/charts/ndb-operator

This creates the CRD and required resources, and deploys NDB Operator and the web hook server to
the default namespace.

Use the command's --namespace option to deploy the operator to a specific namespace. Here, we
deploy to the ndb-operator namespace:

> helm install --namespace=ndb-operator --create-namespace ndbop deploy/charts/ndb-operator

The NDB Operator Helm chart contains the configurable parameters described in the following list:

• clusterScoped: Scope of the Ndb Operator.

If this is set to true (the default), the operator has cluster scope, and watches for changes to any
NdbCluster resource across all namespaces. If it is false, the operator has namespace scope,
and watches for changes only in the namespace to which it applies.

• image: The operator image name to be deployed by the Helm chart. By default, the Helm chart
deploys the image from mysql/ndb-operator:latest.

If you want to host the NDB Operator image in a private registry and use it from there, the image
location can be set in this parameter.

• imagePullPolicy: NDB Operator image pull policy. Permitted values are Always, Never, and
IfNotPresent; the default is IfNotPresent.

• imagePullSecretName: Secret to be used when pulling the NDB Operator image from a private
repository.

This is used only if the image parameter specifies an Operator image hosted in a private registry.
Otherwise, it is ignored. There is no default value.

These options can be set using the --set argument of the Helm install command. For example:

> helm install --set imagePullPolicy=Always ndbop deploy/charts/ndb-operator

2.4 Installing NDB Operator Using the YAML File and kubectl

You can deploy the NDB Operator and the other related resources using the install manifest available
in the source code, like this:

> kubectl apply -f deploy/manifests/ndb-operator.yaml

The command just shown deploys NDB Operator in the ndb-operator namespace.

Alternatively, you can also apply the remote copy of the manifest, without having to clone the entire
repository, in a manner similar to what is shown here:

> kubectl apply -f https://raw.githubusercontent.com/mysql/mysql-ndb-operator/main/deploy/manifests/ndb-operator.yaml

To configure NDB Operator parameters such as the image name when installing NDB Operator using
this method, it is necessary to download the manifest file, modify the local copy, then apply this local
copy to the Kubernetes cluster.

6

https://kubernetes.io/docs/concepts/containers/images/#image-pull-policy

Building an NDB Operator Image from Source

2.5 Building an NDB Operator Image from Source

This section describes how to compile, install, and test NDB Operator from source. If you do not
already have the source code, see Section 2.2, “Obtaining NDB Operator”'.

The following prerequisites must be installed on the system to build and test NDB Operator:

Golang 1.16 or newer to compile the operator.

Docker to build the NDB Operator and other container images. Docker is also used to run the E2E
testcases.

Minikube or KinD to deploy and test the NDB Operator. Kubernetes 1.19 or later is also required.

The Makefile included with the source code contains all targets needed to build the operator; this can
done using the command shown here:

> make build

The Custom Resource Definition and other manifest files are regenerated by the build target.

By default, NDB Operator is built in release mode. To build it in debug mode for use in development
instead, set the WITH_DEBUG environment variable to 1 when invoking the build, like this:

> WITH_DEBUG=1 make build

To generate the NDB Operator Docker image, run the command shown here:

> make operator-image

Once the image is built, it must be made accessible to the Kubernetes Cluster. For KinD, you can use
kind load docker_image command to load the image. For Minikube, it depends on the container
runtime used; see Pushing images into minikube clusters. See Chapter 3, Deploying NDB Cluster with
NDB Operator, for information about setting up NDB Operator and deploying an NDB Cluster using the
operator.

When using Minikube, the default memory allocation might not be adequate for running NDB Operator;
you can increase it using minikube config set memory_limit. To deploy the example at docs/
examples/example-ndb.yaml, Minikube requires at least 5GB memory; you can set this as shown
here:

> minikube config set memory 5GB

Making changes to the NdbCluster type. If any change is made to the NdbCluster type in pkg/
apis/ndbcontroller/v1/types.go, you must renegerate the client set, informers, and listers.
You can do this by executing the following command in pkg/generated:

> make generate

Warning

Do not attempt to modify the NdbCluster type while an upgrade of NDB
Operator is in progress. See Section 2.7, “Upgrading NDB Operator”, for more
information.

Testing NDB Operator. The NDB Operator project comes with unit tests that are developed using
the go testing package and a more elaborate End-To-End (E2E) test suite that is built on top of the
Ginkgo/Gomega testing framework.

Most of the unit tests are colocated with the packages, and test the methods within those packages.
They sometimes use a simulated Kubernetes client to verify whether requests sent by NDB Operator
match expectations.

7

https://go.dev/dl/
https://docs.docker.com/get-docker
https://minikube.sigs.k8s.io/docs/
https://kind.sigs.k8s.io/
https://minikube.sigs.k8s.io/docs/handbook/pushing/

Post-Installation

The E2E testcases are a collection of integration tests that make changes to an NdbCluster resource
object and verify whether the NDB Cluster configuration controlled by the object changes accordingly.
The testcases use a E2E framework developed internally and built on top of the Ginkgo testing
framework. The tests should be run using e2e-tests/run-e2e-test.go; options for this testing
tool can be found in e2e-tests/README.md. The tests can be run either in an existing Kubernetes
cluster or a new one using KinD.

