MySQL Shell 9.4

Abstract

MySQL Shell is an advanced client and code editor for MySQL. This document describes the core features of
MySQL Shell. In addition to the provided SQL functionality, similar to mysql , MySQL Shell provides scripting
capabilities for JavaScript and Python and includes APIs for working with MySQL. X DevAPI enables you to work
with both relational and document data, see Using MySQL as a Document Store. AdminAPI enables you to work
with InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

MySQL Shell 9.4.0 is highly recommended for use with any GA version of MySQL 8.0, or later. Please upgrade to
MySQL Shell 9.4.0. If you have not yet installed MySQL Shell, download it from the download site.

For notes detailing the changes in each release, see the MySQL Shell Release Notes.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using
a Commercial release of MySQL Shell, see MySQL Shell Commercial License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL Shell, see MySQL Shell Community
License Information User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2025-07-22 (revision: 83046)

https://dev.mysql.com/doc/refman/9.4/en/document-store.html
https://dev.mysql.com/downloads/shell
https://dev.mysql.com/doc/relnotes/mysql-shell/9.4/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysql-shell-9.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-shell-9.4-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-shell-9.4-gpl-en.pdf

Table of Contents

1 MYSQL SNEII FEATUIES ...ttt ettt e ettt e ettt e et enb e e e entaeeees 1
2 Installing MySQL SHell ... ettt e 5
2.1 Installing MySQL Shell on Microsoft WINAOWSoveiiiiiiiiiiiiieciie e 5

2.2 Installing MySQL SHell ON LINUX ...uuiiiiiiieiiiiiee e eeneens 5

2.3 Installing MySQL Shell 0n MAaCOS ... 7

3 Using MySQL Shell COMMENTSccoiiiiiiiiiiie ettt 9
3.1 MySQL Shell COMMANGSccoitiieiiiie ettt e e e e e 9

4 Getting Started with MySQL Shell ... 17
4.1 Starting MYSQL Shell ... e 17

4.2 MYSQL SNEII SESSIONS ..ottt ettt e e 17
4.2.1 Creating the Sessi on Global Object While Starting MySQL Shell 19

4.2.2 Creating the Sessi on Global Object After Starting MySQL Shellc.cc..cceeeee. 20

4.2.3 Scripting Sessions in JavaScript and Python Modecccooooviiiiiiiiies 20

4.3 MYSQL Shell CONNECLIONS ... ciiiiiiieiiiii ettt e e e e enaans 22
4.3.1 Connecting using Individual Parametersccoeuiiiiiiiiiieiii e 24

4.3.2 Connecting using login-path and Options Filesc.ocoiiiiiiiiiiiie e 25

4.3.3 Connecting using Unix Sockets and Windows Named Pipescccveiievinnnnnen. 26

4.3.4 Using Encrypted CONNECLIONSccuuuiiiiiiieiiiii ettt 27

4.3.5 Using LDAP and Kerberos AUtNeNtiCationoveiiiiiiiieiiiiiieeiiiie e 28

4.3.6 USING OPENID CONNECT .. .ciiiiiieiiiii ettt e e 32

4.3.7 USING @N SSH TUNNEI ..ot 33

4.3.8 Using Compressed CONNECLIONScc.uuiiiiiiiieeiiiiieeee ittt e e 35

4.4 Pluggable PasSWOrd STOTEiiiiiiiieiiii ettt e 38
4.4.1 Pluggable Password Configuration OPLioNSccceuuiieiiiiinieiiiiiieeeiine e 39

4.4.2 Working With CredentialScoouuuiiiiiiii e 40

4.5 GENEIIC SECIEL STOTAUE ...cevvuueeiiti ettt ettt ettt ettt e e e e e e et e et et eeenaa e eenaes 40

4.6 MySQL Shell GIobal ODJECESccuuiiiiiiiie e eees 42

A7 USING @ PAYET ...ttt ettt ettt ettt et 42

4.8 Cloud Service CONfIQUIALIONuuueiiiiieiiii ettt e e e e eera e eees 43
4.8.1 Oracle Cloud Infrastructure ODbJect StOrageccuuveeiiiiiiieiiii e 43

4.8.2 S3-COMPALIDIE STOTAGEceiiiiiieii e 45

4.8.3 AZUIE BIOD SEOTAOE . .coviiieiiiiii e 49

4.9 OCI Authentication CoNNECtioN OPLIONSuiiiiiiieiiiii et e 50

5 MYSQL Shell Coae EXECULIONiiiiiiiieieii ettt ettt e e e e 51
5.1 ACHVE LANGUAGE ... eeeetiieeiiit ettt ettt ettt e ettt e e et et e e et et e e e eebe e e e eeta e e eeetnaeeeenn 51

5.2 Interactive Code EXECULIONiiiiiiiieeiiii ettt ettt e e e 52

5.3 Code AULOCOMPIELIONiiiiiiiee et et e et e e et e e et e e eena e eeees 54

5.4 EAIING COUE ... ittt e et e e et e ettt e et et e e eee 58

5.5 €O HISIOMY ...ttt ettt et e 58

5.6 BaAtCh CO0dE EXECULION .. .evuuiiiiiie ettt ettt e e e e et eeena s 59

5.7 OULPUL FOMMALSiieiiiiiiiii ettt et e e e et e e e e e enans 61
B5.7.1 TABIE FOMMAL ...ttt ettt e et e e 61

5.7.2 Tab Separated FOIMMALccoouuiiiiiiiie et eeees 62

5.7.3 VErtiCal FOMALoiiiii e 62

5.7.4 JSON FOrmMat OULPULccuuiiiiiiiieii et e e e e 63

5.7.5 JSON WIPPING . ..eeetiieiiitiieeeeet ettt et e e e e et e et e et e e e e et e e e eeta e e e enta e eeenes 64

5.7.6 RESUIL MELATATAcciiviiiieiiiiie et 66

5.8 APl Command Line INtEGrationcoeeuuiieiiiieeiiie et 66
5.8.1 Command Line Integration OVEIVIEWoociiiiiiiiiiiiiiieeiii e 66

5.8.2 Command Line Integration DetailSc.uuiieiiiiiiiiiiiiiieiiii e 69

5.9 JSON INEGIALION ...eeitieiiiii ettt ettt ettt ettt ettt e et et e e e e e raa e e ennans 78

5.00 LIMITALIONS ...ttt ettt e e ettt e ettt e et et e et et e et e ab e e enb e aaes 78

6 MYSQL AAMINAP ..o et ettt e ettt e et et e e et et r e et eaa e e e eeraaeaees 81
6.1 USing MySQL AAMINAP ... e eenans 81

6.2 Installing AdmINAPI Software COMPONENTSuiiiiiiiieiiiie e 82

MySQL Shell 9.4

6.2.1 Configuring the HOSt NAMEccoviiiii e 83
6.2.2 Connecting to SErver INSLANCESviiiiiiii i e e e eaes 83
6.2.3 PersiStiNg SEINGS ..uiiuniiiiiii e 84

6.3 Retrieving a Handler ODJECEcouuiii e 85
6.4 Creating User Accounts for AAMINAPL ... 86
ORIV L=T4 o To LTI o o 1T TSP 88
6.6 FINAING the PriMaryoiiiiii e e e e e e e eaa s 88
6.7 SCripting AAMINAP ...oe e e aa 89
6.8 AAMINAPI MySQL SANUDOXESuiiiiieiiiieiii e e e e e e e e e anas 90
6.8.1 Deploying SandboX INSTANCESovvuuiiiii e e e e 91
6.8.2 Managing SandboX INSLANCESoiiiiiiiiiici e 92
6.8.3 Setting up InnoDB Cluster and MySQL ROULETcccviiiiiiieiiiiciiieee e 92

SR I = Vo o[a o 1Y 1= r= Lo £ - 99
6.10 Upgrade Metadata SChemMaoiiiiiiiiiiii e e e e e 104
6.11 Locking Mechanism for AAmINAPI OPEerationsccccviviiiiiiiieiiiieeie e e e e e 105
6.12 Executing SQL 0N TOPOIOGIEScvveieiiiieiii e e e e e e e e e 109
6.13 Replication Compatibility ChECKSccouiiiiiiiiiii e 110
7 MySQL Router and AAMINAPToou e e e e e e e e e e e e 113
7.1 Bootstrapping MYSQL ROULETiiiiiiiii i e e e aanes 113
7.2 Configuring the MySQL ROULEI USEIc.uuiiiiiiii e e e e 113
7.3 Deploying MYSQL ROULETt e e e e e e e e e et e e eeanas 114
4 = L1V 1T B @] o] i o] 1= PN 116
7.5 Using ReplicaSets with MySQL ROULETcc.uiiiiiiiiiiici e e e e e e e 118
7.6 Testing InnoDB Cluster High Availabilitycooiiiiiiiii e 119
7.7 Working with @ CIUSEEI'S ROULEISuuiiiiiiciii e e e e e e e e 120
7.8 ROULING GUIEIINESciiiiiii et e e e e e e e e e e e e e e e e e eaaeees 123
7.8.1 Routing GuIidelines JSON SYNEAX .vvuuiiiinieiiieiiieeiiee e e e e e e e e e eanns 123
7.8.2 Create and Activate Routing GUIdeliNeSccccoiiiiiiiiiiii e, 128
7.8.3 Importing and Exporting Routing Guidelinesccooeviiiiiiiiiiiiece e, 130
7.8.4 Edit ROUtINg GUIAEINESiieiiiii e e 130
7.8.5 Visualize Routing GUIAEINESccuuiiiiiiiiiiici e e 133
7.8.6 Routing GuIidelines EXamMPIESccuuiiiiiiiii e 136

8 MYSQL INNODB CIUSIET . .uuiiiiiciii e e e e e e e e e et e e et e e eeanas 149
8.1 INNODB Cluster REQUITEMENLS ... civuiiiii i e e e e e e e e e e e e e et e e aanaaes 150
8.2 INNODB ClUSEr LIMILAtIONS ...oeevuiieiiiiiieee i e e e e eaa e e e eaanns 152
8.3 User Accounts for INNODB CIUSLETcviuuuiiiiiiii et eaaens 152
8.4 Deploying a Production INNODB CIUSLETcciuiiiiiiciieee e e e 155
8.4.1 Pre-Checking Instance Configuration for InnoDB Cluster Usageccc.ccuuueens 156
8.4.2 Configuring Production Instances for InnoDB Cluster Usageccoocvvvvevennnnnnn. 157
8.4.3 Creating an INNODB CIUSIETciiiiiiii e e e e e 159
8.4.4 Adding Instances to an INNODB CIUSTENccuiiiiiiiiiii e, 161
8.4.5 Configuring INNODB CIUSLEr POISc.uiiiiiieiiieei e e e 164
8.4.6 Using MySQL Clone with INNODB CIUSTENciviiiiiiiieiie e 165
8.4.7 Adopting a Group Replication Deploymentccocouiiiiiiiiiiiiieiie e 168

8.5 Configuring INNODB CIUSTETuuiiiiieii e e e e e e e aaa s 169
8.5.1 Setting Options for INNODB CIUSLETiciiiiiiii e 169
8.5.2 Customizing InnoDB Cluster Member SEIVEIScovevviiiiiiieiiieeie e 170
8.5.3 Configuring the EIECtioN PrOCESSoiviiiiiiiieii e 171
8.5.4 Configuring Failover CONSISIENCYcuuiviiiiiiiii e e 171
8.5.5 Configuring Automatic Rejoin of INStaNCeSc.cccvviiiiiiiiii e, 171
8.5.6 Configuring the Parallel Replication Applierccoviiiiiiii e 172
8.5.7 INnoDB Cluster and AULO-INCIEMENTuiiiiiii i 173
8.5.8 InnoDB Cluster and Binary LOg PUIgiNGoovvuiiiiiiiiiiiicii e e e e e 174
8.5.9 Configuring the Group Replication Communication Stackcccccceeveiiineennns 174

8.6 Securing INNODB CIUSLELcuuiiiii e e e e e e e e et eeaaaeees 176
8.7 Monitoring INNODB CIUSLETiiiiieii e e e e e e e e aans 178
8.8 Restoring and Rebooting an INNODB CIUSLETviviiiiiiiiciiee e 189

8.8.1 Rejoining an Instance t0 @ CIUSIENoiiiiiiii e 189

MySQL Shell 9.4

8.8.2 Restoring a Cluster from QUOIUM LOSScccvuiiiiiiiiiieiie e 190
8.8.3 Rebooting a Cluster from a Major OULAgEccevniiiiieiiiieiie e e, 191
8.8.4 ReSCANNING @ CIUSLEN ...covuiiiiieii e e e e e e e e e e aaas 194
8.8.5 FENCING @ CIUSTETiinciiiieii e e e e e e e aaas 195

8.9 Modifying or Dissolving an INNODB CIUSLENiiiiieiiieeie e 195
8.10 Upgrade INNODB ClIUSLELciviiiiiiieii e e e e e e e e e e e e e ean s 198
8.10.1 INNODB CIUStEr UPQGIade .. cceuneiiiiiiii e et e e e e e e e e e e enes 199
8.10.2 Troubleshooting INNoDB Cluster Upgradesccoccuiveviieiiiiieiii e e 204

8.11 MySQL INnoDB Cluster Read REPIICASccccuuiiiiiieiiieiii e e e e 205
S T o 1= = [17 (PP 205
8.11.2 Creating Read ReEPIICAScccuuieiiiiiii i e e e e eaaaaees 206
8.11.3 Modifying or Removing Read RepliCascccoviviiiiiiiiieii e, 209
8.11.4 Monitoring Read REPICASccvvvniiiiieii e 211

9 MYSQL INNODB ClIUSIEISEL . .evuiiiiiieii et e e e e e et e et e e et e e eanaeeees 215
9.1 INNODB ClusterSet REQUIFEMENTSciuiiiiiiiei e e e e e e e e e e ean s 217
9.2 INNODB ClusterSet LIMItAtIONSc.c.uuuiiiiiiii e e e e e e e eeees 220
9.3 User Accounts for INNODB CIUSIEISELccuuuiiiiiiiii et 221
9.4 Deploying INNODB CIUSIEISEL ... ccvuiiiiiiee e e e e e e e e eaes 224
9.5 Asynchronous Replication Channel OptionScc.oiiiiiiiiiii e 235
9.6 Integrating MySQL Router With INnNODB CIUSIEISEtccovviiiiiiiiiiieciii e 236
9.7 InnoDB ClusterSet Status and TOPOIOGYuovvuniiiiiieiiie e e e 240
9.8 InnoDB ClusterSet Controlled SWItChOVETcooviiiiiiiiii e 247
9.9 InnoDB ClusterSet Emergency FailoVercooviiiiiiiiiiie e 252
9.10 InnoDB ClusterSet Repair and REJOINovviiiiiiieiiii e e e e e 257
9.10.1 Fencing Clusters in an INNODB CIUSLEISEtccuvviiiiiiiiiici e, 259
9.10.2 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters 262
9.10.3 Repairing Member Servers and Clusters in an InnoDB ClusterSet 264
9.10.4 Removing a Cluster from an InnoDB ClusterSetccoovvviiiiviiiiiii e, 266
9.10.5 Rejoining a Cluster to an INNODB CIUSLErSEtccuvieiiieiiiiei e, 268

9.11 DisSSOIVING @ CIUSIEISELuiiiiieii e e e e e e e e e e eens 270
9.12 Upgrade INNODB CIUSIEISELuuiiiiiiii e e e e e aaaas 270
10 MySQL INNODB REPICASELceiiiiiiiiii et e e e e e e e e e e e eaes 279
10.1 Deploying INNODB REPICASELuuiiiiiieiiiei e e e e e e 280
10.2 Configuring INnnoDB ReplicaSet INSTANCESovviiiiiiiiii e 281
10.3 Creating an INNODB REPICASELc.uniiiiiiiii e e 281
10.4 Asynchronous Replication Channel OptioNScc..oeviiiiiiiiieii e 284
10.5 Adding Instances 10 @ REPICASELccvuiiiiiiiii e 285
10.5.1 Provisioning Instances for INnoDB ReplicaSetcccooevviiiiiiiiiii i 285
10.5.2 Example of Adding Instances to a ReplicaSetccooeeiviiiiiiiiiii i, 286

10.6 Adopting an Existing Replication SEtUPc..ovviiiiiiiiieii e e 287
10.7 Changing the Primary INStANCEco.uiiiiiiiiii i e e e e e 288
10.8 Forcing a New Primary INSLANCEcccuiiiiiiiiiii e e e e e eaa e 289
O =T T [o 2 LT o] o= 1] =] £ PN 290
10.10 Checking the Status of INNODB REPlICASELcovvuiiiiiieiiiieiie e 290
10.11 Upgrade INNODB REPHCASELccvuiiiiiiiiiicei e e 291
10.12 DissoIVINg @ REPICASELc.uuiiiiiiii e e 296
10.13 Rescanning a REPHCASELcoouuiiiiiiii e 296
10.14 Describing @ REPICASELccouiiii i e e 297
11 Extending MySQL SheEllouiiiiiiie e e e e e e e e e e aaas 299
11.1 Reporting With MYSQL Shellooorniiii e 299
11.1.1 Creating MySQL Shell REPOIS ... coouuiiiiiiiiiie e e e 300
11.1.2 Registering MySQL Shell REPOIScccuuiiiiiiiiiiee e e 300
11.1.3 Persisting MySQL Shell REPOISccovuiiiiiiiiiiee e e 302
11.1.4 Example MySQL Shell REPOItccuuiiiiiiii e e 302
11.1.5 Running MySQL Shell REPOIScccvuiiiiiiii e 303
11.1.6 Built-in MySQL Shell REPOISciiiiiiiiiiii e e e aae e 304

11.2 Adding Extension Objects to MySQL Shellccoooiiiiiiiii e, 307
11.2.1 Creating User-Defined MySQL Shell Global Objectscccoeeviiiiiiiiiiieiis 307

MySQL Shell 9.4

11.2.2 Creating EXtension ODJECLSciuuiiii e e e 308
11.2.3 Persisting EXtENSION ODJECESciiiiiiiiiiieeeie e 310
11.2.4 Example MySQL Shell Extension ODbJECtScoovviiiiiiiiiiiici e 310

11.3 MYSQL Shell PIUGINS ...evniiiiii e e e e e e e e e e aaaas 312
11.3.1 Creating MySQL Shell PIUGINScvvuieiiiic e 312
11.3.2 Creating PIUGQIN GrOUPSuiviniiiii et e e e e e e e e e e e e s e e e e e e et s e e eeaneees 313
11.3.3 Example MySQL Shell PIUGINScoouiiiiiiic e 313

11.4 Custom SQL HANAIEKcoeeiii e e e 315
11.4.1 Registering SQL HaNAIErcouuiiiiiiiii e 315
11.4.2 Returning @ Custom RESUILoiiiiiiii e e e e 316
11.4.3 Result Data SPeCIfiCAtIONoiiiiiii e 317

I ST T IS 1= B 11T 319
12.1 Upgrade ChecKer ULIILYcuuiiiiiiii e e e 320
27 110 |\ o] o Yo o A 1T SRR 328
12.2.1 RUNNING the ULIIILY ...eoi e e 329
12.2.2 Importing JSON Documents With the Mysqglsh Command Interface 330
12.2.3 Importing JSON Documents With the - -i nport Commandccoeeeevnneene. 331
12.2.4 Conversions for Representations of BSON Data TYPEScvcvvvveviiieiiiiieiinneiinnnns 333

D2 B - o [I bt o Yo T A 1 334
12.4 Parallel Table IMport ULIlItYcoouiiiii e e e 341
12.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utilityc.coe.. 350
12.6 DUMpP Loading ULIIEYcooenii e e e e e e e e e 374
12.7 Binary Log Dumping and Loading ULIlItIEScccuiiiiiiiiiiii e 393
12.7.1 DUMPING BINAIY LOGS .vuniiiniiiiii it ee et e e e e e e e e e e e e e e e aaaas 394
12.7.2 Loading Binary LOG DUMPScouuiiiiiieiiieeiee e e e e e et e e e e e e eaens 397

12.8 Copy Instance, Schemas, and Tablescccccoiiiiii i 400
12.9 DIagnoStiCS ULIILIESuiieniiiii i e e e e e e e e e eaes 414
12.9.1 collectDIagnostics ULIlILYcccuuiiiiiiiiicc e e e e 414
12.9.2 collectHighLoadDiagnostics ULIlItycoceuiiiiiieiii e 416
12.9.3 collectSlowQueryDiagnostics ULtycccouuiiiiiiiiiicie e 418

13 MySQL Shell Logging and DEDUQuuiiiuniiiiieie e e e e e e 421
R R Y o o] o= 11 T o T 1 T PPN 422
R Y=Y g o o =TI O 1 1 01U | PN 423
13.3 System Logging for User SQL Statementsocvvuiiiiiiiiiiiieiie e e e 424
13.4 MySQL Shell SQL LOGGING «.cvvuuiiiteeii et e et e e e e e e e e e e e e et e e et eeanaeeanes 425
14 Customizing MYSQL SheElluniii e e e e 427
14.1 Working With STartup SCIPLSivuuiiii e e e e e e e e e 427
14.2 Adding Module Search Paths ..o 428
14.2.1 Module Search Path Environment Variablescccoovviiiiiiiiiiiiinei e, 429
14.2.2 Module Search Path Variable in Startup SCriptScccoeeviiiiiiiiiii e, 429

14.3 Customizing the PromMPt ... e e e e e e e e e e e 430
14.4 Configuring MySQL Shell OPtioNSiiiiiiiiii e e 431
A MySQL Shell Command REFEIENCEiiuiiiii e 439

A.1 mysqlsh — The MYSQL Shelloooiniiiii e 439

Chapter 1 MySQL Shell Features

Important

A MySQL Shell is updated frequently with fixes and new features. It is strongly
recommended that you always use the most recent version available. The latest
version of MySQL Shell can be used with any GA version of MySQL 8.0, or
higher.

The following features are available in MySQL Shell.
e Supported Languages

* Interactive Code Execution

» Batch Code Execution

» Supported APIs

» X Protocol Support

» Extensions

* Utilities

« APl Command Line Integration
* Output Formats

» Logging and Debug

» Global Session

Supported Languages

MySQL Shell processes code written in JavaScript, Python and SQL. Any executed code is processed
as one of these languages, based on the language that is currently active. There are also specific
MySQL Shell commands, prefixed with \ ; which enable you to configure MySQL Shell regardless of the
currently selected language. For more information see Section 3.1, “MySQL Shell Commands”.

MySQL Shell uses Python 3, rather than Python 2.7. For platforms that include a system supported
installation of Python 3, MySQL Shell uses the most recent version available, with a minimum
supported version of Python 3.6. For platforms where Python 3 is not included or is not at the minimum
supported version, MySQL Shell maintains code compatibility with Python 2.6 and Python 2.7, so if
you require one of these older versions, you can build MySQL Shell from source using the appropriate
Python version.

MySQL Shell bundles Python 3.10.8 for platforms where Python 3 is not included or is not at the
minimum supported version.

Note
@ This is true for all builds except Oracle Linux 7, which bundles Python 3.9.15

Interactive Code Execution

MySQL Shell provides an interactive code execution mode, where you type code at the MySQL Shell
prompt and each entered statement is processed, with the result of the processing printed onscreen.
Unicode text input is supported if the terminal in use supports it. Color terminals are supported.

Multiple-line code can be written using a command, enabling MySQL Shell to cache multiple lines and
then execute them as a single statement. For more information see Multiple-line Support.

Batch Code Execution

Batch Code Execution

In addition to the interactive execution of code, MySQL Shell can also take code from different sources
and process it. This method of processing code in a noninteractive way is called Batch Execution.

As batch execution mode is intended for script processing of a single language, it is limited to having
minimal non-formatted output and disabling the execution of commands. To avoid these limitations, use
the - - i nt er act i ve command-line option, which tells MySQL Shell to execute the input as if it were
an interactive session. In this mode the input is processed line by line just as if each line were typed in
an interactive session. For more information see Section 5.6, “Batch Code Execution”.

Supported APIs

MySQL Shell includes the following APIs implemented in JavaScript and Python which you can use to
develop code that interacts with MySQL.

1. AdminAPI enables you to administer MySQL instances, using them to create InnoDB Cluster,
InnoDB ClusterSet, and InnoDB ReplicaSet deployments, and integrating MySQL Router.

< InnoDB Cluster provides an integrated solution for high availability and scalability using InnoDB
based MySQL databases. InnoDB Cluster is an alternative solution for using Group Replication,
without requiring advanced MySQL expertise. See Chapter 8, MySQL InnoDB Cluster.

¢ InnoDB ClusterSet provides disaster tolerance for Chapter 8, MySQL InnoDB Cluster
deployments by linking a primary InnoDB Cluster with one or more replicas of itself in alternate
locations. See Chapter 9, MySQL InnoDB ClusterSet.

« InnoDB ReplicaSet enables you to administer a set of MySQL instances running asynchronous
GTID-based replication. See Chapter 10, MySQL InnoDB ReplicaSet.

AdminAPI also provides operations to configure users for MySQL Router, to make integration

with InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet as simple as possible. For more

information on AdminAPI, see Chapter 6, MySQL AdminAPI.

2. X DevAPI enables developers to work with both relational and document data when MySQL Shell is
connected to a MySQL server using the X Protocol. For more information, see Using MySQL as a
Document Store. For documentation on the concepts and usage of X DevAPI, see X DevAPI User
Guide.

X Protocol Support

MySQL Shell is designed to provide an integrated command-line client for all MySQL products which
support X Protocol. The development features of MySQL Shell are designed for sessions using the X
Protocol. MySQL Shell can also connect to MySQL Servers that do not support the X Protocol using
the classic MySQL protocol. A minimal set of features from the X DevAPI are available for sessions
created using the classic MySQL protocol.

Extensions

You can define extensions to the base functionality of MySQL Shell in the form of reports and
extension objects. Reports and extension objects can be created using JavaScript or Python, and can
be used regardless of the active MySQL Shell language. You can persist reports and extension objects
in plugins that are loaded automatically when MySQL Shell starts. MySQL Shell has several built-in
reports ready to use. See Chapter 11, Extending MySQL Shell for more information.

Utilities

MySQL Shell includes the following utilities for working with MySQL.:

https://dev.mysql.com/doc/refman/9.4/en/document-store.html
https://dev.mysql.com/doc/refman/9.4/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/

API Command Line Integration

» An upgrade checker utility to verify whether MySQL server instances are ready for upgrade. Use
util.checkFor Server Upgrade() to access the upgrade checker.

* A JSON import utility to import JSON documents to a MySQL Server collection or table. Use
util.inmportJSON() to access the import utility.

» A parallel table import utility that splits up a single data file and uses multiple threads to load the
chunks into a MySQL table.

See Chapter 12, MySQL Shell Utilities for more information.

APl Command Line Integration

MySQL Shell exposes much of its functionality using an APl command syntax that enables you to
easily integrate nysql sh with other tools. For example you can create bash scripts which administer
an InnoDB Cluster with this functionality. Use the mysql sh [options] -- shell _object

obj ect _net hod [net hod_ar gunment s] syntax to pass operations directly to MySQL Shell global
objects, bypassing the REPL interface. See Section 5.8, “API Command Line Integration”.

Output Formats

MySQL Shell can return results in table, tabbed, or vertical format, or as JSON output. To help
integrate MySQL Shell with external tools, you can activate JISON wrapping for all output when you
start MySQL Shell from the command line. For more information see Section 5.7, “Output Formats”.

Logging and Debug

MySQL Shell can log information about the execution process at your chosen level of detail. Logging
information can be sent to any combination of an application log file, an additional viewable destination,
and the console. For more information see Chapter 13, MySQL Shell Logging and Debug.

Global Session

In MySQL Shell, connections to MySQL Server instances are handled by a session object. When

you make the first connection to a MySQL Server instance, which can be done either while starting
MySQL Shell or afterwards, a MySQL Shell global object named sessi on is created to represent this
connection. This session is known as the global session because it can be used in all of the MySQL
Shell execution modes. In SQL mode the global session is used for executing statements, and in
JavaScript mode and Python mode it is available through an object named sessi on. You can create
further session objects using functions available in the nysql x and nysql JavaScript and Python
modules, and you can set one of these session objects as the sessi on global object so you can use it
in any mode. For more information, see Section 4.2, “MySQL Shell Sessions”.

Chapter 2 Installing MySQL Shell

Table of Contents

2.1 Installing MySQL Shell on Microsoft WINAOWSiiiiiiiiiie e 5
2.2 Installing MYySQL Shell ON LINUXuiiiniiie ettt e e et e e e et e et e e e e eees 5
2.3 Installing MySQL Shell 0N MACOS ... oo et e eaas 7

This section describes how to download, install, and start MySQL Shell, which is an interactive
JavaScript, Python, or SQL interface supporting development and administration for MySQL Server.
MySQL Shell is a component that you can install separately.

MySQL Shell supports X Protocol and enables you to use X DevAPI in JavaScript or Python to develop
applications that communicate with a MySQL Server functioning as a document store. For information
about using MySQL as a document store, see Using MySQL as a Document Store.

Important

MySQL Shell, make sure you have the Visual C++ Redistributable for Visual

Studio 2017 (available at the Microsoft Visual C++ Redistributable latest

A For the Community and Commercial versions of MySQL Shell: Before installing
supported downloads) installed on your Windows system.

Requirements
MySQL Shell is available on Microsoft Windows, Linux, and macOS for 64-bit platforms.

It is recommended that you always use the most recent version available. The latest version of MySQL
Shell can be used with any GA version of MySQL 8.0, or higher.

2.1 Installing MySQL Shell on Microsoft Windows

To install MySQL Shell on Microsoft Windows using the MSI Installer, do the following:

1. Download the Windows (x86, 64-bit), MSI Installer package from http://dev.mysqgl.com/
downloads/shell/.

2. When prompted, click Run.

3. Follow the steps in the Setup Wizard.

2.2 Installing MySQL Shell on Linux

Note
@ Installation packages for MySQL Shell are available only for a limited number of
Linux distributions, and only for 64-bit systems.

For supported Linux distributions, the easiest way to install MySQL Shell on Linux is to use the MySQL

APT repository or MySQL Yum repository. For systems not using the MySQL repositories, MySQL
Shell can also be downloaded and installed directly.

Installing MySQL Shell with the MySQL APT Repository

For Linux distributions supported by the MySQL APT repository, follow one of the paths below:

https://dev.mysql.com/doc/refman/9.4/en/document-store.html
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170
http://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/

Installing MySQL Shell with the MySQL Yum Repository

« If you do not yet have the MySQL APT repository as a software repository on your system, do the
following:

» Follow the steps given in Adding the MySQL APT Repository, paying special attention to the
following:

« During the installation of the configuration package, when asked in the dialogue box to configure
the repository, make sure you choose MySQL 9.4 as the release series you want.

« Make sure you do not skip the step for updating package information for the MySQL APT
repository:

sudo apt-get update
* Install MySQL Shell with this command:
sudo apt-get install nysqgl-shel

« If you already have the MySQL APT repository as a software repository on your system, do the
following:

« Update package information for the MySQL APT repository:
sudo apt-get update

» Update the MySQL APT repository configuration package with the following command:
sudo apt-get install nysqgl-apt-config

When asked in the dialogue box to configure the repository, make sure you choose MySQL 9.4 as
the release series you want.

« Install MySQL Shell with this command:

sudo apt-get install nysql-shel

Installing MySQL Shell with the MySQL Yum Repository

For Linux distributions supported by the MySQL Yum repository, follow these steps to install MySQL
Shell:

» Do one of the following:

« If you already have the MySQL Yum repository as a software repository on your system and the
repository was configured with the new release package nysql 94- communi ty-r el ease.

« If you already have the MySQL Yum repository as a software repository on your system but have
configured the repository with the old release package nmysql - communi ty-r el ease, it is easiest
to install MySQL Shell by first reconfiguring the MySQL Yum repository with the new nysql 94-
conmuni ty-r el ease package. To do so, you need to remove your old release package first,
with the following command :

sudo yum renove nysql - conmuni ty-rel ease

For dnf-enabled systems, do this instead:

sudo dnf erase nysqgl -community-rel ease

Then, follow the steps given in Adding the MySQL Yum Repository to install the new release
package, nysql 94- conmuni ty-r el ease.

« If you do not yet have the MySQL Yum repository as a software repository on your system, follow
the steps given in Adding the MySQL Yum Repository.

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#apt-repo-setup
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup

Installing MySQL Shell from Direct Downloads from the MySQL Developer Zone

Install MySQL Shell with this command:

sudo yuminstall nysql-shel

For dnf-enabled systems, do this instead:

sudo dnf install mysql-shel

Installing MySQL Shell from Direct Downloads from the MySQL Developer

Zone

RPM, Debian, and source packages for installing MySQL Shell are also available for download at
Download MySQL Shell.

2.3 Installing MySQL Shell on macOS

To install MySQL Shell on macOS, do the following:

1.

2.

3.

Download the package from http://dev.mysqgl.com/downloads/shell/.
Double-click the downloaded DMG to mount it. Finder opens.
Double-click the . pkg file shown in the Finder window.

Follow the steps in the installation wizard.

When the installer finishes, eject the DMG. (It can be deleted.)

https://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/

Table of Contents

3.1 MySQL Shell COMMANGS .. .cooutiiiiiiii ettt e e et e e ettt e e e e eatreeeebtaeeeeteaaaees

Chapter 3 Using MySQL Shell Commands

This section describes the commands which configure MySQL Shell from the interactive code editor.
The commands enable you to control the MySQL Shell regardless of the current language being used.
For example you can get online help, connect to servers, change the current language being used,

run reports, use utilities, and so on. These commands are sometimes similar to the MySQL Shell
settings which can be configured using the nysql sh command options, see Appendix A, MySQL Shell

Command Reference.

3.1 MySQL Shell Commands

MySQL Shell provides commands which enable you to modify the execution environment of the code
editor, for example to configure the active programming language or a MySQL Server connection. The
following table lists the commands that are available regardless of the currently selected language.

As commands need to be available independent of the execution mode, they start with an escape

sequence, the \ character.

Command Alias/Shortcut Description

\ hel p \hor\? Print help about MySQL Shell, or
search the online help.

\quit \gor\exit Exit MySQL Shell.

\ In SQL mode, begin multiple-
line mode. Code is cached and
executed when an empty line is
entered.

\'status \'s Show the current MySQL Shell
status.

\js Switch execution mode to
JavaScript.

\ py Switch execution mode to
Python.

\ sql Switch execution mode to SQL.

\ connect \c Connect to a MySQL instance.

\reconnect Reconnect to the same MySQL
instance.

\ di sconnect Disconnect the global session.

\use \u Specify the schema to use.

\ source \. or sour ce (no backslash) Execute a script file using the
active language.

\ war ni ngs \W Show any warnings generated by
a statement.

\ nowar ni ngs \'w Do not show any warnings

generated by a statement.

\ hi story

View and edit command line
history.

Help Command

Command Alias/Shortcut Description

\rehash Manually update the
autocomplete name cache.

\option Query and change MySQL Shell
configuration options.

\ show Run the specified report using
the provided options and
arguments.

\'wat ch Run the specified report using

the provided options and
arguments, and refresh the
results at regular intervals.

\edit \e Open a command in the default
system editor then present it in
MySQL Shell.

\ pager \P Configure the pager which
MySQL Shell uses to display
text.

\ nopager Disable any pager which MySQL
Shell was configured to use.

\ system \! Run the specified operating
system command and display
the results in MySQL Shell.

\query_attributes Enables you to define query
attributes for your SQL queries.
The MySQL Shell functionality
is identical to that of the MySQL
client.

Help Command

The \ hel p command can be used with or without a parameter. When used without a parameter a
general help message is printed including information about the available MySQL Shell commands,
global objects and main help categories.

When used with a parameter, the parameter is used to search the available help based on the mode
which the MySQL Shell is currently running in. The parameter can be a word, a command, an API
function, or part of an SQL statement. The following categories exist:

* Adm nAPI - details the dba global object and the AdminAPI, which enables you to work with InnoDB
Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

» X DevAPI - details the nysql x module as well as the capabilities of the X DevAPI, which enable
you to work with MySQL as a Document Store

e Shel | Conmands - provides details about the available built-in MySQL Shell commands.

e Shel | API - contains information about the shel | and uti | global objects, as well as the nysq|l
module that enables executing SQL on MySQL Servers.

« SQL Synt ax - entry point to retrieve syntax help on SQL statements.

To search for help on a topic, for example an API function, use the function name as a pattern. You
can use the wildcard characters ? to match any single character and * to match multiple characters
in a search. The wildcard characters can be used one or more times in the pattern. The following
namespaces can also be used when searching for help:

10

Connect, Reconnect, and Disconnect Commands

+ dba for AdminAPI

* nysql x for X DevAPI

» nysql for ShellAPI for classic MySQL protocol

e shel | for other ShellAPI classes: Shel | , Sys, Opti ons

» commands for MySQL Shell commands

e cmdl i ne for the nysql sh command interface

For example to search for help on a topic, issue \ hel p pattern and:
» use x devapi to search for help on the X DevAPI

» use\ c to search for help on the MySQL Shell \ connect command

» use get Cl ust er ordba. get C ust er to search for help on the AdminAPI dba. get Cl uster ()
operation

» use Tabl e or mysql x. Tabl e to search for help on the X DevAPI Tabl e class

» when MySQL Shell is running in JavaScript mode, use i sVi ew, Tabl e. i sVi ewor
nysql x. Tabl e. i sVi ewto search for help on the i sVi ew function of the Tabl e object

* when MySQL Shell is running in Python mode, use i s_vi ew, Tabl e. i s_vi ewor
nysql x. Tabl e. i s_vi ewto search for help on the i sVi ewfunction of the Tabl e object

» when MySQL Shell is running in SQL mode, if a global session to a MySQL server exists SQL help is
displayed. For an overview use sql synt ax as the search pattern.

Depending on the search pattern provided, one or more results could be found. If only one help topic
contains the search pattern in its title, that help topic is displayed. If multiple topic titles match the
pattern but one is an exact match, that help topic is displayed, followed by a list of the other topics with
pattern matches in their titles. If no exact match is identified, a list of topics with pattern matches in their
titles is displayed. If a list of topics is returned, you can select a topic to view from the list by entering
the command again with an extended search pattern that matches the title of the relevant topic.

Connect, Reconnect, and Disconnect Commands

The \ connect command is used to connect to a MySQL Server. See Section 4.3, “MySQL Shell
Connections”.

For example:
\ connect root @ ocal host: 3306
If a password is required you are prompted for it.

Use the - - mysql x (- - nx) option to create a session using the X Protocol to connect to MySQL server
instance. For example:

\ connect --mnysqgl x root @ ocal host: 33060

Use the - - mysql (- - nt) option to create a ClassicSession, enabling you to use classic MySQL
protocol to issue SQL directly on a server. For example:

\ connect --nmnysql root @ ocal host: 3306

Use the - - ssh option to create or reuse an SSH tunnel that provides an encrypted connection to the
MySQL server instance. The use of AdminAPI commands is not supported over connections made

11

Status Command

from MySQL Shell using SSH tunneling. Supply the URI for connection to the SSH server in the format
[user @ host nane[: port], followed by the MySQL instance URI, for example:

\ connect --ssh root @98.51. 100. 4: 2222 r oot @ ocal host : 3306

When you use the - - ssh option, the port for connection to the MySQL server instance must be
specified in the MySQL instance URI.

An SSH tunnel set up using the \ connect command must use the default SSH configuration file

and identity file. For instructions to set these and further information on SSH tunnel connections from
MySQL Shell, see Section 4.3.7, “Using an SSH Tunnel”. You can set up an SSH tunnel using the
shel | . connect () method or on the command line to get additional setup options. Once established,
an SSH tunnel can be shared between connections to the same host from the same user connecting
from the same instance, whatever setup method was originally used.

The \ r econnect command is specified without any parameters or options. If the connection to

the server is lost, you can use the \ r econnect command, which makes MySQL Shell try several
reconnection attempts for the session using the existing connection parameters. If those attempts are
unsuccessful, you can make a fresh connection using the \ connect command and specifying the
connection parameters.

The \ di sconnect command, is also specified without any parameters or options. The command
disconnects MySQL Shell's global session (the session represented by the sessi on global object)
from the currently connected MySQL server instance, so that you can close the connection but still
continue to use MySQL Shell.

If the connection to the server is lost, you can use the \ r econnect command, which makes MySQL
Shell try several reconnection attempts for the session using the existing connection parameters. If
those attempts are unsuccessful, you can make a fresh connection using the \ connect command and
specifying the connection parameters.

Status Command

The \ st at us command displays information about the current global connection. This includes
information about the server connected to, the character set in use, uptime, and so on.

Source Command

The \ sour ce command or its alias \ . can be used in MySQL Shell's interactive mode to execute code
from a script file at a given path. For example:

\'source /tnp/nydata. sql

You can execute either SQL, JavaScript or Python code. The code in the file is executed using the
active language, so to process SQL code the MySQL Shell must be in SQL mode.

different language than the currently selected execution mode language could

Warning
O As the code is executed using the active language, executing a script in a
lead to unexpected results.

For compatibility with the mysqgl client, in SQL mode only, you can execute code from a script file
using the sour ce command with no backslash and an optional SQL delimiter. sour ce or the alias\ .
(which does not use an SQL delimiter) can be used both in MySQL Shell's interactive mode for SQL, to
execute a script directly, and in a file of SQL code processed in batch mode, to execute a further script
from within the file. So with MySQL Shell in SQL mode, you could now execute the script in the / t np/
nmydat a. sql file from either interactive mode or batch mode using any of these three commands:

source /tnp/ nydata. sql ;
source /tnp/ nydat a. sql

12

Use Command

\. /tnp/nydata.sq
The command \ source /tnp/ nydat a. sqgl is also valid, but in interactive mode only.

In interactive mode, the \ sour ce,\. or sour ce command itself is added to the MySQL Shell history,
but the contents of the executed script file are not added to the history.

Use Command

The \ use command enables you to choose which schema is active, for example:

\use schena_nane

The \ use command requires a global development session to be active. The \ use command sets
the current schema to the specified scherma_nane and updates the db variable to the object that
represents the selected schema.

History Command

The \ hi st ory command lists the commands you have issued previously in MySQL Shell. Issuing
\ hi st ory shows history entries in the order that they were issued with their history entry number,
which can be used with the \ hi st ory del ete entry_ nunber command.

The \ hi st or y command provides the following options:
* Use\history save to save the history manually.
e Use\history del ete entrynunber to delete the individual history entry with the given number.

* Use\history delete firstnunber-I|astnunber to delete history entries within the range
of the given entry numbers. If | ast nunber goes past the last found history entry number, history
entries are deleted up to and including the last entry.

* Use\history del ete nunber - to delete the history entries from nunber up to and including the
last entry.

e Use\history del ete -nunber to delete the specified number of history entries starting with
the last entry and working back. For example, \ hi st ory del et e - 10 deletes the last 10 history
entries.

* Use\history clear to delete the entire history.

The history is not saved between sessions by default, so when you exit MySQL Shell the history of
what you issued during the current session is lost. If you want to keep the history across sessions,
enable the MySQL Shell hi st ory. aut oSave option. For more information, see Section 5.5, “Code
History”.

Rehash Command

When you have disabled the autocomplete name cache feature, use the \ r ehash command to
manually update the cache. For example, after you load a new schema by issuing the \ use schena
command, issue \ r ehash to update the autocomplete name cache. After this autocomplete is aware
of the names used in the database, and you can autocomplete text such as table names and so on.
See Section 5.3, “Code Autocompletion”.

Option Command

The \ opt i on command enables you to query and change MySQL Shell configuration options in
all modes. You can use the \ opt i on command to list the configuration options that have been set
and show how their value was last changed. You can also use it to set and unset options, either for

13

Pager Commands

the session, or persistently in the MySQL Shell configuration file. For instructions and a list of the
configuration options, see Section 14.4, “Configuring MySQL Shell Options”.

Pager Commands

You can configure MySQL Shell to use an external pager to read long onscreen output, such as the
online help or the results of SQL queries. See Section 4.7, “Using a Pager”.

Show and Watch Commands

The \ show command runs the named report, which can be either a built-in MySQL Shell report or a
user-defined report that has been registered with MySQL Shell. You can specify the standard options
for the command, and any options or additional arguments that the report supports. The \ wat ch
command runs a report in the same way as the \ show command, but then refreshes the results at
regular intervals until you cancel the command using Ctrl + C. For instructions, see Section 11.1.5,
“Running MySQL Shell Reports”.

Edit Command

The \ edit (\ €) command opens a command in the default system editor for editing, then presents
the edited command in MySQL Shell for execution. The command can also be invoked using the key
combination Ctrl-X Ctrl-E. For details, see Section 5.4, “Editing Code”.

System Command

The \ syst em(\ !) command runs the operating system command that you specify as an argument
to the command, then displays the output from the command in MySQL Shell. MySQL Shell returns
an error if it was unable to execute the command. The output from the command is returned as given
by the operating system, and is not processed by MySQL Shell's JSON wrapping function or by any
external pager tool that you have specified to display output.

guery_attributes Command

The query_attri but e command, and sessi on. set Quer yAttri but es method, enable you to
define query attributes for your SQL queries. The MySQL Shell functionality is identical to that of the
MySQL client.

Note
@ Setting query attributes is only supported on the classic MySQL protocol. It is
not supported for X protocol sessions.

For more information, see the following:
* Query Attributes
» mysql_bind_param()
* mysql Client Commands
Setting Query Attributes Example
The following examples set the attributes at t 1 and at t 2 with the values val 1 and val 2 respectively:

.« SQL

SQ.> \query_attributes attl vall att2 val 2

» JavaScript

14

https://dev.mysql.com/doc/refman/9.4/en/query-attributes.html
https://dev.mysql.com/doc/c-api/9.4/en/mysql-bind-param.html
https://dev.mysql.com/doc/refman/9.4/en/mysql-commands.html

query_attributes Command

JS> session.set QueryAttributes({attl:"val 1", att2: "val 2"})

e Python

PY> session.set_query_attributes({attl:"val 1", att2:"val 2"})

Retrieving Query Attributes Example

Attributes can be retrieved using the nysqgl _query_attri bute_string() function.

For example:
« SQL
SQ.> sel ect nysql _query_attribute_string("attl") as "Attribute 1", nysql _query_ attribute_string("att:

e cccocccmoe== e cccoccemoe== +
| Attribute 1 | Attribute 2 |
e cccocccmoe== e cccoccemoe== +
| vi | v2 |
e cccocccmoe== e cccoccemoe== +

» JavaScript

JS> session.runSql ("sel ect nysql _query_attribute_string("attl") as "Attribute 1",

nysql _query_attri bt
doococcocoocooo doococcocoocooo +
| Attribute 1 | Attribute 2 |
doococcocoocooo doococcocoocooo +
| vi1 | v2 [
doococcocoocooo doococcocoocooo +

15

https://dev.mysql.com/doc/refman/9.4/en/query-attributes.html#function_mysql-query-attribute-string

16

Chapter 4 Getting Started with MySQL Shell

Table of Contents

4.1 Starting MySQL ShEllccouiiiii e e e e 17
4.2 MYSQL ShEll SESSIONS .. cvuiiiiiiiiii e e e e e e e e e e e aaa 17
4.2.1 Creating the Sessi on Global Object While Starting MySQL Shellc..coeieviienns 19
4.2.2 Creating the Sessi on Global Object After Starting MySQL Shellccoooviiveinn. 20
4.2.3 Scripting Sessions in JavaScript and Python Modeccooovviieiiiiinicc e, 20
4.3 MySQL Shell CONNECHIONS .. .cuuiiiiieiiie e e e e e e e e e e e e e et s e e e e e e e e et e eeanaeees 22
4.3.1 Connecting using Individual Parametersccuoiiiiiiiiiiiieie e e 24
4.3.2 Connecting using login-path and Options Filescccocoii i, 25
4.3.3 Connecting using Unix Sockets and Windows Named Pipesccccocciviviiieiiinnciiieeennnn, 26
4.3.4 Using Encrypted CONNECHONSccuuiiii i e e e e e e e e e e e e e aan s 27
4.3.5 Using LDAP and Kerberos AuthentiCationccoovuuiiiiiiiiiiiiiii e e 28
4.3.6 USING OPENID CONNECL .. ivuiiiiiieei et e e e e e e e e et e e et e e e e e et e e e eeeneees 32
4.3.7 USING AN SSH TUNNEI . .oeeii e e e e e e aans 33
4.3.8 Using CompressSed CONNECHIONSuiiitieiii e eeeieeeie e e e e e e e e e e e e e e eat e eanaeees 35
4.4 Pluggable PasSWOrd SEOTEcccuuiiiiiiiiiiie e e e e e e e e e r e e e et e e et e e e e e et e e e eeaneeeen 38
4.4.1 Pluggable Password Configuration OptioNScoeeviiiiiiiiiiiiicii e 39
4.4.2 Working With Credentialscccouiiiiiiii e e 40
R 1=t 1= (oS Tor) A (o] - Vo [P 40
4.6 MySQL Shell GIobal ObJECLSuiiiiiiiii i e e e e e e e e et e e e e eanes 42
A U 7 o To T T Vo [S 42
4.8 Cloud Service CONfIQUIALIONccuuiiiii e e e e e e e e e e e e et e e et e e e e eanas 43
4.8.1 Oracle Cloud Infrastructure ODbjJECt STOragecocvvuiiiiiiiiiiii e e 43
4.8.2 S3-COoMPALtiDIE SOrAQE ... ovvniiiiieii e e 45
IR VU | (T = (o] o IS (o] - T [49
4.9 OCI Authentication ConNECtioN OPLIONSuiiiiiiii e e e e e r e e e e e eaneees 50

This section describes how to get started with MySQL Shell, explaining how to connect to a MySQL
server instance, and how to choose a session type.

Important

latest version of MySQL Shell can be used with any GA version of MySQL 8.0,

A It is recommended that you always use the most recent version available. The
or higher.

4.1 Starting MySQL Shell

When MySQL Shell is installed you have the nysqgl sh command available. Open a terminal window
(command prompt on Windows) and start MySQL Shell by issuing:

> nysql sh

This opens MySQL Shell without connecting to a server, by default in SQL mode. You change mode
using the\ sqgl ,\ py, and \ j s commands.

4.2 MySQL Shell Sessions

In MySQL Shell, connections to MySQL Server instances are handled by a session object. The
following types of session object are available:

» Sessi on: Use this session object type for new application development to communicate with
MySQL Server instances where X Protocol is available. X Protocol offers the best integration with

17

MySQL Shell Sessions

MySQL Server. For X Protocol to be available, X Plugin must be installed and enabled on the
MySQL Server instance, which it is by default from MySQL 8.0. X Plugin listens to the port specified
by mysql x_port, which defaults to 33060, so specify this port with connections using a Sessi on.

» (Cl assi cSessi on: Use this session object type to interact with MySQL Server instances that
do not have X Protocol available. This object is intended for running SQL against servers using
classic MySQL protocol. The development API available for this kind of session is very limited. For
example, there are none of the X DevAPI CRUD operations, no collection handling, and binding is
not supported. For development, prefer Sessi on objects whenever possible.

Important

A Cl assi cSessi on is specific to MySQL Shell and cannot be used with other
implementations of X DevAPI, such as MySQL Connectors.

When you make the first connection to a MySQL Server instance, which can be done either while
starting MySQL Shell or afterwards, a MySQL Shell global object named sessi on is created to
represent this connection. This particular session object is global because once created, it can be
used in all of the MySQL Shell execution modes: SQL mode, JavaScript mode, and Python mode. The
connection it represents is therefore referred to as the global session. The variable sessi on holds

a reference to this session object, and can be used in MySQL Shell in JavaScript mode and Python
mode to work with the connection.

The sessi on global object can be either the Sessi on type of session object or the Cl assi cSessi on
type of session object, according to the protocol you select when making the connection to a MySQL
Server instance. You can choose the protocol, and therefore the session object type, using a command
option, or specify it as part of the connection data that you provide. To see information about the
current global session, issue:

nysql-js []> session

<Cl assi cSessi on: user @xanpl e. com 3330>

When the global session is connected, this shows the session object type and the address of the
MySQL Server instance to which the global session is connected.

If you choose a protocol explicitly or indicate it implicitly when making a connection, MySQL Shell
tries to create the connection using that protocol, and returns an error if this fails. If your connection
parameters do not indicate the protocol, MySQL Shell first tries to make the connection using classic
MySQL protocol (returning the Sessi on type of session object), and if this fails, tries to make the
connection using X Protocol.

To verify the results of your connection attempt, use MySQL Shell's \ st at us command or the

shel | . st at us() method. These display the connection protocol and other information about the
connection represented by the sessi on global object, or return “Not Connected” if the sessi on global
object is not connected to a MySQL server. For example:

nmysql-js []> shell.status()
MySQL Shell version 8.1.0-conmerci al

Connection |d: 9

Current schema:

Current user: root @ ocal host

SSL: Cipher in use: TLS AES 256 _GCM SHA384 TLSv1. 3
Using delimter: ;

Server version: 8.1.0-comercial MySQL Enterprise Server - Conmmerci al
Prot ocol versi on: Classic 10

Client library: 8.1.0

Connecti on: | ocal host via TCP/IP

TCP port: 3306

Server characterset: ut f 8nb4

Schema char act erset : ut f 8nb4

Client characterset: ut f 8nb4

Conn. characterset: ut f 8nb4

18

https://dev.mysql.com/doc/refman/9.4/en/x-plugin-options-system-variables.html#sysvar_mysqlx_port

Creating the Sessi on Global Object While Starting MySQL Shell

Resul t characterset: ut f 8nb4
Conpr essi on: Di sabl ed
Upt i ne: 9 hours 42 nmin 5.0000 sec

Threads: 2 Questions: 61 Slow queries: 0 Opens: 176 Flush tables: 3 Open tables: 95 CQueries per s

This section focuses on explaining the session objects that represent connections to MySQL Server
instances, and the sessi on global object. For full instructions and examples for each of the ways
mentioned in this section to connect to MySQL Server instances, and the other options that are
available for the connections, see Section 4.3, “MySQL Shell Connections”.

4.2.1 Creating the Sessi on Global Object While Starting MySQL Shell

When you start MySQL Shell from the command line, you can specify connection parameters using
separate command options for each value, such as the user name, host, and port. For instructions
and examples to start MySQL Shell and connect to a MySQL Server instance in this way, see
Section 4.3.1, “Connecting using Individual Parameters”. When you use this connection method,
you can add one of these options to choose the type of session object to create at startup to be the
sessi on global object:

* --nysql x (- - nx) creates a Sessi on object, which connects to the MySQL Server instance using X
Protocol.

e --mysql (--nt)creates a Cl assi cSessi on object, which connects to the MySQL Server instance
using classic MySQL protocol.

For example, this command starts MySQL Shell and establishes an X Protocol connection to a local
MySQL Server instance listening at port 33060:

$> nysql sh --nysgl x -u user -h |ocal host -P 33060

If you are starting MySQL Shell in SQL mode, the - - sql x and - - sql ¢ options include a choice of
session object type, so you can specify one of these instead to make MySQL Shell use X Protocol or
classic MySQL protocol for the connection. For a reference for all the mysql sh command line options,
see Section A.1, “mysqlsh — The MySQL Shell”.

As an alternative to specifying the connection parameters using individual options, you can specify
them using a URI-like connection string. You can pass in this string when you start MySQL Shell from
the command line, with or without using the optional - - ur i command option. When you use this
connection method, you can include the scheme element at the start of the URI-like connection string
to select the type of session object to create. mysql x creates a Sessi on object using X Protocol,

or nysql creates a Cl assi cSessi on object using classic MySQL protocol. For example, either of
these commands uses a URI-like connection string to start MySQL Shell and create a classic MySQL
protocol connection to a local MySQL Server instance listening at port 3306:

$> nysql sh --uri nysql://user @ ocal host: 3306
$> nysql sh nysql : //user @ ocal host : 3306

You can also specify the connection protocol as an option rather than as part of the URI-like connection
string, for example:

$> nysql sh --nysql --uri user @ ocal host: 3306

For instructions and examples to connect to a MySQL Server instance in this way, see Connecting to
the Server Using URI-Like Strings or Key-Value Pairs.

You may omit the connection protocol and let MySQL Shell automatically detect it based on your
other connection parameters. For example, if you specify port 33060 and there is no option stating
the connection protocol, MySQL Shell attempts to make the connection using X Protocol. If your
connection parameters do not indicate the protocol, MySQL Shell first tries to make the connection
using classic MySQL protocol, and if this fails, tries to make the connection using X Protocol.

19

https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html

Creating the Sessi on Global Object After Starting MySQL Shell

4.2.2 Creating the Sessi on Global Object After Starting MySQL Shell

If you started MySQL Shell without connecting to a MySQL Server instance, you can use MySQL
Shell's\ connect command or the shel | . connect () method to initiate a connection and create the
sessi on global object. Alternatively, the shel | . get Sessi on() method returns the sessi on global
object.

MySQL Shell's\ connect command is used with a URI-like connection string, as described above and
in Connecting to the Server Using URI-Like Strings or Key-Value Pairs. You can include the schene
element at the start of the URI-like connection string to select the type of session object to create, for
example:

nysql -j s> \connect nysql x://user @ ocal host : 33060

Alternatively, you can omit the schene element and use the command's - - nysql x (- - mx) option to
create a Sessi on object using X Protocol, or - - mysql (- - nt) to create a Cl assi cSessi on object
using classic MySQL protocol. For example:

nysqgl -j s> \connect --nysql x user @ ocal host: 33060

The shel | . connect () method can be used in MySQL Shell as an alternative to the \ connect
command to create the sessi on global object. This connection method can use a URI-like connection
string, with the selected protocol specified as the schene element. For example:

nysql -j s> shel | . connect (' nysql x: // user @ ocal host: 33060')

With the shel | . connect () method, you can also specify the connection parameters using key-
value pairs, supplied as a JSON object in JavaScript or as a dictionary in Python. The selected protocol
(mysgl x or nysql) is specified as the value for the schene key. For example:

nysql -j s> shel | . connect ({schene: ' nysqgl x', user:'user', host:'local host', port: 33060})

For instructions and examples to connect to a MySQL Server instance in these ways, see Connecting
to the Server Using URI-Like Strings or Key-Value Pairs.

You may omit the connection protocol and let MySQL Shell automatically detect it based on your other
connection parameters, such as specifying the default port for the protocol. To verify the protocol that
was used for a connection, use MySQL Shell's \ st at us command or the shel | . st at us() method.

If you use the \ connect command or the shel | . connect () method to create a new connection
when the sessi on global object already exists (either created during startup or afterwards), MySQL
Shell closes the existing connection represented by the sessi on global object. This is the case even
if you assign the new session object created by the shel | . connect () method to a different variable.
The value of the sessi on global object (referenced by the sessi on variable) is still updated with the
new connection details. If you want to have multiple concurrent connections available, create these
using the alternative functions described in Section 4.2.3, “Scripting Sessions in JavaScript and Python
Mode”.

4.2.3 Scripting Sessions in JavaScript and Python Mode

You can use functions available in JavaScript and Python mode to create multiple session objects of
your chosen types and assign them to variables. These session objects let you establish and manage
concurrent connections to work with multiple MySQL Server instances, or with the same instance in
multiple ways, from a single MySQL Shell instance.

Functions to create session objects are available in the nysql x and nmysql JavaScript and

Python modules. These modules must be imported before use, which is done automatically when
MySQL Shell is used in interactive mode. The function mysql x. get Sessi on() opens an X
Protocol connection to a MySQL Server instance using the specified connection data, and returns a
Sessi on object to represent the connection. The functions nysql . get Cl assi cSessi on() and

20

https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html

Scripting Sessions in JavaScript and Python Mode

nysqgl . get Sessi on() open a classic MySQL protocol connection to a MySQL Server instance using
the specified connection data, and return a Cl assi cSessi on object to represent the connection.
With these functions, the connection protocol that MySQL Shell uses is built into the function rather
than being selected using a separate option, so you must choose the appropriate function to match the

correct protocol for the port.

MySQL Shell provides the openSessi on() method in the shel | global object, which can be used in
either JavaScript or Python mode. shel | . openSessi on() works with both X Protocol and classic
MySQL protocol. You specify the connection protocol as part of the connection data, or let MySQL
Shell automatically detect it based on your other connection parameters (such as the default port

number for the protocol).

The connection data for all these functions can be specified as a URI-like connection string, or as

a dictionary of key-value pairs. You can access the returned session object using the variable to
which you assign it. This example shows how to open a classic MySQL protocol connection using the
nysqgl . get Cl assi cSessi on() function, which returns a Cl assi cSessi on object to represent the

connection:

nysql -j s> var sl = nysql.getCl assi cSessi on(' user @ ocal host: 3306,

nysql -j s> sl

<Cl assi cSessi on: user @ ocal host : 3306>

' password');

This example shows how to use shel | . openSessi on() in Python mode to open an X Protocol
connection with compression required for the connection. A Sessi on object is returned:

nmysql - py> s2 = shel | .open_session(' nysql x://user @ ocal host: 33060?conpr essi on=requi red', 'password')

nysql - py> s2

<Sessi on: user @ ocal host : 33060>

Session objects that you create in JavaScript mode using these functions can only be used in

JavaScript mode, and the same happens if the session object is created in Python mode. You cannot
create multiple session objects in SQL mode. Although you can only reference session objects using
their assigned variables in the mode where you created them, you can use the shel | . set Sessi on()
method in any mode to set as the sessi on global object a session object that you have created and
assigned to a variable. For example:

nysql -j s> var s3 = nysqgl x. get Sessi on(' user @ ocal host: 33060,

nysql -j s> s3

<Sessi on: user @ ocal host : 33060>

nysql -j s> shel | . set Sessi on(s3);

<Sessi on: user @ ocal host : 33060>

nysql -j s> session

<Sessi on: user @ ocal host : 33060>

nysql -j s> shel | .status();
shel | . status()

M/SQL Shel | version 8.1.0-conmerci al

Connection |d:
Current schema:
Current user:

SSL:

Using delimter:
Server version:

Pr ot ocol versi on:
Cient library:
Connecti on:

TCP port:

Server characterset:
Schema char act er set :
Client characterset:
Conn. characterset:
Resul t characterset:
Conpr essi on:

Upt i nme:

Threads: 2 Questions: 61

9

r oot @ ocal host

' password');

Ci pher in use: TLS AES 256_GCM SHA384 TLSv1. 3

8.1.0-comercial MySQL Enterprise Server - Conmerci al

Classic 10

8.1.0

| ocal host via TCP/IP
3306

ut f 8nb4

ut f 8nb4

ut f 8nb4

ut f 8nb4

ut f 8nb4

Di sabl ed

9 hours 42 nmin 5.0000 sec

Sl ow queries: 0 Opens: 176 Flush tables:

3 Open tables:

95 CQueries per s

21

MySQL Shell Connections

The session object s3 is now available using the sessi on global object, so the X Protocol connection
it represents can be accessed from any of MySQL Shell's modes: SQL mode, JavaScript mode, and
Python mode. Details of this connection can also now be displayed using the shel | . st at us()
method, which only displays the details for the connection represented by the sessi on global object.
If the MySQL Shell instance has one or more open connections but none of them are set as the

sessi on global object, the shel | . st at us() method returns “Not Connected”.

A session object that you set using shel | . set Sessi on() replaces any existing session object
that was set as the sessi on global object. If the replaced session object was originally created and
assigned to a variable using one of the mysqgl x or nysql functions or shel | . openSessi on(), it
still exists and its connection remains open. You can continue to use this connection in the MySQL
Shell mode where it was originally created, and you can make it into the sessi on global object
again at any time using shel | . set Sessi on() . If the replaced session object was created with the
shel | . connect () method and assigned to a variable, the same is true. If the replaced session
object was created while starting MySQL Shell, or using the \ connect command, or using the

shel | . connect () method but without assigning it to a variable, its connection is closed, and you
must recreate the session object if you want to use it again.

4.3 MySQL Shell Connections

MySQL Shell can connect to MySQL Server using both X Protocol and classic MySQL protocol. You
can specify the MySQL server instance to which MySQL Shell connects globally in the following ways:

* When you start MySQL Shell, using the command parameters. See Section 4.3.1, “Connecting using
Individual Parameters”.

* When MySQL Shell is running, using the \ connect i nst ance command. See Section 3.1,
“MySQL Shell Commands”.

« When running in Python or JavaScript mode, using the shel | . connect () method.

These methods of connecting to a MySQL server instance create the global session, which is a
connection that can be used in all of the MySQL Shell execution modes: SQL mode, JavaScript mode,
and Python mode. A MySQL Shell global object named sessi on represents this connection, and

the variable sessi on holds a reference to it. You can also create multiple additional session objects
that represent other connections to MySQL server instances, by using the shel | . openSessi on(),
nysql x. get Sessi on(), mysql . get Sessi on(), ormysql . get C assi cSessi on() function.
These connections can be used in the modes where you created them, and one of them at a time

can be assigned as MySQL Shell's global session so it can be used in all modes. For an explanation
of session objects, how to operate on the global session, and how to create and manage multiple
connections from a MySQL Shell instance, see Section 4.2, “MySQL Shell Sessions”.

All these different ways of connecting to a MySQL server instance support specifying the connection as
follows:

» Parameters specified with a URI-like string use a syntax such as nyuser @xanpl e. com 3306/
mai n- schema. For the full syntax, see Connecting Using URI-Like Connection Strings.

» Parameters specified with key-value pairs use a syntax such as { user : ' myuser ',
host: ' exanpl e. com , port: 3306, schema:' nmai n-schema'}. These key-value pairs
are supplied in language-natural constructs for the implementation. For example, you can supply
connection parameters using key-value pairs as a JSON object in JavaScript, or as a dictionary in
Python. For the full syntax, see Connecting Using Key-Value Pairs.

See Connecting to the Server Using URI-Like Strings or Key-Value Pairs for more information.
Important

A Regardless of how you choose to connect it is important to understand
how passwords are handled by MySQL Shell. By default connections are

22

https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-uri
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-key-value-pairs
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html

MySQL Shell Connections

assumed to require a password. The password (which has a maximum

length of 128 characters) is requested at the login prompt, and can be stored
using Section 4.4, “Pluggable Password Store”. If the user specified has a
passwordless account, which is insecure and not recommended, or if socket
peer-credential authentication is in use (for example when using Unix socket
connections), you must explicitly specify that no password is provided and the
password prompt is not required. To do this, use one of the following methods:

« If you are connecting using a URI-like connection string, place a : after the
user in the string but do not specify a password after it.

« If you are connecting using key-value pairs, provide an empty string using
after the passwor d key.

« If you are connecting using individual parameters, either specify the - - no-
passwor d option, or specify the - - passwor d= option with an empty value.

If you do not specify parameters for a connection the following defaults are used:
» user defaults to the current system user name.
* host defaultsto| ocal host .

e port defaults to the X Plugin port 33060 when using an X Protocol connection, and port 3306 when
using a classic MySQL protocol connection.

To configure the connection timeout use the connect - t i meout connection parameter. The value
of connect -t i neout must be a non-negative integer that defines a time frame in milliseconds. The
timeout default value is 10000 milliseconds, or 10 seconds. For example:

/] Decrease the tineout to 2 seconds.
nysql -j s> \connect user @xanpl e. conconnect -ti neout =2000
/1l Increase the tineout to 20 seconds
nysql -j s> \connect user @xanpl e. conconnect -ti neout =20000

To disable the timeout set the value of connect -t i neout to 0, meaning that the client waits until the
underlying socket times out, which is platform dependent.

Certain operations that open many connections to servers can take a long time to execute when one
or more servers are unreachable, for example, the shel | . connect () command. The connection
timeout may not provide enough time for a response.

You can use the MySQL Shell configuration option connect Ti neout to set the default connection
timeout for any session not using AdminAPI.

Instead of a TCP connection, you can connect using a Unix socket file or a Windows named pipe. For
instructions, see Section 4.3.3, “Connecting using Unix Sockets and Windows Named Pipes”.

If the MySQL server instance supports encrypted connections, you can enable and configure the
connection to use encryption. For instructions, see Section 4.3.4, “Using Encrypted Connections”.

The use of LDAP and Kerberos authentication is supported for classic MySQL protocol connections.
For instructions to use these, see Section 4.3.5, “Using LDAP and Kerberos Authentication”.

MySQL Shell supports SSH tunneling to connect to MySQL server instances. For instructions, see
Section 4.3.7, “Using an SSH Tunnel”.

You can also request that the connection uses compression for all data sent between the MySQL Shell
and the MySQL server instance. For instructions, see Section 4.3.8, “Using Compressed Connections”.

If the connection to the server is lost, you can use the \ r econnect command, which makes MySQL
Shell try several reconnection attempts for the current global session using the existing connection

23

Connecting using Individual Parameters

parameters. The \ r econnect command is specified without any parameters or options. If those
attempts are unsuccessful, you can make a fresh connection using the \ connect command and
specifying the connection parameters.

4.3.1 Connecting using Individual Parameters

In addition to specifying connection parameters using a connection string, it is also possible to define
the connection data when starting MySQL Shell using separate command parameters for each value.
For a full reference of MySQL Shell command options see Section A.1, “mysqglsh — The MySQL Shell”.

Use the following connection related parameters:
e --user (-u)val ue

e --host (-h)val ue

e --port (-P)val ue

e --schem or - - dat abase (- D) val ue

e --socket (-S)

The command options behave similarly to the options used with the nysql client described at
Connecting to the MySQL Server Using Command Options.

Use the following command options to control whether and how a password is provided for the
connection:

* --password=passwor d (- ppasswor d) with a value supplies a password (up to 128 characters) to
be used for the connection. With the long form - - passwor d=, you must use an equal sign and not a
space between the option and its value. With the short form - p, there must be no space between the
option and its value. If a space is used in either case, the value is not interpreted as a password and
might be interpreted as another connection parameter.

Specifying a password on the command line should be considered insecure. See End-User
Guidelines for Password Security. You can use an option file to avoid giving the password on the
command line.

e --passwor d with no value and no equal sign, or - p without a value, requests the password prompt.

* --no0-password, or - - passwor d= with an empty value, specifies that the user is connecting
without a password. When connecting to the server, if the user has a passwordless account, which is
insecure and not recommended, or if socket peer-credential authentication is in use (for Unix socket
connections), you must use one of these methods to explicitly specify that no password is provided
and the password prompt is not required.

e --passwordl, - - passwor d2, and - - passwor d3, are the passwords for accounts that require
multifactor authentication. You can supply up to three passwords. The options work in the same way
as the --password option, and --passwordl is treated as equivalent to that option.

When parameters are specified in multiple ways, for example using both the - - uri option and
specifying individual parameters such as - - user , the following rules apply:

 If an argument is specified more than once the value of the last appearance is used.

* If both individual connection arguments and - - ur i are specified, the value of - - uri is taken as the
base and the values of the individual arguments override the specific component from the base URI-
like string.

For example to override user from the URI-like string:

$> nysql sh --uri user @ocal host: 33065 --user otheruser

24

https://dev.mysql.com/doc/refman/9.4/en/connecting.html
https://dev.mysql.com/doc/refman/9.4/en/password-security-user.html
https://dev.mysql.com/doc/refman/9.4/en/password-security-user.html

Connecting using login-path and Options Files

Connections from MySQL Shell to a server can be encrypted, and can be compressed, if you request
these features and the server supports them. For instructions to establish an encrypted connection, see
Section 4.3.4, “Using Encrypted Connections”. For instructions to establish a compressed connection,
see Section 4.3.8, “Using Compressed Connections”.

The following examples show how to use command parameters to specify connections. Attempt to
establish an X Protocol connection with a specified user at port 33065:

$> nysql sh --nysql x -u user -h |ocal host -P 33065

Attempt to establish a classic MySQL protocol connection with a specified user, requesting
compression for the connection:

$> nysql sh --nysqgl -u user -h |ocal host -C

4.3.2 Connecting using login-path and Options Files

MySQL login paths and option files are supported. The following MySQL command line options are
supported at the start of the command line:

e --print-defaults

* --no-defaul ts

o --defaults-file

* --defaults-extra-file

* --defaul ts-group-suffix
e --login-path

MySQL Shell reads a section in the MySQL configuration file, [mysql sh], which contains the MySQL
Shell command line options.

MySQL Shell also reads the [cl i ent] section of the MySQL configuration file.

Note

@ Some [cl i ent] options are not supported by MySQL Shell, such as | ocal -
i nfil e, and some options have the same name in both, but take different
values, such asthe [cl i ent] option - - conpr ess and the [mysql sh] option
conpr ess=val ue.

MySQL Shell returns a specific error for such options, specifying the name of
the option and the error.

For information on option file locations, order of precedence on Windows and Linux platforms, and
option syntax, see Using Option Files. For information on login-path, see - - | ogi n- pat h.

For example, if you define the following in your options file, c: \ my. i ni for example:

[mysql sh]
sq

[client]

host =I ocal host
user =user 1
por t =3306

dat abase=saki | a

These options set the following:

25

https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_print-defaults
https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_defaults-extra-file
https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_defaults-group-suffix
https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_login-path
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_compress
https://dev.mysql.com/doc/refman/9.4/en/option-files.html
https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_login-path

Connecting using Unix Sockets and Windows Named Pipes

e sql : the default MySQL Shell mode, SQL.
* host =l ocal host : defines the host as localhost.
» user =user 1: defines the user as userl.
» port =3306: defines the connection port as 3306.
» dat abase=saki | a: defines the default schema as sakila.
Run nmysql sh without any connection string:
> nysql sh
MySQL Shel | 8.0.32-conmerci al

Copyright (c) 2016, 2022, Oracle and/or its affiliates.
Oacle is a registered trademark of Oracle Corporation and/or its affiliates.
O her nanmes may be trademarks of their respective owners.

Type '\help' or "\?' for help; '\quit' to exit.

Creating a Classic session to 'root @ocal host: 3306/ saki | a'

Fet chi ng gl obal nanes, object nanes from "sakila for auto-conpletion... Press ~C to stop.
Your MySQL connection id is 93

Server version: 8.0.31-commercial MySQ. Enterprise Server - Conmerci al

Default schena set to “sakila'.

| ocal host: 3306 ssl sakila SQ. >

Note
@ Options defined on the command line override all other values.

The order of precedence for MySQL Shell:
e Command line arguments

» Login path

» Option files

» Persisted Shell options

4.3.3 Connecting using Unix Sockets and Windows Named Pipes

On Unix, MySQL Shell connections default to using Unix sockets when the following conditions are
met:

» A TCP port is not specified.
» A host name is not specified or it is equal to | ocal host .
» The - - socket or - S option is specified, with or without a path to a socket file.

If you specify - - socket with no value and no equal sign, or - S without a value, the default Unix
socket file for the protocol is used. If you specify a path to an alternative Unix socket file, that socket file
is used.

If a host name is specified but it is not | ocal host, a TCP connection is established instead. In this
case, if a TCP port is not specified the default value of 3306 is used.

On Windows, for MySQL Shell connections using classic MySQL protocol, if you specify the host name
as a period (.), MySQL Shell connects using a named pipe.

« If you are connecting using a URI-like connection string, specify user @

26

Using Encrypted Connections

« If you are connecting using key-value pairs, specify { "host": "."}
« If you are connecting using individual parameters, specify - - host =. or-h .

By default, the pipe name My SQL is used. You can specify an alternative named pipe using the - -
socket option or as part of the URI-like connection string.

In URI-like strings, the path to a Unix socket file or Windows named pipe must be encoded, using either
percent encoding or by surrounding the path with parentheses. Parentheses eliminate the need to
percent encode characters such as the / directory separator character. If the path to a Unix socket file
is included in a URI-like string as part of the query string, the leading slash must be percent encoded,
but if it replaces the host name, the leading slash must not be percent encoded, as shown in the
following examples:

mysql -j s> \connect user @ ocal host ?socket =9%2Ft mp%2Fnysql . sock
nmysql -j s> \connect user @ ocal host ?socket =(/t np/ mysql . sock)
mysql -j s> \connect user @t mp%2Fnysql . sock

nmysql -j s> \connect user @/t np/ nysql . sock)

On Windows only, the named pipe must be prepended with the characters \ \ . \ as well as being either
encoded using percent encoding or surrounded with parentheses, as shown in the following examples:

(\\.\ naned: pi pe)
\'\. \ naned%3Api pe

Important

A On Windows, if one or more MySQL Shell sessions are connected to a MySQL
Server instance using a named pipe and you need to shut down the server, you
must first close the MySQL Shell sessions. Sessions that are still connected in
this way can cause the server to hang during the shutdown procedure. If this
does happen, exit MySQL Shell and the server will continue with the shutdown
procedure.

For more information on connecting with Unix socket files and Windows named pipes, see Connecting
to the MySQL Server Using Command Options and Connecting to the Server Using URI-Like Strings or
Key-Value Pairs.

4.3.4 Using Encrypted Connections

Using encrypted connections is possible when connecting to a TLS (sometimes referred to as SSL)
enabled MySQL server. Much of the configuration of MySQL Shell is based on the options used by
MySQL server, see Using Encrypted Connections for more information.

To configure an encrypted connection at startup of MySQL Shell, use the following command options:
» --ssl -node : This option specifies the desired security state of the connection to the server.

e --ssl-ca=fil e_nane: The path to a file in PEM format that contains a list of trusted SSL
Certificate Authorities.

» --ssl-capat h=di r _nane: The path to a directory that contains trusted SSL Certificate Authority
certificates in PEM format.

e --ssl-cert=file_nane: The name of the SSL certificate file in PEM format to use for
establishing an encrypted connection.

e --ssl -ci pher =nane: The name of the SSL cipher to use for establishing an encrypted connection.

» --ssl-key=fil e_nane: The name of the SSL key file in PEM format to use for establishing an
encrypted connection.

» --ssl-crl =nane: The path to a file containing certificate revocation lists in PEM format.

27

https://dev.mysql.com/doc/refman/9.4/en/connecting.html
https://dev.mysql.com/doc/refman/9.4/en/connecting.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-crl

Using LDAP and Kerberos Authentication

e --ssl-crl pat h=di r _nane: The path to a directory that contains files containing certificate
revocation lists in PEM format.

e --tls-ciphersuites=suites: The TLS cipher suites permitted for encrypted connections,
specified as a colon separated list of TLS cipher suite names. For example - -t | s-
ci phersuites=TLS DHE PSK W TH_AES 128 GCM SHA256: TLS CHACHA20_POLY1305_SHA256.

 --tls-version=version: The TLS protocols permitted for encrypted connections, specified as a
comma separated list. For example - -t | s-versi on=TLSv1. 2, TLSv1. 3.

From MySQL 8.0.28, the TLSv1 and TLSv1.1 protocols are not supported by MySQL Server, and
MySQL Shell cannot make a TLS/SSL connection with the protocol set to TLSv1 or TLSv1.1. If

you attempt to make a connection using TLS/SSL from any version of MySQL Shell to a MySQL
Server instance at 8.0.28 or above, and you specify the TLSv1 or TLSv1.1 protocol using the- -t | s-
ver si on option, you will see the following results:

» For TCP connections, the connection fails, and an error is returned to MySQL Shell.

¢ For socket connections, if - - ssl - node is set to REQUI RED, the connection fails. If - - ss| - nbde
is not set to REQUI RED, the connection is made but with TLS/SSL disabled.

