
MySQL Tutorial

Abstract

This is the MySQL Tutorial from the MySQL 8.3 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-03-27 (revision: 78201)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 Tutorial .. 1
2 Connecting to and Disconnecting from the Server ... 3
3 Entering Queries .. 5
4 Creating and Using a Database ... 9

4.1 Creating and Selecting a Database .. 10
4.2 Creating a Table ... 11
4.3 Loading Data into a Table ... 12
4.4 Retrieving Information from a Table ... 13

4.4.1 Selecting All Data ... 13
4.4.2 Selecting Particular Rows ... 14
4.4.3 Selecting Particular Columns .. 15
4.4.4 Sorting Rows ... 16
4.4.5 Date Calculations ... 17
4.4.6 Working with NULL Values ... 19
4.4.7 Pattern Matching .. 20
4.4.8 Counting Rows ... 22
4.4.9 Using More Than one Table ... 24

5 Getting Information About Databases and Tables .. 27
6 Using mysql in Batch Mode ... 29
7 Examples of Common Queries ... 31

7.1 The Maximum Value for a Column .. 31
7.2 The Row Holding the Maximum of a Certain Column .. 32
7.3 Maximum of Column per Group ... 32
7.4 The Rows Holding the Group-wise Maximum of a Certain Column 32
7.5 Using User-Defined Variables .. 33
7.6 Using Foreign Keys ... 34
7.7 Searching on Two Keys .. 36
7.8 Calculating Visits Per Day ... 36
7.9 Using AUTO_INCREMENT .. 36

8 Using MySQL with Apache .. 41

iii

iv

Preface and Legal Notices
This is the MySQL Tutorial from the MySQL 8.3 Reference Manual.

Licensing information—MySQL 8.1. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.1, see the MySQL 8.1 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 8.1, see the MySQL 8.1 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices
Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

v

https://downloads.mysql.com/docs/licenses/mysqld-8.1-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.1-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.1-gpl-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Tutorial
This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client
program to create and use a simple database. mysql (sometimes referred to as the “terminal monitor”
or just “monitor”) is an interactive program that enables you to connect to a MySQL server, run
queries, and view the results. mysql may also be used in batch mode: you place your queries in a file
beforehand, then tell mysql to execute the contents of the file. Both ways of using mysql are covered
here.

To see a list of options provided by mysql, invoke it with the --help option:

$> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as MySQL Server
Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only
in accessing an existing database, you may want to skip the sections that describe how to create the
database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

1

https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_help
https://dev.mysql.com/doc/refman/8.3/en/server-administration.html
https://dev.mysql.com/doc/refman/8.3/en/server-administration.html

2

Chapter 2 Connecting to and Disconnecting from the Server
To connect to the server, you usually need to provide a MySQL user name when you invoke mysql
and, most likely, a password. If the server runs on a machine other than the one where you log in, you
must also specify a host name. Contact your administrator to find out what connection parameters you
should use to connect (that is, what host, user name, and password to use). Once you know the proper
parameters, you should be able to connect like this:

$> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

$> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 8.3.0-standard
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

The mysql> prompt tells you that mysql is ready for you to enter SQL statements.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

$> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means
that the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator or
see the section of Installing MySQL that is appropriate to your operating system.

For help with other problems often encountered when trying to log in, see Common Errors When Using
MySQL Programs.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that
server by invoking mysql without any options:

$> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the
mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate
this by the mysql> prompt.

3

https://dev.mysql.com/doc/refman/8.3/en/installing.html
https://dev.mysql.com/doc/refman/8.3/en/common-errors.html
https://dev.mysql.com/doc/refman/8.3/en/common-errors.html

4

Chapter 3 Entering Queries
Make sure that you are connected to the server, as discussed in the previous section. Doing so does
not in itself select any database to work with, but that is okay. At this point, it is more important to find
out a little about how to issue queries than to jump right in creating tables, loading data into them, and
retrieving data from them. This section describes the basic principles of entering queries, using several
queries you can try out to familiarize yourself with how mysql works.

Here is a simple query that asks the server to tell you its version number and the current date. Type it
in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+-----------+--------------+
| VERSION() | CURRENT_DATE |
+-----------+--------------+
| 5.8.0-m17 | 2015-12-21 |
+-----------+--------------+
1 row in set (0.02 sec)
mysql>

This query illustrates several things about mysql:

• A query normally consists of an SQL statement followed by a semicolon. (There are some
exceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to
others later.)