To generate the E2E testing image, run make e2e-tests on the command line.

To run the E2E tests in an existing Kubernetes cluster, pass the path to the kubeconfig file for this
cluster to the run-e2e-test.go tool, like this:

> go run e2e-tests/run-e2e-test.go -kubeconfig=path/to/file

Both the mysql/ndb-operator and the e2e-tests images must be accessible to the Kubernetes
Cluster.

The test tool can also start its own KinD cluster and then run the E2E tests in it. A Docker instance with
both the mysql/ndb-operator and e2e-tests images must be accessible from the terminal in
which the test is being run. The KinD cluster is started inside Docker as part of this process. You can
do this running either one of the commands shown here:

> go run e2e-tests/run-e2e-test.go -use-kind

> make e2e-kind

2.6 Post-Installation
Once you have installed NDB Operator using either of the methods described previously in this
chapter, you can verify the installation by executing the following command:

> kubectl get pods -n ndb-operator -l 'app in (ndb-operator,ndb-operator-webhook-server)'
NAME READY STATUS RESTARTS AGE
ndb-operator-555b7b65-7fmv8 1/1 Running 0 13s
ndb-operator-webhook-server-d67c97d54-zdhhp 1/1 Running 0 13s

The pod ndb-operator-555b7b65-7fmv8 runs NDB Operator; the other pod (ndb-operator-
webhook-server-d67c97d54-zdhhp) runs a server that acts as an admission controller for the
NdbCluster resource, which NDB Operator is ready to handle once both pods are ready.

2.7 Upgrading NDB Operator
NDB Operator can be upgraded from one release to another without affecting any existing NDB
cluster, subject only to the constraint that you should not attempt to modify the NdbCluster CRD (see
Section 5.1, “NdbCluster Resource”) while the upgrade is in progress.

Upgrade using Helm chart. The procedure outlined following assumes that the installed Helm chart
is named ndbop, and that the chart is installed in the default namespace.

To update the local Helm repository and upgrade NDB Operator to the latest version, execute the
following helm commands:

> helm repo update

> helm upgrade --namespace=ndb-operator ndbop ndb-operator-repo/ndb-operator

If the namespace in which NDB Operator is installed is other than ndbop, you can substitute its name
as the argument to the --namespace option to specify the correct namespace.

Upgrade from source. To upgrade NDB Operator from the source code, use Helm's upgrade
command as shown here:

8

https://github.com/onsi/ginkgo

Uninstalling NDB Operator

> helm upgrade ndbop deploy/charts/ndb-operator

Both helm install and helm upgrade can use the --set option to modify the configurable
parameters specified in Section 2.3, “Installing NDB Operator Using Helm”.

Upgrade using YAML file and kubectl. You can upgrade NDB Operator using the same
installation commands shown in Section 2.4, “Installing NDB Operator Using the YAML File and
kubectl”. In this case, you must make sure that the copy of the manifest YAML file is updated before
executing kubectl apply.

2.8 Uninstalling NDB Operator

The method for uninstalling NDB Operator depends on the installation used to install it in Kubernetes.
If it was installed using Helm, NDB Operator installed aas release ndbop can be uninstalled from the
Kubernetes cluster by using the following command:

> helm uninstall ndbop

helm uninstall removes only the NDB Operator and webhook server, but does not remove the
NdbCluster CRD, which you can delete from the Kubernetes cluster as shown here:

> kubectl delete customresourcedefinitions ndbclusters.mysql.oracle.com

If NDB Operator was installed using the YAML manifest file, you can uninstall it by removing the file,
like this:

> kubectl delete -f deploy/manifests/ndb-operator.yaml

Uninstalling only the NDB Operator does not affect any existing NDB Clusters running inside the
Kubernetes cluster. Deleting the NdbCluster custom resource definition stops and deletes all running
MySQL Cluster pods.

9

10

Chapter 3 Deploying NDB Cluster with NDB Operator

Table of Contents
3.1 Setting the NDB Cluster's Configuration ... 11
3.2 Creating an NdbCluster Object .. 12
3.3 Checking NDB Cluster Status and Logs ... 12
3.4 Removing NDB Cluster ... 12

Deployment of a new NDB Cluster in a Kubernetes cluster consists of three steps, each of which is
discussed in this chapter:

1. Determining the characteristics of the NDB Cluster; for example, the numbers of data nodes and
SQL nodes are directly configurable.

2. Creation of an NdbCluster object using the desired configuration in Kubernetes.

3. Verifying the installation by checking the NDB Cluster's status and (if necessary) logs.

Removal of an installed NDB Cluster is also covered here.

3.1 Setting the NDB Cluster's Configuration

NDB Operator relies on a custom resource definition (CRD) named NdbCluster to obtain the MySQL
Cluster configuration data that it needs to start. Whenever a user creates, modifies, or deletes a
Kubernetes object of type NdbCluster, NDB Operator receives a change event, and updates the
NDB Cluster running in Kubernetes Cluster accordingly. (See Chapter 1, Introduction to NDB Operator,
for a description of this mechanism.)