The TLSv1 and TLSv1.1 protocols were deprecated from MySQL 8.0.26. For background, refer to
the IETF memo Deprecating TLSv1.0 and TLSv1.1. Make connections between MySQL Shell and
MySQL Server using the more-secure TLSv1.2 and TLSv1.3 protocols. TLSv1.3 requires that both
the MySQL server and the client application be compiled with OpenSSL 1.1.1 or higher. For more
information on the support for TLS protocol versions in MySQL Server releases, see Removal of
Support for the TLSv1 and TLSv1.1 Protocols.

Alternatively, the SSL options can be encoded as part of a URI-like connection string as part of the
query element. The available SSL options are the same as those listed above, but written without the
preceding hyphens. For example, ssl - ca is the equivalent of - - ssl - ca.

Paths specified in a URI-like string must be percent encoded, for example:

ssl user @27. 0. 0. 1?ssl - ca¥8D%2Fr oot ¥%2Fcl i ent cert %2Fca- cert . pen¥26ssl - cer t ¥“8DY2Fr o\
ot 9%2Fcl i ent cert 9%2Fcl i ent - cert . pen?26ssl - key¥8D¥2Fr oot %2Fcl i ent cert %2Fcl i ent - key
. pem

See Connecting to the Server Using URI-Like Strings or Key-Value Pairs for more information.

To establish an encrypted connection for a scripting session in JavaScript or Python mode, set the SSL
information in the connect i onDat a dictionary. For example:

nmysql -j s> var sessi on=nysqgl x. get Sessi on({host: 'l ocal host",
user: 'root',
password: ' password',
ssl _ca: "path_to_ca_ file",
ssl _cert: "path_to_cert_file",
ssl _key: "path_to_key file"});

Sessions created using mysql x. get Sessi on(), nysql . get Sessi on(), or

nysgl . get Cl assi cSessi on() use ssl - node=REQUI RED as the default if no ssl - node is
provided, and neither ssl - ca nor ssl - capat h is provided. If no ssl - node is provided and any of
ssl - ca or ssl - capat h is provided, created sessions default to ss| - node=VERI FY_CA.

See Connecting Using Key-Value Pairs for more information.

4.3.5 Using LDAP and Kerberos Authentication

MySQL Enterprise Edition supports authentication methods that enable MySQL Server to use LDAP
(Lightweight Directory Access Protocol), LDAP with Kerberos, or native Kerberos to authenticate
MySQL users. MySQL Shell supports both LDAP and Kerberos authentication for classic MySQL
protocol connections. This functionality is not supported for X Protocol connections.

28

https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-mode
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://dev.mysql.com/doc/refman/8.4/en/encrypted-connection-protocols-ciphers.html#encrypted-connection-deprecated-protocols
https://dev.mysql.com/doc/refman/8.4/en/encrypted-connection-protocols-ciphers.html#encrypted-connection-deprecated-protocols
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-key-value-pairs

Using LDAP and Kerberos Authentication

The sections that follow describe how to enable connections to MySQL server using LDAP and
Kerberos authentication. It is assumed that the server is running with the server-side plugin enabled
and that the client-side plugin is available on the client host.

e Simple LDAP Authentication
e SASL-Based LDAP Authentication
» GSSAPI/Kerberos Authentication Through LDAP SASL

» Kerberos Authentication
Simple LDAP Authentication

MySQL and LDAP work together to fetch user, credential, and group information. For an overview of
the simple LDAP authentication process, see How LDAP Authentication of MySQL Users Works. To
use simple LDAP authentication with MySQL Shell, the following conditions must be satisfied:

» A user account must be created on the MySQL server that is set up to communicate with the LDAP
server. The MySQL user must be identified with the aut henti cati on_| dap_si npl e server-side
plugin and optionally the LDAP user distinguished name (DN). For example:

CREATE USER ' adnin' @1 ocal host*
| DENTI FI ED W TH aut henti cati on_I| dap_si npl e
BY ' ui d=admi n, ou=Peopl e, dc=ny- domai n, dc=coni ;

The BY clause in this example indicates which LDAP entry the MySQL account authenticates
against. Specific attributes of the DN may vary depending on the LDAP server.

» MySQL Shell uses the client-side nysql _cl ear passwor d plugin, which sends the password
to the server as cleartext. No password hashing or encryption is used, so a secure connection
(using SSL or sockets) between the MySQL Shell and server is required. For more information, see
Section 4.3.4, “Using Encrypted Connections” or Section 4.3.3, “Connecting using Unix Sockets and
Windows Named Pipes”.

» To minimize the security risk, the nysql cl ear _passwor d plugin must be enabled explicitly by
setting the value of the - - aut h- met hod command-line option to cl ear _t ext passwordona
secure connection. For example, the following command permits you to establish a global session for
the user created in the previous example:

$> nysqgl sh adm n@ ocal host : 3308 - - aut h- net hod=cl ear _t ext _password
Pl ease provide the password for 'adm n@ ocal host: 3308': admi n_password (adm n LDAP password)

Note
@ You can also set the environment variable,

LI BMWSQL_ENABLE_CLEARTEXT_PLUG N, and enable the

mysqgl _cl ear _passwor d plugin for all client connections. However, this
method is inherently insecure and is hot recommended for any scenario
other than testing. For more information, see Client-Side Cleartext Pluggable
Authentication.

SASL-Based LDAP Authentication

MySQL Server is able to accept connections from users defined outside the MySQL grant tables in
LDAP directories. The client-side and server-side SASL LDAP plugins use SASL messages for secure
transmission of credentials within the LDAP protocol (see Using LDAP Pluggable Authentication).

For SASL-based authentication, the MySQL user must be identified with the
aut henti cation_I dap_sasl server-side plugin and optionally an LDAP entry the MySQL account
authenticates against. For example:

CREATE USER ' sammy' @ ocal host'

29

https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-process
https://dev.mysql.com/doc/refman/9.4/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.4/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage

Using LDAP and Kerberos Authentication

| DENTI FI ED W TH aut henti cati on_| dap_sasl
BY ' ui d=samy_| dap, ou=Peopl e, dc=ny- donai n, dc=comn ;

The aut henti cation_| dap_sasl client client-side plugin ships with the MySQL Server
packages rather than being built into the | i bnysql cl i ent client library. MySQL Shell provides the
persistent connection option shel | . opti ons. nysql Pl ugi nDi r that enables you to define where
the required plugin is located. Alternatively, you can override the persistent setting by specifying a

path with the non-persistent command-line option - - nysql - pl ugi n-di r. For example, the following
command permits you to establish a global session on a Linux host for the user created in the previous
example:

$> nysql sh sammy @ ocal host : 3308 --nysql - pl ugi n-dir="/usr/local /nysql /i b/ pl ugi n"
Pl ease provi de the password for 'sammy@ ocal host: 3308': sammy_password (sanmy_| dap LDAP password)

For additional usage examples, see LDAP Authentication with Proxying and LDAP Authentication
Group Preference and Mapping Specification.

GSSAPI/Kerberos Authentication Through LDAP SASL

MySQL Shell also supports Kerberos authentication through LDAP SASL. Using the Generic Security
Service Application Program Interface (GSSAPI) security abstraction interface, a connection of this
type authenticates to Kerberos to obtain service credentials, then uses those credentials in turn to
enable secure access to other services. GSSAPI/Kerberos is supported as an LDAP authentication
method for MySQL servers and MySQL Shell on Linux only.

A GSSAPI library and Kerberos services must be available to MySQL Server for the connection to
succeed. See The GSSAPI/Kerberos Authentication Method for server-side configuration information.

The following general example creates proxy user named | ucy @AW SQL. LOCAL that assumes
the privileges of the proxied user named pr oxi ed_kr b_usr . It presumes the realm domain
MYSQL. LOCAL is configured in the / et ¢/ kr b5. conf Kerberos configuration file.

lucy@MYSQL.LOCAL' is quoted as a single value for LDAP Kerberos

Note
@ The user part of the account name includes the principal domain, so
authentication.

CREATE USER ' | ucy @WSQL. LOCAL'
| DENTI FI ED W TH aut henti cati on_| dap_sasl
BY ' #krb_gr p=proxi ed_krb_user"';
CREATE USER ' proxi ed_krb_user"';
GRANT ALL PRI VILEGES ON ny_db.* TO ' proxi ed_krb_user';
GRANT PROXY on 'proxied_krb_user' TO 'lucy@aSQ.. LOCAL';

The following command permits you to establish a global session on a Linux host for the user created
in the previous example. You must specify the location of the server's plugin directory, either as the
persistent shel | . opti ons. mysql Pl ugi nDi r connection option or as a non-persistent command
option, for example:

$> nysql sh | ucy%0MYSQL. LOCAL: passwor d@ ocal host : 3308/ ny_db
--nysql - pl ugi n-di r="/usr/| ocal / nysql /1i b/ pl ugi n"

In this example, percent encoding (%610) replaces the reserved @character in the

principal name and passwor d is the value set for the MySQL Server variable

aut henti cati on_| dap_sasl _bi nd_root pwd. For the list of server variables related to Kerberos
authentication through LDAP SASL, see Configure the Server-Side SASL LDAP Authentication Plugin
for GSSAPI/Kerberos.

Prior to invoking MySQL Shell, you can obtain and cache a ticket-granting ticket from the key
distribution center independently of MySQL. In this case, invoke MySQL Shell without specifying a
user-name or password option:

30

https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-proxying
https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-group-mapping
https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-group-mapping
https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-gssapi
https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-gssapi-ldap-setup
https://dev.mysql.com/doc/refman/9.4/en/ldap-pluggable-authentication.html#ldap-gssapi-ldap-setup

Using LDAP and Kerberos Authentication

$> nysql sh | ocal host: 3308/ ny_db --aut h- met hod=aut henti cati on_| dap_sasl _cli ent
--nmysql - pl ugi n-dir="/usr/local /nysqgl/lib/plugin"

Specifying the - - aut h- net hod=aut henti cati on_| dap_sasl _cli ent option is mandatory when
user credentials are omitted.

Kerberos Authentication

MySQL Shell is capable of establishing connections for accounts that use the

aut henti cati on_ker ber os server-side authentication plugin, provided that the correct Kerberos
tickets are available or can be obtained from Kerberos. As of MySQL Enterprise Edition 8.0.27, that
capability is available on hosts running Linux and Windows (version 8.0.26 supports Linux only). For
detailed setup information, see Kerberos Pluggable Authentication.

Kerberos authentication can combine the user name (for example, | ucy) and the realm domain
specified in the user account (for example, MYSQL. LOCAL) to construct the user principal name
(UPN), such as | ucy@wSQL. LOCAL. To create a MySQL account that corresponds to the UPN
| ucy @aSQL. LOCAL, use this statement:

CREATE USER ' | ucy
| DENTI FI ED W TH aut henti cati on_ker ber os
BY ' MYSQL. LOCAL'

The client-side plugin uses the UPN and password to obtain a ticket-granting ticket (TGT), uses the
TGT to obtain a MySQL service ticket (ST), and uses the ST to authenticate to the MySQL server.

The following command permits you to establish a global session on a Linux host for the user created
in the previous example. You must specify the location of the server's plugin directory, either as the
persistent shel | . opti ons. mysql Pl ugi nDi r connection option or as a non-persistent command
option, for example:

$> nysql sh | ucy: 3308 --nysql -plugin-dir="/usr/local/nysql/lib/plugin"
Pl ease provide the password for 'lucy@ocal host: 3308': UPN password

Prior to invoking MySQL Shell, you can obtain and cache a TGT from the key distribution center
independently of MySQL. In this case, invoke MySQL Shell without specifying a user-name or
password option:

$> nysql sh | ocal host: 3308 --aut h- met hod=aut henti cati on_kerberos_cl i ent
--nmysql - pl ugi n-dir="/usr/local /nysqgl/lib/pl ugin"

Specifying the - - aut h- net hod=aut henti cati on_ker beros_cl i ent option is mandatory when
user credentials are omitted.

On Microsoft Windows platforms, you can define the Kerberos client mode, SSPI or GSSAPI , using the
pl ugi n-aut henti cati on-ker beros-cl i ent - node connection option. This option is available in
the following formats:

e Command-line option: - - pl ugi n- aut henti cati on-ker beros-client-node=SSPI |
GSSAPI

« Connection query option: user @ost : port ?pl ugi n- aut henti cati on- ker beros-client -
node=SSPI | GSSAPI

» URI dictionary option: pl ugi n- aut henti cati on- ker beros-client-node': 'SSPI' |
' GSSAPI ', for example:

shel | . connect ({' user': 'nysqgl', 'auth-nethod':'authentication_kerberos_client', 'host': '127.0.0.1'
' password' : ' nmysql pa$$word', ' plugi n-authentication-kerberos-client-node': ' GSSAPI'
‘schenme': 'nysql'});

You can also specify pl ugi n- aut henti cati on- ker ber os-cl i ent - node in the config file. If it is
present in the config file, it is used as the default.

31

https://dev.mysql.com/doc/refman/9.4/en/kerberos-pluggable-authentication.html

Using OpenlID Connect

If pl ugi n-aut henti cati on-kerberos-client-node is not defined, SSPI is used by default.

When connecting to a MySQL server using Kerberos authentication, the authentication modes have the
following behavior:

» GSSAPI :

 If a password is not provided, the authentication ticket is retrieved from the MIT Kerberos cache. If
a valid ticket cannot be found, the connection fails.

« If a password is provided, the authentication ticket is retrieved from the Kerberos server and stored
in the MIT Kerberos cache.

 If an account name is not provided, the Windows user name is used as the MySQL account name.
e SSPI :
 If a password is not provided, the Windows single-sign-on ticket is used.

 If a password is provided, the authentication ticket is stored in temporary, in-memory storage.

4.3.6 Using OpenID Connect

MySQL Shell supports the OpenID Connect authentication protocol. The plugin,
aut henti cation_openi d _connect client, is bundled with MySQL Shell .

For information on OpenID Connect, see openid.net.

Note
@ OpenlD Connect authentication protocol is supported by MySQL Enterprise
Edition, only.

To connect to a server using OpenlD Connect, you must have an OpenlID token file and an OpenID
user on the target server.

The user must be defined with the aut hent i cati on_openi d_connect plugin. For example:

CREATE USER ' MySQLUser' @ % | DENTI FI ED W TH ' aut henti cati on_openi d_connect'
AS '{"identity_provider":"IldentityProvi der Name", "user":"UserlD'}";

The token file must contain the following:
i ss: Issuer Identifier for the Issuer of the response. A case-sensitive URL.

» sub: Subject Identifier. A locally unique identifier which is intended to be consumed by the Client. A
case-sensitive string of no more than 255 characters (ASCII).

« aud: Audience(s) the ID Token is intended for. It must contain the OAuth 2.0 client_id of the Relying
Party and may also contain identifiers for other audiences.

» exp: Token expiration date and time, after which the token is not accepted.
* i at: Token issuing date and time.

See | i nkToRef man for more information.

Connect using one of the following methods:

e A commandline string:

> nysql sh -u MySQLUser --authentication-openid-connect-client-id-token-file=pathToTokenfile/tokenFilenam

32

https://openid.net/

Using an SSH Tunnel

» A connection data dictionary:

> shel | . connect ({host: 'local host', port: 'port', user: 'MSQ.User',
aut henti cati on- openi d-connect-client-id-token-file: 'pathToTokenfile/tokenFilenane'})

e The query section of a URI:

MySQLUser @ost ?aut henti cati on- openi d-connect-client-id-token-file=pathToTokenfil e/tokenFil enane

* In the configuration file:

[mysql sh]
aut henti cati on_openi d_connect_client_id_token_fil e=pathToTokenfil e/tokenFi| enanme

4.3.7 Using an SSH Tunnel

MySQL Shell supports SSH tunneling for connections to MySQL server instances. An SSH tunnel
lets unencrypted traffic pass over an encrypted connection, and enables authorized remote access to
servers that are protected from outside connections by a firewall.

The use of AdminAPI commands is not supported over connections made from

MySQL Shell using SSH tunneling, with the exception of the commands to deploy,

start, stop, kill, and delete sandbox instances (dba. depl oySandbox| nst ance,

dba. st art Sandboxl| nst ance, dba. st opSandboxI nst ance, dba. ki I | Sandbox| nst ance, and
dba. del et eSandboxI| nst ance). The sandbox commands are always executed locally to the MySQL
Shell instance.

Once established, an SSH tunnel can be shared between connections to the same host from

the same user connecting from the same remote server instance. The MySQL Shell function

shel |l . I'i st SshConnecti ons() lists the currently connected and active SSH tunnels from the
MySQL Shell session, with the URI of the SSH server and of the connected MySQL server instance. If
you specify the same SSH connection details, MySQL Shell automatically reuses the existing tunnel.

You can select the SSH configuration file and identity file (private key) that are used for the connection.
When you set up an SSH tunnel, MySQL Shell selects an SSH configuration file in the following order
of priority:

1. An SSH configuration file that you specify as a connection option.

2. An SSH configuration file that you set as a default using the MySQL Shell configuration option
ssh. confi gFi | e. For instructions to set this option, see Section 14.4, “Configuring MySQL Shell
Options”.

3. The standard SSH configuration file ~/ . ssh/ confi g.

The known hosts file is read from the default location (~/ . ssh/ known_host s) unless a different
configuration is set in the SSH configuration file.

For the identity file (private key), you can specify a custom file with the ssh-i dentity-fil e option at
connection time. There is no option to set a custom default for the identity file. If you do not specify one,
the SSH library uses the following sequence of authentication attempts until one succeeds:

1. If an SSH agent is in use, authentication is attempted with the identity files configured there if
available.

2. If an identity file is specified for the target host in the SSH configuration file, authentication is
attempted using that file.

33

Using an SSH Tunnel

3. If neither of those options is available or the authentication attempt fails, authentication is attempted
using the standard private key file in the SSH configuration folder (~/ . ssh/i d_r sa).

The default buffer size for data transfer through the SSH tunnel is 10240 bytes. You can change this by
setting the MySQL Shell configuration option ssh. buf f er Si ze. For instructions to set this option, see
Section 14.4, “Configuring MySQL Shell Options”.

SSH tunneling is available when you use any of the MySQL Shell connection methods - the
shel | . connect () method, nysqgl sh command parameters, or the \ connect MySQL Shell

command.

shel | . connect ()

nmysqgl sh command parameters

When you use the shel | . connect () method to connect while
MySQL Shell is running, you can specify a URI for connection to
the SSH server, or use key-value pairs for the connection data. The
following options are available with this method:

* ssh: The URI for connection to the SSH server. The URI format is
[user @host[:port].

e uri: The URI for the MySQL server instance that is to
be accessed through the SSH tunnel. The URI format is
[scheme://] [user @ host: port.Do not use the base
connection parameters (schene, user, host, port) to specify
the MySQL server connection for SSH tunneling, just use this
option. The port must be specified.

¢ ssh- passwor d: The password for the connection to the SSH
server.

e ssh-config-file: An SSH configuration file for the connection
to the SSH server.

e ssh-identity-file:Anidentity file to use for the connection to
the SSH server.

e ssh-identity-pass: The passphrase for the identity file
specified by the ssh-i dentity-fil e option.

These options are also available when you use the

shel | . openSessi on() method, which works in the same way

as shel | . connect () but creates and returns a sessi on object,
rather than setting it as the global session for MySQL Shell. For full
instructions to use this connection method and the other options that
are available, see Connecting to the Server Using URI-Like Strings
or Key-Value Pairs.

When you connect using command-line options while MySQL is
starting up, you can specify a URI for connection to the SSH server.
The following options are available with this method:

e --ssh: The URI for connection to the SSH server. The URI
formatis [user @ host [: port].When you use this option,
the port for connection to the MySQL server instance must be
specified in the MySQL instance URI.

e --ssh-config-fil e: An SSH configuration file for the
connection to the SSH server. If you specify this option with an
empty value, the custom default SSH configuration file specified
by - - ssh. confi gFi | e isignored, and the ~/ . ssh/ confi g file
is used instead.

34

https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html

Using Compressed Connections

e --ssh-identity-file:Anidentity file to use for the
connection to the SSH server.

For full instructions to use this connection method and the other
options that are available, see Section 4.3.1, “Connecting using
Individual Parameters”.

\ connect MySQL Shell When you connect using the \ connect command while MySQL

command Shell is running, you can specify a URI for connection to the SSH
server. There are no additional options for the SSH connection,
so you must use the default identity file ~/ . ssh/i d_r sa, and the
default SSH configuration file, which can be either the standard file
~/ . ssh/ confi g or a custom default that you set using the MySQL
Shell configuration option ssh. confi gFi | e (see Section 14.4,
“Configuring MySQL Shell Options”).

To get additional setup options you can create an SSH tunnel
using the shel | . connect () method or on the command

line while MySQL Shell is starting, and then reuse it with the

\ connect command. When you are in a MySQL Shell session,
you can view the currently connected SSH tunnels using the
shel | . l1'i st SshConnecti ons() command.

MySQL Shell's Secret Store can store passwords and passphrases for connection to the SSH server
and for the identity file, to be automatically retrieved for future connections. If you provide a password
or passphrase in the connection options it is used instead of any password that is stored in the Secret
Store. Note that although there are options to allow it, specifying an explicit password in the connection
data is insecure and not recommended. MySQL Shell prompts for a password interactively when one is
required, either for the connection to the SSH server or for the identity file. For example:

nysql -j s> shel | . connect ({uri:"nysql://root:sandbox@92. 0. 2. 3: 3306",
> ssh: "root @98. 51. 100. 4: 2222", "ssh-identity-file":"/home/ hanna/.ssh/config_pw'})
Creating a Classic session to 'root@92.0. 2. 3: 3306’
Openi ng SSH tunnel to 198.51.100. 4: 2222. ..
Pl ease provide key passphrase for /hone/ hanna/.ssh/config_pw **xxxxxx
Save password for 'file:/honme/hannal/.ssh/config_pw ?
[Yles/[N o/ Ne[v]er (default No): y
Fet chi ng schena nanes for autoconpletion... Press ~C to stop.
Your MySQL connection id is 7869
Server version: 8.0.28 MySQL Conmunity Server - GPL
No default schenm sel ected; type \use <schena> to set one.
<C assi cSessi on: root @92. 0. 2. 3: 3306>

4.3.8 Using Compressed Connections

You can request compression for MySQL Shell connections that use classic MySQL protocol, and

X Protocol. When compression is requested for a session, if the server supports compression and

can agree a compression algorithm with MySQL Shell, all information sent between the client and the
server is compressed. Compression is also applied if requested to connections used by a MySQL Shell
utility, such as the upgrade checker utility.

For X Protocol connections, the default is that compression is requested, and uncompressed
connections are allowed if the negotiations for a compressed connection do not succeed. For classic
MySQL protocol connections, the default is that compression is disabled. After the connection has
been made, the MySQL Shell \ st at us command shows whether or not compression is in use for a
session. The command displays a Conpr essi on: line that says Di sabl ed or Enabl ed to indicate
whether the connection is compressed. If compression is enabled, the compression algorithm in use is
also displayed.

You can set the def aul t Conpr ess MySQL Shell configuration option to request compression for
every global session. Because the default for X Protocol connections is that compression is requested

35

Using Compressed Connections

where the MySQL Shell release supports this, this configuration option only has an effect for classic
MySQL protocol connections.

For more information on how connection compression operates for X Protocol connections, see
Connection Compression with X Plugin. For more information on how connection compression
operates for classic MySQL protocol connections, and on the compression settings and capabilities of
a MySQL Server instance, see Connection Compression Control.

4.3.8.1 Compression Control For MySQL Shell

For X Protocol connections and classic MySQL protocol connections, whenever you create a session
object to manage a connection to a MySQL Server instance, you can specify whether compression is
required, preferred, or disabled for that connection.

* requir ed requests a compressed connection from the server, and the connection fails if the server
does not support compression or cannot agree with MySQL Shell on a compression protocol.

» preferredrequests a compressed connection from the server, and falls back to an uncompressed
connection if the server does not support compression or cannot agree with MySQL Shell on a
compression protocol. This is the default for X Protocol connections.

« di sabl ed requests an uncompressed connection, and the connection fails if the server only permits
compressed connections. This is the default for classic MySQL protocol connections.

You can also choose which compression algorithms are allowed for the connection. By default, MySQL
Shell proposes the zlib, LZ4, and zstd algorithms to the server for X Protocol connections, and the zlib
and zstd algorithms for classic MySQL protocol connections (which do not support the LZ4 algorithm).
You can specify any combination of these algorithms. The order in which you specify the compression
algorithms is the order of preference in which MySQL Shell proposes them, but the server might not be
influenced by this preference, depending on the protocol and the server configuration.

Specifying any compression algorithm or combination of them automatically requests compression

for the connection, so you can do that instead of using a separate parameter to specify whether
compression is required, preferred, or disabled. With this method of connection compression control,
you indicate whether compression is required or preferred by adding the option unconpr essed
(which allows uncompressed connections) to the list of compression algorithms. If you do include
unconpr essed, compression is preferred, and if you do not include it, compression is required. You
can also pass in unconpr essed on its own to specify that compression is disabled. If you specify in
a separate parameter that compression is required, preferred, or disabled, this takes precedence over
using unconpr essed in the list of compression algorithms.

You can also specify a numeric compression level for the connection, which applies to any
compression algorithm for X Protocol connections, or to the zstd algorithm only on classic

MySQL protocol connections. For X Protocol connections, if the specified compression level is

not acceptable to the server for the algorithm that is eventually selected, the server chooses an
appropriate setting according to the behaviors listed in Connection Compression with X Plugin. For
example, if MySQL Shell requests a compression level of 7 for the zlib algorithm, and the server's
nysql x_defl ate_nmax_client _conpression_| evel system variable (which limits the maximum
compression level for deflate, or zlib, compression) is set to the default of 5, the server uses the highest
permitted compression level of 5.

If the MySQL server instance does not support connection compression for the protocol (which is the
case before MySQL 8.0.19 for X Protocol connections), or if it supports connection compression but
does not support specifying connection algorithms and a compression level, MySQL Shell establishes
the connection without specifying the unsupported parameters.

To request compression for a connection, use one of the following methods:

« If you are starting MySQL Shell from the command line and specifying connection parameters using
separate command options, use the - - conpr ess (- C) option, specifying whether compression is
required, preferred, or disabled for the connection. For example:

36

https://dev.mysql.com/doc/refman/9.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/9.4/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/9.4/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/9.4/en/x-plugin-options-system-variables.html#sysvar_mysqlx_deflate_max_client_compression_level

Using Compressed Connections

$> nysql sh --nmysql x -u user -h local host -C required

The - - conpr ess (- C) option is compatible with earlier releases of MySQL Shell (back to MySQL
8.0.14) and still accepts the boolean settings from those releases. If you specify just - - conpr ess (-
C) without a parameter, compression is required for the connection.

The above example for an X Protocol connection proposes the zlib, LZ4, and zstd algorithms to the
server in that order of preference. If you prefer an alternative combination of compression algorithms,
you can specify this by using the - - conpr essi on- al gori t hirs option to specify a string with a
comma-separated list of permitted algorithms. For X Protocol connections, you can use zl i b, | z4,
and zst d in any combination and order of preference. For classic MySQL protocol connections, you
canuse zIl i b and zst d in any combination and order of preference. The following example for a
classic MySQL protocol connection allows only the zstd algorithm:

$> nysql sh --nysql -u user -h local host -C preferred --conpression-al gorithns=zstd

You can also use just - - conpr essi on- al gori t hns without the - - conpr ess (- C) option to
request compression. In this case, add unconpr essed to the list of algorithms if you want to allow
uncompressed connections, or omit it if you do not want to allow them. This style of connection
compression control is compatible with other MySQL clients such as nmysql and nmysqgl bi nl og.
The following example for a classic MySQL protocol connection has the same effect as the example
above where pr ef er r ed is specified as a separate option, that is, to propose compression with the
zstd algorithm but fall back to an uncompressed connection:

$> nysql sh --nysqgl -u user -h |ocal host --conpression-algorithns=zstd, unconpressed

You can configure the compression level using the - - conpr essi on-1 evel or--zstd-

conpr essi on- | evel options, which are validated for classic MySQL protocol connections, but

not for X Protocol connections. - - conpr essi on- | evel specifies an integer for the compression
level for any algorithm for X Protocol connections, or for the zstd algorithm only on classic MySQL
protocol connections. - - zst d- conpr essi on- | evel specifies an integer from 1 to 22 for the
compression level for the zstd algorithm, and is compatible with other MySQL clients such as nysql
and nmysql bi nl og. For example, these connection parameters for an X Protocol connection specify
that compression is required for the global session and must use the LZ4 or zstd algorithm, with a
requested compression level of 5:

$> nmysql sh --mysqgl x -u user -h |l ocal host -C required --conpression-al gorithms=lz4, zstd --conpression-

If you are using a URI-like connection string to specify connection parameters, either from the
command line, or with MySQL Shell's\ connect command, or with the shel | . connect (),

shel | . openSessi on(), nysqgl x. get Sessi on(), nysql . get Sessi on(), or

nysql . get C assi cSessi on() function, use the conpr essi on parameter in the query string to
specify whether compression is required, preferred, or disabled. For example:

nmysql -j s> \connect user @xanpl e. con?conpr essi on=preferred

$> nysql sh mysql x: // user @ ocal host : 33060?conpr essi on=di sabl ed

Select compression algorithms using the conpr essi on- al gori t hns parameter, and a
compression level using the conpr essi on- | evel parameter, as for the command line options.
(There is no zstd-specific compression level parameter for a URI-like connection string.) You
can also use the conpr essi on- al gori t hms parameter without the conpr essi on parameter,
including or omitting the unconpr essed option to allow or disallow uncompressed connections.
For example, both these sets of connection parameters specify that compression is preferred
but uncompressed connections are allowed, the zlib and zstd algorithms are acceptable, and a
compression level of 4 should be used:

nysql -j s> \ connect user @xanpl e. com 33060?conpr essi on=pr ef er r ed&conpr essi on- al gori t hms=zl i b, zst d&cong

nmysql -j s> \connect user @xanpl e. com 33060?conpr essi on-al gorithns=zlib, zstd, unconpr essed&conpr essi on-

37

Pluggable Password Store

« If you are using key-value pairs to specify connection parameters, either with MySQL
Shell's\ connect command or with the shel | . connect (), shel | . openSessi on(),
nysql x. get Sessi on(), nysql . get Sessi on(), ornmysql . get d assi cSessi on() function,
use the conpr essi on parameter in the dictionary of options to specify whether compression is
required, preferred, or disabled. For example:

nmysql -j s> var sl=nysql x. get Sessi on({host: 'Iocal host',
user: 'root',
password: 'password',
conpression: 'required'});

Select compression algorithms using the conpr essi on- al gori t hns parameter, and a
compression level using the conpr essi on- | evel parameter, as for the command line and URI-
like connection string methods. (There is no zstd-specific compression level parameter for key-value
pairs.) You can also use the conpr essi on- al gori t hns parameter without the conpr essi on
parameter, including or omitting the unconpr essed option to allow or disallow uncompressed
connections.

4.4 Pluggable Password Store

To make working with MySQL Shell more fluent and secure you can persist the password for a
server connection using a secret store, such as a keychain. You enter the password for a connection
interactively and it is stored with the server URL as credentials for the connection. For example:

nmysql -j s> \connect user @ ocal host: 3310

Creating a session to 'user@ocal host: 3310'

Pl ease provi de the password for 'user@ocal host: 3310" ; ***x***x*

Save password for 'user @ocal host:3310'? [Y]es/[N o/ Ne[v]er (default No): y

Once the password for a server URL is stored, whenever MySQL Shell opens a session it retrieves

the password from the configured Secret Store Helper to log in to the server without having to enter
the password interactively. The same holds for a script executed by MySQL Shell. If no Secret Store
Helper is configured the password is requested interactively.

Important

A MySQL Shell only persists the server URL and password through the means of
a Secret Store and does not persist the password on its own.

Passwords are only persisted when they are entered manually. If a password is
provided using either a server URI-like connection string or at the command line
when running nysql sh it is not persisted.

The maximum password length that is accepted for connecting to MySQL Shell
is 128 characters.

MySQL Shell provides built-in support for the following Secret Stores:

* MySQL login-path, which is available on all platforms supported by the MySQL server. It is provided
by the MySQL configuration utility mysql _confi g_edi t or which offers persistent storage.
See mysql_config_editor — MySQL Configuration Utility. Linux builds of MySQL Shell bundle
nysqgl _confi g_editor so that the functionality can be used if the MySQL client package is not
installed on the system.

» macOS keychain, see here.
» Windows API, see here.

When MySQL Shell is running in interactive mode, password retrieval is performed whenever a new
session is initiated and the user is going to be prompted for a password. Before prompting, the Secret
Store Helper is queried for a password using the session's URL. If a match is found this password

38

https://dev.mysql.com/doc/refman/9.4/en/mysql-config-editor.html
https://developer.apple.com/documentation/security/keychain_services
https://docs.microsoft.com/en-us/windows/desktop/secauthn/credentials-management

Pluggable Password Configuration Options

is used to open the session. If the retrieved password is invalid, a message is added to the log, the
password is erased from the Secret Store and MySQL Shell prompts you for a password.

If MySQL Shell is running in noninteractive mode (for example - - no- wi zar d was used), password
retrieval is performed the same way as in interactive mode. But in this case, if a valid password is not
found by the Secret Store Helper, MySQL Shell tries to open a session without a password.

The password for a server URL can be stored whenever a successful connection to a MySQL
server is made and the password was not retrieved by the Secret Store Helper. The decision
to store the password is made based on the cr edent i al St or e. savePasswor ds and
credenti al St ore. excl udeFi | t er s described here.

Automatic password storage and retrieval is performed when:

» nysql sh is invoked with any connection options, when establishing the first session
 you use the built-in \ connect command

» you use the shel | . connect () method

» you use any AdminAPI methods that require a connection

4.4.1 Pluggable Password Configuration Options

To configure the pluggable password store, use the shel | . opt i ons interface, see Section 14.4,
“Configuring MySQL Shell Options” . The following options configure the pluggable password store.

shell.options.credentialStore.helper = "I ogi n- pat h"

A string which specifies the Secret Store Helper used to store and retrieve the passwords. By default,
this option is set to a special value def aul t which identifies the default helper on the current platform.
Can be set to any of the values returned by shel | . | i st Credent i al Hel per s() method. If

this value is set to invalid value or an unknown Helper, an exception is raised. If an invalid value is
detected during the startup of nysql sh, an error is displayed and storage and retrieval of passwords is
disabled. To disable automatic storage and retrieval of passwords, set this option to the special value
<di sabl ed>, for example by issuing:

shel | . options. set("credential Store. hel per", "<disabl ed>")

When this option is disabled, usage of all of the credential store MySQL Shell methods discussed here
results in an exception.

shell.options.credentialStore.savePasswords ="val ue"
A string which controls automatic storage of passwords. Valid values are:

« al ways - passwords are always stored, unless they are already available in the Secret Store or
server URL matches cr edent i al St or e. excl udeFi | t er s value.

e never - passwords are not stored.

e pronpt -ininteractive mode, if the server URL does not match the value of
shel | . credenti al Store. excl udeFi | t ers, you are prompted if the password should be
stored. The possible answers are yes to save this password, no to not save this password, never
to not save this password and to add the URL to cr edent i al St ore. excl udeFi |l ters. The
modified value of cr edent i al St ore. excl udeFi | t er s is not persisted, meaning it is in effect
only until MySQL Shell is restarted. If MySQL Shell is running in noninteractive mode (for example
the - - no- wi zar d option was used), the cr edent i al St or e. savePasswor ds option is always
never.

The default value for this option is pr onpt .

39

Working with Credentials

shell.options.credentialStore.excludeFilters = ["* @ryser ver. com *"];

A list of strings specifying which server URLSs should be excluded from automatic storage of
passwords. Each string can be either an explicit URL or a glob pattern. If a server URL which is about
to be stored matches any of the strings in this options, it is not stored. The valid wildcard characters
are: * which matches any number of any characters, and ? which matches a single character.

The default value for this option is an empty list.

4.4.2 Working with Credentials

The following functions enable you to work with the Pluggable Password store. You can list the
available Secret Store Helpers, as well as list, store, and retrieve credentials.

var list = shell.listCredentialHelpers();
Returns a list of strings, where each string is a name of a Secret Store Helper available on the current
platform. The special values def aul t and <di sabl ed> are not in the list, but are valid values for the
credenti al St ore. hel per option.

shell.storeCredential(ur | [, passwor d]);

Stores given credentials using the current Secret Store Helper (cr edent i al St or e. hel per).
Throws an error if the store operation fails, for example if the current helper is invalid. If the URL
is already in the Secret Store, it is overwritten. This method ignores the current value of the
credenti al St ore. savePasswor ds and cr edenti al St or e. excl udeFi | t er s options. If a
password is not provided, MySQL Shell prompts for one.

shell.deleteCredential(url);
Deletes the credentials for the given URL using the current Secret Store Helper
(credenti al Store. hel per). Throws an error if the delete operation fails, for example the current
helper is invalid or there is no credential for the given URL.

shell.deleteAllCredentials();

Deletes all credentials managed by the current Secret Store Helper (cr edent i al St or e. hel per).
Throws an error if the delete operation fails, for example the current Helper is invalid.

var list = shell.listCredentials();

Returns a list of all URLs of credentials stored by the current Secret Store Helper
(credenti al Store. hel per).

4.5 Generic Secret Storage

This section describes MySQL Shell's secret storage.

Secret Management Functions
You can use the following functions to manage your secrets:
» shell.storeSecret(key, val ue): Stores a secret with the given key.
* shel | .readSecret (key): Reads a secret with the given key.
* shel | . del et eSecret (key) : Deletes a secret with the given key.

» shell.del eteAl | Secrets(): Deletes all secrets

40

Storing Secrets

e shell.listSecrets():Lists keys of all secrets
Note
@ Secrets stored with this API are not accessible to the credential methods
listed here: Section 4.4.2, “Working with Credentials”, nor can this APl access
credentials managed by that API.

Storing Secrets

To store a secret, use the shel | . st oreSecr et (key, val ue) function. This function takes
two parameters: key and val ue. key is a string that uniquely identifies the secret, while the value
parameter is an optional string that specifies the value of the secret.

» key: String that uniquely identifies the secret.
» val ue: (optional) String that specifies the value of the secret.

If you do not provide a value, you will be prompted to enter it in a masked prompt. If a secret with the
given key already exists in storage, its value will be overwritten.

For example:

shel | . storeSecret ("my_secret", "my_secret_val ue")

Alternatively, to enter your secret in a masked prompt, omit the val ue and enter when prompted:

shel | . storeSecret ("my_secret")
Pl ease provide the secret to store: ****xxxxxxxxxxxxx

Reading Secrets
To read a secret, use the shel | . r eadSecr et (key) function.
» key: String identifying the key of the secret to read.
For example:

shel | . readSecret ("nmy_secret")

Listing Secrets

To list all secrets' keys stored by your current Secret Store Helper, use the shel | . | i st Secret s()
function. This function returns a list of strings containing all keys in storage.

In the following example, three secrets are defined in the current credential store and are returned as

an array:
shel |l . 1i st Secrets()
[
"ny_secret2",
"ny_secretl",
"ny_secret”

|
Deleting Secrets
To delete a secret, use the shel | . del et eSecr et (key) function.

» key: String identifying the key of the secret to delete.

For example:

shel | . del et eSecret ("nmy_secret")

41

Deleting All Secrets

Deleting All Secrets

To delete all secrets stored by your current Secret Store Helper, use the
shel | . del et eAl' | Secr et s() function.

For example:

shel | . del et eAl | Secrets()

4.6 MySQL Shell Global Objects

MySQL Shell includes a number of built-in global objects that exist in both JavaScript and Python
modes. The built-in MySQL Shell global objects are as follows:

» sessi on is available when a global session is established, and represents the global session.

» dba provides access to InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet administration
functions using the AdminAPI. See Chapter 6, MySQL AdminAPI.

» cl ust er represents an InnoDB Cluster. Only populated if the - - cl ust er option was provided
when MySQL Shell was started.

* rs represents an InnoDB ReplicaSet. Only populated if the - - r epl i caset option was provided
when MySQL Shell was started.

» db is available when the global session was established using an X Protocol connection with a
default database specified, and represents that schema.

» shel | provides access to various MySQL Shell functions, for example:

e shel | . opti ons provides functions to set and unset MySQL Shell preferences. See Section 14.4,
“Configuring MySQL Shell Options”.

e shel | . report s provides built-in or user-defined MySQL Shell reports as functions, with the
name of the report as the function. See Section 11.1, “Reporting with MySQL Shell”.

e util provides various MySQL Shell tools, including the upgrade checker utility, the JSON import
utility, and the parallel table import utility. See Chapter 12, MySQL Shell Utilities.

Important

and must not be used, for example, as names of variables. If you assign one of
the global variables you override the above functionality, and to restore it you

A The names of the MySQL Shell global objects are reserved as global variables
must restart MySQL Shell.

You can also create your own extension objects and register them as additional MySQL Shell global
objects to make them available in a global context. For instructions to do this, see Section 11.2,
“Adding Extension Objects to MySQL Shell”.

4.7 Using a Pager

You can configure MySQL Shell to use an external pager tool such as | ess or nor e. Once a pager
is configured, it is used by MySQL Shell to display the text from the online help or the results of SQL
operations. Use the following configuration possibilities:

» Configure the shel | . opti ons[pager] = "" MySQL Shell option, a string which specifies the
external command that displays the paged output. This string can optionally contain command line
arguments which are passed to the external pager command. Correctness of the new value is not
checked. An empty string disables the pager, as does the MySQL Shell command \ nopager .

42

Cloud Service Configuration

Default value: empty string.

» Configure the PAGER environment variable, which overrides the default value of
shel | . options["pager"] option. If shel | . opti ons[" pager"] was persisted, it takes
precedence over the PAGER environment variable.

The PACER environment variable is commonly used on Unix systems in the same context as
expected by MySQL Shell, conflicts are not possible.

» Configure the - - pager MySQL Shell option, which overrides the initial value of
shel | . options["pager"] option even if it was persisted and PAGER environment variable is
configured.

* Usethe\ pager | \P conmand MySQL Shell command to set the value of shel | .options["pager"]
option. If called with no arguments, restores the initial value of shel | . opti ons[" pager "] option
(the one MySQL Shell had at startup. Strings can be marked with " characters or not. For example,
to configure the pager:

e pass in no conmand or an empty string to restore the initial pager
e pass in nor e to configure MySQL Shell to use the nor e command as the pager

e passinnore -10 to configure MySQL Shell to use the nor e command as the pager with the
option - 10

The MySQL Shell output that is passed to the external pager tool is forwarded with no filtering. If
MySQL Shell is using a prompt with color (see Section 14.3, “Customizing the Prompt”), the output
contains ANSI escape sequences. Some pagers might not interpret these escape sequences by
default, such as | ess, for which interpretation can be enabled using the - R option. nor e does interpret
ANSI escape sequences by default.

4.8 Cloud Service Configuration

MySQL Shell supports exporting of MySQL data to cloud service storage and import of that data from
cloud storage to a MySQL instance. The following cloud services are supported:

» Section 4.8.1, “Oracle Cloud Infrastructure Object Storage”
» Section 4.8.2, “S3-compatible Storage”
» Section 4.8.3, “Azure Blob Storage”

For information on exporting MySQL data to cloud storage, see Section 12.5, “Instance Dump Utility,
Schema Dump Utility, and Table Dump Utility”. For information on importing MySQL data from cloud
storage, see Section 12.6, “Dump Loading Utility".

For information on using MySQL Shell with HeatWave Service, see HeatWave Service Documentation.

4.8.1 Oracle Cloud Infrastructure Object Storage
Connections to Oracle Cloud Infrastructure Object Storage can be configured in the following ways:
» OCI Configuration File
» OCI Environment Variables

OCI Configuration File

MySQL Shell uses the parameters defined in the OCI CLI configuration file, conf i g, to connect to the
Object Storage service. For more information on this file, see SDK and CLI Configuration

43

https://docs.oracle.com/en-us/iaas/mysql-database/doc/importing-and-exporting-databases.html
https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Oracle Cloud Infrastructure Object Storage

MySQL Shell requires the following parameters in the configuration file:
» user : OCID of the user.

» fingerprint:generated fingerprint of the user's public key.

e tenancy: OCID of the user's tenancy.

* regi on: An Oracle Cloud Infrastructure region.

» key_fil e: Full path and filename of the user's public key.

The following is an example of a configuration file:

[defaul t]
user =oci d1. user. ocl. . al phanunericstring
fingerprint=08:23:60:....:ff:22:dd:55: 20

t enancy=oci d1. t enancy. ocl. . al phanunericstring
regi on=us- ashburn-1
key_fil e=/ hone/ User nane/ . oci / oci _api _key. pem

If you have installed and configured the OCI CLI, MySQL Shell reads the connection parameters from
the default location, . oci / , automatically. To use an alternate configuration, do so from the command
line, using the relevant override options.

OCI Environment Variables
You can also override the configuration file using environment variables.
For information on these variables, see CLI Environment Variables.
« OCl _CLI _CONFI G FILE
« OCl _CLI _PROFI LE
« OCl _CLI _AUTH
» Using API Key-based authentication:
e OCl _CLI _USER
« OCl _CLI _REG ON
e OCl _CLI _FI NGERPRI NT
« OCl _CLI _KEY_CONTENT
« OCl _CLI _KEY_FILE
 OCl _CLI _PASSPHRASE
« OCl _CLI _TENANCY
+ Session Token-based authentication:
« OCl _CLI _REG ON
« OCI _CLI _KEY_FILE
e OCl _CLI _PASSPHRASE

« OCl _CLI _TENANCY

44

https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/clienvironmentvariables.htm

S3-compatible Storage

« OCl _CLI _SECURI TY_TOKEN FI LE

Note
@ OCl _CLI _KEY_CONTENT takes precedence over OCI _CLI KEY FI LE.

4.8.2 S3-compatible Storage

MySQL Shell S3 support has been tested against the following S3-compatible storage services:

Amazon Web Services S3
See Amazon Simple Storage Service Documentation for more information.
Oracle Cloud Infrastructure Object Storage

See Amazon S3 Compatibility API for more information.

MySQL Shell supports configuring AWS credentials in environment variables and in configuration files.

Configuration Parameter Precedence
Environment Variables
Configuration Files

Connection Retry Strategy

Configuration Parameter Precedence

Configuration parameters are used in order of precedence:

1.

4,

5.

Option. For example, s3Pr of i | e takes precedence over the environment variable AWS PROFI LE,
and the default profile in the configuration file.

Environment variable. For example, the environment variable AW5_SHARED CREDENTI ALS_FI LE
takes precedence over the default location of the cr edent i al s file, ~/ . aws/ credenti al s.

DEFAULT environment variable, if it exists. For example, the environment variable AWS_REG ON
and the environment variable AWS_DEFAULT _REG ON.

Parameter defined in a configuration file.

AWS default values.

For example, for the AWS region, in order of precedence:

1.
2.
3.
4,

5.

s3Regi on option.

AWS REG ON environment variable.

AWS DEFAULT_REG ON environment variable.
Region defined in the configuration file.

The default value of us- east - 1.

AWS credentials are read in the following order of precedence:

1.

2.

Environment variables, if the s3Pr of i | e option is not defined.

Assuming a role.

45

https://docs.aws.amazon.com/s3/index.html
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm

S3-compatible Storage

6.

7.

Credentials file, for the specified profile.

credenti al process, as defined in the config file. This configuration type contains an external
command which retrieves or generates AWS authentication credentials and writes them to st dout .

Config file, for the specified profile.
ECS credentials.

IMDS credentials.

Environment Variables

For information on AWS environment variables, see the following:

Environment variables to configure the AWS CLI
Container credential provider

IMDS credential provider

You can define the following AWS S3-specific environment variables:

AWS_PROFI LE: Specifies the name of the profile to use. This can be the name of a profile in a
credentials or config file, or the value def aul t to use the default profile. This environment variable
overrides the [def aul t] profile named in the configuration file. You can override this environment
variable with the - - s3Pr of i | e option.

AWS_SHARED CREDENTI ALS_FI LE: The location of the file used to store access keys. Such as
~/ . aws/ credenti al s.

AWS CONFI G_FI LE: The location of the file used to store configuration profiles. Such as ~/ . aws/
config.

AWS REG ON: Specifies the AWS Region to send the request to. This value overrides the
AWS DEFAULT_REG ON environment variable and the pr of i | e defined in the configuration file.

AWS DEFAULT_REG ON: Specifies the AWS Region to send the request to. This value is overridden
by the - - s3Regi on option and the AW5_REQ ON environment variable, if specified.

AWS ACCESS KEY | D: Specifies an AWS access key associated with an IAM user or role.

AWS SECRET ACCESS KEY: Specifies the secret key associated with the access key. This variable
overrides the aws_secret _access_key defined in the profile.

AWS_ SESSI ON_TOKEN: Specifies the session token value required if you are using temporary
security credentials. This variable overrides the aws_sessi on_t oken defined in the profile.

AWS_CONTAI NER_CREDENTI ALS_RELATI VE_URI : (Amazon ECS) value specified is
appendedto http://169. 254. 170. 2. The resulting URI is used to fetch the credentials.
If not set, or is empty, and AW5_CONTAI NER_CREDENTI ALS_FULL_URI is defined,
AWS_CONTAI NER_CREDENTI ALS_FULL_URI is used instead.

AWS_CONTAI NER_CREDENTI ALS FULL_URI : (Amazon ECS) the defined host must contain one of
the following:

e 169. 254.170. 2
*« 169. 254. 170. 23
¢ | ocal host

e £d00: ec2::23

46

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-container-credentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-imds-credentials.html

S3-compatible Storage

¢« A | oopback address
If this variable is set to a value other than those listed, an error is returned.

AWS_ CONTAI NER_AUTHORI ZATI ON_TOKEN_FI LE: (Amazon ECS) defines t an absolute file path to
a file that contains the authorization token in plain text.

AWS CONTAI NER_AUTHORI ZATI ON_TOKEN: (Amazon ECS) defines the authorization header of the
HTTP request to fetch the credentials.

AWS_EC2 NMETADATA DI SABLED: (Amazon IMDS) if enabled, t r ue, IMDS credentials are not used.

AWS EC2 NMETADATA V1 DI SABLED: (Amazon IMDS) if enabled, t r ue, IMDSvV1 is used if IMDSv2
is unavailable.

AWS EC2 NMETADATA SERVI CE_ENDPO NT: (Amazon IMDS) specifies the address of the IMDS
endpoint.

The hostname component of the endpoint is validated according to the following criteria:
¢ Maximum of 253 characters

« Maximum of 63 characters per label.

Permitted characters: a-z, A-Z, 0-9, and -.

A label can not begin or end with a hyphen (-).

 Labels are concatenated with periods.

AWS EC2 NMETADATA SERVI CE_ENDPO NT_MODE: (Amazon IMDS) one of the following values:
e | Pv4: (default) the IMDS endpoint address is setto ht t p: // 169. 254. 169. 254/ .

e | Pv6: the IMDS endpoint address is setto htt p: / /[fd00: ec2: : 254]/

AWS METADATA SERVI CE_TI MEQUT: (Amazon IMDS) specifies the number of seconds to wait for a
successful connection to the IMDS endpoint before timing out. Default value is 1.

AWS METADATA SERVI CE_NUM ATTEMPTS: (Amazon IMDS) specifies the number of attempts to
retrieve data from IMDS before failing and returning an error. Default value is 1.

Configuration Files

MySQL Shell requires the following parameters in one or more configuration files:

aws_access_key i d: specifies the access key associated with the user.
aws_secret _access_key: specifies the secret key associated with the access key.

aws_sessi on_t oken: specifies the session token required if you are using temporary security
credentials. If not present, it is not used to authenticate the user.

r egi on: specifies the cloud service region. If not present, the default value of us- east - 1 is used.

credenti al _process: This configuration type contains an external command which retrieves or
generates AWS authentication credentials and writes them to st dout .

Note
@ credential process can only be defined in the conf i g file.

47

S3-compatible Storage

For more information, see the following:

* AWS Credentials Process

¢ AWS Configuration and Credential Options

« AWS Sourcing credentials with an external process

rol e_arn: ARN of an IAM role, with the syntax: ar n: aws: i am : account -i d: rol e/ rol e-
nane.

If specified, at least one of the following must also be defined:

e credential source

e source_profile

See Assume role credential provider.

rol e_sessi on_nane: Defines a name to attach to the role session.

dur ati on_seconds: Defines the maximum duration of the role session, in seconds.
ext ernal _i d: Specifies a unique identifier used by third parties to assume a role.

credenti al _sour ce: specifies the source of the credentials used to assume a role. Use one of the
following:

e Envi ronnment : Assumes the role using the credentials defined in the environment variables
AWS_ACCESS KEY_| D, AWS_SECRET_ACCESS_KEY, and (optional) AW5_SESSI ON_TOKEN.

e EcsCont ai ner : Assumes the role using the credentials defined in Amazon ECS.
e Ec2l nst anceMet adat a: Assumes the role using the credentials defined in Amazon IMDS.

sour ce_profi | e: specifies the name of a profile which contains the credentials required to assume
arole.

ec2 netadata_ vl di sabl ed: (Amazon IMDS) if enabled, t r ue, IMDSv1 is used if IMDSV2 is
unavailable.

ec2_net adat a_servi ce_endpoi nt : (Amazon IMDS) specifies the address of the IMDS endpoint.
The endpoint is validated according to the following criteria:

e Maximum of 253 characters

« Maximum of 63 characters per label.

* Permitted characters: a-z, A-Z, 0-9, and -.

« A label can not begin or end with a hyphen (-).

e Labels are concatenated with periods.

ec2_netadat a_servi ce_endpoi nt _node: (Amazon IMDS) one of the following values:

e | Pv4: (default) the IMDS endpoint address is setto ht t p: // 169. 254. 169. 254/ .

e | Pv6: the IMDS endpoint address is setto htt p: / /[f d00: ec2: : 254] /

nmet adat a_servi ce_ti meout : (Amazon IMDS) specifies the number of seconds to wait for a
successful connection to the IMDS endpoint before timing out. Default value is 1.

48

https://docs.aws.amazon.com/sdkref/latest/guide/feature-process-credentials.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sourcing-external.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-assume-role-credentials.html

Azure Blob Storage

e net adat a_servi ce_num att enpt s: (Amazon IMDS) specifies the number of attempts to retrieve
data from IMDS before failing and returning an error. Default value is 1.

If you have installed and configured the AWS CLI, MySQL Shell reads the connection parameters from
the default location, . aws/ , automatically. To use an alternate configuration, do so from the command
line, using the relevant override options.

If you are using Oracle Cloud Infrastructure's S3 compatibility API, see Creating a Customer Secret
Key for information on creating the credentials required.

Note

@ By default, the AWS CLI creates two configuration files, conf i g, which
stores parameters such as region and output format, and cr edent i al s,
which stores access keys and session tokens. It is also possible to place
all configuration parameters in a single file, conf i g. For more information,
see AWS Configuration and authentication settings . However, if you have
defined access key and secret access keys in both files, those defined in the
credenti al s file take precedence.

The following example shows a default pair of AWS CLI configuration files:

/ hone/ . aws/ credenti al s

[defaul t]

aws_access_key_id = AKI ABAV.
aws_secret _access_key = XHRY579I.....

/ hone/ . aws/ confi g

[defaul t]
region = us-west-1
out put = json

Connection Retry Strategy
All failed connections to AWS S3 are retried three times, with a 1 second delay between retries.

If a failure occurs 10 minutes after the connection was created, the delay is changed to an exponential
back-off strategy:

» First delay: 3-6 seconds
» Second delay: 18-36 seconds

e Third delay: 40-80 seconds

4.8.3 Azure Blob Storage

The Azure configuration values are evaluated in the following order of precedence:

» Option. See the Azure-specific sections of Chapter 12, MySQL Shell Utilities for the applicable
options.

* Environment variable. See Environment Variables.
» Configuration file. See Configuration Files.

For more detailed information on Microsoft Azure CLI configuration, see the Azure CLI
documentation.

49

https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create-secret-key
https://docs.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcredentials.htm#create-secret-key
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html

OCI Authentication Connection Options

Note
@ If you intend to use SAS Tokens, they must provide the following:
¢ Access to the target container.
* Read, Write, and List permissions for dump and export operations.
* Read and List permissions for load and import operations.
Environment Variables

Azure connection settings can be read from the following environment variables:

 AZURE STORAGE_ACCOUNT: The default storage account name.

* AZURE_STORAGE_KEY: The default storage key.

e AZURE_STORAGE_CONNECTI ON_STRI NG The default connection string. If this is defined,
AZURE_STORAGE_ACCOUNT and AZURE_STORAGE_KEY are ignored.

» AZURE STORAGE SAS TOKEN: The default SAS token.

If an SAS token is defined, it is used for the authentication, any defined account key is ignored.
Configuration Files

If you use the Azure config file, you must add one or more of the following parameters to the
[st orage] section of the file:

e connection_string: The default connection string. If this is defined, account and key are
ignored.

e account : The default storage account name.

» key: The default access key.

» sas_t oken: The default SAS token.

If an SAS token is defined, it is used for the authentication, any defined account key is ignored.

For more information, see Microsoft Azure CLI configuration values and environment variables.

4.9 OCI Authentication Connection Options

You can specify the OCI config file and profile used when connecting to a HeatWave Service DB
System with the OCI Authentication plugin. The following options are available from the command-line,
options file, and MySQL Shell connection options as attributes in a dictionary or in a connection URI:

* oci-config-fil e:defines the location of the OCI config file to use with the OCI Authentication
Plugin.

e authentication-oci-client-config-profil e:defines the profile in the OCI config file to
use with the OCI Authentication Plugin.

Note
@ These options are only available for connections with the OCI Authentication
Plugin.

See Appendix A, MySQL Shell Command Reference.

50

https://learn.microsoft.com/en-us/cli/azure/azure-cli-configuration

Chapter 5 MySQL Shell Code Execution

Table of Contents

5.1 ACHVE LANQUAGE ... eeeetneeiiii ettt e ettt ettt ettt ettt e et et e et e abb e et e et s et e aaa s e e e sba e e e e nneaeeennes 51
5.2 Interactive Code EXECULIONociiiiii ittt e et e e e e e e e e ne e 52
5.3 Code AULOCOMPIETIONeiiitiieeiei et e et ettt e e et e et et e e et et e e eeabe e eeenes 54
5.4 EItING COUE ...ttt e ettt e ettt s e ettt e ettt et e e e e e aa e een 58
R Ofe o [o 151 (o] YA PP PRSP 58
5.6 BAtCh COUE EXECULION ...ceuuuiiiiii ettt ettt e et e et e et et e et et e e e et 59
5.7 OULPUL FOMMALSiiitiiiieiiee et ettt e et et et e et et e e e n et e n et et e e e e eenanaes 61
B5.7.0 TABIE FOIMALeeiii ettt e et e et e e et eeeana s 61
5.7.2 Tab Separated FOIMMALccouuuiiiiiiii it e e e e e eenans 62
5.7.3 VEITICAl FOMMALuiiiiii et e e e e e 62
5.7.4 JSON FOrmMat OULPULceuiiiiiiiii ittt et e et e e e e e r e e erneees 63
5.7.5 JSON WIPPING .. .eeettnetiitti ettt ettt et ettt e et et et e et e et e et a e e e eba e e e enaa e eennas 64
5.7.6 RESUIL MELATALAceevtiieieiii et e e e 66
5.8 APl Command Line INtEGIAtiONcoiiitniieiiiiie ettt e et e e e 66
5.8.1 Command Line INtegration OVEIVIEWiciieuuiiiiiiiiieieii ettt e e e enees 66
5.8.2 Command Line Integration DEtalSc.uuiiiiiiiiiiiii e 69
e AN 1@ NI 1 (=T | = (o] o H P PP PPTTRUPPPR 78
5.10 LIMITALIONS ... ieiitiie ittt ettt e e ettt e ettt e ettt e et et b e et e et e e e e e et e e e e rb e e e enbaaees 78

This section explains how code execution works in MySQL Shell.

5.1 Active Language

MySQL Shell can execute SQL, JavaScript or Python code, but only one language can be active at a
time. The active mode determines how the executed statements are processed:

« If using SQL mode, statements are processed as SQL which means they are sent to the MySQL
server for execution.

* If using JavaScript mode, statements are processed as JavaScript code.

« If using Python mode, statements are processed as Python code.

Note

@ MySQL Shell uses Python 3. For platforms that include a system supported
installation of Python 3, MySQL Shell uses the most recent version available,
with a minimum supported version of Python 3.4.3. For platforms where
Python 3 is not included, MySQL Shell bundles Python 3.7.4. MySQL Shell
maintains code compatibility with Python 2.6 and Python 2.7, so if you require
one of these older versions, you can build MySQL Shell from source using the
appropriate Python version.

When running MySQL Shell in interactive mode, activate a specific language by entering the
commands: \ sql ,\j s, \ py.

When running MySQL Shell in batch mode, activate a specific language by passing any of these
command-line options: - - | s, - - py or - - sql . If none is specified, the default mode is SQL.

Use MySQL Shell to execute the content of the file code. sql as SQL.

$> nysql sh --sqgl < code. sql

51

Interactive Code Execution

Use MySQL Shell to execute the content of the file code. | s as JavaScript code.
$> nysqlsh --js < code. s
Use MySQL Shell to execute the content of the file code. py as Python code.

$> nysql sh --py < code. py

You can execute single SQL statements while another language is active, by entering the \ sql
command immediately followed by the SQL statement. For example:

nysql - py> \sqgl select * fromsakila.actor limt 3;

The SQL statement does not need any additional quoting, and the statement delimiter is optional.
The command only accepts a single SQL query on a single line. With this format, MySQL Shell does
not switch mode as it would if you entered the \ sql command. After the SQL statement has been
executed, MySQL Shell remains in JavaScript or Python mode.

You can execute operating system commands while any language is active, by entering the \ syst em
or\! command immediately followed by the command to execute. For example:

nysql - py> \system echo Hello from MySQ. Shel |

MySQL Shell displays the output from the operating system command, or returns an error if it was
unable to execute the command.

5.2 Interactive Code Execution

The default mode of MySQL Shell provides interactive execution of database operations that you type
at the command prompt. These operations can be written in JavaScript, Python or SQL depending on
the current Section 5.1, “Active Language”. When executed, the results of the operation are displayed
on-screen.

As with any other language interpreter, MySQL Shell is very strict regarding syntax. For example, the
following JavaScript snippet opens a session to a MySQL server, then reads and prints the documents
in a collection:

var nySession = nysql x. get Sessi on(' user: pwd@ ocal host');
var result = nySession.getSchema(' world_x').getCollection('countryinfo').find().execute();
var record = result.fetchOne();
whi | e(record){
print(record);
record = result.fetchOne();

}

As seen above, the call to f i nd() is followed by the execut e() function. CRUD database
commands are only actually executed on the MySQL Server when execut e() is called. However,
when working with MySQL Shell interactively, execut e() is implicitly called whenever you press
Ret ur n on a statement. Then the results of the operation are fetched and displayed on-screen. The
rules for when you need to call execut e() or not are as follows:

* When using MySQL Shell in this way, calling execut e() becomes optional on:
e Col I ection. add()
e Collection.find()
e Col l ection.renove()
e Col I ection. nodi fy()

e Tabl e.insert()

52

Multiple-line Support

e Tabl e. sel ect ()
e Tabl e. del et e()
e Tabl e. updat e()

» Automatic execution is disabled if the object is assigned to a variable. In such a case calling
execut e() is mandatory to perform the operation.

» When a line is processed and the function returns any of the available Resul t objects, the
information contained in the Result object is automatically displayed on screen. The functions that
return a Result object include:

e The SQL execution and CRUD operations (listed above)

« Transaction handling and drop functions of the session objects in both mysql and nysqgl x
modules: -

e startTransaction()
e comit ()

e rol | back()

dropSchena()
e dropCol | ection()
e ClassicSession.runSgl ()

Based on the above rules, the statements needed in the MySQL Shell in interactive mode to establish
a session, query, and print the documents in a collection are as follows:

nmysql -j s> var nySession = nysql x. get Sessi on(' user: pwd@ ocal host"') ;
nmysql -j s> nySessi on. get Schema(' worl d_x").get Col |l ection(' countryinfo').find();

No call to execut e() is needed and the Result object is automatically printed.

Multiple-line Support

It is possible to specify statements over multiple lines. When in Python or JavaScript mode, multiple-
line mode is automatically enabled when a block of statements starts like in function definitions, if/
then statements, for loops, and so on. In SQL mode multiple line mode starts when the command \ is
issued.

Once multiple-line mode is started, the subsequently entered statements are cached.

For example:

nmysql -sql > \
create procedure get_actors()
begi n
select first_nane from sakila.actor;
end

Note

@ You cannot use multiple-line mode when you use the \ sql command with a
query to execute single SQL statements while another language is active. The
command only accepts a single SQL query on a single line.

53

Code Autocompletion

5.3 Code Autocompletion

MySQL Shell supports autocompletion of text preceding the cursor by pressing the Tab key. The
Section 3.1, “MySQL Shell Commands” can be autocompleted in any of the language modes. For
example typing \ con and pressing the Tab key autocompletes to \ connect . Autocompletion is
available for SQL, JavaScript, and Python language keywords depending on the current Section 5.1,
“Active Language”.

Autocompletion supports the following text objects:

In SQL mode, autocompletion is aware of schema names, table names, column names of the current
active schema.

In JavaScript and Python modes autocompletion is aware of object members, for example:
 global object names such as sessi on, db, dba, shel | , nysql , mysql x, and so on.
* members of global objects such as sessi on. connect ().

 global user defined variables

chained object property references such as shel | . opti ons. ver bose.

» chained X DevAPI method calls such as col . find().where().execute().fetchOne().

By default autocompletion is enabled, to change this behavior see Configuring Autocompletion.

Once you activate autocompletion, if the text preceding the cursor has exactly one possible match, the
text is automatically completed. If autocompletion finds multiple possible matches, it beeps or flashes
the terminal. If the Tab key is pressed again, a list of the possible completions is displayed. If no match
is found then no autocompletion happens.

Autocompleting SQL
Autocompleting JavaScript and Python

Configuring Autocompletion

Autocompleting SQL

In SQL mode, context-aware autocompletion completes any word with relevant completions. The
following can be autocompleted:

Schemas

Tables

Views

Columns

Stored procedures
Functions
Triggers

Events

Engines

User-defined functions

54

Autocompleting SQL

* Runtime functions
* Log file groups

» User variables

» System variables
e Tablespaces

» Users

» Character sets

» Collations

* Plugins

If you connect to a MySQL instance but do not select a schema, autocompletion is available for global
objects, charsets, engines, schemas and so on. For example on a default MySQL installation, USE
suggests the names of all schemas detected unless one or more relevant characters from the schema
name are provided:

SQL > use
i nformati on_schema nysql performance_schema sys

If a schema is selected, additional schema information is loaded and available for autocompletion
(tables, events, and so on). If you switch from one schema to another, the objects loaded from the
previous schema are still available for autocompletion. However, any new object added during the
session will not be available for autocompletion until the \ r ehash command is run.

To fetch a list of suggestions or complete a partial word from the selected schema, enter the initial
fragment and press the Tab button twice. For example:

1. Atthe SQL prompt, enter the following fragment: SE.
2. Press the Tab key twice.

The following suggestions are displayed below your input:

SET SELECT

3. Atthe SQL prompt, enter the following fragment: SEL.
4. Press the Tab key twice.
The fragment autocompletes to SELECT.

If there are many possible results, you are prompted to display the results or not. For example:

Di splay all 118 possibilities? (y or n)

SQL Autocompletion API
The autocompletion API is exposed to developers through the following functions:
» JavaScript: shel | . aut oConpl et eSql (st at enent, options)

* Python: shel | . aut o_conpl ete_sql (statenment, options)

55

Autocompleting SQL

statement: "st ri ng"

A partial SQL statement for autocompletion.

These return feasible candidates for the autocompletion.

Options:

serverVersion: "stri ng"

sglMode: "stri ng"

statementOffset: nunber

uppercaseKeywords: [true|false]

filtered: [true|false]

Required. Server grammar version. This takes the format
major.minor.patch. ser ver Ver si on: " 8. 0. 31", for example.

Required. The SQL Mode to use. A

comma-separated string, sql Mode:

"STRI CT_TRANS_TABLES, NO ENG NE_SUBSTI TUTI ON", for
example. For more information, see Server SQL Modes.

Optional. The zero-based offset position of the caret in the
statement. Default value is the length of the statement.

Default t r ue. Whether the returned keywords are in upper case.

Default t r ue. Whether explicit candidate names returned in the
result should be filtered using the prefix which is being auto-
completed.

This function returns a dictionary describing candidates for statement autocompletion using the

following syntax:

{

"context": {
"prefix": string,

"qualifier": list of strings,
"references": |ist of dictionaries,
"l abel s": list of strings,

b

"keywords": list of strings,

"functions": list of strings,

"candi dates": l|ist of strings,

}

e cont ext : the context of the autocomplete operation.

» prefi x: the fragment being autocompleted.

e qual ifier: presentif aqualified name is available.

For example:

e SELECT s:the prefixis' s', no qualifier is present.

e SELECT schenml. t:the prefixis' t', the qualifieris[' schemal'].

e SELECT schenml. tabl el. c: the prefixis' ¢', the qualifieris [' schenal', ' tablel'].

e SELECT schenal. tabl el. col uml FR: the prefixis' FR , no qualifier is present.

» ref er ences: references detected in the statement.

* schema: name of the schema.

* t abl e: name of the table referenced in the statement.

* al i as: alias of the table.

» | abel s: labels in labeled blocks.

56

https://dev.mysql.com/doc/refman/9.4/en/sql-mode.html

Autocompleting JavaScript and Python

« keywor ds: candidate keyword suggestions.
» functi ons: candidate MySQL library (runtime) functions whose names are also keywords.
» candi dat es: lists one or more of the supported candidates. Schemas, tables, views, and so on.

For example:

JS > shel |l . aut oConpl eteSqgl ("sel ect * from ",{serverVersion: "8.0.30", sql Mbde: "STRI CT_TRANS
{

"candi dates": [
"schemas",
"t abl es",
"vi ews"

]

"

ontext": {
"prefix": "

}

"

unctions": [
"JSON_TABLE() "
]

"keywords": [
"DUAL",
" LATERAL"

Autocompleting JavaScript and Python

In both JavaScript and Python modes, the string to be completed is determined from right to left,
beginning at the current cursor position when Tab is pressed. Contents inside method calls are
ignored, but must be syntactically correct. This means that strings, comments and nested method calls
must all be properly closed and balanced. This allows chained methods to be handled properly. For
example, when you are issuing:

print(db. user.select().where("user in ('foo', '"bar')").e

Pressing the Tab key would cause autocompletion to try to complete the text
db. user. sel ect (). where(). e but this invalid code yields undefined behavior. Any whitespace,
including newlines, between tokens separated by a . is ignored.

Configuring Autocompletion

By default the autocompletion engine is enabled. This section explains how to disable autocompletion
and how to use the \ r ehash MySQL Shell command. Autocompletion uses a cache of database
name objects that MySQL Shell is aware of. When autocompletion is enabled, this name cache is
automatically updated. For example whenever you load a schema, the autocompletion engine updates
the name cache based on the text objects found in the schema, so that you can autocomplete table
names and so on.

To disable this behavior you can:
» Start MySQL Shell with the - - no- nanme- cache command option.

» Modify the aut oconpl et e. naneCache and devapi . dbCbj ect Handl es keys of the
shel | . opti ons to disable the autocompletion while MySQL Shell is running.

When the autocompletion name cache is disabled, you can manually update the text objects
autocompletion is aware of by issuing \ r ehash. This forces a reload of the name cache based on the
current active schema.

To disable autocompletion while MySQL Shell is running use the following shel | . opt i ons keys:

57

Editing Code

e aut oconpl et e. naneCache: bool ean toggles autocompletion name caching for use by SQL.

e devapi . dbOhj ect Handl es: bool ean toggles autocompletion name caching for use by the X
DevAPI db object, for example db. nyt abl e, db. mycol | ecti on.

Both keys are setto t r ue by default, and set to f al se if the - - no- nane- cache command option is
used. To change the autocompletion name caching for SQL while MySQL Shell is running, issue:

shel | . opti ons[' aut oconpl et e. naneCache' | =t r ue
Use the \ r ehash command to update the name cache manually.

To change the autocompletion name caching for JavaScript and Python while MySQL Shell is running,
issue:

shel | . opti ons[' devapi . dbObj ect Handl es'] =t rue

Again you can use the \ r ehash command to update the name cache manually.

5.4 Editing Code

MySQL Shell's\ edi t command opens a command in the default system editor for editing, then
presents the edited command in MySQL Shell for execution. The command can also be invoked using
the short form \ e or key combination Ctrl-X Ctrl-E. If you specify an argument to the command, this
text is placed in the editor. If you do not specify an argument, the last command in the MySQL Shell
history is placed in the editor.

The EDI TOR and VI SUAL environment variables are used to identify the default system editor.

If the default system editor cannot be identified from these environment variables, MySQL Shell
uses not epad. exe on Windows and vi on any other platform. Command editing takes place in a
temporary file, which MySQL Shell deletes afterwards.

When you have finished editing, you must save the file and close the editor, MySQL Shell then
presents your edited text ready for you to execute by pressing Enter, or if you do not want to proceed,
to cancel by pressing Ctrl-C.

For example, here the user runs the MySQL Shell built-in report t hr eads with a custom set of
columns, then opens the command in the system editor to add display names for some of the columns:

\'show threads --foreground -o tid,cid,user, host, conmand, state, | astwait, | astwaitl
\e
\'show threads --foreground -o tid=thread_id, ci d=conn_i d, user, host, conmand, state, | ast wai t =l ast _wai t _event, |

5.5 Code History

Code which you issue in MySQL Shell is stored in the history, which can then be accessed using the
up and down arrow keys. You can also search the history using the incremental history search feature.
To search the history, use Ctrl+R to search backwards, or Ctrl+S to search forwards through the
history. Once the search is active, typing characters searches for any strings that match them in the
history and displays the first match. Use Ctrl+S or Ctrl+R to search for further matches to the current
search term. Typing more characters further refines the search. During a search, you can press the
arrow keys to continue stepping through the history from the current search result. Press Enter to
accept the displayed match. Use Ctrl+C to cancel the search.

The hi st ory. naxSi ze MySQL Shell configuration option sets the maximum number of entries

to store in the history. The default is 1000. If the number of history entries exceeds the configured
maximum, the oldest entries are removed and discarded. If the maximum is set to 0, no history entries
are stored.

By default the history is not saved between sessions, so when you exit MySQL Shell the history of what
you issued during the current session is lost. You can save your history between sessions by enabling
the MySQL Shell hi st ory. aut oSave option. For example, to make this change permanent issue:

58

Batch Code Execution

nmysql sh-j s> \option --persist history. autoSave=1

When the hi st ory. aut oSave option is enabled the history is stored in the MySQL Shell
configuration path, which is the ~/ . mysql sh directory on Linux and macOS, or the %AppDat a%

\ MySQL\ nysql sh folder on Windows. This path can be overridden on all platforms by defining the
environment variable M\YSQLSH USER CONFI G_HOVE. The saved history is created automatically by
MySQL Shell and is readable only by the owner user. If the history file cannot be read or written to,
MySQL Shell logs an error message and skips the read or write operation. History is split per active
language and the files are named hi st ory. sql , hi story. j s and hi story. py.

Issuing the MySQL Shell \ hi st or y command shows history entries in the order that they were
issued, together with their history entry number, which can be used with the \ hi st ory del ete

ent ry _nunber command. You can manually delete individual history entries, a specified numeric
range of history entries, or the tail of the history. You can also use \ hi story cl ear to delete the
entire history manually. When you exit MySQL Shell, if the hi st or y. aut oSave configuration option
has been set to t r ue, the history entries that remain in the history file are saved, and their numbering
is reset to start at 1. If the shel | . opti ons[" hi story. aut oSave"] configuration option is set to

f al se, which is the default, the history file is cleared.

Only code which you type interactively at the MySQL Shell prompt is added to the history. Code that is
executed indirectly or internally, for example when the \ sour ce command is executed, is not added to
the history. When you issue multi-line code, the new line characters are stripped in the history entry. If

the same code is issued multiple times it is only stored in the history once, reducing duplication.

You can customize the entries that are added to the history using the - - hi sti gnor e command
option. Additionally, when using MySQL Shell in SQL mode, you can configure strings which should not
be added to the history. This history ignore list is also applied when you use the \ sgql command with a
guery to execute single SQL statements while another language is active.

By default strings that match the glob patterns | DENTI FI ED or PASSWORD are not added to the
history. To configure further strings to match use either the - - hi sti gnor e command option, or

shel | . options["history.sql.ignorePattern"].Multiple strings can be specified, separated
by a colon (:). The history matching uses case-insensitive glob pattern like matching. Supported
wildcards are * (match any 0 or more characters) and ? (match exactly 1 character). The default strings
are specified as " * | DENTI FI ED* : * PASSWORD* " .

The most recent executed statement is always available by pressing the Up arrow, even if the history
ignore list applies to it. This is so that you can make corrections without retyping all the input. If filtering
applies to the last executed statement, it is removed from the history as soon as another statement is
entered, or if you exit MySQL Shell immediately after executing the statement.

5.6 Batch Code Execution

As well as interactive code execution, MySQL Shell provides batch code execution from:
« A file loaded for processing.
« A file containing code that is redirected to the standard input for execution.

» Code from a different source that is redirected to the standard input for execution.

Tip
; As an alternative to batch execution of a file, you can also control MySQL Shell
from a terminal, see Section 5.8, “APlI Command Line Integration”.

In batch mode, all the command logic described at Section 5.2, “Interactive Code Execution” is not
available, only valid code for the active language can be executed. When processing SQL code,

it is executed statement by statement using the following logic: read/process/print result. When
processing non-SQL code, it is loaded entirely from the input source and executed as a unit. Use the

59

Executable Scripts

--interactive (or-i)command-line option to configure MySQL Shell to process the input source
as if it were being issued in interactive mode; this enables all the features provided by the Interactive
mode to be used in batch processing.

Note
@ In this case, whatever the source is, it is read line by line and processed using
the interactive pipeline.

The input is processed based on the current programming language selected in MySQL Shell, which
defaults to JavaScript. You can change the default programming language using the def aul t Mode
MySQL Shell configuration option. Files with the extensions . | s, . py, and . sql are always processed
in the appropriate language mode, regardless of the default programming language.

This example shows how to load JavaScript code from a file for batch processing:
$> nysqlsh --file code.js

Here, a JavaScript file is redirected to standard input for execution:

$> nysql sh < code.js

The following example shows how to redirect SQL code to standard input for execution on Linux
platforms:

$> echo "show dat abases;" | nysqlsh --sql --uri user@?92.0.2.20: 33060

Note
@ To run this command on Windows platforms, you must remove the quotation
marks surrounding the string in the echo command.

The - - pymcommand line option is available to execute the specified Python module as a script in
Python mode. The option works in the same way as Python's - mcommand line option.

Executable Scripts

On Linux you can create executable scripts that run with MySQL Shell by including a #! line as the first
line of the script. This line should provide the full path to MySQL Shell and include the - - f i | e option.
For example:

#! /usr/ | ocal / nysql -shel | / bi n/ nysql sh --file
print(“Hello World\n")

The script file must be marked as executable in the filesystem. Running the script invokes MySQL Shell
and it executes the contents of the script.