• When you issue a query, mysql sends it to the server for execution and displays the results, then
prints another mysql> prompt to indicate that it is ready for another query.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives
you a rough idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as server load
and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining
examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter
multiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+-----------+
| VERSION() |
+-----------+
| 8.0.13 |

5

+-----------+
1 row in set (0.00 sec)
+---------------------+
| NOW() |
+---------------------+
| 2018-08-24 00:56:40 |
+---------------------+
1 row in set (0.00 sec)

A query need not be given all on a single line, so lengthy queries that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not
by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects
input lines but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2018-08-24 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a query that you are in the process of entering, cancel it by
typing \c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to
indicate that mysql is ready for a new query.

The following table shows each of the prompts you may see and summarizes what they mean about
the state that mysql is in.

Prompt Meaning

mysql> Ready for new query

-> Waiting for next line of multiple-line query

'> Waiting for next line, waiting for completion of a
string that began with a single quote (')

"> Waiting for next line, waiting for completion of a
string that began with a double quote (")

`> Waiting for next line, waiting for completion of an
identifier that began with a backtick (`)

/*> Waiting for next line, waiting for completion of a
comment that began with /*

Multiple-line statements commonly occur by accident when you intend to issue a query on a single line,
but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

6

If this happens to you (you think you've entered a statement but the only response is a -> prompt),
most likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you
might sit there for a while before realizing what you need to do. Enter a semicolon to complete the
statement, and mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting
for completion of a string). In MySQL, you can write strings surrounded by either ' or " characters (for
example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When
you see a '> or "> prompt, it means that you have entered a line containing a string that begins with
a ' or " quote character, but have not yet entered the matching quote that terminates the string. This
often indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The
string 'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the query. However, you cannot just type
\c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the
closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new query.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not
completed a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter
an unterminated string, any further lines you type appear to be ignored by mysql—including a line
containing QUIT. This can be quite confusing, especially if you do not know that you need to supply the
terminating quote before you can cancel the current query.

Note

Multiline statements from this point on are written without the secondary (->
or other) prompts, to make it easier to copy and paste the statements to try for
yourself.

7

https://dev.mysql.com/doc/refman/8.3/en/select.html

8

Chapter 4 Creating and Using a Database

Table of Contents
4.1 Creating and Selecting a Database .. 10
4.2 Creating a Table ... 11
4.3 Loading Data into a Table ... 12
4.4 Retrieving Information from a Table ... 13

4.4.1 Selecting All Data ... 13
4.4.2 Selecting Particular Rows ... 14
4.4.3 Selecting Particular Columns .. 15
4.4.4 Sorting Rows ... 16
4.4.5 Date Calculations ... 17
4.4.6 Working with NULL Values ... 19
4.4.7 Pattern Matching .. 20
4.4.8 Counting Rows ... 22
4.4.9 Using More Than one Table ... 24

Once you know how to enter SQL statements, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track
of various types of information about them. You can do so by creating tables to hold your data and
loading them with the desired information. Then you can answer different sorts of questions about
your animals by retrieving data from the tables. This section shows you how to perform the following
operations:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie
distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL website. It is available in both compressed tar file and Zip formats at https://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See SHOW DATABASES Statement.

9

https://dev.mysql.com/doc/
https://dev.mysql.com/doc/
https://dev.mysql.com/doc/refman/8.3/en/show.html
https://dev.mysql.com/doc/refman/8.3/en/show-databases.html
https://dev.mysql.com/doc/refman/8.3/en/show-databases.html
https://dev.mysql.com/doc/refman/8.3/en/show-databases.html

Creating and Selecting a Database

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon
if you like; it does no harm.) The USE statement is special in another way, too: it must be given on a
single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that
you want to call yours menagerie. The administrator needs to execute a statement like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the
host from which you connect to the server.

4.1 Creating and Selecting a Database
If the administrator creates your database for you when setting up your permissions, you can begin
using it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case-sensitive (unlike SQL keywords), so you must always refer
to your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is
also true for table names. (Under Windows, this restriction does not apply, although you must refer to
databases and tables using the same lettercase throughout a given query. However, for a variety of
reasons, the recommended best practice is always to use the same lettercase that was used when the
database was created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied
for user 'micah'@'localhost' to database 'menagerie' when
attempting to create a database, this means that your user account does not
have the necessary privileges to do so. Discuss this with the administrator or
see Access Control and Account Management.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this statement:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively,
you can select the database on the command line when you invoke mysql. Just specify its name after
any connection parameters that you might need to provide. For example:

$> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want
to supply your password on the command line after the -p option, you must
do so with no intervening space (for example, as -ppassword, not as -p
password). However, putting your password on the command line is not
recommended, because doing so exposes it to snooping by other users logged
in on your machine.

