Building MySQL from Source
Abstract

This is the Building MySQL from Source extract from the MySQL 5.7 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL users.

Document generated on: 2020-04-11 (revision: 65674)
Table of Contents

Preface and Legal Notices ... v
1 Installing MySQL from Source .. 1
2 Installing MySQL Using a Standard Source Distribution 3
3 Installing MySQL Using a Development Source Tree 9
4 MySQL Source-Configuration Options .. 11
5 Dealing with Problems Compiling MySQL 35
Preface and Legal Notices

This is the Building MySQL from Source extract from the MySQL 5.7 Reference Manual.

Licensing information—MySQL 5.7. This product may include third-party software, used under license. If you are using a Commercial release of MySQL 5.7, see the MySQL 5.7 Commercial Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Commercial release. If you are using a Community release of MySQL 5.7, see the MySQL 5.7 Community Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 7.5. This product may include third-party software, used under license. If you are using a Commercial release of NDB Cluster 7.5, see the MySQL NDB Cluster 7.5 Commercial Release License Information User Manual for licensing information relating to third-party software that may be included in this Commercial release. If you are using a Community release of NDB Cluster 7.5, see the MySQL NDB Cluster 7.5 Community Release License Information User Manual for licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 7.6. If you are using a Commercial release of MySQL NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Community Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Commercial release. If you are using a Community release of MySQL NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Community Release License Information User Manual for licensing information, including licensing information relating to third-party software that may be included in this Community release.

Legal Notices

Copyright © 1997, 2020, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.
Chapter 1 Installing MySQL from Source

Building MySQL from the source code enables you to customize build parameters, compiler optimizations, and installation location. For a list of systems on which MySQL is known to run, see https://www.mysql.com/support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether Oracle produces a precompiled binary distribution for your platform and whether it works for you. We put a great deal of effort into ensuring that our binaries are built with the best possible options for optimal performance. Instructions for installing binary distributions are available in Installing MySQL on Unix/Linux Using Generic Binaries.

Warning

Building MySQL with nonstandard options may lead to reduced functionality, performance, or security.
Chapter 2 Installing MySQL Using a Standard Source Distribution

To install MySQL from a standard source distribution:

1. Verify that your system satisfies the tool requirements listed at Source Installation Prerequisites.
2. Obtain a distribution file using the instructions in How to Get MySQL.
3. Configure, build, and install the distribution using the instructions in this section.
4. Perform postinstallation procedures using the instructions in Postinstallation Setup and Testing.

MySQL uses CMake as the build framework on all platforms. The instructions given here should enable you to produce a working installation. For additional information on using CMake to build MySQL, see How to Build MySQL Server with CMake.

If you start from a source RPM, use the following command to make a binary RPM that you can install. If you do not have rpmbuild, use rpm instead.

```
shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm
```

The result is one or more binary RPM packages that you install as indicated in Installing MySQL on Linux Using RPM Packages from Oracle.

The sequence for installation from a compressed tar file or Zip archive source distribution is similar to the process for installing from a generic binary distribution (see Installing MySQL on Unix/Linux Using Generic Binaries), except that it is used on all platforms and includes steps to configure and compile the distribution. For example, with a compressed tar file source distribution on Unix, the basic installation command sequence looks like this:

```
# Preconfiguration setup
shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql
# Beginning of source-build specific instructions
shell> tar xzvf mysql-VERSION.tar.gz
shell> cd mysql-VERSION
shell> mkdir bld
shell> cd bld
shell> cmake ..
shell> make
shell> make install
# End of source-build specific instructions
# Postinstallation setup
shell> cd /usr/local/mysql
shell> mkdir mysql-files
shell> chown mysql:mysql mysql-files
shell> chmod 750 mysql-files
shell> bin/mysqld --initialize --user=mysql
shell> bin/mysql_ssl_rsa_setup
shell> bin/mysqld_safe --user=mysql &
# Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server
```

A more detailed version of the source-build specific instructions is shown following.

Note

The procedure shown here does not set up any passwords for MySQL accounts. After following the procedure, proceed to Postinstallation Setup and Testing, for postinstallation setup and testing.
Perform Preconfiguration Setup

On Unix, set up the mysql user and group that will be used to run and execute the MySQL server and own the database directory. For details, see Create a mysql User and Group. Then perform the following steps as the mysql user, except as noted.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it.

Obtain a distribution file using the instructions in How to Get MySQL.

Unpack the distribution into the current directory:

- To unpack a compressed tar file, tar can uncompress and unpack the distribution if it has z option support:

  ```shell
  tar zxvf mysql-VERSION.tar.gz
  ```

 If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack it:

  ```shell
  gunzip < mysql-VERSION.tar.gz | tar xvf -
  ```

 Alternatively, CMake can uncompress and unpack the distribution:

  ```shell
  cmake -E tar zxvf mysql-VERSION.tar.gz
  ```

- To unpack a Zip archive, use WinZip or another tool that can read .zip files.

Unpacking the distribution file creates a directory named mysql-VERSION.

Configure the Distribution

Change location into the top-level directory of the unpacked distribution:

```shell
cd mysql-VERSION
```

Build outside of the source tree to keep the tree clean. If the top-level source directory is named mysql-src under your current working directory, you can build in a directory named bld at the same level. Create the directory and go there:

```shell
mkdir bld
shell> cd bld
```

Configure the build directory. The minimum configuration command includes no options to override configuration defaults:
Configure the Distribution

```
shell> cmake ..-/mysql-src
```

The build directory needs not be outside the source tree. For example, you can build in a directory named `bld` under the top-level source tree. To do this, starting with `mysql-src` as your current working directory, create the directory `bld` and then go there:

```
shell> mkdir bld
shell> cd bld
```

Configure the build directory. The minimum configuration command includes no options to override configuration defaults:

```
shell> cmake ..
```

If you have multiple source trees at the same level (for example, to build multiple versions of MySQL), the second strategy can be advantageous. The first strategy places all build directories at the same level, which requires that you choose a unique name for each. With the second strategy, you can use the same name for the build directory within each source tree. The following instructions assume this second strategy.

On Windows, specify the development environment. For example, the following commands configure MySQL for 32-bit or 64-bit builds, respectively:

```
shell> cmake .. -G "Visual Studio 12 2013"
shell> cmake .. -G "Visual Studio 12 2013 Win64"
```

On macOS, to use the Xcode IDE:

```
shell> cmake .. -G Xcode
```

When you run `cmake`, you might want to add options to the command line. Here are some examples:

- `-DBUILD_CONFIG=mysql_release`: Configure the source with the same build options used by Oracle to produce binary distributions for official MySQL releases.

- `-DCMAKE_INSTALL_PREFIX=dir_name`: Configure the distribution for installation under a particular location.

- `-DCPACK_MONOLITHIC_INSTALL=1`: Cause `make package` to generate a single installation file rather than multiple files.

- `-DWITH_DEBUG=1`: Build the distribution with debugging support.

For a more extensive list of options, see Chapter 4, MySQL Source-Configuration Options.

To list the configuration options, use one of the following commands:

```
shell> cmake .. -L # overview
shell> cmake .. -LH # overview with help text
shell> cmake .. -LAR # all params with help text
shell> ccmake .. # interactive display
```

If CMake fails, you might need to reconfigure by running it again with different options. If you do reconfigure, take note of the following:

- If CMake is run after it has previously been run, it may use information that was gathered during its previous invocation. This information is stored in `CMakeCache.txt`. When CMake starts, it looks for that file and reads its contents if it exists, on the assumption that the information is still correct. That assumption is invalid when you reconfigure.
Build the Distribution

- Each time you run `CMake`, you must run `make` again to recompile. However, you may want to remove old object files from previous builds first because they were compiled using different configuration options.

To prevent old object files or configuration information from being used, run these commands in the build directory on Unix before re-running `CMake`:

```bash
shell> make clean
shell> rm CMakeCache.txt
```

Or, on Windows:

```bash
shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt
```

Before asking on the MySQL Community Slack, check the files in the `CMakeFiles` directory for useful information about the failure. To file a bug report, please use the instructions in How to Report Bugs or Problems.

Build the Distribution

On Unix:

```bash
shell> make
shell> make VERBOSE=1
```

The second command sets `VERBOSE` to show the commands for each compiled source.

Use `gmake` instead on systems where you are using GNU `make` and it has been installed as `gmake`.

On Windows:

```bash
shell> devenv MySQL.sln /build RelWithDebInfo
```

If you have gotten to the compilation stage, but the distribution does not build, see Chapter 5, *Dealing with Problems Compiling MySQL*, for help. If that does not solve the problem, please enter it into our bugs database using the instructions given in How to Report Bugs or Problems. If you have installed the latest versions of the required tools, and they crash trying to process our configuration files, please report that also. However, if you get a `command not found` error or a similar problem for required tools, do not report it. Instead, make sure that all the required tools are installed and that your `PATH` variable is set correctly so that your shell can find them.