The NdbCluster CRD defines a Kubernetes resource type which can be used to specify the
configuration of an NDB Cluster. See Section 5.1, “NdbCluster Resource”, for more information.

The docs/examples directory in the NDB Operator source tree contains several examples, including
example-ndb.yaml. This file contains an NdbCluster specification having the characteristics
shown here, specified using YAML format:

apiVersion: mysql.oracle.com/v1
kind: NdbCluster
metadata:
 name: example-ndb
spec:
 redundancyLevel: 2
 dataNode:
 nodeCount: 2
 mysqlNode:
 nodeCount: 2

spec.dataNode.nodeCount sets the number of data nodes.

spec.redundancyLevel specifies the number of replicas as well as the number of management
nodes (ndb_mgmd processes). Since this is greater than 1, the NDB Cluster is created with two
management nodes.

Note

The number of management nodes is not directly configurable; it is determined
solely by the value of redundancyLevel.

spec.dataNode.nodeCount determines the number of data nodes in the NDB Cluster.

11

Creating an NdbCluster Object

spec.mysqld.nodeCount determines the number of MySQL Servers attached to the NDB Cluster as
SQL nodes, providing an SQL front end to the NDB Cluster data nodes.

3.2 Creating an NdbCluster Object

To create an NdbCluster object in the Kubernetes Cluster, issue the following command:

> kubectl apply -f docs/examples/example-ndb.yaml
ndbcluster.mysql.oracle.com/example-ndb created

Once this object has been created in the Kubernetes Cluster, the NDB Operator—which watches for
changes to any NdbCluster object—detects the action and begins to set up the NDB Cluster inside
the Kubernetes Cluster.

NDB Cluster nodes are run inside multiple pods, which can be viewed by issuing the command shown
here:

> kubectl get pods -w
NAME READY STATUS RESTARTS AGE
example-ndb-mgmd-0 1/1 Running 0 8m44s
example-ndb-mgmd-1 1/1 Running 0 48s
example-ndb-mysqld-599bcfbd45-qzrsr 0/1 Running 0 7s
example-ndb-mysqld-599bcfbd45-r7g2x 0/1 Running 0 7s
example-ndb-ndbd-0 1/1 Running 0 8m44s
example-ndb-ndbd-1 1/1 Running 0 8m44s
ndb-operator-555b7b65-2rssd 1/1 Running 0 48m
ndb-operator-webhook-server-d67c97d54-m5d42 1/1 Running 0 48m

The pods whose names begin with example-ndb- are those running NDB Cluster nodes. The type of
node can be seen in each name.

The NDB Cluster is ready for transactions once all pods are ready.

3.3 Checking NDB Cluster Status and Logs

The status of a Kubernetes NdbCluster object can be seen by running the command shown here:

> ndb-operator(main)$ kubectl get ndbcluster example-ndb
NAME REDUNDANCY LEVEL
example-ndb 2

You can view NDB Operator's logs using the following command, which includes the name of the NDB
Operator pod obtained using kubectl get pods previously:

> kubectl logs -f ndb-operator-555b7b65-2rssd

3.4 Removing NDB Cluster

To stop and delete NDB Cluster pods from Kubernetes, run the following command:

> kubectl delete -f docs/examples/example-ndb.yaml
ndbcluster.mysql.oracle.com/example-ndb deleted

Alternatively, you can use the name, like this:

> kubectl delete ndbcluster example-ndb

Either of these commands stops all NDB Cluster nodes and removes all related pods from the
Kubernetes cluster. Any data is lost unless the NDB Cluster was deployed using a persistent volume
(see dataNodePVCSpec in Section 5.5, “NdbClusterSpec Resource”, for more information about this).

12

Chapter 4 Performing Common Tasks with NDB Operator

Table of Contents
4.1 Accessing the NDB Cluster ... 13

4.1.1 Access From Within Kubernetes ... 13
4.1.2 Access From Outside Kubernetes ... 14

4.2 Updating the NDB Cluster Configuration .. 15
4.3 Using NdbClusterPodSpec .. 16

This chapter provides information about performing some common tasks using NDB Operator.

4.1 Accessing the NDB Cluster
To provide access to the NDB Cluster by applications, NDB Operator creates two load balancer
services on top of the pods running NDB Cluster nodes. These services are listed here:

• Management server load balancer (ndb_cluster_name-mgmd-ext): Provides access to the NDB
Cluster management servers

• MySQL server (SQL node) load balancer (ndb_cluster_name-mysqld-ext): Provides access to
the NDB Cluster SQL nodes

An application running either inside or outside the Kubernetes cluster can make use of one or both of
these services to connect to an NDB Cluster.