10

https://dev.mysql.com/doc/refman/8.3/en/use.html
https://dev.mysql.com/doc/refman/8.3/en/use.html
https://dev.mysql.com/doc/refman/8.3/en/access-control.html
https://dev.mysql.com/doc/refman/8.3/en/use.html

Creating a Table

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

4.2 Creating a Table

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and
what columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some
basic descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age
changes as time passes, which means you'd have to update your records often. Instead, it is better
to store a fixed value such as date of birth. Then, whenever you need age, you can calculate it as
the difference between the current date and the birth date. MySQL provides functions for doing date
arithmetic, so this is not difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If
you think this type of query is somewhat silly, note that it is the same question you might ask in the
context of a business database to identify clients to whom you need to send out birthday greetings in
the current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values
vary in length. The lengths in those column definitions need not all be the same, and need not be 20.
You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. If you
make a poor choice and it turns out later that you need a longer field, MySQL provides an ALTER
TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

11

https://dev.mysql.com/doc/refman/8.3/en/select.html
https://dev.mysql.com/doc/refman/8.3/en/information-functions.html#function_database
https://dev.mysql.com/doc/refman/8.3/en/show-tables.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/char.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/datetime.html
https://dev.mysql.com/doc/refman/8.3/en/show-tables.html

Loading Data into a Table

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or
what types they have.

For more information about MySQL data types, see Data Types.

4.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful
for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates
in 'YYYY-MM-DD' format; this may differ from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs,
and given in the order in which the columns were listed in the CREATE TABLE statement. For missing
values (such as unknown sexes or death dates for animals that are still living), you can use NULL
values. To represent these in your text file, use \N (backslash, capital-N). For example, the record for
Whistler the bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use
this statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 LINES TERMINATED BY '\r\n';

(On an Apple machine running macOS, you would likely want to use LINES TERMINATED BY '\r'.)

12

https://dev.mysql.com/doc/refman/8.3/en/describe.html
https://dev.mysql.com/doc/refman/8.3/en/describe.html
https://dev.mysql.com/doc/refman/8.3/en/data-types.html
https://dev.mysql.com/doc/refman/8.3/en/load-data.html
https://dev.mysql.com/doc/refman/8.3/en/insert.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html

Retrieving Information from a Table

You can specify the column value separator and end of line marker explicitly in the LOAD DATA
statement if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to
read the file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled
by default. See Security Considerations for LOAD DATA LOCAL, for information on how to change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest
form, you supply values for each column, in the order in which the columns were listed in the CREATE
TABLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new
record using an INSERT statement like this:

mysql> INSERT INTO pet
 VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load
your records initially using several INSERT statements rather than a single LOAD DATA statement.

4.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

4.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT uses *, which is shorthand for “select all columns.” This is useful if you want to
review your entire table, for example, after you've just loaded it with your initial data set. For example,
you may happen to think that the birth date for Bowser doesn't seem quite right. Consulting your
original pedigree papers, you find that the correct birth year should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;

13

https://dev.mysql.com/doc/refman/8.3/en/load-data.html
https://dev.mysql.com/doc/refman/8.3/en/load-data-local-security.html
https://dev.mysql.com/doc/refman/8.3/en/insert.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/insert.html
https://dev.mysql.com/doc/refman/8.3/en/insert.html
https://dev.mysql.com/doc/refman/8.3/en/load-data.html
https://dev.mysql.com/doc/refman/8.3/en/insert.html
https://dev.mysql.com/doc/refman/8.3/en/load-data.html
https://dev.mysql.com/doc/refman/8.3/en/select.html
https://dev.mysql.com/doc/refman/8.3/en/select.html
https://dev.mysql.com/doc/refman/8.3/en/select.html
https://dev.mysql.com/doc/refman/8.3/en/delete.html
https://dev.mysql.com/doc/refman/8.3/en/load-data.html
https://dev.mysql.com/doc/refman/8.3/en/load-data.html

Selecting Particular Rows

mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

There is an exception to the principle that SELECT * selects all columns. If a table contains invisible
columns, * does not include them. For more information, see Invisible Columns.

4.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause
from the SELECT statement. But typically you don't want to see the entire table, particularly when it
becomes large. Instead, you're usually more interested in answering a particular question, in which
case you specify some constraints on the information you want. Let's look at some selection queries in
terms of questions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that
you made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser',
'BOWSER', and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which
animals were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

14

https://dev.mysql.com/doc/refman/8.3/en/update.html
https://dev.mysql.com/doc/refman/8.3/en/update.html
https://dev.mysql.com/doc/refman/8.3/en/invisible-columns.html
https://dev.mysql.com/doc/refman/8.3/en/select.html
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_and
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_or

Selecting Particular Columns

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both
operators, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

4.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are
interested, separated by commas. For example, if you want to know when your animals were born,
select the name and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear
more than once. To minimize the output, retrieve each unique output record just once by adding the
keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet

15

https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_and
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_or
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_and
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_or

Sorting Rows

 WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

4.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular
order. It is often easier to examine query output when the rows are sorted in some meaningful way. To
sort a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except
for their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY
BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order,
add the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For
example, to sort by type of animal in ascending order, then by birth date within animal type in
descending order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
 ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
| Chirpy | bird | 1998-09-11 |
| Whistler | bird | 1997-12-09 |

16

https://dev.mysql.com/doc/refman/8.3/en/cast-functions.html#operator_binary

Date Calculations

Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not
affect the species column sort order.