SQL Execution in Scripts

SQL query execution for X Protocol sessions normally uses the sql () function, which takes an SQL
statement as a string, and returns a SqlExecute object that you use to bind and execute the query and
return the results. This method is described at Using SQL with Session. However, SQL query execution
for classic MySQL protocol sessions uses the r unSql () function, which takes an SQL statement and
its parameters, binds the specified parameters into the specified query and executes the query in a
single step, returning the results.

If you need to create a MySQL Shell script that is independent of the protocol used for connecting

to the MySQL server, MySQL Shell provides a sessi on. runSql () function for X Protocol, which
works in the same way as the r unSql () function in classic MySQL protocol sessions. You can use
this function in MySQL Shell only in place of sql (), so that your script works with either an X Protocol
session or a classic MySQL protocol session. Sessi on. runSql () returns a SqlResult object, which

60

https://dev.mysql.com/doc/x-devapi-userguide/en/using-sql.html

Output Formats

matches the specification of the ClassicResult object returned by the classic MySQL protocol function,
so the results can be handled in the same way.

implementation in JavaScript and Python, and is not part of the standard X

Note
@ Sessi on. runsgl () is exclusive to the MySQL Shell X DevAPI
DevAPI.

To browse the query results, you can use the f et chOneObj ect () function, which works for both
the classic MySQL protocol and X Protocol. This function returns the next result as a scripting object.
Column names are used as keys in the dictionary (and as object attributes if they are valid identifiers),
and row values are used as attribute values in the dictionary. Updates made to the object are not
persisted on the database.

For example, this code in a MySQL Shell script works with either an X Protocol session or a classic
MySQL protocol session to retrieve and output the name of a city from the given country:

var resultSet = nmySession.runSgl ("SELECT * FROM city WHERE countrycode = ' AUT' ");
var row = resultSet.fetchOnelbj ect ()
print(row' Nane'])

5.7 Output Formats

MySQL Shell can print results in table, tabbed, or vertical format, or as pretty or raw JSON output. The
MySQL Shell configuration option r esul t For nat can be used to specify any of these output formats
as a persistent default for all sessions, or just for the current session. Changing this option takes effect
immediately. For instructions to set MySQL Shell configuration options, see Section 14.4, “Configuring
MySQL Shell Options”. Alternatively, the command line option - - resul t - f or mat or its aliases (- -
tabl e, --tabbed, --vertical) can be used at startup to specify the output format for a session.
For a list of the command line options, see Section A.1, “mysglsh — The MySQL Shell”.

If the r esul t For mat configuration option has not been specified, when MySQL Shell is in interactive
mode, the default format for printing a result set is a formatted table, and when MySQL Shell is in batch
mode, the default format for printing a result set is tab separated output. When you set a default using
the r esul t For mat configuration option, this default applies in both interactive mode and batch mode.

The MySQL Shell function shel | . dunpRows () can format a result set returned by a query in any of
the output formats supported by MySQL Shell, and dump it to the console. (Note that the result set is
consumed by the function.)

To help integrate MySQL Shell with external tools, you can use the - - j son option to control JSON
wrapping for all MySQL Shell output when you start MySQL Shell from the command line. When
JSON wrapping is turned on, MySQL Shell generates either pretty-printed JSON (the default) or raw
JSON, and the value of the r esul t For mat MySQL Shell configuration option is ignored. When JSON
wrapping is turned off, or was not requested for the session, result sets are output as normal in the
format specified by the r esul t For mat configuration option.

5.7.1 Table Format

The table format is used by default for printing result sets when MySQL Shell is in interactive mode.
The results of the query are presented as a formatted table for a better view and to aid analysis.

To get this output format when running in batch mode, start MySQL Shell with the - -resul t -
f or mat =t abl e command line option (or its alias - - t abl e), or set the MySQL Shell configuration
option r esul t For mat tot abl e.

Example 5.1 Output in Table Format

M/SQL | ocal host: 33060+ ssl world_x JS > shell.options.set('resultFornat',"'table")

61

Tab Separated Format

MySQL | ocal host: 33060+ ssl world_x JS > session.runSgl ("select * fromcity where countrycode=" AUT" "
| ID | Nane | CountryCode | District | Info |

		AUT	Wen	{"Popul ation": 1608144}
		AUT	Steiermark	{"Popul ation": 240967}
	Linz	AUT	North Austria	{"Popul ation": 188022}
1526	Sal zburg	AUT	Sal zburg	{"Popul ation": 144247}
	Innsbruck		Tiroli	{"Popul ation": 111752}
	Klagenfurt		Karnten	{"Popul ation": 91141}

6 rows in set (0.0030 sec)

5.7.2 Tab Separated Format

The tab separated format is used by default for printing result sets when running MySQL Shell in batch
mode, to have better output for automated analysis.

To get this output format when running in interactive mode, start MySQL Shell with the - - resul t -
f or mat =t abbed command line option (or its alias - - t abbed), or set the MySQL Shell configuration
option r esul t For nat to t abbed.

Example 5.2 Output in Tab Separated Format

MySQL | ocal host: 33060+ ssI world_x JS > shell.options.set('resultFormat','tabbed")
MySQL | ocal host: 33060+ ssl world_x JS > session.runSgl ("select * fromcity where countrycode=" AUT" "

I D Name Count r yCode District I nfo

1523 W en AUT W en {" Popul ati on": 1608144}

1524 G az AUT St ei er mar k {" Popul ati on": 240967}

1525 Li nz AUT North Austria {"Popul ation": 188022}

1526 Sal zbur g AUT Sal zbur g {" Popul ation": 144247}
1527 I nnsbr uck AUT Tiroli {"Population": 111752}

1528 Kl agenf urt AUT Karnten {"Popul ati on": 91141}

6 rows in set (0.0041 sec)

5.7.3 Vertical Format

The vertical format option prints result sets vertically instead of in a horizontal table, in the same way as
when the \ G query terminator is used for an SQL query. Vertical format is more readable where longer
text lines are part of the output.

To get this output format, start MySQL Shell with the - -resul t - f or mat =verti cal command line
option (or its alias - - verti cal), or set the MySQL Shell configuration option r esul t For mat to
vertical.

Example 5.3 Output in Vertical Format

MySQL | ocal host: 33060+ ssI world_x JS > shell.options.set('resultFormat', " vertical")
MySQL | ocal host: 33060+ ssl world_x JS > session.runSgl ("select * fromcity where countrycode=" AUT" "
khkkkkhkkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhkhkkhkkkx*x 1 I'OW khkkkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkk*x*x
I D: 1523
Nanme: Wen
Count ryCode: AUT
District: Wen
Info: {"Popul ation": 1608144}
khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhkkkhkk*x*x 2 I'OW kkkkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkk*x*x
I D: 1524
Nane: G az
Count ryCode: AUT
District: Steiermark
Info: {"Popul ation": 240967}
khkkkkhkkkhkhkkhkkhkhkkhkhkkhhkkhhkhkkhkhkkhhkkhkk*x*x 3 I'OW khkkkkhkkkhkhkkhkkhkhkkhkhkkhhkkhhkhkhkhkkhhkkhkk*x*x
I D: 1525
Nane: Linz
Count ryCode: AUT
District: North Austria
Info: {"Popul ation": 188022}

62

JSON Format Output

LEEREE R EEEEEEEEEE L] FOW *XX*hdkhhkkkhhhhkkxkhhkkkxkkk

I D: 1526
Name: Sal zburg
Count ryCode: AUT
District: Sal zburg
Info: {"Popul ation": 144247}
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkkkx*x 5 I’OW khkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhhkhkhkhkkhhkkhkkkx*x
I D: 1527
Nane: | nnsbruck
Count ryCode: AUT
District: Tiroli
Info: {"Population": 111752}
khkkkkhkkkhkkkhkkhkhkkhkhkkhhkkhhkhkkhkkhkhkkhkkkx*x 6 I’OW khkkkkhkkkhkkhkkhkhkkhkhkkhkhkkhhkhkkhkkhhkkhkkx*x
I D: 1528
Name: Kl agenfurt
Count ryCode: AUT
District: Karnten
Info: {"Population": 91141}
6 rows in set (0.0027 sec)

5.7.4 JSON Format Output

MySQL Shell provides a number of JSON format options to print result sets:

jsonorjson/pretty These options both produce pretty-printed JSON.
ndj son orj son/ r aw These options both produce raw JSON delimited by newlines.
j son/array This option produces raw JSON wrapped in a JSON array.

You can select these output formats by starting MySQL Shell with the - - r esul t - f or mat =val ue
command line option, or setting the MySQL Shell configuration option r esul t For mat .

In batch mode, to help integrate MySQL Shell with external tools, you can use the - -] son option to
control JSON wrapping for all output when you start MySQL Shell from the command line. When JSON
wrapping is turned on, MySQL Shell generates either pretty-printed JSON (the default) or raw JSON,
and the value of the r esul t For mat MySQL Shell configuration option is ignored. For instructions, see
Section 5.7.5, “JSON Wrapping”.

Example 5.4 Output in Pretty-Printed JSON Format (j son orj son/ pretty)

MySQL | ocal host: 33060+ ssI world_x JS > shell.options.set('resultFormat',"'json')
M/SQL | ocal host: 33060+ ssl world_x JS > session.runSgl ("select * fromcity where countrycode=" AUT' ")

{
"I D': 1523,
"Nane": "Wen",
" Count ryCode": "AUT",
"District": "Wen",
"Info": {
" Popul ation": 1608144
}
}
{
"I D': 1524,
"Nane": "G az",
" Count ryCode": "AUT",
"District": "Steiermrk",
"Info": {
" Popul ation": 240967
}
}
{

"I D': 1525,
“Nane": "Linz",
" Count ryCode": "AUT",
"District": "North Austria",
"Info": {

" Popul ation": 188022

63

JSON Wrapping

}
{
"I D': 1526,
"Nane": "Sal zburg",
" Count ryCode": "AUT",
"District": "Sal zburg",
"Info": {
"Popul ation": 144247
}
}
{
"I D': 1527,
"Name": "Il nnsbruck",
" Count ryCode": "AUT",
"District": "Tiroli",
"Info": {
"Popul ation": 111752
}
}
{
"I D': 1528,
"Nanme": "Kl agenfurt",
" Count ryCode": "AUT",
"District": "Karnten",
"Info": {
"Popul ation": 91141
}
}

6 rows in set (0.0031 sec)

Example 5.5 Output in Raw JSON Format with Newline Delimiters (ndj son or j son/ r aw)

MySQL | ocal host: 33060+ ssl world_x
MySQL | ocal host: 33060+ ssl world_x
{"1D"': 1523, "Nane":

{"1D"': 1524, "Nane":

{"1D"': 1525, "Nane":

{"1D"': 1526, "Nane":

{"1D": 1527, " Nane"

{"1D"': 1528, "Nane":

6 rows in set (0.0032 sec)

JS > shell.options.set('resultFormat', ' ndjson')

JS > session.runSgl ("sel ect

* fromcity where countrycode=" AUT'")

"Wen", "CountryCode": "AUT", "District":"Wen","Info":{"Popul ati on": 1608144} }

"Graz", " CountryCode": "AUT", "District":"Stei ermark", "I nfo": {"Popul ati on": 240967} }
"Linz", " CountryCode": "AUT","District":"North Austria","Info":{"Popul ati on": 188022}}
"Sal zburg", " CountryCode": " AUT", "Di strict":"Sal zburg", "I nfo": {"Popul ati on": 144247}}
;"1 nnsbruck", "CountryCode": "AUT","District":"Tiroli","Info":{"Popul ati on": 111752} }
"Kl agenfurt", " CountryCode": "AUT","District":"Karnten","Info": {"Popul ati on":91141}}

Example 5.6 Output in Raw JSON Format Wrapped in a JSON Array (j son/ arr ay)

| ocal host : 33060+
| ocal host : 33060+

ssl
ssl

M SQL
M SQ

wor | d_x
wor | d_x

"I D':1523,"
"I D':1524,"
"I D': 1525, "

[
{ Nanme" : "
{
{
{"ID':1526,"
{
{
]
6

Nanme" : "
Nanme" : "
Nanme" : "
Nanme" : "
Nanme" : "

"I D':1527,"
"I D':1528, "

rows in set (0.0032 sec)

5.7.5 JSON Wrapping

JS > shell.options.set('resultFormat’,'json/array')

JS > session.runSgl ("sel ect

* fromcity where countrycode=" AUT' ")

W en", " CountryCode": "AUT","District":"Wen","Info": {"Popul ati on": 1608144}},

G az", "CountryCode": "AUT","District":"Stei ermark", "I nfo": {"Popul ati on": 240967} },

Li nz", " Count ryCode": "AUT", "Di strict":"North Austria","Info":{"Popul ati on": 188022}},
Sal zbur g", " Count ryCode": "AUT","Di strict":"Sal zburg", "I nfo": {"Popul ati on": 144247}},

I nnsbruck", " Count ryCode": "AUT","District":"Tiroli","Info":{"Popul ati on":111752}},

Kl agenfurt", " CountryCode": "AUT", "Di strict":"Karnten", "I nfo": {"Popul ati on":91141}}

To help integrate MySQL Shell with external tools, you can use the - - j son option to control JSON
wrapping for all MySQL Shell output when you start MySQL Shell from the command line. The - - j son
option only takes effect for the MySQL Shell session for which it is specified.

Specifying - -j son, - -] son=pretty, or--json=rawturns on JSON wrapping for the session. With
- -] son=pr et ty or with no value specified, pretty-printed JSON is generated. With - - | son=r aw, raw

JSON is generated.

When JSON wrapping is turned on, any value that was specified for the r esul t For nat MySQL Shell
configuration option in the configuration file or on the command line (with the - - resul t - f or nat

option or one of its aliases) is ignored.

64

JSON Wrapping

Specifying - - j son=of f turns off JSON wrapping for the session. When JSON wrapping is turned off,
or was not requested for the session, result sets are output as normal in the format specified by the
resul t For mat MySQL Shell configuration option.

Example 5.7 MySQL Shell Output with Pretty-Printed JSON Wrapping (- - j son or - -
j son=pretty)

$> echo "select * fromworld_x.city where countrycode="AUT'" | nysqlsh --json --sqgl --uri user @ ocal hos
or
$> echo "select * fromworld_x.city where countrycode=" AUT'" | nysql sh --json=pretty --sqgl --uri user@
{

“hasData": true,

"rows": [

{
"I D': 1523,

“"Nane": "Wen",
" Count ryCode": "AUT",
"District": "Wen",
"Info": {

" Popul ation": 1608144

"I D': 1524,
"Nane": "G az",
" Count ryCode": "AUT",
"District": "Steiermrk",
"Info": {

" Popul ation": 240967

"I D': 1525,
“Nanme": "Linz",
" Count ryCode": "AUT",
"District": "North Austria",
"Info": {

" Popul ation": 188022

"I D': 1526,
“Nane": "Sal zburg",
" Count ryCode": "AUT",
"District": "Sal zburg",
"Info": {

"Popul ation": 144247

"I D': 1527,
“Nanme": "Innsbruck",
" Count ryCode": "AUT",
"District": "Tiroli",
"Info": {

"Popul ation": 111752

"I D': 1528,
"Nane": "Klagenfurt",
" Count ryCode": "AUT",
"District": "Karnten",
"Info": {

"Popul ation": 91141

}
Il
"executionTi me": "0.0067 sec",
"af f ect edRowCount ": 0,
"affectedl tenmsCount”: O,

65

Result Metadata

"war ni ngCount ": 0,
"war ni ngsCount": 0,
“warni ngs": [],

"info": ""

"aut ol ncrement Val ue": 0

}

Example 5.8 MySQL Shell Output with Raw JSON Wrapping (- - j son=r aw)

$> echo "select * fromworld_x.city where countrycode=' AUT'" | nysqlsh --json=raw --sqgl --uri user @ ocal hos
{"hasData":true, "rows":[{"I D': 1523, "Nane": "W en", " Count ryCode": "AUT", "Di strict":"Wen", "I nfo":{"Popul ati on"

5.7.6 Result Metadata

When an operation is executed, in addition to any results returned, some additional information is
returned. This includes information such as the number of affected rows, warnings, duration, and so on,
when any of these conditions is true:

» JSON format is being used for the output
* MySQL Shell is running in interactive mode.

When JSON format is used for the output, the metadata is returned as part of the JSON object. In
interactive mode, the metadata is printed after the results.

5.8 APl Command Line Integration

MySQL Shell exposes much of its functionality through an APl command-line integration using a
syntax that provides access to objects and their functions without opening the interactive interface.
This enables you easily integrate mysql sh with other tools. For example if you want to automate how
you create an InnoDB Cluster using a bash script, you could use the command-line integration to call
AdminAPI operations. This functionality is similar to using the - - execut e option, but the command-
line integration uses a simplified argument syntax which reduces the quoting and escaping that can be
required by terminals. Unlike batch mode, the command-line integration is stateless. This means that
operations which return an object to be used by further operations are not possible. The command-line
integration calls operations, or global object's functions, and returns.

5.8.1 Command Line Integration Overview

This section provides an overview of the command-line integration and some basic usage examples.
For more detailed information, see Section 5.8.2, “Command Line Integration Details”.

* MySQL Shell Command Line Integration Syntax

* The Objects Available in the Command Line Integration

* MySQL Shell Command Line Integration Argument Syntax

* MySQL Shell Command Line Integration Examples

The following built-in MySQL Shell global objects are available:
e sessi on: represents the current global session.

» db: represents the default database for the global session, if that session was established using an X
Protocol connection with a default database specified. See Using MySQL as a Document Store.

» dba: provides access to AdminAPI, used to manage InnoDB Cluster, InnoDB ClusterSet, and
InnoDB ReplicaSet deployments. See Chapter 6, MySQL AdminAPI.

e cl uster: represents an InnoDB Cluster.

66

https://dev.mysql.com/doc/refman/9.4/en/document-store.html

Command Line Integration Overview

e cl usterset:represents an InnoDB ClusterSet.
* rs:represents an InnoDB ReplicaSet.

» shel | : provides access to MySQL Shell functions, such as shel | . opt i ons for configuring MySQL
Shell options (see Section 14.4, “Configuring MySQL Shell Options”).

e util: provides access to MySQL Shell utilities. See Chapter 12, MySQL Shell Utilities.

For more information, see Section 4.6, “MySQL Shell Global Objects”.
MySQL Shell Command Line Integration Syntax

Important

A MySQL Shell reads MySQL Server option files and login paths by default. As
a result, if you connect to a MySQL Server which uses an option file, it will be
used, by default, and attempt to create a global session using that configuration.
If you do not want to use the options file, you must add - - no- def aul t s to
your command line.

You access the command-line integration by starting the mysql sh application and passing in the
special - - option. When you start MySQL Shell in this way, the - - indicates the end of the list of
options (such as the server to connect to, which language to use, and so on) and everything after it

is passed to the command-line integration. The command-line integration supports a specific syntax,
which is based on the objects and methods used in the MySQL Shell interactive interface. To execute
an operation using command-line integration syntax, in your terminal issue:

nysql sh [options] -- [shell _object]+ object_nethod [argunents]
The syntax elements are:

» shel | _obj ect is a string which maps to a MySQL Shell global object. The command-line
integration supports nested objects. To call a function in a nested object, provide the list of objects in
the hierarchy separated by spaces, to reach the desired object.

» obj ect _net hod is the name of the method provided by the last shel | _obj ect . The method
names can be provided following either the JavaScript, or Python naming convention, or an
alternative command-line integration friendly format, where all known functions use all lower case
letters, and words are separated by hyphens. The name of a obj ect _net hod is automatically
converted from the standard JavaScript style camelCase name, where all case changes are replaced
with a - and turned into lowercase. For example, cr eat eCl ust er becomes cr eat e-cl uster.

» argunent s are the arguments passed to the obj ect _net hod when it is called.

shel | _obj ect must match one of the exposed global objects, and any nested objects must be a
child object of the previous object provided in the list. The obj ect _net hod must match one of the
last object in the list's methods, and must be defined in one of the valid formats (JavaScript, Python or
command line friendly). If they do not correspond to a valid object and its methods, MySQL Shell exits
with status 10.

See the examples at MySQL Shell Command Line Integration Examples.

The Objects Available in the Command Line Integration
To find out which objects and methods are available in the command-line integration it is best to query
the MySQL Shell you are working with. This is because in addition to the standard objects bundled with
MySQL Shell, additional objects from plugins might also be exposed.

To get the list of objects supported by the command-line integration:

67

https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_no-defaults

Command Line Integration Overview

$ nysqlsh -- --help
This displays a list of objects and a brief description of what the object provides.

To get a list of the functions available in the command-line integration for an obj ect :

$ nysqlsh -- object --help
For more information, see Section 5.8.2.4, “Command Line Help”.
MySQL Shell Command Line Integration Argument Syntax

The ar gunent s list is optional and all arguments must follow a syntax suitable for command-line
use as described in this section. Special characters (such as spaces or \) and quoting are processed
by your system's shell (bash, cnd, and so on) before they are passed to MySQL Shell. If you are
unfamiliar with how your system shell deals with those character sequences as it parses a command,
you should try to avoid them. For example, to pass a parameter with quotes as part of the parameter
such as “list, of, names”, using just that syntax on the command line is not enough. You need to use
your system's shell syntax for escaping those quotes. If you do not, then MySQL Shell might not
receive the actual quotation marks. See Section 5.8.2.2, “Defining Arguments”.

There are two types of arguments that can be used in the list of arguments: anonymous arguments and
named arguments. Anonymous arguments are used to define simple type parameters such as strings,
numbers, boolean, null. Named arguments are used to define the values for list parameters and the
options in a dictionary parameter, they are key-value pairs, where the values are simple types. Their
usage must adhere to the following pattern:

[positional _argunment | nanmed_argunent]*

All parts of the syntax are optional and can be given in any order. These arguments are then converted
into the arguments passed to the method call in the following order:

» Named arguments that come from lists cause the values to be appended to the list parameter that
originated the named argument

» Named arguments that come from dictionaries cause the values to be added to the dictionary
parameter that originated the named argument

« If a dictionary parameter exists with no explicit options defined, this causes it to accept any named
argument that does not belong to another List or Dictionary parameter

* Any remaining arguments provided to the function call are processed in the order they are provided
MySQL Shell Command Line Integration Examples

Using the command-line integration, calling MySQL Shell API functions is easier and less cumbersome
than with the - - execut e option. The following examples show how to use this functionality:

» To check a server instance is suitable for upgrade and return the results as JSON for further
processing:

$ nysqglsh -- util check-for-server-upgrade --user=root --host=local host --port=3301 --password="passwor

The equivalent command in MySQL Shell interactive mode:

mysql -j s> util.checkFor Server Upgrade({user:'root', host:'local host', port:3301}, {password:'password'

» To deploy an InnoDB Cluster sandbox instance, listening on port 1234 and specifying the password
used to connect:

$ nysqgl sh -- dba depl oy- sandbox-i nstance 1234 --passwor d=password

The equivalent command in MySQL Shell interactive mode:

68

Command Line Integration Details

nysql - j s> dba. depl oySandbox| nst ance(1234, {password: password})

e To create an InnoDB Cluster using the sandbox instance listening on port 1234 and specifying the
name nycl ust er:

$ nysql sh root @ocal host: 1234 -- dba create-cluster mycluster
The equivalent command in MySQL Shell interactive mode:
nmysql -j s> dba. createCl uster (' mycl uster")
» To check the status of an InnoDB Cluster using the sandbox instance listening on port 1234:
$ nysql sh root @ocal host: 1234 -- cluster status
The equivalent command in MySQL Shell interactive mode:
nmysql -j s> cluster. status()
» To configure MySQL Shell to turn the command history on:

$ nysqgl sh -- shell options set_persist history.autoSave true

The equivalent command in MySQL Shell interactive mode:

nysqgl -j s> shel | . options. set_persi st (' history. autoSave', true);

5.8.2 Command Line Integration Details
This section provides detailed information about the MySQL Shell command-line integration.
5.8.2.1 Command Line Integration for MySQL Shell APl Functions

The MySQL Shell provides global objects that expose different functionality, such as dba for InnoDB
Cluster and InnoDB ReplicaSet management operations, ut i | for the utility functions, and so on.
Global objects provide functions which are called from the scripting modes in the MySQL Shell. In
addition to the interactive MySQL Shell integration, you can use the command-line integration to call
object functions directly from the terminal, enabling you to easily integrate with other tools.

When you use the APIs included with MySQL Shell in the interactive mode, the typical function syntax
is as follows:

obj ect. functi onName(paraneter1l, paraneter2, ..., paraneterN)

The parameters define the order in which the data should be provided to the API function. In most
cases, API functions expect the parameters in a specific data type, however there are a few exceptions
where a specific parameter can handle multiple data types. The data types used for parameters in API
functions can be one of the following:

» Scalars: string, numbers, booleans, null

* Lists

« Dictionaries: key-value pairs where the key is a string
» Objects

List parameters are typically restricted to contain elements of a predefined data type, for example a list
of strings, however, there could be list parameters that support items of different data types.

Dictionary parameters accept key-val ue pairs, where keys are strings. The val ue associated to a
key is usually expected to be of a predefined data type. However, there might be cases where different

69

Command Line Integration Details

data types are supported for values by the same key. Dictionary parameters can therefore be one of
the following types:

» A predefined set of keys-value pairs is allowed, in which case specifying keys not in the predefined
set results in an error.

» No predefined set of key-value pairs exists, the dictionary accepts any key

In other words, some dictionary parameters specify which keys are valid. For those parameters,
attempting to use a key outside of that set results in an error. When no predefined set of values exists,
any value of any data type can be used. Dictionary parameters that do not have a predefined list of
keys, accept any key-value pair as long as the key is not in the predefined set of a different dictionary
parameter.

To use the command-line integration to call API functions exposed by global objects without having to

start an interactive session in the MySQL Shell you must provide the required data in the correct way.

This includes defining the way an API function is called, as well as the way its parameters are mapped
from command-line arguments to API arguments.

Important

A Not all of the MySQL Shell functions are exposed by the command-line
integration. For example a function such as dba. get Cl ust er () relies on
returning an object which is then used in further operations. Such operations are
not exposed by the command-line integration.

Similarly, the MySQL Shell command-line integration does not support Objects
as parameters. Any API function with a parameter of type object cannot be
used with the command-line integration. The lifetime of the object is limited

to the lifetime of the MySQL Shell invocation that created it. Since nmysql sh
exits immediately after executing an object method through this API syntax, any
objects received from or passed into an API call would immediately be out of
scope. This should be considered while developing MySQL Shell Plugins that
you want to expose with the command-line integration.

The general format to call a MySQL Shell API function from the command-line is:

$ nysql sh [shell options] -- [shell_object]+ object_function [anonynous_argunents| naned ar gunent s] *

Where:

» shel | _obj ect: specifies a global object with functions exposed for command-line usage. Supports
nested objects in a list separated by spaces.

» obj ect functi on: specifies the API function of the last shel | _obj ect which should be
executed.

* [anonynmous_ar gunent s| naned ar gunent s] *: specifies the arguments passed to the
obj ect functi on call

For most of the available APIs a single object is required, for example:

$ nysqlsh -- shell status

But for nested objects, the list of objects must be indicated. For example, to call a function exposed by
shel | . opti ons, such as set Per si st (opti onNane, val ue), use the syntax:

$ nysql sh -- shell options set-persist defaultMde py
A similar situation might happen with nested objects defined in MySQL Shell Plugins.

The arguments you pass to functions can be divided into the following types:

70

Command Line Integration Details

« Anonymous Arguments: which are raw values provided to the command. For example, in the
following call 1, one and t r ue are anonymous arguments:

$ nysql sh -- object command 1 one true

* Named Arguments: which are key-value pairs provided in the form of - - key=val ue. For example in
the following call, - - sanpl e and - - pat h are named arguments:

$ nysql sh -- object command 1 one true --sanple=3 --path=sone/path

Given this division of arguments, the general format to call an API function from the command-line
integration is:

$ nysql sh [shell options] -- object command [anonynous argunents][nanmed ar gunent s]

The order of any anonynous ar gunent s is important as they are processed in a positional way.
On the other hand, naned ar gunent s can appear anywhere as they are processed first and are
associated to the corresponding parameter. Once named arguments are processed, the anonymous
arguments are processed in a positional way.

5.8.2.2 Defining Arguments

As mentioned in Section 5.8.2.1, “Command Line Integration for MySQL Shell API Functions”, most
of the APIs available in MySQL Shell expect a specific data type for the arguments being provided.
Values in command-line arguments can be provided using the JSON specification with the following
considerations. Some terminals do their own preprocessing of the data which can impact the way the
data is provided to MySQL Shell, and this varies depending on the terminal being used. For example:

» Some terminals split arguments if whitespace is found.
» Consecutive whitespace could be ignored by the splitting logic.
* Quotes could be removed.

MySQL Shell interprets the values as provided by the terminal it is running in, therefore you must
provide the data to the terminal in a way that is correctly formatted. For example:

. Important

A Some terminals require quotes to be escaped

» String arguments should be quoted in the following cases:
« They contain whitespace
« The argument is for a list parameter and contains commas
* They contain escaped characters

» The API parameter can accept different data types and the value (based on the JSON specification)
could be the wrong data type.

» When defining parameters using JSON, quote string values and string keys. Avoid using whitespace
outside of quoted items.

The following examples illustrate some of the handling of parameters.

» To pass in multiple parameters, each a single string, no quoting is required:

$ nysqlsh -- object function sinple string

In this case, MySQL Shell gets two arguments - argument 1 is si npl e, and argument 2 is st ri ng.

71

Command Line Integration Details

« If you want these two strings to be treated as a single parameter, they must be surrounded by quote
marks, as follows

$ nysqlsh -- object function "sinple string"
In this case, MySQL Shell gets one argument - argument 1 is si npl e stri ng.

» To use an argument which contains characters such as a backslash, the string must be quoted.
Otherwise the character is ignored. For example:

$ nysql sh -- object function sinple\tstring

In this case, MySQL Shell gets one argument - si npl et st ri ng, the backslash character (\) has
been ignored.

To ensure the backslash character is passed to MySQL Shell, surround the string with quotes:
$ nysqgl sh -- object function "sinple\tstring"
In this case, MySQL Shell gets one argument - si npl e\t stri ng.

When using the command-line integration, defining a JSON array has its own caveats. For example, in
the MySQL Shell interactive mode you define a JSON array as:

["sinple", 123]

To use the same array in the command-line integration requires specific quoting. The following
example illustrates how to correctly quote the JSON array:

» Attempting to pass the JSON array in the same way as the interactive mode does not work:

$ nysqlsh -- object function ["sinple", 123]

In this case, MySQL Shell gets two arguments - argument 1 is [si npl e, and argument 2 is 123] .
* Not using spaces in the array helps, but it is still an invalid JSON array:

$ nysql sh -- object function ["sinple", 123]

In this case, MySQL Shell gets one argument - [si npl e, 123] .

» To make a valid JSON array, add escaped quotes within the already quoted string element, for
example:

$ nysqlsh -- object function ["\"sinple\"", 123]
In this case, MySQL Shell gets one argument - [" si npl e", 123].

To use a JSON array which contains JSON objects requires quoting in a similar way. For example, in
the MySQL Shell interactive mode you define a JSON array which contains JSON objects as:

{"firstName":"John","|ast Name":"Snith"}

The following example illustrates how to correctly quote the same array in the command-line
integration:

« Attempting to pass the JSON array in the same way as the interactive mode does not work:

$ nysqlsh -- object function {"firstNane":"John","| ast Name":"Smith"}

In this case, MySQL Shell gets two arguments - argument 1 is f i r st Nane: John and argument 2 is
| ast Name: Smi t h.

» Using escaped quotes for string data leads to:

72

Command Line Integration Details

$ nysql sh -- object function {"\"firstName\"":"\"John\"", "\ "l astName\"":"\"Smth\""}

In this case, MySQL Shell gets two arguments - argument 1 is " fi r st Nane": " John" and
argument 2is " | ast Nane": " Snith".

To fix this, you need to additionally quote the whole JSON object, to get:

$ nysqgl sh -- object function "{"\"firstName\"":"\"John\"", "\ "l astName\"":"\"Smith\""}"

In this case, MySQL Shell gets one argument - {"fi r st Nane": "John", " | ast Nane":"Sm th"}.

Due to the difficulties shown and the fact that the way the terminals in different platforms behave might
be different, the following formats are supported.

String Arguments

Strings require quoting only in the following cases:

The value contains spaces
The value itself contains commas and is for a list parameter (to avoid splitting)
The value contains escaped characters

The value is a number, nul | , t rue, f al se butitis meant to be a string. In these cases the value
should be quoted with inner escaped quotes. In other words, if a string value is "true", it should be

defined in a CLI call as "true™.

List Arguments

In addition to a JSON array, an argument for a list parameter can be provided as:

» a comma separated list of values

* separate anonymous arguments

When a list parameter is being processed (in positional order), all of the remaining anonymous
arguments are part of the list. The following MySQL Shell CLI calls are equivalent:

» Using a comma separated list of values:

$ nysql sh root @ocal host -- util dunp-schemas sakil a, enpl oyees

« Using consecutive anonymous arguments:

$ nysql sh root @ocal host -- util dunp-schemas sakila enpl oyees

» Using a JSON array:

$ nysqgl sh root @ocal host -- util dunp-schemas ["\"sakila\"","\"enpl oyees\""]

Dictionary Arguments

Dictionaries are created using key-value pairs, the value for a key in a dictionary argument can also be
specified using named arguments:

- -key=val ue

The following MySQL Shell CLI call illustrates how the t hr eads and osBucket Nane keys are defined
for the options parameter inthe uti | . dunpl nst ance() function:

$ nysqlsh -- util dunp-instance ny-dunp --threads=8 --osBucket Name=ny- bucket

List Keys

73

Command Line Integration Details

You can define the values of a list key in a dictionary in the following ways:
* Defining the value as a JSON array.

» Defining the value as a comma separated list of values.

 Defining values for the key repeatedly.

For example, in the following calls, the definition of the excl udeSchemnmas key passed to the
util.dunpl nstance() operation is equivalent:

» Using a comma separated list of values:

$ nysql sh root @ocal host -- util dunp-instance --outputUl="ny-dunp" --excludeSchemas=sakil a, enpl oyees

* Using a JSON array:

$ nysql sh root @ocal host -- util dunp-instance --outputUrl="ny-dunp" --excludeSchemas=["\"sakila\"","\"er
» Defining several values for the - - excl udeSchenas key:
$ nysql sh root @ocal host -- util dunp-instance --outputUrl="nmy-dunp" --excludeSchemas=sakila --excl udeSct
Dictionary Keys
Nested dictionaries are supported with the following restrictions:
* Only one level of nesting is supported.
 Validation for inner predefined keys is not supported.
 Validation for inner expected data types is not supported.
The syntax to define a value for a key in a nested dictionary is as follows:
- - key=i nner Key=val ue

For example, to define the decodeCol urms key and pass ittothe uti | . i nport Tabl e() operation:

$ nysql sh -- util inport-table --decodeCol unms=nyCol utm=1

Additional Named Arguments

As shown in the previous section, dictionary parameters are supported through named arguments
using the - - key=val ue syntax. There is another case when arguments must be specified as named
arguments: parameters which are defined after a list parameter. The most convenient way to provide
arguments that belong to a list parameter is by using anonymous arguments, for example as shown in
the example at List Arguments:

$ nysql sh root @ocal host -- util dunp-schenmas sakil a enpl oyees

However, this example is missing the argument for the out put Ur | parameter, which is mandatory
fortheuti | . dunpSchenmas() operation. Because all of the remaining anonymous arguments are
included as items in the schemas list, there is no way to specify the out put Ur | as an anonymous
argument. For example the following would not work:

$ nysql sh root @ocal host -- util dunp-schemas sakila enpl oyees path/t o/ dunp

In this call, the path pat h/ t o/ dunp would be interpreted as another item in the schemas list. For this
reason, any parameter defined after a list parameter must be specified as a named argument when
calling the function from the command-line. For example:

$ nysqgl sh root @ocal host -- util dunp-schemas sakila enpl oyees --out putUrl =path/t o/ dunp

74

Command Line Integration Details

5.8.2.3 Data Type Handling

In general, the data type of an argument is resolved using the following criteria, in order of priority:

» The expected data type for the target parameter.

* The data type of the value based on the JSON specification.

» User specified data type.

The last case is a complicated (and rare) case applicable for named arguments only. For example,

suppose you have a MySQL Shell Plugin function such as:

def set_object_attributes(variabl es)

Where var i abl es is a dictionary with no predefined set of values, thus it accepts any key, and

therefore accepts any data type for the value. To set a string attribute named st r eet Nunber with a

string value of 123, issue:

$ nysqlsh -- plugin set-object-attributes --streetNunber=123

Because there is no expected data type, the value 123 is interpreted as a numeric value according to

the JSON specification, but we wanted to store that as a string, not as a number.

K

User Data Types

Note

Currently there is no case of an API function like this unless user creates a
plugin as explained above.

To avoid issues with MySQL Shell trying to guess the type of input data, the command-line integration
supports forcing a specific data type, by specifying a named argument using the following syntax:

--key: type=val ue

Where t ype is one of:

str
int
uint
float
bool
list
dict

json

To store the value as a string, issue:

$ nysql sh -- plugin set-object-attributes --streetNunber: str=1234

&

Important

This format is allowed in any named argument, but it is only required when there

is no expected data type for the argument. If there is an expected data type for
the parameter and you specify a different data type, an error is raised.

75

Command Line Integration Details

Data Type Resolution

When you do not specify the data type, MySQL Shell attempts to resolve the data type using the
following logic. This data interpretation logic is based on the JSON specification but has some MySQL
Shell specific additions and limitations:

 Strings:
e Support both double quoted and single quoted strings.

» Support for hexadecimals such as \ xNNwhere NN is a hexadecimal digit. This is used to represent
ASCII characters in hexadecimal format.

« Support for vertical tabs escaped character
» The following literals can also be defined:
» undefined: define a value as undefined (not really needed in CLI so usage is discouraged).
* true/false: creates a boolean value.
 null: define a null value.

Any value not covered by the JSON specification and the rules above is interpreted as a plain string.

5.8.2.4 Command Line Help

You can access the MySQL Shell online help when calling commands from the command-line
integration using the - - hel p (-h) CLI argument. Help is supported at the global, object and command
level.

Note
@ The built-in help CLI argument does not map to any APl argument and is
supported in all the objects and commands available in CLI.

The descriptions of the commands and parameters is taken from the existing documentation for the
target API function.

Global CLI Help

To retrieve the list of global objects available for CLI calls, use the following syntax:

$ nysqglsh -- --help

In this example, - - initiates the command-line integration section of the command. Using the - - hel p
or - h option alone after that lists the global objects available within this interface.

Object Help

To access the object help from the command-line integration, use the following syntax:

$ nysqlsh -- object --help

where obj ect is what you want help on, such as the dba global object. This call displays:
A brief description of the object.

» A list of the available commands and a short description of them.

To retrieve the help for nested objects, provide the entire list of objects before the - - hel p argument.
For example, to get help on the shel | . opt i ons functions, issue:

$ nysql sh -- shell options --help

76

Command Line Integration Details

Command Help

To display help on commands from the command-line integration, use the following syntax:

$ nysqgl sh -- object conmand --hel p
This call displays details about the command, including:
A brief description of what the command does.

» The signature for calling the command.

The list of anonymous arguments and a brief description of each.

The list of named arguments, their expected data types, and a brief description explaining the
purpose of each argument.

For the case of commands in nested objects, the entire list of objects should be provided before the
command, for example:

$ nysql sh shell options set-persist --help

For parameters that expect a specific data type, the argument is listed as:

- - nane=t ype
Brief description of the paraneter

The type information represents the expected data type for the argument, for example: str, i nt,
ui nt, bool ,list,float,ordict.

For example, the consi st ent key of the dunp- schenas parameter:
$ nysqlsh -- util dunp-schemas --help

- - consi st ent =<bool >
Enabl e or di sabl e consistent data dunps. Default: true

For parameters that support different data types, the argument is listed as:

--name[: t ype] =val ue
Bri ef description of the paraneter

For example, the col umms key of the ut i | . i nport Tabl e() operation.
$ nysqglsh -- util inport-table --help

--col umsJ : <t ype>] =<val ue>
Array of strings and/or integers (default: enpty array) - This..

5.8.2.5 Support for MySQL Shell Plugins

To use Section 11.3, “MySQL Shell Plugins” with the command-line integration, the functions must
be explicitly defined for CLI support. When an object defined in a MySQL Shell Plugin is enabled for
command-line integration, only the specific functions that were enabled are available for CLI calls.
When you add function members to an object, they support the cl i boolean option. When cl i is set
to t r ue, the function is available from the command-line integration. The cl i option defaults to false,
therefore functions are not available from the command-line integration unless specifically enabled.
Any object with a function that has the cl i option enabled causes its parent objects to be available in
the command-line integration as well.

To make a function available through the command-line integration, set the cl i optionto t r ue when
you add the extension object member. For example:

77

JSON Integration

shel | . addExt ensi onOhj ect Menber (obj ect, "exanpl eFuncti on", exanpl eFuncti on,
{
brief:"Retrieves brief information",
details: ["Retrieves detailed information"],
cli: true,
paranmet ers:
[
{
nane: "parama",
type: "string",
brief: "parama brief"
}
|
1)

You could then use the exanpl eFuncti on() function from the command-line integration as follows:

nmysql sh -- custonObj exanpl eFunction 1

If you have added an extension object member using a MySQL Shell version earlier than 8.0.24,

and you want to use it with the command-line integration, you must enable the cl i option. Use the
addExt ensi onObj ect Menber method as illustrated here to add the object member again, this time
enabling the cl i option.

5.9 JSON Integration

You can activate a JSON shell mode to help with integration of MySQL Shell with other applications
that could use its functionality. In this mode, MySQL Shell accepts commands formatted as JSON
documents.

To activate the JSON shell mode, define the MYSQLSH JSON_SHELL environment variable. The
following commands can then be used:

{"execute":json-string} Executes the given code in the active MySQL Shell mode
(JavaScript, Python or SQL). The code is executed as a complete
unit, and an error is returned if it is incomplete.

{"commmand": j son-string} Executes the given MySQL Shell command (see Section 3.1,
“MySQL Shell Commands”).

{"conpl ete": Determines the options for auto-completion based on the given data
{"data":json-string[, and the current MySQL Shell context.
"offset": uint}}}

5.10 Limitations

This section describes the limitations of the various supported MySQL Shell modes.

SQL Limitations for X Protocol Sessions

The following statements are not possible with an X Protocol session:
e ALTER | NSTANCE

* | NSTALL COVPONENT

I NSTALL PLUG N

LOAD DATA LOCAL | NFI LE

LOCK | NSTANCE FOR BACKUP

UNI NSTALL COMPONENT

78

https://dev.mysql.com/doc/refman/9.4/en/alter-instance.html
https://dev.mysql.com/doc/refman/9.4/en/install-component.html
https://dev.mysql.com/doc/refman/9.4/en/install-plugin.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/9.4/en/uninstall-component.html

SQL Limitations for X Protocol Sessions

UNI NSTALL PLUG N
UNLOCK | NSTANCE

SHOW Bl NARY LOG STATUS
SHOW Bl NARY LOGS

SHOW PARSE_TREE

SHUTDOWN

79

https://dev.mysql.com/doc/refman/9.4/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/9.4/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/9.4/en/show-binary-log-status.html
https://dev.mysql.com/doc/refman/9.4/en/show-binary-logs.html
https://dev.mysql.com/doc/refman/9.4/en/show-parse-tree.html
https://dev.mysql.com/doc/refman/9.4/en/shutdown.html

80

Chapter 6 MySQL AdminAPI

Table of Contents

6.1 USiNg MySQL AAMINAPT ...ttt e e e enanns 81
6.2 Installing ADmMINAPI Software COMPONENTSuiiiiiiiieeiiii e 82
6.2.1 Configuring the HOSt NAIMEuuiiiiii e e 83
6.2.2 ConNecting t0 Server INSTANCEScccuuuuiiiiiii et 83
6.2.3 PerSiStNG SEINGS ...ccieteiiiiiiii ettt 84
6.3 Retrieving a Handler ODJECTuu i et eeea e eees 85
6.4 Creating User Accounts for ADMINAPT ... e 86
6.5 VEIDOSE LOGGING .. .eeiiieiiiii ettt ettt ettt ettt 88
6.6 FINAING Tthe PIIMAIYiiii ettt ettt et e et eeeaa s 88
6.7 Scripting AAMINAPIT ... ettt e 89
6.8 AdMINAPI MYSQL SANADOXEScceviiiiiiiiiie ettt ettt e e 20
6.8.1 Deploying SandbOX INSTANCESuiiiiiiiiieiiii e 91
6.8.2 Managing SandboX INSTANCESuuiiiiiiiii e e 92
6.8.3 Setting up INNoDB Cluster and MySQL ROULETcoouuiiiiiiiiiiiiiii e 92
6.9 TagQING METAUALAuuiiiiii ettt ettt et e e et e et e e e n e eeaans 99
6.10 Upgrade Metadata SCREMEc.uuiiiiiiii et 104
6.11 Locking Mechanism for ADMINAPT OPEratioNScccuuuuiiiiiiiieeiiieee et 105
6.12 Executing SQL 0N TOPOIOGIEScovuiiiiiiiiieee ittt et e e 109
6.13 Replication Compatibility ChECKSiiiiiiiie e 110

This chapter covers MySQL AdminAPI, provided with MySQL Shell, which enables you to administer
MySQL instances, using them to create InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet
deployments, and integrating MySQL Router.

6.1 Using MySQL AdminAPI

AdminAPI is provided by MySQL Shell. AdminAPI is accessed through the dba global variable and its
associated methods. The dba variable's methods provide the operations which enable you to deploy,
configure, and administer InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet. For example,
use the dba. cr eat eCl ust er () method to create an InnoDB Cluster. In addition, AdminAPI supports
administration of some MySQL Router related tasks, such as creating or upgrading a user account that
works with InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

AdminAPI supports the following deployment scenarios:

* Production deployment: If you want to use a full production environment, you need to configure the
required number of machines and then deploy your server instances to the machines.

» Sandbox deployment: If you would like to test a deployment before committing to a full production
deployment, the provided sandbox feature enables you to set up a test environment on your local
machine. Sandbox server instances are created for you with the required configuration. You can
experiment to become familiar with the technologies employed.

Important
A An AdminAPI sandbox deployment is not suitable for use in a full production
environment.

MySQL Shell provides two language modes, JavaScript and Python, in addition to a native SQL mode.
Throughout this guide MySQL Shell is used primarily in JavaScript mode. When MySQL Shell starts

it is in JavaScript mode by default. Switch modes by issuing \ j s for JavaScript mode, and \ py for
Python mode. Ensure you are in JavaScript mode by issuing the \ j s.

81

Installing AdminAPI Software Components

Important

but AdminAPI requires TCP connections to a server instance. Socket based

A MySQL Shell enables you to connect to servers over a socket connection,
connections are not supported in AdminAPI.

This section assumes familiarity with MySQL Shell; see MySQL Shell 9.4 for further information.
MySQL Shell also provides online help for the AdminAPI. To list all available dba commands,
use the dba. hel p() method. For online help on a specific method, use the general format

obj ect. hel p(' nmet hodnane') . For example, using JavaScript:

nysql -j s> dba. hel p(' getd uster')
Retrieves a cluster fromthe Metadata Store.
SYNTAX
dba. get d uster([nane] [, options])
WHERE

nanme: Paraneter to specify the name of the cluster to be returned.
options: Dictionary with additional options.

Or using Python:

nmysql - py>dba. hel p(' get _cluster')
NAME
get _cluster - Retrieves a cluster fromthe Metadata Store.

SYNTAX
dba. get _cluster([nanme] [, options])

VWHERE
name: Paraneter to specify the name of the cluster to be returned.
options: Dictionary with additional options.

In addition to this documentation, there is developer documentation for all AdminAPI methods in
the MySQL Shell JavaScript APl Reference or MySQL Shell Python API Reference, available from
Connectors and APIs.

6.2 Installing AdminAPI Software Components

How you install the software components required by AdminAPI depends on the type of deployment
you intend to use:

» For a production deployment, install the components to each machine. A production deployment
uses multiple remote host machines running MySQL server instances, so you need to connect to
each machine using a tool such as SSH or Windows remote desktop to carry out tasks such as
installing components.

» For a sandbox deployment, install the components to a single machine. A sandbox deployment is
local to a single machine, therefore the installation needs to only be done once on the local machine.

Important

A Always use the most recent versions of MySQL Shell and MySQL Router that
are available to you, and ensure that their version is the same as or higher than
the MySQL Server release. MySQL Shell and MySQL Router can manage older
MySQL Server releases, but older versions of the products cannot manage
features in newer MySQL Server releases.

Download and install the software components using the following documentation:

82

https://dev.mysql.com/doc/index-connectors.html

Configuring the Host Name

» MySQL Server - see Installing MySQL.
* MySQL Shell - see Chapter 2, Installing MySQL Shell.
* MySQL Router - see Installing MySQL Router.

Once you have installed the required software, this section has further information on using AdminAPI.
Follow the procedures to set up Chapter 8, MySQL InnoDB Cluster, Chapter 9, MySQL InnoDB
ClusterSet, or Chapter 10, MySQL InnoDB ReplicaSet.

6.2.1 Configuring the Host Name

In a production deployment, the instances in which you use run-on separate machines, therefore each
machine must have a unigue hostname and be able to resolve the hostnames of the other machines,
which run server instances. If this is not the case, you can:

1. Configure each machine to map the IP of each other machine to a hostname. See your operating
system documentation for details. This configuration is the recommended solution.

2. Set up a Domain Name System (DNS) service.

3. Configure the r eport _host variable in the MySQL configuration of each instance to a suitable
externally reachable address.

AdminAPI supports using IP addresses instead of host names and supports IPv6 addresses if the
target MySQL Server version is higher than 8.0.13.

If all cluster instances are running 8.0.14 or higher, you can use an IPv6 address or a hostname that
resolves to an IPv6 address in connection strings and with options such as | ocal Addr ess and

i pAl I ow i st . For more information on using IPv6, see Support For IPv6 And For Mixed IPv6 And
IPv4 Groups.

Previous versions support IPv4 addresses only.

To verify whether the hostname of a MySQL server you have correctly configured, process the
following query. This query shows how the instance reports its address to other servers and try to
connect to that MySQL server from other hosts using the returned address:

SELECT coal esce(@® eport_host, @dhost nane);

6.2.2 Connecting to Server Instances

MySQL Shell enables you to work with various APIs, and supports specifying connections as explained
in Connecting to the Server Using URI-Like Strings or Key-Value Pairs. You can specify connections
using either URI-like strings, or key-value pairs. The Additional Connection parameters are not
supported in AdminAPI. This documentation demonstrates AdminAPI using URI-like connection strings.

For AdminAPI operations, you can only connect to server instances in an InnoDB Cluster using TCP/IP
connections and classic MySQL protocol. The use of Unix sockets and named pipes is not supported
for AdminAPI operations, and the use of X Protocol is not supported for AdminAPI operations. The
same limitations apply to connections between the server instances themselves.

to connect to instances in an InnoDB Cluster. The limitations only apply to
administration operations using AdminAPI commands, and to connections

Note
@ Client applications can use X Protocol and Unix sockets and named pipes
between the instances.

For example, to connect as the user myuser to the MySQL server instance at ww. exanpl e. com on
port 3306 use the connection string:

83

https://dev.mysql.com/doc/refman/9.4/en/installing.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-installation.html
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/group-replication-ipv6.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-ipv6.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html#connection-parameters-additional

Persisting Settings

myuser @ww. exanpl e. com 3306

To use this connection string with an AdminAPI operation such as dba. confi gur el nst ance(),
you need to ensure the connection string is interpreted as a string. For example, by surrounding the
connection string with either single (") or double (") quote marks.

If you are using the JavaScript implementation of AdminAPI issue:

nysql -j s> > dba. confi gurel nstance(' nyuser @ww. exanpl e. com 3306')

If you are using the Python implementation of AdminAPI issue:

nysql - py> dba. confi gure_i nstance(' myuser @ww. exanpl e. com 3306")

You are prompted for your password if you are running MySQL Shell in the default interactive mode.
AdminAPI supports MySQL Shell's Section 4.4, “Pluggable Password Store”, and once you store the
password you used to connect to the instance, you will no longer be prompted for it.

MySQL Shell defaults to trying X Protocol for connection to a server instance. If you do not specify the
connection type when you make a connection for an AdminAPI operation, MySQL Shell's automatic
protocol detection briefly creates a session for X Protocol, before it creates a classic MySQL protocol
session.

The behavior has no effect unless you are connecting to an InnoDB Cluster with only two secondary
(read-only) instances using a port that a MySQL Router is managing. In this case, load balancing is
not managed correctly between the two instances, and the same instance is always used. To avoid
this side-effect, you can specify a classic MySQL protocol session explicitly by adding the - - nt or - -
nysql option.

Certain operations that open many connections to servers can take a long time to execute when
one or more servers are indeed unreachable, for example, the cl ust er. st at us() command. The
connection timeout may not provide enough time for a response.

You can use the MySQL Shell configuration option dba. connect Ti meout to set the default
connection timeout in seconds for any session using AdminAPI.

6.2.3 Persisting Settings

The AdminAPI commands you use to work with an InnoDB Cluster, InnoDB ClusterSet, InnoDB
ReplicaSet, and the individual member server instances in these deployments modify the configuration
of MySQL Server on the instance. Depending on the way MySQL Shell is connected to an instance and
the version of MySQL Server installed on the instance, these configuration changes can be persisted to
the instance automatically.

By making settings to the instance persistent, you ensure that after the instance restarts, configuration
changes are retained. For background information see SET PERSI ST. This persistence is essential
for reliable usage. For example, if settings are not persistent, an instance added to a cluster does not
rejoin the cluster after a restart because configuration changes are lost.

Instances which meet the following requirements support persisting configuration changes
automatically:

» The instance is running MySQL version 8.0.11 or later.
* persisted_gl obal s_| oad is set to ON.
» The instance has not been started with the - - no- def aul t s option.

Instances which do not meet these requirements do not support persisting configuration changes
automatically.

84

https://dev.mysql.com/doc/refman/9.4/en/set-variable.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_persisted_globals_load
https://dev.mysql.com/doc/refman/9.4/en/server-options.html#option_mysqld_no-defaults

Retrieving a Handler Object

When AdminAPI commands are issued against the MySQL instance which MySQL Shell is currently
running on, in other words, the local instance, MySQL Shell persists configuration changes directly
to the instance. On local instances which support persisting configuration changes automatically,
configuration changes are persisted to the instance's nysql d- aut o. cnf file, and the configuration
change does not require any further steps.

When run against a remote instance, in other words, an instance other than the one which MySQL
Shell is currently running on, if the instance supports persisting configuration changes automatically,
the AdminAPI commands persist configuration changes to the instance's nysql - aut 0. conf option
file.

If a remote instance does not support persisting configuration changes automatically, the AdminAPI
commands can not automatically configure the instance's option file. So, the AdminAPI commands can
read information from the instance, for example, to display the current configuration. But changes to the
configuration cannot be persisted to the instance's option file.

6.3 Retrieving a Handler Object

When you are working with AdminAPI, you use a handler object which represents the InnoDB Cluster,
InnoDB ClusterSet, or InnoDB ReplicaSet. You assign this object to a variable, and then use the
operations available to monitor and administer the InnoDB Cluster, InnoDB ClusterSet, or InnoDB
ReplicaSet.

To retrieve the handler object, you establish a connection to one of the active instances, including
Read Replicas, which belong to the InnoDB Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet. For
example, when you create a cluster using dba. cr eat eCl ust er (), the operation returns a Cl ust er
object which can be assigned to a variable. You use this handler object to work with the cluster. For
example, to add instances or check the cluster's status. If you want to retrieve a Cl ust er object
again at a later date, for example after restarting MySQL Shell, use the dba. get Cl ust er ([nane],
[options]) function. For example, using JavaScript:

nysql -js> var clusterl = dba. getCl uster()

Or using Python:

nysql -py> clusterl = dba.get_cluster()

To retrieve the Cl ust er Set object representing an InnoDB ClusterSet deployment, use the
dba. get Cl uster Set () orcl uster. get C usterSet () function. For example, using JavaScript:

mysql -j s> nycl usterset = dba. get Cl uster Set ()

Or using Python:

nysql - py> nycl usterset = dba. get_cluster_set()

must still be online in the InnoDB ClusterSet. If that server instance goes offline,
the object no longer works, and you need to get it again from a server that is still

Note
@ When you use a Cl ust er Set object, the server instance from which you got it
online in the InnoDB ClusterSet.

Use the dba. get Repl i caSet () operation to retrieve a Repl i caSet object. For example, using
JavaScript:

nysql -j s> var replicasetl = dba. get ReplicaSet ()

Or using Python:

nmysql - py> replicasetl = dba. get_replica_set()

85

Creating User Accounts for AdminAPI

If you do not specify a nane then the default object is returned. The returned object uses a new
session, independent from MySQL Shell's global session. This ensures that if you change the MySQL
Shell global session, the Cl ust er, Cl ust er Set , or Repl i caSet object maintains its session to the
server instance.

By default MySQL Shell attempts to connect to the primary instance when you retrieve a handler. If a
primary is unavailable, a connection is made to a secondary.

6.4 Creating User Accounts for AdminAPI

The user accounts used to configure and administer a member server instance in an InnoDB Cluster,
InnoDB ClusterSet, or InnoDB ReplicaSet deployment must have full read and write privileges on the
metadata tables, in addition to full MySQL administrator privileges (SUPER, GRANT OPTI ON, CREATE,
DROP and so on). For more information, see Privileges Provided by MySQL.

You can use the r oot account on the servers for this purpose, but if you do this, the r oot account on
every member server in the deployment must have the same password. Using the r oot account is not
recommended for security reasons.

Instead, the recommended method is to set up user accounts using AdminAPI's JavaScript

dba. confi gurel nstance() and cl ust er. set upAdm nAccount () operations. The format of
the user names accepted by these operations follows the standard MySQL account nhame format, see
Specifying Account Names.

If you prefer to set up the user accounts, the required permissions are listed in Configuring InnoDB
Cluster Administrator Accounts Manually. If only read operations are needed, for example, for
monitoring purposes, you can use an account with more restricted privileges, as detailed in this topic.

Important

A Each account used to configure or administer an InnoDB Cluster, InnoDB
ClusterSet, or InnoDB ReplicaSet deployment must exist on all the member
server instances in the deployment, with the same user name, and the same
password.

Server Configuration Account

A server configuration account is required on each server instance that is to join an InnoDB
Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet deployment. You set this account up using a
dba. confi gurel nstance() JavaScript command or dba. confi gure_i nstance() Python
command, with the cl ust er Admi n option.

For better security, specify the password at the interactive prompt, otherwise specify it using the

cl ust er Adm nPasswor d option. Create the same account, with the same user name and password,
in the same way on every server instance that will be part of the deployment, both the instance you
connect to create the deployment and the instances that will join after that.

You can define a password expiration using the cl ust er Adm nPasswor dExpi r at i on option. This
option can be set to a number of days, NEVER to never expire, or DEFAULT, to use the system default.

If you are using SSL certificates for authentication, you can add the certificate issuer and subject using
the cl ust er Adm nCert | ssuer and cl ust er Adm nCert Subj ect options, respectively.

The server configuration account that you create using the dba. conf i gur el nst ance() operation

is not replicated to other servers in the InnoDB Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet
deployment. MySQL Shell disables binary logging for the dba. confi gur el nst ance() operation. For
this reason, you must create the account on every server instance individually.

The cl ust er Admi n option must be used with a MySQL Shell connection based on a user which has
the privileges to create users with suitable privileges. In this JavaScript example the root user is used:

86

https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html
https://dev.mysql.com/doc/refman/9.4/en/account-names.html

Administrator Accounts

nmysql -j s> dba. confi gurel nstance(' root @c-1:3306', {clusterAdnin: "'icadmin @ic-1%"});

Again, in this Python example the root user is used:

nmysql - py> dba. configure_i nstance(' root @c-1:3306', clusterAdnin=""icadnmn @ic-1%");

Administrator Accounts

Administrator accounts can be used to administer a deployment after you have completed the
configuration process. You can set up more than one of them. To create an administrator account,
you issue a cl ust er . set upAdni nAccount () JavaScript command after you have added

all the instances to the InnoDB Cluster or InnoDB ReplicaSet. Or issue the Python command:

<Cl ust er>set up_adm n_account ().

The command creates an account with the user name and password that you specify, with all the
required permissions. A transaction to create an account with cl ust er. set upAdmi nAccount () is
written to the binary log and sent to all the other server instances in the cluster to create the account on
them.

To use the set upAdni nAccount () operation, you must be connected as a MySQL user with
privileges to create users, for example as root. The set upAdni nAccount (user) operation
also enables you to upgrade an existing MySQL account with the necessary privileges before a
dba. upgr adeMet adat a() JavaScript operation, or the dba. upgr ade_net adat a() Python
operation.

The mandatory user argument is the name of the MySQL account you want to create to be used to
administer the deployment. The format of the user names accepted by the set upAdm nAccount ()
operation follows the standard MySQL account name format. For more information, see Specifying
Account Names. The user argument format is user name[@ost] where host is optional and if it is
not provided it defaults to the %wildcard character.

For example, to create a user named i cadmi n to administer an InnoDB Cluster assigned to the
variable nyCl ust er using JavaScript, issue:

nysql -j s> nyCl ust er. set upAdmi nAccount (' i cadnmi n')

M ssing the password for new account icadm n@o Please provide one.
Password for new account: ******xx

Confirm password: ******%x

Creating user icadm n@b6

Setting user password.
Account icadm n@b was successfully created.

Or using Python:

nysql - py> nyCl uster. set up_adni n_account ('icadnmn')

M ssing the password for new account icadm n@o Please provide one.
Password for new account: ******xx

Confirm password: ******%x

Creating user icadm n@b6

Setting user password.
Account icadnm n@b was successfully created.

set upAdni nAccount () has the following SSL-specific options:
* requireCertl ssuer: Optional SSL certificate issuer for the account.
» requireCert Subj ect : Optional SSL certificate subject for the account.

e passwor dExpi ration: nunber O Days | Never | Default:Password expiration setting for
the account.

87

https://dev.mysql.com/doc/refman/9.4/en/account-names.html
https://dev.mysql.com/doc/refman/9.4/en/account-names.html

Updating Old Accounts

Note
@ If either requi reCert | ssuer orrequireCert Subj ect are set, or both, the
existing password becomes optional.

Updating Old Accounts

If you have a server configuration account or administrator account created with a version prior to
MySQL Shell 8.0.20, use the updat e option with the set upAdm nAccount () operation to upgrade
the privileges of the existing user. This is relevant during an upgrade, to ensure that the user accounts
are compatible. For example, to upgrade the user named i cadm n, using JavaScript, issue:

nmysql -j s> nyC ust er. set upAdm nAccount ('icadmin', {'update':1})
Updati ng user icadni n@b
Account icadm n@b6 was successful |y updat ed.

Or using Python:

nysql - py> nyCl uster. set up_adni n_account (' i cadni n', updat e=1})
Updati ng user icadni n@b6
Account i cadm n@b was successfully updated.

This is a special use of the cl ust er. set upAdm nAccount () command that is not written to the
binary log.

6.5 Verbose Logging

When working with a production deployment it can be useful to configure verbose logging for MySQL
Shell. For example, the information in the log can help you to find and resolve any issues that might
occur when you are preparing server instances to work as part of InnoDB Cluster. To start MySQL
Shell with a verbose logging level, use the - - | og- | evel option:

$> nysql sh --1o0g- 1| evel =DEBUG3

The DEBUGS level is recommended. For more information, see - - | og- | evel . When DEBUGS is set
the MySQL Shell log file contains lines such as Debug: execute_sql (...) which contain the
SQL queries that are executed as part of each AdminAPI call. The log file generated by MySQL Shell
is located in ~/ . mysql sh/ nmysql sh. | og for Unix-based systems; on Microsoft Windows systems it
is located in ¥APPDATA% MySQL\ nysql sh\ nysql sh. | og. For more information, see Chapter 13,
MySQL Shell Logging and Debug.

In addition to enabling the MySQL Shell log level, you can configure the amount of output AdminAPI
provides in MySQL Shell after issuing each command. To enable the amount of AdminAPI output, in
MySQL Shell issue:

nysql -j s> dba. ver bose=2
This enables the maximum output from AdminAPI calls. The available levels of output are:

* 0 or OFF is the default. This provides minimal output and is the recommended level when not
troubleshooting.

» 1 or ON adds verbose output from each call to the AdminAPI.

» 2 adds debug output to the verbose output providing full information about what each call to
AdminAPI executes.

MySQL Shell can optionally log the SQL statements used by AdminAPI operations (with the exception
of sandbox operations), and can also display them in the terminal as they are executed. For more
information, see Section 13.4, “MySQL Shell SQL Logging”.

6.6 Finding the Primary

88

Scripting AdminAPI

When you are working with a single-primary InnoDB Cluster or an InnoDB ReplicaSet, you need to
connect to the primary instance for administration tasks so that configuration changes are written to the
metadata. To find the current primary you can:

* Usethe--redirect-prinmary option at MySQL Shell start up to ensure that the target server is
part of an InnoDB Cluster or InnoDB ReplicaSet. If the target instance is not the primary, MySQL
Shell finds the primary and connects to it.

» Usethe shel | . connect ToPri mary([instance, password]) operation, which checks
whether the target instance belongs to a cluster or ReplicaSet. If so, MySQL Shell opens a new
session to the primary, sets the active global MySQL Shell session to the established session and
returns it.

If ani nst ance is not provided, the operation attempts to use the active global MySQL Shell
session. If an i nst ance is not provided and there is no active global MySQL Shell session, an
exception is thrown. If the target instance does not belong to a cluster or ReplicaSet the operation
fails with an error.

» Use the status operation, find the primary in the result, and manually connect to that instance.

6.7 Scripting AdminAPI

MySQL Shell supports running scripts in batch mode. This enables you to automate processes using
AdminAPI with scripts written in JavaScript or Python, which can be run using MySQL Shell's--fil e
option. For example:

$> nysql sh --file setup-innodb-cluster.js

the script and not to MySQL Shell. You can access those options using the
0s. ar gv array in JavaScript, or the sys. ar gv array in Python. In both cases,

Note
@ Any command line options specified after the script file name are passed to
the first option picked up in the array is the script name.

The contents of an example script files are shown here, using JavaScript:

print ('l nnoDB O uster sandbox set up\n');

print(’ \n');

print('Setting up a MyYSQL I nnoDB Cluster with 3 M/SQ. Server sandbox instances,\n');
print('installed in ~/nmysqgl -sandboxes, running on ports 3310, 3320 and 3330.\n\n');

var dbPass = shell.pronpt (' Pl ease enter a password for the MySQL root account: ', {type:"password"});

try {
print ('\nDepl oyi ng the sandbox i nstances."');
dba. depl oySandboxI| nst ance(3310, {password: dbPass});

print('.");
dba. depl oySandboxI| nst ance(3320, {password: dbPass});
print('.");

dba. depl oySandboxI| nst ance(3330, {password: dbPass});
print('.\nSandbox instances depl oyed successfully.\n\n");

print('Setting up InnoDB Cluster...\n");
shel | . connect (' root @ ocal host : 3310, dbPass);

var cluster = dba.created uster("prodd uster");

print (' Adding instances to the Custer.");

cl uster. addl nstance({user: "root", host: "local host", port: 3320, password: dbPass});
print('.");
cl uster. addl nstance({user: "root", host: "local host", port: 3330, password: dbPass});

print('.\nlnstances successfully added to the Cluster."');

89

AdminAPI MySQL Shell Command Line Integration

print('\nlnnoDB C uster depl oyed successfully.\n");

} catch(e) {
print('\nThe I nnoDB Cluster could not be created.\n\nError: ' +
+ e.nessage + '\n');

}
Or using Python:

print (' 1 nnoDB O uster sandbox set up\n');

print(’ \n');

print('Setting up a MySQL I nnoDB Cluster with 3 M/SQL Server sandbox instances,\n');
print('installed in ~/nysqgl -sandboxes, running on ports 3310, 3320 and 3330.\n\n');

dbPass = shell.pronpt(' Pl ease enter a password for the MySQL root account: ', type ="password");

try:
print ('\nDepl oyi ng the sandbox i nstances."');

dba. depl oy_sandbox_i nst ance(3310, password dbPass) ;
print('.");
dba. depl oy_sandbox_i nst ance(3320, password = dbPass);
print('.");

dba. depl oy_sandbox_i nst ance(3330, password = dbPass);
print('.\nSandbox instances depl oyed successfully.\n\n");

print('Setting up InnoDB Cluster...\n");
shel | . connect (' root @ ocal host : 3310, dbPass);

cluster = dba.create_cluster("prodd uster");

print (' Adding instances to the Custer.");
cluster.add_instance('root @ocal host: 3320', password = dbPass);
print('.");

cluster.add_instance('root @ocal host: 3330', password = dbPass);
print('.\nlnstances successfully added to the Cluster."');

print('\nlnnoDB O uster depl oyed successfully.\n");

except Val ueError:
print('\nThe I nnoDB Cluster could not be created.\n\nError.\n");

AdminAPI MySQL Shell Command Line Integration

AdminAPI is also supported by MySQL Shell's Section 5.8, “API Command Line Integration”. This
command line integration enables you to easily integrate AdminAPI into your environment. For
example, to check the status of an InnoDB Cluster using the sandbox instance listening on port 1234:

$ nysql sh root @ocal host: 1234 -- cluster status

This maps to the equivalent command in MySQL Shell:

nysql -j s> cluster.status()

6.8 AdminAPI MySQL Sandboxes

This section explains how to set up a sandbox deployment with AdminAPI. Deploying and using local
sandbox instances of MySQL is a good way to start your exploration of AdminAPI. You can test the
functionality locally before deploying on your production servers. AdminAPI has built-in functionality
for creating sandbox instances that are correctly configured to work with InnoDB Cluster, InnoDB
ClusterSet, and InnoDB ReplicaSet in a locally deployed scenario.

Important

machine for testing purposes. In a production environment, the MySQL Server
instances are deployed to various host machines on the network. For more

A Sandbox instances are only suitable for deploying and running on your local
information, see Section 8.4, “Deploying a Production InnoDB Cluster”.

90

Deploying Sandbox Instances

Unlike a production deployment, where you work with instances and specify them by a connection
string, sandbox instances run locally on the same machine as that you are running MySQL Shell.
To select a sandbox instance, you supply the port number on which the MySQL sandbox instance is
listening.

6.8.1 Deploying Sandbox Instances

Rather than using a production setup, where each instance runs on a separate host, AdminAPI
provides the dba. depl oySandbox| nst ance(port _numnber) operation. The port _nunber
argument is the TCP port number where the MySQL Server instance listens for connections. To deploy
a new sandbox instance which is bound to port 3310, issue:

nysql -j s> dba. depl oySandbox| nst ance(3310)

By default the sandbox is created in a directory named $HOVE/ nysql - sandboxes/ port on
Unix systems. For Microsoft Windows systems the directory is Yuser profi | e% MySQL\ nysql -
sandboxes\ por t . Each sandbox instance is stored in a directory named after the por t _nunber .

You are prompted for the root user's password.

Important

A Each sandbox instance uses the root user and password, and it must be
the same on all sandbox instances which should work together. This is not
recommended in production.

To deploy another sandbox server instance, repeat the steps followed for the sandbox instance at port
3310, choosing different port numbers for each instance.

To change the directory which sandboxes are stored in, for example to run multiple sandboxes on one
host for testing purposes, use the MySQL Shell sandboxDi r option. For example, to use a sandbox in
the / hone/ user / sandbox1 directory, issue:

nmysql -j s> shel | . opti ons. sandboxDi r ="/ hone/ user/ sandbox1'

All subsequent sandbox related operations are then executed against the instances found at / hone/
user/ sandbox1.

When you deploy sandboxes, MySQL Shell searches for the nysql d binary, which it then uses to
create the sandbox instance. You can configure where MySQL Shell searches for the mysql d binary
by configuring the nysql dPat h option. This can be useful to test a new version of MySQL locally
before deploying it to production.

The following options are supported by the dba. depl oySandbox| nst ance() operation:
« al | owRoot Fr omconfigures which host the root user can connect from. Defaults to r oot @6

» i gnoreSsl Error configures secure connections on the sandbox instance. When
i gnor eSsl Error is true, which is the default, no error is issued during the operation if SSL
support cannot be provided and the server instance is deployed without SSL support. When
i gnoreSsl Error issettof al se, the sandbox instance is deployed with SSL support, issuing an
error if SSL support cannot be configured.

* nysql dOpt i ons configures additional options on the sandbox instance. Defaults to an empty
string, and accepts a list of strings that specify options and values. For example nysqgl dOpt i ons:
["l ower _case_tabl e _nanes=1", "report_host="10.1. 2. 3"]}. The specified options are
written to the sandbox instance's option file.

» port X configures the port used for X Protocol connections. The default is calculated by multiplying
the port value by 10. The value is an integer between 1024 and 65535.

* nysgl dPat h enables you to specify the path to the nmysql d binary, or MySQL installation root, to
use as the seed instance for your sandbox deployment.

91

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port

Managing Sandbox Instances

6.8.2 Managing Sandbox Instances

Once a sandbox instance is running, it is possible to change its status at any time using the following
commands. Specify the port number for the instance to identify it:

» To stop a sandbox instance using JavaScript, issue dba. st opSandbox| nst ance(i nst ance).
This stops the instance gracefully, unlike dba. ki | | Sandbox| nst ance(i nst ance) .

e To stop a sandbox instance using Python, issue: dba. st op_sandbox_i nst ance(i nst ance).
This stops the instance gracefully, unlike dba. ki | | _sandbox_i nst ance(i nstance).

» To start a sandbox instance using JavaScript, issue: dba. st art Sandbox| nst ance(i nst ance) .
» To start a sandbox instance using Python, issue: dba. st art _sandbox_i nst ance(i nst ance).

» To kill a sandbox instance using JavaScript, issue: dba. ki | | SandboxI| nst ance(i nstance).
This stops the instance without gracefully stopping it and is useful in simulating unexpected halts.

» To kill a sandbox instance using Python, issue: dba. ki | | _sandbox_i nst ance(i nstance) . This
stops the instance without gracefully stopping it and is useful in simulating unexpected halts.

* To delete a sandbox instance using JavaScript, issue:
dba. del et eSandbox| nst ance(i nst ance) . This completely removes the sandbox instance from
your file system.

e To delete a sandbox instance using Python, issue:
dba. del et e_sandbox_i nstance(i nst ance) . This completely removes the sandbox instance
from your file system.

Sandbox instances are considered to be transient and are not designed for production use. They are
therefore not supported for version upgrades. In a sandbox deployment, each sandbox instance uses a
copy of the nysql d binary found in the $PATH in the local mysql - sandboxes directory. If the version
of mysqgl d changes, for example after an upgrade, sandboxes based on the previous version fail to
start. This is because the sandbox binary is outdated compared to the dependencies found under the
basedir.

If you do want to retain a sandbox instance after an upgrade, a workaround is to manually copy the
upgraded nysql d binary into the bi n directory of each sandbox. Then start the sandbox by issuing
dba. st art Sandbox| nst ance() . The operation fails with a timeout, and the error log contains:

2020- 03- 26T11: 43: 12. 969131Z 5 [Systen] [My-013381] [Server] Server upgrade
from'80019' to '80020" started.

2020- 03- 26T11: 44: 03. 543082Z 5 [Systen] [My-013381] [Server] Server upgrade
from'80019' to '80020" conpl eted.

Although the operation seems to fail with a timeout, the sandbox has started successfully.

6.8.3 Setting up InnoDB Cluster and MySQL Router

In the following example, we complete the following tasks using a sandbox deployment with AdminAPI
to deploy an InnoDB Cluster with MySQL Router.

Deploying and using local sandbox instances of MySQL allows you to test out the functionality locally,
before deployment on your production servers. AdminAPI has built-in functionality for creating sandbox
instances that are pre-configured to work with InnoDB Cluster, InnoDB ClusterSet, and InnoDB
ReplicaSet in a locally deployed scenario.

This example contains the following sections:
* Installation
» Creating InnoDB Cluster

» Bootstrapping MySQL Router

92

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_basedir

Setting up InnoDB Cluster and MySQL Router

e Test MySQL Router Configuration

Warning
O Sandbox instances are only suitable for deploying and running on your local
machine for testing purposes.

Installation
Install the following components:
* MySQL Server: For more information, see Installing MySQL.
e MySQL Shell: For more information, see Installing MySQL Shell.

* MySQL Router: For more information, see Installing MySQL Router.
Creating an InnoDB Cluster Sandbox Configuration

To provide tolerance for one failure, create an InnoDB Cluster with three instances. In this example, we
will be using three sandbox instances running on the same machine. In a real-world setup, those three
instances would be running on different hosts on the network.

1. To start MySQL Shell, issue:
> nysql sh

2. To create and start the MySQL sandbox instances, use the dba. depl oySandboxl| nst ance()
function that is part of the X AdminAPI. Issue the following three statements in the MySQL Shell
and enter a root password for each instance:

nmysql -j s> dba. depl oySandbox| nst ance(3310)

nmysql -j s> dba. depl oySandbox| nst ance(3320)
nmysql -j s> dba. depl oySandbox| nst ance(3330)

Note
@ Use the same root password for all instances.

Creating InnoDB Cluster
To create an InnoDB Cluster, complete the following steps:

1. Connect to the MySQL instance you want to be the primary instance in the InnoDB Cluster by
issuing:

nmysql -j s> shel | . connect (' root @ ocal host: 3310")

2. Issue the dba. creat eC ust er () command to create the Cluster, and use the assigned variable
cl ust er to hold the outputted value:

nysql -js> cluster = dba.createCluster('devC uster")

This command outputs:

A new | nnoDB cluster will be created on instance 'I ocal host: 3310

Val i dating instance configuration at |ocal host: 3310..

NOTE: | nstance detected as a sandbox

Pl ease note that sandbox instances are only suitable for deploying test clusters for use within the

This instance reports its own address as 127.0.0. 1: 3310

I nstance configuration is suitable

93

https://dev.mysql.com/doc/refman/9.4/en/installing.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-installation.html

Setting up InnoDB Cluster and MySQL Router

NOTE: Group Replication will conmmunicate with other nmembers using '127.0.0.1:33101'.
Use the | ocal Address option to override.

Creating InnoDB cluster 'devCuster' on '127.0.0.1:3310'...

Addi ng Seed | nstance. ..

Cluster successfully created. Use Cluster.addl nstance() to add MySQL i nstances.
At |east 3 instances are needed for the cluster to be able to withstand up to
one server failure.

<Cl ust er: devd ust er >

Verify that the creation was successful by using the cl ust er. st at us() function with the
assigned variable cl ust er:

nmysql -j s> cluster.status()

The following status is output:

“clusterName”: “devC uster”,
“defaul t ReplicaSet”: {
"name": "default",
"primary": "127.0.0.1: 3310",
"ssl": "REQUI RED',
"status": "OK_NO TOLERANCE",
"statusText": "Cluster is NOT tolerant to any failures.",
"t opol ogy": {
"127.0.0.1: 3310": {
"address": "127.0.0.1: 3310",
"nmenber Rol e": " PRI MARY",
"mode": "RI'W,
"readReplicas": {},
"replicationLag": null,

"role": "HA",
"status": "ONLINE",
"version": "8.0.28"

}
}

opol ogyMdde": "Single-Primry"
}, “groupl nf ormat i onSour ceMenber ”:
“127.0.0. 1: 3310" }

The Cluster is up and running but not yet tolerant to a failure. Add another MySQL Server instances
to the Cluster using the <Cl ust er >. addl nst ance() function:

{
nysql -j s> cl uster. addl nst ance(' r oot @ ocal host: 3320')

NOTE: The target instance '127.0.0.1:3320' has not been pre-provisioned (GTID set is enpty).