Each MySQL server is set up with a root account and a random password. The password is base-64
encoded and stored in a Kubernetes secret whose name has the format ndb_cluster_name-
mysqld-root-password. The password can be retrieved using a command like the one shown here:

> base64 -d <<< \
 $(kubectl get secret example-ndb-mysqld-root-password \
 -o jsonpath={.data.password})

You can also set a custom password. Create a Kubernetes secret containing the password.

After this, set the name of the secret to the value of the rootPasswordSecretName field of the
mysqld spec (see Section 5.9, “NdbMysqldSpec Resource”).

4.1.1 Access From Within Kubernetes

An application running inside the Kubernetes Cluster can use these extracted information and can
access the data in MySQL Cluster without any additional setup.

NDB Cluster tools such as ndb_mgm can use the management node service name as a connection
string to connect to the management servers. MySQL clients such as mysql can use the mysqld-ext
service and the password stored in rootPasswordSecretName to connect to the SQL nodes.

It is first necessary to log in to an NDB Cluster pod using kubectl, like this:

> kubectl exec -it example-ndb-mysqld-599bcfbd45-hq8ll

Now you can execute ndb_mgm to start the NDB management client, using the mnagement node
service name as the connection string:

> ndb_mgm -c example-ndb-mgmd-ext

From within ndb_mgm you can issue all of the usual management client commands, as shown here:

-- NDB Cluster -- Management Client --

13

Access From Outside Kubernetes

ndb_mgm> SHOW
Connected to Management Server at: example-ndb-mgmd-ext:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=3 @172.17.0.6 (mysql-9.4.0 ndb-9.4.0, Nodegroup: 0, *)
id=4 @172.17.0.7 (mysql-9.4.0 ndb-9.4.0, Nodegroup: 0)

[ndb_mgmd(MGM)] 2 node(s)
id=1 @172.17.0.5 (mysql-9.4.0 ndb-9.4.0)
id=2 @172.17.0.8 (mysql-9.4.0 ndb-9.4.0)

[mysqld(API)] 5 node(s)
id=145 @172.17.0.10 (mysql-9.4.0 ndb-9.4.0)
id=146 @172.17.0.9 (mysql-9.4.0 ndb-9.4.0)
id=147 (not connected, accepting connect from any host)
id=148 (not connected, accepting connect from any host)
id=149 (not connected, accepting connect from any host)

ndb_mgm> ALL STATUS
Node 5: started (mysql-9.4.0 ndb-9.4.0)
Node 6: started (mysql-9.4.0 ndb-9.4.0)

ndb_mgm> EXIT

To connect to MySQL with the mysql client, use the service name example-ndb-mysqld-ext for
the host name, like this:

> mysql -h example-ndb-mysqld-ext -uroot -p

Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 500
Server version: 9.4.0-cluster MySQL Cluster Community Server - GPL

Copyright (c) 2000, 2022, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 > WHERE ENGINE LIKE "ndb%"\G
*************************** 1. row ***************************
 ENGINE: ndbinfo
 SUPPORT: YES
 COMMENT: MySQL Cluster system information storage engine
TRANSACTIONS: NO
 XA: NO
 SAVEPOINTS: NO
*************************** 2. row ***************************
 ENGINE: ndbcluster
 SUPPORT: YES
 COMMENT: Clustered, fault-tolerant tables
TRANSACTIONS: YES
 XA: NO
 SAVEPOINTS: NO
2 rows in set (0.00 sec)

4.1.2 Access From Outside Kubernetes

NDB management and SQL applications running outside the Kubernetes cluster can access the NDB
Cluster running inside using the management server and SQL node services described previously;
these services are of type LoadBalancer. A Kubernetes cluster provider such as minikube
provisions load balancers for these services. To expose the services outside the Kubernetes cluster if
you are running minikube, execute the command shown here:

> minikube tunnel

14

https://kubernetes.io/docs//concepts/services-networking/service/#loadbalancer

Updating the NDB Cluster Configuration

Using kubectl get service, and passing it the service name or label, you can retrieve the IP
address needed by applications to connect to the NDB Cluster. For the example management node
service, this can be done using either of the commands shown here:

Retrieve management load balancer service IP address using service name
> kubectl get service "example-ndb-mgmd-ext" \
 -o jsonpath={.status.loadBalancer.ingress[0].ip}

Retrieve management load balancer service IP address using service label
> kubectl get service \
 -l "mysql.oracle.com/resource-type=mgmd-service-ext" \
 -o jsonpath={.items[0].status.loadBalancer.ingress[0].ip}

With the service IP address just extracted, NDB management clients like ndb_mgm can connect to the
NDB Cluster management servers by way of the management node service, and perform management
tasks.

Similarly, you can obtain the IP address for the example SQL node load balancer service using either
of these kubectl get service commands:

Retrieve SQL node load balancer service IP address using service name
> kubectl get service "example-ndb-mysqld-ext" \
 -o jsonpath={.status.loadBalancer.ingress[0].ip}

Retrieve SQL node load balancer service IP address using service name
> kubectl get service \
 -l "mysql.oracle.com/resource-type=mysqld-service-ext" \
 -o jsonpath={.items[0].status.loadBalancer.ingress[0].ip}

With the IP address obtained by either of these two commands, MySQL clients such as mysql can
connect to the NDB Cluster SQL nodes and execute SQL statements.