4.4.5 Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two dates for which to take
the difference. The following query shows, for each pet, the birth date, the current date, and the age in
years. An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some
order. This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
| Chirpy | 1998-09-11 | 2003-08-19 | 4 |
| Puffball | 1999-03-30 | 2003-08-19 | 4 |

17

https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_timestampdiff

Date Calculations

Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine
which animals these are by checking whether the death value is NULL. Then, for those with non-NULL
values, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 TIMESTAMPDIFF(YEAR,birth,death) AS age
 FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See
Section 4.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation,
year and day are irrelevant; you simply want to extract the month part of the birth column.
MySQL provides several functions for extracting parts of dates, such as YEAR(), MONTH(), and
DAYOFMONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query
that displays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the
month number (12) and look for animals born in month 13, because there is no such month. Instead,
you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet

18

https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_year
https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_month
https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_dayofmonth
https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_month
https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_month
https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_date-add
https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_curdate
https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_month

Working with NULL Values

 WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between
0 and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to
January (1).

If a calculation uses invalid dates, the calculation fails and produces warnings:

mysql> SELECT '2018-10-31' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-31' + INTERVAL 1 DAY |
+-------------------------------+
| 2018-11-01 |
+-------------------------------+
mysql> SELECT '2018-10-32' + INTERVAL 1 DAY;
+-------------------------------+
| '2018-10-32' + INTERVAL 1 DAY |
+-------------------------------+
| NULL |
+-------------------------------+
mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '2018-10-32' |
+---------+------+--+

4.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing
unknown value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate
this for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any
meaningful results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a
boolean operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

19

https://dev.mysql.com/doc/refman/8.3/en/date-and-time-functions.html#function_month
https://dev.mysql.com/doc/refman/8.3/en/mathematical-functions.html#function_mod
https://dev.mysql.com/doc/refman/8.3/en/mathematical-functions.html#function_mod
https://dev.mysql.com/doc/refman/8.3/en/comparison-operators.html#operator_is-null
https://dev.mysql.com/doc/refman/8.3/en/comparison-operators.html#operator_is-not-null
https://dev.mysql.com/doc/refman/8.3/en/comparison-operators.html#operator_equal
https://dev.mysql.com/doc/refman/8.3/en/comparison-operators.html#operator_less-than
https://dev.mysql.com/doc/refman/8.3/en/comparison-operators.html#operator_not-equal

Pattern Matching

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if
you do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an
empty string into a column defined as NOT NULL, but this is not the case. These are in fact values,
whereas NULL means “not having a value.” You can test this easily enough by using IS [NOT] NULL
as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Problems with NULL Values.

4.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on
extended regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use _ to match any single character and % to match an arbitrary
number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by
default. Some examples are shown here. Do not use = or <> when you use SQL patterns. Use the
LIKE or NOT LIKE comparison operators instead.

To find names beginning with b:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with fy:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the _ pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |

20

https://dev.mysql.com/doc/refman/8.3/en/problems-with-null.html
https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html#operator_not-like

Pattern Matching

| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP_LIKE() function (or the REGEXP or RLIKE
operators, which are synonyms for REGEXP_LIKE()).

The following list describes some characteristics of extended regular expressions:

• . matches any single character.

• A character class [...] matches any character within the brackets. For example, [abc] matches
a, b, or c. To name a range of characters, use a dash. [a-z] matches any letter, whereas [0-9]
matches any digit.

• * matches zero or more instances of the thing preceding it. For example, x* matches any number of
x characters, [0-9]* matches any number of digits, and .* matches any number of anything.

• A regular expression pattern match succeeds if the pattern matches anywhere in the value being
tested. (This differs from a LIKE pattern match, which succeeds only if the pattern matches the
entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use ^ at the
beginning or $ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are
rewritten here to use REGEXP_LIKE().