The Shell is unable to decide whether increnental state recovery can correctly provision it.
The safest and npbst convenient way to provision a new instance is through autonatic clone provisioning,
which will conpletely overwite the state of '127.0.0.1:3320' with a physical snapshot from an existing
cluster nmenber. To use this nethod by default, set the 'recoveryMethod' option to 'clone'.

The increnental state recovery may be safely used if you are sure all updates ever executed in the
cluster were done with GIl Ds enabl ed, there are no purged transacti ons and the new i nstance contains
the same GIID set as the cluster or a subset of it. To use this nethod by default, set the
‘recoveryMethod' option to 'increnental'.

Pl ease select a recovery nethod [C]lone/[l]ncrenental recovery/[A]bort (default C one):
nysql -j s> cl uster. addl nst ance(' r oot @ ocal host: 3330')

}

Select a recovery method from the prompt. The options are:

< Clone: Clones the instance that you are adding to the primary Cluster, deleting any transactions
the instance contains. The MySQL Clone plugin is automatically installed. Assuming you are
adding either an empty instance (has not processed any transactions) or an instance that
contains transactions you prefer not to retain, select the Clone option.

94

Setting up InnoDB Cluster and MySQL Router

« Incremental recovery: Recovers all transactions processed by the Cluster to the joining instance
using asynchronous replication. Incremental recovery is appropriate if you are sure all updates
ever processed by the Cluster were completed with global transaction IDs (GT| D) enabled. There
are no purged transactions, and the new instance contains the same GT| D set as the Cluster or a
subset of it.

In this example, select C for Clone:

Pl ease sel ect a recovery nethod [C]lone/[l]ncrenmental recovery/[A] bort (default Clone): C
Val i dating instance configuration at |ocal host: 3320...
NOTE: |nstance detected as a sandbox.
Pl ease note that sandbox instances are only suitable for deploying test clusters for
use within the sanme host.

This instance reports its own address as 127.0.0. 1: 3320

I nstance configuration is suitable.
NOTE: Group Replication will communicate with other menmbers using '127.0.0. 1: 33201' .
Use the | ocal Address option to override.

A new i nstance will be added to the | nnoDB cluster. Depending on the amount of
data on the cluster this mght take froma few seconds to several hours.

Addi ng instance to the cluster...

Moni toring recovery process of the new cluster nmenber. Press "C to stop nonitoring
and let it continue in background.
Cl one based state recovery is now i n progress.

NOTE: A server restart is expected to happen as part of the clone process. If the
server does not support the RESTART command or does not cone back after a
while, you may need to manual ly start it back.

* Waiting for clone to finish...

NOTE: 127.0.0.1:3320 is being cloned from 127. 0. 0. 1: 3310

** Stage DROP DATA: Conpl et ed

** Cl one Transfer

FI LE COPY #####HH#HHHHIHHIHHHHHHHHH T T R 100% Conpl et ed
PAGE COPY ####H#HIHHHHHIIHIHHH R T . 100% Conpl et ed
REDO COPY #####HIHHHHHHIHIHHHHHHHHHH T T R 100% Conpl et ed

NOTE: 127.0.0.1:3320 is shutting down. ..

* Waiting for server restart... ready

* 127.0.0.1: 3320 has restarted, waiting for clone to finish...

** Stage RESTART: Conpl et ed

* Clone process has finished: 72.61 MB transferred in about 1 second (~72.61 MB/S)
State recovery already finished for '127.0.0. 1: 3320’

The instance '127.0.0. 1: 3320 was successfully added to the cluster.

Add the third instance created and again select C for the Clone recovery method:

nmysql -j s> cl ust er. addl nst ance(' root @ ocal host : 3330")

Check the status of the Cluster, by issuing:

nmysql -j s> cluster.status()

This outputs the following:

{

"clusterNane": "devC uster",
"defaul t ReplicaSet": {
"nanme": "defaul t",
“primary": "127.0.0.1:3310",
"ssl": "REQU RED',
"status": "K',

95

Setting up InnoDB Cluster and MySQL Router

"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"t opol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1: 3310",
"nmenber Rol e": " PRI MARY",
"mode": "RI'W,
"readReplicas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

127.0.0. 1: 3320": {
"address": "127.0.0.1: 3320",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"readReplicas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

127.0.0. 1: 3330": {
"address": "127.0.0.1: 3330",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"readReplicas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

}
}

opol ogyMdde": "Single-Primry"
I
" groupl nf or mati onSour ceMenber”: "127.0.0. 1: 3310"

}

The setup of the |InnoDB Cl uster was successful!

8. The Cluster can now tolerate up to one failure. Quit MySQL Shell by issuing:\ g
Bootstrapping MySQL Router

After MySQL InnoDB Cluster is set up, test the high availability of the Cluster. For this purpose, use
MySQL Router. If one instance fails, the MySQL Router updates its routing configuration automatically
and ensures that new connections are routed to the remaining instances.

Before MySQL Router can perform the routing operations, make it aware of the new InnoDB Cluster.
To do this, use the —boot st r ap option and point MySQL Router to the current R/ WMySQL Server

instance (primary instance) of the Cluster. Store the Router’s configuration in a folder called nysql -

rout er using the - d option.

1. Open aterminal in your home directory:
¢ On aLinux system, issue:
[denp- user @ ost host] $> nysql router --bootstrap root @ocal host: 3310 -d nysql router
¢ On a Windows system, issue:

C:\ User s\ denp- user > nysql router --bootstrap root @ ocal host: 3310 -d nysql -router

MySQL Router then prints the TCP/IP ports that it will use for routing connections. For more
information, see Deploying MySQL Router.

2. When MySQL Router has been successfully configured, start it up in a background thread:

96

Setting up InnoDB Cluster and MySQL Router

« On a Windows system use the st art / B command and point the Router to the configuration file

that was generated by using the —boot st r ap option:

C.\> start /B nysqglrouter -c %10OVEPATH% nysql - rout er\ nysqgl rout er. conf

¢ Or call the W ndows Power Shel | scriptin the nysql r out er folder, created previously:
\nysglrouter\start.psl

¢ On a Linux system using systemd, issue:
sudo systenttl start mysqlrouter.service

e Oron a Linux system, call the Shel | script in the mysql r out er folder, created previously:

/nysqglrouter/start.sh

Test MySQL Router Configuration

Now that an InnoDB Cluster and MySQL Router are running, test the Cluster setup.

Instead of connecting to one of the MySQL Server instances directly, connect through the MySQL
Router.

1.

Issue the following connection command:
> nysql sh root @ ocal host : 6446
Provide the root password to connect to the InnoDB Cluster.

Check the status of the InnoDB Cluster by creating a variable cl ust er and assigning it with the
value of the dba. get Cl ust er () operation:

nysql -js> cluster = dba.getC uster()

nmysql -j s> cluster.status()

Switch to SQL mode:

nysql -j s> \sql

Query the port the instance is running on, by issuing:

nysql - sql > SELECT @ort;

E +
| @@ort |
E +
| 3310 |
E +

1 rowin set (0.0007 sec)

Switch back to the JavaScript mode:

nmysql-js> \js

Use the dba. ki | | Sandbox| nst ance() function to stop the MySQL Server instance:
dba. ki I | Sandbox| nst ance(3310)

Killing MySQ instance...

I nstance | ocal host: 3310 successfully Killed.

Check if MySQL Router is correctly routing traffic by running SELECT @@port command against
the instance that was just killed and check the result:

Setting up InnoDB Cluster and MySQL Router

e Switch to SQL mode:
nmysql -j s> \'sql

¢ Check the port of MySQL:
nysql - sql > SELECT @ort ;

9. An erroris returned; ERROR: 2013 (HYO00): Lost connection to MySQL server
during query. This error means that the instance running on port 3310 is no longer running.

10. Check the port again:

nmysql -sql > SELECT @@ort ;

[+
| @@ort |
[+
| 3320 |
[+

11. This output shows that the instance running on port 3320 was promoted to be the new Read/
W i t e primary instance.

12. Return to the JavaScript mode, and check the status of the Cluster:

nysql -j s> cluster.status()
{
"clusterNane": "devC uster",
"def aul t ReplicaSet": {
"nanme": "defaul t",
“primary": "127.0.0.1: 3320",
"ssl": "REQUI RED',
"status": "OK _NO TOLERANCE",
"statusText": "Cluster is NOT tolerant to any failures. 1 nmenber is not active.",
"topol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " SECONDARY",

“mode": "n/a",
"readReplicas": {},
“role": "HA"

"shel | ConnectError": "MySQL Error 2003: Coul d not open connection to '127.0.0.1:3310":
Can't connect to MySQL server on '127.0.0.1:3310' (10061)",
"status": "(M SSING"

127.0. 0. 1: 3320": {

"address": "127.0.0.1:3320",
"menber Rol e": " PRI MARY",
"node": "RIW,
"readReplicas": {},
“replicationLag": null,

“role": "HA",
"status": "ONLI NE",
“version": "8.0.28"

"127.0.0.1: 3330": {
"address": "127.0.0.1:3330",
“menber Rol e": " SECONDARY",
“mode": "R O',
"readReplicas": {},
“replicationLag": null,
“role": "HA",
"status": "ONLI NE",
“version": "8.0.28"

}

Jia
opol ogyMode": "Singl e-Primary"

Jia
"groupl nf or mati onSour ceMenber": "127.0. 0. 1: 3320"

Tagging Metadata

13. The MySQL Server instance formally running on port 3310 is M SSI NG

14. Restart this instance, by issuing the dba. st art Sandbox| nst ance() operation with the port
number:

nmysql -j s> dba. st art Sandbox| nst ance(3310)

15. Checking the status of the Cluster shows that the instance has been restored as active in the
Cluster, but as a SECONDARY member:

nmysql -js > cluster.status()
{
"clusterNane": "devC uster",
"defaul t ReplicaSet": {
"nane": "defaul t",
"primary": "127.0.0.1:3320",
"ssl": "REQUI RED',
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"t opol ogy": {
"127.0.0.1: 3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " SECONDARY",
"mode": "R O',
"readReplicas": {},
"replicationLag": null,
"role": "HA",
"status": "ONLINE",
"version": "8.0.28"

127.0.0. 1: 3320": {
"address": "127.0.0.1: 3320",
"menber Rol e": " PRI MARY",
"mode": "RIW,
"readReplicas": {},
"replicationLag": null,
"role": "HA",
"status": "ONLINE",
"version": "8.0.28"

"127.0.0.1:3330": {
"address": "127.0.0.1: 3330",
"menber Rol e": " SECONDARY",
"node": "R O,
"readReplicas": {},
"replicationLag": null,
"role": "HA",
"status": "ONLINE",
"version": "8.0.28"
}

}

opol ogyMode": "Single-Primry"

i
"groupl nf or mati onSour ceMenber": "127.0. 0. 1: 3320"
}

16. All instances are back online, and the Cluster can tolerate one failure again.

6.9 Tagging Metadata

A configurable tag framework is available to allow the metadata of InnoDB Cluster, InnoDB ClusterSet,
or InnoDB ReplicaSet to be marked with additional information. Tags make it possible to associate
custom key-value pairs to a Cluster, ReplicaSet, or instance. Tags have been reserved for use by
MySQL Router that enables a compatible MySQL Router to support hiding instances from applications.
The following tags are reserved for this purpose:

» _hi dden instructs MySQL Router: Excludes the instance from the list of possible destinations for
client applications.

99

Showing Tags

e disconnect existing sessions_when_hi dden: Instructs the router to disconnect existing
connections from instances that are marked to be hidden.

For more information, see Removing Instances from Routing.

In addition, the tags framework is user-configurable. Custom tags can consist of any ASCII character
and provide a nanespace, which serves as a dictionary key-value pairs that can be associated

with Clusters, ReplicaSets, or their specific instances. Tag values can be any JSON value. This
configuration enables you to add your own attributes on top of the metadata.

Showing Tags

The Cl ust er. opti ons() operation shows information about the tags assigned to individual cluster
instances as well as to the cluster itself. For example, the InnoDB Cluster assigned to myCl ust er
could show:

nysql -j s> nmyCl uster. options()
{

"cluster": {

"nanme": "testl",
"tags": {
"ic-1:3306": [
{
"option": "_disconnect_existing_sessi ons_when_hi dden",
"val ue": true
Jic
{
"option": "_hidden",
"val ue": fal se
}
I
"ic-2:3306": [],
"ic-3:3306": [],
“global ": [
{
"option": "location:",
"val ue": "US East"
}

}

This cluster has a global tag named | ocat i on which has the value US East, and instance i c- 1 has
been tagged.

Setting Tags on a Cluster Instance

You can set tags at the instance level, which enables you for example to mark an

instance as not available, so that applications and router treat it as offline. Use the
Cluster.setlnstanceOption(instance, option, val ue) operation to set the value of a tag
for the instance.

The i nst ance argument is a connection string to the target instance. The opt i on argument must

be a string with the format nanespace: opt i on. The val ue parameter is the value that should be
assigned to opt i on in the specified nanmespace. If the value is nul | , the opt i on is removed from the
specified nanespace. For instances which belong to a cluster, the set | nst anceOpt i on() operation
only accepts the t ag namespace. Any other namespace results in an Ar gurent Err or .

For example, to use JavaScript to setthe tag t est totrue onthe myCl ust er instancei c- 1, issue:

nysql -j s> nyCl uster. setlnstanceOption("icadm n@c-1: 3306", "tag:test", true);

Or using Python to set the tag t est tot rue onthe myCl ust er instance i c- 1, issue:

100

Removing Instances from Routing

nmysql - py> nyC uster. set _instance_option("icadm n@c-1: 3306", "tag:test", True);
Removing Instances from Routing

When AdminAPI and MySQL Router are working together, they support specific tags that enable you
to mark instances as hidden and remove them from routing. MySQL Router then excludes such tagged
instances from the routing destination candidates list. This functionality enables you to safely take

a server instance offline so that applications and MySQL Router ignore it. For example, while you
perform maintenance tasks, such as a server upgrade or configuration changes.

When the _hi dden tag is set to true, this instructs MySQL Router to exclude the instance from the

list of possible destinations for client applications. The instance remains online, but is not routed to for
new incoming connections. The _di sconnect _exi sti ng_sessi ons_when_hi dden tag controls
how existing connections to the instance are closed. This tag is assumed to be true, and it instructs
any MySQL Router instances bootstrapped against the InnoDB Cluster, InnoDB ClusterSet, or InnoDB
ReplicaSet to disconnect any existing connections from the instance when the _hi dden tag is true.

When _di sconnect _exi sting_sessi ons_when_hi dden is false, any existing client
connections to the instance are not closed if _hi dden is true. The reserved _hi dden and

_di sconnect _exi sting_sessions_when_hi dden tags are specific to instances and cannot be
used at the cluster level.

Warning
O When the use_gr _noti ficati ons MySQL Router option is enabled, it

defaults to 60 seconds. This means that when you set tags, it takes up to 60
seconds for MySQL Router to detect the change. To reduce the waiting time,
change use _gr _notificati ons to alower value.

For example, suppose you want to remove the i c- 1 instance which is part of an InnoDB Cluster
assigned to nyCl ust er from the routing destinations. Use the set | nst anceQpt i on() JavaScript
operation to enable the hi dden and _di sconnect exi sting_sessi ons_when_hi dden tags:

nysql -j s> nyCl uster. setlnstanceOption("icadm n@c-1:3306", "tag:_hidden", true);

Or use the set _i nstance_opti on() Python operation to enable the _hi dden and
_di sconnect _exi sting_sessi ons_when_hi dden tags:

nysql -j s> nyCl uster.set_instance_option("icadm n@c-1: 3306", "tag:_hi dden", true);

You can verify the change in the metadata by checking the options. For example the change made to
i c- 1 would show in the options as:

nmysql -j s> nyCl uster. options()

{
"cluster": {
"name": "testl",
"tags": {
"ic-1:3306": [
{
"option": "_disconnect_existing_sessions_when_hi dden",
"val ue": true
},
{
"option": "_hidden",
"val ue": true
}
Il
"ic-2:3306": [],
"ic-3:3306": [],
"global ": []

101

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_use_gr_notifications
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_use_gr_notifications

Setting Tags on a Cluster

}

You can verify that MySQL Router has detected the change in the metadata by viewing the log file. A
MySQL Router that has detected the change made to i c- 1 would show a change such as:

2020-07-03 16: 32: 16 netadata_cache | NFO [7f a9d164c700] Potenti al changes detected in cluster 'testC uster’
2020-07-03 16: 32: 16 netadata_cache | NFO [7f a9d164c700] view.id = 4, (3 nenbers)

2020-07-03 16: 32: 16 netadata_cache | NFO [7f a9d164c700] ic-1:3306 / 33060 - npde=RW

2020-07-03 16: 32: 16 netadata_cache | NFO [7f a9d164c700] ic-1:3306 / 33060 - npde=RO

2020-07-03 16: 32: 16 netadata_cache | NFO [7f a9d164c700] ic-1:3306 / 33060 - npde=RO hi dden=yes di sconnec
2020-07-03 16:32:16 routing | NFO [7fa9d164c700] Routing routing:testCluster_x_ro |istening on 64470 got rec

2020-07-03 16:32:16 routing | NFO [7f a9d164c700]
2020-07-03 16:32:16 routing | NFO [7f a9d164c700]
2020-07-03 16:32:16 routing | NFO [7f a9d164c700]

To bring the instance back online, use the set | nst anceOpt i on() operation to remove the tags, and
MySQL Router automatically adds the instance back to the routing destinations, and it becomes online
for applications. For example:

nysql -j s> nyCl uster. setlnstanceOption(icadm n@c-1: 3306, "tag:_hi dden", false);

Verify the change in the metadata by checking the options again:
nysql -j s> nmyCl uster. options()
{

"cluster": {

"nanme": "testl",
"tags": {
"ic-1:3306": [
{
"option": "_disconnect_existing_sessi ons_when_hi dden",
"val ue": true
b
{
"option": "_hidden",
"val ue": false
}
Il
"ic-2:3306": [],
"ic-3:3306": [],
"global ": []
}

}

You can also view the _hi dden status on members using the attribute hi ddenFr onRout er in the
output of the following commands:

e Cluster.status()
 Cluster.describe()
* ReplicaSet.status()

This attribute is t r ue for any member hidden from MySQL Router traffic using the _hi dden metadata
tag.

Setting Tags on a Cluster

The Cl uster. set Opti on(option, val ue) operation enables you to change the value of a
namespace option for the whole cluster. The opt i on argument must be a string with the format
nanmespace: opti on.

The val ue parameter is the value to be assigned to opt i on in the specified nanespace. If the value
is nul | , the opt i on is removed from the specified nanespace. For Clusters, the set Opti on()
operation accepts the t ag namespace. Any other namespace results in an Ar gunent Er r or .

102

Routing routing:testCluster_x_rw listening on 64460 got
Routing routing:testCluster_rw listening on 6446 got
Routing routing:testCluster_ro |listening on 6447 got

Removing Tags from a Cluster

Tip

@ Tags set at the cluster level do not override tags set at the instance level. You
cannot use Cl ust er. set Opti on() to remove all tags set at the instance
level.

There is no requirement for all the instances to be online, only that the cluster has quorum. To tag the
InnoDB Cluster assigned to myCl ust er with the | ocat i on tag set to US East, issue the following in
JavaScript:

nmysql -j s> nyC uster.setOption("tag: | ocation", "US East")
nmysql -j s> nyCl uster. options()
{
“cluster": {
"name": "testl",
"tags": {
"ic-1:3306": [],
"ic-2:3306": [],
"ic-3:3306": [],
"global ": [
{

"option": "location:",
"value": "US East"

}

Or issue the following in Python:

nmysql - py> nyCl uster.set_option("tag:location", "US East")
nmysql - pys> nyCl ust er. options()
{

"cluster": {

"name": "testl",

"tags": {
"ic-1:3306": [],
"ic-2:3306": [],
"ic-3:3306": [],
"global ": [

{

"option": "location:",
"val ue": "US East"

}
Removing Tags from a Cluster

To remove a tag from a Cluster, use the Cl ust er. set Opti on(option, val ue) operation with a
nul | value in JavaScript, and a None value in Python.

To remove the tag from InnoDB Cluster assigned to myCl ust er with the | ocat i on tag, issue the
following in JavaScript:

nmysql -j s> nyCl uster.setOption("tag: | ocation", null)

Or using Python:

nmysql -j s> nyC uster.set_option("tag:|ocation", None)
User Defined Tagging

AdminAPI supports the t ag namespace, where you can store information in the key-value pairs
associated with a given Cluster, ReplicaSet or instance. The options under the t ag namespace are not

103

Upgrade Metadata Schema

constrained, meaning you can tag with whatever information you choose, as long as it is a valid MySQL
ASCII identifier.

You can use any hame and value for a tag, as long as the name follows the following syntax: _ or
letters followed by alphanumeric and _ characters.

The nanespace option is a colon separated string with the format nanespace: opt i on, where
nanespace is the name of the namespace and opt i on is the actual option name. You can set and
remove tags at the instance level, or at the Cluster or ReplicaSet level.

Tag names can have any value as long as it starts with a letter or underscore, optionally followed by
alphanumeric and _ characters, for example, [a- zA- Z_] [0- 9a- zA- Z_] *. Only built-in tags are
allowed to start with the underscore _ character.

How you use custom tags is up to you. You could set a custom tag on a Cluster to mark the location of
the Cluster. For example, set a custom tag hamed location with a value of EMEA on the Cluster.

6.10 Upgrade Metadata Schema

As AdminAPI evolves, some releases might require you to upgrade the metadata of existing
ClusterSets, ReplicaSets, and Clusters to ensure they are compatible with newer versions of MySQL
Shell. For example, the addition of InnoDB ReplicaSet in version 8.0.19 means that the metadata
schema has been upgraded to version 2.0. Regardless of whether you plan to use InnoDB ReplicaSet
or not, to use MySQL Shell 8.0.19 or later with a cluster deployed using an earlier version of MySQL
Shell, you must upgrade the metadata of your Cluster.

Warning

O Without upgrading the metadata you cannot use MySQL Shell to change the
configuration of a cluster created with earlier versions. For example, you can
only perform read operations against the cluster such as:

e Cluster.status()
e Cluster.describe()
e Cluster.options()

The dba. upgr adeMet adat a() operation compares the version of the metadata schema found on
the ClusterSet, ReplicaSet, or InnoDB Cluster that MySQL Shell is currently connected to, with the
version of the metadata schema supported by this MySQL Shell version. If the metadata found version
is lower, an upgrade process is started. The dba. upgr adeMet adat a() function then updates any
automatically created MySQL Router users to have the correct privileges. Manually created MySQL
Router users with a name not starting with nysql _rout er _ are not automatically upgraded. This is an
important step in upgrading your ClusterSet, ReplicaSet, or InnoDB Cluster, only then can the MySQL
Router metadata be upgraded. To view information on which of the MySQL Router instances registered
with a ClusterSet, ReplicaSet, or Cluster require the metadata upgrade, use the . | i st Rout er s()
function. For example, to list the Router instances associated with a Cluster, using the assigned
variable cl ust er issue:

cluster.listRouters({' onlyUpgradeRequired' :'true'})

{
"clusterNanme": "nycluster",
"routers": {
"exanpl e.com:": {
"host nane": "exanpl e. cont',

"| ast Checkln": "2019-11-26 10: 10: 37",
"roPort": 6447,

"roXPort": 64470,

"rwPort": 6446,

"rwXPort": 64460,

"version": "8.0.18"

104

Locking Mechanism for AdminAPI Operations

}

In this example, the onl yUpgr adeRequi r ed options is included in the | i st Rout er s() function.
The onl yUpgr adeRequi r ed is a Boolean value that enables filtering , so only router instances that
support older versions of the Metadata Schema and require upgrading are included in the returned
JSON object.

To upgrade a ClusterSet, ReplicaSet, or Cluster's metadata, connect MySQL Shell's global session to
your ClusterSet, ReplicaSet, or Cluster and use the dba. upgr adeMet adat a() operation to upgrade
the ClusterSet, ReplicaSet, or Cluster's metadata to the new metadata. For example:

nysql -j s> shel | . connect (' user @xanpl e. com 3306')

nysql -j s> dba. upgr adeMet adat a()
I nnoDB C uster Metadata Upgrade

The cluster you are connected to is using an outdated netadata schema version
1.0.1 and needs to be upgraded to 2.0.0.

W thout doing this upgrade, no Adm nAPl calls except read only operations w |l
be al | oned.

The grants for the MySQL Router accounts that were created automatical ly when
boot st rappi ng need to be updated to natch the new netadata version's
requirenents.

Updating router accounts...

NOTE: 2 router accounts have been updat ed.

Upgr adi ng netadata at ' exanpl e.com 3306 fromversion 1.0.1 to version 2.0.0.
Creating backup of the netadata schena...
Step 1 of 1: upgrading from1.0.1 to 2.0.0...

Renovi ng net adat a backup. ..
Upgr ade process successfully finished, nmetadata schema is now on version 2.0.0

If the installed metadata version is lower, an upgrade process is started.
The dba. upgr adeMet adat a() function accepts the following options:

» dryRun:is a Boolean value used to enable a dry run of the upgrade process. If dr yRun is used, the
dba. upgr adeMet adat a() function determines whether a metadata upgrade or restore is required
and informs you without actually executing the operation.

If you encounter an error related to the ClusterSet, ReplicaSet, or Cluster administration user missing
privileges, use the relevant . set upAdm nAccount () operation with the update option to grant the
user the correct privileges:

» Create or upgrade a MySQL user account with the necessary privileges to administer an InnoDB
Cluster: <Cl ust er >. set upAdmi nAccount (user, options)

See InnoDB Cluster administrator accounts.

» Create or upgrade a MySQL user account with the necessary privileges to administer an InnoDB
ReplicaSet: <Repl i caSet >. set upAdm nAccount (user, options)

6.11 Locking Mechanism for AdminAPI Operations
Previously, different instances of MySQL Shell could connect and process AdminAPI operations
simultaneously on the same resource. This could lead to inconsistent states and errors, for example, if
Cl uster.addl nstance() and Cl uster. set Primaryl nstance() were processed in parallel.

Locking Types

AdminAPI uses the MySQL Locking Service to provide the following locking types:

105

DBA Locking

» Read or shared lock: allows concurrent execution of some operations while blocking exclusive
operations. If an operation attempts to acquire a shared lock, but cannot, due to the presence of an
exclusive lock, the operation is aborted without making any changes. If the current operation has a
shared lock, and the new operation requires a shared lock, the new operation is allowed access.

» Write or exclusive lock: blocks execution of all other operations until the current operation is
complete and the exclusive lock is released. If an operation attempts to acquire an exclusive lock,
but cannot, due to the presence of an existing lock, the operation is aborted without making any
changes.

See The Locking Service for more information.

The following tables list the locking per AdminAPI operation:

» DBA Locking: lists the locks for dba. oper at i onNane operations.

» InnoDB Cluster Locking: lists the locks for Cl ust er . oper at i onNane operations.

» InnoDB ClusterSet Locking: lists the locks for Cl ust er Set . oper at i onNane operations.

» InnoDB ReplicaSet Locking: lists the locks for Repl i caSet . oper at i onNane operations.

Note
@ Operations which do not require locks are not listed.

In practice, if you try to perform an operation while another operation that cannot be performed
concurrently is still running, you get an error indicating that a lock on a needed resource could not be
acquired. In this case, you should wait for the running operation which holds the lock to complete, and
only then try to process the next operation. For example:

nmysql -j s> rs. addl nst ance("adm n@ s2: 3306")

ERROR: The operation cannot be executed because it failed to acquire the | ock on
instance 'rsl1:3306'. Another operation requiring exclusive access to the
instance is still in progress, please wait for it to finish and try again

Repl i caSet . addl nst ance: Failed to acquire |ock on instance 'rsl:3306' (MySQLSH
51400)

In this example, Repl i caSet . addl nst ance() failed because a lock on the primary instance
(rs1: 3306) could not be acquired, because a Repl i caSet . set Pri maryl nst ance() operation (or
other similar operation) was still running.

Note

@ If an instance restarts as part of a clone operation or a requested restart, the
lock is released. As a result, there is a short period, measured in milliseconds,
when another Shell session could gain access to the instance on restart and
lock it. However, the original locks on Cluster and/or ClusterSet remain, so a
new command which could lock the newly restarted instance cannot request
Cluster or ClusterSet locks.

DBA Locking

This section lists the locks for dba. oper at i onNane operations.

Table 6.1 DBA Operation Locks

Operation Lock Type
confi gurel nstance() Exclusive on the target instance
createC uster() Exclusive on the target instance

106

https://dev.mysql.com/doc/refman/9.4/en/locking-service.html

InnoDB Cluster Locking

Operation

Lock Type

reboot C ust er FronConpl et €

Bxchusese) on all contactable
cluster members.

If the cluster is a replica cluster,
and part of a ClusterSet, it is

also rejoined to the ClusterSet

as part of the operation. In this
scenario, the operation also
acquires the same locks as
clusterset.rejoinCuster().

upgr adeMet adat a()

Cluster: Exclusive lock on
the Cluster and on the target
instance.

ClusterSet: Exclusive lock
on the ClusterSet, primary
Cluster, and the target
instance.

creat eReplicaSet ()

Exclusive lock on the target
instance.

confi gureReplicaSet | nstan

&xclusive lock on the target
instance.

upgr adeMet adat a()

Exclusive lock on the ClusterSet
and primary cluster, if the
topology is a ClusterSet, or on
the Cluster, if the topology is a
standalone cluster, and on the

InnoDB Cluster Locking

This section lists the locks for cl u

target instance.

st er. oper ati onNane operations.

Table 6.2 Cluster Operation Locks

Operation Cluster Lock Type Target Instance Lock Type

addl nst ance() Exclusive Exclusive

createC usterSet () Exclusive

di ssol ve() Exclusive

execut e() Shared

fenceAl |l Traffic() Exclusive

fenceWites() Exclusive

forceQuorumn() Exclusive

rej oi nl nstance() Shared Exclusive

renmovel nst ance() Exclusive Exclusive

rescan() Exclusive

r eset Recover yAccount sPas s&Exchlisjve

set | nstanceQOption() Exclusive
Except for the options t ag and
cl ust er Nane.

107

InnoDB ClusterSet Locking

Operation

Cluster Lock Type

Target Instance Lock Type

set Option()

Exclusive

Except for the options t ag and
cl ust er Nane.

set Pri maryl nstance() Exclusive
set upAdm nAccount () Shared
set upRout er Account () Shared
switchToMul ti Pri mar yMode(|Exclusive

swi t chToSi ngl ePri mar yMbdeExclusive

unfenceWites()

InnoDB ClusterSet Locking

Exclusive

This section lists the locks for cl ust er Set . oper at i onNane operations.

Table 6.3 ClusterSet Operation Locks

Operation ClusterSet Lock Type |Primary Cluster Lock |[Target Cluster Lock
Type Type
creat eRepl i caC ust gShared Exclusive on the
instance used to create
the new replica cluster.
execute() Shared Shared Shared on all replica
clusters.
forcePrimaryd uster|() Exclusive on all replica
clusters.
rej oi nC uster() Shared Shared Exclusive
renoved uster () Exclusive. Exclusive Exclusive
set Option() Exclusive Exclusive
(only if
replicati onAl | owedHost
is set)
set Pri mar yC ust er () Exclusive Exclusive

InnoDB ReplicaSet Locking

This section lists the locks for r epl i caSet . oper at i onNane operations.

Table 6.4 ReplicaSet Operation Locks

Operation ReplicaSet Lock Type |[Primary Instance Lock |Target Instance Lock
Type Type

addl nst ance() Exclusive Exclusive

di ssol ve() Exclusive

execut e() Shared

forcePrimaryl nst anq&kglusive

rej oi nl nstance() Shared Exclusive

renovel nst ance() Exclusive Exclusive

108

Executing SQL on Topologies

Operation ReplicaSet Lock Type |[Primary Instance Lock |Target Instance Lock
Type Type
r enoveRout er Met adat|a() Shared

rescan() Exclusive
setlnstanceOption() Exclusive
set Option() Exclusive

set Pri maryl nst ance(|Exclusive

set upAdni nAccount ()| Shared

set upRout er Account (|Bhared

6.12 Executing SQL on Topologies

The execut e() function enables you to execute SQL queries and statements across all, or a selection
of, the members of a topology.

Important

required system variable on multiple members could leave your managed
topology in an unusable state. Also, this function acquires AdminAPI locks,
which means some AdminAPI commands, such as addl nst ance() are

A This function must be used with care. For example, altering the value of a
blocked while this function is running.

t opol ogyType. execute(cnd, instances, options)

» topol ogyType: represents the Cluster, ClusterSet, or ReplicaSet object.
» cnd: a single MySQL query or statement.
e i nst ances: a keyword or list of addresses where the command is run.
« al | /a: all reachable instances, including Read Replicas, in Clusters and ClusterSets.
e primary/p: one of the following:
« the primary instance in a single-primary cluster
« all primary instances in a multi-primary cluster
* the primary instance of the primary cluster of a ClusterSet
« the primary instance in a ReplicaSet
e secondari es/s:
 the secondary instances of a single primary cluster, only. Does not include Read Replicas.
« the secondary instances of all clusters in a ClusterSet.
« the secondary instances of a ReplicaSet.
e read-replicas/rr:the Read Replica instances of a Cluster or all Clusters in a ClusterSet.

The following example shows how to execute SELECT VERSI ON() against specific cluster
members:

cluster.execute("SELECT VERSION();", ["host:4100", "host:4200"])

109

Replication Compatibility Checks

» options:

e excl ude: specify instances to exclude. This can be any keyword except al | , or a list of
addresses.

The following example shows how to retrieve the values of the variables r eport host and
report port from all members except Read Replicas:

cl uster. execut e(" SHOWV VARl ABLES WHERE VARI ABLE_NAME | N (' REPORT_HOST', ' REPORT_PORT');", "a", {exclude

e tineout : specifies a number of seconds after which the current statement is canceled. Timeout is
only used for SELECT statements and locks originating from LOCK TABLE statements.

e dr yRun: if true, simulates running the command. The command is never run against the target
instances. Sessions are established to the target instances, ensuring they can be contacted.

The result is returned as JSON.

A simple SQL statement, SHON DATABASES, executed on the Cluster primary, returns the following:

cl ust er. execut e("show dat abases;", "primry")
Statenent will be executed at: '|PAddress: 4100

Executing statement on instances (press Crl+C to cancel)... finished.

[

{
"executionTi me": 0.0006606

"instance": {

"address": "|PAddress: 4100"
"version": "9.0.0"
b
"output": [
{
"col umNanes": [
" Dat abase"
Il
"rows": |
[
"information_schema"
Il
[
"nysql "
Il
[
"nmysql _i nnodb_cl ust er _net adat a"
Il
[
" per f ormance_schema"
Il
[
"sys"
]
]
}

6.13 Replication Compatibility Checks

AdminAPI validates the version compatibility when configuring replication between instances in a
managed topology.

« If the versions are compatible, replication is configured and started.

110

https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_port
https://dev.mysql.com/doc/refman/9.4/en/show-databases.html

Operations Affected

« If the versions have limited compatibility, a warning is displayed, and replication is configured and
started.

« If the versions are incompatible, an error is displayed and the operation stops.

Note
@ If the channel is configured for failover, such as for Read Replicas or
ClusterSet, the verification includes potential sources and replicas.

See the following for information:

» Replication Compatibility Between MySQL Versions
» Upgrade Paths

» Downgrading MySQL

* MySQL Releases: Innovation and LTS

Operations Affected
The following operations perform version compatibility checks:
* ReplicaSet. add i nstance()
 ReplicaSet.rejoin_instance()
* ReplicaSet.set _primary_instance()
* ReplicaSet.force_primary_instance()
* ReplicaSet.rescan({"addUnmanaged": true})
e Cluster.add_replica_instance()
o Cluster.rejoin_instance(),when rejoining a Read Replica.
e Cluster.force_quorumusing_partition_of (), when the cluster includes Read Replicas.
e Cluster.set _instance option(..., "replicationSources", ...)
e ClusterSet.create_replica_cluster()
e ClusterSet.rejoin_cluster()
e ClusterSet.set _primary_cluster()
e ClusterSet.force_primary_cluster()
» dba. reboot _cluster_from conpl et e_out age()
e dba.create_replica_set({"adopt FronFromAR"': true})
e Cluster.add_instance()

e Cluster.rescan({"addUnmanaged”: true})

* . st at us Operations
The *. st at us operations perform the following validations:

e Cluster.status():checks compatibility of Read Replicas, if any are present.

111

https://dev.mysql.com/doc/refman/9.4/en/replication-compatibility.html
https://dev.mysql.com/doc/refman/9.4/en/upgrade-paths.html
https://dev.mysql.com/doc/refman/9.4/en/downgrading.html
https://dev.mysql.com/doc/refman/9.4/en/mysql-releases.html

Enabling and Disabling Compatibility Checks

e ReplicaSet. status():checks compatibility of all members.

» ClusterSet.status({extended: 1}):checks compatibility for the channel between replicas
and primary cluster.

Errors and warnings are displayed in the i nst anceEr r or s field of the affected instance in the
returned status.

Enabling and Disabling Compatibility Checks
The Shell option dba. ver si onConpat i bi | i t yChecks configures whether instance incompatibility
causes the operation to stop, or if the operation is permitted to continue and the error logged. It is
enabled by default.

To disable the compatibility checks, run the following:

PY > shel | . opti ons[' dba. ver si onConpati bi | i t yChecks']=Fal se

See Section 14.4, “Configuring MySQL Shell Options” for more information.

112

Chapter 7 MySQL Router and AdminAPI

Table of Contents

7.1 Bootstrapping MYSQL ROULETciiiiiiii e e e e e e e e e e e e e e e eaneees 113
7.2 Configuring the MySQL ROULET USEIccuuiiiieiii e e e e e e e e et e e e eanas 113
7.3 Deploying MYSQL ROULETuiiiiieiie et e e e e e e e e e e e e e e et e e et e eeanaeeees 114
4 = (o 10 1T @ o) o) 1= 116
7.5 Using ReplicaSets with MySQL ROULETiiuiiiiiiieii e e e e e e e e 118
7.6 Testing InnoDB Cluster High Availabilityccoiiiiiiii e 119
7.7 Working wWith @ CIUSEEI'S ROULEISiiiiiiii e e e e e e e e e e e aaanaees 120
7.8 ROULING GUIBIINESecieiciii ettt e e e e e e e et e et e et e e et e e et eeaneeeens 123
7.8.1 Routing GUIdelineS JSON SYNLAX ..vuuiiiiieiiiiiiiiiee e e e e e e e e e e e e e e et e e e eaneees 123
7.8.2 Create and Activate Routing GUIdElINEScccouiiiiiiiiiiiic e 128
7.8.3 Importing and Exporting Routing GUIdElINEScccvviiiiiiiiiii e 130
7.8.4 Edit ROUtING GUIEINESceeiciiici et e e e e e e e e eanaeees 130
7.8.5 Visualize Routing GUIAEIINESccuuiiiiiiiiii e e e e e e e 133
7.8.6 Routing GUIdeliNeS EXAMPIEScvvneiiiiiii e e e e e e e eaes 136

7.1 Bootstrapping MySQL Router

You bootstrap MySQL Router against an InnoDB ReplicaSet or InnoDB Cluster to automatically
configure routing. The bootstrap process is a specific way of running MySQL Router, which does not
start the usual routing and instead configures the nmysql r out er. conf file based on the metadata.

To bootstrap MySQL Router at the command-line, pass in the - - boot st r ap option when you start the
nysqgl r out er command, and it retrieves the topology information from the metadata and configures
routing connections to the server instances.

Once MySQL Router has been bootstrapped, client applications then connect to the ports it publishes.
MySQL Router automatically redirects client connections to the instances based on the incoming port,
for example 6646 is used by default for r ead- wr i t e connections using classic MySQL protocol.

In the event of a topology change, for example, an unexpected failure of an instance, MySQL Router
detects the change and adjusts the routing to the remaining instances automatically. This automatic
adjustment removes the need for client applications to handle failover, or to be aware of the underlying
topology. For more information, see Routing for MySQL InnoDB Cluster.

Note

@ Do not attempt to configure MySQL Router manually to redirect to the server
instances. Always use the - - boot st r ap option as this ensures that MySQL
Router takes its configuration from the metadata. See Cluster Metadata and
State.

7.2 Configuring the MySQL Router User

When MySQL Router connects to a Cluster, ClusterSet, or ReplicaSet, it requires a user account that
has the correct privileges. This internal user can be specified using the - - account option. In previous
versions, MySQL Router created internal accounts at each bootstrap of the cluster, which could result
in many accounts building up over time. You can use AdminAPI to set up the user account required for
MySQL Router.

Use the set upRout er Account (user, [options]) operation to create a MySQL user account or
upgrade an existing account so that it can be used by MySQL Router to operate on an InnoDB Cluster
or InnoDB ReplicaSet. This is the recommended method of configuring MySQL Router with InnoDB
Cluster and InnoDB ReplicaSet.

113

https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-innodb-cluster.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-general-metadata.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-general-metadata.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_account

Deploying MySQL Router

To add a new MySQL Router account named nyRout er 1 to the InnoDB Cluster referenced by the
variable t est Cl ust er, issue:

nmysql sh> test Cl ust er. set upRout er Account (' myRouter1')

In this case, no domain is specified and so the account is created with the wildcard (%) character, which
ensures that the created user can connect from any domain. To limit the account to only be able to
connect from the exanpl e. comdomain in JavaScript, issue:

nysql -j s> test Cl uster. set upRout er Account (' nyRout er 1@xanpl e. com)
Or using Python:

nmysql - py> test Cl uster.setup_router_account (' nyRout er 1@xanpl e. coni)

The operation prompts for a password, and then sets up the MySQL Router user with the correct
privileges. If the InnoDB Cluster or InnoDB ReplicaSet has multiple instances, the created MySQL
Router user is propagated to all of the instances.

You can create the password in the same command which creates the user, with the dictionary option
{password: "password"}

When you already have a MySQL Router user configured, you can use the set upRout er Account ()
operation to reconfigure the existing user. In this case, pass in the updat e option set to true. For
example, to reconfigure the myd dRout er user, issue the following in JavaScript:

nmysql -j s> test Cl uster. set upRout er Account (' myd dRouter', {'update':1})

Or using Python:

nysql - py> testCl uster.setup_router_account (' nyd dRouter', {'update':1})

You can also update the MySQL Router user's password with the dictionary options { passwor d:
"newPasswor d", update: 1} . The following JavaScript example updates the password of the
MySQL Router user, nyRout er 1 to newPasswor d1#:

nysql -j s> test Cl uster. set upRout er Account (' nyRouter1', {password: "newPasswordl#",'update':1})

Or using Python:

nmysql - py> testCl uster.setup_router_account (' myRouterl', {password: "newPasswordl#", 'update':1})

SSL certificates are also supported. The following options can be used with
set upRout er Account () :

* requireCertlssuer: Optional SSL certificate issuer for the account.
» requireCert Subj ect : Optional SSL certificate subject for the account.

» passwor dExpiration: nunmber Of Days | Never | Default:Password expiration setting for
the account.

e nunber O Days: The number of days before the password expires.
« Never : The password never expires.

e Def aul t: The system default is used.

7.3 Deploying MySQL Router

The recommended deployment of MySQL Router is on the same host as the application. When using
a sandbox deployment, everything is running on a single host. Therefore you deploy MySQL Router to
the same host. When using a production deployment, we recommend deploying one MySQL Router
instance to each machine used to host one of your client applications. It is also possible to deploy
MySQL Router to a common machine through which your application instances connect. For more
information, see Installing MySQL Router.

114

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-installation.html

Deploying MySQL Router

To bootstrap MySQL Router based on an InnoDB Cluster or InnoDB ReplicaSet, you need the URI-
like connection string to an online instance. Run the nysql r out er command and provide the - -
boot st rap=i nst ance option, where i nst ance is the URI-like connection string to an online
instance. MySQL Router connects to the instance and uses the included metadata cache plugin to
retrieve the metadata, consisting of a list of server instance addresses and their role. For example:

$> nysqlrouter --bootstrap icadm n@ c-1: 3306 --account=nysqlrouter

You are prompted for the instance password and encryption key for MySQL Router to use. This key
is used to encrypt the instance password used by MySQL Router to connect to the cluster. The ports
you can use for client connections are also displayed. For additional bootstrap related options, see
Bootstrapping Options.

Tip
@ At this point MySQL Router has not been started so that it would route
connections. Bootstrapping is a separate process.

The MySQL Router bootstrap process creates a nysql r out er . conf file, with the settings based on
the metadata retrieved from the address passed to the - - boot st r ap option, in the above example

i cadm n@ c- 1: 3306. Based on the metadata retrieved, MySQL Router automatically configures the
nysql rout er. conf file, including a net adat a_cache section.

The - - boot st r ap option automatically configures MySQL Router to track and store active MySQL
metadata server addresses at the path configured by dynani c_st at e. This ensures that when
MySQL Router is restarted it knows which MySQL metadata server addresses are current. For more
information, see the dynani c_st at e documentation.

The generated MySQL Router configuration creates TCP ports which you use to connect to the cluster.
By default, ports for communicating with the cluster using both classic MySQL protocol and X Protocol
are created. To use X Protocol the server instances must have X Plugin installed and configured, which
is the default for MySQL 8.0 and later. The default available TCP ports are:

e 6446 - for classic MySQL protocol read-write sessions, which MySQL Router redirects incoming
connections to primary server instances.

» 6447 - for classic MySQL protocol read-only sessions, which MySQL Router redirects incoming
connections to one of the secondary server instances.

* 64460 - for X Protocol read-write sessions, which MySQL Router redirects incoming connections to
primary server instances.

* 64470 - for X Protocol read-only sessions, which MySQL Router redirects incoming connections to
one of the secondary server instances.

Depending on your MySQL Router configuration the port numbers might be different

to the above. For example if you use the - - conf - base- port option, or the
group_replication_single_prinmary_node variable. The exact ports are listed when you start
MySQL Router.

The way incoming connections are redirected depends on the underlying topology used. For example,
when using a single-primary cluster, by default MySQL Router publishes a X Protocol and a classic
MySQL protocol port, which clients connect to for read-write sessions and which are redirected to the
cluster's single primary. With a multi-primary cluster, read-write sessions are redirected to one of the
primary instances in a round-robin fashion. For example, the first connection to port 6446 is redirected
to the ic-1 instance. The second connection to port 6446 is redirected to the ic-2 instance, and so on.

For incoming read-only connections, MySQL Router redirects connections to one of the secondary
instances, also in a round-robin fashion. To modify this behavior see the r out i ng_st r at egy option.

Once bootstrapped and configured, start MySQL Router. If you used a system wide install with the - -
boot st r ap option then issue:

115

https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#mysql-router-command-options-bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_dynamic_state
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_dynamic_state
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_conf-base-port
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_single_primary_mode
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_bootstrap

Routing Options

$> nysql router &

If you installed MySQL Router to a directory using the - - di r ect or y option, use the st art . sh script
found in the directory you installed to.

Alternatively set up a service to start MySQL Router automatically when the system boots, see Starting
MySQL Router. You can now connect a MySQL client, such as MySQL Shell to one of the incoming
MySQL Router ports as described above and see how the client gets transparently connected to one of
the server instances.

$> nysql sh --uri root @ocal host: 6442

To verify which instance you are connected to, issue an SQL query against the por t status variable.
For example:

nmysql -j s> \sql
Switching to SQL node... Commands end with ;
nmysql -sqgl > sel ect @ort;

foococooo +
| @@ort |
foococooo +
| 3310 |
foococooo +

Or, for example, using:

nysql -j s> \sql
Switching to SQL node... Conmmands end with ;
nmysql - sql > SHOW VARI ABLES WHERE Vari abl e_nane = 'port';

fmoccooos +
| @@ort |
fmoccooos +
| 3310 |
fmoccooos +

7.4 Routing Options

The set Rout i ngOpt i on method enables you to change a routing option globally or for individual
routers.

The routing options are as follows:

e "target _cluster”, "primary" | "clusterNanme"
Available for ClusterSet only.
e "primry":

With this setting, MySQL Router directs traffic from client applications to the cluster in the InnoDB
ClusterSet deployment that is currently the primary cluster. A primary cluster can accept both
read and write traffic. Follow the primary mode is the default for the global policy and for individual
MySQL Router instances.

e "cl ust er Nane"

With this setting, MySQL Router directs traffic from applications to the specified cluster in the
InnoDB ClusterSet deployment, whether it is currently in the role of the primary cluster or a replica
cluster. If the target cluster is currently the primary cluster, MySQL Router opens the write port and
applications can write to the instance. If the target cluster is currently a read-only replica cluster,
MySQL Router allows only read traffic, and denies write traffic. If this situation changes due to a
switchover or failover to or from the target cluster, MySQL Router changes the permitted request
types accordingly. This mode is useful if an application makes only read requests, which can be
made on a replica cluster, and you want to keep that traffic routed to a local cluster. Note that the
cluster name is case sensitive.

116

https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_directory
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-server-starting.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-server-starting.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port

Routing Options

See Section 9.6, “Integrating MySQL Router With InnoDB ClusterSet”.

“invalidated cluster _policy", "drop all" | "accept _ro"

Available for Cluster and ClusterSet only.

e "drop_al | ": With this setting, when a cluster is marked as | NVALI DATED, MySQL Router
disallows both read and write traffic to it from applications. A cluster in this state is not currently
functioning at all as part of the InnoDB ClusterSet deployment, and cannot receive writes. It might
be a former primary cluster that was marked as invalidated during an emergency failover process,
or a replica cluster that was marked as invalidated because it was unreachable or unavailable at
the time of a failover or during a controlled switchover. This setting is the default for the global
policy and for individual MySQL Router instances.

e "accept _ro": With this setting, when a cluster is marked as | NVALI DATED, MySQL Router
allows read traffic to it from applications but drops write traffic. Although an invalidated cluster does
not necessarily have any technical issues, the data is becoming stale, so this setting means that
stale reads will take place unless the issue is resolved soon. However, this setting can provide
higher availability in cases where stale reads are not a high priority.

See Section 9.6, “Integrating MySQL Router With InnoDB ClusterSet”.

"stats_updates_frequency", "nunberO Seconds"
This option defines, in seconds, the interval between MySQL Router check-in updates.

If set to O (default), no periodic updates are done. MySQL Router rounds up the value to a multiple of
its TTL. For example:

« If lower than TTL it gets rounded up to TTL. For example: if TTL=30 and
stats_updat es_frequency=1, the effective frequency is 30 seconds.

« If not a multiple of TTL, it is rounded up and adjusted according to the TTL. For example, if TTL=5
and st at s_updat es_frequency=11, the effective frequency is 15 seconds, or if TTL=5 and
stats_updat es_frequency=13, the effective frequency is 15 seconds.

If the value is null, the option value is cleared and the default value takes effect.

"“unreachabl e_quorum allowed traffic", [read | all | none]

Available for Cluster only.

Defines MySQL Router's routing policy in the event of a loss of quorum on the only reachable Cluster
partition.

Important

consistency guarantees of InnoDB Cluster, data returned can be stale or

A Changing this option is not advised. Consequences include breaking the
simply incorrect. Different routers may be accessing different partitions and

117

Using ReplicaSets with MySQL Router

could return different data. Different routers may have different behaviors,
some providing read-only traffic, and others providing read-write traffic.

e read: MySQL Router continues using the remaining online members as read-only destinations.
Read-only and Read-Write split ports remain open for reads, but write traffic is blocked.

« al | : MySQL Router uses all remaining online destinations as Read-Write destinations. All ports
remain open.

< none: (Default) All current connections are disconnected and new connections are refused.

This option has no effect if gr oup_replicati on_unreachable majority tinmeout issetto
a positive value and group_replication_exit_state acti on is either OFFLI NE_MODE or
ABORT_SERVER.

e "use replica primary _as rw', [true | false]
Available for ClusterSet only.

This option instructs MySQL Router to open or close a read-write (R/W) port on a router targeting
a specific Cluster (where t ar get _cl ust er is not set to pri mary), enabling you to use a R/W
port on a ReplicaCluster. The ReplicaCluster continues to only accept R/O traffic. In the event of a
switchover or failover, the R/W port remains unchanged.

If setto t r ue, MySQL Router R/W port in ReplicaClusters.

If set to false (default), the router's behavior is unchanged and the R/W port is closed in
ReplicaClusters.

» tags
Arbitrary key-value pairs in JSON format. For example:

cl uster.set Routi ngOption("tags", "nanme:val ue")

e "read_only_targets”, "all" | "read_replicas" "secondari es”
Available for Cluster and ClusterSet only.

e al | : all Read Replicas and Secondary Cluster members are used for read-only traffic.
e read_replicas: only Read Replicas are used for read-only traffic.

e secondari es: only Secondary Cluster members are used for read-only traffic.

The following example sets the read-only routing policy for a router named nachi nel: : rout er 1 to
Read Replicas only:

Cl ust er. set Routi ngOpti on("machi nel::routerl", "read only targets", “"read_replicas")

See Section 8.11, “MySQL InnoDB Cluster Read Replicas”.

To clear a routing option, setitto nul | .

7.5 Using ReplicaSets with MySQL Router

You can also use MySQL Router to bootstrap against an InnoDB ReplicaSet. For more information,
see Chapter 7, MySQL Router and AdminAPI. The only difference in the generated MySQL Router

configuration file is the addition of the cl ust er _t ype option. When MySQL Router is bootstrapped
against a ReplicaSet, the generated configuration file includes:

cluster_type=rs

118

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_unreachable_majority_timeout
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_exit_state_action
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_cluster_type

Testing InnoDB Cluster High Availability

When you use MySQL Router with InnoDB ReplicaSet, be aware that:

» The read-write port of MySQL Router directs client connections to the primary instance of the
ReplicaSet.

» The read-only port of MySQL Router direct client connections to a secondary instance of the
ReplicaSet, although it could also direct them to the primary.

» MySQL Router obtains information about the ReplicaSet's topology from the primary instance.

» MySQL Router automatically recovers when the primary instance becomes unavailable and a
different instance is promoted.

You work with the MySQL Router instances which have been bootstrapped against a ReplicaSet in
the same way as with InnoDB Cluster. For more information on Repl i caSet . | i st Rout er s() and
Repl i caSet. renoveRout er Met adat a() , see Section 7.7, “Working with a Cluster's Routers” .

7.6 Testing InnoDB Cluster High Availability

To test if InnoDB Cluster high availability works, simulate an unexpected halt by killing an instance.
The cluster detects the fact that the instance left the cluster and reconfigures itself. How the cluster
reconfigures itself depends on whether you are using a single-primary or multi-primary cluster, and the
role the instance serves within the cluster.

In single-primary mode:

« If the current primary leaves the cluster, one of the secondary instances is elected as the new
primary, with instances prioritized by the lowest ser ver _uui d. MySQL Router redirects read-write
connections to the newly elected primary.

« If a current secondary leaves the cluster, MySQL Router stops redirecting read-only connections to
the instance.

For more information see Single-Primary Mode.
In multi-primary mode:

« If a current "R/W" instance leaves the cluster, MySQL Router redirects read-write connections
to other primaries. If the instance which left was the last primary in the cluster then the cluster is
completely gone and you cannot connect to any MySQL Router port.

For more information see Multi-Primary Mode.

There are various ways to simulate an instance leaving a cluster, for example you can forcibly stop
the MySQL server on an instance, or use the AdminAPI dba. ki | | SandboxI| nst ance() if testing a
sandbox deployment. In this example, there is a single-primary sandbox cluster deployment with three
server instances and the instance listening at port 3310 is the current primary. The instance leaves the
cluster unexpectedly, simulated by ki | | i ng an the instance:

For example, by issuing the JavaScript command:

nysql -j s> dba. ki | | Sandbox| nst ance(3310)

Or, by issuing the Python command:

nysql - py> dba. ki | | _sandbox_i nst ance(3310)

The cluster detects the change and elects a new primary automatically.

Assuming your session is connected to port 6446, the default read-write classic MySQL protocol port,
MySQL Router should detect the change to the cluster's topology and redirect your session to the
newly elected primary. To verify this, switch to SQL mode in MySQL Shell using the \ sgql command
and select the instance's por t variable to check which instance your session has been redirected to.

119

https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/9.4/en/group-replication-single-primary-mode.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-multi-primary-mode.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port

Working with a Cluster's Routers

The first SELECT statement fails as the connection to the original primary was lost, this means the
current session has been closed. MySQL Shell automatically reconnects for you and when you issue
the command again the new port is confirmed.

nmysql -j s> \sql

Switching to SQL node... Commands end with ;

nmysql -sql > SELECT @@ort ;

ERROR: 2013 (HY000): Lost connection to MySQL server during query
The gl obal session got di sconnect ed.

Attenpting to reconnect to 'root @ocal host: 6446' . ..

The gl obal session was successfully reconnected.

nmysql -sql > SELECT @@ort ;

+ommmmmmm +
| @@ort |
+ommmmmmm +
| 3330 |
+ommmmmmm +

1 rowin set (0.00 sec)

In this example, the instance at port 3330 has been elected as the new primary. This election shows
that the InnoDB Cluster has provided automatic failover, and that MySQL Router has automatically
reconnected us to the new primary instance, and that we have high availability.

7.7 Working with a Cluster's Routers

You can bootstrap multiple instances of MySQL Router against InnoDB Cluster or InnoDB ReplicaSet.
To show a list of all registered MySQL Router instances, issue:

Cluster.listRouters()

The result provides information about each registered MySQL Router instance, such as its name in the
metadata, the hostname, ports, and so on. For example, issue the following JavaScript command:

nmysql -js> Cluster.|istRouters()

{
"cl usterNane": "exanple",
"routers": {
"ic-1:3306": {
"host nane": "ic-1:3306",
"| ast Checkln": "2020-01-16 11:43:45",
"roPort": 6447,
"roXPort": 64470,
"rwPort": 6446,
"rwXPort": 64460,
"version": "8.0.19"
}
}
}

Or issue the following Python command:

nmysql -py> Custer.list_routers()

"clusterNane": "exanple",
"routers": {
"ic-1:3306": {
"host nane": "ic-1:3306",

"l ast Checkln": "2020-01-16 11:43: 45",
"roPort": 6447,

"roXPort": 64470,

"rwPort": 6446,

"rwXPort": 64460,

"rwSplitPort": 6450,

"version": "8.0.19"

}

The returned information shows:

120

https://dev.mysql.com/doc/refman/9.4/en/select.html

Working with a Cluster's Routers

e The name of the MySQL Router instance.

 Last check-in timestamp, which is generated by a periodic ping from the MySQL Router stored in the
metadata.

» Hostname where the MySQL Router instance is running.

e Read-Only (r oPor t) and Read-Write (r wPor t) ports, which the MySQL Router publishes for classic
MySQL protocol connections.

» Read-Only (r oXPor t) and Read-Write (r wXPor t) ports, which the MySQL Router publishes for X
Protocol connections.

» Read-Write splitting (r wSpl i t Por t) ports, which the MySQL Router publishes for split classic
MySQL protocol connections.

See Read/Write Splitting.

» Version of this MySQL Router instance. If this operation is run against an version of MySQL Router
earlier than 8.0.19, the version field is nul | .

Additionally, the Cl uster. | i st Rout er s() operation can show a list of instances that do not support
the metadata version supported by MySQL Shell. Use the onl yUpgr adeRequi r ed option. For
example, by issuing Cl uster. | i st Routers({' onl yUpgradeRequired':"true'}).

The returned list shows only the MySQL Router instances registered with the Cl ust er, which require
an upgrade of their metadata. For more information, see Section 6.10, “Upgrade Metadata Schema”.

MySQL Router instances are not automatically removed from the metadata, so for example as you
bootstrap more instances the InnoDB Cluster metadata contains a growing number of references
to instances. To remove a registered MySQL Router instance from a cluster's metadata, use the
Cl ust er. renoveRout er Met adat a(r out er) operation.

Use the Cl uster. | i st Rout ers() operation to get the name of the MySQL Router instance you
want to remove, and pass it in as r out er . For example, suppose the MySQL Router instances
registered with a cluster were:

mysql -js> Cluster.listRouters(){
"clusterNane": "testC uster"”,

"routers": {
"myRout er1": {

"host name": "exanpl el. cont',
"l ast Checkl n": null,
"roPort": "6447",
"rwPort": "6446"
"version": null

iE

"myRout er2": {
"host name": "exanpl e2. cont',
"l ast Checkl n": "2019-11-27 16: 25: 00",
"roPort": "6447",
"rwPort": "6446"
"version": "8.0.19"

}

}

Based on the fact that the instance named “myRouter1” has nul | for “lastCheckin” and “version”.
Remove this old instance from the metadata by issuing the following JavaScript command:

nysql -j s> cl uster.renoveRout er Met adat a(' nyRouter1')

Or, by issuing the following Python command:

nmysql - py> cl uster.renove_router_netadata(' myRouterl')

121

https://dev.mysql.com/doc/mysql-router/9.4/en/router-read-write-splitting.html

Viewing Router Configurations with MySQL Shell

The MySQL Router instance specified is unregistered from the cluster by removing it from the InnoDB
Cluster metadata.

Viewing Router Configurations with MySQL Shell

As of MySQL Router 8.4.0, routers bootstrapped against a cluster expose their configuration in the
InnoDB Cluster Metadata Schema of the clusters they are connected to. This configuration can be
retrieved using the . r out er Opt i ons() operation, which is available on the Cl ust er, Cl ust er Set .
and Repl i caSet objects.

configuration information can not be written to the metadata schema. MySQL
Shell detects this and generates a warning. You must ensure your router
accounts have the correct privileges with set upRout er Account () and

Note
@ If your existing router accounts do not have the required permissions, the
bootstrap again if necessary .

By default, . r out er Opti ons() enables you to retrieve the global configuration in place for the
target topology. It lists the global dynamic configurations which can be configured by MySQL Shell.
See Section 7.4, “Routing Options”. Routers configured with a different configuration value than the
corresponding global one are also listed.

.rout er Options() has the following syntax:

cluster.routerOptions({options})

The following options are available:
e router: routerNane
e extended: 0| 1| 2:
¢ 0: Default. Returns the dynamic MySQL Router configuration parameters.

< 1: Returns all global parameters for the connected routers and a per-router listing of parameters
whose values differ from the global value.

» 2: Returns all configuration parameters for all routers connected to the cluster.

The following is an example of the default option used against a Cluster named Cl ust er 1, with a
single router, version 8.4.0, named r out er _t est :

$> cluster.routerOptions()
{
"clusterName": "C usterl"
"configuration": {

"routing_rules": {
"invalidated_cluster_policy": "drop_all",
"read_only_targets": "secondaries"
"stats_updates_frequency": -1
"tags": {},
"unreachabl e_quorum al | owed_traffic": "none",
"use_replica_primary_as_rw': false

}

}

"

outers": {
"host1::router_test": {
"configuration": {

}

122

Routing Guidelines

The operation returns a JSON object with the target topology's name, the retrieved global configuration,
and a list of the Routers belonging to that topology and the configuration of each.

7.8 Routing Guidelines

Routing Guidelines control MySQL Router's routing behavior, using rules defining the destinations of
incoming client sessions.

Routing Guidelines enable the following:

» Implementing load balancing by distributing traffic across multiple destination classes with different
priorities. Manage resource allocation by routing traffic based on server or router tags to ensure
workloads are distributed according to resource availability and capabilities.

» Routing sessions based on application or user role, and automatically route client sessions to the
appropriate Cluster based on the schema being used, simplifying configuration and ensuring data
and application-specific needs are met.

* Routing sessions to clusters or servers based on the MySQL version, ensuring compatibility and
proper functioning of features.

 Defining routes that manage failover by moving traffic to available instances in different tiers if
primary instances are down. This ensures continuous service availability even in the event of server
failures.

» Optimizing traffic based on the specific connection attributes to ensure compatibility, performance,
compliance, and so on.

Routing Guidelines consist of two components, destination classes and routes. Destination classes
group MySQL topology members using expressions. Routes are defined by expressions matching
incoming client sessions and a list of destination classes, forming a pool of candidate MySQL servers
to route them to.

Clients can be classified according to attributes such as source IP address, default schema, router port,
or session connection attributes including client name, operating system, and so on.

MySQL Router continually monitors the topology. If the topology changes, servers are reclassified,
client sessions are reevaluated, and invalid connections are disconnected.

Routing Guidelines can be defined at the topology-level, where they apply to all connected routers, or
can be defined per-router.

7.8.1 Routing Guidelines JSON Syntax

The top-level properties of a routing guideline document are:

» desti nati ons: groupings of MySQL servers using pattern-matching expressions. The expressions
define which servers are included in a destination. Each destination is a candidate pool for routing.
Servers can belong to multiple destinations simultaneously. Only online topology members are
considered when forming a candidate pool.

« nane: the name of the routing guideline.
» rout es: expressions which match incoming client sessions with appropriate destination candidates.

» ver si on: the version of the Routing Guidelines document.

{
"destinations": [destinationDefinitions],
"nanme": [Nanme of the routing guidelines docunent],
"routes": [routeDefinitions],
"version": [Version of the routing guidelines docunent]
}

123

Routing Guidelines JSON Syntax

name and version
» name: the name of the Routing Guideline document.

» ver si on: the version of the routing guideline document. All new Routing Guidelines are created with
their version set to 1.0.

destinations

Destination classes enable you to group MySQL instances according to criteria.

The following example shows a default destination class for an InnoDB Cluster:

"destinations": [

{
"match": "$.server.nenber Rol e = PRI MARY",
"nane": "Primary"

I

{
"match": "$.server. nenber Rol e = SECONDARY",
"nane": "Secondary"

I

{
"match": "$.server.nenber Rol e = READ REPLI CA",
"nane": "ReadReplica"

}

Each of the match expressions evaluate to addresses of the cluster members. The expressions defined
in the routes classes define how incoming connections are directed to those addresses.

routes

Each routing class contains the following:

» connectionShari ngAl | owed: (boolean) Specifies if the route allows connection sharing.
This corresponds to the MySQL Router configuration option, connect i on_shari ng. See
connecti on_shari ng, for more information.

» desti nati ons: destination groups, ordered by preference.

» cl asses: define the individual destination groups, using the names defined in the destinations
class.

e priority: priority of the routing group.

e strategy: corresponds to the MySQL Router rout i ng_str at egy, eitherfirst-avail abl e
or round-robin

Seerouting_strategy, for more information.
e mat ch: matching expression for incoming client sessions.
* nane: the name of the route.

The following example shows a default routes class for a three-member InnoDB Cluster:

"routes": [

{

"connecti onShari ngAl | owed": true,
"destinations": [

{

124

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_connection_sharing
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy

Routing Guidelines JSON Syntax

"classes": [

“"Primry"
s
“priority": O,
"strategy": "round-robin"
}
s
“enabl ed": true
"match": "$.session.targetPort = $.router.port.rw'
"name": "rw'
I
{
"connecti onShari ngAl | owed": true
"destinations": [
{
"classes": [
" Secondar y"
s
“priority": O,
"strategy": "round-robin"
I
{
"classes": [
“"Primry"
s
“priority": 1,
"strategy": "round-robin"
}
s
“enabl ed": true
"match": "$.session.targetPort = $.router.port.ro"
"name": "ro"
}

These two routes direct read-write traffic to the primary, only, while read-only traffic is directed first to
the secondary destination, then to the primary destination if no secondary destination was available.
The round-robin routing strategy is used for both, as is connection sharing.

Matching Rules
Routing Guideline matching rules use the following variables, operators, and functions.
» Variables
» Functions and operators
Variables
The following variables are available:

e $.router. bi ndAddr ess: (string) matches the IP address on which the router is configured to
listen for incoming connections. The address must be a valid IPv4 or IPv6 string.

* $.router. host nane: (string) matches the hostname of the machine on which MySQL Router is
running.

» $.router.local C uster: (string) matches the name of the cluster MySQL Router was
bootstrapped to, or the name of the cluster setin - - conf -t ar get - cl ust er.

» $. rout er. nane: (string) matches a Router name.

* $.router. port.ro: (integer) matches the port number MySQL Router listens to for incoming,
read-only connections. Must be a positive integer in the range 1-65535, inclusive.

e $.router. port.rw (integer) matches the port number MySQL Router listens to for incoming,
read-write connections. Must be a positive integer in the range 1-65535, inclusive.

125

https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_conf-target-cluster

Routing Guidelines JSON Syntax

$.router.port.rw split: (integer) matches the port number MySQL Router listens to for
incoming, read-write splitting connections. Must be a positive integer in the range 1-65535, inclusive.

$. rout er. r out eNane: matches the name of the Routing plugin used by the Router.

$. rout er. tags. t agNane: (string) matches the user-defined t agNane value defined in the
metadata for that router.

$. server. addr ess: (string) matches the IP address of the server. The address must be a valid
IPv4 or IPv6 string.

$. server. cl ust er Nanme: (string) matches the name of the InnoDB Cluster to which the server
belongs.

$. server. cl ust er Rol e: (enum) matches the cluster role of a Cluster in an InnoDB ClusterSet.
Valid values are PRIMARY and REPLICA.

$. server. cl ust er Set Nane: (string) matches the name of the InnoDB ClusterSet to which the
server belongs.

$.server.isC usterlnvalidat ed: (boolean) matches servers which are members of InnoDB
Cluster invalidated during a failover.

$. server. | abel : (string) matches server label as defined in the metadata.

$. server. nenber Rol e: (enum) matches the role of a member of an InnoDB Cluster. Valid values
are PRIMARY, SECONDARY, and READ_REPLICA.

$. server. port: (integer) matches the open port used by the server for incoming connections.
Must be a positive integer in the range 1-65535, inclusive.

$. server. tags. t agNane: (string) matches the user-defined t agNane value defined in the
metadata for that server.

$. server. uui d: (string) matches the ser ver _uui d value defined in the metadata.

$. server. ver si on: (integer) matches a specific server version. The format must be XXYYZZ,
where X is the major version, YY is the minor version and ZZ is the patch version. For example,
8.0.39 is 80039, 8.4.3 is 80403, and 9.2.0 is 90200.

Note
@ The following are not supported:

* Read Replicas
« InnoDB ReplicaSet members
* MySQL versions 8.0.2 or lower.

$. session. connect Attrs. connect Attri but es: (string) matches the session connection
attributes.

$. sessi on. randomval ue: (double) matches a random value in the range 0.0 <= x < 1.0.
$. sessi on. schena: (string) matches the default schema specified at connection time.

$. sessi on. sour cel P: (string) matches the IP address the session is connecting from. The
address must be a valid IPv4 or IPv6 string.

$. sessi on. target | P: (string) matches the IP address of the router the session connected to. The
address must be a valid IPv4 or IPv6 string.

126

Routing Guidelines JSON Syntax

$. sessi on. target Port: (integer) matches the Router port the session is connected to. Must be a
positive integer in the range 1-65535, inclusive.

$. sessi on. user : (string) matches the authenticated session user.

Important

A ‘ To use $. sessi on. user, $. sessi on. connect Attrs or

$. sessi on. schenma, MySQL Router must inspect the traffic. This is not
possible if the connection is configured to use passthrough mode.

Functions and operators

The following functions and operators are supported:

Boolean: TRUE | FALSE

Grouping expressions with parentheses ().
Logical operators: AND, OR, and NOT.
Inclusion checks: | Nand NOT | N.

Arithmetic operations: addition (+), subtraction (-), multiplication (*), division (/), and modulo division
(%).

Comparisons: greater than (>), greater or equal (>=), less than (<), less than or equal (<=), equal (=),
not equal (<>).

LI KE: allows pattern matching. Underscore (_) matches any single character and percent (%)
matches any character with any number of repetitions.

CONCAT("str', 'str', ...):enables concatenation of multiple strings, returning a string as
result. For example: CONCAT("'a', "b', 'cde') returns abcde.

SQRT(" nunber ") : calculates the square root of a given number, returning a float as a result. For
example: SQRT(0. 16) returns 0.4.

NUVBER(' str') : converts a string to a number. For example: NUVMBER(CONCAT(' 1", '2')) =
12

NETWORK(" str', 'int"): calculates network address for a given address and bitmask. It returns
the network address as a string. For example: NETWORK(' 192. 168. 1. 33", 24) returns the range
192.168.1.0 to 192.168.1.255.

I S I PVA(" str'):checks if the given string is a valid IPv4 address. It returns a boolean, true/false.
I S I PV6(' str'): checks if the given string is a valid IPv6 address. It returns a boolean, true/false.

SUBSTRI NG_I| NDEX("strl1', "str2', "int"):checks fora substring within a string. str 1 is
the string, st r 2 is the delimiter, and i nt is the delimiter index. If the index is negative, the delimiter
is searched from the end of the string.

For example:

e SUBSTRI NG | NDEX("test", "s", 1):returnste.

e SUBSTRI NG_I NDEX("l orem i psunmt, "ip", -1):returnssum

¢ SUBSTRI NG _| NDEX("f oo bar baz","a", 2):returnsfoo bar b

STARTSW TH(" str1', 'str2"):checks if the str2 string is a prefix of strl. Case insensitive. It
returns a boolean value, true/false.

127

Create and Activate Routing Guidelines

e ENDSW TH(' strl1', 'str2'):checks if the str2 string is a suffix of strl. Case insensitive. It
returns a boolean value, true/false.

o CONTAINS("strl1', 'str2'):checks ifthe str2 string is a substring of strl, case insensitive. It
returns a boolean value, true/false.

» RESOLVE V4(' str'): resolves hosthames passed as a string parameter in an IPv4 address.
It returns a string containing the resolved address. If the hostname can be resolved to multiple
addresses, only one of the addresses is returned.

e RESOLVE V6(' str'): resolves hosthames passed as a string parameter in an IPv6 address.
It returns a string containing the resolved address. If the hostname can be resolved to multiple
addresses, only one of the addresses is returned.

o REGEXP_LIKE('str1', 'str2'):checks if strl matches the regular expression defined in str2.
Case insensitive and uses the Modified ECMAScript regular expression grammar

7.8.2 Create and Activate Routing Guidelines

Create Routing Guidelines using the following command:

obj ect.create_routing_guideline(nane[, json[, options]])

» obj ect : the Cluster, ClusterSet, or Replicaset to which the routing guideline is associated.
e nane: the name of the Routing Guideline.

» j son: (optional) JSON document defining the Routing Guideline. If a JSON document is not
provided, a default Routing Guideline is generated according to the topology type. If a JSON
document is provided, the content of the document is used to define the Routing Guideline. The
name parameter of the operation overrides the name defined in the document.

See Creating a Default Routing Guideline for InnoDB Cluster.

e opti ons: itis possible to overwrite an existing Routing Guideline with the specified name, using the
f or ce option.

Routing Guideline as active on a topology, you must do so manually. See
Setting a Routing Guideline as Active.

Note
@ ‘ Routing Guidelines are not set active on the topology by default. To set a
» Creating a Default Routing Guideline for InnoDB Cluster
» Setting a Routing Guideline as Active
» Retrieving the Active Routing Guideline
» Remove Routing Guidelines

Creating a Default Routing Guideline for InnoDB Cluster

To create a default Routing Guideline for a three-member InnoDB Cluster, connect to the primary of the
cluster and run the following commands:

1. Retrieve the cluster object:

cluster = dba.get_cluster()

2. Create a Routing Guideline, named def aul t :

128

Create and Activate Routing Guidelines

rg = cluster.create_routing_guideline("default")

A default Routing Guideline is defined for the cluster and stored in the metadata schema. The default
schema contains the following values:

{
"destinations": [
{
"match": "$.server. menberRol e = PRI MARY",
"nane": "Primry"
Jic
{
"match": "$.server. menber Rol e = SECONDARY",
“name": "Secondary"
Jic
{
"match": "$.server.nmenber Rol e = READ REPLI CA",
"name": "ReadReplica"
}
I
"nane": "default",
"routes": [
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"Primry"
I
"priority": O,
"strategy": "round-robin"
}
I
"enabl ed": true,
"match": "$.session.targetPort = $.router.port.rw',
"nanme": "rw'
Jic
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
" Secondary"
I
"priority": O,
"strategy": "round-robin"
Jic
{
"classes": [
"Primry"
] ’ . .
"priority": 1,
"strategy": "round-robin"
}
I
"enabl ed": true,
"match": "$.session.targetPort = $.router.port.ro",
"nanme": "ro"
}
] ! .
“version": "1.1"
}

Setting a Routing Guideline as Active
To set a Routing Guideline as the active guideline for a Cluster, use the following:

e cluster.set _routing option("guideline","nameC Routi ngGui del i ne")

129

Importing and Exporting Routing Guidelines

For example, for a guideline named RG1:

cluster.set_routing_option("guideline","RGL")

The guideline is validated against the routers associated with the Cluster. If any router is incompatible
with the new guideline, an error is returned listing the incompatible routers. If the routers are using an
active guideline which overrides the topology-level guideline.

If the r out er option is defined, the guideline is activated for the named router, only. Any other router
connected to the topology continues to use the topology-level guideline, if it exists.

To confirm the router is configured to use the Routing Guideline, run cl uster. i st_routers()
to view the cur r ent Rout i ngCQui del i ne value. This also returns the t ar get Cl ust er and
suppor t edRout i ngCGui del i nesVer si on.

Retrieving the Active Routing Guideline
To retrieve the active Routing Guideline on the topology, use the following:
* obj ect.router_options():tocheck which Routing Guideline is currently active on the topology.

e obj ect.get _routing_guideline():toretrieve the guideline.

Remove Routing Guidelines
Routing Guidelines can be removed from the topology using the following:
e obj ect.renpve_routing _guideline("nanme")

The following example removes a Routing Guideline named RGL1 from a Cluster:

cluster.renove_routing_guideline("RGL")

7.8.3 Importing and Exporting Routing Guidelines
Routing Guidelines can be imported or exported using the following:
e object.inport_routing_guideline("filePath")

This function also accepts a boolean f or ce option, which enables you to replace an existing Routing
Guideline with the same name as the one imported.

The function validates the JSON before applying it to the target topology.
e routingGuideline.export("filePath")

For example, to import a Routing Guideline, r out i nggui del i nel. j son, to a cluster:

cluster.inport_routing_guideline("~/Shell/RGs/routingguidelinel.json")

For example, to export a Routing Guideline, RGL, from a cluster to the filesystem, as JSON:

var rg = cluster.get_routing_guideline("RGL")
rg. export ("~/ Shel |l / RGs/ RGL. j son")

7.8.4 Edit Routing Guidelines

This section describes how to edit Routing Guidelines. The following topics are described:

130

Edit Routing Guidelines

Adding Routes and Destinations

» Removing Routes and Destinations

Modifying Route and Destination Options
» Copying a Routing Guideline
* Renaming a Routing Guideline
Adding Routes and Destinations
Routes and destinations can be added using the following:
e Routi ngGui del i ne. add_rout e(nanme, match, destinations[, options])
* nane: the name of the route.
« mat ch: the match expression for incoming client sessions.

e desti nati ons: array of destination selectors in the form of " st r at egy(
destination, ...)"

e options:
* enabl ed: whether the route is active. Default value is true.

e connectionShari ngAl | owed : whether the route allows connection sharing. Default value is
true.

e dryRun :if setto true, validates the rule without applying it to the Routing Guideline. Default
value is false.