4.2 Updating the NDB Cluster Configuration

Making changes in the configuration of an NDB Cluster running in Kubernetes, requires editing the
NdbCluster YAML spec file, then applying the updated file to the Kubernetes Cluster.

Consider the example example-ndb, installed from the file docs/examples/example-ndb.yaml
(see Section 3.1, “Setting the NDB Cluster's Configuration”), which provides two SQL nodes. To
increase this number to five, update spec.mysqld.nodeCount in this file to the preferred value. The
updated file should look like what is shown here (with the edited line in highlighted text):

apiVersion: mysql.oracle.com/v1
kind: NdbCluster
metadata:
 name: example-ndb
spec:
 redundancyLevel: 2
 dataNode:
 nodeCount: 2
 mysqlNode:
 nodeCount: 5

Now you can apply the updated YAML file to the Kubernetes Cluster, like this:

> kubectl apply -f docs/examples/example-ndb.yaml
ndbclusters.mysql.oracle.com/example-ndb configured

Once the change has been applied, NDB Operator picks up the changes and begins applying them to
the NDB Cluster. In this particular case, it updates the management node configuration files, performs
a rolling restart (see Performing a Rolling Restart of an NDB Cluster), and starts additional mysqld
processes (SQL nodes).

The status and readiness of the NDB Cluster nodes can be observed as when they were first deployed.

15

https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-rolling-restart.html

Using NdbClusterPodSpec

4.3 Using NdbClusterPodSpec

The NDB Cluster Custom Resource Definition provides the NdbClusterPodSpec structure
for defining specifications of pods for individual management, data, and SQL nodes using their
respective .spec.managementNode.ndbPodSpec, .spec.dataNode.ndbPodSpec, and
.spec.mysqlNode.ndbPodSpec fields. Values set for these NdbPodSpec fields are copied into their
respective StatefulSet definitions. This chapter explains how these NdbClusterPodSpec fields
can be used for assigning pods to specific worker nodes, defining affinity rules, and specifying pod
resource requirements.

Assigning NDB node pods to worker pods. You can specify the label of the worker node on
which a given NDB Cluster node should be scheduled by specifying it in the nodeSelector field.

See Assigning Pods to Nodes for more information.

Affinity and anti-affinity. Affinity and anti-affinity rules for NDB Cluster nodes can be defined using
the affinity field. The Kubernetes Cluster uses these rules to decide where to schedule an NDB
Cluster pod. These rules are applied after filtering out the available worker node pool based on any
specified nodeSelector labels.

NDB Operator defines default anti-affinity rules for each of the three MySQL Cluster
node types (ndb_mgmd, ndbmtd, and mysqld) to prevent them from being scheduled
on the same worker node whenever possible. Such a rule is always defined as
preferredDuringSchedulingIgnoredDuringExecution, so that it is satisfied by the
Kubernetes scheduler only if there are sufficient resources. For example, if four data nodes must be
scheduled on four worker nodes, each data node is scheduled on a separate worker node, but if six
data nodes must be scheduled on four worker nodes, the first four data nodes are scheduled on four
separate worker nodes while the fifth and sixth data nodes must be scheduled on worker nodes where
a data node is already running. Default anti-affinity rules can be overridden by specifying the desired
anti-affinity rules in the affinity field.

For more information, see Affinity and anti-affinity.

Specify Resource Requirements. Pod resource requirements can be specified using the
resources field. These requirements are copied into the container definitions.

NDB Operator defines default memory requirements for data nodes based on the configuration of the
NDB Cluster. The minimum calculated by NDB Operator for this purpose is an estimate, and can be
overridden by specifying an alternative using the data node's ndbPodSpec.

For more information, see Resource Management for Pods and Containers.

16

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

Chapter 5 NDB Operator CRD Reference

Table of Contents
5.1 NdbCluster Resource .. 17
5.2 NdbClusterCondition Resource .. 17
5.3 NdbClusterConditionType .. 17
5.4 NdbClusterPodSpec Resource ... 17
5.5 NdbClusterSpec Resource ... 18
5.6 NdbClusterStatus Resource ... 19
5.7 NdbDataNodeSpec Resource .. 19
5.8 NdbManagementNodeSpec Resource .. 20
5.9 NdbMysqldSpec Resource ... 20

This chapter provides information about the Custom Resource Definitions (CRDs) used by NDB
Operator 9.4.

5.1 NdbCluster Resource
NdbCluster is the Schema for the Ndb CRD API. It contains the fields listed and described here:

• apiVersion (string): This is always mysql.oracle.com/v1.

• kind (string): This is always NdbCluster.

• spec (NdbClusterSpec): Specifies the desired state of the NDB Cluster.

• status (NdbClusterStatus): Contains status information regarding the Ndb resource and the
NDB Cluster managed by it.

5.2 NdbClusterCondition Resource
NdbClusterCondition describes the state of an NDB Cluster installation at a given point in time.
Used by NdbClusterStatus.