To find names beginning with b, use ^ to match the beginning of the name:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, '^b');
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1979-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To force a regular expression comparison to be case-sensitive, use a case-sensitive collation, or
use the BINARY keyword to make one of the strings a binary string, or specify the c match-control
character. Each of these queries matches only lowercase b at the beginning of a name:

SELECT * FROM pet WHERE REGEXP_LIKE(name, '^b' COLLATE utf8mb4_0900_as_cs);
SELECT * FROM pet WHERE REGEXP_LIKE(name, BINARY '^b');
SELECT * FROM pet WHERE REGEXP_LIKE(name, '^b', 'c');

To find names ending with fy, use $ to match the end of the name:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, 'fy$');
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a w, use this query:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, 'w');
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

21

https://dev.mysql.com/doc/refman/8.3/en/regexp.html#function_regexp-like
https://dev.mysql.com/doc/refman/8.3/en/regexp.html#operator_regexp
https://dev.mysql.com/doc/refman/8.3/en/regexp.html#operator_regexp
https://dev.mysql.com/doc/refman/8.3/en/regexp.html#function_regexp-like
https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.3/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.3/en/regexp.html#function_regexp-like
https://dev.mysql.com/doc/refman/8.3/en/cast-functions.html#operator_binary

Counting Rows

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in
the previous query to put a wildcard on either side of the pattern to get it to match the entire value as
would be true with an SQL pattern.

To find names containing exactly five characters, use ^ and $ to match the beginning and end of the
name, and five instances of . in between:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, '^.....$');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE REGEXP_LIKE(name, '^.{5}$');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

For more information about the syntax for regular expressions, see Regular Expressions.

4.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a
table?” For example, you might want to know how many pets you have, or how many pets each owner
has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to
count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to
find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT()
in conjunction with GROUP BY is useful for characterizing your data under various groupings. The
following examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+

22

https://dev.mysql.com/doc/refman/8.3/en/regexp.html
https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html#function_count

Counting Rows

bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
 WHERE species = 'dog' OR species = 'cat'
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 WHERE sex IS NOT NULL
 GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

23

https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html#function_count

Using More Than one Table

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): In aggregated query without GROUP BY, expression
#1 of SELECT list contains nonaggregated column 'menagerie.pet.owner';
this is incompatible with sql_mode=only_full_group_by

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single
group, but the value selected for each named column is nondeterministic. The server is free to select
the value from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT owner, COUNT(*) FROM pet;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
| Harold | 8 |
+--------+----------+
1 row in set (0.00 sec)

See also MySQL Handling of GROUP BY. See Aggregate Function Descriptions for information about
COUNT(expr) behavior and related optimizations.

4.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file
containing the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1
male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3
male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak
straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew
toy

24

https://dev.mysql.com/doc/refman/8.3/en/sql-mode.html#sqlmode_only_full_group_by
https://dev.mysql.com/doc/refman/8.3/en/sql-mode.html#sqlmode_only_full_group_by
https://dev.mysql.com/doc/refman/8.3/en/group-by-handling.html
https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html
https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.3/en/create-table.html

Using More Than one Table

name date type remark

Claws 1998-03-17 birthday Gave him a new flea
collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be
able to perform retrievals on the records in the event table; the principles are the same. But when is
the event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate
her age on that date you need her birth date, which is stored in the pet table. This means the query
requires both tables:

mysql> SELECT pet.name,
 TIMESTAMPDIFF(YEAR,birth,date) AS age,
 remark
 FROM pet INNER JOIN event
 ON pet.name = event.name
 WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one
table can be matched to records in the other. This is easy because they both have a name column.
The query uses an ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either
table to appear in the result if and only if both tables meet the conditions specified in the ON clause.
In this example, the ON clause specifies that the name column in the pet table must match the name
column in the event table. If a name appears in one table but not the other, the row does not appear
in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean
when referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself,
if you want to compare records in a table to other records in that same table. For example, to find
breeding pairs among your pets, you can join the pet table with itself to produce candidate pairs of live
males and females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 FROM pet AS p1 INNER JOIN pet AS p2
 ON p1.species = p2.species
 AND p1.sex = 'f' AND p1.death IS NULL
 AND p2.sex = 'm' AND p2.death IS NULL;
+--------+------+-------+------+---------+
| name | sex | name | sex | species |
+--------+------+-------+------+---------+
| Fluffy | f | Claws | m | cat |
| Buffy | f | Fang | m | dog |

25

Using More Than one Table

+--------+------+-------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

26

Chapter 5 Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for
example, what its columns are called)? MySQL addresses this problem through several statements
that provide information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To
find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the
name of a table), use this statement:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |
| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name,
where db_name is the name of the database. See SHOW TABLES Statement, for more information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies
the column's default value. Extra displays special information about columns: If a column was created
with the AUTO_INCREMENT option, the value is auto_increment rather than empty.

DESC is a short form of DESCRIBE. See DESCRIBE Statement, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See SHOW CREATE TABLE Statement.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
SHOW INDEX Statement, for more about this statement.