« order : position of a route within the Routing Guideline. Lower values indicate higher priority.

The following example adds a route, RG1, to the Routing Guideline, specifying that client
connections targeting ports 6446 or 6448 are redirected to the Cluster's Primary instance, using the
first-avail abl e MySQL Router strategy:

rg.add_route("RGL", "$.session.targetPort in (6446, 6448)", ["first-available(Primry)"])

* RoutingCui deline.add destination(nanme, match[, options])
* nane: name of the destination class.
< mat ch: matching expression for MySQL instances.
e opti ons: optional dictionary with additional options. Currently, only dr yRun is supported.

The following example adds a destination class named US_Instances and defines the server pool as
those servers in the us-east-1.example.com and us-west-2.example.com domains.

rg. add_destinati on("US_| nstances", "$.server.address in ['us-east-1.exanple.conl, 'us-west-2.exanple.co

Removing Routes and Destinations
Routes and destinations can be removed using the following:
* RoutingCui del i ne. renove_r out e(nane)

e Routi ngGui del i ne. renove_desti nati on(nane)

131

Edit Routing Guidelines

The following examples show how to remove a route, Routel, and a destination, Destination1, from the
selected Routing Guideline:

Rout i ngGui del i ne. renpve_r out e(" Rout e1")

Rout i ngCui del i ne. renpve_desti nati on("Desti nationl")

Modifying Route and Destination Options
Routes and destinations can be modified using the following:
* RoutingCuideline.set _destination_option(destinationNane, option, val ue)
e desti nati onNane: name of the destination to update.
e opti on: name of the option to update.
« mat ch: matching expression defining the server pool for this destination.
« val ue: the new value for the specified option.
* RoutingCuideline.set _route_option(routeNane, option, val ue)
e rout eNane: name of the route to update.
< opti on: name of the option to update.
< mat ch: matching expression for the incoming client session.

e desti nati ons: list of destinations using routing strategies in the format
strategy(destinationl, destination2, ...),ordered by priority, highest to lowest .

* enabl ed: whether the route is active. Default value is true.

e connecti onShari ngAl | owed : whether the route allows connection sharing. Default value is
true.

» or der : position of a route within the Routing Guideline. Lower values indicate higher priority.
< val ue: the new value for the specified option.

The following example updates a destination named EU_Regions to include a candidate server pool
from the eu-central-1.example.com and eu-west-1.example.com domains.

rg.set_destination_option("EU Regions", "match", "$.server.address in ['eu-central-1.exanple.con, 'eu-west

The following example updates a route named read_traffic to match only read only session users.

rg.set_route_option("read_traffic", "match", "$.session.user = 'readonly_user'");

Copying a Routing Guideline
Copy a Routing Guideline using the following:
* RoutingCui del i ne. copy(" Nane")
< Nane: is the name of the new Routing Guideline.

The following example retrieves a Cluster's Routing Guideline, def aul t , and copies its definition to a
new Routing Guideline named def aul t _copi ed:

132

Visualize Routing Guidelines

rg = cluster.get_routing_guideline("default")

rg_copy = rg.copy("default_copied")

Routing Quideline 'default' successfully duplicated with new nanme 'default_copied' .
Renaming a Routing Guideline

Rename a Routing Guideline using the following:

* RoutingCui deline.renane(" Nanme")

« Nane: is the new name of the Routing Guideline.

The following example retrieves a Cluster's Routing Guideline, def aul t _copi ed, and renames it to
defaul t _copi ed_renaned:

rg = cluster.get_routing_guideline("default_copied")
rg_renane = rg.renane("defaul t_copi ed_renaned")
Successful ly renaned Routing Cuideline 'default_copied to 'default_copied_renaned

7.8.5 Visualize Routing Guidelines

» Routing Guideline associated with the Cluster

» Show Detailed Information

Visualize As JSON
 Destinations
* Routes
Routing Guideline associated with the Cluster
To retrieve all the Routing Guidelines associated with the Cluster, use the following:
e cluster.routing guidelines()

For example, the cluster has two Routing Guidelines, def aul t and r g1:

Pri mary, Secondary, ReadRepl i ca |
Pri mary, Secondary, ReadRepl i ca |

To retrieve a specific Routing Guideline associated with the cluster, use the following:
e cluster.get _routing guideline("nane")
If you do not provide a name, the active Routing Guideline is retrieved.
Show Detailed Information
To view a detailed summary of the Routing Guideline, use the following:
rg. show()
rg. show() returns the following:

» The name of the Routing Guideline and the connected topology.

133

Visualize Routing Guidelines

e The routes, including the match expression and resolved destinations of the topology. If the
"router", "routeldentifier" option is defined, that router is used to evaluate the guideline.

If no destinations are matched, None is returned.

 All destination classes defined by the Routing Guideline, including the match expression and the
topology members which match the expression.

» Unreferenced servers lists topology members not referenced by a route or destination class.

For example:

Py > rg.show()
Routi ng Cuideline: 'default'’
Cluster: 'nycluster'

- rw
+ Match: "$.session.targetPort = $.router.port.rw'
+ Destinati ons:
* 127.0.0.1: 4000 (Primary)

- ro
+ Match: "$.session.targetPort = $.router.port.ro"
+ Destinati ons:
* 127.0.0.1:4001, 127.0.0.1:4002 (Secondary)
* 127.0.0.1:4000 (Primary)

Desti nati on C asses
- Primary:
+ Match: "$.server. nenber Rol e = PRI MARY"
+ | nst ances:
* 127.0.0.1: 4000

- Secondary:
+ Match: "$.server. nenber Rol e = SECONDARY"
+ | nst ances:
* 127.0.0.1:4001
* 127.0.0.1: 4002

- ReadRepli ca:
+ Match: "$.server. nenber Rol e = READ REPL| CA"
+ I nstances:
* None

Unr ef erenced servers

Visualize As JSON

To view the Routing Guideline as a JSON document, use the following:

rg.as_json()

For example:
Py > rg.as_json()
{
"destinations": [
{
"match": "$.server. nenber Rol e = PRI MARY",
"nanme": "Primry"
b
{

"match": "$.server. nenber Rol e = SECONDARY",
"pane": "Secondary"

134

Visualize Routing Guidelines

b
{
"match": "$.server. menber Rol e = READ REPLI CA",
"nanme": "ReadReplica"
}
Il
"name": "defaul t",
"routes": [
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"Primry"
Il
“priority": O,
"strategy": "round-robin"
}
Il
“enabl ed": true,
"match": "$.session.targetPort = $.router.port.rw',
"name": "rw'
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
" Secondar y"
Il
“priority": O,
"strategy": "round-robin"
iE
{
"classes": [
"Primry"
Il
“priority": 1,
"strategy": "round-robin"
}
Il
“enabl ed": true,
"match": "$.session.targetPort = $.router.port.ro",
"name": "ro"
}
Il
“version": "1.1"

Destinations

To view the destinations defined in the Routing Guideline, use the following:

rg. destinations()

For example:
Py > rg.destinations()

eocomcooooooo L +
| destination | nmatch |
eocomcooooooo L +
Primary	$.server.nenberRol e = PRI MVARY
Secondary	$.server. nmenber Rol e = SECONDARY
ReadReplica	$.server.nenberRole = READ_REPLI CA
eocomcooooooo L +

Routes

To view the destinations defined in the Routing Guideline, use the following:

135

Routing Guidelines Examples

rg.routes()

For example:

rg.routes()

oloioio- holoioioim e S P S S S S e S)
| name | enabled | shareable | match | destinations

oloioio- holoioioim e S P S S S S e S)
| rw | 1| 1| $.session.targetPort = $.router.port.rw | round-robin(Primry)

| ro | 1| 1| $.session.targetPort = $.router.port.ro | round-robin(Secondary),
oloioio- holoioioim e S P S S S S e S)

The table returned contains the following columns:

name: the name of the route.

enabl ed: (boolean) whether the route is enabled.

shar eabl e: (boolean) whether the connection is shareable.

mat ch: the matching rule for the client connection.

desti nati ons: comma-separated list of destinations, ordered by priority.

or der : the position of the route withing the Routing Guideline.

7.8.6 Routing Guidelines Examples

High Availability and Disaster Recovery Routing Guideline
Geolocation-Based Routing and Compliance

Load Balancing and Resource Management
Application-specific and Schema-based Routing in a ClusterSet
MySQL Version-specific Routing

Custom Tag-Based Routing and Performance-Based Routing
Testing, Staging, and Session Affinity

Client Characteristics Routing

High Availability and Disaster Recovery Routing Guideline

This example shows how to create a ClusterSet Routing Guideline that supports failover, ensuring that
traffic can be redirected to alternative nodes in case of outages. This example configures a Routing
Guideline prioritizing local nodes but includes remote nodes as failover options. It routes read-write
traffic to primary nodes and read-only traffic across secondary and scale-out nodes, with multiple
fallback levels for maximum availability.

1.

Retrieve the ClusterSet object:

clusterset = dba.get_cluster_set()

Create the Routing Guideline:

rg = clusterset.create_routing_guideline("HA DR Guideline")

Add the following primary and secondary destinations for local and remote clusters:

e Primary local:

136

Routing Guidelines Examples

rg. add_destination("Primary_Local ", "$.server.clusterRole = PR MARY
AND $. server. nenber Rol e = PRI MARY
AND $.server.isClusterlnvalidated = fal se
AND $. server.clusterName = $.router.|ocal uster");

¢ Primary remote:

rg.add_destination("Prinmary_Renote", "$.server.clusterRole = PRI MARY
AND $. server. menber Rol e = PRI MARY
AND $.server.isClusterlnvalidated = fal se
AND $. server.clusterName <> $.router.|local Cluster");

¢ Secondary local:

rg. add_destination("Secondary_Local ", "$.server. nenber Rol e = SECONDARY
AND $. server.isClusterlnvalidated = fal se
AND $. server.clusterNane = $.router.local Cluster");

+ Secondary remote:

rg. add_destination("Secondary_Renote","$. server. nenber Rol e = SECONDARY
AND $.server.isClusterlnvalidated = fal se
AND $. server.clusterName <> $.router.|local Cluster");

* Scale-out local:

rg. add_destination("Scal e_Qut_Local ","$. server. nenber Rol e = READ_REPLI CA
AND $. server.isClusterlnvalidated = fal se
AND $. server.clusterNane = $.router.local Cluster");

* Scale-out remote:

rg. add_destination("Scal e_Qut_Renpte","$. server. menber Rol e = READ REPL| CA
AND $.server.isCusterlnvalidated = fal se
AND $. server.clusterName <> $.router.|local Cluster");

« Read-only, fallback-local:

rg. add_destination("Read_Only_Fal | back_Local ", "$.server.isCusterlnvalidated = true AND
($. server. menber Rol e = SECONDARY OR $. server. nenber Rol e = READ_REPLI CA)
AND $. server.clusterNane = $.router.local Cluster");

« Read-only, fallback remote:

rg. add_destinati on("Read_Only_Fal | back_Renote", "$.server.isC usterlnvalidated = true AND
($. server. nenber Rol e = SECONDARY OR $. server. nenber Rol e = READ_REPLI CA)
AND $. server.clusterName <> $.router.|local Cluster");

_Local and _Renot e versions of a destination refer to the location of each specific Router
instance. When bootstrapping MySQL Router, - - conf - t ar get - cl ust er can be used to specify
the name of the InnoDB Cluster that is considered local to the Router. That is, located in the

same data center, region, or any other criteria relevant to your setup. Local servers are those
located in the same data center as the Router, irrespective of whether the Cluster is a PRIMARY or
SECONDARY.

Define the following routes for handling read-write and read-only traffic:

* Read-Write (rw_traffic): Prioritizes local primary servers with a remote primary as a fallback.
Routes read-write traffic to Primary_Local first and falls back to Primary_Remote.

137

https://dev.mysql.com/doc/mysql-router/9.4/en/mysqlrouter.html#option_mysqlrouter_conf-target-cluster

Routing Guidelines Examples

« Read-Only (ro_traffic): Balances read-only traffic across local secondary and scale-out nodes,
with multiple fallback levels. Routes read-only traffic to local secondary and scale-out nodes
first. If those are unavailable, it falls back to remote secondary and scale-out nodes, then to
primary nodes, and finally to read-only fallback nodes if needed. The multi-level priority ensures
continuous availability.

rg. add_rout e(
“rw traffic",
"$.session.targetPort in ($.router.port.rw, $.router.port.rw.split)",

[“first-avail abl e(Primary_Local, Primary_Renpte)"], {"connectionSharingAllowed": True, "enabled":

rg. add_rout e(
"ro_traffic",
"$.session.targetPort = $.router.port.ro",
[
“round-robi n(Secondary_Local, Scal e Qut_Local)",
"round-r obi n(Secondary_Renpte, Scal e_Qut_Remote)",
"round-robin(Primary_Local, Primary_Renote)",
"round-robi n(Read_Onl y_Fal | back_Local, Read_Only_Fal | back_Renote)"
I,

{"connectionShari ngAl | oned": True, "enabled": True});

5. The Routing Guideline was created using the default creation method. As as result, a default
destination (PrimaryClusterReadReplica) and route (ro), which have no bearing on this example,
must be removed. To remove these entries, run the following commands:

/! Renove destination
rg.renove_destination("Primaryd ust er ReadRepl i ca")

/! Renove route
rg.renove_route("ro")

6. Activate the Routing Guideline, making it the default routing configuration for the Cluster Set. Run
the following command:

clusterset.set_routing_option("guideline", "HA DR Guideline");

The HA_DR_Guideline is activated. This configuration provides redundancy and high availability,
ensuring seamless failover across both local and remote clusters. You can test this setup by simulating
node outages or session redirection to confirm that traffic is appropriately routed to the designated
fallback nodes.

» Read-Write Traffic is directed first to local primary nodes, with remote primary fallback.

« Read-Only Traffic is distributed across local secondaries and scale-out nodes, with multiple levels of
fallback, including remote and primary nodes.

Geolocation-Based Routing and Compliance

If applications need to route traffic based on geographic location or compliance requirements,
geolocation-based routing guidelines are essential. This example shows how to create a Routing
Guideline from a predefined JSON file, ensuring traffic is directed based on server regions and
compliance tags for regulatory adherence and optimal latency.

1. Create the Routing Guideline as a JSON file:

guideline = {
"destinations": [
{
"match": "$.server.address |IN ("us-east-1.exanple.conl, "us-west-2.exanple.cont)",
"nane": "US_Regi ons"

138

Tru

Routing Guidelines Examples

{
"match": "$.server.address IN ("eu-central -1. exanpl e.coni’, "eu-west-1.exanple.cont)",
"nane": "EU Regi ons"
s
{
"match": "$.server.tags.conpliance = 'GDPR ",
"nane": "GDPR_Conpliant"
}
I
"nane": "Geo_Based_Cui del i ne"
"routes": [
{
"connecti onShari ngAl | owed": True
"destinations": [
{
"classes": [
"US_Regi ons",
"EU_Regi ons"
I
“strategy": "round-robin",
“priority": O
}
I
“enabl ed": True
"match": "NETWORK($. session. sourcel P, 24) = NETWORK(' 192. 168.1.0', 24)
OR NETWORK($. sessi on. sourcel P, 8) = NETWORK(' 10.0.0.0', 8)",
"nane": "geo_based"
s
{
"connecti onShari ngAl | owed": True
"destinations": [
{
"classes": [
" GDPR_Conpl i ant "
I
“strategy": "round-robin",
“priority": O
}
I
“enabl ed": True
"match": "$.session.connectAttrs.region = 'EU ",
"nane": "conpliance_based"
}
I
“version": "1.1"

2. Create the Routing Guideline from the JSON file. This is more convenient for initial setup than
adding routes and destinations individually to a default guideline.

rg = replicaset.create_routing_guideline("CGeo_Based Gui deline", guideline);

This example defines the guideline programmatically. You can also define it as a local file and
import it using Cl ust er Set . i nport _routing_gui deline().

3. Modifying the routes or destinations to accommodate changes in location or compliance regulation
can be done using set _destination_option() andset_route_option().Forexample

/'l Get the guideline object
rg = replicaset.get_routing_guideline("Geo_Based_Cui deline");

/1 Mdify the match expression for the ' EU Regions' destination
rg.set _destination_option("EU Regions", "match", "$.server.address IN ('eu-west-1.exanple.con, 'eu-

/] Disable the 'conpliance_based' route tenporarily
rg.set_route_option("conpliance_based", "enabled", False);

This setup directs:

139

Routing Guidelines Examples

» Geolocation-Based Traffic: Routes traffic based on IP networks to specific regional destinations,
such as US_Regions and EU_Regions.

» Compliance-Based Traffic: Directs traffic requiring GDPR compliance to servers tagged with
GDPR_Compliant.

This example shows an efficient way to define and reuse Routing Guidelines for similar geolocation
and compliance scenarios across multiple deployments using Routing Guidelines imported from a
JSON variable. This approach is ideal for scenarios where consistent routing configurations are needed
across environments.

Load Balancing and Resource Management

Load balancing and resource management guidelines distribute traffic based on server roles and
specific user access levels, optimizing resource usage, and providing high availability. This example
shows how to import a Routing Guideline from a JSON file stored locally on your computer, allowing for
predefined configurations that can be easily reused.

1. Create the JSON file. Save the following JSON as | oad_bal anci ng_gui del i ne. j son:

{
"destinations": [
{
"match": "$.server.clusterRole = PRI MARY AND $. server. nenber Rol e = READ REPLI CA",
"nane": "ReadReplica"
i
{
"match": "$.server.clusterRole = PRI MARY AND $. server. nenber Rol e = SECONDARY",
"nane": "Secondary"
i
{
"match": "$.server.clusterRole = PRI MARY AND $. server. nenber Rol e = PRI MARY",
“name": "Primary"
}
I
"nanme": "Load_Bal anci ng_Gui del i ne",
"routes": [
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
" Secondar y",
"ReadRepl i ca"
I
"“strategy": "round-robin",
“priority": O
i
{
"classes": [
"Primary"
I
"strategy": "round-robin",
“priority": 1
}
I
"enabl ed": true,
"match": "$.session.targetPort = $.router.port.ro AND $. session.user = 'readonly_user'",
"nane": "ro"
i
{

"connecti onShari ngAl | owed": true,
"destinations": [

{
"classes": [
"Primary"
I
"“strategy": "round-robin",
“priority": 0O

140

Routing Guidelines Examples

}
I
“enabl ed": true,
"match": "$.session.targetPort in ($.router.port.rw, $.router.port.rwsplit)
AND $. session.user = 'adm n_user'",
"name": "rw'
}
I
“version": "1.1"

This guideline directs read-only traffic to secondary and read replica servers while reserving write
operations for the primary server, optimizing both resource usage and load distribution.

2. Import the Routing Guideline using i nport _routi ng_gui del i ne():

rg2 = clusterset.inport_routing_guideline("/path/to/load_bal anci ng_gui del i ne.json");

Note
E Routing Guidelines can be exported using export ("fil epath").

3. Activate the Routing Guideline.
This setup ensures the following:

» Read-Only Traffic: Directs sessions using the readonly_user account to secondary and read replica
nodes in a round-robin fashion, falling back to the primary if necessary.

» Read-Write Traffic: Routes sessions using the admin_user account to the primary node, ensuring
write operations are isolated to the primary server.

This configuration optimizes resource allocation by distributing read-only traffic across available
replicas while preserving primary node resources for write operations. Importing guidelines from
JSON files enables you to quickly deploy consistent routing configurations across multiple topologies,
ensuring effective load balancing, and resource management.

Application-specific and Schema-based Routing in a ClusterSet

Application-specific and schema-based routing allows routing guidelines to direct traffic to specific
clusters or cluster members based on the application schema or other session details. This
configuration is especially useful for vertically partitioned setups, where different schemas are
managed by separate clusters to optimize performance and organization.

{
"destinations": [
{
"match": "$.server.clusterRole = REPLI CA AND $. server. nenber Rol e = PRI MARY AND $. server. cl u
"nane": "App_ClusterSet Primary_Replica"
I
{
"match": "$.server.clusterRole = REPLI CA AND $. server. nenber Rol e = SECONDARY AND $. server. c
"nane": "App_C usterSet_ Secondary Replica"
I
{
"match": "$.server.clusterRole = PRIMARY AND $. server. nenber Rol e = PRI MARY",
"nane": "Data_ClusterSet Primary_Prinmary"
b
{
"match": "$.server.clusterRole = PRI MARY AND $. server. nenber Rol e = SECONDARY",
"nane": "Data_C usterSet Secondary Primary"
}
Il
"nane": "Vertical Partitioning_ Guideline",
"routes": [

141

Routing Guidelines Examples

{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"App_ClusterSet _Primary_Replica",
" App_Cl ust er Set _Secondary_Repl i ca"
Il
"strategy": "round-robin",
“priority": O
}
Il
“enabl ed": true,
"match": "$.session.schema = 'app_schenma'",
"nanme": "app_schema_routing"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"Data_ClusterSet _Primary_Prinmry",
"Dat a_Cl ust er Set _Secondary_Pri mary"
Il
"strategy": "round-robin",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.schena = 'data_schema'",
"nane": "data_schema_routing"
}
Il
“version": "1.1"

With Vertical_Partitioning_Guideline in place:

» Application Schema Traffic: Sessions using app_schema are directed to the AppCluster, with a

round-robin strategy across primary and secondary members.

» Data Schema Traffic: Sessions using data_schema are directed to the main data cluster (Primary),
distributed round-robin style between primary and secondary members.

This setup enables efficient traffic management across clusters tailored for specific application
requirements, improving performance and simplifying database organization for vertically partitioned

environments.

MySQL Version-specific Routing

MySQL Version Specific Routing is useful when certain applications or sessions need to connect to
servers with a specific MySQL version. This can be essential for compatibility or testing purposes. This
guideline directs read-write and read-only traffic to servers with specific MySQL versions, allowing

precise version-based traffic management.

{
"destinations": [
{
“match": "$.server.version = 80403",
"pame": "MySQ._8_4 3"
b
{
“match": "$.server.version = 80039",
"panme": "MySQ._8_0_39"
}
Il
"name": "Version_Specific_Cuideline",
"routes": [
{

142

Routing Guidelines Examples

"connecti onShari ngAl | owed": true,
"destinations": [

{
"classes": [
"MySQL_8 4_3"
Il
"strategy": "first-avail able",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.targetPort IN ($.router.port.rw, $.router.port.rwsplit)",
"nanme": "rw_traffic_to_8 4_3"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"MySQL_8_0_39"
Il
"strategy": "first-avail able",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.targetPort = $.router.port.ro",
"nanme": "ro_traffic_to_8_0_39"
}
Il
“version": "1.1"

With the Version_Specific_Guideline in place:

* Read-Write Traffic: Routes sessions on read-write ports (rw, rw_split) to servers running MySQL
version 8.4.3, prioritizing them as first-available.

» Read-Only Traffic: Routes sessions on the read-only port to servers running MySQL version 8.0.39
as first-available.

This configuration enables fine-grained traffic routing based on MySQL version, ensuring version-
specific compatibility for various applications or testing environments.

Custom Tag-Based Routing and Performance-Based Routing

Custom tag-based and performance-based routing enables traffic routing based on server tags,
such as performance levels or custom compliance attributes. This example uses tags to route critical
application traffic to high-performance servers and directs compliance-related sessions based on
specific user attributes.

{
"destinations": [
{
"match": "$.server.tags.performance = 'high ",
“"nanme": "Hi gh_Performance"
B
{
"match": "$.server.tags.perfornance = 'l ow ",
"nanme": "Low_Performnce"
B
{
"match": "$.server.tags.type = 'conpliance'",
"nanme": "Conpliance_Tag"
}
Il
"name": "Tag_Performance_Based_Cui del i ne",
"routes": [
{

143

Routing Guidelines Examples

"connecti onShari ngAl | owed": true,
"destinations": [

{
"classes": [
"Hi gh_Per f or mance",
" Low_Per f or mance"
Il
"strategy": "first-avail able",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.connectAttrs.app = 'critical'",
"nanme": "app_critical _traffic"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
" Conpl i ance_Tag"
Il
"strategy": "round-robin",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.user in ('admn', 'finance')",
"nanme": "adm n_finance_traffic"
}
Il
“version": "1.1"

With the Tag_Performance_Based_Guideline in place:

» Critical Application Traffic: Routes sessions with the app attribute set to "critical" to servers tagged for
high or low performance, prioritizing High_Performance nodes using a first-available strategy.

» Compliance-Related Traffic: Routes sessions for admin and finance users to servers tagged with
Compliance_Tag using a round-robin strategy to balance compliance-related load.

This setup enables performance-based and custom tag-based routing, directing specific applications
and user sessions to the most appropriate resources based on performance needs or compliance
attributes.

Testing, Staging, and Session Affinity

In environments with distinct stages such as testing, staging, and production, Routing Guidelines

can direct traffic based on these designations, ensuring that different sessions are routed to the
correct environment. Additionally, session affinity routes traffic from specific users to maintain session
persistence across requests.

{
"destinations": [
{
"match": "$.server.tags.environnent = 'production'",
"nanme": "Production_Servers"
B
{
"match": "$.server.tags.environment = 'staging' ",
"nanme": "Stagi ng_Servers"
B
{
"match": "$.server.tags.environment = 'testing' ",
"name": "Testing_Servers"
}
Il
"name": "Testing_Stage_Sessi on_CGui del i ne",

144

Routing Guidelines Examples

"routes": [

{

"connecti onShari ngAl | owed": true,
"destinations": [

{
"classes": [
"Testing_Servers"
Il
"strategy": "first-avail able",
“priority": O
}
Il
“enabl ed": true,
"match": "$.session.randonVal ue < 0.1",
"nanme": "testing_traffic"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
" St agi ng_Servers"
Il
"strategy": "first-avail able",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.randonVal ue >= 0.1 AND $. sessi on. randonVal ue < 0. 3",
"nanme": "staging_traffic"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"Production_Servers"
Il
"strategy": "first-avail able",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.randonVal ue >= 0. 3",
"nanme": "production_traffic"
iE
{
"connecti onShari ngAl | owed": fal se,
"destinations": [
{
"classes": [
"Production_Servers",
" St agi ng_Servers",
"Testing_Servers"
Il
"strategy": "round-robin",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.user = 'persistent_user'",
"nanme": "session_affinity"
}
Il
“version": "1.1"

With the Testing_Stage Session_Guideline in place:

» Testing Traffic: Routes a small percentage, r andonval ue < 0. 1 for example, of requests to
testing servers, allowing specific sessions to be tested without affecting other environments

145

Routing Guidelines Examples

 Staging Traffic: Routes moderate traffic, 0. 1 <= randonval ue < 0. 3 for example, to staging
servers for pre-production validation.

» Production Traffic: Routes remaining sessions to production servers, ensuring stable operation for
production workloads.

» Session Affinity: Routes all traffic from persistent_user to maintain session continuity across
environments, with traffic distributed among all environments using round-robin.

This setup effectively partitions traffic based on environment, supports testing and staging, and
provides session persistence where needed.

Client Characteristics Routing

Client characteristics routing allows traffic to be directed based on specific attributes of the client
session, such as operating system, platform, license type, or unique identifiers. This setup is
particularly useful for managing resources in environments with diverse client requirements, ensuring
sessions are routed to servers optimized for those characteristics.

{
"destinations": [
{
"match": "$.server.tags. backup = "true'",
"name": "Backup_Servers"
B
{
"match": "$.server.tags.os = 'Linux'",
"nanme": "Linux_Cients"
B
{
"match": "$.server.tags.platform= "'x86_64"",
"nane": "x86_64_ Servers"
B
{
"match": "$.server.tags.license = 'Commercial'",
"nanme": " Conmmercial _Servers"
B
{
"match": "$.server.tags.test = "true'",
"name": "Testing_Servers"
}
Il
"name": " Conprehensive_Connect Attrs_Routing",
"routes": [
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"Li nux_Servers"
Il
"strategy": "round-robin",
"priority": O
}
Il
“enabl ed": true,
"match": "$.session.connectAttrs._os = 'Linux'",
"name": "linux_traffic"
B
{

"connecti onShari ngAl | owed": true,
"destinations": [

{
"classes": [
"x86_64_ Servers"
Il
"strategy": "first-avail able",
"priority": O
}

146

Routing Guidelines Examples

"enabl ed": true,

"match": "$.session.connectAttrs. _platform= 'x86_64"",
"name": "x86_64_traffic"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"Backup_servers"
Il
"strategy": "round-robin",
“priority": O
}
Il
“enabl ed": true,
"match": "$.session.connectAttrs. programnane = 'nysql dunp' ",
"name": "backup_traffic"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
" Conmer ci al _Servers"
Il
"strategy": "round-robin",
“priority": O
}
Il
“enabl ed": true,
"match": "$.session.schema = "audit'",
"nane": "commercial _traffic"
iE
{
"connecti onShari ngAl | owed": true,
"destinations": [
{
"classes": [
"Testing_Servers"
Il
"strategy": "first-avail able",
“priority": O
}
Il
“enabl ed": true,
"match": "$.session.user = 'test_user'",
"nanme": "testing_traffic"
}
Il
"version": "1.1"

With the Comprehensive_ConnectAttrs_Routing in place:

 Linux Traffic: Routes sessions where the " _0s" connection attribute is " Li nux" to servers running
on Linux, distributing connections in a round-robin fashion.

x86_64 traffic: Routes sessions with the " _pl at f or ' attribute setto " x86_64" to x86_64-
servers, using a first-available strategy.

backup_traffic: Routes sessions from nysql dunp, connect Attrs. program nane =
"nysql dunp' ,to the backup servers.

Commercial Traffic: Routes sessions using the audi t schema to servers designated as
Commercial_Servers.

Testing Traffic: Routes specific test sessions, such as $. sessi on. user = 'test_user',to
servers tagged as testing resources.

147

Routing Guidelines Examples

This guideline provides flexibility to route traffic based on client-specific attributes, enabling targeted
resource allocation and optimization for diverse client characteristics.

148

Chapter 8 MySQL InnoDB Cluster

Table of Contents

8.1 INNODB ClUStEr REQUITEIMENTSciitiiiiiiii ettt ettt e et e et eeeeaa s 150
8.2 INNODB CIUSEr LIMILATIONS ...evvtueieiii ittt ettt e et e et eeeeban s 152
8.3 User Accounts for INNODB CIUSLETc..uuiiiiiiie e 152
8.4 Deploying a Production INNODB CIUSTETiiiiiiiieiiiii e 155
8.4.1 Pre-Checking Instance Configuration for InnoDB Cluster Usageccooovviievineennnns 156
8.4.2 Configuring Production Instances for INnnoDB Cluster Usagecooevuevvviieiiineeennnnnnn. 157
8.4.3 Creating an INNODB CIUSLETccouuiiiiiiii e 159
8.4.4 Adding Instances to an INNODB CIUSENcouuiiiiiiiiiiiiii e 161
8.4.5 Configuring INNODB CIUSLEr POISc.uuuiiiiiiiei i 164
8.4.6 Using MySQL Clone with INNODB CIUSTETiiiiiiiiiiiiiie e 165
8.4.7 Adopting a Group Replication DeploymeNtcoveiiiiiiiiiiii e 168
8.5 Configuring INNODB CIUSTLETciiiiiiee ittt e e e e e e 169
8.5.1 Setting Options fOr INNODB CIUSTETcoiiiiiiiiiiie e 169
8.5.2 Customizing INNoDB Cluster Member SEIVEISccoouuiiiiiiiiiiiiiii e 170
8.5.3 Configuring the EIECtiON PrOCESSiiiiiiiiiiiiiiii e 171
8.5.4 Configuring Failover CONSISIENCYc..uuiiiiiiiiaiiii et 171
8.5.5 Configuring Automatic Rejoin Of INSTANCESviiiiiiiiiiii e 171
8.5.6 Configuring the Parallel Replication APPLIEruiiiiiiiiii e 172
8.5.7 INNoDB Cluster and AULO-INCIEMENTiiiiiii i 173
8.5.8 InnoDB Cluster and Binary LOg PUIQINGoooiuuiiiiiiiieeiiieeeeei e 174
8.5.9 Configuring the Group Replication Communication Stackcc.ccooveviiiiiiiiiiennn, 174
8.6 SeCUING INNODB CIUSTET ...ttt et ettt e et eeenbe e eeaeas 176
8.7 Monitoring INNODB CIUSTETccuuiiiiiii et e et e e e 178
8.8 Restoring and Rebooting an INNODB CIUSLENcccuuiiiiiiiiii e 189
8.8.1 Rejoining an INStance t0 @ CIUSLENiiiiiiii i e 189
8.8.2 Restoring a Cluster from QUOIUM LOSSiiiiiiiiiiiiiiiie et e 190
8.8.3 Rebooting a Cluster from a Major OULAGEooveiuinieiiiiiieieii e 191
8.8.4 ReSCANNING @ CIUSTET ...oiitiiieiii ettt e e e e eeena e eeees 194
8.8.5 FENCING 8 CIUSTET ..ottt ettt e ettt e e et e eeena e eeees 195
8.9 Modifying or Dissolving an INNODB CIUSTENcccuuuiiiiiiiiieii e 195
8.10 Upgrade INNODB CIUSTETiiiiii ittt et e et e e eeeba e 198
8.10.1 INNODB ClIUSLEr UPGradeccouuuiiiiiiiiei et 199
8.10.2 Troubleshooting INNODB Cluster Upgradesuuvieiiiiiiiiiiiiieeeiii e 204
8.11 MySQL InnoDB Cluster Read REPIICAScoeuuuiiiiiiiiiiii e 205
8.11.1 PrerEQUISIES ..oevtuiiiiiti ettt ettt ettt ettt e et e et et e e e e e s 205
8.11.2 Creating Read REPIICASuiiiiiiiiieii e 206
8.11.3 Modifying or Removing Read RepPliCASciiuuiiiiiiiiiiicii e 209
8.11.4 Monitoring Read REPICASiiiiiiiieiiii et 211

MySQL InnoDB Cluster provides a complete high availability solution for MySQL. By using AdminAPI,
which is included with MySQL Shell, you can easily configure and administer a group of at least three
MySQL server instances to function as an InnoDB Cluster.

Each MySQL server instance in an InnoDB Cluster runs MySQL Group Replication, which provides
the mechanism to replicate data within an InnoDB Cluster, with built-in failover. AdminAPI removes the
need to work directly with Group Replication in an InnoDB Cluster, but for more information see Group
Replication which explains the details. You can also configure InnoDB ClusterSet (see Chapter 9,
MySQL InnoDB ClusterSet) to provide disaster tolerance for InnoDB Cluster deployments by linking

a primary InnoDB Cluster with one or more replicas of itself in alternate locations, such as different
datacenters.

MySQL Router can automatically configure itself based on the cluster you deploy, connecting client
applications transparently to the server instances. In the event of an unexpected failure of a server

149

https://dev.mysql.com/doc/refman/9.4/en/group-replication.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication.html
https://dev.mysql.com/doc/mysql-router/9.4/en/

InnoDB Cluster Requirements

instance the cluster reconfigures automatically. In the default single-primary mode, an InnoDB Cluster
has a single read-write server instance - the primary. Multiple secondary server instances are replicas
of the primary. If the primary fails, a secondary is automatically promoted to the role of primary. MySQL
Router detects this and forwards client applications to the new primary. Advanced users can also
configure a cluster to have multiple primaries.

The following diagram shows an overview of how the technologies work together:

Figure 8.1 InnoDB Cluster overview

Client App
MySQL MySQL Shell

Connector (Cluster Admin)
@
MySQL MySQL
Rgut%r Ad[%inAPl

MySQL Servers
High Availability Cluster
' N
_____ Primary .
Instance R/W

Group Replication

Secondary |_________| Secondary
Instance R/O Instance R/O
Important
A InnoDB Cluster does not provide support for MySQL NDB Cluster. NDB Cluster

depends on the NDB storage engine as well as a number of programs specific to
NDB Cluster which are not furnished with MySQL Server 9.4; NDB is available
only as part of the MySQL NDB Cluster distribution. In addition, the MySQL
server binary (mysql d) that is supplied with MySQL Server 9.4 cannot be

used with NDB Cluster. For more information about MySQL NDB Cluster, see
MySQL NDB Cluster 9.4. MySQL Server Using InnoDB Compared with NDB
Cluster, provides information about the differences between the | nnoDB and
NDB storage engines.

8.1 InnoDB Cluster Requirements

Before installing a production deployment of InnoDB Cluster, ensure that the server instances you
intend to use meet the following requirements.

» InnoDB Cluster uses Group Replication and therefore your server instances must meet
the same requirements. See Group Replication Requirements. AdminAPI provides the
dba. checkl nst anceConf i gurati on() method to verify that an instance meets the Group

150

https://dev.mysql.com/doc/refman/9.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.4/en/mysql-cluster-compared.html
https://dev.mysql.com/doc/refman/9.4/en/mysql-cluster-compared.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-requirements.html

InnoDB Cluster Requirements

Replication requirements, and the dba. confi gur el nst ance() method to configure an instance to
meet the requirements.

Note
@ When using a sandbox deployment the instances are configured to meet
these requirements automatically.

Data for use with Group Replication, and therefore also data for use with InnoDB Cluster,

must be stored in the | nnoDB transactional storage engine. The use of other storage engines,
including the temporary MEMORY storage engine, might cause errors in Group Replication.
Convert any tables in other storage engines to use | nnoDB before using the instance with Group
Replication and InnoDB Cluster. You can prevent the use of other storage engines by setting the
di sabl ed_st or age_engi nes system variable on server instances, for example:

di sabl ed_st or age_engi nes=" Myl SAM BLACKHOLE, FEDERATED, ARCHI VE, MEMORY"

There must be no inbound replication channels on any server instance when you set up the cluster.
The channels created automatically by Group Replication (gr oup_repl i cati on_appl i er and
group_replication_recovery) are allowed on a replication group that is being adopted. InnoDB
Cluster does not support manually configured asynchronous replication channels outside of those
that are managed using AdminAPI. If you are migrating an existing replication topology to an InnoDB
Cluster deployment and need to skip this validation temporarily during the setup process, you can
use the f or ce option when you create the cluster to bypass it.

group_replication_tls_source mustnotbe setto nysqgl _admi n.

The Performance Schema must be enabled on any instance which you want to use with InnoDB
Cluster.

The provisioning scripts that MySQL Shell uses to configure servers for use in InnoDB Cluster
require access to Python. On Windows MySQL Shell includes Python and no user configuration is
required. On Unix Python must be found as part of the shell environment. To check that your system
has Python configured correctly issue:

$ /usr/bin/env python

If a Python interpreter starts, no further action is required. If the previous command fails, create a
soft link between / usr / bi n/ pyt hon and your chosen Python binary. For more information, see
Supported Languages.

Instances must use a unique ser ver _i d within an InnoDB Cluster. When you use the
Cl ust er. addl nst ance(i nst ance) operation, if the server i d of i nst ance is already used
by an instance in the cluster then the operation fails with an error.

Instances should be configured to use the parallel replication applier. See Section 8.5.6, “Configuring
the Parallel Replication Applier”.

During the process of configuring an instance for InnoDB Cluster, the majority of the system
variables required for using an instance are configured. But AdminAPI does not configure the
transaction_i sol ati on system variable, which means that it defaults to REPEATABLE READ.
This does not impact a single-primary cluster, but if you are using a multi-primary cluster then unless
you rely on REPEATABLE READ semantics in your applications, we recommend using the READ
COWM TTED isolation level. See Group Replication Limitations.

The relevant configuration options for the instance, particularly the Group Replication configuration
options, must be in a single option file. InnoDB Cluster only supports a single option file for server
instances and does not support the use of the - - def aul t s-extra-fil e option to specify an
additional option file. For any AdminAPI operation working with the instance's option file, the main file
must be specified. If you want to use multiple option files for configuration options that do not relate
to InnoDB Cluster, you must configure the files manually, make sure they are updated correctly

151

https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_disabled_storage_engines
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/9.4/en/group-replication-limitations.html
https://dev.mysql.com/doc/refman/9.4/en/server-options.html#option_mysqld_defaults-extra-file

InnoDB Cluster Limitations

considering the precedence rules for the use of multiple option files, and ensure that the settings
relating to InnoDB Cluster are not incorrectly overwritten by options in an extra unrecognized option
file.

8.2 InnoDB Cluster Limitations

This section describes the known limitations of InnoDB Cluster. As InnoDB Cluster uses Group
Replication, you should also be aware of its limitations, see Group Replication Limitations.

« InnoDB Cluster does not manage manually configured asynchronous replication channels. Group
Replication and AdminAPI do not ensure that the asynchronous replication is active on the primary
only, and state is not replicated across instances. This can lead to various scenarios where
replication no longer works, as well as potentially causing a split brain. Replication between one
InnoDB Cluster and another is supported only by InnoDB ClusterSet, which manages replication
from an active primary read-write InnoDB Cluster to multiple read-only replica clusters. For
information on that solution, see Chapter 9, MySQL InnoDB ClusterSet.

» InnoDB Cluster is intended to be deployed in a local area network. Deploying a single InnoDB
Cluster over a wide area network has a noticeable impact on write performance. A stable and
low latency network is important for InnoDB Cluster member servers to communicate with each
other using the underlying Group Replication technology for consensus on transactions. InnoDB
ClusterSet, however, is designed to be deployed across multiple datacenters, with each InnoDB
Cluster in a single datacenter and asynchronous replication channels linking them. For information
on that solution, see Chapter 9, MySQL InnoDB ClusterSet.

» For AdminAPI operations, you can only connect to server instances in an InnoDB Cluster using
TCP/IP connections and classic MySQL protocol. The use of Unix sockets and named pipes is
not supported for AdminAPI operations, and the use of X Protocol is not supported for AdminAPI
operations. The same limitations apply to connections between the server instances themselves.

to connect to instances in an InnoDB Cluster. The limitations only apply to
administration operations using AdminAPI commands, and to connections

Note
@ Client applications can use X Protocol and Unix sockets and named pipes
between the instances.

» AdminAPI and InnoDB Cluster do not support the use of instances running MySQL Server 5.7.

» Concurrent data definition statements and data manipulation statements issued against the
same object but on different servers is not supported when using multi-primary mode. During
the issue of Data Definition Language (DDL) statements on an object, issuing concurrent Data
Manipulation Language (DML) on the same object but from a different server instance has the risk of

conflicting DDL executing on different instances not being detected. For more information, see Group

Replication Limitations.

8.3 User Accounts for InnoDB Cluster

» Configuring InnoDB Cluster Administrator Accounts Manually
* Internal User Accounts Created by InnoDB Cluster
» Resetting Recovery Account Passwords

The member servers in an InnoDB Cluster make use of three types of user accounts. One InnoDB
Cluster server configuration account is used to configure the server instances for the cluster. One or
more InnoDB Cluster administrator accounts can be created for administrators to manage the server
instances after the cluster has been set up. One or more MySQL Router accounts can be created for
MySQL Router instances to connect to the cluster. Each of the user accounts must exist on all of the
member servers in the InnoDB Cluster, with the same user name and the same password.

152

https://dev.mysql.com/doc/refman/9.4/en/group-replication-limitations.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-limitations.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-limitations.html

User Accounts for InnoDB Cluster

InnoDB Cluster server
configuration account

InnoDB Cluster administrator
accounts

This account is used to create and configure the member servers
of an InnoDB Cluster. Each member server has only one server
configuration account. The same user account name and password
must be used on every member server in the cluster. You can use
the r oot account on the servers for this purpose, but if you do this,
the r oot account on every member server in the cluster must have
the same password. This is not recommended for security reasons.

The preferred approach is to create the InnoDB Cluster server
configuration account using a dba. conf i gur el nst ance()
command with the cl ust er Adm n option. For better security,
specify the password at the interactive prompt, otherwise specify

it using the cl ust er Adm nPasswor d option. Create the same
account, with the same user name and password, in the same way
on every server instance that will be part of the InnoDB Cluster -
both the instance to which you connect to create the cluster, and the
instances that will join the cluster after that.

The dba. confi gur el nst ance() command grants the account
the required permissions automatically. You may set up the

account manually if you prefer, granting it the permissions listed in
Configuring InnoDB Cluster Administrator Accounts Manually. The
account needs full read and write privileges on the InnoDB Cluster
metadata tables, in addition to full MySQL administrator privileges.

The InnoDB Cluster server configuration account that you create
using the dba. confi gur el nst ance() operation is not replicated
to other servers in the InnoDB Cluster. MySQL Shell disables binary
logging for the dba. confi gur el nst ance() operation. This
means that you must create the account on every server instance
individually.

These accounts can be used to administer an InnoDB Cluster after
you have completed the configuration process. You can set up more
than one of them. Each account must exist on every member server
in an InnoDB Cluster with the same user name and password.

To create an InnoDB Cluster administrator account

for an InnoDB ClusterSet deployment, you issue a

cl uster. set upAdm nAccount () command after you have
added all the instances to that cluster. The command creates an
account with the user name and password that you specify, with

all the required permissions. A transaction to create an account
with cl ust er. set upAdni nAccount () is written to the binary log
and sent to all the other server instances in the cluster to create the
account on them.

Note
@ If the primary InnoDB Cluster was

set up by a MySQL Shell version

before MySQL Shell 8.0.20, the

cl ust er. set upAdni nAccount ()
command might have been used with the
updat e option to update the privileges of the
InnoDB Cluster server configuration account.
This is a special use of the command that is
not written to the binary log.

153

Configuring InnoDB Cluster Administrator Accounts Manually

MySQL Router accounts These accounts are used by MySQL Router to connect to server

instances in an InnoDB Cluster. You can set up more than one
of them. Each account must exist on every member server in

an InnoDB Cluster with the same user name and password.

The process to create a MySQL Router account is the same

as for an InnoDB Cluster administrator account, but using a

cl ust er. set upRout er Account () command. For instructions
to create or upgrade a MySQL Router account, see Section 7.2,
“Configuring the MySQL Router User”.

Configuring InnoDB Cluster Administrator Accounts Manually

If you want to manually configure an InnoDB Cluster administration user, that user requires the
privileges listed here, all with GRANT OPTI ON.

Note

S This list of privileges is based on the current version of MySQL Shell.
The privileges are subject to change between releases. Therefore

the recommended way to set up administration accounts is using the
dba. confi gurel nstance() orcl uster.setupAdm nAccount ()
operation.

InnoDB ReplicaSet deployment must exist on all the member server instances

Important
A Each account used to administer an InnoDB Cluster, InnoDB ClusterSet, or
in the deployment, with the same user name, and the same password.

Global privileges on *.* for RELOAD, SHUTDOWN, PROCESS, FI LE, SELECT, SUPER,

REPLI CATI ON SLAVE, REPLI CATI ON CLI ENT, REPLI CATI ON_APPLI ER, CREATE USER,
SYSTEM VARI ABLES ADM N, PERSI ST _RO VARI ABLES ADM N, BACKUP_ADM N, CLONE_ADM N,
and EXECUTE.

Note
@ SUPER includes the following required privileges:

SYSTEM _VARI ABLES_ADM N, SESSI ON_VARI ABLES_ADM N,
REPLI CATI ON_SLAVE_ADM N, GROUP_REPLI CATI ON_ADM N,
REPLI CATI ON_SLAVE_ADM N, ROLE_ADM N.

Schema specific privileges for nysql i nnodb_cl uster _net adat a. *,

nysql _i nnodb_cl uster_netadata_bkp. *, and

nysql _i nnodb_cl ust er _met adat a_pr evi ous. * are ALTER, ALTER ROUTI NE, CREATE,
CREATE ROUTI NE, CREATE TEMPORARY TABLES, CREATE VI EW DELETE, DROP, EVENT,
EXECUTE, | NDEX, | NSERT, LOCK TABLES, REFERENCES, SHOW VI EW TRI GGER, UPDATE; and for
nysql . * are | NSERT, UPDATE, DELETE.

If only read operations are needed, for example to create a user for monitoring purposes, an account
with more restricted privileges can be used. To retrieve the privileges required by the user your user
to monitor InnoDB Cluster run the following command:

dba. confi gurel nst ance(' root: passwor d@ ocal host: 3306' ,{' cl uster Admi n' : ' your _user'})

where root is either the root user or a user with the required privileges to create users with the required
privileges, and your _user is the InnoDB Cluster administrator user you want to create. The command
returns the full list of privileges required by the administrator user.

For more information, see Account Management Statements.

154

https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_persist-ro-variables-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_clone-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_session-variables-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_group-replication-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_role-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_alter
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_create
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_create-temporary-tables
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_create-view
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_drop
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_index
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_references
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/9.4/en/account-management-statements.html

Internal User Accounts Created by InnoDB Cluster

Internal User Accounts Created by InnoDB Cluster

As part of using Group Replication, InnoDB Cluster creates internal recovery users which enable
connections between the servers in the cluster. These users are internal to the cluster, and the user
name of the generated users follows a naming scheme of mysqgl i nnodb_cl uster _server i d@
% where ser ver _i d is unique to the instance. In versions earlier than 8.0.17 the user name of the
generated users followed a naming scheme of nysql _i nnodb_cl uster _r[10_nunbers].

The hostname used for these internal users is set to '%'. For more information, see Creating an
Allowlist of Servers.

Each internal user has a randomly generated password. AdminAPI enables you to change the
generated password for internal users. See Resetting Recovery Account Passwords. The randomly
generated users are given the following grants:

GRANT REPLI CATI ON SLAVE ON *.* to internal _user;

The internal user accounts are created on the seed instance and then replicated to the other instances
in the cluster. The internal users are:

» Generated when creating a new cluster by issuing dba. cr eat eCl ust er ()
» Generated when adding a new instance to the cluster by issuing Cl ust er . addl nst ance()

» Generated using the authentication plugin in use by the primary member

For more information on the internal users required by Group Replication, see User Credentials For
Distributed Recovery.

Resetting Recovery Account Passwords

You can use the Cl ust er. reset Recover yAccount sPasswor d() operation to reset the passwords
for the internal recovery accounts created by InnoDB Cluster, for example to follow a custom password
lifetime policy. Use the Cl ust er. reset Recover yAccount sPasswor d() operation to reset the
passwords for all internal recovery accounts used by the cluster. The operation sets a new random
password for the internal recovery account on each instance which is online. If an instance cannot

be reached, the operation fails. You can use the f or ce option to ignore such instances, but this is

not recommended, and it is safer to bring the instance back online before using this operation. This
operation only applies to the passwords created by InnoDB Cluster and cannot be used to update
manually created passwords.

Note

@ The user which executes this operation must have all the required
administer privileges, in particular CREATE USER, in order to ensure that the
password of recovery accounts can be changed regardless of the password
verification-required policy. In other words, independent of whether the
passwor d_require_current system variable is enabled or not.

8.4 Deploying a Production InnoDB Cluster

When working in a production environment, the MySQL server instances which make up an InnoDB
Cluster run on multiple host machines as part of a network rather than on single machine as described
in Section 6.8, “AdminAPI MySQL Sandboxes”. Before proceeding with these instructions you must
install the required software to each machine that you intend to add as a server instance to your
cluster, see Section 6.2, “Installing AdminAPI Software Components”.

The following diagram illustrates the scenario you work with in this section:

155

https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/9.4/en/group-replication-user-credentials.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-user-credentials.html
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_password_require_current

Pre-Checking Instance Configuration for InnoDB Cluster Usage

Figure 8.2 Production Deployment

Client
Application
MySQL MySQL
Shell Admin Router

H

Production InnoDB Cluster

. MySQL Server
192.0.210

h J L

MySQL Server | . MySQL Server
192.0.21 | _ 192.0.212

Important

A Unlike a sandbox deployment, where all instances are deployed locally to one
machine which AdminAPI has local file access to and can persist configuration
changes, for a production deployment you must persist any configuration
changes on the instance. How you do this depends on the version of MySQL
running on the instance, see Section 6.2.3, “Persisting Settings”.

To pass a server's connection information to AdminAPI, use URI-like connection strings or a
data dictionary; see Connecting to the Server Using URI-Like Strings or Key-Value Pairs. In this
documentation, URI-like strings are shown.

This section assumes that you have:
* installed the MySQL components to your instances
« installed MySQL Shell and can connect by specifying instances

» created a suitable administration user

8.4.1 Pre-Checking Instance Configuration for InnoDB Cluster Usage

Before creating a production deployment from server instances you need to check that

MySQL on each instance is correctly configured. The dba. confi gur el nst ance()

function does this as part of configuring the instance, but you can optionally use the

dba. checkl nst anceConfi gurati on(i nstance) function. This checks whether the instance
satisfies the requirements listed in Section 8.1, “InnoDB Cluster Requirements” without changing any
configuration on the instance.

The user which you use to connect to the instance must have suitable privileges, for example
as configured at Configuring InnoDB Cluster Administrator Accounts Manually. The following
demonstrates issuing this in a running MySQL Shell:

nysql -j s> dba. checkl nst anceConfi guration('icadm n@c-1: 3306')
Pl ease provide the password for 'icadm n@c-1: 3306": ***
Val i dating MySQL i nstance at ic-1:3306 for use in an InnoDB cluster...

156

https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html

Configuring Production Instances for InnoDB Cluster Usage

This instance reports its own address as ic-1
Clients and other cluster nmenmbers will comunicate with it through this address by default.
If this is not correct, the report_host MySQL system vari abl e shoul d be changed.

Checki ng whet her existing tables conply with G oup Replication requirenents...
No inconpati bl e tabl es detected

Checki ng i nstance configuration...

Some configuration options need to be fixed:

e e m e e eeeemmee e eaaaaa tomm e e e ee e domm e e e e e e e S T
| Variabl e | Current Value | Required Value | Note

e e m e e eeeemmee e eaaaaa tomm e e e ee e domm e e e e e e e S T
| enforce_gtid_consistency | OFF | ON | Update read-only variable and restart the
| gtid_node | OFF | ON | Update read-only variable and restart the
| server_id | 1 | | Update read-only variable and restart the
e e m e e eeeemmee e eaaaaa tomm e e e ee e domm e e e e e e e S T

Pl ease use the dba. configurel nstance() comrand to repair these issues.

{
"config_errors": [
{
"action": "restart",
"current": "OFF",
"option": "enforce_gtid_consistency",
"required": "ON'
iE
{
"action": "restart",
"current": "OFF",
"option": "gtid_nopde",
"required": "ON'
iE
{
"action": "restart",
"current": "1",
"option": "server_id",
"required": ""
}
Il
"status": "error"
}

Repeat this process for each server instance that you plan to use as part of your cluster. The report
generated after running dba. checkl nst anceConfi gur ati on() provides information about any
configuration changes that will be required to use the instance in an InnoDB Cluster deployment. The
action field in the confi g_error section of the report tells you whether MySQL on the instance
requires a restart to detect any change made to the configuration file.

8.4.2 Configuring Production Instances for InnoDB Cluster Usage

AdminAPI provides the dba. conf i gur el nst ance() function that checks if an instance is suitably
configured for InnoDB Cluster usage, and configures the instance if it finds any settings which are
not compatible with InnoDB Cluster. You run the dba. conf i gur el nst ance() command against
an instance and it checks all of the settings required to enable the instance to be used for InnoDB
Cluster usage. If the instance does not require configuration changes, there is no need to modify the
configuration of the instance, and the dba. confi gur el nst ance() command output confirms that
the instance is ready for InnoDB Cluster usage.

If any changes are required to make the instance compatible with InnoDB Cluster, a report of the
incompatible settings is displayed, and you can choose to let the command make the changes to the
instance's option file. Depending on the way MySQL Shell is connected to the instance, and the version
of MySQL running on the instance, you can make these changes permanent by persisting them to a
remote instance's option file, see Section 6.2.3, “Persisting Settings”.

The syntax of the dba. conf i gur el nst ance() command is:

157

Configuring Production Instances for InnoDB Cluster Usage

dba. confi gurel nstance([instance][, options])

where i nst ance is an instance definition, and opt i ons is a data dictionary with additional options to
configure the operation. The operation returns a descriptive text message about the result.

The i nst ance definition is the connection data for the instance. For example:

dba. confi gurel nstance(' user @xanpl e: 3306")

For more information, see Connecting to the Server Using URI-Like Strings or Key-Value Pairs. If the
target instance already belongs to an InnoDB Cluster an error is generated and the process fails.

The options dictionary can contain the following:

» nycnf Pat h - the path to the MySQL option file of the instance. Note that InnoDB Cluster only
supports a single option file for server instances, and does not support the use of the - - def aul t s-
extra-fil e option to specify an additional option file. For any AdminAPI operation working with the
instance's option file the main file must be specified.

» out put Mycnf Pat h - alternative output path to write the MySQL option file of the instance.

e cl ust er Adnmi n - the name of an InnoDB Cluster administrator user to be created. The supported
format is the standard MySQL account name format. Supports identifiers or strings for the user name
and host name. By default if unquoted it assumes input is a string. See Section 6.4, “Creating User
Accounts for AdminAPI”.

e cl uster Adm nPasswor d - the password for the InnoDB Cluster administrator account being
created using cl ust er Adm n. Although you can specify using this option, this is a potential security
risk. If you do not specify this option, but do specify the cl ust er Adni n option, you are prompted for
the password at the interactive prompt.

» restart - aBoolean value used to indicate that a remote restart of the target instance should be
performed to finalize the operation.

Although the connection password can be contained in the instance definition, this is insecure and
not recommended. Use the MySQL Shell Section 4.4, “Pluggable Password Store” to store instance
passwords securely.

Once dba. confi gur el nst ance() is issued against an instance, the command checks if the
instance's settings are suitable for InnoDB Cluster usage. A report is displayed which shows the
settings required by InnoDB Cluster. If the instance does not require any changes to its settings you
can use it in an InnoDB Cluster, and can proceed to Section 8.4.3, “Creating an InnoDB Cluster”. If
the instance's settings are not valid for InnoDB Cluster usage the dba. confi gur el nst ance()
command displays the settings which require modification. Before configuring the instance you are
prompted to confirm the changes shown in a table with the following information;

» Vari abl e - the invalid configuration variable.
e Current Val ue - the current value for the invalid configuration variable.
* Required Val ue - the required value for the configuration variable.

How you proceed depends on whether the instance supports persisting settings, see Section 6.2.3,
“Persisting Settings”. When dba. conf i gur el nst ance() is issued against the MySQL instance
which MySQL Shell is currently running on, in other words the local instance, it attempts to
automatically configure the instance. When dba. confi gur el nst ance() is issued against a remote
instance, if the instance supports persisting configuration changes automatically, you can choose to do
this.

In general, a restart of the instance is not required after dba. conf i gur el nst ance() configures the
option file, but for some specific settings a restart might be required. This information is shown in the
report generated after issuing dba. conf i gur el nst ance() . If the instance supports the RESTART

158

https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/9.4/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/9.4/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/9.4/en/restart.html

Creating an InnoDB Cluster

statement, MySQL Shell can shutdown and then start the instance. This ensures that the changes
made to the instance's option file are detected by mysqld. For more information see RESTART.

is lost. If auto-reconnect is enabled, the connection is reestablished after the

Note
@ After executing a RESTART statement, the current connection to the instance
server restarts. Otherwise, the connection must be reestablished manually.

The dba. confi gur el nst ance() method verifies that a suitable user is available for cluster usage,
which is used for connections between members of the cluster, see Section 6.4, “Creating User
Accounts for AdminAPI".

If you do not specify a user to administer the cluster, in interactive mode a wizard enables you to
choose one of the following options:

* enable remote connections for the root user, not recommended in a production environment
+ create a new user

* no automatic configuration, in which case you need to manually create the user

Tip

; If the instance has super _r ead_onl y=0ONthen you might need to confirm that
AdminAPI can set super read_onl y=OFF. See Instance Configuration in
Super Read-only Mode for more information.

Instance Configuration in Super Read-only Mode

Whenever Group Replication stops, the super _read_onl y variable is set to ON to ensure no
writes are made to the instance. When you try to use such an instance with the following AdminAPI
commands you are given the choice to set super read_onl y=0OFF on the instance:

» dba. confi gurel nstance()
» dba. dr opMet adat aSchena()

When AdminAPI encounters an instance which has super _read_onl y=QN, in interactive mode you
are given the choice to set super _r ead_onl y=0FF. For example:

nysql -j s> var nmyd uster = dba. dropMet adat aSchema()

Are you sure you want to renove the Metadata? [y/N: vy

The MySQL instance at 'l ocal host: 3310' currently has the super_read_only system
variable set to protect it frominadvertent updates from applications. You nust

first unset it to be able to perform any changes to this instance.

For nore infornation see:

https://dev. nysqgl . con doc/ r ef man/ en/ server - syst em vari abl es. ht nl #sysvar _super _read_onl y.

Do you want to disable super_read only and continue? [y/N: vy

Met adat a Schema successful ly renpved.

The number of current active sessions to the instance is shown. You must ensure that no applications
can write to the instance inadvertently. By answering y you confirm that AdminAPI can write to

the instance. If there is more than one open session to the instance listed, exercise caution before
permitting AdminAPI to set super _r ead_onl y=0OFF.

8.4.3 Creating an InnoDB Cluster

Once you have prepared your instances, use the dba. cr eat eCl ust er () function to create the
cluster, using the instance which MySQL Shell is connected to as the seed instance for the cluster.
The seed instance is replicated to the other instances that you add to the cluster, making them

159

https://dev.mysql.com/doc/refman/9.4/en/restart.html
https://dev.mysql.com/doc/refman/9.4/en/restart.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only

Creating an InnoDB Cluster

replicas of the seed instance. In this procedure the ic-1 instance is used as the seed. When you issue
dba. cr eat eCl ust er (nane) MySQL Shell creates a classic MySQL protocol session to the server
instance connected to the MySQL Shell's current global session. For example, to create a cluster called
t est Cl ust er and assign the returned cluster to a variable called cl ust er :

nysql -j s> var cluster = dba.createCl uster('testCl uster')

Val i dating instance at icadm n@ c-1: 3306. ..

This instance reports its own address as ic-1

I nstance configuration is suitable.

Creating InnoDB cluster 'testCluster' on 'icadnmn@c-1:3306'...

Addi ng Seed | nstance. ..

Cluster successfully created. Use Cl uster.addl nstance() to add MySQ i nstances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

It can only start with an alphanumeric character or with _ (underscore), and can

Note
@ The Cluster's name must be non-empty and no greater than 63 characters long.
only contain alphanumeric, _ (underscore), . (period), or - (hyphen) characters.

This pattern of assigning the returned cluster to a variable enables you to then execute further
operations against the cluster using the Cluster object's methods. The returned Cluster object uses a
new session, independent from the MySQL Shell's global session. This ensures that if you change the
MySQL Shell global session, the Cluster object maintains its session to the instance.

To be able to administer a cluster, you must ensure that you have a suitable user which

has the required privileges. The recommended approach is to create an administration

user. If you did not create an administration user when configuring your instances, use the

Cl ust er. set upAdnm nAccount () operation. For example to create a user named i cadm n that can
administer the InnoDB Cluster assigned to the variable cl ust er, issue:

nysql -j s> cl uster. set upAdni nAccount ("i cadni n")

See Configuring InnoDB Cluster Administrator Accounts Manually for more information on InnoDB
Cluster administrator accounts.

When you run dba. cr eat eCl ust er (), and when you add a further server instance to the InnoDB
Cluster by running Cl ust er . addl nst ance() , the following errors are logged to the MySQL server
instance's error log. These messages are harmless and relate to the way AdminAPI starts Group
Replication:

2020- 02- 10T10: 53: 43. 727246Z 12 [ERROR] [MY-011685] [Repl] Plugin
group_replication reported: 'The group nane option is nandatory'
2020- 02- 10T10: 53: 43. 7272927 12 [ERROR] [MY-011660] [Repl] Plugin
group_replication reported: 'Unable to start G oup Replication on boot'

the loopback network interface configured. For correct InnoDB Cluster usage

Note
@ If you encounter an error related to metadata being inaccessible you might have
disable the loopback interface.

To check the cluster has been created, use the cluster instance's st at us() function. See Checking a
cluster's Status with Cl ust er. st at us().

Tip

@ Once server instances belong to a cluster it is important to only administer
them using MySQL Shell and AdminAPI. Attempting to manually change the
configuration of Group Replication on an instance once it has been added to a
cluster is not supported. Similarly, modifying server variables critical to InnoDB
Cluster, such as ser ver _uui d, after an instance is configured using AdminAPI
is not supported.

160

https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_uuid

Adding Instances to an InnoDB Cluster

When you create a cluster using MySQL Shell, you can set the amount of time to wait before
instances are expelled from the cluster, for example when they become unreachable. Pass

the expel Ti neout option to the dba. cr eat eCl ust er () operation, which configures

the group_replication_nmenber expel tineout variable on the seed instance. The

expel Ti neout option can take an integer value in the range of 0 to 3600. All instances running
MySQL server 8.0.13 and later which are added to a cluster with expel Ti neout configured are
automatically configured to have the same expel Ti neout value as configured on the seed instance.

For information on the other options which you can pass to dba. cr eat eCl ust er (), see Section 8.9,
“Modifying or Dissolving an InnoDB Cluster”.

It is possible to enable or disable gr oup_replicati on_paxos_si ngl e | eader using
dba. createC uster ().

higher, because MySQL Shell requires the information provided
by WRI TE_CONSENSUS_SI NGLE_LEADER CAPABLE in the
replication_group_comruni cation_i nformati on table, which was

Note
@ This can only be set by MySQL Shell on MySQL Server 8.0.31, or
introduced in MySQL 8.0.31.

InnoDB Cluster replicationAllowedHost

When you create a cluster, if you have security requirements that all accounts created

automatically by AdminAPI have strict authentication requirements, you can set a value for the
replicationAl | owedHost cluster configuration option. The r epl i cat i onAl | owedHost option
means that all accounts created automatically can only connect from allowed hosts, using strict subnet-
based filtering. Previously, the Internal User Accounts Created by InnoDB Cluster, by default, were
accessible from anywhere.

ThereplicationAl | ownedHost option can take a string value. For example, to create a cluster
called t est Cl ust er and settherepl i cati onAl | owedHost optionto 192. 0. 2. 0/ 24, issue:

nysql -j s> dba. createCl uster('testCluster', {replicationAllowedHost:"'192.0.2.0/24'})
Configuring the Communication Stack

InnoDB Cluster supports the MySQL communication stack introduced for Group Replication in MySQL
8.0.27.

The option, comuni cat i onSt ack: XCOV| MYSQL sets the value of the Group Replication system
variable gr oup_repl i cati on_comruni cati on_st ack.

For example:

nysql -j s> dba. createCl uster("testCluster", {communicationStack: "xconi'})

The MYSQL communication stack is the default for all new clusters created for MySQL 8.0.27, or higher.

For more information, see Section 8.5.9, “Configuring the Group Replication Communication Stack”.

8.4.4 Adding Instances to an InnoDB Cluster

You need a minimum of three instances in an InnoDB Cluster to make it tolerant to the failure of one
instance. Adding further instances increases the tolerance to failure of an InnoDB Cluster.

Group Replication implements compatibility policies which consider the version of the instances,
and the C ust er . addl nst ance() operation detects this and in the event of an incompatibility the

161

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_member_expel_timeout
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-group-communication-information-table.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_communication_stack

Adding Instances to an InnoDB Cluster

operation terminates with an error. See Checking the MySQL Version on Instances and Combining
Different Member Versions in a Group.

Use the Cl ust er. addl nst ance(i nst ance) function to add an instance to the cluster, where
i nst ance is connection information to a configured instance, see Section 8.4.2, “Configuring
Production Instances for InnoDB Cluster Usage”. For example:

nmysql -j s> cl uster. addl nstance(' i cadm n@ c- 2: 3306')

A new instance will be added to the |InnoDB cluster. Depending on the amount of
data on the cluster this mght take froma few seconds to several hours.

Pl ease provi de the password for 'icadm n@c-2:3306": *****xxx

Addi ng instance to the cluster ...

Val i dating instance at ic-2:3306...

This instance reports its own address as ic-2

I nstance configuration is suitable.

The instance 'icadm n@c-2: 3306' was successfully added to the cluster.

The options dictionary of the addl nst ance(i nst ance[, options]) function provides the following
attributes:

| abel : an identifier for the instance being added.

The label must be non-empty and no greater than 256 characters long. It must be unique within
the Cluster and can only contain alphanumeric, _ (underscore), . (period), - (hyphen), or : (colon)
characters.

e recover yMet hod: Preferred method of state recovery. May be auto, clone, or incremental. Default
is auto.

e recover yProgress: Integer value which defines the recovery process verbosity level.
¢ 0: do not show any progress information.
« 1: show detailed static progress information.
« 2: show detailed dynamic progress information using progress bars.

* i pAl'l ow i st: The list of hosts allowed to connect to the instance for group replication.

e | ocal Addr ess: string value with the Group Replication local address to be used instead of the
automatically generated one.

e exit StateActi on: string value indicating the group replication exit state action.
» nmenber Wi ght : integer value with a percentage weight for automatic primary election on failover.

e aut oRej oi nTri es: integer value to define the number of times an instance will attempt to rejoin the
cluster after being expelled.

When a new instance is added to the cluster, the local address for this instance is automatically added
tothe group_replication_group_seeds variable on all online cluster instances in order to allow
them to use the new instance to rejoin the group, if needed.

according to the order in which they appear in the list. This ensures user
specified settings are used first and preferred. See Section 8.5.2, “Customizing

Note
@ The instances listed in group_repl i cation_group_seeds are used
InnoDB Cluster Member Servers” for more information.

If you are using MySQL 8.0.17 or later you can choose how the instance recovers the transactions
it requires to synchronize with the cluster. Only when the joining instance has recovered all of the
transactions previously processed by the cluster can it then join as an online instance and begin

162

https://dev.mysql.com/doc/refman/9.4/en/group-replication-online-upgrade-combining-versions.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-online-upgrade-combining-versions.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_seeds

Adding Instances to an InnoDB Cluster

processing transactions. For more information, see Section 8.4.6, “Using MySQL Clone with InnoDB
Cluster”.

You can configure how Cl ust er . addl nst ance() behaves, letting recovery operations proceed in
the background or monitoring different levels of progress in MySQL Shell.

Depending on which option you choose to recover the instance from the cluster, you see different
output in MySQL Shell. Suppose that you are adding the instance ic-2 to the cluster, and ic-1 is the
seed or donor.

* When you use MySQL Clone to recover an instance from the cluster, the output looks like:

Val i dating instance at ic-2:3306...

This instance reports its own address as ic-2:3306

I nstance configuration is suitable.

A new instance will be added to the |InnoDB cluster. Depending on the ampunt of

data on the cluster this mght take froma few seconds to several hours.

Addi ng instance to the cluster...

Moni toring recovery process of the new cluster nenber. Press "C to stop nonitoring

and let it continue in background.

Cl one based state recovery is now in progress.

NOTE: A server restart is expected to happen as part of the clone process. If the

server does not support the RESTART command or does not conme back after a

while, you may need to nmanually start it back.

* Waiting for clone to finish...

NOTE: ic-2:3306 is being cloned fromic-1: 3306

** Stage DROP DATA: Conpl et ed

** Cl one Transfer

FI LE COPY #######HHHHHH AR HHHH TR HH TR HHH R T T e a### . 100% Conpl et ed
PAGE COPY ######HHHHHHHH T HHHH TR HHH T HH R T T T ### 100% Conpl et ed
REDO COPY ######H#HHHHHH AR HHHH TR HHH T HH R T T a### 100% Conpl et ed
NOTE: ic-2:3306 is shutting down...

* Wiiting for server restart... ready

* jc-2:3306 has restarted, waiting for clone to finish...

** Stage RESTART: Conpl et ed

* Clone process has finished: 2.18 GB transferred in 7 sec (311.26 MB/s)

State recovery already finished for 'ic-2:3306'

The instance 'ic-2:3306' was successfully added to the cluster.

The warnings about server restart should be observed, you might have to manually restart an
instance. See RESTART Statement.

* When you use incremental recovery to recover an instance from the cluster, the output looks like:

Incremental distributed state recovery is now in progress.
* Waiting for incremental recovery to finish...

NOTE: 'ic-2:3306" is being recovered from'ic-1: 3306

* Distributed recovery has finished

To cancel the monitoring of the recovery phase, issue CONTROL+C. This stops the monitoring but the
recovery process continues in the background. The r ecover yPr ogr ess integer option can be used
with the Cl ust er . addl nst ance() operation to display the progress of the recovery phase.

To verify the instance has been added, use the cluster instance's st at us() function. For example this
is the status output of a sandbox cluster after adding a second instance:

nmysql -j s> cluster. status()
{
"clusterNane": "testCd uster",
"defaul t ReplicaSet": {
"nanme": "default",
“primary": "ic-1:3306",
"ssl": "REQUI RED',
"status": "OK_NO TOLERANCE",
"statusText": "Cluster is NOT tolerant to any failures.",
"topol ogy": {
"ic-1:3306": {
"address": "ic-1:3306",

163

https://dev.mysql.com/doc/refman/9.4/en/restart.html

Configuring InnoDB Cluster Ports

"nmode": "RI'W,
"readReplicas": {},
"role': "HA"

"status": "ONLI NE"

"ic-2:3306": {
"address": "ic-2:3306",
"nmode": "R O',
"readReplicas": {},
"role": "HA",

"status": "ONLI NE"
}

}
b
"groupl nf or mati onSour ceMenber": "nmysql ://icadm n@ c- 1: 3306"
}

How you proceed depends on whether the instance is local or remote to the instance MySQL Shell
is running on, and whether the instance supports persisting configuration changes automatically,
see Section 6.2.3, “Persisting Settings”. If the instance supports persisting configuration changes
automatically, you do not need to persist the settings manually and can either add more instances
or continue to the next step. If the instance does not support persisting configuration changes
automatically, you have to configure the instance locally. This is essential to ensure that instances
rejoin the cluster in the event of leaving the cluster.

Tip

@ If the instance has super _r ead_onl y=0ONthen you might need to confirm that
AdminAPI can set super read_onl y=OFF. See Instance Configuration in
Super Read-only Mode for more information.

Once you have your cluster deployed you can configure MySQL Router to provide high availability, see
Chapter 7, MySQL Router and AdminAPI.

8.4.5 Configuring InnoDB Cluster Ports

Instances that belong to a cluster use different ports for different types of communication. If you are
using the XCOMcommunication stack, in addition to the default port at 3306, which is used for client
connections over classic MySQL protocol, and the mysql x_port, which defaults to 33060 and is used
for X Protocol client connections, there is also a port for internal connections between the instances

in the cluster which is not used for client connections. This port is configured by the | ocal Addr ess
option, which configures the group_replication_| ocal address system variable, and this port
must be open so that the instances in the cluster can communicate with each other. For example,

if your firewall is blocking this port then the instances cannot communicate with each other, and the
cluster cannot function. Similarly, if your instances are using SELinux, you need to ensure that all of
the required ports used by InnoDB Cluster are open so that the instances can communicate with each
other. See Setting the TCP Port Context for MySQL Features and MySQL Shell Ports.

When you create a cluster or add instances to a cluster, by default the | ocal Addr ess portis
calculated by multiplying the target instance's port value by 10 and then adding one to the result.

For example, when the por t of the target instance is the default value of 3306, the calculated

| ocal Addr ess port is 33061. You should ensure that port numbers used by your cluster instances are
compatible with the way | ocal Addr ess is calculated. For example, if the server instance being used
to create a cluster has a port number higher than 6553, the dba. cr eat eCl ust er () operation fails
because the calculated | ocal Addr ess port number exceeds the maximum valid port which is 65535.
To avoid this situation either use a lower por t value on the instances you use for InnoDB Cluster, or
manually assign the | ocal Addr ess value, for example:

nmysql -j s> dba. createCl uster('testCluster', {'local Address':"'icadm n@c-1:33061'}

If you are using the MYSQL communication stack, the localAddress value is generated automatically
using the same network address as the MySQL server. An extra internal port/address is not required.
See Section 8.5.9, “Configuring the Group Replication Communication Stack”.

164

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/9.4/en/x-plugin-options-system-variables.html#sysvar_mysqlx_port
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/9.4/en/selinux.html
https://dev.mysql.com/doc/refman/9.4/en/selinux-context-mysql-feature-ports.html
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-port-reference-tables.html#GUID-65C1FF7E-5357-4E58-8D68-A0C3D24C0832__MYSQL-SHELL-PORTS
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_port

Using MySQL Clone with InnoDB Cluster

| ocal Addr ess can be defined manually, but the port used must be one MySQL is listening on, as
defined by bi nd_addr ess.

8.4.6 Using MySQL Clone with InnoDB Cluster

InnoDB Cluster integrates the MySQL Clone plugin to provide automatic provisioning of joining
instances. The process of retrieving the cluster's data so that the instance can synchronize with the
cluster is called distributed recovery. When an instance needs to recover a cluster's transactions we
distinguish between the donor, which is the cluster instance that provides the data, and the receiver,
which is the instance that receives the data from the donor. In previous versions, Group Replication
provided only asynchronous replication to recover the transactions required for the joining instance

to synchronize with the cluster so that it could join the cluster. For a cluster with a large amount of
previously processed transactions it could take a long time for the new instance to recover all of the
transactions before being able to join the cluster. Or a cluster which had purged GTIDs, for example
as part of regular maintenance, could be missing some of the transactions required to recover the new
instance. In such cases the only alternative was to manually provision the instance using tools such as
MySQL Enterprise Backup, as shown in Using MySQL Enterprise Backup with Group Replication.

MySQL Clone provides an alternative way for an instance to recover the transactions required to
synchronize with a cluster. Instead of relying on asynchronous replication to recover the transactions,
MySQL Clone takes a snapshot of the data on the donor instance and then transfers the snapshot to
the receiver.

Warning
O All previous data in the receiver is destroyed during a clone operation. All
MySQL settings not stored in tables are however maintained.

Once a clone operation has transferred the snapshot to the receiver, if the cluster has processed
transactions while the snapshot was being transferred, asynchronous replication is used to recover
any required data for the receiver to be synchronized with the cluster. This can be much more efficient
than the instance recovering all of the transactions using asynchronous replication, and avoids any
issues caused by purged GTIDs, enabling you to quickly provision new instances for InnoDB Cluster.
For more information, see The Clone Plugin and Cloning for Distributed Recovery

In contrast to using MySQL Clone, incremental recovery is the process where an instance joining a
cluster uses only asynchronous replication to recover an instance from the cluster. When an InnoDB
Cluster is configured to use MySQL Clone, instances which join the cluster use either MySQL Clone
or incremental recovery to recover the cluster's transactions. By default, the cluster automatically
chooses the most suitable method, but you can optionally configure this behavior, for example to
force cloning, which replaces any transactions already processed by the joining instance. When you
are using MySQL Shell in interactive mode, the default, if the cluster is not sure it can proceed with
recovery it provides an interactive prompt. This section describes the different options you are offered,
and the different scenarios which influence which of the options you can choose.

In addition, the output of Cl ust er. st at us() for members in RECOVERI NG state includes recovery
progress information to enable you to easily monitor recovery operations, whether they are using
MySQL Clone or incremental recovery. InnoDB Cluster provides additional information about instances
using MySQL Clone in the output of Cl ust er. st at us().

Cloning version compatibility checks exist for donor and recipient instances. With certain conditions,
only the major and minor version numbers need to match, the patch number is disregarded.

The following conditions apply:
e Only version 8.0.17, or higher, can perform cloning.
« If both versions are 8.0.37, or higher, only the major and minor versions are required to match.