Install the Distribution

On Unix:

```bash
shell> make install
```

This installs the files under the configured installation directory (by default, `/usr/local/mysql`). You might need to run the command as `root`.

To install in a specific directory, add a `DESTDIR` parameter to the command line:

```bash
shell> make install DESTDIR="/opt/mysql"
```

Alternatively, generate installation package files that you can install where you like:

```bash
shell> make package
```
Perform Postinstallation Setup

This operation produces one or more `.tar.gz` files that can be installed like generic binary distribution packages. See Installing MySQL on Unix/Linux Using Generic Binaries. If you run `CMake` with `DCPACK_MONOLITHIC_INSTALL=1`, the operation produces a single file. Otherwise, it produces multiple files.

On Windows, generate the data directory, then create a `.zip` archive installation package:

```shell
shell> devenv MySQL.sln /build RelWithDebInfo /project initial_database
shell> devenv MySQL.sln /build RelWithDebInfo /project package
```

You can install the resulting `.zip` archive where you like. See Installing MySQL on Microsoft Windows Using a noinstall ZIP Archive.

Perform Postinstallation Setup

The remainder of the installation process involves setting up the configuration file, creating the core databases, and starting the MySQL server. For instructions, see Postinstallation Setup and Testing.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords. After starting the server, you should set up passwords for them using the instructions in Postinstallation Setup and Testing.
Chapter 3 Installing MySQL Using a Development Source Tree

This section describes how to install MySQL from the latest development source code, which is hosted on GitHub. To obtain the MySQL Server source code from this repository hosting service, you can set up a local MySQL Git repository.

On GitHub, MySQL Server and other MySQL projects are found on the MySQL page. The MySQL Server project is a single repository that contains branches for several MySQL series.

MySQL officially joined GitHub in September, 2014. For more information about MySQL’s move to GitHub, refer to the announcement on the MySQL Release Engineering blog: MySQL on GitHub

- Prerequisites for Installing from Development Source
- Setting Up a MySQL Git Repository

Prerequisites for Installing from Development Source

To install MySQL from a development source tree, your system must satisfy the tool requirements listed at Source Installation Prerequisites.

Setting Up a MySQL Git Repository

To set up a MySQL Git repository on your machine, use this procedure:

1. Clone the MySQL Git repository to your machine. The following command clones the MySQL Git repository to a directory named mysql-server. The initial download will take some time to complete, depending on the speed of your connection.

```
~$ git clone https://github.com/mysql/mysql-server.git
Cloning into 'mysql-server'...
remote: Counting objects: 1035465, done.
remote: Total 1035465 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1035465/1035465), 437.48 MiB | 5.10 MiB/s, done.
Resolving deltas: 100% (855607/855607), done.
Checking connectivity... done.
Checking out files: 100% (21902/21902), done.
```

2. When the clone operation completes, the contents of your local MySQL Git repository appear similar to the following:

```
~$ cd mysql-server
~/mysql-server$ ls
BUILD            COPYING             libmysqld    regex          unittest
BUILD-CMAKE      dbug                libservices  scripts       VERSION
client           Docs                man          sql            vio
cmake            extra               mysql-test   sql-common    win
CMakeLists.txt   include             mysys        storage        zlib
cmd-line-utils   INSTALL-SOURCE      plugin       support-files
configure.cmake  libmysql          README       tests
configure       libmysqld
```

3. Use the `git branch -r` command to view the remote tracking branches for the MySQL repository.

```
~/mysql-server$ git branch -r
origin/5.5
origin/5.6
origin/5.7
origin/HEAD -> origin/5.7
```
4. To view the branches that are checked out in your local repository, issue the `git branch` command. When you cloned the MySQL Git repository, the MySQL 5.7 branch was checked out automatically. The asterisk identifies the 5.7 branch as the active branch.

```
~/mysql-server$ git branch
* 5.7
```

5. To check out a different MySQL branch, run the `git checkout` command, specifying the branch name. For example, to check out the MySQL 5.5 branch:

```
~/mysql-server$ git checkout 5.5
Branch 5.5 set up to track remote branch 5.5 from origin.
Switched to a new branch '5.5'
```

6. Run `git branch` to verify that the MySQL 5.5 branch is present. MySQL 5.5, which is the last branch you checked out, is marked by an asterisk indicating that it is the active branch.

```
~/mysql-server$ git branch
* 5.5
  5.7
```

7. Use the `git checkout` command to switch between branches. For example:

```
~/mysql-server$ git checkout 5.7
```

8. To obtain changes made after your initial setup of the MySQL Git repository, switch to the branch you want to update and issue the `git pull` command:

```
~/mysql-server$ git checkout 5.7
~/mysql-server$ git pull
```

To examine the commit history, use the `git log` option:

```
~/mysql-server$ git log
```

You can also browse commit history and source code on the GitHub MySQL site.

If you see changes or code that you have a question about, ask on the MySQL Community Slack. For information about contributing a patch, see Contributing to MySQL Server.

9. After you have cloned the MySQL Git repository and have checked out the branch you want to build, you can build MySQL Server from the source code. Instructions are provided in Chapter 2, Installing MySQL Using a Standard Source Distribution, except that you skip the part about obtaining and unpacking the distribution.

Be careful about installing a build from a distribution source tree on a production machine. The installation command may overwrite your live release installation. If you already have MySQL installed and do not want to overwrite it, run CMake with values for the CMAKE_INSTALL_PREFIX, MYSQL_TCP_PORT, and MYSQL_UNIX_ADDR options different from those used by your production server. For additional information about preventing multiple servers from interfering with each other, see Running Multiple MySQL Instances on One Machine.

Play hard with your new installation. For example, try to make new features crash. Start by running `make test`. See The MySQL Test Suite.
Chapter 4 MySQL Source-Configuration Options

The **CMake** program provides a great deal of control over how you configure a MySQL source distribution. Typically, you do this using options on the **CMake** command line. For information about options supported by **CMake**, run either of these commands in the top-level source directory:

```
cmake . -LH
cmake .
```

You can also affect **CMake** using certain environment variables. See [Environment Variables](#).

For boolean options, the value may be specified as 1 or **ON** to enable the option, or as 0 or **OFF** to disable the option.

Many options configure compile-time defaults that can be overridden at server startup. For example, the **CMAKE_INSTALL_PREFIX**, **MYSQL_TCP_PORT**, and **MYSQL_UNIX_ADDR** options that configure the default installation base directory location, TCP/IP port number, and Unix socket file can be changed at server startup with the **--basedir**, **--port**, and **--socket** options for **mysqld**. Where applicable, configuration option descriptions indicate the corresponding **mysqld** startup option.

The following sections provide more information about **CMake** options.

- **CMake Option Reference**
- **General Options**
- **Installation Layout Options**
- **Storage Engine Options**
- **Feature Options**
- **Compiler Flags**
- **CMake Options for Compiling NDB Cluster**

CMake Option Reference

The following table shows the available **CMake** options. In the **Default** column, **PREFIX** stands for the value of the **CMAKE_INSTALL_PREFIX** option, which specifies the installation base directory. This value is used as the parent location for several of the installation subdirectories.