• type (NdbClusterConditionType): Type of NdbCluster condition.

• status (Kubernetes core/v1.ConditionStatus): Status of the condition: one of True,
False, or Unknown.

• lastTransitionTime (Kubernetes meta/v1.Time): Last time the condition transitioned from
one status to another.

• reason (string): The reason for the condition's last transition.

• message (string): A human-readable message indicating details about the transition.

5.3 NdbClusterConditionType
NdbClusterConditionType defines the type of an NdbClusterCondition.

If set, this is a constant NdbClusterUpToDate, whose value is the string “UpToDate”.

5.4 NdbClusterPodSpec Resource
NdbClusterPodSpec contains a subset of PodSpec fields which, when set, are copied into to the
podSpec of the relevant MySQL Cluster node workload definitions. Used by NdbDataNodeSpec,
NdbManagementNodeSpec, and NdbMysqldSpec.

17

https://pkg.go.dev/k8s.io/api@v0.20.2/core/v1#ConditionStatus
https://pkg.go.dev/k8s.io/api@v0.20.2/meta/v1#Time
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#podspec-v1-core

NdbClusterSpec Resource

• resources (core/v1.ResourceRequirements): (optional) Total compute resources required by this
pod. Cannot be changed.

• nodeSelector (map[string]string): (optional) A selector which must be true for the pod to fit on a
node; that is, a selector which must match a node's labels for the pod to be scheduled on that node.

For more information, see nodeSelector.

• affinity (Kubernetes core/v1.Affinity): (optional) If specified, these are the pod's scheduling
constraints.

• schedulerName (string): (optional) If given, the pod is dispatched by the specified scheduler;
otherwise, the pod is dispatched by the default scheduler.

• tolerations[] (core/v1.Toleration): (optional) If specified, the pod's tolerations.

5.5 NdbClusterSpec Resource
NdbClusterSpec defines the desired state of an NDB Cluster. It is used by NdbCluster.

NdbClusterSpec contains the fields named and described in the following list:

• redundancyLevel (integer): The number of data replicas or copies of data stored by NDB Cluster.
Supported values are 1, 2, 3, and 4.

A redundancy level of 1 provides no fault tolerance in case of node failure, and is not recommended.
With a redundancy level of 2 or higher, the cluster can continue to serve client requests even in the
event of node failures; this is the default value, recommended for most deployments. A redundancy
level of 3 (or 4) provides additional protection, but is usually not necessary.

One management server is created when the redundancy level is set to 1. For a value of 2 or higher,
two management servers are used.

Important

Once an NDB Cluster has been created, it is possible but quite difficult and
time-consuming to change this value. Unless you are sure that you need a
different value for the redundancy level, it is recommended that you use the
default (2).

For more information, see the description of the NoOfReplicas data node configuration parameter,
as well as NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions, in the NDB 9.4
documentation.

• managementNode (NdbManagementNodeSpec): (optional) Specifies the configuration of the
management node running in MySQL Cluster.

• dataNode (string): (optional) Configuration parameters to pass to the data nodes. Consists of one or
more lines using the format paramName: paramValue.

Example:

spec:
...
 dataNode:
 # Specified in paramName: paramValue format
 DataMemory: 100M
 MaxNoOfTables: 1024
 MaxNoOfConcurrentOperations: 409600
 Arbitration: WaitExternal

NDB Cluster Data Node Configuration Parameters, provides a quick reference to NDB Cluster data
node configuration parameters.

18

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/core/v1#Affinity
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/core/v1.Toleration
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-nodes-groups.html
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftables
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-arbitration
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-params-ndbd.html

NdbClusterStatus Resource

• mysqlNode (NdbMysqldSpec): (optional) Specification for any MySQL Servers run as NDB Cluster
SQL nodes.

NDB Operator requires at least one MySQL Server running in the NDB Cluster for internal
operations. If none is specified, the operator by default adds one MySQL Server to the specification.

• freeAPISlots (integer): (optional) The number of extra API sections declared in the NDB Cluster
configuration in addition to any declared implicitly by NDB Operator for MySQL servers. Any NDB
API application can connect to the NDB Cluster using one of these free slots.

• tdeSecretName (string): (optional) The name of the secret that holds the encryption key or
password required for transparent data encryption (TDE) in NDB Cluster. If a value is provided, NDB
Operator enables TDE and uses the password stored in the secret as the file system password for all
data nodes in the cluster. If no value is provided, TDE is not enabled.

• image (string): (optional) The name of the MySQL NDB Cluster image to be used. If not specified,
this defaults to mysql/mysql-cluster:latest.

Important

The minimum version of NDB Cluster supported by NDB Operator is NDB
8.0.26.

• imagePullPolicy (Kubernetes core/v1.PullPolicy): (optional) Describes a policy for if and when to
pull the MySQL NDB Cluster container image.

• imagePullSecretName (string): (optional) Specifies the name of the secret that holds the
credentials required for pulling the MySQL Cluster image.