« If the version is 8.0.17, or higher, and less than 8.0.37, major, minor, and patch numbers must
match.

165

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_bind_address
https://dev.mysql.com/doc/refman/9.4/en/group-replication-enterprise-backup.html
https://dev.mysql.com/doc/refman/9.4/en/clone-plugin.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-cloning.html

Using MySQL Clone with InnoDB Cluster

8.4.6.1 Working with a Cluster that uses MySQL Clone

An InnoDB Cluster that uses MySQL Clone provides the following additional behavior.

dba. creat eC uster () and MySQL Clone

By default, when a new cluster is created on an instance where the MySQL Clone plugin is available, it
is automatically installed and the cluster is configured to support cloning. The InnoDB Cluster recovery
accounts are created with the required BACKUP_ADM N privilege.

Set the di sabl eCl one Boolean option to t r ue to disable MySQL Clone for the cluster. In this case
a metadata entry is added for this configuration and the MySQL Clone plugin is uninstalled if it is
installed. You can set the di sabl eCl one option when you issue dba. cr eat eCl ust er (), or at any
time when the cluster is running using Cl ust er. set Opti on().

Cluster. addl nst ance(i nstance) and MySQL Clone

MySQL Clone can be used for a joining i nst ance if the new instance is running

MySQL 8.0.17 or later, and there is at least one donor in the cluster (included in the
group_replication_group_seeds list) running MySQL 8.0.17 or later. A cluster using MySQL
Clone follows the behavior documented at Section 8.4.4, “Adding Instances to an InnoDB Cluster”, with
the addition of a possible choice of how to transfer the data required to recover the instance from the
cluster. How Cl ust er . addl nst ance(i nst ance) behaves depends on the following factors:

* Whether MySQL Clone is supported.

» Whether incremental recovery is possible or not, which depends on the availability of binary logs. For
example, if a donor instance has all binary logs required (GTl D_PURGED is empty) then incremental
recovery is possible. If no cluster instance has all binary logs required then incremental recovery is
not possible.

* Whether incremental recovery is appropriate or not. Even though incremental recovery might be
possible, because it has the potential to clash with data already on the instance, the GTID sets on
the donor and receiver are checked to make sure that incremental recovery is appropriate. The
following are possible results of the comparison:

* New: the receiver has an empty GTl D_EXECUTED GTID set
« |dentical: the receiver has a GTID set identical to the donor’'s GTID set

« Recoverable: the receiver has a GTID set that is missing transactions but these can be recovered
from the donor

« Irrecoverable: the donor has a GTID set that is missing transactions, possibly they have been
purged

» Diverged: the GTID sets of the donor and receiver have diverged

When the result of the comparison is determined to be Identical or Recoverable, incremental
recovery is considered appropriate. When the result of the comparison is determined to be
Irrecoverable or Diverged, incremental recovery is not considered appropriate.

For an instance considered New, incremental recovery cannot be considered appropriate because
it is impossible to determine if the binary logs have been purged, or even if the GTI D_PURGED

and GTI D_EXECUTED variables were reset. Alternatively, it could be that the server had already
processed transactions before binary logs and GTIDs were enabled. Therefore in interactive mode,
you have to confirm that you want to use incremental recovery.

* The state of the gt i dSet | sConpl et e option. If you are sure a cluster has been created with a
complete GTID set, and therefore instances with empty GTID sets can be added to it without extra
confirmations, set the cluster level gt i dSet | sConpl et e Boolean optionto t r ue.

166

https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_seeds

Using MySQL Clone with InnoDB Cluster

are recovered regardless of any data they contain, use with caution. If you try

Warning
o Setting the gt i dSet | sConpl et e option to t r ue means that joining servers
to add an instance which has applied transactions you risk data corruption.

The combination of these factors influence how instances join the cluster when you issue

Cl uster. addl nstance(). Therecover yMet hod option is set to aut o by default, which means
that in MySQL Shell's interactive mode, the cluster selects the best way to recover the instance from
the cluster, and the prompts advise you how to proceed. In other words the cluster recommends using
MySQL Clone or incremental recovery based on the best approach and what the server supports. If
you are not using interactive mode and are scripting MySQL Shell, you must set r ecover yMet hod
to the type of recovery you want to use - either cl one or i ncr enent al . This section explains the
different possible scenarios.

When you are using MySQL Shell in interactive mode, the main prompt with all of the possible options
for adding the instance is:

Pl ease select a recovery nethod [C]lone/[l]ncrenental recovery/[A]bort (default C one):

Depending on the factors mentioned, you might not be offered all of these options. The scenarios
described later in this section explain which options you are offered. The options offered by this prompt
are:

» Clone: choose this option to clone the donor to the instance which you are adding to the cluster,
deleting any transactions the instance contains. The MySQL Clone plugin is automatically installed.
The InnoDB Cluster recovery accounts are created with the required BACKUP_ADM N privilege.
Assuming you are adding an instance which is either empty (has not processed any transactions) or
which contains transactions you do not want to retain, select the Clone option. The cluster then uses
MySQL Clone to completely overwrite the joining instance with a snapshot from an donor cluster
member. To use this method by default and disable this prompt, set the cluster's r ecover yMet hod
option to cl one.

» Incremental recovery choose this option to use incremental recovery to recover all transactions
processed by the cluster to the joining instance using asynchronous replication. Incremental recovery
is appropriate if you are sure all updates ever processed by the cluster were done with GTIDs
enabled, there are no purged transactions and the new instance contains the same GTID set as
the cluster or a subset of it. To use this method by default, set the r ecover yMet hod option to
i ncrenent al .

The combination of factors mentioned influences which of these options is available at the prompt as
follows:

manually changed outside of AdminAPI, then the cluster might decide to use
Clone recovery instead of following these scenarios.

Note
@ ‘ If the gr oup_replication_cl one_t hreshol d system variable has been
* In a scenario where
« incremental recovery is possible
« incremental recovery is not appropriate
¢ Clone is supported

you can choose between any of the options. It is recommended that you use MySQL Clone, the
default.

* In a scenario where

167

https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_clone_threshold

Adopting a Group Replication Deployment

« incremental recovery is possible

¢ incremental recovery is appropriate

you are not provided with the prompt, and incremental recovery is used.
* In a scenario where

 incremental recovery is possible

« incremental recovery is not appropriate

» Clone is not supported or is disabled

you cannot use MySQL Clone to add the instance to the cluster. You are provided with the prompt,
and the recommended option is to proceed with incremental recovery.

* In a scenario where
« incremental recovery is not possible
* Clone is not supported or is disabled

you cannot add the instance to the cluster and an ERROR: The target instance nust

be either cloned or fully provisioned before it can be added to the
target cluster. Custer.addl nstance: |Instance provisioning required
(Runti meError) is shown. This could be the result of binary logs being purged from all cluster
instances. It is recommended to use MySQL Clone, by either upgrading the cluster or setting the
di sabl eCl one optionto f al se.

* In a scenario where
« incremental recovery is not possible
¢ Clone is supported

you can only use MySQL Clone to add the instance to the cluster. This could be the result of the
cluster missing binary logs, for example when they have been purged.

Once you select an option from the prompt, by default the progress of the instance recovering the
transactions from the cluster is displayed. This monitoring enables you to check the recovery phase is
working and also how long it should take for the instance to join the cluster and come online. To cancel
the monitoring of the recovery phase, issue CONTROL+C.

dba. checkl nst anceConfi gurati on() and MySQL Clone

When the dba. checkl nst anceConf i gurati on() operation is run against an instance that has
MySQL Clone available but it is disabled, a warning is displayed.

8.4.7 Adopting a Group Replication Deployment

If you have an existing deployment of Group Replication and you want to use it to create a cluster,
pass the adopt Fr omGR option to the dba. cr eat eCl ust er () function. The created InnoDB Cluster
matches whether the replication group is running as single-primary or multi-primary.

To adopt an existing Group Replication group, connect to a group member using MySQL Shell.

In the following example a single-primary group is adopted. We connect to gr - nenber - 2, a
secondary instance, while gr - nenber - 1 is functioning as the group's primary. Create a cluster using
dba. creat eCl ust er (), passing in the adopt Fr onGR option. For example:

nysql -j s> var cluster = dba.createC uster(' prodd uster', {adoptFromGR true});

168

Configuring InnoDB Cluster

A new I nnoDB cluster will be created on instance 'root @r-nenber-2: 3306 .

Creating InnoDB cluster 'prodC uster' on 'root@r-nenber-2: 3306 ...
Addi ng Seed I nstance. ..

Cluster successfully created. Use cluster.addl nstance() to add MySQ i nstances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

Tip

; If the instance has super _r ead_onl y=0ON then you might need to confirm that
AdminAPI can set super read_onl y=0OFF. See Instance Configuration in
Super Read-only Mode for more information.

If you do not specify adopt FronGR: t r ue, and the target server instance belongs to a replication
group, MySQL Shell prompts you to confirm whether you want to adopt the replication group. If you
specify adopt FronGR: f al se, the operation is stopped with no prompt if the instance is found to
belong to a replication group.

The new cluster matches the mode of the group. If the adopted group was running in single-primary
mode then a single-primary cluster is created. If the adopted group was running in multi-primary mode
then a multi-primary cluster is created.

Note
@ It is not possible to define the communication stack used by the cluster
in the same command as adopt Fr onGR, the cluster must initially use
the communication stack used by the adopted group. If necessary, you
can change the communication stack after the group is adopted using
reboot Cl ust er Fr onConpl et eQut age. See Section 8.5.9, “Configuring the
Group Replication Communication Stack”.

8.5 Configuring InnoDB Cluster

This section describes how to use AdminAPI for further detailed configuration of an InnoDB Cluster
during the cluster creation process and after you have created it. You can use this information to
modify the settings that AdminAPI applies by default when you create a cluster.

8.5.1 Setting Options for InnoDB Cluster

You can check and modify the settings in place for an InnoDB Cluster while the instances are online.
To check the current settings of a cluster, use the following operation:

e Cluster.options(), which lists the configuration options for the cluster and its instances. A
Boolean option al | can also be specified to include information about all Group Replication system
variables in the output.

You can configure the options of an InnoDB Cluster at a cluster level or instance level, while instances
remain online. This avoids the need to remove, reconfigure and then again add the instance to change
InnoDB Cluster options. Use the following operations:

 Cluster.setOption(option, val ue) tochange the settings of all cluster instances globally or
cluster global settings such as cl ust er Nane.

e Cluster.setlnstanceOption(instance, option, val ue) tochange the settings of
individual cluster instances

The way which you use InnoDB Cluster options with the operations listed depends on whether the
option can be changed to be the same on all instances or not. These options are changeable at both
the cluster (all instances) and per instance level:

169

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only

Customizing InnoDB Cluster Member Servers

e aut oRej oi nTri es: integer value to define the number of times an instance attempts to rejoin the
cluster after being expelled. See Section 8.5.5, “Configuring Automatic Rejoin of Instances”.

» exit St at eAct i on: string value indicating the Group Replication exit state action. See
Section 8.5.5, “Configuring Automatic Rejoin of Instances”.

* nenber Wi ght : integer value with a percentage weight for automatic primary election on failover.
See Section 8.5.3, “Configuring the Election Process”.

* i pAl | owli st : comma-separated list of IP addresses or subnet CIDR notation. For example:
192.168. 1. 0/ 24, 10. 0. 0. 1. By default the value is set to AUTOVATI C, allowing addresses from
the instance private network to be automatically set for the allowlist.

Note
@ This option can only be set if the comuni cat i onSt ack is set to XCOM

» tag: opti on: built-in and user-defined tags to be associated to the cluster. See Section 6.9,
“Tagging Metadata”.

The following options are changeable at the cluster level only:
e cl ust er Nane: string value to define the cluster name

» di sabl eCl one: Boolean value used to disable the clone usage on the cluster. See
dba. creat eCl uster () and MySQL Clone.

« replicationAl | owedHost : string value to define strict subnet based filtering, so that internally
managed replication accounts can only connect from allowed hosts. See InnoDB Cluster
replicationAllowedHost.

» expel Ti meout : integer value to define the time period in seconds that cluster members should wait
for a non-responding member before evicting it from the cluster. See Section 8.4.3, “Creating an
InnoDB Cluster”.

e transactionSi zeLi mi t : positive integer value which sets the Group Replication system variable
group_replication_transaction_size |imt.This setsthe maximum transaction size in
bytes which the cluster accepts. Larger transactions are rolled back and not broadcast to the cluster.
All members added to the cluster use the same value.

The following option is changeable at the per instance level only:

» | abel : a string identifier of the instance

8.5.2 Customizing InnoDB Cluster Member Servers

When you create a cluster and add instances to it, values such as the group name and the local
address are configured automatically by AdminAPI. The default values are recommended for most
deployments, but advanced users can override the defaults by passing the following options to the
dba. creat eCl uster () and Cl ust er. addl nst ance() commands:

» Pass the gr oupNane option to the dba. cr eat eCl ust er () command to customize the name of
the replication group created by InnoDB Cluster. This sets the gr oup_r epl i cati on_gr oup_nane
system variable. The name must be a valid UUID.

» Passthel ocal Addr ess option to the dba. creat eCl uster () and cl uster. addl nst ance()
commands to customize the address which an instance provides for connections
from other instances. Specify the address in the format host : port . This sets the
group_replication_| ocal address system variable on the instance. The address must be
accessible to all instances in the cluster, and must be reserved for internal cluster communication
only. In other words, do not use this address for communication with the instance.

170

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_transaction_size_limit
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_local_address

Configuring the Election Process

For more information see the documentation of the system variables configured by these AdminAPI
options.

8.5.3 Configuring the Election Process

You can optionally configure how a single-primary cluster elects a new primary, for example to prefer
one instance as the new primary to fail over to. Use the nenber Wi ght option and pass it to the

dba. creat eCl uster () and Cl ust er. addl nst ance() methods when creating your cluster. The
menber VWi ght option accepts an integer value between 0 and 100, which is a percentage weight

for automatic primary election on failover. When an instance has a higher percentage number set by
menber Wi ght , it is more likely to be elected as primary in a single-primary cluster. When a primary
election takes place, if multiple instances have the same nenber Wi ght value, the instances are then
prioritized based on their server UUID in lexicographical order (the lowest) and by picking the first one.

Setting the value of menber Wi ght configures the gr oup_repl i cati on_nmenber _wei ght system
variable on the instance. Group Replication limits the value range from 0 to 100, automatically adjusting
it if a higher or lower value is provided. Group Replication uses a default value of 50 if no value is
provided. See Single-Primary Mode for more information.

For example to configure a cluster where i c- 3 is the preferred instance to fail over to in the event that
i c- 1, the current primary, leaves the cluster unexpectedly use nenber \\éi ght as follows:

dba. createC uster (' clusterl', {menber Wi ght: 35})

var mycluster = dba.getC uster()

mycl ust er. addl nst ance('i cadm n@c2', {menber Wi ght: 25})
mycl ust er. addl nst ance(' i cadm n@c3', {menber Wi ght: 50})

8.5.4 Configuring Failover Consistency

Group Replication provides the ability to specify the failover guarantees if a primary failover happens

in single-primary mode (see Configuring Transaction Consistency Guarantees). You can configure

the failover guarantees of an InnoDB Cluster at creation by passing the consi st ency option While
the fencing mechanism is in place, applications effectively do not see time going backward for a short
period of time while any backlog is applied. This ensures that applications do not read stale information
from the newly elected primary.

The consi st ency option is only supported if the target MySQL server version is 8.0.14 or later,

and instances added to a cluster which has been configured with the consi st ency option are
automatically configured to have gr oup_r epl i cati on_consi st ency the same on all cluster
members that have support for the option. The variable default value is controlled by Group Replication
and is BEFORE_ON_PRI MARY_FAI LOVER on MySQL 8.4.0 and higher, EVENTUAL on older versions.

Note

@ Using the consi st ency option on a multi-primary InnoDB Cluster has no effect
but is allowed because the cluster can later be changed into single-primary
mode with the Cl ust er. swi t chToSi ngl ePri mar yMode() operation.

8.5.5 Configuring Automatic Rejoin of Instances

Instances running MySQL 8.0.16 and later support the Group Replication automatic rejoin functionality,
which enables you to configure instances to automatically rejoin the cluster after being expelled.

See Responses to Failure Detection and Network Partitioning for background information. AdminAPI
provides the aut oRej oi nTri es option to configure the number of tries instances make to rejoin

the cluster after being expelled. By default instances do not automatically rejoin the cluster. You can
configure the aut oRej oi nTri es option at either the cluster level or for an individual instance using
the following commands:

e dba. createC uster()

e Cluster. addl nstance()

171

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_member_weight
https://dev.mysql.com/doc/refman/9.4/en/group-replication-single-primary-mode.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-configuring-consistency-guarantees.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_consistency
https://dev.mysql.com/doc/refman/9.4/en/group-replication-responses-failure.html

Configuring the Parallel Replication Applier

e Cluster.setOption()
e Cluster.setlnstanceOption()

The aut oRej oi nTri es option accepts positive integer values between 0 and 2016 and the default
value is 3. When using the automatic rejoin functionality, your cluster is more tolerant to faults,

especially temporary ones such as unreliable networks. But if quorum has been lost, you should not
expect members to automatically rejoin the cluster, because majority is required to rejoin instances.

Instances running MySQL version 8.0.12 and later have the
group_replication_exit_state_action variable, which you can configure using the
AdminAPIl exi t St at eAct i on option. This controls what instances do in the event of leaving the
cluster unexpectedly. By default the exi t St at eAct i on option is READ_ONLY, which means that
instances which leave the cluster unexpectedly become read-only. If exi t St at eAct i on is set to
OFFLI NE_MODE, instances which leave the cluster unexpectedly become read-only and also enter
offline mode, where they disconnect existing clients and do not accept new connections (except from
clients with administrator privileges). If exi t St at eAct i on is set to ABORT _SERVER then in the event
of leaving the cluster unexpectedly, the instance shuts down MySQL, and it has to be started again
before it can rejoin the cluster. Note that when you are using the automatic rejoin functionality, the
action configured by the exi t St at eAct i on option only happens in the event that all attempts to
rejoin the cluster fail.

There is a chance you might connect to an instance and try to configure it using the AdminAPI, but at
that moment the instance could be rejoining the cluster. This could happen whenever you use any of
these operations:

e Cluster.status()

dba. get C uster ()

e Cluster.rejoinlnstance()
» Cluster.addl nstance()

e Cluster.renovel nstance()
e Cluster.rescan()

These operations might provide extra information while the instance is automatically rejoining the
cluster.

8.5.6 Configuring the Parallel Replication Applier

Instances support and enable parallel replication applier threads, sometimes referred to as a multi-
threaded replica. Using multiple replica applier threads in parallel improves the throughput of both the
replication applier and incremental recovery.

This means that on instances running 8.0.23 and later, the following system variables must be
configured:

* binlog transacti on_dependency_tracki ng=\\RI TESET

removed in MySQL 8.4.0. As of MySQL 8.4.0, the server uses the WRI TESET

Note
@ This system variable is deprecated in MySQL 8.0.35 and 8.2.0 and was
behavior by default and it is no longer set by MySQL Shell.

* sl ave_preserve_conmm t_order=0N

» slave_parallel type=LOG CAL_CLOCK

172

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_exit_state_action
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_transaction_dependency_tracking
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_slave_preserve_commit_order
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_slave_parallel_type

InnoDB Cluster and Auto-increment

By default, the number of applier threads (configured by the sl ave paral | el _wor ker s system
variable) is set to 4.

When you upgrade a cluster that has been running a version of MySQL server and MySQL Shell
earlier than 8.0.23, the instances are not configured to use the parallel replication applier. If the parallel
applier is not enabled, the output of the Cl ust er . st at us() operation shows a message in the

i nst anceErr or s field, for example:

"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on
the instance. Use dba.configurelnstance() to fix it."

In this situation you should reconfigure your instances, so that they use the parallel replication

applier. For each instance that belongs to the InnoDB Cluster, update the configuration by issuing
dba. confi gurel nstance(i nst ance) . Note that usually dba. confi gur el nstance() is used
before adding the instance to a cluster, but in this special case there is no need to remove the instance
and the configuration change is made while it is online.

Information about the parallel replication applier is displayed in the output of the

Cl uster. status(ext ended=1) operation. For example, if the parallel replication applier is
enabled, then the t opol ogy section output for the instance shows the number of threads under
appl i er Wor ker Thr eads. The system variables configured for the parallel replication applier are
shown in the output of the Cl ust er. opti ons() operation.

Important

A The server system variable sl ave_par al | el _wor ker s (deprecated in
MySQL 8.0.30) is removed in 8.3.0 and can not be set or read by MySQL
Shell's appl i er Wor ker Thr eads option for MySQL Server 8.3.0 or higher.

For earlier versions of MySQL Server, the behavior of MySQL Shell is
unchanged and appl i er Wor ker Thr eads is still available.

You can configure the number of threads which an instance uses for the parallel replication applier
with the appl i er Wor ker Thr eads option, which defaults to 4 threads. The option accepts integers
in the range of 0 to 1024 and can only be used with the dba. confi gur el nst ance() and

dba. confi gureRepl i caSet | nst ance() operations. For example, to use 8 threads, issue:

nysql -j s> dba. confi gurel nstance(i nstance, {applierWrkerThreads: 8, restart: true})

Note
@ The change to the number of threads used by the parallel replication applier
only occurs after the instance is restarted and has rejoined the cluster.

To disable the parallel replication applier, set the appl i er Wor ker Thr eads option to 0.

8.5.7 InnoDB Cluster and Auto-increment

When you are using an instance as part of an InnoDB Cluster, the aut o_i ncrenent _i ncr enent
and aut o_i ncrenent _of f set variables are configured to avoid the possibility of auto increment
collisions for multi-primary clusters up to a size of 9 (the maximum supported size of a Group
Replication group). The logic used to configure these variables can be summarized as:

« If the group is running in single-primary mode, then set aut o_i ncr enent _i ncr enent to 1 and
auto_i ncrenment _of f set to 2.

* If the group is running in multi-primary mode, then when the cluster has 7 instances or less set
auto_increnent _increnent to7andauto_increnent_offset tol+server_id%7.1fa
multi-primary cluster has 8 or more instances set aut o_i ncr enent _i ncr enent to the number of
instances and aut o_i ncrenment _of fset to1 +server _i d % the number of instances.

173

https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/9.4/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_id

InnoDB Cluster and Binary Log Purging

8.5.8 InnoDB Cluster and Binary Log Purging

In MySQL 8, the binary log is automatically purged (as defined by bi nl og_expi re_| ogs_seconds).
This means that a cluster which has been running for a longer time than

bi nl og_expi re_| ogs_seconds could eventually not contain an instance with a complete binary
log that contains all of the transactions applied by the instances. This could result in instances needing
to be provisioned automatically, for example using MySQL Enterprise Backup, before they could join
the cluster. Instances running 8.0.17 and later support the MySQL Clone plugin, which resolves this
issue by providing an automatic provisioning solution which does not rely on incremental recovery,

see Section 8.4.6, “Using MySQL Clone with InnoDB Cluster”. Instances running a version earlier than
8.0.17 only support incremental recovery, and the result is that, depending on which version of MySQL
the instance is running, instances might have to be provisioned automatically. Otherwise operations
which rely on distributed recovery, such as Cl ust er. addl nst ance() and so on might fail.

On instances running earlier versions of MySQL the following rules are used for binary log purging:

« Instances running a version earlier than 8.0.1 have no automatic binary log purging because the
default value of expi re_| ogs_days is 0.

* Instances running a version later than 8.0.1 but earlier than 8.0.4 purge the binary log after 30 days
because the default value of expi re_| ogs_days is 30.

* Instances running a version later than 8.0.10 purge the binary log after 30 days because
the default value of bi nl og_expi re_| ogs_seconds is 2592000 and the default value of
expire_| ogs_days isO.

Note
@ expire_| ogs_days was removed in MySQL Server 8.2.0.

Thus, depending on how long the cluster has been running binary logs could have been purged and
you might have to provision instances manually. Similarly, if you manually purged binary logs you could
encounter the same situation. Therefore you are strongly advised to upgrade to a version of MySQL
later than 8.0.17 to take full advantage of the automatic provisioning provided by MySQL Clone for
distributed recovery, and to minimize downtime while provisioning instances for your InnoDB Cluster.

8.5.9 Configuring the Group Replication Communication Stack

InnoDB Cluster and ClusterSet support the MySQL communication stack introduced for Group
Replication in MySQL 8.0.27.

The new option, conmruni cat i onSt ack: XCOM MYSQL sets the value of the Group Replication
system variable gr oup_replication_comruni cati on_st ack.

Note
@ It is not possible to use the conmuni cat i onSt ack option with adopt f r onGR.
Communication Stack Types

The following communication stacks are supported:
* MYSQL: (default for MySQL Server 8.0.27 or newer)

« Simplifies the creation of InnoDB Clusters by using MySQL Server's connection security in place of
the Group Replication implementation.

* Removes the need for an extra network address, or port, for internal Group Replication
communications.

174

https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_communication_stack

Configuring the Group Replication Communication Stack

« Using the MYSQL protocol means that standard methods of user authentication can be used for
granting, or revoking, access to the group in place of the allow list.

* Supports network namespaces for Group Replication.
Oracle recommends using the MYSQL communication stack instead of XCOM

e XCOM: (default for MySQL Server 8.0.26 or older). You can use the XCOM communication stack
with MySQL 8.0.27, or higher, but it must be explicitly defined in the creation or reboot commands.

XCOM secures group communication connections and distributed recovery connections between
members using the Group Replication implementation of the security protocols, including TLS/SSL
and the use of an allowlist for incoming Group Communication System (GCS) connections.

Selecting Communication Stack

The communication stack selection is set by the conmmuni cat i onSt ack option in the
dba. creat eCl uster () and <cl ust er Set >. creat eRepl i caCl ust er () commands.

For example:
j s> dba.createC uster("testC uster", {communicationStack: "nysql"})

j s> clusterset. createReplicad uster("hostnane: 3306", "replica", {communicationStack: "mysqgl"})

Each command checks the MySQL server to ensure it can use the MYSQL protocaol. If it does not
support M\YSQL, an error is displayed and the command fails.

The addl nst ance, r ej oi nl nst ance, and r escan commands also check the target instance for
communication stack support and set the required configuration options accordingly.

e i pAll owLi st.

e XCOM Set automatically, by default.

e MYSQL: unset. i pAl | owLi st is not permitted with the MYSQL communication stack.
* | ocal Addr ess

« XCOM (advanced option, not recommended) Automatically generated. Requires additional network
address, or port.

« MYSQL: Automatically updated to use the value reported by the MySQL server.

| ocal Addr ess can be defined manually, but the port must be one MySQL is listening on, as
defined by bi nd_addr ess.

» Updates the SSL settings. The same SSL settings are used by both communication protocols.
Switching Communication Stack
It is possible to switch communication stack during a reboot from complete outage operation.

For example:

j s> dba. reboot C ust er Fr onConpl et eQut age("testcl uster”, {sw tchComuni cationStack: "nysql"})

Switching from the MYSQL protocol to XCOMrequires an additional network address for the
| ocal Addr ess and may also require i pAl | owLi st values.

If switching from the XCOM to the MYSQL stack, the following changes are made:

175

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_bind_address

Securing InnoDB Cluster

e i pAl' |l owLi st is unset.
» | ocal Addr ess is updated to use the value reported by the MySQL server.

» Updates the SSL settings. The settings are copied from the MySQL server if nenber Ssl Mode
is set to VERIFY_CA or VERIFY_IDENTITY. No changes are made if nenber Ssl Mode is set to
REQUIRED.

Note
@ group_replication_recovery use_ssl isalways enabled if
menber Ssl Mode is set to any value other than DISABLED.

8.6 Securing InnoDB Cluster

Server instances can be configured to use secure connections. For general information on using
secure connections with MySQL see Using Encrypted Connections. This section explains how to
configure a cluster to use encrypted connections. An additional security possibility is to configure which
servers can access the cluster, see Creating an Allowlist of Servers.

Important

a cluster to use encrypted connections you must add the servers to the
i pAl'l ow i st . For example, when using the commercial version of MySQL,
SSL is enabled by default and you need to configure the i pAl | owl i st option

A If you are using the XCOMcommunication stack, once you have configured
for all instances. See Creating an Allowlist of Servers.

When using dba. cr eat eCl ust er () to set up a cluster, if the server instance provides encryption
then it is automatically enabled on the seed instance. Pass the nenber Ss| Mbde option to the

dba. creat eCl ust er () method to specify a different SSL mode. The SSL mode of a cluster can only
be set at the time of creation. The nenber Ssl Mode option is a string that configures the SSL mode to
be used, it defaults to AUTO. The following modes are supported:

» DI SABLED: Ensure SSL encryption is disabled for the seed instance in the cluster.

* AUTCO Automatically enable SSL encryption if the server instance supports it, or disable encryption if
the server does not support it.

» REQUI RED: Enable SSL encryption for the seed instance in the cluster. If it cannot be enabled, an
error is raised.

* VERI FY_CA: Like REQUI RED, but additionally verify the server Certificate Authority (CA) certificate
against the configured CA certificates. The connection attempt fails if no valid matching CA
certificates are found.

» VERI FY_| DENTI TY: Like VERI FY_CA, but additionally perform host name identity verification
by checking the host name the client uses for connecting to the server against the identity in the
certificate that the server sends to the client.

For example, to set the cluster to use REQUI RED, issue:

nmysql -j s> var nyCl uster = dba. createCl uster ({nmenber Ssl Mode: ' REQUI RED })

If you choose to use the VERI FY_CA or VERI FY_| DENTI TY mode, on each cluster instance you
must manually supply the CA certificates using the ssl _ca and/or ss| _capat h option. For more
information on these modes, see - - ssl - node=node.

When you use the Cl ust er . addl nst ance() and Cl uster. rejoi nl nstance() operations, SSL
encryption on the instance is enabled or disabled based on the setting used for the cluster. Use the
menber Ss| Mode option with either of these operations to set the instance to use a different mode of
encryption.

176

https://dev.mysql.com/doc/refman/9.4/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-mode

Securing Communications Between Cluster Members

When using dba. cr eat eCl ust er () with the adopt Fr onGR option to adopt an existing Group
Replication group, no SSL settings are changed on the adopted cluster:

* menber Ssl Mbde cannot be used with adopt Fr onGR.

« If the SSL settings of the adopted cluster are different from the ones supported by the MySQL Shell,
in other words SSL for Group Replication recovery and Group Communication, both settings are not
modified. This means you are not be able to add new instances to the cluster, unless you change the
settings manually for the adopted cluster.

MySQL Shell always enables or disables SSL for the cluster for both Group Replication recovery and
Group Communication, see Securing Group Communication Connections with Secure Socket Layer
(SSL). A verification is performed and an error issued in case those settings are different for the seed
instance (for example as the result of a dba. cr eat eCl ust er () using adopt Fr onGR) when adding
a new instance to the cluster. SSL encryption must be enabled or disabled for all instances in the
cluster. Verifications are performed to ensure that this invariant holds when adding a new instance to
the cluster.

The dba. depl oySandbox| nst ance() command attempts to deploy sandbox instances with SSL
encryption support by default. If it is not possible, the server instance is deployed without SSL support.
See Section 6.8.1, “Deploying Sandbox Instances”.

Securing Communications Between Cluster Members

It is possible to configure clusters and replica clusters to use SSL to encrypt replication channels, and
enable replicas to verify host identity and use SSL certificates for authentication.

When creating a cluster with dba. cr eat eCl ust er () you can define the authentication type used
for the internal replication accounts with the nenber Aut hType option. This option takes one of the
following values:

* PASSWORD: Account authenticates with password only.

« CERT_ | SSUER: Account authenticates with a client certificate, which must match the expected
issuer. This value is equivalent to VERI FY_CA.

» CERT_SUBJECT: Account authenticates with a client certificate, which must match the expected
issuer and subject. This value is equivalent to VERI FY_| DENTI TY.

* CERT | SSUER_PASSWORD: Account authenticates with a combination of PASSWORD and
CERT_| SSUER values.

» CERT_SUBJECT_PASSWORD: Account authenticates with a combination of PASSWORD and
CERT_SUBJECT values.

Important

A ClusterSets inherit the menmber Aut hType defined on the primary cluster. All
replica clusters in a ClusterSet will also use the menber Aut hType defined on
the primary.

SSL certificates are defined using the following options:

» CERT_| SSUER: Defines the certificate issuer required by all replication accounts in the topology if
nmenber Aut hType contains CERT | SSUER or CERT _SUBJECT.

» CERT_SUBJECT: Defines the certificate subject of the instance. Required if nermber Aut hType
contains CERT _SUBJECT.

Note
@ It is not possible to use adopt Fr onTGR=t r ue with any option except
menber Aut hType=passwor d.

177

https://dev.mysql.com/doc/refman/9.4/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-secure-socket-layer-support-ssl.html

Creating an Allowlist of Servers

The following example creates a cluster, cl ust er 1 which sets client SSL connections and
connections opened by Group Replication from one server to another to VERIFY_IDENTITY, and sets
the authentication of the internal replication accounts to require a client certificate:

cluster = dba.createCuster("clusterl", { "nmenberSsl Mode": "VERI FY_I DENTI TY", "menberAut hType":" CEF
"certlssuer":"/CN=MyCert Aut hority", "certSubject": "/CN=nysql-1.local"});

The following example shows how to add an instance to a cluster using
"menber Aut hType": " CERT_SUBJECT" :

cluster.addl nstance("mysqgl-2.1ocal", {"certSubject": "/CN=nmysql-2.local"});

For more information on replication and encrypted connections, see Setting Up Replication to Use
Encrypted Connections.

Creating an Allowlist of Servers

Note
@ This applies only to the XCOMcommunication stack.

createCl uster(),addl nstance(),andrej oi nl nst ance() methods enable you to optionally
specify a list of approved servers, referred to as an allowlist. By specifying the allowlist explicitly in this
way you can increase the security of your cluster because only servers in the allowlist can connect to
the cluster.

You can also define an allowList on a running cluster, using Cl ust er . set Opti on() to specify
the allowList for all members of the cluster, and Cl ust er. set | nst anceOpt i on() to specify the
allowList for an individual member. See Section 8.5.1, “Setting Options for InnoDB Cluster”.

Using the i pAl | owl i st option configures the gr oup_replication_ip_allow ist system
variable on the instance. By default, if not specified explicitly, the allowlist is automatically set to the
private network addresses that the server has network interfaces on. To configure the allowlist, specify
the servers to add with the i pAl | owl i st option when using the method. IP addresses must be
specified in IPv4 format. Pass the servers as a comma separated list, surrounded by quotes. For
example:

nysql -j s> cluster. addl nstance("i cadm n@ c- 3: 3306", {ipAllowist: "203.0.113.0/24, 198.51.100.110"})

This configures the instance to only accept connections from servers at addresses 203. 0. 113. 0/ 24
and 198. 51. 100. 110. The allowlist can also include host names, which are resolved only when a
connection request is made by another server.

Warning

O Host names are inherently less secure than IP addresses in an allowlist. MySQL
carries out FCrDNS verification, which provides a good level of protection, but
can be compromised by certain types of attack. Specify host names in your
allowlist only when strictly necessary, and ensure that all components used for
name resolution, such as DNS servers, are maintained under your control. You
can also implement name resolution locally using the hosts file, to avoid the use
of external components.

8.7 Monitoring InnoDB Cluster
This section describes how to use AdminAPI to monitor an InnoDB Cluster.
e Using Cl ust er. descri be()

e Checking a cluster's Status with Cl ust er. st at us()

178

https://dev.mysql.com/doc/refman/9.4/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/9.4/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_ip_allowlist

Using Cl ust er . descri be()

* Monitoring Recovery Operations

» InnoDB Cluster and Group Replication Protocol

» Checking the MySQL Version on Instances
Using Cl ust er. descri be()

To get information about the structure of the InnoDB Cluster itself, use the Cl ust er. descri be()

function:
nmysql -j s> cluster. describe();
{
"clusterNane": "testCluster",
"defaul t ReplicaSet": {
"nane": "default",
"topol ogy": [
{
"address": "ic-1:3306",
"l abel ": "ic-1:3306",
"role": "HA"
I
{
"address": "ic-2:3306",
"l abel ": "ic-2:3306",
"role": "HA"
I
{
"address": "ic-3:3306",
"l abel ": "ic-3:3306",
"role": "HA"
}
|
}
}

The output from this function shows the structure of the InnoDB Cluster including all of its configuration
information, and so on. The address, label and role values match those described at Checking a
cluster's Status with Cl ust er . st at us() .

Checking a cluster's Status with Cl uster. status()

Cluster objects provide the st at us() method that enables you to check how a cluster is running.
Before you can check the status of the InnoDB Cluster, you need to get a reference to the InnoDB
Cluster object by connecting to any of its instances. However, if you want to make changes to the
configuration of the cluster, you must connect to a "R/W" instance. Issuing st at us() retrieves the
status of the cluster based on the view of the cluster which the server instance you are connected to is
aware of and outputs a status report.

Important

A The instance's state in the cluster directly influences the information provided
in the status report. Therefore ensure the instance you are connected to has a
status of ONLI NE.

For information about how the InnoDB Cluster is running, use the cluster's st at us() method:

nysql -j s> var cluster = dba. getC uster()
nysql -j s> cluster.status()
{
"clusterNane": "testcluster",
"defaul t ReplicaSet": {
"nane": "defaul t",
"primary": "ic-1:3306",
"ssl": "REQUI RED',
"status": "K',
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {

179

Checking a cluster's Status with Cl ust er. st at us()

"ic-1:3306": {
"address": "ic-1:3306",
"menber Rol e": " PRI MARY",
"mode": "R'W,
"readReplicas": {},
"replicationLag": "applier_queue_applied",
"role": "HA",
"status": "ONLINE"
"version": "8.0.30"

b

"ic-2:3306": {
"address": "ic-2:3306",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"readReplicas": {},
"replicationLag": "applier_queue_applied",
"role": "HA",
"status": "ONLINE"
"version": "8.0.30"

b

"ic-3:3306": {
"address": "ic-3:3306",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"readReplicas": {},
"replicationLag": "applier_queue_applied",
"role": "HA",
"status": "ONLINE"
"version": "8.0.30"

}

}
"t opol ogyMode": "Singl e-Prinmary"
}

"

roupl nf or mat i onSour ceMenber": "nysql ://icadm n@ c- 1: 3306"
}

The output of Cl ust er. st at us() provides the following information:
» cl ust er Nanme: name assigned to this cluster during dba. cr eat eCl uster ().

» def aul t Repl i caSet : the server instances which belong to an InnoDB Cluster and contain the data
set.

» pri mary: displayed when the cluster is operating in single-primary mode only. Shows the address
of the current primary instance. If this field is not displayed, the cluster is operating in multi-primary
mode.

» ssl : whether secure connections are used by the cluster or not. Shows values of REQUI RED
or DI SABLED, depending on how the nenber Ssl Mode option was configured during either
createC uster () oraddl nstance() . The value returned by this parameter corresponds to the
value of the group_replication_ssl _node server variable on the instance. See Section 8.6,
“Securing InnoDB Cluster”.

» st at us: The status of the InnoDB Cluster. The status describes the high availability provided by this
cluster. The status is one of the following:

¢ OK: The cluster is online and can tolerate up to n failures. There are three or more members in the
cluster, and they are functioning.

OK_PARTI AL: The cluster is online and can tolerate up to n failures. At least three of the member
servers in the cluster are in Group Replication's online state. However, one or more member
servers are not currently participating as active members of the cluster.

OK_NO TOLERANCE: The cluster is not tolerant to any failures.

OK_NO TOLERANCE_PARTI AL: The cluster is not tolerant to any failures. One or two member
servers in the cluster are online, but one or more servers are in an offline, recovering, error, or

180

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_ssl_mode

Checking a cluster's Status with Cl ust er . st at us()

unreachable state. The cluster does not have sufficient tolerance for failures because of the
unavailability of some members.

NO_QUORUM The cluster does not have quorum, meaning that a majority of the replication group's
member servers are unavailable for agreeing on a decision, and cannot process write transactions.

OFFLI NE: All members of the group are offline.

ERROR: There are no online members in the cluster.
UNREACHABLE: There is no connectivity to any online members.
UNKNOWN: There is no connectivity to any online members.

FENCED W\RI TES: The cluster is fenced from write traffic.

» topol ogy: The status of the MySQL Server instance. The status is one of the following:

Host nanme of instance: The host name of an instance, for example " | ocal host : 3310".

menber Rol e the Member Role as reported by the Group Replication plugin, see the
VEVMBER ROLE column of the repl i cati on_group_nenber s table.

node: whether the server is read-write ("R/W") or read-only ("R/QO"). This is derived from the
current state of the super _r ead_onl y variable on the instance, and whether the cluster has
quorum. In previous versions the value of mode was derived from whether the instance was
serving as a primary or secondary instance. Usually if the instance is a primary, then the mode
is "R/W", and if the instance is a secondary the mode is "R/O". Any instances in a cluster that
have no visible quorum are marked as "R/O", regardless of the state of the super _read _only
variable.

Note
g If the member st at us is anything other than ONLI NE, node is reported as
n/ a.

replicationLag: returns one of the following values:

« The time difference between the last transaction commit timestamp and the last transaction
applied timestamp, in HH:MM:SS format.

If multiple workers are used, the value is retrieved from the worker executing the oldest
transaction.

e nul | : The replication connection or SQL thread is not running.

» applier_queue_appl i ed: The applier queue has applied everything. That is, if the last
gueued transaction and the last applied transaction are the same, or the applying transaction is
0.

r ol e: what function this instance provides in the cluster. Currently only HA, for high availability.
st at us: The status of this element of the cluster. The status is one of the following:

e ONLI NE: The instance is online and participating in the cluster.

e OFFLI NE: The instance has lost connection to the other instances.

« RECOVERI NG The instance is attempting to synchronize with the cluster by retrieving
transactions it needs before it can become an online member.

« UNREACHABLE: The instance has lost communication with the cluster.

181

https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-group-members-table.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only

Checking a cluster's Status with Cl ust er . st at us()

« ERROR: The instance has encountered an error during the recovery phase or while applying a

transaction.
Important
A Once an instance enters ERROR state, the super _r ead_onl y option
is set to ON. To leave the ERROR state you must manually configure the
instance with super _read_onl y=0OFF.
* (M SSI NG : The state of an instance which is part of the configured cluster, but is currently
unavailable.
Note
@ The M SSI NG state is specific to InnoDB Cluster, it is not a state
generated by Group Replication. MySQL Shell uses this state to indicate
instances that are registered in the metadata, but cannot be found in the
live cluster view.

e groupl nf or mat i onSour ceMenber : the internal connection used to get information about the
cluster, shown as a URI-like connection string. Usually the connection initially used to create the
cluster.

e ver si on: the MySQL Server version running on the instance. See Checking the MySQL Version on
Instances for more information.

To display more information about the cluster use the ext ended option. The ext ended
option supports integer or Boolean values. To configure the additional information that
Cluster.status({' extended' :val ue}) provides, use the following values:

» 0: disables the additional information, the default

» 1:includes information about the Group Replication Protocol Version, Group name, communication
stack, cluster member UUIDs, cluster member roles and states as reported by Group Replication,
and the list of fenced system variables

» 2:includes information about transactions processed by connection and applier
» 3:includes more detailed statistics about the replication performed by each cluster member.
Setting ext ended using Boolean values is the equivalent of setting the integer values 0 and 1.

When you issue Cl ust er. st at us({' extended' : 1}), or the ext ended option is setto t r ue, the
output includes:

« the following additional attributes for the def aul t Repl i caSet object:

e GRProt ocol Ver si on: the Group Replication Protocol Version being used in the cluster.

Tip

@ InnoDB Cluster manages the Group Replication Protocol version being
used automatically, see InnoDB Cluster and Group Replication Protocol for
more information.

e conmuni cat i onSt ack: the communication stack in use by the cluster. Possible values are XCOMV
or MYSQL. See Section 8.5.9, “Configuring the Group Replication Communication Stack” for more
information.

e groupNane: the group's name, a UUID.

e groupVi ewChangelUui d: the value of group_replication_vi ew change_uui d.

182

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid

Checking a cluster's Status with Cl ust er . st at us()

e groupVi ewl d: the current view identifier for this group. This value is taken from the VI EW | D
column of therepl i cati on_group_nenber st at s table.

e paxosSi ngl eLeader : displays the value of gr oup_r epl i cati on_paxos_si ngl e_| eader.

because MySQL Shell requires the information provided by
WRI TE_CONSENSUS_SI NGLE_LEADER_CAPABLE in the
replication_group_conmuni cation_i nformati on table, which was

Note
3 This is only available on MySQL Server 8.0.31, or higher,
introduced in MySQL 8.0.31.

« the following additional attributes for each object of the t opol ogy object:

« fenceSysVar s a list containing the name of the fenced system variables which are
configured by AdminAPI. Currently the fenced system variables considered are r ead_onl vy,
super _read_only and of f I i ne_node. The system variables are listed regardless of their
value.

e i nstanceErrors for each instance, displaying any diagnostic information that can be detected
for the instance. For example, if the instance is a secondary and the super _r ead_onl y variable
is not set to ON, then a warning is shown. This information can be used to troubleshoot errors.

 nmenber | d Each cluster member UUID.

« nmenber St at e the Member State as reported by the Group Replication plugin, see the
VEMBER _STATE column of the r epl i cati on_gr oup_nenber s table.

To see information about recovery and regular transaction I/O, applier worker thread statistics and
any lags; applier coordinator statistics, if the parallel replication applier is enabled; error, and other
information from the receiver and applier threads, use a value of 2 or 3 for ext ended. When you

use these values, a connection to each instance in the cluster is opened so that additional instance
specific statistics can be queried. The exact statistics that are included in the output depend on the
state and configuration of the instance and the server version. This information matches that shown in
thereplication_group_menber st at s table, see the descriptions of the matching columns for
more information. Instances which are ONLI NE have a t r ansact i ons section included in the output.
Instances which are RECOVERI NG have a r ecover y section included in the output. When you set
ext ended to 2, in either case, these sections can contain the following:

« appl i edCount : see COUNT_TRANSACTI ONS_REMOTE_APPLI ED

» checkedCount : see COUNT_TRANSACTI ONS_CHECKED

e conmi ttedAl | Menmber s: see TRANSACTI ONS_COWM TTED_ALL_MEMBERS

» conflictsDetectedCount:see COUNT _CONFLI CTS DETECTED

« i nAppl i er QueueCount : see COUNT_TRANSACTI ONS_REMOTE_| N_APPLI ER_QUEUE
* i nQueueCount : see COUNT_TRANSACTI ONS | N QUEUE

| ast Conflict Free: see LAST_CONFLI CT_FREE TRANSACTI ON
» proposedCount : see COUNT_TRANSACTI ONS_LOCAL _PROPOSED
e rol | backCount : see COUNT_TRANSACTI ONS_LOCAL_ROLLBACK

When you set ext ended to 3, the connect i on section shows information from the
replication_connection_st at us table.

The current | yQueuei ng section has information about the transactions currently queued:

183

https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-group-member-stats-table.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_paxos_single_leader
https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-group-communication-information-table.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-group-members-table.html
https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-group-member-stats-table.html
https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-connection-status-table.html

Checking a cluster's Status with Cl ust er . st at us()

i mredi at eConmmmi t Ti mest anp: see
QUEUEI NG_TRANSACTI ON_| MVEDI ATE_COW T_TI MESTAMP

i mredi at eCommi t ToNowTi ne: see
QUEUEI NG_TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP minus NO/()

ori gi nal Conmi t Ti mest anp: see QUEUEI NG_TRANSACTI ON_ORI G NAL_COW T_TI MESTAMP

ori gi nal Comm t ToNowTi nme: see QUEUEI NG_TRANSACTI ON_CORI G NAL_COWM T_TI MESTAMP
minus NOW()

start Ti mest anp: see QUEUEI NG_TRANSACTI ON_START_QUEUE_TI MESTAMP
transacti on: see QUEUEI NG_TRANSACTI ON
| ast Hear t beat Ti nest anp: see LAST _HEARTBEAT _TI MESTAMP

The | ast Queued section has information about the most recently queued transaction:

endTi mest anp: see LAST_QUEUED TRANSACTI ON_END_QUEUE_TI MESTAMP

i medi at eCommi t Ti nest anp: see
LAST_QUEUED_TRANSACTI ON_I| MVEDI ATE_COWM T_TI MESTAMP

i mredi at eCommi t TOEndTi ne:
LAST QUEUED TRANSACTI ON_| MVEDI ATE_COVM T_TI MESTAMP minus NOW()

ori gi nal Conmi t Ti mest anp: see
LAST_QUEUED_ TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

ori gi nal Conmi t TOEndTi nme: LAST_QUEUED TRANSACTI ON_ORI G NAL_COW T_TI MESTAMP
minus NOW()

queueTi me: LAST_QUEUED TRANSACTI ON_END_QUEUE_TI MESTAVP minus
LAST_QUEUED TRANSACTI ON_START _QUEUE_TI MESTAMP

start Ti mest anp: see LAST_QUEUED TRANSACTI ON_START _QUEUE_TI MESTAMP
transacti on: see LAST_QUEUED_TRANSACTI ON

recei vedHear t beat s: see COUNT_RECEI VED HEARTBEATS

recei vedTransact i onSet : see RECElI VED TRANSACTI ON_SET

t hr eadl d: see THREAD_| D

Instances which are using a multithreaded replica have a wor ker s section which
contains information about the worker threads, and matches the information shown by the
replication_applier_status_by worker table.

The | ast Appl i ed section shows the following information about the last transaction applied by the
worker:

appl yTi me: see LAST_APPLI ED_TRANSACTI ON_END_APPLY_TI MESTAMP minus
LAST_APPLI ED_TRANSACTI ON_START_APPLY_TI MESTAMP

endTi mest anp: see LAST_APPLI ED_TRANSACTI ON_END_APPLY_TI MESTAMP

i mredi at eConmi t Ti mest anp: see
LAST_APPLI ED_TRANSACTI ON_| MVEDI ATE_COW T_TI MESTAMP

i mredi at eCommi t TOEndTi ne: see
LAST_APPLI ED_TRANSACTI ON_| MVEDI ATE_COVM T_TI MESTAMP minus NOW)

ori gi nal Conmi t Ti mest anp: see
LAST_APPLI ED_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

184

https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-applier-status-by-worker-table.html

Checking a cluster's Status with Cl ust er . st at us()

e origi nal Comm t TOEndTi ne: see
LAST_APPLI ED_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP minus NOW()

e startTi nmestanp: see LAST_APPLI ED TRANSACTI ON_START_APPLY_TI MESTAMP
e transacti on: see LAST_APPLI ED _TRANSACTI ON

The current | yAppl yi ng section shows the following information about the transaction currently
being applied by the worker:

e i medi at eConmi t Ti nest anp: see
APPLYI NG_TRANSACTI ON_I MVEDI ATE_COW T_TI MESTAMP

e i mmedi at eConmi t ToNowTi ne: see
APPLY! NG_TRANSACTI ON_| MVEDI ATE_COW T_TI MESTAMP minus NOW()

» origi nal Commi t Ti mest anp: see APPLYI NG_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

e ori gi nal Commi t ToNowTi nme: see APPLYI NG_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP
minus NOW()

e startTi nest anp: see APPLYlI NG_TRANSACTI ON_START_APPLY_TI MESTAMWP
e transacti on: see APPLYlI NG TRANSACTI ON

The | ast Pr ocessed section has the following information about the last transaction processed by the
worker:

* bufferTi me: LAST_PROCESSED_TRANSACTI ON_END_BUFFER_TI MESTAMP minus
LAST_PROCESSED TRANSACTI ON_START_BUFFER_TI MESTAVP

» endTi nest anp: see LAST_PROCESSED TRANSACTI ON_END BUFFER_TI MESTAMP

* i mmedi at eConmi t Ti nest anp: see
LAST_PROCESSED TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP

e i mmedi at eConm t TOEndTi ne:
LAST PROCESSED TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP minus
LAST PROCESSED TRANSACTI ON_END BUFFER TI MESTAMP

e original Conm t Ti mest anp: see
LAST_PROCESSED_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

e origi nal Conmi t TOEndTi ne:
LAST PROCESSED TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP minus
LAST PROCESSED TRANSACTI ON_END BUFFER TI MESTAMP

e startTi mest anp: see LAST_PROCESSED TRANSACTI ON_START_BUFFER TI MESTAMP
e transacti on: see LAST _PROCESSED TRANSACTI ON

If the parallel replication applier is enabled, then the number of objects in the workers

array intransacti ons orr ecovery matches the number of configured workers and an
additional coordinator object is included. The information shown matches the information in the
replication _applier_status by coordi nator table. The object can contain:

The current| yProcessi ng section has the following information about the transaction being
processed by the worker:

e i mredi at eConmi t Ti nest anp: see
PROCESSI NG_TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP

i mredi at eConmmi t ToNowTi ne: PROCESSI NG_TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP
minus NOW()

185

https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-applier-status-by-coordinator-table.html

Monitoring Recovery Operations

e origi nal Comm t Ti nest anp: see
PROCESSI NG_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP

e origi nal Comm t ToNowTi me: PROCESSI NG_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP
minus NOW()

e start Ti mest anp: see PROCESSI NG_TRANSACTI ON_START_BUFFER_TI MESTAWP
» transacti on: see PROCESSI NG_TRANSACTI ON

wor ker objects have the following information if an error was detected in the
replication_applier_status_by worker table:

e | ast Errno: see LAST _ERROR_NUMBER
» | ast Error:see LAST_ERROR MESSAGE
e | ast ErrorTi mest anp: see LAST _ERROR_TI MESTAWP

connect i on objects have the following information if an error was detected in the
replication_connection_stat us table:

e | ast Errno: see LAST _ERROR_NUMBER
e | ast Error:see LAST _ERROR MESSAGE
e | ast ErrorTi mest anp: see LAST _ERROR_TI MESTAWP

coor di nat or objects have the following information if an error was detected in the
replication_applier_status_by coordi nator table:

e | ast Errno: see LAST_ERROR_NUMBER
e | ast Error:see LAST _ERROR MESSAGE
e | ast ErrorTi mest anp: see LAST _ERROR_TI MESTAWP

Monitoring Recovery Operations

The output of Cl ust er . st at us() shows information about the progress of recovery operations for
instances in RECOVERI NG state. Information is shown for instances recovering using either MySQL
Clone, or incremental recovery. Monitor these fields:

» TherecoveryStatusText field includes information about the type of recovery being used.
When MySQL Clone is working the field shows “Cloning in progress”. When incremental recovery is
working the field shows “Distributed recovery in progress”.

* When MySQL Clone is being used, the r ecovery field includes a dictionary with the following fields:
e cloneStart Ti ne: The timestamp of the start of the clone process
e cl oneSt at e: The state of the clone progress
e current St age: The current stage which the clone process has reached
e current St agePr ogr ess: The current stage progress as a percentage of completion
e current St ageSt at e: The current stage state
Example Cl ust er . st at us() output, trimmed for brevity:
" r écovery": {
"cloneStartTime": "2019-07-15 12:50: 22. 730",

"cloneState": "In Progress",
"current Stage": "FILE COPY",

186

https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/9.4/en/performance-schema-replication-applier-status-by-coordinator-table.html

Monitoring Recovery Operations

“current St ageProgress”: 61.726837675213865,
“current StageState": "In Progress”

}

: ecoveryStatusText": "Cloning in progress"”,

» When incremental recovery is being used and the ext ended option is set to 1 or greater, the
recovery field includes a dictionary with the following fields:
e st at e: The state of the gr oup_r epl i cati on_recovery channel

e recover yChannel : Displayed for instances performing incremental recovery or in which the
recovery channel status is not off. Incremental recovery utilizes the receiver thread to receive
transactions from the source, and the applier thread applies the received transactions on the
instance. Provides the following information:

e appl i er QueuedTransact i onSet Si ze: The number of transactions currently queued, which
are waiting to be applied.

» appl i er St at e: The current state of the replication applier, either ON or OFF.

e appl i er St at us: The current status of the applier threads. An aggregation of the states shown
in the appl i er Thr eadSt at e field. Can be one of:

e APPLI ED ALL: there are no queued transactions waiting to be applied
» APPLYI NG there are transactions being applied

» ON: thread is connected and there are no queued transactions

» ERROR: there was an error while applying transactions

» OFF: the applier thread is disabled

« appl i er Thr eadSt at e: The current state of any applier threads. Provides detailed information
about exactly what the applier thread is doing. For more information, see Replication SQL
Thread States.

e recei ver St at us: The current status of the receiver thread. An aggregation of the states
shown in the r ecei ver Thr eadSt at e field. Can be one of:

» ON: the receiver thread has successfully connected and is ready to receive
* CONNECTI NG the receiver thread is connecting to the source

» ERROR: there was an error while receiving transactions

» OFF: the receiver thread has gracefully disconnected

e recei ver ThreadSt at e: The current state of the receiver thread. Provides detailed information
about exactly what the receiver thread is doing. For more information, see Replication I/O
(Receiver) Thread States.

e sour ce: The source of the transactions which are being applied.

Example Cl ust er. st at us() output, trimmed for brevity:

"recovery": {
"recoveryChannel ": {
"appl i er QueuedTr ansact i onSet Si ze": 2284,
"applierStatus": "APPLYING',
“appl i er ThreadState": "Opening tabl es",
“receiverStatus": "ON',

187

https://dev.mysql.com/doc/refman/9.4/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/9.4/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/9.4/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/9.4/en/replica-io-thread-states.html

InnoDB Cluster and Group Replication Protocol

"recei verThreadState": "Queueing master event to the relay |og",
"source": "ic-2:3306"

I

“state": "ON'

InnoDB Cluster and Group Replication Protocol

Group Replication has the concept of a communication protocol for the group, see Setting a Group's
Communication Protocol Version for more information. The Group Replication communication protocol
version usually has to be managed explicitly, and set to accommodate the oldest MySQL Server
version that you want the group to support. However, InnoDB Cluster automatically and transparently
manages the communication protocol versions of its members, whenever the cluster topology is
changed using AdminAPI operations. A cluster always uses the most recent communication protocol
version that is supported by all the instances that are currently part of the cluster or joining it.

* When an instance is added to, removed from, or rejoins the cluster, or a rescan or reboot operation
is carried out on the cluster, the communication protocol version is automatically set to a version
supported by the instance that is now at the earliest MySQL Server version.

* When you carry out a rolling upgrade by removing instances from the cluster, upgrading them, and
adding them back into the cluster, the communication protocol version is automatically upgraded
when the last remaining instance at the old MySQL Server version is removed from the cluster prior
to its upgrade.

To see the communication protocol version being used in a cluster, use the Cl ust er . st at us()
function with the ext ended option enabled. The communication protocol version is returned in the
GRPr ot ocol Ver si on field, provided that the cluster has quorum and no cluster members are
unreachable.

Checking the MySQL Version on Instances

The following operations can report information about the MySQL Server version running on the
instance:

e Cluster.status()

e Cluster.describe()

e Cluster.rescan()

The behavior varies depending on the MySQL Server version of the Cl ust er object session.
e Cluster.status()

If either of the following requirements are met, a ver si on string attribute is returned for each
instance JSON object of the t opol ogy object:

e The Cl ust er object's current session is version 8.0.11 or later.

« The Cl ust er object's current session is running a version earlier than version 8.0.11 but the
ext ended option is set to 3.

For example on an instance running version 8.0.16:

"topol ogy": {
"ic-1:3306": {
"address": "ic-1:3306"
"mode": "RI'W,
"readReplicas": {},
"role": "HA",

"status": "ONLI NE",

188

https://dev.mysql.com/doc/refman/9.4/en/group-replication-communication-protocol.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-communication-protocol.html

Restoring and Rebooting an InnoDB Cluster

"version": "8.0.16"

}

e Cluster.describe()

If the Cl ust er object's current session is version 8.0.11 or later, a ver si on string attribute is
returned for each instance JSON object of the t opol ogy object

For example on an instance running version 8.0.16:

"topol ogy": [
{
"address": "ic-1:3306"
"l abel ": "ic-1:3306",
“role": "HA",
“version": "8.0.16"

]

e Cluster.rescan()

If the Cl ust er object's current session is version 8.0.11 or later, and the Cl ust er. rescan()
operation detects instances which do not belong to the cluster, a ver si on string attribute is returned
for each instance JSON object of the newl yDi scover edl nst ance object.

For example on an instance running version 8.0.16:

"newl yDi scover edl nst ances": |

{

"host": "ic-4:3306",

"menber _id": "82a67a06-2ba3-11e9- 8cfc- 3c6aa7197deb"
"nanme": null

"version": "8.0.16"

]

8.8 Restoring and Rebooting an InnoDB Cluster

This section describes how to rejoin a server instance to an InnoDB Cluster, restore an InnoDB Cluster
from quorum loss or reboot it after an outage, and rescan an InnoDB Cluster after changes.

8.8.1 Rejoining an Instance to a Cluster

If an instance leaves the cluster, for example because it lost connection, and for some reason it could
not automatically rejoin the cluster, it might be necessary to rejoin it to the cluster at a later stage. To
rejoin an instance to a cluster issue Cl ust er. rej oi nl nst ance(i nst ance).

Tip

@ If the instance has super _read_onl y=0ONthen you might need to confirm that
AdminAPI can set super read_onl y=OFF. See Instance Configuration in
Super Read-only Mode for more information.

In the case where an instance has not had its configuration persisted (see Section 6.2.3, “Persisting
Settings”), upon restart the instance does not rejoin the cluster automatically. The solution is to issue
cluster.rejoinlnstance() so thatthe instance is added to the cluster again and ensure the
changes are persisted. Once the InnoDB Cluster configuration is persisted to the instance's option file it
rejoins the cluster automatically.

If you are rejoining an instance which has changed in some way then you might have to modify

the instance to make the rejoin process work correctly. For example, when you restore a MySQL
Enterprise Backup backup, the ser ver _uui d changes. Attempting to rejoin such an instance fails
because InnoDB Cluster instances are identified by the ser ver _uui d variable. In such a situation,
information about the instance's old ser ver _uui d must be removed from the InnoDB Cluster

189

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_uuid

Restoring a Cluster from Quorum Loss

metadata and then a Cl ust er. rescan() must be executed to add the instance to the metadata
using the new ser ver _uui d. For example:

cl uster.renovel nstance("root @nstanceWthd dulUl D: 3306", {force: true})
cluster.rescan()

In this case you must pass the f or ce option to the Cl ust er. renovel nst ance() method because
the instance is unreachable from the cluster's perspective and we want to remove it from the InnoDB
Cluster metadata anyway.

rej oi nl nstance() also checks the communication stack used by the instance and ensures it is
supported by the cluster. If the cluster supports the communication stack, r ej oi nl nst ance() adds
the instance to the cluster.

8.8.2 Restoring a Cluster from Quorum Loss

If an instance (or instances) fail, then a cluster can lose its quorum, which is the ability to vote in a

new primary. This can happen when there is a failure of enough instances that there is no longer a
majority of the instances which make up the cluster to vote on Group Replication operations. See Fault-
tolerance. When a cluster loses quorum you can no longer process write transactions with the cluster,
or change the cluster's topology, for example by adding, rejoining, or removing instances. However if
you have an instance online which contains the InnoDB Cluster metadata, it is possible to restore a
cluster with quorum. This assumes you can connect to an instance that contains the InnoDB Cluster
metadata, and that instance can contact the other instances you want to use to restore the cluster.

Important

scenario if incorrectly used and should be considered a last resort. Make
absolutely sure that there are no partitions of this group that are still operating

A This operation is potentially dangerous because it can create a split-brain
somewhere in the network, but not accessible from your location.

Connect to an instance which contains the cluster's metadata, then use the
Cluster.forceQuorumlsi ngPartitionO (instance) operation, which restores the cluster
based on the metadata on i nst ance, and then all the instances that are ONLI NE from the point of
view of the given instance definition are added to the restored cluster.

nysql -j s> cluster.forceQuorunisi ngPartitionOf ("icadm n@ c-1: 3306")
Restoring replicaset 'default' fromloss of quorum by using the partition conposed of [icadm n@ c-1: 330¢

Pl ease provide the password for 'icadm n@c-1:3306": **xxxx
Restoring the InnoDB cluster ...

The I nnoDB cluster was successfully restored using the partition fromthe instance 'icadm n@c-1:3306'.

WARNING To avoid a split-brain scenario, ensure that all other nenbers of the replicaset
are renoved or joined back to the group that was restored.

In the event that an instance is not automatically added to the cluster, for example if its settings were
not persisted, use Cl ust er. rej oi nl nst ance() to manually add the instance back to the cluster.

The restored cluster might not, and does not have to, consist of all of the original instances which made
up the cluster. For example, if the original cluster consisted of the following five instances:

e jc-1
e jic-2
e ic-3
s ic-4
e ic-5

190

https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/9.4/en/group-replication-fault-tolerance.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-fault-tolerance.html

Rebooting a Cluster from a Major Outage

and the cluster experiences a split-brain scenario, withi c-1,i c- 2, and i ¢c- 3 forming one

partition while i ¢c- 4 and i c- 5 form another partition. If you connectto i c- 1 and issue
Cluster.forceQuorunlsi ngPartitionO ("icadm n@c-1: 3306") to restore the cluster the
resulting cluster would consist of these three instances:

e jc-1
e jc-2
e jc-3

becauseic-1seesic-2andic-3as ONLI NEand doesnotseeic-4andi c-5.

8.8.3 Rebooting a Cluster from a Major Outage

If your cluster experiences a complete outage you can reconfigure it using
dba. reboot Cl ust er Fr onConpl et eCut age() . This operation enables you to connect to one of the
cluster's MySQL instances and use its metadata to recover the cluster.

A complete outage means that group replication has stopped on all member instances.

Note

@ Ensure all cluster members are started before running
dba. r eboot Cl ust er Fr onConpl et eQut age() . The command will fail if any
of the cluster members are unreachable.

This check is ignored if the cluster is INVALIDATED and is a member of a
ClusterSet.

Connect to the most up-to-date instance and run the following command:

JS> var cluster = dba.reboot d ust er Fr omConpl et eCut age()

If all members have the same GTID set, the member to which you are currently connected becomes
the primary. See Selecting a Primary with rebootClusterFromCompleteOutage.

The dba. r eboot C ust er Fr onConpl et eCut age() operation follows these steps to ensure the
cluster is correctly reconfigured:

» Cluster metadata and the cluster topology is retrieved from the current instance.

« If a cluster member is in RECOVERING or ERROR, and all other members are OFFLINE or
ERROR, dba. r eboot Cl ust er Fr onConpl et eQut age() attempts to stop Group Replication on
that member. If Group Replication fails to stop, the command stops and displays an error.

e The InnoDB Cluster metadata found on the instance which MySQL Shell is currently connected to is
checked to see if it contains the GTID superset. If the currently connected instance does not contain
the GTID superset, the operation aborts with that information.

See GTID Superset.

« If the instance contains the GTID superset, the cluster is recovered based on the metadata stored in
that instance.

» MySQL Shell checks which instances of the cluster are currently reachable and fails if any member is
currently unreachable.

Note
@ It is possible to bypass this check with the f or ce option. This reboots the
cluster using the remaining contactable members.

See Force Option.

191

Rebooting a Cluster from a Major Outage

 Similarly, MySQL Shell detects instances which are currently not reachable. It
is not possible to add or remove former members to the cluster as part of the
dba. r eboot Cl ust er Fr onConpl et eQut age() command, if they are currently unreachable.

« If enabled on the primary instance of the cluster, while in single-primary mode, super _read_only
is disabled.

GTID Superset

Options

To reboot the cluster, you must connect to the member with the GTID superset, which means the
instance which had applied the most transactions before the outage.

To determine which member has the GTID superset, do one of the following:

» Connect to an instance and run dba. r eboot Cl ust er Fr omConpl et eQut age() with dr yRun:
t r ue. The generated report returns information similar to the following:.

Swi tching over to instance '127.0.0.1:4001' to be used as seed.

This indicates the member with the GTID superset.

Running dba. r eboot Cl ust er Fr onConpl et eCut age() against a member with a lower GTID set
results in an error.

» Connect to each instance in turn and run the following in SQL mode:

SHOW VARI ABLES LI KE ' gtid_executed' ;

The instance which has applied the largest GTID Sets of transactions contains the GTID superset.

Note

@ It is possible to override this behavior, and use an instance with a lower GTID
set, by running dba. r eboot Cl ust er Fr onConpl et eQut age() with the
f or ce option.

This makes the selected member the primary and discards any transactions not
included in the selected member's GTID set.

If this process fails, and the cluster metadata has become badly corrupted, you might need to drop
the metadata and create the cluster again from scratch. You can drop the cluster metadata using
dba. dr opMet adat aSchena() .

Warning
O The dba. dr opMet adat aSchema() method should only be used as a last
resort, when it is not possible to restore the cluster. It cannot be undone.

If you are using MySQL Router with the cluster, when you drop the metadata, all current connections
are dropped and new connections are forbidden. This causes a full outage.

dba. r eboot Cl ust er Fr onConpl et eCut age() has the following options:

« force: true | false (default):Iftrue, the operation must be executed even if some
members of the Cluster cannot be reached, or the primary instance selected has a diverging or lower
GTID_SET. See Force Option

e dryRun: true | false (default):performs all validations and steps of the
command, but no changes are made. A report is displayed when finished. See Testing
rebootClusterFromCompleteOutage.

192

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets

Rebooting a Cluster from a Major Outage

e pri mary: Instance definition representing the instance that must be selected as the primary. See
Selecting a Primary with rebootClusterFromCompleteOutage.

e swi t chConmuni cati onSt ack: nysql | xcom The Group Replication protocol stack to
be used by the Cluster after the reboot. See Section 8.5.9, “Configuring the Group Replication
Communication Stack”.

e i pAl | owLi st : The list of hosts allowed to connect to the instance for Group Replication traffic when
using the XCOMprotocol stack.

e | ocal Addr ess: string value with the Group Replication local address to use instead of the
automatically generated one when using the XCOM protocol stack.

Force Option

The f or ce option enables you to ignore the availability of Cluster members or GTID-set divergence in
the selected member and reboot the Cluster.

For example, rebooting the Cluster nyCl ust er :
JS> var cluster = dba.reboot d ust er Fr onConpl et eCut age("nyC uster", {force: true})
The f or ce option is not permitted in the following situations:

* If the Cluster belongs to a ClusterSet and is INVALIDATED or the primary Cluster is not in global
status OK,

» The Cluster belongs to a ClusterSet, is the primary Cluster, and is INVALIDATED.

It is not possible to add or rejoin instances with r eboot Cl ust er Fr onConpl et eQut age.
If you used f or ce to ignore unreachable members and reboot your Cluster, you must use
cluster.rejoinlnstance() toadd the unreachable members to the Cluster.

Selecting a Primary with rebootClusterFromCompleteOutage
You can define the Cluster primary in one of the following ways:
» Define the pri mary option in the dba. r eboot C ust er Fr onConpl et eCut age() command.

For example, rebooting the Cluster myCl ust er and setting the member running on the local
machine, on port 4001, as the primary:

var cluster = dba.rebootd uster FronConpl et eCut age(" myCd uster”, {primary: "127.0.0.1:4001"})

e By using the pri mary option with the f or ce option on a Cluster member with a lower GTID set than
another member.

Testing rebootClusterFromCompleteOutage

You can test the changes by using the dr yRun option. This option validates the command and its
options and generates a log of results. An exception is thrown if there is a problem with the proposed
changes.

The following example shows a dry run of rebooting the Cluster, nyCl ust er, setting the primary to the
local member running on port 4001, and the log message it returns:

JS > var cluster = dba.reboot d uster FromConpl et eCut age(" myC uster”, {primary: "127.0.0.1:4001", dryRun:

NOTE: dryRun option was specified. Validations will be executed, but no changes will be appli ed.

C uster instances: '127.0.0.1:4000' (OFFLINE), '127.0.0.1:4001' (OFFLINE), '127.0.0.1:4002' (OFFLINE)
Swi t chi ng over to instance '127.0.0.1:4001' to be used as seed.

dryRun fi ni shed.

193

Rescanning a Cluster

Considerations for ClusterSet and ReplicaSet

reboot C ust er Fr onConpl et eCQut age performs the following checks and generates a warning if
the Cluster does not meet the requirements:

» Confirms the Replica Cluster was not forcibly removed from the ClusterSet.
» Confirms the ClusterSet's primary Cluster is reachable.

» Checks the Cluster for errant transactions which are not View Change Log Events (VCLE). See How
Distributed Recovery Works.

» Confirms the Cluster's executed transaction set (GTI D_EXECUTED) is not empty.

The command automatically rejoins a Replica Cluster to the ClusterSet, ensuring the ClusterSet
replication channel is configured for all Cluster members.

Switching Communication Stack

You can switch communication stack during a dba. r eboot Cl ust er Fr onConpl et eCQut age()
operation.

For example:

j s> dba. r eboot O ust er Fr onConpl et eCut age("“testcluster”, {sw tchCommuni cationStack: "nysql"})

Switching from the MYSQL protocol to XCOMrequires an additional network address for the
| ocal Addr ess and may also require you to define i pAl | owLi st values.

8.8.4 Rescanning a Cluster

If you make configuration changes to a cluster outside of the AdminAPI commands, for example by
changing an instance's configuration manually to resolve configuration issues or after the loss of an
instance, you need to update the InnoDB Cluster metadata so that it matches the current configuration
of instances. In these cases, use the Cl ust er. rescan() operation, which enables you to update
the InnoDB Cluster metadata either manually or using an interactive wizard. The Cl ust er. rescan()
operation can detect new active instances that are not registered in the metadata and add them,

or obsolete instances (no longer active) still registered in the metadata, and remove them. You can
automatically update the metadata depending on the instances found by the command, or you can
specify a list of instance addresses to either add to the metadata or remove from the metadata. You
can also update the topology mode stored in the metadata, for example after changing from single-
primary mode to multi-primary mode outside of AdminAPI.

value in Replica Clusters. The original value is stored in the metadata schema

Note
@ group_replication_transaction_size |imt issettothe maximum
and is restored by Cl ust er. rescan() in the event of a switchover or failover.

The syntax of the command is Cl ust er. rescan([opti ons]). The opti ons dictionary supports the
following:

» updat eVi ewChangeUui d: Boolean value used to indicate if a value should be generated and set
for the group_replicati on_vi ew change_uui d system variable on the cluster instances.

Note
@ This is not required for Clusters running MySQL Server 8.3.0 or higher.

This system variable supplies an alternative UUID for view change events generated by the group.
For MySQL Server instances at release 8.0.27 and above, for an InnoDB Cluster that is part of an

194

https://dev.mysql.com/doc/refman/9.4/en/group-replication-view-changes.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-view-changes.html
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_transaction_size_limit
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid

Fencing a Cluster

InnoDB ClusterSet, the gr oup_repl i cation_vi ew change_uui d system variable is required
and must be set to the same value on all member servers in the cluster. An InnoDB Cluster that is
created using the dba. cr eat eCl ust er () command gets a value generated and set for the system
variable on all the member servers. An InnoDB Cluster created before MySQL Shell 8.0.27 might not
have the system variable set, but the InnoDB ClusterSet creation process checks for this and fails
with a warning if it is absent.

By default, updat eVi ewChangeUui d is set to f al se, and if the system variable is not

found or does not match on any of the instances, a warning message is returned to let you

know you must set a value for the system variable and reboot the InnoDB Cluster. If you set

updat eVi ewChangeUui d tot r ue, the rescan operation generates and sets a value for
group_replication_view change_uui d on all the member servers, following which you must
reboot the cluster to implement the changes. The Cl ust er. rescan() command automatically
generates and sets the system variable value in the same way as if t r ue was set, with a cluster
reboot required to implement the changes. When you have rebooted the cluster, you can retry the
InnoDB ClusterSet creation process.

» upgradeComPr ot ocol : Boolean value used to indicate if the Group Replication communication
protocol version should be upgraded (true) or not (false) to the version supported by the instance
in the cluster that is at the lowest MySQL release. By default, the communication protocol version
is not upgraded (false). AdminAPI operations that cause a topology change return a message if
the communication protocol version can be upgraded, and you can use this option to carry out the
upgrade at a suitable time. It is advisable to upgrade to the highest available version of the Group
Replication communication protocol to support the latest features, such as message fragmentation
for large transactions. For more information, see Setting a Group's Communication Protocol Version.

 If the value is t r ue then the Group Replication communication protocol version is upgraded to the
version supported by the instance in the cluster that is at the lowest MySQL release.

« If the value is f al se then the Group Replication communication protocol version is not upgraded.

8.8.5 Fencing a Cluster

Following an emergency failover, and there is a risk of the transaction sets differing between parts
of the ClusterSet, you have to fence the cluster either from write traffic or all traffic. Even though you
primarily use fencing on clusters belonging to a clusterset, it is also possible to fence standalone
clusters from all traffic.

The following fencing operations are available:

e <Cluster>. fenceWites(): Stops write traffic to a primary cluster of a ClusterSet.
o <Cluster>. unfenceWites():Resumes write traffic.

e <Cluster>.fenceAll Traffic(): Fences a cluster from all traffic.

For more details, see Section 9.10.1, “Fencing Clusters in an InnoDB ClusterSet”.

8.9 Modifying or Dissolving an InnoDB Cluster

This section explains how to change an InnoDB Cluster from single-primary to multi-primary mode or
the other way around, how to remove server instances from an InnoDB Cluster, and how to dissolve an
InnoDB Cluster that you no longer need.

» Changing a Cluster's Topology
* Removing Instances from an InnoDB Cluster

» Dissolving an InnoDB Cluster

Changing a Cluster's Topology

195

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/9.4/en/group-replication-communication-protocol.html

Removing Instances from an InnoDB Cluster

By default, an InnoDB Cluster runs in single-primary mode, where the cluster has one primary server
that accepts read and write queries (R/W), and all of the remaining instances in the cluster accept only
read queries (R/O). When you configure a cluster to run in multi-primary mode, all of the instances in
the cluster are primaries, which means that they accept both read and write queries (R/W). If a cluster
has all of its instances running MySQL server version 8.0.15 or later, you can make changes to the
topology of the cluster while the cluster is online. In previous versions it was necessary to completely
dissolve and re-create the cluster to make the configuration changes. This uses the group action
coordinator exposed through the functions described at Configuring an Online Group, and as such you
should observe the rules for configuring online groups.

Note
@ Multi-primary mode is considered an advanced mode.

Usually a single-primary cluster elects a new primary when the current primary leaves the cluster
unexpectedly, for example due to an unexpected halt. The election process is normally used to
choose which of the current secondaries becomes the new primary. To override the election process
and force a specific server instance in the underlying Group Replication group to become the new
primary, use the Cl ust er. set Pri maryl nst ance(i nstance[, options) function, where

i nst ance specifies the connection to the instance which should become the new primary. You can
use the r unni ngTr ansact i onsTi meout option to add a timeout between 0 and 3600 seconds
for transactions that are running when you use the function. When you set a timeout, incoming
transactions after the command is issued are rejected.

You can change the mode (sometimes described as the topology) which a cluster is running in
between single-primary and multi-primary using the following operations:

e Cluster.switchToMul ti Pri maryMode(), which switches the cluster to multi-primary mode. All
instances become primaries.

e Cluster.sw tchToSi ngl ePri maryMode([i nstance]), which switches the cluster to single-
primary mode. If i nst ance is specified, it becomes the primary and all the other instances become
secondaries. If i nst ance is not specified, the new primary is the instance with the highest member
weight (and the lowest UUID in case of a tie on member weight).