<table>
<thead>
<tr>
<th>Formats</th>
<th>Description</th>
<th>Default</th>
<th>Introduced</th>
<th>Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUILD_CONFIG</td>
<td>Use same build options as official releases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMAKE_BUILD_TYPE</td>
<td>Type of build to produce</td>
<td>RelWithDebInfo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMAKE_CXX_FLAGS</td>
<td>Flags for C++ Compiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMAKE_C_FLAGS</td>
<td>Flags for C Compiler</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMAKE_INSTALL_PREFIX</td>
<td>Installation base directory</td>
<td>/usr/local/mysql</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPILEDATION_COMMENT</td>
<td>Comment about compilation environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPACK_MONOLITHIC_INSTALL</td>
<td>Whether package build produces single file</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Options

- **CMAKE_BUILD_TYPE**: Type of build to produce. Default: **RelWithDebInfo**
- **CMAKE_CXX_FLAGS**: Flags for C++ Compiler.
- **CMAKE_C_FLAGS**: Flags for C Compiler.
- **CMAKE_INSTALL_PREFIX**: Installation base directory. Default: **/usr/local/mysql**
- **COMPILEDATION_COMMENT**: Comment about compilation environment.
- **CPACK_MONOLITHIC_INSTALL**: Whether package build produces single file. Default: **OFF**
<table>
<thead>
<tr>
<th>Formats</th>
<th>Description</th>
<th>Default</th>
<th>Introduced</th>
<th>Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT_CHARSET</td>
<td>The default server character set</td>
<td>latin1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEFAULT_COLLATION</td>
<td>The default server collation</td>
<td>latin1_swedish_ci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_COND</td>
<td>Exclude Performance Schema condition instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_FILE</td>
<td>Exclude Performance Schema file instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_IDLE</td>
<td>Exclude Performance Schema idle instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_MEMORY</td>
<td>Exclude Performance Schema memory instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_METADATA</td>
<td>Exclude Performance Schema metadata instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_MUTEX</td>
<td>Exclude Performance Schema mutex instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_PS</td>
<td>Exclude the performance schema prepared statements</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_RWLOCK</td>
<td>Exclude Performance Schema rwlock instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_SOCKET</td>
<td>Exclude Performance Schema socket instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_SP</td>
<td>Exclude Performance Schema stored program instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_STAGE</td>
<td>Exclude Performance Schema stage instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_STATEMENT</td>
<td>Exclude Performance Schema statement instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_STATEMENT_DIGEST</td>
<td>Exclude Performance Schema statements_digest instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_TABLE</td>
<td>Exclude Performance Schema table instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_THREAD</td>
<td>Exclude the performance schema thread instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DISABLE_PSI_TRANSACTION</td>
<td>Exclude the performance schema transaction instrumentation</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>DOWNLOAD_BOOST</td>
<td>Whether to download the Boost library</td>
<td>OFF</td>
<td>5.7.5</td>
<td></td>
</tr>
<tr>
<td>DOWNLOAD_BOOST_TIMEOUT</td>
<td>Timeout in seconds for downloading the Boost library</td>
<td>600</td>
<td>5.7.6</td>
<td></td>
</tr>
<tr>
<td>ENABLED_LOCAL_INFILE</td>
<td>Whether to enable LOCAL for LOAD DATA</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
<th>Default</th>
<th>Introduced</th>
<th>Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENABLED_PROFILING</td>
<td>Whether to enable query profiling code</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENABLE_DEBUG_SYNC</td>
<td>Whether to enable Debug Sync support</td>
<td>ON</td>
<td>5.7.1</td>
<td></td>
</tr>
<tr>
<td>ENABLE.DOWNLOADS</td>
<td>Whether to download optional files</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENABLE_DTRACE</td>
<td>Whether to include DTrace support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENABLE_GCOV</td>
<td>Whether to include gcov support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENABLE_GPROF</td>
<td>Enable gprof (optimized Linux builds only)</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FORCE_UNSUPPORTED_COMPILE</td>
<td>Whether to permit unsupported compiler</td>
<td>OFF</td>
<td>5.7.5</td>
<td></td>
</tr>
<tr>
<td>IGNORE_AIO_CHECK</td>
<td>With <code>-DBUILD_CONFIG=mysql_release</code>, ignore libaio check</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INNODB_PAGE_ATOMIC_REF_COUNT</td>
<td>Enable or disable atomic page reference counting</td>
<td>ON</td>
<td>5.7.4</td>
<td>5.7.5</td>
</tr>
<tr>
<td>INSTALL_BINDIR</td>
<td>User executables directory</td>
<td>PREFIX/bin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_DOCDIR</td>
<td>Documentation directory</td>
<td>PREFIX/docs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_DOCREADMEDIR</td>
<td>README file directory</td>
<td>PREFIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_INCLUDEDIR</td>
<td>Header file directory</td>
<td>PREFIX/include</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_INFODIR</td>
<td>Info file directory</td>
<td>PREFIX/docs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_LAYOUT</td>
<td>Select predefined installation layout</td>
<td>STANDALONE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_LIBDIR</td>
<td>Library file directory</td>
<td>PREFIX/lib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_MANDIR</td>
<td>Manual page directory</td>
<td>PREFIX/man</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_MYSQLKEYRINGDIR</td>
<td>Directory for keyring_file plugin data file</td>
<td>platform specific</td>
<td>5.7.11</td>
<td></td>
</tr>
<tr>
<td>INSTALLMYSQLSHAREDDIR</td>
<td>Shared data directory</td>
<td>PREFIX/share</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_MYSQLTESTDIR</td>
<td>mysql-test directory</td>
<td>PREFIX/mysql-test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_PKGCONFIGDIR</td>
<td>Directory for mysqlclient.pc pkg-config file</td>
<td>INSTALL_LIBDIR/pkgconfig</td>
<td>5.7.9</td>
<td></td>
</tr>
<tr>
<td>INSTALL_PLUGINDIR</td>
<td>Plugin directory</td>
<td>PREFIX/lib/plugin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_SBINDIR</td>
<td>Server executable directory</td>
<td>PREFIX/bin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_SCRIPTDIR</td>
<td>Scripts directory</td>
<td>PREFIX/scripts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_SECURE_FILE_PRIVDIR</td>
<td>secure_file_priv default value</td>
<td>platform specific</td>
<td>5.7.6</td>
<td></td>
</tr>
<tr>
<td>Formats</td>
<td>Description</td>
<td>Default</td>
<td>Introduced</td>
<td>Removed</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR</td>
<td>secure_file_priv default value for libmysqld</td>
<td></td>
<td>5.7.8</td>
<td></td>
</tr>
<tr>
<td>INSTALL_SHAREDIR</td>
<td>aclocal/mysql.m4 installation directory</td>
<td>PREFIX/share</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALL_SQLBENCHDIR</td>
<td>sql-bench directory</td>
<td>PREFIX</td>
<td>5.7.8</td>
<td></td>
</tr>
<tr>
<td>INSTALL_SUPPORTFILESDIR</td>
<td>Extra support files directory</td>
<td>PREFIX/support-files</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX_INDEXES</td>
<td>Maximum indexes per table</td>
<td>64</td>
<td>5.7.1</td>
<td></td>
</tr>
<tr>
<td>MUTEX_TYPE</td>
<td>InnoDB mutex type</td>
<td>event</td>
<td>5.7.2</td>
<td></td>
</tr>
<tr>
<td>MYSQL_TCP_PORT</td>
<td>TCP/IP port number used by X Plugin</td>
<td>33060</td>
<td>5.7.17</td>
<td></td>
</tr>
<tr>
<td>MYSQL_UNIX_ADDR</td>
<td>Unix socket file used by X Plugin</td>
<td>/tmp/mysqlx.sock</td>
<td>5.7.15</td>
<td></td>
</tr>
<tr>
<td>MYSQL_DATADIR</td>
<td>Data directory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYSQL_MAINTAINER_MODE</td>
<td>Whether to enable MySQL maintainer-specific development environment</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYSQL_PROJECT_NAME</td>
<td>Windows/OS X project name</td>
<td>MySQL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYSQL_TCP_PORT</td>
<td>TCP/IP port number</td>
<td>3306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYSQL_UNIX_ADDR</td>
<td>Unix socket file</td>
<td>/tmp/mysql.sock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODBC_INCLUDES</td>
<td>ODBC includes directory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODBC_LIB_DIR</td>
<td>ODBC library directory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPTIMIZER_TRACE</td>
<td>Whether to support optimizer tracing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPRODUCIBLE_BUILD</td>
<td>Take extra care to create a build result independent of build location and time</td>
<td></td>
<td>5.7.19</td>
<td></td>
</tr>
<tr>
<td>SUNPRO_CXX_LIBRARY</td>
<td>Client link library on Solaris 10+</td>
<td></td>
<td>5.7.5</td>
<td></td>
</tr>
<tr>
<td>SYSCONFDIR</td>
<td>Option file directory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYSTEMD_PID_DIR</td>
<td>Directory for PID file under systemd</td>
<td>/var/run/mysqld</td>
<td>5.7.6</td>
<td></td>
</tr>
<tr>
<td>SYSTEMD_SERVICE_NAME</td>
<td>Name of MySQL service under systemd</td>
<td>mysqlqd</td>
<td>5.7.6</td>
<td></td>
</tr>
<tr>
<td>TMPDIR</td>
<td>tmpdir default value</td>
<td></td>
<td>5.7.4</td>
<td></td>
</tr>
<tr>
<td>WIN_DEBUG_NO_INLINE</td>
<td>Whether to disable function inlining</td>
<td>OFF</td>
<td>5.7.6</td>
<td></td>
</tr>
<tr>
<td>WITHOUT_xxx_STORAGE_ENGINE</td>
<td>Exclude storage engine xxx from build</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_ASAN</td>
<td>Enable AddressSanitizer</td>
<td>OFF</td>
<td>5.7.3</td>
<td></td>
</tr>
<tr>
<td>Formats</td>
<td>Description</td>
<td>Default</td>
<td>Introduced</td>
<td>Removed</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>WITH_ASAN_SCOPE</td>
<td>Enable AddressSanitizer - fsanitize-address-use-after-scope Clang flag</td>
<td>OFF</td>
<td>5.7.21</td>
<td></td>
</tr>
<tr>
<td>WITH_AUTHENTICATION_LDAP</td>
<td>Whether to report error if LDAP authentication plugins cannot be built</td>
<td>OFF</td>
<td>5.7.19</td>
<td></td>
</tr>
<tr>
<td>WITH_AUTHENTICATION_PAM</td>
<td>Build PAM authentication plugin</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_AWS_SDK</td>
<td>Location of Amazon Web Services software development kit</td>
<td>OFF</td>
<td>5.7.19</td>
<td></td>
</tr>
<tr>
<td>WITH_BOOST</td>
<td>The location of the Boost library sources</td>
<td></td>
<td>5.7.5</td>
<td></td>
</tr>
<tr>
<td>WITH_CLIENT_PROTOCOL_TRACING</td>
<td>Build client-side protocol tracing framework</td>
<td>ON</td>
<td>5.7.2</td>
<td></td>
</tr>
<tr>
<td>WITH_CURL</td>
<td>Location of curl library</td>
<td>OFF</td>
<td>5.7.19</td>
<td></td>
</tr>
<tr>
<td>WITH_DEBUG</td>
<td>Whether to include debugging support</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_DEFAULT_COMPILER_OPTIONS</td>
<td>Whether to use default compiler options</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_DEFAULT_FEATURE_SET</td>
<td>Whether to use default feature set</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_EDITLINE</td>
<td>Which libedit/editline library to use</td>
<td>bundled</td>
<td>5.7.2</td>
<td></td>
</tr>
<tr>
<td>WITH_EMBEDDED_SERVER</td>
<td>Whether to build embedded server</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_EMBEDDED_SHARED_LIBRARY</td>
<td>Whether to build a shared embedded server library</td>
<td>OFF</td>
<td>5.7.4</td>
<td></td>
</tr>
<tr>
<td>WITH_EXTRA_CHARSET</td>
<td>Which extra character sets to include</td>
<td>all</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_GMOCK</td>
<td>Path to googlemock distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_INNODB_EXTRA_DEBUG</td>
<td>Whether to include extra debugging support for InnoDB</td>
<td>OFF</td>
<td>5.7.2</td>
<td></td>
</tr>
<tr>
<td>WITH_INNODB_MEMCACHED</td>
<td>Whether to generate memcached shared libraries</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_KEYRING_TEST</td>
<td>Build the keyring test program</td>
<td>OFF</td>
<td>5.7.11</td>
<td></td>
</tr>
<tr>
<td>WITH_LDAP</td>
<td>Internal use only</td>
<td></td>
<td>5.7.29</td>
<td></td>
</tr>
<tr>
<td>WITH_LIBEVENT</td>
<td>Which libevent library to use</td>
<td>bundled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_LIBWRAP</td>
<td>Whether to include libwrap (TCP wrappers) support</td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WITH_LZ4</td>
<td>Type of LZ4 library support</td>
<td>bundled</td>
<td>5.7.14</td>
<td></td>
</tr>
<tr>
<td>WITH_MECAB</td>
<td>Compiles MeCab</td>
<td></td>
<td>5.7.6</td>
<td></td>
</tr>
</tbody>
</table>
Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
<th>Default</th>
<th>Introduced/Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>WITH_MSAN</td>
<td>Enable MemorySanitizer</td>
<td>OFF</td>
<td>5.7.4</td>
</tr>
<tr>
<td>WITH_MSCRT_DEBUG</td>
<td>Enable Visual Studio CRT memory leak tracing</td>
<td>OFF</td>
<td>5.7.6</td>
</tr>
<tr>
<td>WITH_NDB_CLUSTER</td>
<td>Build the NDB storage engine; alias for WITH_NDBCLUSTER_STORAGE_ENGINE</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>WITH_NDBCLUSTER_STORAGE_ENGINE</td>
<td>Build the NDB storage engine</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>WITH_NDB_TEST</td>
<td>Include NDB API test programs.</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>WITH_NUMA</td>
<td>Set NUMA memory allocation policy</td>
<td></td>
<td>5.7.17</td>
</tr>
<tr>
<td>WITH_PROTODBF</td>
<td>Which Protocol Buffers package to use</td>
<td>bundled</td>
<td>5.7.12</td>
</tr>
<tr>
<td>WITH_RAPID</td>
<td>Whether to build rapid development cycle plugins</td>
<td>ON</td>
<td>5.7.12</td>
</tr>
<tr>
<td>WITH_SASL</td>
<td>Internal use only</td>
<td></td>
<td>5.7.29</td>
</tr>
<tr>
<td>WITH_SSL</td>
<td>Type of SSL support</td>
<td>system</td>
<td></td>
</tr>
<tr>
<td>WITH_SYSTEMD</td>
<td>Enable installation of systemd support files</td>
<td>OFF</td>
<td>5.7.6</td>
</tr>
<tr>
<td>WITH_TEST_TRACE_PLUGIN</td>
<td>Build test protocol trace plugin</td>
<td>OFF</td>
<td>5.7.2</td>
</tr>
<tr>
<td>WITH_UBSAN</td>
<td>Enable Undefined Behavior Sanitizer</td>
<td>OFF</td>
<td>5.7.6</td>
</tr>
<tr>
<td>WITH_UNIT_TESTS</td>
<td>Compile MySQL with unit tests</td>
<td>ON</td>
<td></td>
</tr>
<tr>
<td>WITH_UNIXODBC</td>
<td>Enable unixODBC support</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>WITH_VALGRIND</td>
<td>Whether to compile in Valgrind header files</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>WITH_ZLIB</td>
<td>Type of zilb support</td>
<td>bundled</td>
<td></td>
</tr>
<tr>
<td>WITH_xxx_STORAGE_ENGINE</td>
<td>Compile storage engine xxx statically into server</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Options