27

https://dev.mysql.com/doc/refman/8.3/en/show-databases.html
https://dev.mysql.com/doc/refman/8.3/en/information-functions.html#function_database
https://dev.mysql.com/doc/refman/8.3/en/show-tables.html
https://dev.mysql.com/doc/refman/8.3/en/describe.html
https://dev.mysql.com/doc/refman/8.3/en/describe.html
https://dev.mysql.com/doc/refman/8.3/en/describe.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.3/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.3/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.3/en/show-index.html

28

Chapter 6 Using mysql in Batch Mode
In the previous sections, you used mysql interactively to enter statements and view the results. You
can also run mysql in batch mode. To do this, put the statements you want to run in a file, then tell
mysql to read its input from the file:

$> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

$> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use
the --force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line
statements or multiple-statement sequences. If you make a mistake, you don't have to retype
everything. Just edit your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

$> mysql < batch-file | more

• You can catch the output in a file for further processing:

$> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the statements.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job.
In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when
you use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks
like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species

29

https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_force

bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output
the statements that are executed, use mysql -v.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Executing SQL Statements from a Text File, for more information.

30

https://dev.mysql.com/doc/refman/8.3/en/mysql-batch-commands.html

Chapter 7 Examples of Common Queries

Table of Contents
7.1 The Maximum Value for a Column .. 31
7.2 The Row Holding the Maximum of a Certain Column .. 32
7.3 Maximum of Column per Group ... 32
7.4 The Rows Holding the Group-wise Maximum of a Certain Column ... 32
7.5 Using User-Defined Variables .. 33
7.6 Using Foreign Keys .. 34
7.7 Searching on Two Keys .. 36
7.8 Calculating Visits Per Day ... 36
7.9 Using AUTO_INCREMENT .. 36

Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (article,
dealer) is a primary key for the records.

Start the command-line tool mysql and select a database:

$> mysql your-database-name

To create and populate the example table, use these statements:

CREATE TABLE shop (
 article INT UNSIGNED DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DECIMAL(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop ORDER BY article;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
1	A	3.45
1	B	3.99
2	A	10.99
3	B	1.45
3	C	1.69
3	D	1.25
4	D	19.95
+---------+--------+-------+

7.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;
+---------+
| article |
+---------+
| 4 |
+---------+

31

The Row Holding the Maximum of a Certain Column

7.2 The Row Holding the Maximum of a Certain Column
Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Another solution is to use a LEFT JOIN, as shown here:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

You can also do this by sorting all rows descending by price and get only the first row using the
MySQL-specific LIMIT clause, like this:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the
LIMIT solution would show only one of them.

7.3 Maximum of Column per Group
Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article
ORDER BY article;
+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

7.4 The Rows Holding the Group-wise Maximum of a Certain
Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article)
ORDER BY article;
+---------+--------+-------+
| article | dealer | price |

32

Using User-Defined Variables

+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Correlated
Subqueries). Other possibilities for solving the problem are to use an uncorrelated subquery in the
FROM clause, a LEFT JOIN, or a common table expression with a window function.

Uncorrelated subquery:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price
ORDER BY article;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL
ORDER BY s1.article;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no
s2.price with a greater value and thus the corresponding s2.article value is NULL. See JOIN
Clause.

Common table expression with window function:

WITH s1 AS (
 SELECT article, dealer, price,
 RANK() OVER (PARTITION BY article
 ORDER BY price DESC
) AS `Rank`
 FROM shop
)
SELECT article, dealer, price
 FROM s1
 WHERE `Rank` = 1
ORDER BY article;

7.5 Using User-Defined Variables
You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See User-Defined Variables.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;

33

https://dev.mysql.com/doc/refman/8.3/en/correlated-subqueries.html
https://dev.mysql.com/doc/refman/8.3/en/correlated-subqueries.html
https://dev.mysql.com/doc/refman/8.3/en/join.html
https://dev.mysql.com/doc/refman/8.3/en/join.html
https://dev.mysql.com/doc/refman/8.3/en/user-variables.html

Using Foreign Keys

however, this requires the use of a prepared statement. See Prepared
Statements, for more information.

7.6 Using Foreign Keys

MySQL supports foreign keys, which permit cross-referencing related data across tables, and foreign
key constraints, which help keep the related data consistent.

A foreign key relationship involves a parent table that holds the initial column values, and a child table
with column values that reference the parent column values. A foreign key constraint is defined on the
child table.

This following example relates parent and child tables through a single-column foreign key and
shows how a foreign key constraint enforces referential integrity.

Create the parent and child tables using the following SQL statements:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;
CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
) ENGINE=INNODB;

Insert a row into the parent table, like this:

mysql> INSERT INTO parent (id) VALUES ROW(1);

Verify that the data was inserted. You can do this simply by selecting all rows from parent, as shown
here:

mysql> TABLE parent;
+----+
| id |
+----+
| 1 |
+----+

Insert a row into the child table using the following SQL statement:

mysql> INSERT INTO child (id,parent_id) VALUES ROW(1,1);

The insert operation is successful because parent_id 1 is present in the parent table.