Removing Instances from an InnoDB Cluster

You can remove an instance from a cluster at any time should you wish to do so. This can be done with
the Cl ust er. renovel nst ance(i nst ance) method, as in the following example:

nmysql -j s> cluster.renovel nstance(' root @ ocal host: 3310')

The instance will be renpbved fromthe | nnoDB cluster. Depending on the instance
bei ng the Seed or not, the Metadata session m ght beconme invalid. If so, please
start a new session to the Metadata Storage R/ Wi nstance.

Attenpting to | eave fromthe G oup Replication group...

The instance 'l ocal host: 3310" was successfully renmoved fromthe cluster.

The cl uster. renovel nst ance() operation ensures that the instance is removed from the
metadata of all the cluster members which are ONLI NE, and the instance itself. The last instance that
remains in ONLI NE status in an InnoDB Cluster cannot be removed using this operation.

When the instance being removed has transactions which still need to be applied, AdminAPI waits

for up to the number of seconds configured by the MySQL Shell dba. gt i dWai t Ti neout option for
transactions (GTIDs) to be applied. The MySQL Shell dba. gt i dWai t Ti meout option has a default
value of 60 seconds, see Section 14.4, “Configuring MySQL Shell Options” for information on changing
the default. If the timeout value defined by dba. gt i d\Wai t Ti neout is reached when waiting for
transactions to be applied and the f or ce option is f al se (or not defined) then an error is issued and
the remove operation is aborted. If the timeout value defined by dba. gt i dWai t Ti neout is reached

196

https://dev.mysql.com/doc/refman/9.4/en/group-replication-configuring-online-group.html

Dissolving an InnoDB Cluster

when waiting for transactions to be applied and the f or ce option is set to t r ue then the operation
continues without an error and removes the instance from the cluster.

Note

@ The f or ce option of Cl ust er. renovel nst ance(i nstance) forces
removal of the instance from the Cluster's metadata. This is useful if the
instance is no longer a member, but is still registered as part of the Cluster.
This option has no effect on healthy, contactable instances, and affects only
unreachable instances or instances which are otherwise unable to synchronize
with the Cluster.

Dissolving an InnoDB Cluster

To dissolve an InnoDB Cluster you connect to a read-write instance, for example the primary in a
single-primary cluster, and use the Cl ust er. di ssol ve() command. This removes all metadata and
configuration associated with the cluster, and disables Group Replication on the instances. Any data
that was replicated between the instances is not removed.

Important

A There is no way to undo the dissolving of a cluster. To create it again use
dba. createC uster ().

The Cl ust er. di ssol ve() operation can only configure instances which are ONLI NE or reachable. If
members of a cluster cannot be reached by the member where you issued the Cl ust er. di ssol ve()
command you have to decide how the dissolve operation should proceed. If there is any chance you
want to rejoin any instances that are identified as missing from the cluster, it is strongly recommended
to cancel the dissolve operation and first bring the missing instances back online, before proceeding
with a dissolve operation. This ensures that all instances can have their metadata updated correctly,
and that there is no chance of a split-brain situation. However, if the instances from the cluster which
cannot be reached have permanently left the cluster there could be no choice but to force the dissolve
operation, which means that the missing instances are ignored and only online instances are affected
by the operation.

which could not be reached during the dissolve operation continuing to operate,
creating the risk of a split-brain situation. Only ever force a dissolve operation
to ignore missing instances if you are sure there is no chance of the instance

Warning
O Forcing the dissolve operation to ignore cluster instances can result in instances
coming online again.

In interactive mode, if members of a cluster are not reachable during a dissolve operation then an
interactive prompt is displayed, for example:

nmysql -j s> C uster. dissol ve()

The cluster still has the foll ow ng regi stered instances:
{
"clusterNane": "testCluster",
"defaul t ReplicaSet": {
"nane": "default",
"topol ogy": [
{
"address": "ic-1:3306",
"l abel ": "ic-1:3306",
"role": "HA"
b
{
"address": "ic-2:3306",
"l abel ": "ic-2:3306",
"role": "HA"

197

Upgrade InnoDB Cluster

"address": "ic-3:3306",
"l abel ": "ic-3:3306",
"role": "HA"

}
}
WARNI NG You are about to dissolve the whole cluster and | ose the high
availability features provided by it. This operation cannot be reverted. Al

menbers will be renoved fromthe cluster and replication will be stopped,
internal recovery user accounts and the cluster metadata will be dropped. User
data will be maintained intact in all instances.

Are you sure you want to dissolve the cluster? [y/N: y

ERROR: The instance 'ic-2:3306' cannot be renpved because it is on a '(MSSING'
state. Please bring the instance back ONLINE and try to dissolve the cluster
again. If the instance is permanently not reachable, then you can choose to
proceed with the operation and only renove the instance fromthe C uster

Met adat a.

Do you want to continue anyway (only the instance nmetadata will be renoved)?
LY/N: y
Instance 'ic-3:3306' is attenpting to | eave the cluster... Instance 'ic-1:3306'

is attenpting to | eave the cluster...

WARNI NG The cluster was successful ly dissolved, but the follow ng instance was
ski pped: 'ic-2:3306'. Please nake sure this instance is permanently unavail abl e
or take any necessary manual action to ensure the cluster is fully dissolved.

In this example, the cluster consisted of three instances, one of which was offline when dissolve was
issued. The error is caught, and you are given the choice how to proceed. In this case the missing
i ¢- 2 instance is ignored and the reachable members have their metadata updated.

When MySQL Shell is running in non-interactive mode, for example when running a batch file, you can
configure the behavior of the Cl ust er . di ssol ve() operation using the f or ce option. To force the
dissolve operation to ignore any instances which are unreachable, issue:

nysql -j s> Custer.dissolve({force: true})

Any instances which can be reached are removed from the cluster, and any unreachable instances
are ignored. The warnings in this section about forcing the removal of missing instances from a cluster
apply equally to this technique of forcing the dissolve operation.

The dba. gti dWai t Ti neout MySQL Shell option configures how long the Cl ust er . di ssol ve()
operation waits for cluster transactions to be applied before removing a target instance from the cluster,
but only if the target instance is ONLI NE. An error is issued if the timeout is reached when waiting for
cluster transactions to be applied on any of the instances being removed, except if force: true is used,
which skips the error in that case.

Note
3 After issuing cl ust er . di ssol ve(), any variable assigned to the Cl ust er
object is no longer valid.

8.10 Upgrade InnoDB Cluster

This section explains how to upgrade your cluster. Much of the process of upgrading an InnoDB
Cluster consists of upgrading the instances in the same way as documented at Upgrading Group
Replication. This section focuses on the additional considerations for upgrading InnoDB Cluster. Before
starting an upgrade, you can use the MySQL Shell Section 12.1, “Upgrade Checker Utility” to verify
instances are ready for the upgrade.

If you try to bootstrap MySQL Router against a cluster and it discovers that the metadata version
is 0.0.0, this indicates that a metadata upgrade is in progress, and the bootstrap fails. Wait for the

198

https://dev.mysql.com/doc/refman/9.4/en/group-replication-upgrade.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-upgrade.html

InnoDB Cluster Upgrade

metadata upgrade to complete before you try to bootstrap again. When MySQL Router is operating
normally (not bootstrapping) and it discovers the metadata version is 0.0.0 (upgrade in progress),
MySQL Router does not proceed with refreshing the metadata that it was about to begin. Instead,
MySQL Router continues using the last metadata it has cached. All the existing user connections are
maintained, and any new connections are routed according to the cached metadata. The Metadata
refresh restarts when the Metadata version is no longer 0.0.0. In the regular (not bootstrapping) mode,
MySQL Router works with the metadata of version 1.x.x and 2.x.x. The version can change between
TTL refreshes. This change ensures routing continues while you upgrade the cluster.

8.10.1 InnoDB Cluster Upgrade

To upgrade the server instances in an InnoDB Cluster, complete the following steps:

1.
2.
3.
4.

Upgrade MySQL Router.
Upgrade MySQL Shell.
Upgrade MySQL Server.

Post Upgrade Status Check.

Check the versions of the installed binaries:

* mysglrouter --version: Checks the version of MySQL Router installed.

* mysqglsh --version: Checks the version of MySQL Shell installed.

e mysqgld --version: Checks the version of MySQL Server installed.

Upgrade MySQL Router.

To upgrade MySQL Router, complete the following steps:

1.

Stop MySQL Router.

On a Unix system, if you used the optional - - di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected when you
bootstrapped the router. These files include st op. sh. Navigate to this directory and issue the
following command:

./ stop. sh

On Microsoft Windows, if you used the optional -- di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected when you
bootstrapped the router. These files include st op. ps1. Navigate to this directory and issue the
following command:

.\stop. psl

Or on a Linux system using syst entd, stop the MySQL Router service by issuing the following
command:

systenct| stop nysqlrouter.service

Otherwise, kill the process ID (PID) of the associated mysqlrouter process.
Obtain and install the latest version of MySQL Router.

Start MySQL Router.

On a Unix system, if you used the optional -- di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected. These
files include st ar t . sh. Navigate to the directory and issue the following command:

199

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-deploying-bootstrapping.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-deploying-bootstrapping.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-server-starting.html

InnoDB Cluster Upgrade

.Istart.sh

If the path to the new router has changed, you must update the st ar t . sh shell script to reflect the
path.

#! / bi n/ bash

basedi r =/t np/ nyr out er

ROUTER_PI D=$basedi r/ nysql rout er. pi d /usr/bin/nysqlrouter -c $basedir/nysqlrouter.conf &
di sown %

If you upgrade MySQL Router manually, opposed to using package management, you can update
the basedi r =. If you bootstrap the router again the st ar t . sh shell script is regenerated.

Or on a Linux system using syst end, start the MySQL Router service by issuing:

systenct| start nysqlrouter.service

On Microsoft Windows, if you used the optional -- di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected. These
files include st ar t . ps1. Navigate to the directory and issue the following command:

.\start.psl

On starting MySQL Router using the new router binaries, check the version of the router is
upgraded by issuing the following command:

mysql router --version

Upgrade MySQL Shell

Upgrade MySQL Shell by installing the new binaries, and stopping and starting MySQL Shell:

1.

2.

Obtain and install the latest version of MySQL Shell.
Stop and quit MySQL Shell by issuing:

\q

Restart MySQL Shell from the command line, by issuing:
nysql sh

Upgrade the InnoDB Cluster Metadata:

« To upgrade an InnoDB Cluster's metadata, connect MySQL Shell's global session to your cluster
and use the dba. upgr adeMet adat a() operation to upgrade the cluster's metadata to the new
metadata.

Metadata Upgrade
@ The Metadata Upgrade may do nothing if the Cluster already uses the latest
version.

Upgrade MySQL Server

Upgrade MySQL Server by upgrading all secondary instances before upgrading the primary instance.

impact than upgrading MySQL Shell and MySQL Router. Also, you should
always keep MySQL Shell and MySQL Router at the latest version, even if the
server is not; this is true for InnoDB Clusters and ReplicaSets.

Upgrading MySQL Server is optional
@ Upgrading MySQL Server is optional. Server upgrades can have a greater

200

mysql-shell-install.xml

InnoDB Cluster Upgrade

1. Stop MySQL Server by issuing one of the following commands:
« If MySQL Server is using systemd issue:
systenctl stop nysqld
o If MySQL Server is using init.d issue:
/etc/init.d/ mysqgl stop
« If MySQL Server is using service issue:
servi ce nysqgl stop
* If you deployed MySQL Server on Microsoft Windows issue:
nysql admin -u root -p shutdown
2. Obtain and install the latest version of MySQL Server.
3. Start MySQL Server by issuing one of the following commands:
e If MySQL Server is using systemd issue:
systenct!| start nysqgld
e If MySQL Server is using init.d issue:
/etc/init.d/ mysql start
« If MySQL Server is using service issue:
servi ce nysqgl start
* If you deployed MySQL Server on Microsoft Windows issue:
nysql d

4. When all the secondary instances are upgraded, upgrade the primary instance to complete the
upgrade process.

Post Upgrade Status Check
After upgrading MySQL Router, MySQL Shell, and MySQL Servers are upgraded:

1. Check the Cluster by issuing <Cl ust er >. st at us() . For more information about
<Cl uster>. status(), see Checking a Cluster's Status with Cl ust er. st at us().

2. Resolve any cl uster Errors and st at usText returned by the <Cl ust er >. st at us()
operation.

These commands allow you to check that the upgrade has been successful or if you need to complete
any additional steps.

Note
@ The additional steps depend; on how many versions you are skipping, what
version you are upgrading, and from what version you are coming.

1. Check the status of each InnoDB Cluster, by issuing <Cl ust er >. st at us() .

In the following example, <Cl ust er >. st at us({ ext ended: true}), used to provide more
detailed information about the status of the Cluster, returns two issues:

mysql sh> <Cl ust er>. st at us({extended: true});

201

https://dev.mysql.com/doc/refman/9.4/en/general-installation-issues.html

InnoDB Cluster Upgrade

“clusterNane": "M/Cluster",
"defaul t ReplicaSet": {
" GRPr ot ocol Version": "8.0.16",
"groupNane": "459ec434-8926-11ec-b8c3-02001707f 44a",
" groupVi ewChangeUui d": " AUTOVATI C',
"groupView d": "16443558036060755: 13",
"name": "default",
"ssl": "REQUI RED',
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"t opol ogy": {
"exanpl e- el 7-1644251369: 33311": {
"address": "exanpl e-el 7-1644251369: 33311",
"appl i er Wr ker Thr eads": 4,
"fenceSysVvars": [],
"instanceErrors": [
"NOTE: instance server_id is not registered in the netadata.
Use cluster.rescan() to update the netadata.",
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. configurelnstance() to fix it."
I
“menber | d": "247131ab-8926- 11ec- 850b- 02001707f 44a",
"menber Rol e": " PRI MARY",
“menber State": "ONLI NE',
"mode": "RI'W,
"readReplicas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

i
"exanpl e- el 7-1644251369: 33314": {

"address": "exanpl e-el 7-1644251369: 33314",
"appl i er Wr ker Thr eads": 4,
"fenceSysVars": [],
"instanceErrors": [
"NOTE: instance server_id is not registered in the netadata.
Use cluster.rescan() to update the netadata.",
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. configurelnstance() to fix it."
I
“menber | d": "303dcfa7-8926-1lec-abe5- 02001707f 44a",
"menber Rol e": " PRI MARY",
“menber State": "ONLINE',
"mode": "RI'W,
"readRepl i cas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

i
"exanpl e-el 7- 1644251369: 33317": {

"address": "exanpl e-el 7-1644251369: 33317",
"appl i er Wr ker Thr eads": 4,
"fenceSysVars": [],
"instanceErrors": [
"NOTE: instance server_id is not registered in the metadata.
Use cluster.rescan() to update the netadata.",
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. configurelnstance() to fix it."
I
“menber | d": "3bb2592e-8926- 11ec- 8b6f - 02001707 44a",
"menber Rol e": " PRI MARY",
“menber State": "ONLINE',
"mode": "RI'W,
"readRepl i cas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

202

InnoDB Cluster Upgrade

I

"t opol ogyMode": "Ml ti-Primary"
I
" groupl nf or mati onSour ceMenber": "exanpl e-el 7- 1644251369: 33311",
"met adat aVersion": "2.1.0"

<Cl uster>.status({extended: true}) displays more detailed information about

the Cluster. In this example, we use the Boolean value t r ue, which is equivalent to

<Cl uster>. status({' extended' : 1}). For more information, see Checking a Cluster's Status
with Cl ust er. status().

2. Resolve any errors returned by the <Cl ust er >. st at us({ ext ended: 1}) operation.

In this example, the i nst anceEr r or s suggest that in this upgrade, we should issue
<Cl uster>.rescan() and dba. confi gurel nstance() on each member in the Cluster:

"NOTE: instance server_id is not registered in the

met adata. Use <Cluster>.rescan() to update the netadata.",
"NOTE: The required parallel-appliers settings are not

enabl ed on the instance. Use dba.configurelnstance() to fix it."

The <Cl ust er >. rescan() operation enables you to rescan the Cluster for new and obsolete
Group Replication instances, as well as changes in the used topology mode. For more information,
see Rescanning a Cluster.

nysql sh> <Cl uster>. rescan();
Rescanni ng the cluster...

Result of the rescanning operation for the 'M/Custerl cluster:

{
"nane": "M/C usterl",
"newTopol ogyMode": nul |,
"new yDi scover edl nst ances": [],
"unavai | abl el nstances": [],
"updat edl nst ances": []

}

The dba. confi gur el nst ance() function checks all of the settings required to enable the
instance to be used for InnoDB Cluster usage. For more information, see Configuring Production
Instances for InnoDB Cluster Usage.

In this example, we issue dba. confi gur el nst ance() on each member in the InnoDB Cluster,
to ensure required the parallel-appliers settings are enabled on the instance:

nysql sh> dba. confi gurel nstance(' cl admi n: cl adm npw@ ocal host: 33311")
The instance 'exanpl e-el 7-1644251369: 33311' belongs to an I nnoDB Cl uster.
Configuring local MySQL instance listening at port 33311 for use in an | nnoDB cluster...

This instance reports its own address as “[[lmexanpl e-el 7- 1644251369: 33311*[[Om
Clients and other cluster menbers will communicate with it through this address by default.
If this is not correct, the report_host MySQL system vari abl e shoul d be changed.

appl i erWrkerThreads will be set to the default val ue of 4.

A[[36mMNOTE: ~[[OnSone configuration options need to be fixed:

e e m e e me e e e cemmmmeeeeeeaa [o e e e e e e S
| Variable | Current Value | Required Value | Note

e e m e e me e e e cemmmmeeeeeeaa [o e e e e e e S
| binlog_transacti on_dependency_tracking | COWM T_ORDER | WRI TESET | Update the server v:
e e m e e me e e e cemmmmeeeeeeaa [o e e e e e e S

Confi guring instance...
The instance 'exanpl e-el 7-1644251369: 33311' was configured to be used in an | nnoDB cl uster.

For information on troubleshooting Cluster Upgrades, see Troubleshooting InnoDB Cluster Upgrades.

203

Troubleshooting InnoDB Cluster Upgrades

8.10.2 Troubleshooting InnoDB Cluster Upgrades

This section covers trouble shooting the upgrade process.

Handling Host Name Changes

MySQL Shell uses the host value of the provided connection parameters as the target hostname
used for AdminAPI operations, namely to register the instance in the metadata (for the

dba. creat eCl uster () and Cl ust er. addl nst ance() operations). However, the actual host
used for the connection parameters might not match the host nane that is used or reported by
Group Replication, which uses the value of the r eport _host system variable when it is defined
(in other words it is not NULL), otherwise the value of host nane is used. Therefore, AdminAPI

now follows the same logic to register the target instance in the metadata and as the default

value for the group_replication_| ocal address variable on instances, instead of using

the host value from the instance connection parameters. When the r eport _host variable is

set to empty, Group Replication uses an empty value for the host but AdminAPI (for example in
commands such as dba. checkl nst anceConfi guration(), dba. confi gurel nstance(),
dba. creat eCl ust er (), and so on) reports the hostname as the value used which is inconsistent
with the value reported by Group Replication. If an empty value is set for the r eport _host system
variable, an error is generated.

For a cluster created using a MySQL Shell version earlier than 8.0.16, an attempt to reboot the cluster
from a complete outage performed using version 8.0.16 or higher results in this error. This is caused
by a mismatch of the Metadata values with the r eport _host or host nane values reported by the
instances. The workaround is to:

1.

7.

Identify which of the instances is the “seed”, in other words the one with the most recent GTID set.
The dba. r eboot Cl ust er Fr onConpl et eQut age() operation detects whether the instance is a
seed and the operation generates an error if the current session is not connected to the most up-to-
date instance.

Set the r eport _host system variable to the value that is stored in the Metadata
schema for the target instance. This value is the host nane: port pair used in the
instance definition upon cluster creation. The value can be consulted by querying the
nmysql i nnodb_cl ust er _net adat a. i nst ances table.

For example, suppose a cluster was created using the following sequence of commands:

nysql -js> \c cl uster Adm n@ ocal host : 3306
nysql -j s> dba. createC uster ("nmyd uster")

Therefore the hostname value stored in the metadata is “localhost” and for that reason,
report host must be set to “localhost” on the seed.

Reboot the cluster using only the seed instance. At the interactive prompts do not add the
remaining instances to the cluster.

Use Cl ust er. rescan() to add the other instances back to the cluster.
Remove the seed instance from the cluster

Stop mysqld on the seed instance and either remove the forced r eport _host setting (step 2), or
replace it with the value previously stored in the Metadata value.

Restart the seed instance and add it back to the cluster using Cl ust er . addl nst ance()

This allows a smooth and complete upgrade of the cluster to the latest MySQL Shell version. Another
possibility, that depends on the use-case, is to simply set the value of r eport _host on all cluster
members to match what has been registered in the Metadata schema upon cluster creation.

204

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_report_host

MySQL InnoDB Cluster Read Replicas

8.11 MySQL InnoDB Cluster Read Replicas

MySQL Shell Read Replicas are read-only copies of a Cluster member. Asynchronous replication
keeps the replica up to date, enabling you to scale out your workload, offload read requests from your
Cluster to one, or more, dedicated read-only instances, and provide additional redundancy to your
dataset. In the event of a failure of the source, the Read Replica automatically connects to another
Cluster member and resumes replication.

Figure 8.3 InnoDB Cluster Read Replicas overview

Client App
MySQL MySQL Shell
Connector (Cluster Admin)
A
Y
rd <
Y
‘ @ MySQL
MySQL AdminAPI
Router
MySQL Servers
High Availability Cluster
h " b b
Read €— Asynchronous ———— Primary
Replicas R/O Replication : wa-es Instance R/W :----

Group Replication

Secondary | _________. Secondary
Instance R/O Instance R/O

Read Replicas can be configured to replicate from any member of the Cluster. By default, they
replicate from the primary. You can also promote Read Replicas to secondary Cluster members and
demote secondary Cluster members to Read Replicas.

8.11.1 Prerequisites
To use a MySQL instance as a Read Replica, it must meet the following criteria:
» The instance must be a standalone MySQL server.
» The instance must be MySQL 8.0.23, or higher.
» The instance must not have any unmanaged replication channels configured.
» The instance must use the same credentials as those used to manage the Cluster.

When an instance is added as a Read Replica, the AdminAPI runs the same compatibility tests on it as
it does an instance being added to a Cluster. The same variables are checked, and so on. As such, itis
recommended you run dba. checkl nst anceConfi gurati on() ordba. confi gurel nstance()
before attempting to create a Read Replica.

205

Creating Read Replicas

8.11.2 Creating Read Replicas

Examples

Create Read Replicas using addRepl i cal nst ance():

Clust er. addRepl i cal nst ance(i nstance, [options])

Examples

Default Read Replica

Defining a Replication Source for the Read Replica
Defining the Recovery Method for Read Replicas

Certificate-based Authentication

The examples in this and subsequent sections assume a simple Cluster of three instances, a primary
and two secondaries.

host 1: 4100: primary.
host 2: 4101: secondary.

host 3: 4102: secondary.

Default Read Replica

This section describes adding a Read Replica to the Cluster. By default, the Read Replica replicates
from the primary.

The following example adds an instance, host 4: 4110 to the Cluster, with the label RRepl i cal:

Cl ust er. addRepl i cal nst ance(' host 4: 4110', {label: 'RReplical'})

Note
@ Labels must be unique within the Cluster and can only contain alphanumeric, _

(underscore), . (period), - (hyphen), or : (colon) characters.

Defining a Replication Source for the Read Replica

ThereplicationSources option of addRepl i cal nst ance enables you to specify one or more
preferred replication sources for the Read Replica. This option accepts the following values:

pri mary: Defines the Cluster primary as the replication source. In the event of a failover, the Read
Replica waits until a new primary is promoted, then resumes replication with the new primary as the
source.

secondar y: Defines one of the Cluster secondaries as the replication source. The selection is
managed by Group Replication. The source will always be a secondary member of the Cluster,
unless it becomes a single-member Cluster. In which case, the Read Replica uses the only other
member as the source.

host name: port : Defines a specific Cluster member, primary or secondary, as replication source.

Comma-separated list of hosts: Defines a weighted list of Cluster members, primary or secondary,
as potential replication sources. The first instance in the list has the highest priority; when the Read
Replica's replication channel is activated, it is the first connection attempted. The other list members
are connected to in the event of a failover or if the connection attempt fails.

The following example defines the secondary, host 2: 4101 as the source:

206

Creating Read Replicas

Cl ust er. addRepl i cal nst ance(' host 4: 4110', {label: 'RReplical', replicationSources: ['host2:4101']})

It is also possible to specify a number of replication sources, by providing a comma-separated list of
hosts, using the host : port format. The list is weighted, with the first entry having the largest weight.
This enables you to define a source failover list. If the first defined source fails, the Read Replica
attempts to restore replication with the second source defined, and so on.

The following example defines the secondary, host 2: 4101 as the first source, and host 3: 4102 as
the next:

Cl ust er. addRepl i cal nst ance(' host 4: 4110', {label: 'RReplical', replicationSources: ['host2:4101'," host3:

You can use the same option to define either only primary or only secondary sources, without defining
individual instances. For example:

Clust er. addRepl i cal nst ance(' host 4: 4110', {label: 'RReplical', replicationSources: 'secondary']})

defines the replication sources as secondaries only. To define replication source as primary, only, use
replicationSources: 'primary'.

By default, the source list is managed by MySQL Group Replication which defaults to primary sources.

You can test this operation using the dr yRun option. Including this option, set to t r ue runs the
command but makes no changes. This enables you to test your changes.

Note
@ It is also possible to setthe repl i cati onSour ces, and the | abel , of a Read
Replica with the cl ust er. set | nst anceOpt i on() method.

If the target is a Read Replica, the only options the
cluster.setlnstanceOpti on() method accepts are t ags (reserved tags,
only), repl i cati onSour ces, and | abel .

Defining the Recovery Method for Read Replicas
recover yMet hod defines how the Read Replica's data is acquired during provisioning.

» cl one: Use to completely replace the state of the target instance with a full snapshot of another
cluster member before distributed recovery starts. Requires MySQL 8.0.17 or newer.

If cl oneDonor is defined, the defined instance is used as the source.

If replicationSourcesissettoprimary orsecondary, the Cluster Primary is used as the
source.

If replicati onSour ces contains one or more named Cluster members, the first in the list is used
as the source, if available. If the first is not available, the second is used, and so on.

» i ncrenent al : Uses distributed state recovery to apply missing transactions copied from another
cluster member. Clone is disabled.

» aut o: Default. Group Replication selects whether a full snapshot is taken, based on what the target
server supports and gr oup_repl i cati on_cl one_t hreshol d value. A prompt is displayed if it
is not possible to safely determine a safe way to proceed. If interaction is disabled, the operation is
canceled.

In addition to the r ecover yMet hod: cl one option, addRepl i cal nst ance provides a

cl oneDonor option, enabling you to define the specific instance to clone to the new Read Replica. If
cl oneDonor is not defined, but cl one is the selected recovery method, either by explicitly specifying
cl one or if aut o selects clone as the best method for data provisioning, the best instance is chosen

207

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_clone_threshold

Creating Read Replicas

for cloning by the cluster. The process used is identical to that used by Cl ust er . addl nst ance().
See Section 8.4.6.1, “Working with a Cluster that uses MySQL Clone” for more information.

In the following example, the new Read Replica host 5: 4113 is added with the label RRepl i ca5,
using host 2: 4101, a secondary instance, as the data source. host 2: 4101's data is cloned to the
new Read Replica.

JS> cluster. addRepl i cal nstance(' host5: 4113', {l abel : ' RReplica5', recoveryMethod: "clone", cloneDonor:

A successful command returns information similar to the following:
Setting up 'host5:4113' as a Read Replica of Cluster 'nyd uster'.
Val i dating instance configuration at host5:4113. ..

This instance reports its own address as host5:4113

I nstance configuration is suitable.
* Checking transaction state of the instance...

Cl one based recovery sel ected through the recoveryMethod option

* Waiting for the donor to synchronize with PRI MARY. ..
** Transactions replicated #H#HHHARBHHHHHTHHHHH AT T saE. 100%

Moni toring G one based state recovery of the new nmenber. Press ~"C to abort the operation.
Cl one based state recovery is now in progress.

NOTE: A server restart is expected to happen as part of the clone process. |f the
server does not support the RESTART command or does not cone back after a
while, you nay need to nanually start it back.

* Waiting for clone to finish...

NOTE: host5: 4113 is being cloned from host2: 4101

** Stage DROP DATA: Conpl et ed

** Clone Transfer
FI LE COPY #H###HHHHHHHHHHHH R R 100% Conpl et ed
PAGE COPY #H##HHHHHHHHIHHHHH R 100% Conpl et ed
REDO COPY 0% In Progress

NOTE: host5:4113 is shutting down...

* Waiting for server restart... ready

* host5:4113 has restarted, waiting for clone to finish...

** Stage RESTART: Conpl et ed

* Clone process has finished: 8.64 GB transferred in 11 sec (785.30 MB/s)

* Configuring Read-Replica nmanaged replication channel ...
** Changing replication source of host5:4113 to host1: 4100

* Waiting for Read-Replica 'host5:4113" to synchronize with Custer...
** Transactions replicated #H#HHHARBHHHHHHRHHHHH AT T s 100%

"host 5:4113"' successfully added as a Read-Replica of Cluster 'nyduster'.

Certificate-based Authentication

Certificate-based authentication for Read Replicas is defined in the following way:

» cert Subj ect option of cl ust er. addRepl i cal nst ance() : specifies the certificate subject of the
instance, used if the Cluster's nenber Aut hType is CERT_SUBJECT or CERT _SUBJECT _PASSWORD.

» The Cluster's nenber Ssl Mode value is used to configure the authentication type of the Read
Replica's replication channel.

208

" host

Modifying or Removing Read Replicas

» The method performs a connectivity check, using the configured nenber Ssl Mode before updating
the topology.

« If the Cluster's nenber Aut hType is CERT _SUBJECT or CERT _SUBJECT PASSWORD, the method
verifies the server's certificate.

cl uster.options() was updated to return cert Subj ect in the t opol ogy array.

8.11.3 Modifying or Removing Read Replicas
This section describes how to modify or remove your Read Replica from the Cluster.
» Removing Read Replicas
* Rejoining Read Replica to a Cluster
* Routing Read Replicas
Removing Read Replicas

To remove a Read Replica from a Cluster, use Cl ust er. r enovel nst ance() . This operation
performs the following tasks:

» Drops the replication user from the Cluster.
* Removes the Read Replica from the Cluster metadata.

» Stops the replication channel and the Read Replica's configuration reset to default values.

the source for a Read Replica, the failover process is triggered and the Read
Replica attempts to connect to another source. If there is no other source
available, the replication channel is stopped. The removed Cluster member is

Note
@ If Cl ust er. renovel nst ance() is run on a Cluster member which is also
also removed from the Read Replica's source list.

The following example removes the Read Replica, host 4: 4110 from the Cluster:

Cl ust er. renovel nst ance(" host 4: 4110")
Renovi ng Read- Replica 'ipaddress:4110° fromthe Custer 'nyC uster'.

* Waiting for the Read-Replica to synchronize with the Custer...
** Transactions replicated HH#HHH 33T 100%

* Stopping and del eting the Read-Replica managed replicati on channel...

Read- Repl i ca 'i paddress: 4110' successfully renpved fromthe Custer 'nyduster'.

When a Read Replica is removed, the transactions are synchronized with the source. You can define a
timeout, in seconds, for the transaction replication process. For example:

Cl ust er. renovel nst ance("host 4: 4110", {ti meout: 30})

This defines a 30 second timeout on the synchronization process. If the synchronization process does
not complete in 30 seconds, the r enovel nst ance operation is rolled back and the Read Replica is
not removed from the Cluster.

The default timeout value is O (zero), or no timeout.

You can test this operation using the dr yRun option. Including this option, setto t r ue runs the
command but makes no changes. This enables you to test your changes.

209

Modifying or Removing Read Replicas

Rejoining Read Replicato a Cluster

To rejoin a Read Replica to a Cluster, use Cl ust er . rej oi nl nstance() .

Cluster.rejoinlnstance(instance [, options])

To rejoin a Read Replica to a Cluster, the instance must meet the following requirements:
» The target instance must be a member of the Cluster.

» The target instance must meet the prerequisites for a Read Replica. See Section 8.11.1,
“Prerequisites”.

» The target instance's GTID set must not be different from the Cluster's. This does not apply if
recoveryMet hod: cl one.

longer part of the Cluster, the r ej oi nl nst ance() operation will fail. In
this scenario, you must update the Read Replica's replication sources using

Note
@ If all the configured sources for the Read Replica are unreachable, or no
Cluster.setlnstanceOption().

This process is identical to rejoining a Cluster member to a Cluster, with the following exceptions:

* The recover yMet hod value cl one and the option cl oneDonor are only available for Read
Replicas.

e Theti neout option is only available for Read Replicas.

The following example, shows an attempt to rejoin a Read Replica, host 4: 4110 to a Cluster using the
default recovery method:

Cluster.rejoinlnstance(' host4:4110')

When a Read Replica is rejoined, the transactions are synchronized with the primary. You can define
a timeout, in seconds, for the transaction replication process. The following example sets a 60 second
timeout for the transaction synchronization process:

Cluster.rejoinlnstance(' host4:4110', {tinmeout: 60})

This defines a 60 second timeout on the synchronization process. If the synchronization process does
not complete in 60 seconds, the r ej oi nl nst ance operation is rolled back and the Read Replica is
not rejoined to the Cluster.

The default timeout value is O (zero), or no timeout.

You can test this operation using the dr yRun option. Including this option, setto t r ue runs the
command but makes no changes. This enables you to test your changes.

Note

@ It is not possible to use r ej oi nl nst ance to rejoin a Read Replica which
was removed from the Cluster using r enpvel nst ance. r enovel nst ance
removes the Read Replica from the Cluster and removes the Read Replica's
metadata.

To rejoin such an instance, you must use addRepl i cal nst ance.

210

Monitoring Read Replicas

Routing Read Replicas

The default routing policy for a Cluster is to direct all read-only traffic to the secondary members.
Cl uster.set Routi ngOpti on() enables you to set the routing policy to one of the following values
with the read_onl y_t ar get s option:

« al | : all Read Replicas and Secondary Cluster members are used for read-only traffic.
* read_replicas: only Read Replicas are used for read-only traffic.
» secondari es: only Secondary Cluster members are used for read-only traffic.

The following example sets the read-only routing policy for a router named nachi nel: : router 1 to
Read Replicas only:

Cluster.set Routi ngOpti on("nmachi nel::routerl”, "read_only_ targets", "read_replicas")

To view the current routing policy of a router named machi nel: : r out er 1, run the following:

Cluster.routerQptions({router: "nachinel::routerl"})

8.11.4 Monitoring Read Replicas

This section describes how to monitor your Read Replicas, view topologies, and so on.
» Status

» Describe
Status

For detailed information on the Cl ust er . st at us() method, see Section 8.7, “Monitoring InnoDB
Cluster”.

Read Replica information is listed in the r eadRepl i cas section of each source. In the following
example, the Cluster primary, host 1: 4100 is the replication source for three Read Replicas,
host 4: 4110, host 5: 4120, and host 6: 4130:

“topol ogy": {
"host 1: 4100": {

"address": "host1:4100",

"menber Rol e": " PRI MARY",

“nmode": "R'W,

"readReplicas": {

"RReplical": {

"address": "host4:4110",
“rol e": "READ _REPLI CA",
"status": "ONLI NE",
“version": "8.1.0"

"RReplica2": {
"address": "host5:4120",
“rol e": "READ_REPLI CA",
"status": "ONLI NE",
“version": "8.1.0"

"RReplica3": {
"address": "host6:4130",
“rol e": "READ _REPLI CA",
"status": "ONLI NE",
“version": "8.1.0"

}

eplicationLag": "applier_queue_applied",

}

"

211

Monitoring Read Replicas

"role": "HA",
"status": "ONLI NE",
"version": "8.1.0"

The Read Replicas are listed according to the label defined when they were added to the Cluster, or by
host : port if no label was provided.

The Read Replica-specific fields are as follows:
e ForCuster.status():
e addr ess: The Read Replica's address.
e rol e: READ_REPLICA.
e st at us: contains one of the following statuses:
* ONLI NE: Replication channel connected and running.

* CONNECTI NG: Replication channel connecting.

OFFLI NE: Replication channel stopped gracefully.
« ERROR: Replication channel stopped due to a replication error.
» UNREACHABLE: MySQL Shell cannot connect to the Read Replica.
e ver si on: The MySQL Server version.
e i nstancekErrors: List of diagnostic errors if at least one error has occurred.
e ForCluster.status({extended: 1}):
e appl i er St at us: Applier thread status.
e applierThreadSt at e: Applier thread current state.
e appl i er Wor ker Thr eads: Number of applier worker threads.
e receiver St at us: Receiver thread status.
e recei ver ThreadSt at e: Current state of the receiver thread.
e replicationLag: replication lag.

e replicationSour ces: Lists the replication sources for the Read Replica, ordered by weight. Or,
if the Read Replica was configured to replicate from the Primary, PRI MARY, or SECONDARY if the
Read Replica was configured to replicate from the Secondary.

e replicationSsl: Lists the current SSL cipher and the SSL version, if enabled.
e ForC uster.status({extended: 2}):

e appl i er QueuedTransact i onSet : Applier queue GTID set.

e appl i er QueuedTransacti onSet Si ze: Applier queue size.

e coordi nat or St at e: Coordinator state.

e coordi nat or Thr eadSt at e: Current state of coordinator thread.

e recei ver Ti neSi nceLast Message: Time since last message received by 1/O thread.

212

Monitoring Read Replicas

e replicationSources: Lists the IP addresses and port numbers of the configured replication

sources for the Read Replica, ordered by weight.

* ForCl uster.status({extended: 3}):

e opti ons: an array of the following configured options:
« del ay: Replication delay.
* heart beat Peri od: Heartbeat interval.
e retryCount : Retry count.
e connect Ret r y: connectRetry
Describe
Cl uster.describe() returns the following for Read Replicas:

e addr ess: the address of the Read Replica.

| abel : the label provided when the Read Replica was created.

» replicationSources: The Read Replica's replication source, PRIMARY or SECONDARY.

* rol e: READ_REPLI CA

{
"address": "127.0.0.1:4110",
"l abel ": "RReplical",
“replicationSources": [
" PRI MARY"

Il
"rol e": "READ_REPLI CA"

Jic
{
"address": "127.0.0.1:4120",
"l abel ": "RReplica2",
“replicationSources": [
" PRI MARY"
I
"“rol e": "READ REPLI CA"
Ji e

213

214

Chapter 9 MySQL InnoDB ClusterSet

Table of Contents

9.1 INNODB CluSsterSet REQUITEMENTSciiiiiieiiii ettt e e 217
9.2 INNODB ClusterSet LIMITAtIONSuuiiiiiiiieiiii e e e e eeeaas 220
9.3 User Accounts for INNODB CIUSIEISELiiiiiiiieiiiii e 221
9.4 Deploying INNODB CIUSTEISELuuiiiiiiiiei ettt ettt et e e e eeena e eeee 224
9.5 Asynchronous Replication Channel OPLiONSoviiiiiiiiiiiii e 235
9.6 Integrating MySQL Router With INNODB CIUSTEISEtc.uuiiiiiiiiieiiiieeee e 236
9.7 InnoDB ClusterSet Status and TOPOIOGYcveeuruiiiiiiieiiii e 240
9.8 InnoDB ClusterSet Controlled SWILCROVETuuiiiiiiiiii e 247
9.9 InnoDB ClusterSet EMergency FailOVErcoooiiiiiiiiiiie e 252
9.10 InnoDB ClusterSet Repair and REJOINccouuuiiiiiiiiiiiii et 257

9.10.1 Fencing Clusters in an INNODB CIUSIErSetccoouuiiiiiiiiiieiii e 259

9.10.2 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters 262

9.10.3 Repairing Member Servers and Clusters in an InnoDB ClusterSetcceevveeeens 264

9.10.4 Removing a Cluster from an INNODB CIUStErSetccccovieiiiiiiieiiiiiieeiii e 266

9.10.5 Rejoining a Cluster to an INNODB CIUSIErSetcovuviiiiiiiiiieie e 268
9.11 DiSSOIVING @ CIUSTEISELuiiiiitiiee ettt et e et ettt e e e e e e enaes 270
9.12 Upgrade INNODB CIUSIEISELccuuiiiiiiiiii ettt 270

MySQL InnoDB ClusterSet provides disaster tolerance for InnoDB Cluster deployments by linking

a primary InnoDB Cluster with one or more replicas of itself in alternate locations, such as different
datacenters. InnoDB ClusterSet automatically manages replication from the primary cluster to the
replica clusters using a dedicated ClusterSet replication channel. If the primary cluster becomes
unavailable due to the loss of the data center or the loss of network connectivity to it, you can make a
replica cluster active instead to restore the availability of the service. See Chapter 8, MySQL InnoDB
Cluster for information on deploying InnoDB Cluster.

Emergency failover between the primary InnoDB Cluster and a replica cluster in an InnoDB ClusterSet
deployment can be triggered by an administrator through MySQL Shell (see MySQL Shell 9.4), using
AdminAPI (see Section 6.1, “Using MySQL AdminAPI"), which is included with MySQL Shell. You can
also carry out a controlled switchover from the primary cluster to a replica cluster while the primary
cluster is still available, for example if a configuration change or maintenance is required on the primary
cluster. MySQL Router (see MySQL Router 9.4) automatically routes client applications to the right
clusters in an InnoDB ClusterSet deployment.

A replica cluster in an InnoDB ClusterSet deployment cannot diverge from the primary cluster while it
remains a passive replica, because it does not accept writes. It can be read by applications, although

a typical amount of replication lag for asynchronous replication should be expected, so the data might
not be complete yet. The minimum size of a replica cluster is a single member server instance, but

a minimum of three members is recommended for fault tolerance. If more members are needed, for
example because the replica cluster has become a primary cluster through a switchover or failover, you
can add further instances at any time through MySQL Shell using AdminAPI. There is no defined limit
on the number of replica clusters that you can have in an InnoDB ClusterSet deployment.

The example InnoDB ClusterSet deployment in the following diagram consists of a primary InnoDB
Cluster in the Rome datacenter, with replica clusters in the Lisbon and Brussels datacenters. The
primary cluster and its replica clusters each consist of three member server instances, one primary and
two secondaries.

215

https://dev.mysql.com/doc/mysql-router/9.4/en/

Figure 9.1 InnoDB ClusterSet Overview

ooo ooo ooo ooo ooo ooo

ooo goo [=]=]=] ooo [=]=]=] ooo

= = [= = =
Reporting Application Application Reporting Application Application Application Reporting Application

Read/Write Read Only

,,f.‘,/'_“‘

oy g oy

- Ssccnuary @ <& - Secondary Sscannary —Secondary Sscumiary E & Secondary
My My:
InnoDB Cluster InnoDB Cluster InnoDB Cluster
@ REPLICA @ PRIMARY @ REPLICA @
. .’ .. R

Lisbon Rome Brussels

My Router Router Router Router My Router My. Router
Target: Lisbon Target PRIMARY Target Rome Target PRIMARY Target: PRIMARY Target: Brussels
Primary \ e / Primary
m Async #Async
Replication | ™ __j..a=-=" === "ceeelgl - Replication »

Asynchronous replication channels replicate transactions from the primary cluster to the replica
clusters. A ClusterSet replication channel named cl ust er set _repl i cati on is set up on each
cluster during the InnoDB ClusterSet creation process, and when a cluster is a replica, it uses the
channel to replicate transactions from the primary. The underlying Group Replication technology
manages the channel and ensures that replication is always taking place between the primary server
of the primary cluster (as the sender), and the primary server of the replica cluster (as the receiver). If
a new primary is elected for either the primary cluster or the replica cluster, the ClusterSet replication
channel is automatically re-established between them.

Although each cluster in the example InnoDB ClusterSet deployment has a primary MySQL server,
only the primary server of the primary InnoDB Cluster accepts write traffic from client applications.

The replica clusters do not. MySQL Router instances route all write traffic to the primary cluster in the
Rome datacenter, where it is handled by the primary server. Most of the read traffic is also routed to
the primary cluster, but the reporting applications that only make read requests are specifically routed
to the replica cluster in their local datacenter instead, to save on networking resources. Notice that the
MySQL Router instances that handle read and write traffic are set to route traffic to the primary InnoDB
Cluster in the InnoDB ClusterSet whichever one that is. So if one of the other clusters becomes the
primary following a controlled switchover or emergency failover, those MySQL Router instances will
route traffic to that cluster instead.

It is important to know that InnoDB ClusterSet prioritizes availability over data consistency in order

to maximize disaster tolerance. Consistency within each individual InnoDB Cluster is guaranteed by
the underlying Group Replication technology. However, normal replication lag or network partitions
can mean that some or all of the replica clusters are not fully consistent with the primary cluster at the
time the primary cluster experiences an issue. In these scenarios, if you trigger an emergency failover,
any unreplicated or divergent transactions are at risk of being lost, and can only be recovered and
reconciled manually (if they can be accessed at all). There is no guarantee that data will be preserved
in the event of an emergency failover.

You should therefore always make an attempt to repair or reconnect the primary cluster before
triggering an emergency failover. AdminAPI removes the need to work directly with Group Replication
to repair an InnoDB Cluster. If the primary cluster cannot be repaired quickly enough or cannot

be reached, you can go ahead with the emergency failover to a replica InnoDB Cluster, to restore
availability for applications. During a controlled switchover process, data consistency is assured, and
the original primary cluster is demoted to a working read-only replica cluster. However, during an
emergency failover process, data consistency is not assured, so for safety, the original primary cluster
is marked as invalidated during the failover process. If the original primary cluster remains online, it
should be shut down as soon as it can be contacted.

216

https://dev.mysql.com/doc/refman/9.4/en/group-replication.html

InnoDB ClusterSet Requirements

You can rejoin an invalidated primary cluster to the InnoDB ClusterSet topology afterwards, provided
that there are no issues and the transaction set is consistent with the other clusters in the topology.
Checking, restoring, and rejoining the invalidated primary cluster does not happen automatically - an
administrator needs to do this using AdminAPI commands. You can choose to repair the invalidated
primary cluster and bring it back online, or you can discard the original primary cluster, continue to use
the new primary cluster as the primary, and create new replica clusters.

9.1 InnoDB ClusterSet Requirements

The basis of an InnoDB ClusterSet deployment is an existing InnoDB Cluster at MySQL 8.0.27 or
higher, and a number of standalone MySQL Server instances that can be formed into replica clusters to
provide disaster tolerance for this primary cluster. If you want to try out InnoDB ClusterSet, you can use
MySQL Shell to set up a sandbox deployment on your local machine. You will need to install MySQL
Server 8.0.27 or higher and MySQL Router 8.0.27 or higher. Using AdminAPI commands in MySQL
Shell, you can create sandbox MySQL Server instances, set up an InnoDB Cluster using some of
them, then follow the instructions in this section to set up an InnoDB ClusterSet deployment using the
others as replica clusters. For instructions to deploy and manage sandbox instances, see Section 6.8,
“AdminAPI MySQL Sandboxes”.

Important

MySQL Router and MySQL Server available. The latest version of MySQL Shell

A It is recommended that you always use the most recent version of MySQL Shell,
can be used with any GA version of MySQL 8.0, or higher.

To set up a production deployment of InnoDB ClusterSet, ensure that you have the following
components in place:

» Software components
* InnoDB Cluster
* MySQL Server instances

* MySQL Router instances

Software components

MySQL Server 8.0.27 or higher, MySQL Shell 8.0.27 or higher, and MySQL Router 8.0.27 or higher are
required to set up an InnoDB ClusterSet deployment. These are the software components required by
AdminAPI. See Section 6.2, “Installing AdminAPI Software Components”.

Always use the most recent versions of MySQL Shell and MySQL Router that are available to you, and
ensure that their version is the same as or higher than the MySQL Server release. Both products can
manage older MySQL Server releases, but older versions cannot manage features in newer MySQL
Server releases.

InnoDB Cluster

An existing InnoDB Cluster that is to be the primary cluster. This is the cluster for which the InnoDB
ClusterSet deployment provides disaster tolerance. A Group Replication group can be adopted as an
InnoDB Cluster. For instructions to set up an InnoDB Cluster or adopt a Group Replication group, see
Section 8.4, “Deploying a Production InnoDB Cluster”.

The InnoDB Cluster that is to be the primary cluster must meet these requirements:

» The cluster must not already be part of an InnoDB ClusterSet deployment. An InnoDB Cluster can
only participate in one InnoDB ClusterSet deployment.

» All member server instances in the cluster must be at MySQL 8.0.27 or higher.

217

MySQL Server instances

e The InnoDB Cluster metadata version must be 2.1.0 or higher. When you carry out any operation
on a cluster (for example a dba. get Cl ust er () command), AdminAPI warns you if the cluster's
metadata needs updating. You can update the metadata to an appropriate version for InnoDB
ClusterSet operations by issuing a dba. upgr adeMet adat a() command in MySQL Shell 8.0.27 or
higher. Note that after you upgrade a cluster's metadata, it cannot be administered by older MySQL
Shell versions. For more information, see Section 6.10, “Upgrade Metadata Schema”.

e The cluster must be in single-primary mode. An InnoDB Cluster can be in single-primary or multi-
primary mode, but InnoDB ClusterSet does not support multi-primary mode. You can use a
cluster.sw tchToSi ngl ePri maryMode() command in MySQL Shell to convert a cluster in
multi-primary mode to single-primary mode, and choose an instance to be the primary server.

» For MySQL Server instances from version 8.0.27 to 8.2.0, for an InnoDB Cluster that is part of
an InnoDB ClusterSet, the gr oup_repl i cati on_vi ew change_uui d system variable must
be set with the same value on all the member servers in the cluster to supply an alternative
UUID for view change events. From MySQL 8.0.27, an InnoDB Cluster that is created using the
dba. creat eCl ust er () command gets a value generated and set for the system variable on
all the member servers. InnoDB Cluster created before MySQL 8.0.27 might not have the system
variable set, but the InnoDB ClusterSet creation process checks for this and fails with a warning if it
is absent.

Note
@ This is not required for InnoDB Clusters running MySQL Server 8.3.0 or
higher.

The Cl ust er. rescan() command can be used to generate and set a value for
group_replication_view change uui d on all the member servers in an InnoDB Cluster. The
command returns a warning message to let you know you must set a value for the system variable,
or you can enable the option updat eVi ewChangeUui d to generate and set a value automatically
during the scan. When you have rebooted the cluster, you can retry the InnoDB ClusterSet creation
process.

» There must be no inbound replication channels on any member server from servers outside the
group. The channels created automatically by Group Replication (gr oup_repl i cati on_appl i er
and group_replication_recovery) are allowed.

* You need to know the InnoDB Cluster server configuration account user name and password for the
cluster (see Section 9.3, “User Accounts for InnoDB ClusterSet”). This is the account that was set up
using dba. conf i gur el nst ance on the member servers in the InnoDB Cluster. You will need to
create this account on the MySQL Server instances that will form the replica clusters, and use it to
set them up.

Note
3 You cannot use an InnoDB Cluster administrator account (set up using
cl uster. set upAdni nAccount ()) to set up the standalone MySQL Server
instances for the replica cluster. cl ust er . set upAdmni nAccount () is not
available on a standalone instance, and if you create one of those accounts
on the standalone instances using dba. conf i gur el nst ance or manually, it
will subsequently be replicated from the primary cluster, causing replication to
stop with an error.

At the time when you create the InnoDB ClusterSet deployment, the InnoDB Cluster must be online
and healthy, and its primary member server must be reachable using MySQL Shell.

MySQL Server instances

A number of standalone MySQL Server instances which you can make into one or more replica
clusters. A minimum of three member servers in each replica cluster is recommended for fault

218

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid

MySQL Server instances

tolerance, although the InnoDB ClusterSet deployment can include replica clusters consisting of a
single server instance. In a production deployment for disaster tolerance, each replica cluster would be
in an alternate location, such as a different datacenter.

Each of the MySQL Server instances that you use in the replica clusters must meet these
requirements:

e The server is not already part of an InnoDB ClusterSet deployment, InnoDB ClusterSet, or InnoDB
ReplicaSet.

* You do not need the data on the server. If the server has previously been used for processing
transactions, the data will be overwritten when it is made into a member of the replica cluster (unless
the transactions happen to be a subset of those on the primary cluster).

» The server is not part of a currently running Group Replication group (even if the individual server
has left the group). You cannot adopt an existing Group Replication group or a current or ex-member
of it as a replica cluster. If you want to use server instances that are currently in a replication group,
issue STOP GROUP_REPLI CATI ON on all the members of the group, so that the group is fully offline.
The separate server instances can then be made into a replica cluster using AdminAPI.

Important

A Exercise caution over using former Group Replication group members as
members of an InnoDB ClusterSet replica cluster, especially if you made a lot
of changes to the Group Replication configuration options, or if the group was
created in a much earlier release and you made configuration changes based
on the situation in that release.

The InnoDB ClusterSet replica cluster creation process overwrites

any existing persisted Group Replication configuration options for

which you specify new settings on the command. It also always
overwrites the following system variables, even if you do not specify
them on the command: gr oup_repl i cati on_group_nane,
group_replication_group_seeds,

group_replication_| ocal address,

group_replication_view change_uui d (versions 8.0.27 to 8.2.0, only),
and group_replication_enforce_update_everywhere_checks.
However, other Group Replication configuration options that you have
changed are left as they were. These custom settings could potentially
interfere with the running or performance of InnoDB ClusterSet, which
expects the MySQL 8.0.27 defaults to be used for Group Replication
configuration options that are not changed during the InnoDB ClusterSet
replica cluster creation process.

If you do want to use a configured Group Replication server, check and
remove any customizations if possible, in particular checking that the
group_replication_single primary node system variable is set
to the default of ON. The safest option for an ex-Group Replication group
member in this situation is to reinstall MySQL Server, rather than upgrading
the installation to MySQL 8.0.27.

» The server is at MySQL 8.0.27 or higher. If you want to provision further member servers for the
replica cluster by cloning, all the servers must be at the same release and on the same operating
system.

» The server has a server ID (ser ver _i d system variable) and server UUID (ser ver _uui d system
variable) that are unique in the entire InnoDB ClusterSet, including any offline or unreachable
member servers.

* No inbound replication channels are configured on the server. Only the Group Replication channels
(group_replication_applier andgroup_replication_recovery) are allowed.

219

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_enforce_update_everywhere_checks
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_single_primary_mode
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/9.4/en/replication-options.html#sysvar_server_uuid

MySQL Router instances

» The server can connect to the primary cluster in the InnoDB ClusterSet, and the primary cluster can

connect to it.

» At the time when you create the InnoDB ClusterSet deployment, the server must be online and

healthy, and reachable using MySQL Shell.

The required user account credentials, InnoDB ClusterSet metadata, and Group Replication
configuration will be set up during the InnoDB ClusterSet replica cluster creation process.

MySQL Router instances

One or more MySQL Router instances to route client application traffic to the appropriate clusters in the
InnoDB ClusterSet deployment. The recommended deployment of MySQL Router is on the same host
as the client application.

Important

A If you are using an existing InnoDB Cluster as the primary cluster in your

InnoDB ClusterSet deployment, and you bootstrapped MySQL Router against
that cluster already, bootstrap it again using the - - f or ce option against the
InnoDB ClusterSet, then stop and restart MySQL Router. The settings in the
MySQL Router instance's static configuration file need to be updated for InnoDB
ClusterSet. Follow the process described in Section 9.6, “Integrating MySQL
Router With InnoDB ClusterSet” to do this.

9.2 InnoDB ClusterSet Limitations

InnoDB ClusterSet uses InnoDB Cluster technology, which in turn uses Group Replication technology.
The limitations for both of those technologies therefore apply to server instances used with InnoDB
ClusterSet. See Section 8.2, “InnoDB Cluster Limitations” and Group Replication Limitations.

» InnoDB ClusterSet prioritizes availability over consistency in order to maximize disaster tolerance.

Normal replication lag or network partitions can mean that some or all of the replica clusters are not
fully consistent with the primary cluster at the time the primary cluster experiences an issue. In these
scenarios, if you trigger an emergency failover, any unreplicated or divergent transactions are at risk
of being lost, and can only be recovered and reconciled manually (if they can be accessed at all).
There is no guarantee that data will be preserved in the event of an emergency failover.

If you cannot tolerate any loss of transactions or data during a failover, instead of using InnoDB
ClusterSet as your solution, consider using a single InnoDB Cluster with the member servers
deployed across multiple datacenters. Bear in mind that this solution would have a noticeable impact
on write performance, as a stable and low latency network is important for InnoDB Cluster member
servers to communicate with each other for consensus on transactions.

InnoDB ClusterSet does not fail over automatically to a replica cluster. Because a loss of
transactions is possible, and data consistency is not guaranteed, an administrator must make and
implement the decision to carry out an emergency failover. If the original primary cluster remains
online, it should be shut down as soon as it can be contacted.

InnoDB ClusterSet only supports asynchronous replication, and cannot use semisynchronous
replication.

InnoDB ClusterSet only supports single-primary mode for the primary and replica InnoDB Cluster
instances. Multi-primary mode is not supported.

An InnoDB ClusterSet deployment can only contain a single read-write primary cluster. All replica
clusters are read-only. An active-active setup, with multiple primary clusters, is not permitted,
because data consistency is not guaranteed in the event that a cluster fails.

220

https://dev.mysql.com/doc/refman/9.4/en/group-replication-limitations.html

User Accounts for InnoDB ClusterSet

e An InnoDB Cluster can participate in only one InnoDB ClusterSet deployment. Each InnoDB
ClusterSet deployment therefore provides an availability and disaster recovery solution for a single

InnoDB Cluster.

» An existing InnoDB Cluster cannot be used as a replica cluster in an InnoDB ClusterSet deployment.
A replica cluster must be started from a single server instance, as a new InnoDB Cluster. It is
possible to use server instances that are part of a Group Replication group as a replica cluster, but
you must completely end the Group Replication group first, and be careful of any customized Group
Replication settings that might affect InnoDB ClusterSet. For more information, see Section 9.1,
“InnoDB ClusterSet Requirements”.

* InnoDB ClusterSet does not support the use of instances running MySQL Server 5.7.

9.3 User Accounts for InnoDB ClusterSet

The member servers in an InnoDB Cluster make use of three types of user accounts. One InnoDB
Cluster server configuration account is used to configure the server instances for the cluster. One or
more InnoDB Cluster administrator accounts can be created for administrators to manage the server
instances after the cluster has been set up. One or more MySQL Router accounts can be created for
MySQL Router instances to connect to the cluster. Each of the user accounts must exist on all of the
member servers in the InnoDB Cluster, with the same user name and the same password.

In an InnoDB ClusterSet deployment, every member server is part of an InnoDB Cluster, so they
require the same types of user accounts. The user accounts from the primary cluster are used for all of
the clusters in the deployment. Each of the user accounts must exist on every member server in every
cluster in the deployment - both the primary cluster and the replica clusters.

InnoDB Cluster server
configuration account

This account is used to create and configure the member servers
of an InnoDB Cluster and InnoDB ClusterSet deployment. Each
member server has only one server configuration account. The
same user account name and password must be used on every
member server in the cluster. You can use the r oot account on
the servers for this purpose, but if you do this, the r oot account on
every member server in the cluster must have the same password.
This is not recommended for security reasons.

The preferred approach is to create the InnoDB Cluster server
configuration account using a dba. confi gur el nst ance()
command with the cl ust er Adni n option. For better security,
specify the password at the interactive prompt, otherwise specify

it using the cl ust er Admi nPasswor d option. Create the same
account, with the same user name and password, in the same way
on every server instance that will be part of the InnoDB Cluster -
both the instance to which you connect to create the cluster, and the
instances that will join the cluster after that.

The dba. confi gur el nst ance() command grants the account
the required permissions automatically. You may set up the

account manually if you prefer, granting it the permissions listed in
Configuring InnoDB Cluster Administrator Accounts Manually. The
account needs full read and write privileges on the InnoDB Cluster
metadata tables, in addition to full MySQL administrator privileges.

The InnoDB Cluster server configuration account that you

create using the dba. confi gur el nst ance() operation is not
replicated to other servers in the InnoDB Cluster or in the InnoDB
ClusterSet deployment. MySQL Shell disables binary logging for the
dba. confi gurel nst ance() operation. This means that you must
create the account on every server instance individually.

221

User Accounts for InnoDB ClusterSet

InnoDB Cluster administrator
accounts

In an InnoDB ClusterSet deployment, the same InnoDB Cluster
server configuration account must exist on every server instance
that is used in the deployment. When you set up a replica cluster,
you therefore need to issue a dba. confi gur el nst ance()
command with the cl ust er Adm n option to create the account on
every server instance that is going to be part of the replica cluster.
The command must name the InnoDB Cluster server configuration
account from the primary cluster, and you must specify the same
password for it. You need to do this step before joining the instances
into the replica cluster, so the account is available to configure the
replica InnoDB Cluster and the InnoDB ClusterSet deployment
metadata and replication.

These accounts can be used to administer InnoDB Cluster and
InnoDB ClusterSet after you have completed the configuration
process. You can set up more than one of them. Each account must
exist on every member server in an InnoDB Cluster with the same
user name and password, and on every member server of every
cluster in an InnoDB ClusterSet deployment.

To create an InnoDB Cluster administrator account

for an InnoDB ClusterSet deployment, you issue a

cl uster. set upAdm nAccount () command on one member
server in the primary cluster, after you have added all the
instances to that cluster. This command creates an account

with the user name and password that you specify, with all the
required permissions. A transaction to create an account with

cl uster. set upAdnm nAccount () is sent to all the other server
instances in the cluster to create the account on them.

If the primary InnoDB Cluster already existed when you began

to set up the InnoDB ClusterSet deployment, an InnoDB Cluster
administrator account likely already exists. In that case, you do not
need to issue cl ust er . set upAdmi nAccount () again, unless
you want to create further InnoDB Cluster administrator accounts.

The replica clusters in an InnoDB ClusterSet deployment must
have the same set of InnoDB Cluster administrator accounts

as the primary cluster. However, when you create the replica
clusters, do not attempt to set up the InnoDB Cluster administrator
accounts yourself. The transactions to create accounts with

cl uster. set upAdm nAccount () are written to the binary log
for the primary cluster, and they are automatically replicated from
the primary cluster to the replica clusters during the provisioning
process. When a replica cluster applies these transactions it creates
the same accounts on the member servers in the replica cluster.

If the accounts already exist on a server in the replica cluster, this
causes a replication error, and the server cannot join the cluster. So
you need to wait for them to be replicated.

If a transaction to create an InnoDB Cluster administrator account
happened a while back on the primary cluster, it might take some
time for the transaction to be replicated and for the account to

222

User Accounts for InnoDB ClusterSet

InnoDB ClusterSet Replication
Accounts

MySQL Router accounts

appear on a replica cluster. Selecting cloning as the provisioning
method for the replica cluster speeds up the process.

Note
@ If the primary InnoDB Cluster was set up

in a version before MySQL Shell 8.0.20,

the cl ust er. set upAdm nAccount ()
command might have been used with the
updat e option to update the privileges of the
InnoDB Cluster server configuration account.
This is a special use of the command that

is not written to the binary log, and is not
replicated to the replica clusters.

When the InnoDB ClusterSet deployment is complete, you may

use cl ust er. set upAdni nAccount () to create further InnoDB
Cluster administrator accounts for the ClusterSet. You can do this
while connected to any member server in the InnoDB ClusterSet
deployment, either in the primary cluster or in a replica cluster. The
transaction to create the account is routed to the primary cluster to
be executed, then replicated to all the servers in the replica clusters,
where it creates the account on all of them.

creat eCl ust er Set () creates one replication account
for each member cluster on the primary member of that
cluster. These accounts are named using the format:
nysql _i nnodb_cs_uni quel D.

For example, in a three-member ClusterSet, accounts similar to the
following are created:

* mysql_innodb_cs_8269bdfg6
* mysql_innodb_cs_c24bef67
* mysql_innodb_cs_ed0Obb30c

Only one account, the primary, is used for replication. The others
are used only if their cluster is promoted to primary.

These accounts are used by MySQL Router to connect to server
instances in an InnoDB Cluster and in an InnoDB ClusterSet
deployment. You can set up more than one of them. Each account
must exist on every member server in an InnoDB Cluster with

the same user name and password, or SSL certificate, and on
every member server of every cluster in an InnoDB ClusterSet
deployment.

The process to create a MySQL Router account is the same

as for an InnoDB Cluster administrator account, but using a

cl uster. setupRout er Account () command. You create

the accounts on one member server in the primary cluster, or
use accounts that already exist, if the primary InnoDB Cluster
already existed when you began to set up the InnoDB ClusterSet
deployment. Then let the replica clusters apply the transactions
to create the accounts on their member servers. For instructions
to create or upgrade a MySQL Router account, see Section 7.2,
“Configuring the MySQL Router User”.

223

Deploying InnoDB ClusterSet

9.4 Deploying InnoDB ClusterSet

Follow this procedure to deploy a sandbox or production InnoDB ClusterSet deployment. A sandbox
deployment is where all the MySQL server instances and other software run on a single machine. For a
production deployment, the server instances and other software are on separate machines.

The procedure assumes you already have the following components, as listed in Section 9.1, “InnoDB
ClusterSet Requirements”:

» An existing InnoDB Cluster that meets the requirements stated in Section 9.1, “InnoDB ClusterSet
Requirements”. This is the primary cluster that the InnoDB ClusterSet deployment supports.

* MySQL Shell, connected to the existing InnoDB Cluster. MySQL Shell's AdminAPl commands are
used in the deployment procedure.

* MySQL Router, to bootstrap against InnoDB ClusterSet. MySQL Router instances that you
had already bootstrapped against the existing InnoDB Cluster can be reused in an InnoDB
ClusterSet deployment, but you need to bootstrap them again to implement the InnoDB ClusterSet
configuration.

» A number of standalone MySQL Server instances (which are not part of an InnoDB Cluster or
InnoDB ReplicaSet) to make into one or more replica clusters. They must meet the requirements
stated in Section 9.1, “InnoDB ClusterSet Requirements”. A minimum of three member servers in
each replica cluster is recommended for tolerance of failures.

The user account that you use during the InnoDB ClusterSet deployment procedure is the InnoDB
Cluster server configuration account from the primary cluster. This is the account that was created

on the primary cluster's member servers using a dba. conf i gur el nst ance() command with the

cl ust er Adm n option. Each member server has only one server configuration account. The same
user account name and password must be used on every member server in the cluster, and you need
to create it on all the servers in the InnoDB ClusterSet deployment. It is possible to use the r oot
account as the InnoDB Cluster server configuration account, but this is not recommended, because it
means the r oot account on every member server in the cluster must have the same password. For
more information, see Section 9.3, “User Accounts for InnoDB ClusterSet”.

To set up the InnoDB ClusterSet deployment, follow this procedure:

1. Connect to any member server in the existing InnoDB Cluster with MySQL Shell, using the InnoDB
Cluster server configuration account to make the connection. For example:

mysql -j s> \connect icadm n@?27.0.0.1: 3310

Creating a session to 'icadm n@?27.0.0.1: 3310’

Pl ease provide the password for 'icadm n@27.0.0.1: 3310": *****xxkkkkkxx
Save password for 'icadm n@?27.0.0.1:3310"'? [Y]es/[NJ o/ Ne[v]er (default No):
Fet ching schema nanes for autoconpletion... Press "C to stop.

Cl osing old connection. ..

Your MySQL connection id is 59

Server version: 8.0.27-conmmercial MySQ. Enterprise Server - Conmerci al

No default schema sel ected; type \use <schema> to set one.

<C assi cSessi on: i cadm n@?27. 0. 0. 1: 3310>

In this example:

e icadm n@?27. 0. 0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the InnoDB Cluster.

The URI-like connection string is comprised of the following elements:
e i cadm n is the user name for the InnoDB Cluster server configuration account.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

224

Deploying InnoDB ClusterSet

2. Issue a dba. get Cl ust er () command to get the Cl ust er object that represents the InnoDB
Cluster, assigning it to a variable so that you can work with it. For example:

nysql -js> clusterl = dba. getCl uster ()
<Cl uster: cl ust er one>

In this example, cl ust er one is the name of the existing InnoDB Cluster, as shown in the
cl ust er Nane field returned by the cl ust er. st at us() command, and the returned Cl ust er
object is assigned to the variable cl ust er 1.

It is important to do this when you are connected to the server instance using the InnoDB Cluster
server configuration account. The returned object defaults to using the account it was fetched with
for operations where permissions are required. Some operations during the InnoDB ClusterSet
deployment process require permissions, and the default user account stored in the object is used
for this, so that the process does not need to store any other user accounts.

3. Issueacluster.createC usterSet() command, using the Cl ust er object, to create the
InnoDB ClusterSet with the existing InnoDB Cluster as the primary cluster. For example:

nysql -j s> nyclusterset = clusterl.createCl usterSet('testclusterset')

A new ClusterSet will be created based on the Cluster 'clusterone'.

* Validating Cluster 'clusterone’ for ClusterSet conpliance.

* Creating InnoDB ClusterSet 'testclusterset' on 'clusterone'...

* Updating metadata. . .

ClusterSet successfully created. Use ClusterSet.createReplicaCluster() to add Replica Clusters to it

<Cl ust er Set : testcl ust erset >

In this example, cl ust er one is the name of the existing InnoDB Cluster, cl ust er 1 is the variable
to which the returned Cl ust er object was assigned, t est cl ust er set is the name for the
InnoDB ClusterSet that you are creating, and nmycl ust er set is the variable to which the returned
Cl ust er Set object is assigned.

e The domai nNane parameter is required and specifies the name of the InnoDB ClusterSet
deployment that you are creating (t est cl ust er set in the example).

The domai nNane must be non-empty and no greater than 63 characters long. It can only start
with an alphanumeric character or with _ (underscore), and can only contain alphanumeric, _
(‘underscore), . (period), or - (hyphen) characters.

< Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them. For example:

nysql -j s> nyclusterset = clusterl.createClusterSet('testclusterset', {dryRun: true})
* Validating Cluster 'clusterone' for CusterSet conpliance.

NOTE: dryRun option was specified. Validations will be executed, but no changes will be appli ed.
* Creating InnoDB ClusterSet 'clusterset' on 'clusterone'...

* Updating netadata...
dryRun finished.

* Use the cl ust er Set Repl i cati onSsl Mode option if you want to require or disable encryption
(TLS/SSL) for the replication channels in the InnoDB ClusterSet deployment. The default
setting, AUTQ, enables encryption if the server instance supports it, and disables it if it does not.

225

Deploying InnoDB ClusterSet

REQUI RED enables encryption for all the replication channels, and DI SABLED disables encryption
for all the replication channels. For example:

nmysql -j s> nmyclusterset = clusterl.createC usterSet("testclusterset”, {clusterSetReplicationSslMde

cl ust er Set Repl i cati onSsl Mode supports VERI FY_CA and VERI FY_| DENTI TY. For
example:

nmysql -j s> nycl usterset = cluster.createClusterSet("testclusterset”, {"clusterSetReplicationSslMde":"VE

When you issue the cl ust er. creat eC ust er Set () command, MySQL Shell checks that the
target InnoDB Cluster complies with the requirements to become the primary cluster in an InnoDB
ClusterSet deployment, and returns an error if it does not. If the target InnoDB Cluster meets the
requirements, MySQL Shell carries out the following setup tasks:

» Updates the metadata schema to include InnoDB ClusterSet metadata.

e Setsthe skip replica start system variable to ONon all the member servers so that
replication threads are not automatically started.

* Adds the target InnoDB Cluster to the InnoDB ClusterSet in the metadata and marks it as the
primary cluster.

* Returns the Cl ust er Set object that represents the InnoDB ClusterSet.

Verify that the InnoDB ClusterSet deployment that you have created is healthy by issuing a
cl usterSet. status() command, using the returned Cl ust er Set object. For example:

nysql -j s> nycl usterset. status()

"clusters": {
"clusterone": {
"clusterRol e": "PRI MARY",
"gl obal Status": "OK",
“primary": "127.0.0. 1: 3310"
}

donmi nNanme": "testclusterset"”,

"gl obal Pri maryl nstance": "127.0.0. 1: 3310"
“primaryCluster": "clusterone",

"status": "HEALTHY",

"statusText": "All Clusters available."

}

You can also use a cl ust er. st at us() command to view the cluster itself. Alternatively, you can
select the extended output for cl ust er Set . st at us() to see the detailed status for the clusters
in the InnoDB ClusterSet topology. For example:

nysql -j s> nycl ust erset. status({extended: 1})

"clusters": {
"clusterone": {

"clusterRole": "PR MARY",

"gl obal Status": "OK",

"primry": "127.0.0.1: 3310",

"status": "OK',

"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",

"t opol ogy": {

"127.0.0.1:3310": {

"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",

"nmode": "RI'W,
"status": "ONLINE",
"version": "8.0.27"

H
"127.0.0.1:3320": {

226

https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_skip_replica_start

Deploying InnoDB ClusterSet

"address": "127.0.0. 1: 3320",

"menber Rol e": " SECONDARY",

"nmode": "R O,

“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",

“version': "8.0.27"

127.0.0. 1: 3330": {

"address": "127.0.0. 1: 3330",

"menber Rol e": " SECONDARY",

"nmode": "R O,

“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",

"version": "8.0.27"
}
},
"transactionSet": "953a51d5-2690- 11ec-ba07-00059a3c7a00: 1, c51clbl5-269e-1lec- b9ba- 00059:¢
}
},
"domai nNane": "testclusterset",

"gl obal Pri maryl nstance": "127.0.0.1: 3310",
"met adat aServer": "127.0.0. 1: 3310",

“primaryCluster": "clusterone",
"status": "HEALTHY",
"statusText": "All Custers available."

See Section 9.7, “InnoDB ClusterSet Status and Topology” for more information and a description
of the output from the cl ust er Set . st at us() command.

If you want to get the Cl ust er Set object representing the InnoDB ClusterSet for a
connected server instance at any time, for example after restarting MySQL Shell, use a
dba. get Cl uster Set () orcluster.getC usterSet() command. For example:

nysql -j s> nycl usterset = dba. get Cl uster Set ()
<Cl ust er Set : testcl usterset>

Assigning a returned Cl ust er or Cl ust er Set object to a variable enables you to execute further
operations against the cluster or ClusterSet using the object's methods. The returned object uses
a new session, independent from MySQL Shell's global session. This ensures that if you change
the MySQL Shell global session, the Cl ust er or Cl ust er Set object maintains its session to the
server instance. Note that when you use the object, the server instance from which you got it must
still be online in the InnoDB ClusterSet. If that server instance goes offline, the object no longer
works and you will need to get it again from a server that is still online.

Create the InnoDB Cluster server configuration account on each of the standalone server instances
that will be part of the replica cluster, by issuing a dba. conf i gur el nst ance() command with
the cl ust er Adnmi n option. The account to create is the InnoDB Cluster server configuration
account from the primary cluster, which you used to create the ClusterSet. Don't specify any of

the InnoDB Cluster administrator accounts (created with cl ust er . set upAdmi nAccount ()).
These will be automatically transferred from the primary cluster to the replica clusters during the
provisioning process.

You do not need to connect to the standalone server instances beforehand, as the connection
string is included in the command. In the connection string, use an account with full MySQL
administrator permissions, including permissions to create accounts (W TH GRANT OPTI ON). In
this example, the r oot account is used:

nysql -j s> dba. confi gurel nstance(' root @27.0.0. 1: 4410', {clusterAdnmin: 'icadnmin'})

Pl ease provide the password for 'root @27.0.0.1:4410" : *****k**kkxkskkkx

Save password for 'root@27.0.0.1:4410'? [Y]es/[N o/ Ne[v]er (default No):

Configuring local MySQL instance listening at port 4410 for use in an |InnoDB cluster...
NOTE: | nstance detected as a sandbox.

227

Deploying InnoDB ClusterSet

Pl ease note that sandbox instances are only suitable for deploying test clusters for use within
the sanme host.

This instance reports its own address as 127.0.0. 1: 4410
Password for new account: ****x*xxkkxxskx
Confi rm passwor d: ***x*%kkkkkkkk

appl i erWrker Threads will be set to the default val ue of 4.
The instance '127.0.0.1:4410' is valid to be used in an I nnoDB cl uster.

Cluster admin user 'icadmn' created.
The instance '127.0.0.1:4410' is already ready to be used in an InnoDB cluster.

Successful ly enabl ed parallel appliers.

In this example, r oot @27. 0. 0. 1: 4410 is the URI-like connection string for the standalone
server, and i cadmni n is the user name for the InnoDB Cluster server configuration account that will
be created on the instance. For better security, specify the password for the InnoDB Cluster server
configuration account at the interactive prompt as shown in the example, or you can provide it using
the cl ust er Admi nPasswor d option. The dba. conf i gur el nst ance() command grants the
account the required permissions automatically, although you may set up the account manually if
you prefer, granting it the permissions listed in Configuring InnoDB Cluster Administrator Accounts
Manually. For more details of the dba. confi gur el nst ance() command and its options, see
Section 8.4.2, “Configuring Production Instances for InnoDB Cluster Usage”.

When you issue dba. confi gurel nstance(), MySQL Shell verifies that the server instance
meets the requirements for use with InnoDB Cluster. The requirements for InnoDB ClusterSet will
be checked when you issue the commands to create the replica cluster and add instances to it.

6. Connect to any active instance in the primary cluster that is already in the InnoDB ClusterSet
deployment, using the InnoDB Cluster server configuration account. Ensure you still have the
Cl ust er Set object that was returned when you created the InnoDB ClusterSet, or fetch it again
using dba. get Cl ust er Set () orcl uster. get C ust er Set () . Again, it is important to do
this when you are connected to the server instance using the InnoDB Cluster server configuration
account. The default user account stored in the object is used for some operations during the
InnoDB ClusterSet deployment process, regardless of the account that you specify on the
connection.

7. Issue acl usterSet.createReplicaC uster() command using the Cl ust er Set object to
create the replica cluster, naming one of the standalone server instances. This server instance will
be the replica cluster's primary. The command returns a Cl ust er object for the replica cluster, and
you can assign this to a variable if you want. For example:

nysql -j s> cluster2 = nyclusterset.createReplicaC uster("127.0.0.1:4410", "clustertw", {recoveryProgres
Setting up replica 'clustertwo’ of cluster 'clusterone' at instance '127.0.0.1:4410'.

A new I nnoDB cluster will be created on instance '127.0.0.1:4410'.

Val i dating instance configuration at 127.0.0. 1: 4410. ..

NOTE: |nstance detected as a sandbox.

Pl ease note that sandbox instances are only suitable for deploying test clusters for use within
the same host.

This instance reports its own address as 127.0.0. 1: 4410

I nstance configuration is suitable.

NOTE: G oup Replication will conmunicate with other nmenbers using '127.0.0.1:44101'. Use the

| ocal Address option to override.

* Checking transaction state of the instance...