- `-DBUILD_CONFIG=mysql_release`

 This option configures a source distribution with the same build options used by Oracle to produce binary distributions for official MySQL releases.

- `-DCMAKE_BUILD_TYPE=type`

 The type of build to produce:

 - `RelWithDebInfo`: Enable optimizations and generate debugging information. This is the default MySQL build type.
Installation Layout Options

• **Debug**: Disable optimizations and generate debugging information. This build type is also used if the `WITH_DEBUG` option is enabled. That is, `-DWITH_DEBUG=1` has the same effect as `-DCMAKE_BUILD_TYPE=Debug`.

• `-DCPACK_MONOLITHIC_INSTALL=bool`

 This option affects whether the `make package` operation produces multiple installation package files or a single file. If disabled, the operation produces multiple installation package files, which may be useful if you want to install only a subset of a full MySQL installation. If enabled, it produces a single file for installing everything.

Installation Layout Options

The `CMAKE_INSTALL_PREFIX` option indicates the base installation directory. Other options with names of the form `INSTALL_xxx` that indicate component locations are interpreted relative to the prefix and their values are relative pathnames. Their values should not include the prefix.

• `-DCMAKE_INSTALL_PREFIX=dir_name`

 The installation base directory.

 This value can be set at server startup with the `--basedir` option.

• `-DINSTALL_BINDIR=dir_name`

 Where to install user programs.

• `-DINSTALL_DOCDIR=dir_name`

 Where to install documentation.

• `-DINSTALL_DOCREADMEDIR=dir_name`

 Where to install README files.

• `-DINSTALL_INCLUDEDIR=dir_name`

 Where to install header files.

• `-DINSTALL_INFODIR=dir_name`

 Where to install Info files.

• `-DINSTALL_LAYOUT=name`

 Select a predefined installation layout:

 • **STANDALONE**: Same layout as used for `.tar.gz` and `.zip` packages. This is the default.

 • **RPM**: Layout similar to RPM packages.

 • **SVR4**: Solaris package layout.

 • **DEB**: DEB package layout (experimental).

 You can select a predefined layout but modify individual component installation locations by specifying other options. For example:
cmake -DINSTALL_LAYOUT=SVR4 -DMYSQL_DATADIR=/var/mysql/data

The **INSTALL_LAYOUT** value determines the default value of the **secure_file_priv**, **keyring_encrypted_file_data**, and **keyring_file_data** system variables. See the descriptions of those variables in **Server System Variables**, and **Keyring System Variables**.

- **-DINSTALL_LIBDIR=dir_name**
 Where to install library files.