Insertion of a row into the child table with a parent_id value that is not present in the parent table is
rejected with an error, as you can see here:

mysql> INSERT INTO child (id,parent_id) VALUES ROW(2,2);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

The operation fails because the specified parent_id value does not exist in the parent table.

Trying to delete the previously inserted row from the parent table also fails, as shown here:

mysql> DELETE FROM parent WHERE id VALUES = 1;
ERROR 1451 (23000): Cannot delete or update a parent row: a foreign key constraint fails
(`test`.`child`, CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`)
REFERENCES `parent` (`id`))

34

https://dev.mysql.com/doc/refman/8.3/en/sql-prepared-statements.html
https://dev.mysql.com/doc/refman/8.3/en/sql-prepared-statements.html

Using Foreign Keys

This operation fails because the record in the child table contains the referenced id (parent_id)
value.

When an operation affects a key value in the parent table that has matching rows in the child table,
the result depends on the referential action specified by ON UPDATE and ON DELETE subclauses of
the FOREIGN KEY clause. Omitting ON DELETE and ON UPDATE clauses (as in the current child table
definition) is the same as specifying the RESTRICT option, which rejects operations that affect a key
value in the parent table that has matching rows in the parent table.

To demonstrate ON DELETE and ON UPDATE referential actions, drop the child table and recreate it
to include ON UPDATE and ON DELETE subclauses with the CASCADE option. The CASCADE option
automatically deletes or updates matching rows in the child table when deleting or updating rows in the
parent table.

DROP TABLE child;
CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON UPDATE CASCADE
 ON DELETE CASCADE
) ENGINE=INNODB;

Insert some rows into the child table using the statement shown here:

mysql> INSERT INTO child (id,parent_id) VALUES ROW(1,1), ROW(2,1), ROW(3,1);

Verify that the data was inserted, like this:

mysql> TABLE child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	1
2	1
3	1
+------+-----------+

Update the ID in the parent table, changing it from 1 to 2, using the SQL statement shown here:

mysql> UPDATE parent SET id = 2 WHERE id = 1;

Verify that the update was successful by selecting all rows from the parent table, as shown here:

mysql> TABLE parent;
+----+
| id |
+----+
| 2 |
+----+

Verify that the ON UPDATE CASCADE referential action updated the child table, like this:

mysql> TABLE child;
+------+-----------+
| id | parent_id |
+------+-----------+
1	2
2	2
3	2
+------+-----------+

To demonstrate the ON DELETE CASCADE referential action, delete records from the parent table
where parent_id = 2; this deletes all records in the parent table.

mysql> DELETE FROM parent WHERE id = 2;

35

Searching on Two Keys

Because all records in the child table are associated with parent_id = 2, the ON DELETE CASCADE
referential action removes all records from the child table, as shown here:

mysql> TABLE child;
Empty set (0.00 sec)

For more information about foreign key constraints, see FOREIGN KEY Constraints.

7.7 Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized. See Index Merge Optimization.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See UNION Clause.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index
 FROM test_table WHERE field2_index = '1';

7.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days
per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR, month INT UNSIGNED,
 day INT UNSIGNED);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To
determine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 1 | 3 |
| 2000 | 2 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination,
with automatic removal of duplicate entries.

7.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,

36

https://dev.mysql.com/doc/refman/8.3/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_or
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_and
https://dev.mysql.com/doc/refman/8.3/en/logical-operators.html#operator_or
https://dev.mysql.com/doc/refman/8.3/en/index-merge-optimization.html
https://dev.mysql.com/doc/refman/8.3/en/union.html
https://dev.mysql.com/doc/refman/8.3/en/select.html
https://dev.mysql.com/doc/refman/8.3/en/union.html
https://dev.mysql.com/doc/refman/8.3/en/select.html

Using AUTO_INCREMENT

 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
);
INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),
 ('lax'),('whale'),('ostrich');
SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers, unless
the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled. For example:

INSERT INTO animals (id,name) VALUES(0,'groundhog');

If the column is declared NOT NULL, it is also possible to assign NULL to the column to generate
sequence numbers. For example:

INSERT INTO animals (id,name) VALUES(NULL,'squirrel');

When you insert any other value into an AUTO_INCREMENT column, the column is set to that value
and the sequence is reset so that the next automatically generated value follows sequentially from the
largest column value. For example:

INSERT INTO animals (id,name) VALUES(100,'rabbit');
INSERT INTO animals (id,name) VALUES(NULL,'mouse');
SELECT * FROM animals;
+-----+-----------+
| id | name |
+-----+-----------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
7	groundhog
8	squirrel
100	rabbit
101	mouse
+-----+-----------+

Updating an existing AUTO_INCREMENT column value also resets the AUTO_INCREMENT sequence.