5.6 NdbClusterStatus Resource
NdbClusterStatus represents the status of an Ndb resource. Used by NdbCluster.

• processedGeneration (integer): Holds the latest generation of the Ndb resource whose specs
have been successfully applied to the NDB Cluster running inside Kubernetes.

• readyManagementNodes (string): The status of the NDB Cluster management nodes.

• readyDataNodes (string): The status of the NDB Cluster data nodes.

• readyMySQLServers (string): The status of the MySQL servers attached to the NDB Cluster as
SQL nodes.

• conditions ([]NdbClusterCondition): The latest available observations of the NDB Cluster's
current state.

• generatedRootPasswordSecretName (string): This is the name of the secret generated by the
operator, used as the MySQL server root account password. This will be set to null if a secret has
already been provided to the operator using spec.mysqlNode.rootPasswordSecretName.

5.7 NdbDataNodeSpec Resource
NdbDataNodeSpec specifies a data node in an NDB Cluster. Used by NdbClusterSpec.

• config (map[string]* Kubernetes util/intstr.IntOrStringConfig): (optional) A map of default NDB data
node configuration parameters (see NDB Cluster Data Node Configuration Parameters).

• ndbPodSpec (NdbClusterPodSpec): (optional) A subset of PodSpec fields which, when set, are
copied into to the podSpec of the data node's StatefulSet definition.

• nodeCount (integer): The total number of data nodes in a MySQL NDB Cluster; this must be an
integer multiple of redundancyLevel. A maximum of 144 data nodes is supported.

19

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#pullpolicy-v1-core
https://pkg.go.dev/k8s.io/apimachinery/pkg/util/intstr#IntOrString
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-params-ndbd.html
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#statefulset-v1-apps

NdbManagementNodeSpec Resource

• pvcSpec (Kubernetes core/v1.PersistentVolumeClaimSpec): (optional) The
PersistentVolumeClaimSpec to be used as the VolumeClaimTemplate of the data node
StatefulSet. A PVC is created for each data node by the StatefulSet controller and is loaded
into the data node pod and the container.

5.8 NdbManagementNodeSpec Resource
NdbManagementNodeSpec specifies a management server node in an NDB Cluster. Used by
NdbClusterSpec.

• config (map[string]* Kubernetes util/intstr.IntOrStringConfig): (optional) A map of default MySQL
Cluster management node configuration parameters (see NDB Cluster Management Node
Configuration Parameters).

• ndbPodSpec (NdbClusterPodSpec): (optional) A subset of PodSpec fields which, when set, are
copied into to the podSpec of the management node's StatefulSet definition.

• enableLoadBalancer (bool): (optional) Exposes the management servers externally using
the Kubernetes cloud provider's load balancer. By default, the operator creates a service of type
ClusterIP to expose the management server pods internally within the Kubernetes cluster.
If enableLoadBalancer is set to true, a service of type LoadBalancer is created instead,
exposing the management servers outside the Kubernetes cluster.

5.9 NdbMysqldSpec Resource
NdbMysqldSpec is the specification for any MySQL Servers to be run as NDB Cluster SQL nodes.
Used by NdbClusterSpec.

• nodeCount (integer): The number of SQL nodes (that is, MySQL servers or instances of mysqld)
running in the NDB Cluster.

• maxNodeCount (integer): (optional) The NDB Cluster's MySQL servers scale up to this number
without forcing a configuration update. If this is unspecified, NDB Operator includes API sections for
additional MySQL Servers in the configuration file.

• connectionPoolSize (integer): (optional) This is the number of connections a single MySQL
Server should use to connect to the MySQL Cluster data nodes. See the description of the mysqld
--ndb-cluster-connection-pool option for further information.

• rootPasswordSecretName (string): (optional) The name of the secret that holds the password
for the MySQL root accounts. The secret should contain a password key that holds the
password. If unspecified, a secret is created by the operator with a generated name in the format
ndb_resource_name-mysqld-root-password.

• rootHost (string): (optional) Names the host or hosts from which the root user can connect to the
MySQL server. If unspecified, the root user can connect from any host that can access the MySQL
server.

• myCnf (string): (optional) mysqld configuration options to pass to the SQL nodes when they are
started.

Example:

myCnf: |
 [mysqld]
 max-user-connections=42
 ndb-extra-logging=10

The format used for the configuration string is similar to that used in a MySQL my.cnf file. See
Option File Syntax, for more information. MySQL Server Options and Variables for NDB Cluster,
provides a reference of MySQL Server configuration options specific to NDB Cluster.

20

https://pkg.go.dev/k8s.io/api@v0.20.2/core/v1#PersistentVolumeClaimSpec
https://pkg.go.dev/k8s.io/apimachinery/pkg/util/intstr#IntOrString
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-params-mgmd.html
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-params-mgmd.html
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-options-variables.html#option_mysqld_ndb-cluster-connection-pool
https://dev.mysql.com/doc/refman/9.5/en/option-files.html#option-file-syntax
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-options-variables.html

NdbMysqldSpec Resource

• enableLoadBalancer (bool): (optional) Exposes the MySQL servers externally using the
Kubernetes cloud provider's load balancer. By default, the operator creates a ClusterIP type service
to expose the MySQL server pods internally within the Kubernetes cluster. If EnableLoadBalancer
is set to true, a LoadBalancer service is created instead, exposing the MySQL servers outside the
Kubernetes cluster.