- **-DINSTALL_MANDIR=dir_name**
 Where to install manual pages.

- **-DINSTALL_MYSQLKEYRINGDIR=dir_path**
 The default directory to use as the location of the **keyring_file** plugin data file. The default value is platform specific and depends on the value of the **INSTALL_LAYOUT** CMake option; see the description of the **keyring_file_data** system variable in **Server System Variables**.

 This option was added in MySQL 5.7.11.

- **-DINSTALL_MYSQLSHAREDIR=dir_name**
 Where to install shared data files.

- **-DINSTALL_MYSQLTESTDIR=dir_name**
 Where to install the **mysql-test** directory. To suppress installation of this directory, explicitly set the option to the empty value (**-DINSTALL_MYSQLTESTDIR=**).

- **-DINSTALL_PKGCONFIGDIR=dir_name**
 The directory in which to install the **mysqlclient.pc** file for use by **pkg-config**. The default value is **INSTALL_LIBDIR/pkgconfig**, unless **INSTALL_LIBDIR** ends with **/mysql**, in which case that is removed first.

- **-DINSTALL_PLUGINDIR=dir_name**
 The location of the plugin directory.

 This value can be set at server startup with the **--plugin_dir** option.

- **-DINSTALL_SBINDIR=dir_name**
 Where to install the **mysqld** server.

- **-DINSTALL_SCRIPTDIR=dir_name**
 Where to install **mysql_install_db**.

- **-DINSTALL_SECURE_FILE_PRIVDIR=dir_name**
 The default value for the **secure_file_priv** system variable. The default value is platform specific and depends on the value of the **INSTALL_LAYOUT** CMake option; see the description of the **secure_file_priv** system variable in **Server System Variables**.

 To set the value for the **libmysql** embedded server, use **INSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR**.
Installation Layout Options

• `-DINSTALL_SECURE_FILE_PRIV_EMBEDDEDDIR=dir_name`

The default value for the `secure_file_priv` system variable, for the `libmysqld` embedded server.

Note

The `libmysqld` embedded server library is deprecated as of MySQL 5.7.19 and will be removed in MySQL 8.0.

• `-DINSTALL_SHAREDIR=dir_name`

Where to install `aclocal/mysql.m4`.

• `-DINSTALL_SUPPORTFILES_DIR=dir_name`

Where to install extra support files.

• `-DMYSQL_DATADIR=dir_name`

The location of the MySQL data directory.

This value can be set at server startup with the `--datadir` option.

• `-DODBC_INCLUDES=dir_name`

The location of the ODBC includes directory, and may be used while configuring Connector/ODBC.

• `-DODBC_LIB_DIR=dir_name`

The location of the ODBC library directory, and may be used while configuring Connector/ODBC.

• `-DSYSCONFDIR=dir_name`

The default `my.cnf` option file directory.

This location cannot be set at server startup, but you can start the server with a given option file using the `--defaults-file=file_name` option, where `file_name` is the full path name to the file.

• `-DSYSTEMD_PID_DIR=dir_name`

The name of the directory in which to create the PID file when MySQL is managed by systemd. The default is `/var/run/mysqld`; this might be changed implicitly according to the `INSTALL_LAYOUT` value.

This option is ignored unless `WITH_SYSTEMD` is enabled.

• `-DSYSTEMD_SERVICE_NAME=name`

The name of the MySQL service to use when MySQL is managed by systemd. The default is `mysqld`; this might be changed implicitly according to the `INSTALL_LAYOUT` value.

This option is ignored unless `WITH_SYSTEMD` is enabled.

• `-DTMPDIR=dir_name`

The default location to use for the `tmpdir` system variable. If unspecified, the value defaults to `P_tmpdir` in `<stdio.h>`.
Storage Engine Options

Storage engines are built as plugins. You can build a plugin as a static module (compiled into the server) or a dynamic module (built as a dynamic library that must be installed into the server using the `INSTALL PLUGIN` statement or the `--plugin-load` option before it can be used). Some plugins might not support static or dynamic building.

The InnoDB, MyISAM, MERGE, MEMORY, and CSV engines are mandatory (always compiled into the server) and need not be installed explicitly.

To compile a storage engine statically into the server, use `-DWITH_engine_STORAGE_ENGINE=1`. Some permissible `engine` values are ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED, NDB or NDBCLUSTER (NDB), and PARTITION (partitioning support). Examples:

```bash
-DWITH_ARCHIVE_STORAGE_ENGINE=1
-DWITH_BLACKHOLE_STORAGE_ENGINE=1
```

Note

`WITH_NDBCLUSTER_STORAGE_ENGINE` is supported only when building NDB Cluster using the NDB Cluster sources. It cannot be used to enable clustering support in other MySQL source trees or distributions. In NDB Cluster source distributions, it is enabled by default. See Building NDB Cluster from Source on Linux, and Compiling and Installing NDB Cluster from Source on Windows, for more information.

Note

It is not possible to compile without Performance Schema support. If it is desired to compile without particular types of instrumentation, that can be done with the following CMake options:

```bash
DISABLE_PSI_COND
DISABLE_PSI_FILE
DISABLE_PSI_IDLE
DISABLE_PSI_MEMORY
DISABLE_PSI_METADATA
DISABLE_PSI_MUTEX
DISABLE_PSI_PS
DISABLE_PSI_RWLOCK
DISABLE_PSI_SOCKET
DISABLE_PSI_SP
DISABLE_PSI_STAGE
DISABLE_PSI_STATEMENT
DISABLE_PSI_STATEMENT_DIGEST
DISABLE_PSI_TABLE
DISABLE_PSI_THREAD
DISABLE_PSI_TRANSACTION
```

For example, to compile without mutex instrumentation, configure MySQL using the `-DDISABLE_PSI_MUTEX=1` option.

To exclude a storage engine from the build, use `-DWITH_engine_STORAGE_ENGINE=0`. Examples:

```bash
-DWITH_EXAMPLE_STORAGE_ENGINE=0
-DWITH_FEDERATED_STORAGE_ENGINE=0
-DWITH_PARTITION_STORAGE_ENGINE=0
```

It is also possible to exclude a storage engine from the build using `-DWITHOUT_engine_STORAGE_ENGINE=1` (but `-DWITH_engine_STORAGE_ENGINE=0` is preferred). Examples:
Feature Options

-DCOMPILATION_COMMENT=string

A descriptive comment about the compilation environment.

-DDEFAULT_CHARSET=charset_name

The server character set. By default, MySQL uses the latin1 (cp1252 West European) character set. charset_name may be one of binary, armSCII8, ascii, big5, cp1250, cp1251, cp1256, cp1257, cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8, greek, hebrew, hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, Latin7, maccE, macroman, sjis, swe7, tis620, ucs2, ujis, utf8, utf8mb4, utf16, utf16le, utf32. The permissible character sets are listed in the cmake/character_sets.cmake file as the value of CHARSETS_AVAILABLE.

This value can be set at server startup with the --character_set_server option.

-DDEFAULT_COLLATION=collation_name

The server collation. By default, MySQL uses latin1_swedish_ci. Use the SHOW COLLATION statement to determine which collations are available for each character set.

This value can be set at server startup with the --collation_server option.

-DDISABLE_PSI_COND=bool

Whether to exclude the Performance Schema condition instrumentation. The default is OFF (include).

-DDISABLE_PSI_FILE=bool

Whether to exclude the Performance Schema file instrumentation. The default is OFF (include).

-DDISABLE_PSI_IDLE=bool

Whether to exclude the Performance Schema idle instrumentation. The default is OFF (include).

-DDISABLE_PSI_MEMORY=bool

Whether to exclude the Performance Schema memory instrumentation. The default is OFF (include).

-DDISABLE_PSI_METADATA=bool

Whether to exclude the Performance Schema metadata instrumentation. The default is OFF (include).

-DDISABLE_PSI_MUTEX=bool

Whether to exclude the Performance Schema mutex instrumentation. The default is OFF (include).

-DDISABLE_PSI_RWLOCK=bool

Whether to exclude the Performance Schema mutex instrumentation. The default is OFF (include).
Feature Options

Whether to exclude the Performance Schema rwlock instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_SOCKET=bool`

Whether to exclude the Performance Schema socket instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_SP=bool`

Whether to exclude the Performance Schema stored program instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_STAGE=bool`

Whether to exclude the Performance Schema stage instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_STATEMENT=bool`

Whether to exclude the Performance Schema statement instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_STATEMENT_DIGEST=bool`

Whether to exclude the Performance Schema statement_digest instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_TABLE=bool`

Whether to exclude the Performance Schema table instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_PS=bool`

Exclude the performance schema prepared statements instances instrumentation. The default is OFF (include).