You can retrieve the most recent automatically generated AUTO_INCREMENT value with the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions
are connection-specific, so their return values are not affected by another connection which is also
performing inserts.

Use the smallest integer data type for the AUTO_INCREMENT column that is large enough to hold the
maximum sequence value you require. When the column reaches the upper limit of the data type, the
next attempt to generate a sequence number fails. Use the UNSIGNED attribute if possible to allow a
greater range. For example, if you use TINYINT, the maximum permissible sequence number is 127.
For TINYINT UNSIGNED, the maximum is 255. See Integer Types (Exact Value) - INTEGER, INT,
SMALLINT, TINYINT, MEDIUMINT, BIGINT for the ranges of all the integer types.

37

https://dev.mysql.com/doc/refman/8.3/en/sql-mode.html#sqlmode_no_auto_value_on_zero
https://dev.mysql.com/doc/refman/8.3/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/c-api/8.3/en/mysql-insert-id.html
https://dev.mysql.com/doc/refman/8.3/en/integer-types.html
https://dev.mysql.com/doc/refman/8.3/en/integer-types.html
https://dev.mysql.com/doc/refman/8.3/en/integer-types.html
https://dev.mysql.com/doc/refman/8.3/en/integer-types.html

InnoDB Notes

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id()
actually return the AUTO_INCREMENT key from the first of the inserted rows.
This enables multiple-row inserts to be reproduced correctly on other servers in
a replication setup.

To start with an AUTO_INCREMENT value other than 1, set that value with CREATE TABLE or ALTER
TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

InnoDB Notes

For information about AUTO_INCREMENT usage specific to InnoDB, see AUTO_INCREMENT
Handling in InnoDB.

MyISAM Notes

• For MyISAM tables, you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you
want to put data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
) ENGINE=MyISAM;
INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),
 ('bird','ostrich');
SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value
in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally
are not reused.

• If the AUTO_INCREMENT column is part of multiple indexes, MySQL generates sequence values
using the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the
animals table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would
ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a
single sequence, not a sequence per grp value.

Further Reading

More information about AUTO_INCREMENT is available here:

38

https://dev.mysql.com/doc/refman/8.3/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/c-api/8.3/en/mysql-insert-id.html
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-auto-increment-handling.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-auto-increment-handling.html
https://dev.mysql.com/doc/refman/8.3/en/aggregate-functions.html#function_max

Further Reading

• How to assign the AUTO_INCREMENT attribute to a column: CREATE TABLE Statement, and ALTER
TABLE Statement.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode: Server
SQL Modes.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Information Functions.

• Setting the AUTO_INCREMENT value to be used: Server System Variables.

• AUTO_INCREMENT Handling in InnoDB

• AUTO_INCREMENT and replication: Replication and AUTO_INCREMENT.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Server System Variables.

39

https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/sql-mode.html#sqlmode_no_auto_value_on_zero
https://dev.mysql.com/doc/refman/8.3/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.3/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.3/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.3/en/information-functions.html
https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-auto-increment-handling.html
https://dev.mysql.com/doc/refman/8.3/en/replication-features-auto-increment.html
https://dev.mysql.com/doc/refman/8.3/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.3/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html

40

Chapter 8 Using MySQL with Apache
There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following
into the Apache configuration file:

LogFormat \
 "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
 \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.

41

42

	MySQL Tutorial
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Tutorial
	Chapter 2 Connecting to and Disconnecting from the Server
	Chapter 3 Entering Queries
	Chapter 4 Creating and Using a Database
	4.1 Creating and Selecting a Database
	4.2 Creating a Table
	4.3 Loading Data into a Table
	4.4 Retrieving Information from a Table
	4.4.1 Selecting All Data
	4.4.2 Selecting Particular Rows
	4.4.3 Selecting Particular Columns
	4.4.4 Sorting Rows
	4.4.5 Date Calculations
	4.4.6 Working with NULL Values
	4.4.7 Pattern Matching
	4.4.8 Counting Rows
	4.4.9 Using More Than one Table

	Chapter 5 Getting Information About Databases and Tables
	Chapter 6 Using mysql in Batch Mode
	Chapter 7 Examples of Common Queries
	7.1 The Maximum Value for a Column
	7.2 The Row Holding the Maximum of a Certain Column
	7.3 Maximum of Column per Group
	7.4 The Rows Holding the Group-wise Maximum of a Certain Column
	7.5 Using User-Defined Variables
	7.6 Using Foreign Keys
	7.7 Searching on Two Keys
	7.8 Calculating Visits Per Day
	7.9 Using AUTO_INCREMENT

	Chapter 8 Using MySQL with Apache