• ndbPodSpec (NdbClusterPodSpec): (optional) A subset of PodSpec fields which, when set, are
copied into to the podSpec of the MySQL server's StatefulSet.

• initScripts (map[string][]string): (optional) A map of configMap names from the
same namespace, and, optionally, an array of keys which store the SQL scripts to be executed
during MySQL server initialization. If key names are omitted, contents of all the keys are treated as
initialization SQL scripts. All scripts are mounted into the MySQL pods and executed by configMap
name and key name, in alphabetical order.

• pvcSpec (Kubernetes core/v1.PersistentVolumeClaimSpec:

(optional) The PersistentVolumeClaimSpec used as the VolumeClaimTemplate of the
MySQL server StatefulSet. A PVC is created for each MySQL server by the StatefulSet
controller and loaded into the MySQL server pod and the container.

See also Defining SQL and Other API Nodes in an NDB Cluster.

21

https://pkg.go.dev/k8s.io/api@v0.20.2/core/v1#PersistentVolumeClaimSpec
https://dev.mysql.com/doc/refman/9.5/en/mysql-cluster-api-definition.html

22

Chapter 6 Contributing to NDB Operator

Table of Contents
6.1 Reporting Issues and Requesting Enhancements ... 23
6.2 Contributing Code ... 23

We appreciate any feedback we receive from our users. The most useful forms of feedback are bug
reports, enhancements requests, and contributions of code.

The rest of this chapter contains information about filing bug reports and enhancement requests, as
well as how to submit code that you wish to contribute.

6.1 Reporting Issues and Requesting Enhancements

To report issues with NDB Operator, please file a bug report in the MySQL Bug System, using the
category MySQL Cluster: NDB Operator.

Bug reports should provide as much information as possible, including the following:

• Complete steps to reproduce the issue

• Any information about the Kubernetes environment that may be specific to the bug

• Specific version of NDB Operator

• Specific version of the NDB Cluster being used

• Sample code to help reproduce the issue, if possible.

You can also request enhancements to NDB Operator using the MySQL Bug System; these should
also be filed under MySQL Cluster: NDB Operator.

Before filing bug reports or enhancement requests, please make sure that you are not submitting a
duplicate of an issue which has already been filed. You can view existing issues here.

To report issues with or request enhancements to this documentation, please file a report in the
MySQL Bug System using the category MySQL Cluster: Documentation.

6.2 Contributing Code

We are happy to consider your contributions of code. For you to contribute, it is necessary that you
complete the following steps:

• Sign the Oracle Contributor Agreement

• Develop your pull request

• Validate your pull request by including tests that sufficiently cover the functionality you are adding

• Verify that the entire test suite passes with your code applied

• Submit your pull request. You can do so using GitHub, or directly to MySQL at Oracle using
bugs.mysql.com

23

https://bugs.mysql.com/
https://bugs.mysql.com/search.php?search_for=bug_type%5B%5D=Server%3A+Cluster_OPR&status%5B%5D=All
https://oca.opensource.oracle.com/
https://github.com/mysql/mysql-ndb-operator/pulls
https://bugs.mysql.com

24

	NDB Operator Manual
	Table of Contents
	Chapter 1 Introduction to NDB Operator
	Chapter 2 Installation of NDB Operator
	2.1 Requirements
	2.2 Obtaining NDB Operator
	2.3 Installing NDB Operator Using Helm
	2.4 Installing NDB Operator Using the YAML File and kubectl
	2.5 Building an NDB Operator Image from Source
	2.6 Post-Installation
	2.7 Upgrading NDB Operator
	2.8 Uninstalling NDB Operator

	Chapter 3 Deploying NDB Cluster with NDB Operator
	3.1 Setting the NDB Cluster's Configuration
	3.2 Creating an NdbCluster Object
	3.3 Checking NDB Cluster Status and Logs
	3.4 Removing NDB Cluster

	Chapter 4 Performing Common Tasks with NDB Operator
	4.1 Accessing the NDB Cluster
	4.1.1 Access From Within Kubernetes
	4.1.2 Access From Outside Kubernetes

	4.2 Updating the NDB Cluster Configuration
	4.3 Using NdbClusterPodSpec

	Chapter 5 NDB Operator CRD Reference
	5.1 NdbCluster Resource
	5.2 NdbClusterCondition Resource
	5.3 NdbClusterConditionType
	5.4 NdbClusterPodSpec Resource
	5.5 NdbClusterSpec Resource
	5.6 NdbClusterStatus Resource
	5.7 NdbDataNodeSpec Resource
	5.8 NdbManagementNodeSpec Resource
	5.9 NdbMysqldSpec Resource

	Chapter 6 Contributing to NDB Operator
	6.1 Reporting Issues and Requesting Enhancements
	6.2 Contributing Code