• `-DDISABLE_PSI_THREAD=bool`

Exclude the performance schema thread instrumentation. The default is OFF (include).

Only disable threads when building without any instrumentation, because other instrumentations have a dependency on threads.

• `-DDISABLE_PSI_TRANSACTION=bool`

Exclude the performance schema transaction instrumentation. The default is OFF (include).

• `-DDOWNLOAD_BOOST=bool`

Whether to download the Boost library. The default is OFF.

See the WITH_BOOST option for additional discussion about using Boost.

• `-DDOWNLOAD_BOOST_TIMEOUT=seconds`

The timeout in seconds for downloading the Boost library. The default is 600 seconds.

See the WITH_BOOST option for additional discussion about using Boost.
Feature Options

•
 -DENABLE_DOWNLOADS=bool

Whether to download optional files. For example, with this option enabled, CMake downloads the Google Test distribution that is used by the test suite to run unit tests.

•
 -DENABLE_DTRACE=bool

Whether to include support for DTrace probes. For information about DTrace, see Tracing mysqld Using DTrace

This option is deprecated because support for DTrace is deprecated in MySQL 5.7 and is removed in MySQL 8.0.

•
 -DENABLE_GCOV=bool

Whether to include gcov support (Linux only).

•
 -DENABLE_GPROF=bool

Whether to enable gprof (optimized Linux builds only).

•
 -DENABLED_LOCAL_INFILE=bool

This option controls the compiled-in default LOCAL capability for the MySQL client library. Clients that make no explicit arrangements therefore have LOCAL capability disabled or enabled according to the ENABLED_LOCAL_INFILE setting specified at MySQL build time.

By default, the client library in MySQL binary distributions is compiled with ENABLED_LOCAL_INFILE enabled. If you compile MySQL from source, configure it with ENABLED_LOCAL_INFILE disabled or enabled based on whether clients that make no explicit arrangements should have LOCAL capability disabled or enabled, respectively.

ENABLED_LOCAL_INFILE controls the default for client-side LOCAL capability. For the server, the local_infile system variable controls server-side LOCAL capability. To explicitly cause the server to refuse or permit LOAD DATA LOCAL statements (regardless of how client programs and libraries are configured at build time or runtime), start mysqld with local_infile disabled or enabled, respectively. local_infile can also be set at runtime. See Security Considerations for LOAD DATA LOCAL.

•
 -DENABLED_PROFILING=bool

Whether to enable query profiling code (for the SHOW PROFILE and SHOW PROFILES statements).

•
 -DFORCE_UNSUPPORTED_COMPILER=bool

By default, CMake checks for minimum versions of supported compilers: Visual Studio 2013 (Windows); GCC 4.4 or Clang 3.3 (Linux); Developer Studio 12.5 (Solaris server); Developer Studio 12.2 or GCC 4.4 (Solaris client library); Clang 3.3 (macOS), Clang 3.3 (FreeBSD). To disable this check, use -DFORCE_UNSUPPORTED_COMPILER=ON.

•
 -DIGNORE_AIO_CHECK=bool

If the -DBUILD_CONFIG=mysql_release option is given on Linux, the libaio library must be linked in by default. If you do not have libaio or do not want to install it, you can suppress the check for it by specifying -DIGNORE_AIO_CHECK=1.
Feature Options

- **-D**MAX_INDEXES=\(num\)**

The maximum number of indexes per table. The default is 64. The maximum is 255. Values smaller than 64 are ignored and the default of 64 is used.

- **-D**MYSQL_MAINTAINER_MODE=bool

 Whether to enable a MySQL maintainer-specific development environment. If enabled, this option causes compiler warnings to become errors.

- **-D**MUTEX_TYPE=type

 The mutex type used by InnoDB. Options include:

 - `event`: Use event mutexes. This is the default value and the original InnoDB mutex implementation.
 - `sys`: Use POSIX mutexes on UNIX systems. Use `CRITICAL_SECTION` objects on Windows, if available.
 - `futex`: Use Linux futexes instead of condition variables to schedule waiting threads.

- **-D**MYSQLX_TCP_PORT=port_num

 The port number on which X Plugin listens for TCP/IP connections. The default is 33060.

 This value can be set at server startup with the `mysqlx_port` system variable.

- **-D**MYSQLX_UNIX_ADDR=file_name

 The Unix socket file path on which the server listens for X Plugin socket connections. This must be an absolute path name. The default is `/tmp/mysqlx.sock`.

 This value can be set at server startup with the `mysqlx_port` system variable.

- **-D**MYSQL_PROJECT_NAME=name

 For Windows or macOS, the project name to incorporate into the project file name.

- **-D**MYSQL_TCP_PORT=port_num

 The port number on which the server listens for TCP/IP connections. The default is 3306.

 This value can be set at server startup with the `--port` option.

- **-D**MYSQL_UNIX_ADDR=file_name

 The Unix socket file path on which the server listens for socket connections. This must be an absolute path name. The default is `/tmp/mysql.sock`.

 This value can be set at server startup with the `--socket` option.

- **-D**OPTIMIZER_TRACE=bool

 Whether to support optimizer tracing. See *MySQL Internals: Tracing the Optimizer*.

- **-D**REPRODUCIBLE_BUILD=bool

 For builds on Linux systems, this option controls whether to take extra care to create a build result independent of build location and time.
This option was added in MySQL 5.7.19.

- **-DWIN_DEBUG_NO_INLINE=bool**

Whether to disable function inlining on Windows. The default is off (inlining enabled).

- **-DWITH_ASAN=bool**

Whether to enable the AddressSanitizer, for compilers that support it. The default is off.

- **-DWITH_ASAN_SCOPE=bool**

Whether to enable the AddressSanitizer `-fsanitize-address-use-after-scope` Clang flag for use-after-scope detection. The default is off. To use this option, `-DWITH_ASAN` must also be enabled.

- **-DWITH_AUTHENTICATION_LDAP=bool**

Whether to report an error if the LDAP authentication plugins cannot be built:

- If this option is disabled (the default), the LDAP plugins are built if the required header files and libraries are found. If they are not, `CMake` displays a note about it.

- If this option is enabled, a failure to find the required header file and libraries causes `CMake` to produce an error, preventing the server from being built.

For information about LDAP authentication, see [LDAP Pluggable Authentication](#). This option was added in MySQL 5.7.19.

- **-DWITH_AUTHENTICATION_PAM=bool**

Whether to build the PAM authentication plugin, for source trees that include this plugin. (See [PAM Pluggable Authentication](#).) If this option is specified and the plugin cannot be compiled, the build fails.

- **-DWITH_AWS_SDK=path_name**

The location of the Amazon Web Services software development kit.

This option was added in MySQL 5.7.19.
• \texttt{-DWITH_BOOST=\textit{path_name}}

The Boost library is required to build MySQL. These \texttt{CMake} options enable control over the library source location, and whether to download it automatically:

• \texttt{-DWITH_BOOST=\textit{path_name}} specifies the Boost library directory location. It is also possible to specify the Boost location by setting the \texttt{BOOST_ROOT} or \texttt{WITH_BOOST} environment variable.

As of MySQL 5.7.11, \texttt{-DWITH_BOOST=system} is permitted and indicates that the correct version of Boost is installed on the compilation host in the standard location. In this case, the installed version of Boost is used rather than any version included with a MySQL source distribution.

• \texttt{-DDOWNLOAD_BOOST=\textit{bool}} specifies whether to download the Boost source if it is not present in the specified location. The default is \texttt{OFF}.

• \texttt{-DDOWNLOAD_BOOST_TIMEOUT=\textit{seconds}} the timeout in seconds for downloading the Boost library. The default is 600 seconds.

For example, if you normally build MySQL placing the object output in the \texttt{bld} subdirectory of your MySQL source tree, you can build with Boost like this:

```
mkdir bld
cd bld
cmake .. -DDOWNLOAD\_BOOST=ON -DWITH\_BOOST=$HOME/my\_boost
```

This causes Boost to be downloaded into the \texttt{my_boost} directory under your home directory. If the required Boost version is already there, no download is done. If the required Boost version changes, the newer version is downloaded.

If Boost is already installed locally and your compiler finds the Boost header files on its own, it may not be necessary to specify the preceding \texttt{CMake} options. However, if the version of Boost required by MySQL changes and the locally installed version has not been upgraded, you may have build problems. Using the \texttt{CMake} options should give you a successful build.

With the above settings that allow Boost download into a specified location, when the required Boost version changes, you need to remove the \texttt{bld} folder, recreate it, and perform the \texttt{cmake} step again. Otherwise, the new Boost version might not get downloaded, and compilation might fail.

• \texttt{-DWITH_CLIENT_PROTOCOL_TRACING=\textit{bool}}

Whether to build the client-side protocol tracing framework into the client library. By default, this option is enabled.

For information about writing protocol trace client plugins, see Writing Protocol Trace Plugins.

See also the \texttt{WITH_TEST_TRACE_PLUGIN} option.

• \texttt{-DWITH_CURL=\textit{curl_type}}

The location of the \texttt{curl} library. \texttt{curl_type} can be \texttt{system} (use the system \texttt{curl} library) or a path name to the \texttt{curl} library.

This option was added in MySQL 5.7.19.
Feature Options

• \texttt{-DWITH_DEBUG=bool}

Whether to include debugging support.

Configuring MySQL with debugging support enables you to use the \texttt{--debug="d,parser_debug"} option when you start the server. This causes the Bison parser that is used to process SQL statements to dump a parser trace to the server's standard error output. Typically, this output is written to the error log.

Sync debug checking for the InnoDB storage engine is defined under \texttt{UNIV_DEBUG} and is available when debugging support is compiled in using the \texttt{WITH_DEBUG} option. When debugging support is compiled in, the \texttt{innodb_sync_debug} configuration option can be used to enable or disable InnoDB sync debug checking.

As of MySQL 5.7.18, enabling \texttt{WITH_DEBUG} also enables Debug Sync. For a description of the Debug Sync facility and how to use synchronization points, see MySQL Internals: Test Synchronization.

• \texttt{-DWITH_DEFAULT_FEATURE_SET=bool}

Whether to use the flags from \texttt{cmake/build_configurations/feature_set.cmake}.

• \texttt{-DWITH_EDITLINE=value}

Which \texttt{libedit/editline} library to use. The permitted values are \texttt{bundled} (the default) and \texttt{system}. \texttt{WITH_EDITLINE} replaces \texttt{WITH_LIBEDIT}, which has been removed.

• \texttt{-DWITH_EMBEDDED_SERVER=bool}

Whether to build the \texttt{libmysqld} embedded server library.

\textbf{Note}

The \texttt{libmysqld} embedded server library is deprecated as of MySQL 5.7.17 and has been removed in MySQL 8.0.

• \texttt{-DWITH_EMBEDDED_SHARED_LIBRARY=bool}

Whether to build a shared \texttt{libmysqld} embedded server library.

\textbf{Note}

The \texttt{libmysqld} embedded server library is deprecated as of MySQL 5.7.17 and has been removed in MySQL 8.0.

• \texttt{-DWITH_EXTRA_CHARSETS=name}

Which extra character sets to include:

• \texttt{all}: All character sets. This is the default.

• \texttt{complex}: Complex character sets.

• \texttt{none}: No extra character sets.

• \texttt{-DWITH_INNODB_EXTRA_DEBUG=bool}

Whether to include extra InnoDB debugging support.
Enabling `WITH_INNODB_EXTRA_DEBUG` turns on extra InnoDB debug checks. This option can only be enabled when `WITH_DEBUG` is enabled.

- `-DWITH_GMOCK=path_name`

The path to the googlemock distribution, for use with Google Test-based unit tests. The option value is the path to the distribution Zip file. Alternatively, set the `WITH_GMOCK` environment variable to the path name. It is also possible to use `-DENABLE_DOWNLOADS=1` and CMake will download the distribution from GitHub.

If you build MySQL without the Google Test-based unit tests (by configuring without `WITH_GMOCK`), CMake displays a message indicating how to download it.

- `-DWITH_INNODB_MEMCACHED=bool`

Whether to generate memcached shared libraries (libmemcached.so and innodb_engine.so).

- `-DWITH_KEYRING_TEST=bool`

Whether to build the test program that accompanies the keyring_file plugin. The default is OFF. Test file source code is located in the plugin/keyring/keyring-test directory.

This option was added in MySQL 5.7.11.

- `-DWITH_LDAP=value`

Internal use only. This option was added in MySQL 5.7.29.

- `-DWITH_LIBEVENT=string`

Which libevent library to use. Permitted values are bundled (default), system, and yes. If you specify system or yes, the system libevent library is used if present. If the system library is not found, the bundled libevent library is used. The libevent library is required by InnoDB memcached.

- `-DWITH_LIBWRAP=bool`

Whether to include libwrap (TCP wrappers) support.

- `-DWITH_LZ4=lz4_type`

The `WITH_LZ4` indicates the source of zlib support:

- `bundled`: Use the LZ4 library bundled with the distribution. This is the default.

- `system`: Use the system LZ4 library. If `WITH_LZ4` is set to this value, the lz4_decompress utility is not built. In this case, the system lz4 command can be used instead.

- `-DWITH_MSAN=bool`

Whether to enable MemorySanitizer, for compilers that support it. The default is off.

For this option to have an effect if enabled, all libraries linked to MySQL must also have been compiled with the option enabled.

- `-DWITH_MECAB={disabled|system|path_name}`

Use this option to compile the MeCab parser. If you have installed MeCab to its default installation directory, set `-DWITH_MECAB=system`. The `system` option applies to MeCab installations performed
from source or from binaries using a native package management utility. If you installed MeCab to a
custom installation directory, specify the path to the MeCab installation. For example, `-DWITH_MECAB=/
opt/mecab`. If the system option does not work, specifying the MeCab installation path should work in
all cases.

For related information, see MeCab Full-Text Parser Plugin.

- `-DWITH_MSCRT_DEBUG=bool`

Whether to enable Visual Studio CRT memory leak tracing. The default is OFF.

- `-DWITH_NUMA=bool`

Explicitly set the NUMA memory allocation policy. CMake sets the default `WITH_NUMA` value based on
whether the current platform has NUMA support. For platforms without NUMA support, CMake behaves as
follows:

- With no NUMA option (the normal case), CMake continues normally, producing only this warning:
 NUMA library missing or required version not available

- With `-DWITH_NUMA=ON`, CMake aborts with this error: NUMA library missing or required version not
 available

This option was added in MySQL 5.7.17.

- `-DWITH_PROTOBUF=protobuf_type`

Which Protocol Buffers package to use. `protobuf_type` can be one of the following values:

- `bundled`: Use the package bundled with the distribution. This is the default.

- `system`: Use the package installed on the system.

Other values are ignored, with a fallback to bundled.

This option was added in MySQL 5.7.12.

- `-DWITH_RAPID=bool`

Whether to build the rapid development cycle plugins. When enabled, a rapid directory is created in
the build tree containing these plugins. When disabled, no rapid directory is created in the build tree.
The default is ON, unless the rapid directory is removed from the source tree, in which case the default
becomes OFF. This option was added in MySQL 5.7.12.

- `-DWITH_SASL=value`

Internal use only. This option was added in MySQL 5.7.29.
Feature Options

- **-DWITH_SSL={ssl_type|path_name}**

For support of encrypted connections, entropy for random number generation, and other encryption-related operations, MySQL must be built using an SSL library. This option specifies which SSL library to use.

- **ssl_type** can be one of the following values:
 - **yes**: Use the system OpenSSL library if present, else the library bundled with the distribution.
 - **bundled**: Use the SSL library bundled with the distribution. This is the default prior to MySQL 5.7.28. As of 5.7.28, this is no longer a permitted value and the default is **system**.
 - **system**: Use the system OpenSSL library. This is the default as of MySQL 5.7.28.

- **path_name** is the path name to the OpenSSL installation to use. This can be preferable to using the **ssl_type** value of **system** because it can prevent CMake from detecting and using an older or incorrect OpenSSL version installed on the system. (Another permitted way to do the same thing is to set **WITH_SSL** to **system** and set the **CMAKE_PREFIX_PATH** option to **path_name**.)

For additional information about configuring the SSL library, see Configuring SSL Library Support.

- **-DWITH_SYSTEMD=bool**

Whether to enable installation of systemd support files. By default, this option is disabled. When enabled, systemd support files are installed, and scripts such as **mysqld_safe** and the System V initialization script are not installed. On platforms where systemd is not available, enabling **WITH_SYSTEMD** results in an error from CMake.

For more information about using systemd, see Managing MySQL Server with systemd. That section also includes information about specifying options previously specified in [mysqld_safe] option groups. Because **mysqld_safe** is not installed when systemd is used, such options must be specified another way.

- **-DWITH_TEST_TRACE_PLUGIN=bool**

Whether to build the test protocol trace client plugin (see Using the Test Protocol Trace Plugin). By default, this option is disabled. Enabling this option has no effect unless the **WITH_CLIENT_PROTOCOL_TRACING** option is enabled. If MySQL is configured with both options enabled, the **libmysqlclient** client library is built with the test protocol trace plugin built in, and all the standard MySQL clients load the plugin. However, even when the test plugin is enabled, it has no effect by default. Control over the plugin is afforded using environment variables; see Using the Test Protocol Trace Plugin.

Note

Do not enable the **WITH_TEST_TRACE_PLUGIN** option if you want to use your own protocol trace plugins because only one such plugin can be loaded at a time and an error occurs for attempts to load a second one. If you have already built MySQL with the test protocol trace plugin enabled to see how it works, you must rebuild MySQL without it before you can use your own plugins.

For information about writing trace plugins, see Writing Protocol Trace Plugins.

- **-DWITH_UBSAN=bool**

Whether to enable the Undefined Behavior Sanitizer, for compilers that support it. The default is off.
Compiler Flags

- **-DWITH_UNIT_TESTS={ON|OFF}**
 If enabled, compile MySQL with unit tests. The default is ON unless the server is not being compiled.

- **-DWITH_UNIXODBC=1**
 Enables unixODBC support, for Connector/ODBC.

- **-DWITH_VALGRIND=bool**
 Whether to compile in the Valgrind header files, which exposes the Valgrind API to MySQL code. The default is OFF.
 To generate a Valgrind-aware debug build, `-DWITH_VALGRIND=1` normally is combined with `-DWITH_DEBUG=1`. See Building Debug Configurations.

- **-DWITH_ZLIB=zlib_type**
 Some features require that the server be built with compression library support, such as the `COMPRESS()` and `UNCOMPRESS()` functions, and compression of the client/server protocol. The `WITH_ZLIB` indicates the source of zlib support:
 - `bundled`: Use the `zlib` library bundled with the distribution. This is the default.
 - `system`: Use the system `zlib` library.

Compiler Flags

- **-DCMAKE_C_FLAGS="flags"**
 Flags for the C Compiler.

- **-DCMAKE_CXX_FLAGS="flags"**
 Flags for the C++ Compiler.

- **-DWITH_DEFAULT_COMPILER_OPTIONS=bool**
 Whether to use the flags from `cmake/build_configurations/compiler_options.cmake`.

 Note
 All optimization flags were carefully chosen and tested by the MySQL build team. Overriding them can lead to unexpected results and is done at your own risk.

- **-DSUNPRO_CXX_LIBRARY="lib_name"**
 Enable linking against `libCstd` instead of `stlport4` on Solaris 10 or later. This works only for client code because the server depends on C++98.
 To specify your own C and C++ compiler flags, for flags that do not affect optimization, use the `CMAKE_C_FLAGS` and `CMAKE_CXX_FLAGS` CMake options.
 When providing your own compiler flags, you might want to specify `CMAKE_BUILD_TYPE` as well.
 For example, to create a 32-bit release build on a 64-bit Linux machine, do this:

  ```
  mkdir bld
  cd bld
  ```
CMake Options for Compiling NDB Cluster

CMake Options for Compiling NDB Cluster

The following options are for use when building NDB Cluster with the NDB Cluster sources; they are not currently supported when using sources from the MySQL 5.6 Server tree.

-DMEMCACHED_HOME=dir_name

Perform the build using the memcached (version 1.6 or later) installed in the system directory indicated by dir_name. Files from this installation that are used in the build include the memcached binary, header files, and libraries, as well as the memcached_utilities library and the header file engine_testapp.h.

You must leave this option unset when building ndbmemcache using the bundled memcached sources (WITH_BUNDED_MEMCACHED option); in other words, the bundled sources are used by default).

While additional CMake options—such as for SASL authorization and for providing dtrace support—are available for use when compiling memcached from external sources, these options are currently not enabled for the memcached sources bundled with NDB Cluster.

-DWITH_BUNDELED_LIBEVENT={ON|OFF}

Use the libevent included in the NDB Cluster sources when building NDB Cluster with ndbmemcached support. Enabled by default. OFF causes the system's libevent to be used instead.

-DWITH_BUNDELED_MEMCACHED={ON|OFF}

Build the memcached sources included in the NDB Cluster source tree, then use the resulting memcached server when building the ndbmemcache engine. In this case, make install places the memcached binary in the installation bin directory, and the ndbmemcache engine shared library file ndb_engine.so in the installation lib directory.

This option is ON by default.

-DWITH_CLASSPATH=path

Sets the classpath for building NDB Cluster Connector for Java. The default is empty. This option is ignored if -DWITH_NDB_JAVA=OFF is used.

-DWITH_ERROR_INSERT={ON|OFF}

Enables error injection in the NDB kernel. For testing only; not intended for use in building production binaries. The default is OFF.

-DWITH_NDBCLUSTER_STORAGE_ENGINE={ON|OFF}
Build and link in support for the NDB (NDBCLUSTER) storage engine in mysqld. The default is ON.

- **-DWITH_NDBCLUSTER={ON|OFF}**
 This is an alias for WITH_NDBCLUSTER_STORAGE_ENGINE.

- **-DWITH_NDBMTD={ON|OFF}**
 Build the multithreaded data node executable ndbmtd. The default is ON.

- **-DWITH_NDB_BINLOG={ON|OFF}**
 Enable binary logging by default in the mysqld built using this option. ON by default.

- **-DWITH_NDB_DEBUG={ON|OFF}**
 Enable building the debug versions of the NDB Cluster binaries. OFF by default.

- **-DWITH_NDB_JAVA={ON|OFF}**
 Enable building NDB Cluster with Java support, including ClusterJ.
 This option is ON by default. If you do not wish to compile NDB Cluster with Java support, you must disable it explicitly by specifying -DWITH_NDB_JAVA=OFF when running CMake. Otherwise, if Java cannot be found, configuration of the build fails.

- **-DWITH_NDB_PORT=port**
 Causes the NDB Cluster management server (ndb_mgmd) that is built to use this port by default. If this option is unset, the resulting management server tries to use port 1186 by default.

- **-DWITH_NDB_TEST={ON|OFF}**
 If enabled, include a set of NDB API test programs. The default is OFF.
Chapter 5 Dealing with Problems Compiling MySQL

The solution to many problems involves reconfiguring. If you do reconfigure, take note of the following:

- If CMake is run after it has previously been run, it may use information that was gathered during its previous invocation. This information is stored in CMakeCache.txt. When CMake starts, it looks for that file and reads its contents if it exists, on the assumption that the information is still correct. That assumption is invalid when you reconfigure.

- Each time you run CMake, you must run make again to recompile. However, you may want to remove old object files from previous builds first because they were compiled using different configuration options.

To prevent old object files or configuration information from being used, run the following commands before re-running CMake:

On Unix:

```
shell> make clean
shell> rm CMakeCache.txt
```

On Windows:

```
shell> devenv MySQL.sln /clean
shell> del CMakeCache.txt
```

If you build outside of the source tree, remove and recreate your build directory before re-running CMake. For instructions on building outside of the source tree, see How to Build MySQL Server with CMake.

On some systems, warnings may occur due to differences in system include files. The following list describes other problems that have been found to occur most often when compiling MySQL:

- To define which C and C++ compilers to use, you can define the CC and CXX environment variables. For example:

```
shell> CC=gcc
shell> CXX=g++
shell> export CC CXX
```

To specify your own C and C++ compiler flags, use the CMAKE_C_FLAGS and CMAKE_CXX_FLAGS CMake options. See Compiler Flags.

To see what flags you might need to specify, invoke mysql_config with the --cflags and --cxxflags options.

- To see what commands are executed during the compile stage, after using CMake to configure MySQL, run make VERBOSE=1 rather than just make.

- If compilation fails, check whether the MYSQL_MAINTAINER_MODE option is enabled. This mode causes compiler warnings to become errors, so disabling it may enable compilation to proceed.

- If your compile fails with errors such as any of the following, you must upgrade your version of make to GNU make:

```
make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment
```

Or:

```
make: file `Makefile' line 18: Must be a separator (:)
```
Or:

```bash
pthread.h: No such file or directory
```

Solaris and FreeBSD are known to have troublesome `make` programs.

GNU `make` 3.75 is known to work.

- The `sql_yacc.cc` file is generated from `sql_yacc.yy`. Normally, the build process does not need to create `sql_yacc.cc` because MySQL comes with a pregenerated copy. However, if you do need to re-create it, you might encounter this error:

```bash
"sql_yacc.yy", line xxx fatal: default action causes potential...
```

This is a sign that your version of `yacc` is deficient. You probably need to install a recent version of `bison` (the GNU version of `yacc`) and use that instead.

Versions of `bison` older than 1.75 may report this error:

```bash
sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded
```

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of `bison`.

For information about acquiring or updating tools, see the system requirements in Chapter 1, *Installing MySQL from Source*.