NOTE: The target instance '127.0.0.1:4410' has not been pre-provisioned (GTID set is enpty). The

Shell is unable to decide whether replication can conpletely recover its state.
The safest and npbst convenient way to provision a new instance is through autonatic clone

228

Deploying InnoDB ClusterSet

provi sioning, which will conpletely overwite the state of '127.0.0.1:4410' with a physical
snapshot from an existing clusterset menber. To use this method by default, set the
'recoveryMet hod' option to 'clone'.

WARNING It should be safe to rely on replication to increnentally recover the state of the new
Replica Cluster if you are sure all updates ever executed in the ClusterSet were done with GTlDs
enabl ed, there are no purged transactions and the instance used to create the new Replica C uster
contains the sane GIID set as the ClusterSet or a subset of it. To use this method by default,
set the 'recoveryMethod' option to 'increnental"'.

Pl ease sel ect a recovery nethod [C]lone/[|]ncremental recovery/[A]bort (default C one):
Waiting for clone process of the new menber to conplete. Press "C to abort the operation.
* Waiting for clone to finish...

NOTE: 127.0.0.1:4410 is being cloned from 127.0. 0. 1: 3310

** Stage DROP DATA: Conpl et ed

NOTE: 127.0.0.1:4410 is shutting down. ..

* Waiting for server restart... ready

* 127.0.0.1: 4410 has restarted, waiting for clone to finish...

** Stage FILE COPY: Conpl eted

** Stage PAGE COPY: Conpl eted

** Stage REDO COPY: Conpl eted

** Stage FILE SYNC: Conpl et ed

** Stage RESTART: Conpl et ed

* Clone process has finished: 72.61 MB transferred in about 1 second (~72.61 MB/S)

Creating InnoDB cluster 'clustertwo' on '127.0.0.1: 4410 ...

Addi ng Seed I nstance. ..

Cluster successfully created. Use C uster.addl nstance() to add MySQL i nstances.
At |least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

* Configuring O usterSet managed replication channel...
** Changi ng replication source of 127.0.0.1:4410 to 127.0.0. 1: 3310

* Waiting for instance to synchronize with PRIMARY Cluster...
** Transactions replicated ####B#HHHHHHIHHHHHHHHHH T 100%
* Updati ng topol ogy

Replica Cluster 'clustertw' successfully created on ClusterSet 'testclusterset'.

<Cl uster:cl ustertwo>

For the cl ust er Set . creat eRepl i caCl ust er () command:

e The i nst ance parameter is required and specifies the host and port number of the standalone
server's MySQL Server instance. This is the server instance that is going to be the primary of the
replica cluster. In the example command above, thisis 127. 0. 0. 1: 4410.

* The cl ust er Nane parameter is required and specifies an identifier for the replica cluster. In
the example command above, cl ust er t wo is used. The name must be unique in the InnoDB
ClusterSet, and it must follow the InnoDB Cluster naming requirements. Only alphanumeric
characters, hyphens (-), underscores (_), and periods (.) can be used, and the name must not
start with a number. The maximum length is 63 characters. The cluster name is case sensitive.

* Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

« Use the r ecover yMet hod option if you want to select a provisioning method. If you do not
specify this as an option, the default setting AUTOis used. In that case, the function compares
the GTID set on the server instance to the GTID set on the primary cluster, and attempts to
determine the most appropriate provisioning method. If this cannot be determined, the function

229

Deploying InnoDB ClusterSet

prompts you to select a provisioning method, or cancels the operation if you are not in interactive
mode.

The provisioning process, which is called distributed recovery, can use cloning, where the

state of the server instance is completely overwritten by a physical snapshot taken from an
existing member server in the cluster. To select this in advance, specify the CLONE setting. The
alternative is incremental state transfer from an existing member server's binary log, in this case
a member of the primary cluster. Here, the server instance receives and applies transactions
from the primary cluster that it does not already have. To select this in advance, specify the

I NCREMENTAL setting.

Use the cl oneDonor option if you want to select a specific server to provide the snapshot that
overwrites the current server, if distributed recovery is carried out by cloning. The operation
chooses a secondary member of the primary cluster by default, or the primary if no secondary is
available. The selected server instance must be a member of the primary cluster in the InnoDB
ClusterSet. Specify a host and port number. IPv6 addresses are not supported for this option.

Use the r ecover yPr ogr ess option to specify the verbosity level (0, 1, or 2) for the distributed
recovery process. Setting 0 shows no progress information, 1 shows detailed static progress
information, and 2 shows detailed dynamic progress information using progress bars. 2 is the
default if standard output is a terminal, otherwise 1 is the default.

Use the t i meout option if you want to set a timeout to wait for the server instance to
synchronize with the primary cluster after it has been provisioned and the ClusterSet replication
channel has been established. By default there is no timeout.

Use the manual St art OnBoot option to specify whether Group Replication starts automatically
and rejoins the cluster when the MySQL server starts up, or whether it must be started manually.
The default, f al se, means Group Replication starts automatically.

Use the communi cat i onSt ack option to define how the members communicate with one
another, using XCOMor MYSQL protocols. See Section 8.5.9, “Configuring the Group Replication
Communication Stack”.

If you are using MySQL 8.0.27, or higher, the default, and recommended, protocol is MYSQL.

The options menber Ssl Mbde, i pAl | ow i st, | ocal Addr ess, exi t St at eActi on,
menber Wi ght, consi st ency, expel Ti neout , and aut oRej oi nTri es are available if you
want to configure the setup of Group Replication for the replica InnoDB Cluster. These options
work in the same way as they do for an InnoDB Cluster that is not part of a ClusterSet. For
details of the options, see Section 8.5, “Configuring InnoDB Cluster”. (Note: i pAl | owl i st and
| ocal Addr ess are available only for the XCOVicommunication stack.)

It is possible to use the options | ocal Addr ess and gr oupNane to set a Group Replication local
address and group identifier. However, this is not recommended, as incorrect values can cause
errors in Group Replication. Only use these options if you already experienced an issue with the
values selected by the InnoDB ClusterSet setup process for these items.

When creating an InnoDB ClusterSet, if you have security requirements that all accounts
created automatically by AdminAPI have strict authentication requirements, you can set

a value for the repl i cati onAl | owedHost configuration option of the ClusterSet. The
replicationAl | owedHost MySQL Shell option allows you to set internally managed
replication accounts for a ClusterSet to a strict subnet based filter instead of the default wildcard
value of %The repl i cati onAl | owedHost option takes a string value. For example, to create

230

Deploying InnoDB ClusterSet

a clusterset called my_cl ust erset _donai n and setthe repl i cati onAl | owedHost option to
192. 0. 2. 0/ 24, issue:

nmysql -j s> <Cl uster>. createCl usterSet (' my_clusterset_domain', {replicationAllowedHost:"'192.0. 2.0/ 2

If you change repl i cati onAl | onedHost on a ClusterSet, the account used for the replication
channel between clusters is changed to allow connections only from the value you specify for
replicationAl | owedHost . The host must be accessible in both the primary and replica
clusters. If not, there is no replication between clusters.

A ClusterSet can be modified after creation to setar epl i cat i onAl | owedHost , by issuing:

nmysql -j s> <C usterset>.setOption('replicationAllowedHost',"'192.0.2.0/24")

When you issue the cl ust er Set . creat eRepl i caC ust er () command, MySQL Shell checks
that the target server instance complies with the requirements to become the primary server in a
replica InnoDB Cluster in an InnoDB ClusterSet deployment, and returns an error if it does not. If
the instance meets the requirements, MySQL Shell carries out the following setup tasks:

« Creates the ClusterSet replication channel cl ust er set _repli cati on, and creates
a replication user with a random password. This is an asynchronous replication channel
between the target instance and the primary server of the primary cluster, which is
managed by InnoDB ClusterSet. Encryption is configured for the channel according to the
cl ust er Set Repl i cat i onSsl Mode option for the InnoDB ClusterSet. MySQL Shell verifies
that the replication setup is working, and returns an error if it is not.

« Provisions the MySQL Server instance with the dataset from the primary InnoDB Cluster and
synchronizes the GTID set, using the selected recovery method. Note that if there is a large
amount of data in the ClusterSet's member servers, distributed recovery could take several
hours.

< Adds the InnoDB Cluster administrator accounts and the MySQL Router administrator accounts
on the server instance. If the instance is provisioned by state transfer from the binary log, the
provisioning process includes the transactions that create the accounts, or else the accounts are
transferred during cloning. Either way, these accounts become available on the server instance.
See Section 9.3, “User Accounts for InnoDB ClusterSet” for more information.

» Configures and starts Group Replication for the replica cluster. The InnoDB ClusterSet replica
cluster creation process overwrites any existing persisted Group Replication configuration
options for which you specify new settings on the cl ust er Set . cr eat eRepl i caCl uster ()
command. It also always overwrites the following configuration options, even if
you do not specify them on the command: gr oup_r epl i cati on_group_nane,
group_replication_group_seeds,group_replication_| ocal address,
group_replication_view change_uui d (versions 8.0.27 to 8.2.0, only), and
group_replication_enforce_update_everywhere_checks. However, any other Group
Replication configuration options that you changed on the server instance prior to using it in the
replica cluster are left as they were. See the important note about this in Section 9.1, “InnoDB
ClusterSet Requirements”.

e Setsthe skip replica start system variable to ONso that replication threads are not
automatically started on the server, and sets the super _read_onl y system variable so that
clients cannot write transactions to the server.

» Disables the Group Replication member action
mysql di sabl e super read only if prinmary sothatsuper read only remains set
on the primary of the cluster after a view change.

« Enables the Group Replication member action
mysqgl start_failover_channel s _if_primary so that asynchronous connection failover
for replicas is enabled for the ClusterSet replication channel. With this function enabled, if the

231

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_enforce_update_everywhere_checks
https://dev.mysql.com/doc/refman/9.4/en/replication-options-replica.html#sysvar_skip_replica_start
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only

Deploying InnoDB ClusterSet

primary that is replicating goes offline or into an error state, the new primary starts replication on
the same channel when it is elected.

» Transfers the ClusterSet metadata to the server instance, creates the replica cluster in the
InnoDB ClusterSet, and adds the target server instance to it as the primary.

* Returns the Cl ust er object for the replica cluster.

Using the Cl ust er object that was returned for the replica cluster by
clusterSet.createReplicaC uster(),issueacluster.addl nstance command naming
another of the standalone server instances. This server instance will be a secondary in the replica
cluster. For example:

nmysql -j s> cluster2. addl nstance(' i cadm n@27.0. 0. 1: 4420')

NOTE: The target instance '127.0.0.1:4420' has not been pre-provisioned (GIlD set is enpty).
Shell is unable to decide whether clone based recovery is safe to use.

The safest and npbst convenient way to provision a new instance is through automatic clone
provi sioning, which will conpletely overwite the state of '127.0.0.1:4420' with a physical
snapshot from an existing cluster nenber. To use this nethod by default, set the
'recoveryMet hod' option to 'clone'.

Pl ease sel ect a recovery nethod [C]lone/[A]bort (default Cone): c
Val i dating instance configuration at |ocal host: 4420...
NOTE: |nstance detected as a sandbox.

The

Pl ease note that sandbox instances are only suitable for deploying test clusters for use within

the sanme host.

This instance reports its own address as 127.0.0. 1: 4420

I nstance configuration is suitable.

NOTE: Group Replication will communicate with other menbers using '127.0.0.1:44201'. Use the

| ocal Address option to override.

A new i nstance will be added to the |InnoDB cluster. Depending on the amount of
data on the cluster this mght take froma few seconds to several hours.

Addi ng instance to the cluster...

* Waiting for the Cluster to synchronize with the PRIMARY Cluster. ..

** Transactions replicated #H###H#H#HHHHHHHHHHHHHHHHHHHHHHHHHH T 100%

* Configuring O usterSet managed replication channel...
** Changi ng replication source of 127.0.0.1:4420 to 127.0.0. 1: 3310

Moni toring recovery process of the new cluster menber. Press "C to stop nonitoring and
let it continue in background.
Cl one based state recovery is now i n progress.

NOTE: A server restart is expected to happen as part of the clone process. If the
server does not support the RESTART command or does not cone back after a
while, you may need to manual ly start it back.

* Waiting for clone to finish...

NOTE: 127.0.0.1:4420 is being cloned from 127. 0. 0. 1: 4410

** Stage DROP DATA: Conpl et ed

** Cl one Transfer
FI LE COPY #####HHH#HHHHIHHHHH R T 2 100% Conpl et ed
PAGE COPY ####H#HIHHHHHBHHIHHHH I T . 100% Conpl et ed
REDO COPY #####HIHHHHHBHIHHH T T . 100% Conpl et ed

NOTE: 127.0.0.1:4420 is shutting down. ..

* Waiting for server restart... ready

* 127.0.0.1: 4420 has restarted, waiting for clone to finish...

** Stage RESTART: Conpl et ed

* Clone process has finished: 72.61 MB transferred in about 1 second (~72.61 MB/S)

State recovery already finished for '127.0.0. 1: 4420’

232

Deploying InnoDB ClusterSet

10.

The instance '127.0.0. 1: 4420 was successfully added to the cluster.

For more details on the cl ust er. addl nst ance command, see Section 8.4.4, “Adding Instances
to an InnoDB Cluster”.

If you need to get the Cl ust er object for the replica cluster again, connect to any active

instance in the replica cluster using the InnoDB Cluster server configuration account and issue
dba. get Cl ust er (). This account is used for some of the operations in the setup process. If the
setup process finds that the account is not present on the standalone server instance, an error is
returned, and you will need to issue dba. confi gur el nst ance() to create the account.

When the command is successful, the server instance is added to the replica cluster and
provisioned with the data for the InnoDB ClusterSet. The donor for a cloning operation will be from
the replica cluster, not the primary cluster.

Repeat the cl ust er. addl nst ance operation to add all of the standalone server instances to the
replica cluster. A minimum of three instances is recommended for tolerance to failures. You can
have up to nine member servers in a replica cluster, which is a limit built into the underlying Group
Replication technology.

Verify that the completed replica cluster and the InnoDB ClusterSet deployment are healthy.

You can do this using a cl ust er. st at us() command to view the replica cluster, and a

cl usterSet.status() command to view the InnoDB ClusterSet deployment. Alternatively, you
can select the extended output for cl ust er Set . st at us() to see the detailed status for all the
clusters. For example:

nysqgl -j s> nycl ust erset. stat us({extended: 1})

"clusters": {
“clusterone": {

"clusterRole": "PR MARY",

"gl obal Status": "OK",

“primary": "127.0.0.1:3310",

"status": "OK',

"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",

"t opol ogy": {

"127.0.0.1:3310": {

"address": "127.0.0.1:3310",
“menber Rol e": " PRI MARY",
"nmode": "RIW,
“status": "ONLINE",
"version": "8.0.27"

"127.0.0. 1: 3320": {

"address": "127.0.0. 1: 3320",

“menber Rol e": " SECONDARY",

"mode": "R O',

“replicati onLagFrom nmedi at eSource": "",
“replicationLagFronOrigi nal Source": "",
“status": "ONLI NE",

“version": "8.0.27"

"127.0.0. 1: 3330": {
“address": "127.0.0.1:3330",
“menber Rol e": " SECONDARY",
“mode": "R O',
“replicati onLagFrom nmedi at eSource": "",
“replicationLagFronOrigi nal Source": "",
"status": "ONLI NE",
“version": "8.0.27"
}
Iir
“transactionSet": "953a51d5-2690-1lec-ba07-00059a3c7a00: 1, c51clbl15-269e- 11lec- b9ba- 00059:
}

lustertwo": {
"clusterRole": "REPLICA",
"clusterSetReplication": {
“applierStatus": "APPLIED ALL",

233

Deploying InnoDB ClusterSet

"applierThreadState": "Waiting for an event from Coordi nator",
“appl i er Wr ker Thr eads": 4,
"receiver": "127.0.0. 1: 4410",
“receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
"source": "127.0.0.1:3310"
s
"clusterSetReplicationStatus": "OK",
"gl obal Status": "OK",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"t opol ogy": {
"127.0.0. 1: 4410": {
"address": "127.0.0. 1: 4410",
"menber Rol e": " PRI MARY",
"mode": "R O',
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
s
"127.0.0. 1: 4420": {
"address": "127.0.0. 1: 4420",
"menber Rol e": " SECONDARY",
"nmode": "R O',
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
s
"127.0.0. 1: 4430": {
"address": "127.0.0. 1: 4430",
"menber Rol e": " SECONDARY",
"mode": "R O',
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",

"version": "8.0.27"
}
B
"transactionSet": "Of 6ff279-2764- 11ec-ba06-00059a3c7a00: 1-5, 953a51d5- 2690- 11ec- ba07- 00059a3
"transacti onSet Consi st encySt atus": "OK",

"transactionSet Errant &i dSet":

"transactionSet M ssing&idSet": ""
}

i

"domai nNane": "testclusterset",

"gl obal Pri maryl nstance": "127.0.0.1: 3310",

"nmet adat aServer": "127.0.0. 1: 3310",

“primaryCluster": "clusterone",
"status": "HEALTHY",
"statusText": "All Custers available."

See Section 9.7, “InnoDB ClusterSet Status and Topology” for more information on the output of
the cl ust er Set . st at us() command.

11. Add further replica clusters as required, by repeating the above steps with a different set of
standalone instances. There is no defined limit on the number of replica clusters that you can have
in an InnoDB ClusterSet deployment. The process is the same in each case, as summarized here:

« Create the InnoDB Cluster server configuration account on each of the standalone server
instances by issuing a dba. confi gur el nst ance() command with the cl ust er Adni n option.

* Fetch the Cl ust er Set object using dba. get Cl ust er Set () or
cluster.getd usterSet (), whenyou are connected to a member of the InnoDB ClusterSet

234

Asynchronous Replication Channel Options

using the InnoDB Cluster server configuration account. You can get the object from any member
server in the primary cluster or in one of the replica clusters that you created already.

e Issue acl usterSet.createReplicaC uster() command using the Cl ust er Set object to
create the replica cluster, naming one of the standalone server instances.

¢ Using the Cl ust er object that was returned for the replica cluster by
clusterSet.createReplicaC uster(),issueacluster.addl nstance command
naming another of the standalone server instances.

« Repeat the cl ust er. addl nst ance operation to add all of the standalone server instances to
the replica cluster.

 Verify that the completed replica cluster and the InnoDB ClusterSet deployment are healthy, for
example by using a cl ust er Set . st at us() command with extended output.

12. Bootstrap MySQL Router instances against the InnoDB ClusterSet to manage application traffic,

and configure them as appropriate. By default, MySQL Router directs all read and write requests to
whichever cluster is currently the primary cluster in an InnoDB ClusterSet deployment, but you can
configure a MySQL Router instance to route traffic only to a specific cluster. For instructions, see
Section 9.6, “Integrating MySQL Router With InnoDB ClusterSet”.

9.5 Asynchronous Replication Channel Options

The following options can be set with cl ust er Set . cr eat eRepl i caCl uster () and
cluster.setOption():

cl ust er Set Repl i cati onConnect Ret ry: corresponds to the replication option
SOURCE_CONNECT _RETRY. Specifies the interval in seconds between the reconnection attempts that
the replica makes after the connection to the source times out. The default interval is 3.

cl ust er Set Repl i cati onRet r yCount : corresponds to the replication option
SOURCE_RETRY_COUNT. Sets the maximum number of reconnection attempts that the replica makes
after the connection to the source times out. Default is 10.

cl ust er Set Repl i cati onHear t beat Peri od: corresponds to the replication option
SOURCE_HEARTBEAT _PERI OD. Controls the heartbeat interval, which stops the connection timeout
occurring in the absence of data if the connection is still good.

cl ust er Set Repl i cati onConpr essi onAl gor it hns: corresponds to the replication option
SOURCE_COVPRESSI ON_ALGORI THVB. String that specifies the permitted compression algorithms
for connections to the replication source

cl ust er Set Repl i cati onZst dConpr essi onLevel : corresponds to the replication option
SOURCE_ZSTD COVPRESSI ON_LEVEL. Specifies the compression level to use for connections to
the replication source server that use the zst d compression algorithm.

cl ust er Set Repl i cati onBi nd: corresponds to the replication option SOURCE_BI ND. Determines
which of the replica's network interfaces is chosen for connecting to the source, for use on replicas
that have multiple network interfaces.

cl ust er Set Repl i cati onNet wor kNanmespace: corresponds to the replication option
NETWORK _NANMESPACE. specifies the network namespace to use for TCP/IP connections to the
replication source server or, if the MySQL communication stack is in use, for Group Replication’s
group communication connections.

For information on default values, see CHANGE REPLICATION SOURCE TO Statement.

Note
@ If any of these options are set using cl ust er. set Opti on() on a Cluster

which is not a member of a ClusterSet, an error is returned.

235

https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_connect_retry
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_retry_count
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_heartbeat_period
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_compression_algorithms
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_zstd_compression_level
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_bind
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-network_namespace
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html

Integrating MySQL Router With InnoDB ClusterSet

Replication channel options are set in the Cluster metadata and do not take effect until the channel is
started or restarted, using cl ust er Set . rej oi nCl ust er () for example. These options can also be
set when the Cluster is OFFLINE.

For example:

cluster.setOption("clusterSetReplicati onConpressionAl gorithnms", "zlib")

If an option is set with a NULL value, the default value is used.

9.6 Integrating MySQL Router With InnoDB ClusterSet

MySQL Router routes client application traffic to the appropriate clusters in an InnoDB ClusterSet
deployment. You can set a global policy for MySQL Router instances that are used with the InnoDB
ClusterSet deployment, and override this with settings for individual MySQL Router instances.

When you bootstrap a MySQL Router instance against an InnoDB ClusterSet deployment, it is aware
of the complete topology of the ClusterSet, and can manage write and read traffic appropriately. If a
controlled switchover or emergency failover takes place, the MySQL Router instances connected with
the InnoDB ClusterSet are aware of this and route traffic to the new primary cluster, except for any
instances that you have configured to send traffic to a specific cluster. If a cluster is invalidated, MySQL
Router instances stop read and write traffic to it, except for any instances that you have configured to
continue sending read traffic in that situation.

For each MySQL Router instance that you are using with InnoDB ClusterSet, you can choose to
configure it to follow the primary cluster, or to connect only to a specific target InnoDB Cluster. You can
change between these modes online using MySQL Shell.

Follow the primary In this mode, MySQL Router directs application traffic, both writes
and reads, to the cluster in the InnoDB ClusterSet deployment that
is currently the primary cluster. This mode is the default.

Named target cluster In this mode, MySQL Router directs application traffic to the InnoDB
Cluster that you specify. This can be the primary cluster in the
InnoDB ClusterSet deployment, or it can be a replica cluster. If the
target cluster is currently the primary cluster, MySQL Router opens
the write port and applications can write to the instance. If the target
cluster is currently a read-only replica cluster, MySQL Router allows
only read traffic, and denies write traffic. If this situation changes
due to a switchover or failover to or from the target cluster, MySQL
Router changes the permitted request types accordingly. This mode
is useful if an application makes only read requests, which can be
made on a replica cluster, and you want to keep that traffic routed to
a local cluster.

You can also configure MySQL Router to allow or disallow read traffic to a cluster that has been
marked as | NVALI DATED. A cluster in this state is not currently functioning at all as part of the InnoDB
ClusterSet deployment, and cannot receive writes. Although the cluster does not necessarily have

any technical issues, its data is becoming stale. The default is that MySQL Router disallows reads as
well as writes to an invalidated cluster (the dr op_al | setting), but you can choose to allow reads (the
accept _r o setting).

To bootstrap MySQL Router against InnoDB ClusterSet, you need to use an InnoDB Cluster
administrator account, or the InnoDB Cluster server configuration account, which also has the required
permissions. MySQL Router then uses the MySQL Router administrator account to connect to the
instances in the InnoDB ClusterSet deployment. You need to specify the user name and password

for both these accounts during the bootstrap operation. See Section 9.3, “User Accounts for InnoDB
ClusterSet” for more information.

236

Integrating MySQL Router With InnoDB ClusterSet

Important

A If you are using an existing InnoDB Cluster as the primary cluster in your

InnoDB ClusterSet deployment, and you bootstrapped MySQL Router against
that cluster already, follow the relevant parts of this process to bootstrap it
again using the - - f or ce option against the InnoDB ClusterSet, then stop
and restart MySQL Router. The settings in the MySQL Router instance's static
configuration file need to be updated for InnoDB ClusterSet.

To integrate MySQL Router with an InnoDB ClusterSet deployment, follow this process:

1.

If you haven't already done so, install MySQL Router instances as appropriate for your topology.
The recommended deployment of MySQL Router is on the same host as the client application.
When using a sandbox deployment, everything is running on a single host, therefore you deploy
MySQL Router to the same host. When using a production deployment, we recommend deploying
one MySQL Router instance to each machine used to host one of your client applications. It is also
possible to deploy MySQL Router to a common machine through which your application instances
connect. For instructions, see Installing MySQL Router.

Connect to any active member server instance in the InnoDB ClusterSet deployment, using an
InnoDB Cluster administrator account. You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. Get the Cl ust er Set object using a

dba. get Cl usterSet () orcluster. getC usterSet() command. It isimportant to get the

Cl ust er Set object when you are connected to the server instance using an appropriate account.
The default user account stored in the object is used for some operations, regardless of the account
that you specify on the connection. For example:

nysqgl -j s> \ connect admi n2@27.0. 0. 1: 3310

nysqgl -j s> nycl usterset = dba. get Cl ust er Set ()
<Cl usterSet:testclusterset>

In this example:

e adm n2@?27. 0. 0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the cluster.

The URI-like connection string is comprised of the following elements:
* adni n2 is the user name for the InnoDB Cluster administrator account.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

* The returned Cl ust er Set object is assigned to the variable nycl ust er set .

Verify that the InnoDB ClusterSet deployment is healthy, by issuing cl ust er Set . st at us() in
MySQL Shell while connected to any member server in the cluster. For example:

nysql -j s> nycl usterset. stat us({extended: 1})

Select the extended output to see the detailed status for the clusters in the InnoDB ClusterSet
topology. This gives you the host and port for each member server, so you can choose one to
bootstrap MySQL Router against. See Section 9.7, “InnoDB ClusterSet Status and Topology” for
more information.

For each MySQL Router instance, run the nysql r out er command in a suitable shell on

the instance where MySQL Router is installed, to bootstrap MySQL Router against InnoDB
ClusterSet. In this example, the f or ce option is used because MySQL Router has previously been
bootstrapped against the primary InnoDB Cluster:

$> nysql router --bootstrap icadm n@?27.0.0.1:3310 --account=nyRouterl --nanme='Ronel' --force
Pl ease enter MySQ. password for icadm n:

237

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-installation.html

Integrating MySQL Router With InnoDB ClusterSet

Boot strappi ng system MySQL Router instance...

Pl ease enter MySQL password for nyRouter1:
Creating account(s) (only those that are needed, if any)
- Ver|fy| ng account (using it to run SQL queries that would be run by Router)
- Storing account in keyring
- Creating configuration C:/Program Fil es/ MSQL/ MySQL Rout er 8.0/ mysql router. conf

MySQL Router configured for the ClusterSet 'testclusterset’
After this M/SQL Router has been started with the generated configuration

> net start mysqlrouter
or
> C:\ Program Fi | es\ MySQL\ MySQL Rout er 8. 0\ bi n\mysql router.exe -c C./Program Fi |l es/ MySQL/ M\ySQL Rout e

ClusterSet 'testclusterset' can be reached by connecting to:
MySQL Cl assic protocol

- Read/ Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

MySQL X protocol

- Read/ Wite Connections: |ocal host: 6448
- Read/ Only Connections: |ocal host: 6449

In this example:

e icadm n@?27. 0. 0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the InnoDB ClusterSet deployment. The instance can be in the primary cluster
or in a replica cluster. If the instance is not the primary server in the primary cluster, InnoDB
ClusterSet will route the transaction to that server, provided that the InnoDB ClusterSet
deployment is healthy.

The URI-like connection string is comprised of the following elements:

e i cadm n is the user name for an InnoDB Cluster administrator account that was set up using
the cl ust er. set upAdmi nAccount () command on the primary cluster, then replicated to
the replica clusters. The bootstrap operation prompts you for the password for the account. The
password for an InnoDB Cluster administrator account is the same on all the server instances in
the InnoDB ClusterSet deployment.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
clusterSet. status() command.

e myRout er 1 is the user name for a MySQL Router administrator account that was set up using
the cl ust er. set upRout er Account () command on the primary cluster. The account is the
same on all the server instances in the InnoDB ClusterSet deployment. The bootstrap operation
prompts you for the password for the account.

e --nane can be used to assign a non-default name to the MySQL Router instance, to make it
easily identifiable in the output from InnoDB ClusterSet status commands.

e --forceisrequired if you are bootstrapping MySQL Router again for an existing InnoDB Cluster
where it was previously bootstrapped.

MySQL Router connects to the server instance and retrieves the InnoDB ClusterSet metadata. The
process is the same as when you bootstrap MySQL Router against an individual InnoDB Cluster.
For more details about the process, see Section 7.3, “Deploying MySQL Router”.

5. After you bootstrap each MySQL Router instance, verify that it is now correctly bootstrapped
against the InnoDB ClusterSet deployment, by issuing cl ust er Set. | i st Rout er s() in MySQL

238

Integrating MySQL Router With InnoDB ClusterSet

Shell while connected to any member server in the InnoDB ClusterSet. The command returns
details of all the registered MySQL Router instances, or a router instance that you specify. For
example:

nysql -j s> nycl usterset.|istRouters()

"domai nNane": "testclusterset",
"routers": {
“mymachi ne: : Romel": {

"host name": "mymachi ne",
"| ast Checkl n": 2021-10-15 11:58: 37,
"roPort": 6447,
"roXPort": 6449,
"rwPort": 6446,
"rwXPort": 6448,
“"targetCluster": "primry",
"version": "8.0.27"

s
“mymachi ne2: : Rome2": {
“host name": "mymachi ne2",
"| ast Checkl n": 2021-10-15 11:58: 37,
"roPort": 6447,
"roXPort": 6449,
"rwPort": 6446,
"rwXPort": 6448,
“"targetCluster": "primry",
"version": "8.0.27"

}
See MySQL Router Status for InnoDB ClusterSet for more information.

To see the routing options that are set for each MySQL Router instance, and the global policy for
the InnoDB ClusterSet deployment, issue cl ust er Set . rout er Opt i ons() in MySQL Shell while
connected to any member server in the InnoDB ClusterSet deployment.

By default, a MySQL Router instance sends traffic to the primary cluster, and disallows
both read and write traffic to a cluster that is marked as | NVALI DATED. See MySQL Router
Status for InnoDB ClusterSet for more information and an explanation of the output of the
cl usterSet.routerOptions() command.

If you want to change the global routing policy or the routing policy for an individual MySQL Router
instance, issue cl ust er Set . set Rout i ngOpt i on() in MySQL Shell while connected to any
member server in the InnoDB ClusterSet deployment. You can only set one routing option at a time.
It takes a few seconds for a MySQL Router instance to pick up changes to a routing policy.

For example, this command issued for the InnoDB ClusterSet mycl ust er set changes the target
cluster for a MySQL Router instance to the cluster cl ust er t wo:

nysqgl -j s> nycl ust erset. set Routi ngOpti on(' nymachi ne: : Ronel', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Ronel'.

In this example, mycl ust er set is the variable for the Cl ust er Set object, Ronel is the name of
the MySQL Router instance, and cl ust er t wo is the name of the specific cluster to target.

To set the routing policy for the instance back to following the primary, issue this command:

nysql -j s> nycl ust erset. set Routi ngOpti on(' mymachi ne: : Ronmel', 'target_cluster', 'primary')
Routing option 'target_cluster' successfully updated in router 'Romel'.

To clear a routing policy for an instance, use the cl ust er Set . set Rout i ngOpti on() command
to set the relevant policy to nul | . For example:

nmysql -j s> nycl usterset. set Routi ngOpti on(' mynachi ne: : Ronel', 'target_cluster', null)

239

InnoDB ClusterSet Status and Topology

Routing option 'target_cluster' successfully updated in router 'Romel'.
See Section 7.4, “Routing Options” for more information on the available routing options.

To set the global routing policy, do not specify a MySQL Router instance, just the policy name
and the setting. See MySQL Router Status for InnoDB ClusterSet for more information and an
explanation of the available routing options.

8. When you are ready to start accepting connections, configure the applications to use the ports
where MySQL Router is listening for traffic to the InnoDB ClusterSet deployment. Then start the
MySQL Router instances using a suitable shell or script in the servers where MySQL Router is
installed. See Starting MySQL Router.

9.7 InnoDB ClusterSet Status and Topology

This section describes the following:
» InnoDB ClusterSet Status
» InnoDB ClusterSet Topology

* MySQL Router Status for InnoDB ClusterSet

InnoDB ClusterSet Status

AdminAPI's cl ust er Set . st at us() command returns a JSON object describing the status of an
InnoDB ClusterSet deployment. The output includes the status of the InnoDB ClusterSet deployment
itself and the global and cluster status of each InnoDB Cluster in the ClusterSet. The extended

output adds the status of each member server in each cluster, information about the asynchronous
replication channels managed by InnoDB ClusterSet, and other configuration and status information.
The command reports the status of ClusterSet replication as well as of the servers themselves. If there
are any issues, warning and error messages are included to explain the problem in more detail.

The MySQL Shell instance where you use cl ust er Set . st at us() can be connected to any active
member of the InnoDB ClusterSet. The metadata can be retrieved from the primary cluster by way of
any other cluster that is active in the InnoDB ClusterSet.

If there is an issue with any of the clusters in the InnoDB ClusterSet, Section 9.10, “InnoDB ClusterSet
Repair and Rejoin” explains the procedure for fixing it and rejoining the cluster to the ClusterSet (or
removing it if the issue cannot be fixed). If the cluster with the issue is the primary cluster, you first
need to carry out a controlled switchover if it is still functioning (as described in Section 9.8, “InnoDB
ClusterSet Controlled Switchover”), or an emergency failover if it is not functioning or cannot be
contacted (as described in Section 9.9, “InnoDB ClusterSet Emergency Failover”).

You can use the ext ended option, which defaults to 0, to increase the verbosity level of the output as
follows:

» extended: O or omitting the option returns basic information about the availability status of
the InnoDB ClusterSet deployment, each InnoDB Cluster in the ClusterSet, and the ClusterSet
replication status for each replica cluster.

e extended: 1 adds the topology for each InnoDB Cluster in the ClusterSet, the status of each
individual member server in each cluster, and more detailed information about the ClusterSet
replication channel's status for each replica cluster.

» ext ended: 2 adds further details about each individual member server in each cluster and about
the ClusterSet replication channel, including the GTID set.

» extended: 3 addsimportant configuration settings for the ClusterSet replication channel, such as
the connection retry settings.

240

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-server-starting.html

InnoDB ClusterSet Status

For example:

nmysql -j s> nycl ust erset. st at us({extended: 1})
{
"clusters": {
"clusterone": {
"clusterRol e": "PRI MARY",
"gl obal Status": "OK",
“primary": "127.0.0.1:3310",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",

"mode": "RI'W,
"status": "ONLINE",
"version": "8.0.27"
b
"127.0.0. 1:3320": {
"address": "127.0.0.1: 3320",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"replicationLagFron medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
"version": "8.0.27"
b
"127.0.0.1:3330": {
"address": "127.0.0.1:3330",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"replicationLagFron medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
"version": "8.0.27"
}

b
“"transactionSet": "953a51d5-2690-11ec-ba07-00059a3c7a00: 1, c51c1bl15-269e- 11lec- b9ba- 00059a3c7
b
"clustertwo": {
"clusterRol e": "REPLICA",
"clusterSetReplication": {
"applierStatus": "APPLIED ALL",
"applierThreadState": "Waiting for an event from Coordinator",
"appl i er Wr ker Thr eads": 4,
"receiver": "127.0.0.1: 4410",
"receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
"source": "127.0.0.1:3310"
b
"clusterSetReplicationStatus": "OK",
"gl obal Status": "OK",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0. 1: 4410": {
"address": "127.0.0.1: 4410",
"menber Rol e": " PRI MARY",
"nmode": "R O',
"replicationLagFron medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
"version": "8.0.27"
b
"127.0.0. 1: 4420": {
"address": "127.0.0.1: 4420",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"replicationLagFron medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",

241

InnoDB ClusterSet Status

"version": "8.0.27"

"127.0.0. 1: 4430": {
"address": "127.0.0. 1: 4430",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"replicationLagFromnm medi at eSour ce":
"replicationLagFronCri gi nal Source":
"status": "ONLINE",
“version": "8.0.27"

}

"transacti onSet Consi st encyStatus": "OK",
"transacti onSet Errant Qi dSet":
"transactionSet M ssingGi dSet":

}

domai nNanme": "testclusterset”,
"gl obal Pri maryl nstance": "127.0.0.1:3310",
"net adat aServer": "127.0.0.1: 3310",

"primaryC uster": "clusterone",
"status": "HEALTHY",
"statusText": "All Custers available."

}

To get a handle to a Cl ust er Set object representing the InnoDB ClusterSet for a target server
instance, use a dba. get Cl ust er Set () orcl uster. get C ust er Set () command. These
commands work if the target server instance is a member of an InnoDB Cluster that is part of an
InnoDB ClusterSet deployment, even if the primary cluster for the InnoDB ClusterSet deployment is not
currently reachable. The target server instance itself must be reachable when you use the object. If the
target instance is a member of a cluster that has been marked as invalidated, the command returns a
warning, but still returns the Cl ust er Set object. If the target instance is not currently a member of an
InnoDB ClusterSet deployment, the command returns an error. The Cl ust er Set object contains the
connection details of the server that you retrieved it from, so a Cl ust er Set object that you previously
retrieved from a member server that is now offline will not work any more, and you would need to get it
again from a server that is online in the InnoDB ClusterSet deployment.

The Cl ust er Set object defaults to using the account it was fetched with for operations where
permissions are required. It is important to get the object when you are connected to the server
instance using an appropriate user account for the operations you want to perform using it. Some
operations during the InnoDB ClusterSet deployment process require permissions, and the default
user account stored in the object is used for this, so that the process does not need to store any other
user accounts. For monitoring and troubleshooting an InnoDB ClusterSet that you already set up, an
InnoDB Cluster administrator account is appropriate. For the initial cluster deployment process, the
InnoDB Cluster server configuration account is appropriate. For more information, see Section 9.3,
“User Accounts for InnoDB ClusterSet”.

When you use the cl ust er Set . st at us() function, the overall ClusterSet status (st at us field)
reported for an InnoDB ClusterSet deployment can be one of the following:

HEALTHY The primary cluster in the InnoDB ClusterSet is functioning
acceptably, and all of the replica clusters are functioning acceptably.

AVAI LABLE The primary cluster in the InnoDB ClusterSet is functioning
acceptably, but one or more of the replica clusters has impaired
functioning or is not functioning.

UNAVAI LABLE The primary cluster in the InnoDB ClusterSet is not functioning,
because it is offline or has lost quorum, or MySQL Shell cannot
contact the primary cluster to determine its status.

The overall ClusterSet status reported for an InnoDB ClusterSet deployment depends on the overall
status of each InnoDB Cluster. An InnoDB Cluster in a ClusterSet reports three statuses:

242

"transactionSet": "Of 6ff279-2764-11lec-ba06-00059a3c7a00: 1-5, 953a51d5- 2690- 11ec- ba07- 00059a3c7al

InnoDB ClusterSet Status

e The global status (gl obal St at us field) is the status of the InnoDB Cluster with regards to its role
in the InnoDB ClusterSet. This status shows whether the cluster can still function acceptably in the
InnoDB ClusterSet deployment, even if it has some issues, such as a member server being currently
offline. An InnoDB Cluster can be marked as invalidated during a failover, regardless of the status of
the member servers, and if so this is shown as the global status.

» The cluster status (st at us field) is the status of the InnoDB Cluster with regards to its own
functioning. This status shows whether the cluster has any technical issues, such as one or more
members being offline, a loss of quorum, or a Group Replication error state. A cluster can tolerate
certain issues but still function acceptably as part of an InnoDB ClusterSet deployment. For this
reason, with the default verbosity level, the cl ust er Set . st at us() function only reports the
cluster status for those clusters where it is causing a global status issue. To view the cluster status
for all clusters in the InnoDB ClusterSet whether or not it is causing a global status issue, use the
ext ended option to specify a higher verbosity level.

» The ClusterSet replication status (cl ust er Set Repl i cat i onSt at us field) is the status of the
ClusterSet replication channel for a replica InnoDB Cluster. This status shows whether the replica
cluster has any issues with replicating from the primary cluster, so that these can be considered
separately from any technical issues with the member servers in the cluster. A replica InnoDB
Cluster reports the ClusterSet replication status whether or not it is causing a global status issue. A
primary InnoDB Cluster does not have this status field, because the ClusterSet replication channel is
not operating on the primary cluster.

At higher verbosity levels, the extended output for the cl ust er Set . st at us() function shows the
status of each member server in each InnoDB Cluster. The output includes the member's Group
Replication state (menber St at e field) and for a server in a replica cluster, the state of replication on
the member. For information on the Group Replication states, see Group Replication Server States.

The global status (gl obal St at us field) reported for an InnoDB Cluster can be one of the following:

(01 The cluster is functioning acceptably in the InnoDB ClusterSet
deployment. At least one of the member servers in the cluster is in
Group Replication's ONLI NE state, and the replication group has
quorum. If the cluster is a replica cluster, the ClusterSet replication
status is also OK. This global status does not necessarily mean
there are no technical issues with the cluster. Some members might
be offline, or the cluster might have too few members to provide
tolerance for failures. However, the cluster is functioning well
enough to continue as part of the InnoDB ClusterSet deployment. A
primary cluster or a replica cluster can have this global status.

OK_NOT_REPLI CATI NG The cluster is functioning acceptably, but replication has stopped
on the ClusterSet replication channel, either as a controlled stop or
due to a replication error. Only a replica cluster can have this global
status.

OK_NOT_CONSI STENT The cluster is functioning acceptably, but the set of transactions
on the cluster (the GTID set) has diverged from that on the primary
cluster, such that there are extra transactions on the replica cluster
that the primary cluster does not have. Replication might have
stopped on the ClusterSet replication channel, either as a controlled
stop or due to a replication error, or the channel might still be
replicating. Only a replica cluster can have this global status.
A replica cluster with this status is not available for a planned
switchover, although a forced failover is possible.

OK_M SCONFI GURED The cluster is functioning acceptably, but an incorrect configuration
has been detected for the ClusterSet replication channel. For
example, the channel might be replicating from the wrong source.

243

https://dev.mysql.com/doc/refman/9.4/en/group-replication-server-states.html

InnoDB ClusterSet Status

NOT_CK

UNKNOWN

I NVALI DATED

The replication channel might be still running, or replication might
have stopped. Only a replica cluster can have this global status.

The cluster is not functioning at all as part of the InnoDB ClusterSet
deployment due to a technical issue. It has lost quorum or all
member servers are in Group Replication's OFFLI NE status. A
primary cluster or a replica cluster can have this global status. If

a primary cluster has this global status, the InnoDB ClusterSet
deployment is given the status UNAVAI LABLE.

The cluster is the primary cluster for the InnoDB ClusterSet
deployment but MySQL Shell currently cannot contact it to
determine its status. While the primary cluster cannot be
contacted, the InnoDB ClusterSet deployment is given the status
UNAVAI LABLE.

The cluster was invalidated during a failover process. During a
controlled switchover process, data consistency is assured, and

the original primary cluster is demoted to a working read-only
replica cluster. However, during an emergency failover process,
data consistency is not assured, so for safety, the original primary
cluster is marked as invalidated during the failover process. Replica
clusters are also marked as invalidated if they are unreachable

or unavailable at the time of the failover, or during a controlled
switchover. A cluster with this global status is not functioning at all
as part of the InnoDB ClusterSet deployment. The cluster does not
necessarily have any technical issues, and might be capable of
rejoining the InnoDB ClusterSet deployment after manual validation.
If the cluster can be contacted, you should verify that it has been
shut down, so that it is not accepting new transactions.

The cluster status (st at us field) reported for an InnoDB Cluster can be one of the following, which can
all be reported for a primary cluster or a replica cluster:

(0

OK_PARTI AL

OK_NO_TOLERANCE

OK_NO TOLERANCE_PARTI AL

All the member servers in the cluster are in Group Replication's
ONLI NE state, and there are three or more members in the cluster.

At least three of the member servers in the cluster are in Group
Replication's ONLI NE state. However, one or more member servers
are in Group Replication's OFFLI NE, RECOVERI NG, ERROR, or
UNREACHABLE state, so they are not currently participating as active
members of the cluster. A cluster in this situation is functioning well
enough to continue as part of the InnoDB ClusterSet deployment,
but to bring it up to OK status, resolve the issues with the member
servers.

All the member servers in the cluster are in Group Replication's
ONLI NE state, but there are less than three members in the cluster,
so it does not have sufficient tolerance for failures. A cluster in

this situation is functioning well enough to continue as part of the
InnoDB ClusterSet deployment, but to bring it up to OK status, add
more member servers.

One or two member servers in the cluster are in Group Replication's
ONLI NE state, but one or more are in Group Replication's OFFLI NE,
RECOVERI NG, ERROR, or UNREACHABLE state. The cluster therefore
does not have sufficient tolerance for failures because of the
unavailability of some members. A cluster in this situation is
functioning well enough to continue as part of the InnoDB ClusterSet

244

InnoDB ClusterSet Status

NO_QUORUM

OFFLI NE

ERROR

UNKNOWN

| NVALI DATED

deployment, but to bring it up to OK status, resolve the issues with
the member servers.

The cluster does not have quorum, meaning that a majority of the
replication group's member servers are unavailable for agreeing

on a decision. Group Replication is able to reconfigure itself to the
new group number if members leave voluntarily or are expelled

by a group decision, so a loss of quorum means that the missing
member servers have either failed or been cut off from the others by
a network partition. A cluster in this situation cannot function as part
of the InnoDB ClusterSet deployment. To bring a cluster in this state
up to OK status, see Section 9.10, “InnoDB ClusterSet Repair and
Rejoin”.

All the member servers in the cluster are in Group Replication's
OFFLI NE state. A cluster in this situation cannot function as part

of the InnoDB ClusterSet deployment. To bring a cluster in this
state up to OK status if it is not currently supposed to be offline, see
Section 9.10, “InnoDB ClusterSet Repair and Rejoin”.

All the member servers in the cluster are in Group Replication's

ERROR state. A cluster in this situation cannot function as part of the
InnoDB ClusterSet deployment. To bring a cluster in this state up to
(K status, see Section 9.10, “InnoDB ClusterSet Repair and Rejoin”.

MySQL Shell cannot currently contact any member servers to
determine the cluster's status. If this is the primary cluster, the
InnoDB ClusterSet deployment is given the status UNAVAI LABLE.

The cluster was invalidated during a failover process. During a
controlled switchover process, data consistency is assured, and

the original primary cluster is demoted to a working read-only
replica cluster. However, during an emergency failover process,
data consistency is not assured, so for safety, the original primary
cluster is marked as invalidated during the failover process. Replica
clusters are also marked as invalidated if they are unreachable

or unavailable at the time of the failover, or during a controlled
switchover. A cluster with this global status is not functioning at all
as part of the InnoDB ClusterSet deployment. The cluster does not
necessarily have any technical issues, and might be capable of
rejoining the InnoDB ClusterSet deployment after manual validation.
If the cluster can be contacted, you should verify that it has been
shut down, so that it is not accepting new transactions. To handle
this situation, see Section 9.10, “InnoDB ClusterSet Repair and
Rejoin”.

The cluster status relates to technical issues with the InnoDB Cluster as a Group Replication group,
rather than to the process of replication. For a replica cluster, the ClusterSet replication status
(cl ust er Set Repl i cat i onSt at us field) is also reported as follows:

X

STOPPED

CONNECTI NG

The ClusterSet replication channel is running.

The ClusterSet replication channel has been stopped in a controlled
manner. This status is shown when the receiver thread, applier
thread, or both threads have been stopped.

The replication channel is connecting. If an error occurs during
connection, it is ignored until the channel state updated to either ON
or OFF.

245

InnoDB ClusterSet Topology

ERROR The ClusterSet replication channel has stopped due to a replication
error, such as an incorrect configuration or a set of transactions that
differs from the set on the primary cluster.

M SCONFI GURED An incorrect configuration has been detected for the ClusterSet
replication channel, such as replicating from the wrong source. The
channel might be still running, or replication might have stopped.

M SSI NG The ClusterSet replication channel does not exist on the servers in
this cluster.
UNKNOWN MySQL Shell cannot currently contact the replica cluster to

determine the replication channel's status.

If a cluster's only issue is with the ClusterSet replication channel, issuing the
clusterSet.rejoinC uster() command for the cluster automatically corrects the channel's
configuration if necessary and restarts the channel. This might be sufficient to fix the issue. For
instructions to do this, see Section 9.10.5, “Rejoining a Cluster to an InnoDB ClusterSet”.

InnoDB ClusterSet Topology

If you just want to view the topology of the InnoDB ClusterSet, and do not need status information,
you can use the cl ust er Set . descri be() function instead. This function returns a JSON object
describing the topology of an InnoDB ClusterSet deployment, and giving the IP address and identifier
of each member server in each InnoDB Cluster. For example:

nysql -j s> nycl ust erset. descri be()
"clusters": {

“clusterone": {
"clusterRol e": "PRI MARY",

"topol ogy": [

"address": "127.0.0.1:3310",
"l abel ": "127.0.0.1: 3310"

Ir

{
"address": "127.0.0.1:3320",
"l abel ": "127.0.0.1: 3320"

Ir

{
"address": "127.0.0.1:3330",
"l abel ": "127.0.0.1: 3330"

}

]

lustertwo": {
"clusterRol e": "REPLICA",

}

"topol ogy": [
{
"address": "127.0.0.1:4410",
"l abel ": "127.0.0.1: 4410"
Ir
{
"address": "127.0.0.1:4420",
"l abel ": "127.0.0. 1: 4420"
Ir
{
"address": "127.0.0.1:4430",
"l abel ": "127.0.0. 1: 4430"
}
]
}
b
"domai nNane": "testclusterset”,
"primaryCl uster": "clusterone"

246

MySQL Router Status for InnoDB ClusterSet

This information is also provided by the extended output for the cl ust er Set . st at us() function.

For information on cl ust er Set . set Rout i ngOpt i on(), see Section 7.4, “Routing Options”.

MySQL Router Status for InnoDB ClusterSet

To see the MySQL Router instances that are registered for the InnoDB ClusterSet, issue the

clusterSet.|istRouters() commandin MySQL Shell while connected to any member server in
the InnoDB ClusterSet deployment. The command returns details of all the registered MySQL Router
instances, or a single router instance that you specify using its router instance definition. For example:

nysql -j s> nycl usterset.|listRouters()
{
"domai nNane": "testclusterset”,
"routers": {
"mymachi ne: : Ronel": {
"host nane": "mynachi ne",
"| ast Checkln": 2021-10-15 11:58: 37
"roPort": 6447
"roXPort": 6449,
"rwPort": 6446,
"rwXPort": 6448,
"targetC uster": "primary",
"version": "8.0.27"

b
"mymachi ne2: : Rone2": {
"host nane": "mynachi ne2",
"| ast Checkl n": 2021-10-15 11:58: 37,
"roPort": 6447,
"roXPort": 6449,
"rwPort": 6446,
"rwxPort": 6448,
"targetC uster": "primary",
"version": "8.0.27"

}

The instance information includes the name of the MySQL Router instance, the port numbers for read
and write traffic using MySQL classic protocol and X Protocol, the target cluster, and the time the
instance last checked in with the target cluster. If MySQL Router is at a lower version than that required
to work with this InnoDB ClusterSet deployment, the instance information states this.

To see the routing options that are set for each MySQL Router instance, and the global policy for

the InnoDB ClusterSet deployment, issue cl ust er Set . r out er Opt i ons() in MySQL Shell while
connected to any member server in the InnoDB ClusterSet deployment. A setting for a specific MySQL
Router instance overrides a global policy.

If a particular routing option is not displayed for a MySQL Router instance, as in the example
above for Rone2, it means the instance does not have that policy set, and it follows the global
policy. The output for Ronel shows "t arget _cluster™: "primary", which is the same as the
global policy. This is because Ronel has had the routing option explicitly setto " pri mary" by a
cl usterSet. set Routi ngOption() command, in which case it is displayed. To clear a routing
option, setitto nul | .

9.8 InnoDB ClusterSet Controlled Switchover

A controlled switchover makes a selected replica cluster into the primary cluster for the InnoDB
ClusterSet deployment. During a controlled switchover process, data consistency is assured. The
process verifies that the selected replica cluster is synchronized with the primary cluster (which might
mean a short wait if there is replication lag), then makes that cluster into the primary of the InnoDB
ClusterSet. The original primary cluster is demoted to a working read-only replica cluster. You can then
take the original primary offline if necessary, repair any issues, and bring it back into operation in the
InnoDB ClusterSet deployment.

247

InnoDB ClusterSet Controlled Switchover

Follow the controlled switchover procedure if the primary cluster in an InnoDB ClusterSet deployment
is functioning acceptably, but you need to carry out maintenance or fix some minor issues to improve
the primary cluster's function. A primary cluster that is functioning acceptably has the global status OK
when you check it using AdminAPI's cl ust er Set . st at us() command in MySQL Shell.

If the primary cluster is not functioning acceptably (with the global status NOT _OK) in the

InnoDB ClusterSet deployment, first try to repair any issues using AdminAPI through

MySQL Shell. For example, if the primary cluster has lost quorum, it can be restored using a
cluster.forceQuorunmJsi ngPartitionOf command. For instructions to do this, see Section 9.10,
“InnoDB ClusterSet Repair and Rejoin”.

If you cannot fix the issue by working with the primary cluster (for example, because you cannot
contact it), you need to perform an emergency failover. An emergency failover is designed for disaster
recovery when the primary cluster is suddenly unavailable. That procedure carries the risk of losing
transactions and creating a split-brain situation for the InnoDB ClusterSet. If you do need to carry out
an emergency failover, follow the procedure in Section 9.9, “InnoDB ClusterSet Emergency Failover” to
ensure that the risk is managed.

The diagram shows the effects of a controlled switchover in an example InnoDB ClusterSet
deployment. The primary cluster in the Rome datacenter requires maintenance, so a controlled
switchover has been carried out to make the replica cluster in the Brussels datacenter into the primary
of the InnoDB ClusterSet deployment, and demote the Rome cluster to a replica. The ClusterSet
replication channel on the Rome cluster has been activated by the controlled switchover process, and
it is replicating transactions from the Brussels cluster. Now that the Rome cluster is a replica cluster,
the member servers or the complete cluster can safely be taken offline if required to carry out the
maintenance work.

Figure 9.2 InnoDB ClusterSet Switchover

ooo oon goo ooo
ooo goono oono ooo
— — — —
Reporting Application Application Application Reporting Application
\ \ \ \
\ . \ \ \
| Read/Write ﬁead Only I I
My Router My Router My Router My Router
Target: Rome Target: PRIMARY Target: PRIMARY Target: Brussels
/
/ \
/ Primary \
/ ’ |
! |
\ !
\ . P—1 .
| e . N
- E‘Jev.:on'claryr — - - Secondary : Ssconéary — . ~.Secondary
My My
InnoDB Cluster InnoDB Cluster
REPLICA PRIMARY
. . ’ ‘. . ’
_— Semaas” . _— S Seeaae” - S
Rome Brussels

The MySQL Router instances in the example InnoDB Cluster deployment that were set to follow the
primary have routed read and write traffic to the Brussels cluster which is now the primary. The MySQL
Router instance that was routing read traffic to the Brussels cluster by name when it was a replica
cluster, continues to route traffic to it, and is not affected by the fact that the cluster is now the primary

248

InnoDB ClusterSet Controlled Switchover

rather than a replica cluster. Similarly, the MySQL Router instance that was routing read traffic to the
Rome cluster by name can continue to do this, because the replica cluster still accepts read traffic.

To carry out a controlled switchover for the primary InnoDB Cluster, follow this procedure:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cl uster. set upAdn nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. Get the Cl ust er Set object using
dba. get Cl uster Set () orcluster. getC usterSet() command. Itisimportant to use an
InnoDB Cluster administrator account or server configuration account so that the default user
account stored in the Cl ust er Set object has the correct permissions. For example:

nysgl -j s> \connect adm n2@27.0. 0. 1: 3310

Creating a session to 'adm n2@?27.0.0.1: 3310

Pl ease provide the password for 'adm n2@27.0.0. 1: 3310" ;: *****x*x*x
Save password for 'adm n2@27.0.0.1:3310'? [Y]es/[NJ o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press ~C to stop

Cl osing ol d connection..

Your MySQL connection id is 52

Server version: 8.0.27-comercial MySQL Enterprise Server - Conmercia
No default schenma sel ected; type \use <schema> to set one

<C assi cSessi on: adm n2@27. 0. 0. 1: 3310>

nysql -j s> nycl usterset = dba. get Cl uster Set ()

<Cl uster Set:testclusterset>

In this example:

e adm n2@?27. 0. 0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the cluster.

The URI-like connection string is comprised of the following elements:
e adm n2 is the user name for an InnoDB Cluster administrator account.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

e The returned Cl ust er Set object is assigned to the variable mycl ust er set .

2. Check the status of the whole InnoDB ClusterSet deployment using AdminAPI's
cl usterSet. status() command in MySQL Shell. Use the ext ended option to view detailed
information for all the clusters in the deployment, and check for any issues. For example:

nysql -j s> nycl usterset. stat us({extended: 1})
For an explanation of the output, see Section 9.7, “InnoDB ClusterSet Status and Topology”.

3. Identify a suitable replica cluster that can take over as the primary cluster. A replica cluster's
eligibility for a controlled switchover depends on its global status, as reported by the
clusterSet. status() command:

Table 9.1 Permitted Cluster Operations By Status

InnoDB Cluster Global Routable Controlled Emergency
Status in ClusterSet Switchover Failover
K Yes Yes Yes
OK_NOT_REPLI CATI NG Yes, if specified as target Yes Yes

cluster by name
OK_NOT_CONSI STENT Yes, if specified as target No Yes

cluster by name
OK_M SCONFI GURED Yes Yes Yes

249

InnoDB ClusterSet Controlled Switchover

InnoDB Cluster Global Routable Controlled Emergency
Status in ClusterSet Switchover Failover
NOT_OK No No No

| NVALI DATED Yes, if specified as target No No

cluster by name and

accept _r o routing policy is
set

UNKNOWN Connected MySQL Router |No No

instances might still be
routing traffic to the cluster

A replica cluster with the global status OK_NOT_CONSI STENT has a set of transactions on the
cluster (the GTID set) that is inconsistent with the GTID set on the primary cluster. InnoDB
ClusterSet does not permit a controlled switchover to a cluster in this state, because clients would
access incorrect data. An emergency failover is possible, if the cluster has the most up to date set
of transactions among the available options.

Check the routing options that are set for each MySQL Router instance, and the global policy for
the InnoDB ClusterSet deployment, by issuing a cl ust er Set . r out er Opt i ons() command in
MySQL Shell while connected to any member server in the InnoDB ClusterSet deployment.

By default, a MySQL Router instance sends traffic to whichever cluster is currently the primary in
the InnoDB ClusterSet deployment. If all the MySQL Router instances are set to follow the primary
("target _cluster": "primary"), traffic will be automatically redirected to the new primary
cluster within a few seconds of the switchover. If a routing option is not displayed for a MySQL
Router instance, as in the example above for Rone2, it means the instance does not have that
policy set, and it follows the global policy.

If any of the instances are set to target the current primary cluster by name ("t arget _cl uster":
"nanme_of primary_ cluster"), they will not redirect traffic to the new primary. In that situation,
if it is appropriate for the application, you can use the cl ust er Set . set Routi ngOpti on()
command to change the routing policy for those instances. You could change those instances to

follow the primary ("t arget _cluster": "prinary"), in which case that option can be set now.
For example:
mysql -j s> nycl usterset. set Routi ngOpti on(' Ronel', 'target_cluster', 'primary')

Routing option 'target_cluster' successfully updated in router 'Romel'.

In this example, mycl ust er set is the variable for the Cl ust er Set object, and Ronel is the
name of the MySQL Router instance.

Or you could specify the replica cluster that will take over as the primary, in which case set the
option ("target _cluster": "nanme_of _new_primary_cl uster") after the switchover has
taken place, when you have verified that it has worked.

Issue acl usterSet.setPrinmaryC uster() command, naming the replica cluster that will take
over as the new primary cluster. Use the Cl ust er Set object that you retrieved using an InnoDB
Cluster administrator account, with the dba. get Cl ust er Set () orcl ust er. get Cl ust er Set ()
command. For example:

nysql -j s> nmycl usterset.setPrimaryC uster('clustertwo')
Switching the primary cluster of the clusterset to 'clustertwo'
* Verifying clusterset status
** Checking cluster clustertwo

Cluster 'clustertwo' is available
** Checking cluster clusterone

Cluster 'clusterone' is available

* Refreshing replication account of denoted cluster
* Synchroni zi ng transacti on backl og at 127.0.0. 1: 4410
** Transactions replicated ####BHHHHHHHHHHHHHHHHPHHHHEH S 100%

250

InnoDB ClusterSet Controlled Switchover

* Updati ng net adat a

* Updati ng topol ogy

** Changi ng replication source of 127.0.0.1:3330 to 127.0.0. 1: 4410
* Acquiring locks in replicaset instances

** Pre-synchroni zi ng SECONDARI ES

** Acquiring global |ock at PRI MARY

** Acquiring global |ock at SECONDARI ES

* Synchroni zi ng remai ni ng transactions at pronoted prinmary

** Transactions replicated ######HHHHHHHHHHEHHHHH T 100%

* Updating replica clusters

Cluster 'clustertwo’' was pronpted to PRI MARY of the clusterset. The PRI MARY instance is '127.0.0. 1:

For the cl ust er Set . set Pri maryCl ust er () command:

e The cl ust er Nane parameter is required and specifies the identifier used for the replica cluster
in the InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In
the example, cl ust er t wo is the cluster that is to become the new primary.

« Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

e Usethe ti meout option to set the maximum number of seconds to wait for the replica cluster to
synchronize with the primary cluster before the switchover takes place. If the timeout expires, the
switchover is canceled.

e Usetheinval i dat eRepl i caCl ust er s option to name any replica clusters that are
unreachable or unavailable. These will be marked as invalidated during the switchover process.
The switchover is canceled if any unreachable or unavailable replica clusters that you do not
name are discovered during the process. In this situation you must either repair and rejoin
the replica clusters then retry the command, or name them on this option when you retry the
command, and fix them later.

When you issue the cl ust er Set . set Pri maryC ust er () command, MySQL Shell checks that
the target replica cluster complies with the requirements to take over as the primary cluster, and
returns an error if it does not. If the target replica cluster meets the requirements, MySQL Shell
carries out the following tasks:

» Checks for any unreachable or unavailable replica clusters that have not been specified using
i nval i dat eRepl i cad usters.

« Waits for the target replica cluster to synchronize with the current primary cluster by applying
any outstanding transactions from the primary. If the timeout set by the t i neout option expires
before the replica cluster has finished applying transactions, the switchover is canceled.

< Locks the current primary cluster by issuing a FLUSH TABLES W TH READ LOCK
statement and setting the super _read_onl y system variable on all member servers,
to prevent further changes during the switchover. The Group Replication member action
mysql di sabl e super _read only if prinary isdisabled so that super _read only
remains set after the failover.

« Reconciles the differences in view change events between the current primary cluster and the
replica clusters so that the GTID sets are identical. These Group Replication internal transactions
are identified by the UUID specified by the gr oup_repl i cati on_vi ew_change_uui d system
variable. MySQL Shell injects empty transactions on all the replica clusters to match the view
change events on the primary cluster.

Note
@ This is not required for Clusters running MySQL Server 8.3.0 or higher.

251

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid

InnoDB ClusterSet Emergency Failover

« Updates the ClusterSet replication channel on all replica clusters to replicate from the target
cluster as the new primary cluster.

« Disables super _read_onl y on the primary server of the target cluster, and enables the Group
Replication member action nysql _di sabl e_super _read only if_ primary to handle any
changes to the primary server in that cluster.

« Disables the Group Replication member action
mysql _di sabl e_super_read_only_if_prinmary on the primary server of the old primary
cluster, so that it remains read-only, and enables the Group Replication member action
mysqgl _start _failover_channel s _if_primary on that server to enable asynchronous
connection failover for replicas on the ClusterSet replication channel.

» Sets the target cluster as the primary cluster in the ClusterSet metadata, and changes the old
primary cluster into a replica cluster.

Issue a cl ust er Set . st at us() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

If you have any MySQL Router instances to switch over to targeting the new primary cluster, do that
now. For example:

nysqgl -j s> nycl usterset. set Routi ngOpti on(' Ronel', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Ronel'.

In this example, mycl ust er set is the variable for the Cl ust er Set object, Ronel is the name

of the MySQL Router instance, and cl ust er t wo is the name of the specific cluster to target.
When you have finished, issue a cl ust er Set . r out er Opt i ons() command to check that all the
MySQL Router instances are now routing correctly.

Now you can work with the old primary cluster to fix issues or carry out maintenance. If you had
to invalidate any replica clusters during the switchover process, you can repair these as well and
add them back into the InnoDB ClusterSet. Section 9.10, “InnoDB ClusterSet Repair and Rejoin”
explains how to repair issues with a cluster, how to rejoin a cluster to the InnoDB ClusterSet, and
how to make a cluster into the primary cluster again.

9.9 InnoDB ClusterSet Emergency Failover

An emergency failover makes a selected replica cluster into the primary InnoDB Cluster for the InnoDB
ClusterSet deployment. This procedure can be used when the current primary cluster is not working

or cannot be contacted. During an emergency failover process, data consistency is not assured, so for
safety, the original primary cluster is marked as invalidated during the failover process. If the original
primary cluster remains online, it should be shut down as soon as it can be contacted. You can repair
and rejoin an invalidated primary cluster to the InnoDB ClusterSet topology afterwards, provided that
you can fix the issues.

When the primary InnoDB Cluster in an InnoDB ClusterSet deployment has an issue or you cannot
access it, do not immediately implement an emergency failover to a replica cluster. Instead, you should
always start by attempting to repair the currently active primary cluster.

Important

A Why Not Just Fail Over? The replica clusters in the InnoDB ClusterSet

topology are doing their best to keep themselves synchronized with the primary
cluster. However, depending on the volume of transactions and the speed

and capacity of the network connections between the primary cluster and the
replica clusters, replica clusters can fall behind the primary cluster in receiving
transactions and applying the changes to their data. This is called replication
lag. Some replication lag is to be expected in most replication topologies,

252

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only

InnoDB ClusterSet Emergency Failover

and is quite likely in an InnoDB ClusterSet deployment where the clusters are
geographically dispersed and in different data centers.

Also, it is possible for the primary cluster to become disconnected from other
elements of the InnoDB ClusterSet topology by a network partition, but remain
online. If that happens, some replica clusters might stay with the primary cluster,
and some instances and client applications might continue to connect to the
primary cluster and apply transactions. In this situation, the partitioned areas

of the InnoDB ClusterSet topology begin to diverge from each other, with a
different transaction set on each group of servers.

When there is replication lag or a network partition, if you trigger an emergency
failover to a replica cluster, any unreplicated or divergent transactions on the
primary cluster are at risk of being lost. In the case of a network partition,

the failover can create a split-brain situation, where the different parts of the
topology have divergent transaction sets. You should therefore always make
an attempt to repair or reconnect the primary cluster before triggering an
emergency failover. If the primary cluster cannot be repaired quickly enough or
cannot be reached, you can go ahead with the emergency failover.

The diagram shows the effects of an emergency failover in an example InnoDB ClusterSet deployment.
The primary cluster in the Rome datacenter has gone offline, so an emergency failover has been
carried out to make the replica cluster in the Brussels datacenter into the primary InnoDB Cluster of the
InnoDB ClusterSet deployment. The Rome cluster has been marked as invalidated, and its status in
the InnoDB ClusterSet deployment has been demoted to a replica cluster, although it is not currently
able to replicate transactions from the Brussels cluster.

Figure 9.3 InnoDB ClusterSet Failover

oono oono goo ooo
oono oon oono ooo
— — — —
Reporting Application Application Application Reporting Application

\ \ \ \

\) \ \ \
| Read/Write fiead Only I I
r # ¥ V4
My Router My Router My Router My Router
Target: Rome Target: PRIMARY Target: PRIMARY Target: B{ussels

\
\
|
|

!

~
\ -
RS v BN
Ssccn&ary — . Secondary
My
InnoDB Cluster
PRIMARY
.~ . 4
S Ttenae” ’ S
Rome Brussels

The MySQL Router instances that were set to follow the primary have routed read and write traffic

to the Brussels cluster which is now the primary. The MySQL Router instance that was routing read
traffic to the Brussels cluster by name when it was a replica cluster, continues to route traffic to it, and
is not affected by the fact that the cluster is now the primary rather than a replica cluster. However,

253

InnoDB ClusterSet Emergency Failover

the MySQL Router instance that was routing read traffic to the Rome cluster by name cannot currently
send any traffic there. The reporting application in this example does not need to report when the local
datacenter is offline, but if the application did still need to function, the MySQL Router instance should
have its routing options changed either to follow the primary or to send traffic to the Brussels cluster.

To carry out an emergency failover for the primary InnoDB Cluster, follow this procedure:

1. Using MySQL Shell, connect to any member server that is still active in the InnoDB

ClusterSet deployment, using an InnoDB Cluster administrator account (created with
cl uster. set upAdni nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions.

When the connection is established, get the Cl ust er Set object from that member server using
adba. get ClusterSet () orcluster.getC usterSet() command. ACl ust er Set object
that you previously retrieved from a member server that is now offline will not work any more,

S0 you nheed to get it again from a server that is online. It is important to use an InnoDB Cluster
administrator account or server configuration account so that the default user account stored in the
Cl ust er Set object has the correct permissions. For example:

nysqgl -j s> \connect admi n2@27.0. 0. 1: 4410

Creating a session to 'adm n2@?27.0. 0. 1: 4410'

Pl ease provide the password for 'adm n2@27.0.0. 1: 4410" ;: ******x*x

Save password for 'adm n2@27.0.0.1:4410'? [Y]es/[NJ o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press ~C to stop.

Cl osing ol d connection...

Your MySQL connection id is 71

Server version: 8.0.27-comercial MySQL Enterprise Server - Conmerci al

No default schema sel ected; type \use <schema> to set one.

<C assi cSessi on: adm n2@.27. 0. 0. 1: 4410>

nysqgl -j s> nycl usterset = dba. get Cl ust er Set ()
<Cl usterSet:testclusterset>

Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() function
in MySQL Shell. Use the ext ended option to see exactly where and what the issues are. For
example:

nmysql -j s> nycl ust erset. st at us({extended: 1})
For an explanation of the output, see Section 9.7, “InnoDB ClusterSet Status and Topology”.

An InnoDB Cluster can tolerate some issues and be functioning well enough to continue as part of
the InnoDB ClusterSet deployment. A primary cluster that is functioning acceptably has the global
status OK when you check it using the cl ust er Set . st at us() command. For example, if one of
the member servers in a cluster goes offline, even if that server is the primary, the underlying Group
Replication technology can handle this situation and reconfigure itself.

If the primary cluster is still functioning acceptably in the InnoDB ClusterSet deployment according
to the reported status, but you need to carry out maintenance or fix some minor issues to improve
the primary cluster's function, you can carry out a controlled switchover to a replica cluster. You
can then take the primary cluster offline if necessary, repair any issues, and bring it back into
operation in the InnoDB ClusterSet deployment. For instructions to do this, see Section 9.8,
“InnoDB ClusterSet Controlled Switchover”.

If the primary cluster is not functioning acceptably (with the global status NOT _OK) in the InnoDB
ClusterSet deployment, but you can contact it, first try to repair any issues using AdminAPI
through MySQL Shell. For example, if the primary cluster has lost quorum, it can be restored
usingacl uster. forceQuorunJsi ngPartiti onOf command. For instructions to do this, see
Section 9.10, “InnoDB ClusterSet Repair and Rejoin”.

If you cannot carry out a controlled switchover, and you cannot fix the issue quickly enough by
working with the primary cluster (for example, because you cannot contact it), proceed with the
emergency failover. First identify a suitable replica cluster that can take over as the primary cluster.

254

InnoDB ClusterSet Emergency Failover

A replica cluster's eligibility for an emergency failover depends on its global status, as reported by
the cl ust er Set . st at us() command:

Table 9.2 Permitted Cluster Operations By Status

InnoDB Cluster Global Routable Controlled Emergency
Status in ClusterSet Switchover Failover
XK Yes Yes Yes
OK_NOT_REPLI CATI NG Yes, if specified as target Yes Yes
cluster by name
OK_NOT_CONSI STENT Yes, if specified as target No Yes
cluster by name
OK_M SCONFI GURED Yes Yes Yes
NOT_OK No No No
| NVALI DATED Yes, if specified as target No No
cluster by name and
accept _r o routing policy is
set
UNKNOAN Connected Router instances |No No
might still be routing traffic to
the cluster

The replica cluster you select must have the most up to date set of transactions (GTID set) among
all of the replica clusters that are reachable. If more than one replica cluster is eligible for the
emergency failover, check the replication lag for each cluster (which is shown in the extended
output for the cl ust er Set . st at us() command). Select the replica cluster with the least
replication lag, which should therefore have the most transactions. The emergency failover process
checks the GTID sets for all the replica clusters that are currently reachable, and tells you if another
cluster is more up to date, so you can try again with that cluster.

Check the routing options that are set for each MySQL Router instance, and the global policy for
the InnoDB ClusterSet deployment, by issuing a cl ust er Set . r out er Opt i ons() command in
MySQL Shell while connected to any member server in the InnoDB ClusterSet deployment. For
example:

If all the MySQL Router instances are set to follow the primary ("t ar get _cl uster":
“primary"), traffic will be automatically redirected to the new primary cluster within a few seconds
of the failover. If a routing option is not displayed for a MySQL Router instance, as in the example
above with "t ar get _cl ust er " for Rone2, it means the instance does not have that policy set,
and it follows the global policy.

If any of the instances are set to target the current primary cluster by name ("t arget _cl uster":
"name_of primary_cl uster"), they will not redirect traffic to the new primary. When the
primary cluster is not functioning, the cl ust er Set . set Rout i ngOpti on() command cannot

be used to change the routing options, so you cannot redirect the traffic handled by that MySQL
Router instance until failover to the new primary cluster is complete.

If you can, try to verify that the original primary cluster is offline, and if it is online, attempt to shut it
down. If it remains online and continues to receive traffic from clients, a split-brain situation can be
created where the separated parts of the InnoDB ClusterSet diverge.

To proceed with the emergency failover, issue a cl ust er Set . f or cePri maryCl uster ()
command, naming the replica cluster that will take over as the new primary cluster. For example:

nysqgl -j s> nycl usterset.forcePri maryC uster("clustertw")

Failing-over prinmary cluster of the clusterset to 'clustertwo'

* Verifying primary cluster status

None of the instances of the PRI MARY cluster 'clusterone' could be reached.

255

InnoDB ClusterSet Emergency Failover

* Verifying clusterset status
** Checking cluster clustertwo
Cluster 'clustertwo’ is available
** Checki ng whet her target cluster has the nost recent GTID set
* Pronoting cluster 'clustertwo'
* Updati ng net adat a

PRI MARY cl uster failed-over to 'clustertwo’'. The PRI MARY instance is '127.0.0. 1: 4410
Former PRI MARY cl uster was | NVALI DATED, transactions that were not yet replicated nay be |ost.

Inthe cl usterSet. forcePrimaryC uster() command:

e The cl ust er Nane parameter is required and specifies the identifier used for the replica cluster
in the InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In
the example, cl ust er t wo is the cluster that is to become the new primary.

« Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

* Usetheinval i dat eRepl i caCl ust er s option to name any replica clusters that are
unreachable or unavailable. These will be marked as invalidated during the failover process.
The failover is canceled if any unreachable or unavailable replica clusters that you do not name
are discovered during the process. In this situation you must either repair and rejoin the replica
clusters then retry the command, or name them on this option when you retry the command, and
fix them later.

e Use the ti neout option to define the maximum number of seconds to wait for pending
transactions to be applied in each instance of the cluster. Ensuring GTID_EXECUTED has the
most up-to-date GTID set. The default value is retrieved from the dba. gt i dWai t Ti neout
option.

When you issue the cl ust er Set . f or cePri mar yCl ust er () command, MySQL Shell checks
that the target replica cluster complies with the requirements to take over as the primary cluster,
and returns an error if it does not.

If the target replica cluster meets the requirements, MySQL Shell carries out the following tasks:

¢ Attempts to contact the current primary cluster, and stops the failover if it actually can be
reached.

* Checks for any unreachable or unavailable replica clusters that have not been specified using
i nval i dat eRepl i caC ust er s, and stops the failover if any are found.

< Marks all replica clusters listed in i nval i dat eRepl i caCl ust er s as invalidated, and marks
the old primary cluster as invalidated.

« Checks that the target replica cluster has the most up to date GTID set among the available
replica clusters. This involves stopping the ClusterSet replication channel in all of the replica
clusters.

« Updates the ClusterSet replication channel on all replica clusters to replicate from the target
cluster as the new primary cluster.

e Sets the target cluster as the primary cluster in the ClusterSet metadata, and changes the old
primary cluster into a replica cluster, although it is not currently functioning as a replica cluster
because it is marked as invalidated.

During an emergency failover, MySQL Shell does not attempt to synchronize the target replica
cluster with the current primary cluster, and does not lock the current primary cluster. If the original
primary cluster remains online, it should be shut down as soon as it can be contacted.

256

InnoDB ClusterSet Repair and Rejoin

9. If you have any MySQL Router instances to switch over to targeting the new primary cluster,
do that now. You can change them to follow the primary ("t arget _cluster": "prinary"),
or specify the replica cluster that has taken over as the primary ("t arget _cl uster":
"nanme_of new primary_cluster"). For example:

nysql -j s> nycl ust erset. set Routi ngOption(' Romel', 'target_cluster', 'primry')

or

nysql -j s> nycl usterset. set Routi ngOption(' Ronmel', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Romel'.

Issue a cl ust er Set . rout er Opt i ons() command to check that all the MySQL Router instances
are now routing correctly.

10.Issue acl ust er Set . st at us() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

11. If and when you are able to contact the old primary cluster again, first ensure that no application
traffic is being routed to it, and take it offline. Then follow the process in Section 9.10, “InnoDB
ClusterSet Repair and Rejoin” to check the transactions and decide how to arrange the InnoDB
ClusterSet topology going forward.

Following an emergency failover, and there is a risk of the transaction sets differing between
parts of the ClusterSet, you have to fence the cluster either from write traffic or all traffic. For more
details, see Fencing Clusters in an InnoDB ClusterSet.

If you had to invalidate any replica clusters during the switchover process, if and when you are able
to contact them again, you can use the process in Section 9.10, “InnoDB ClusterSet Repair and
Rejoin” to repair them and add them back into the InnoDB ClusterSet.

9.10 InnoDB ClusterSet Repair and Rejoin

Use this information if you need to repair a cluster in an InnoDB ClusterSet deployment. You can use
the information here in any of the following situations:

A cluster in the InnoDB ClusterSet requires maintenance but has no issues with its functioning.

» A cluster is functioning acceptably in the InnoDB ClusterSet deployment but has some issues, such
as member servers that are offline.

» A cluster is not functioning acceptably and needs to be repaired.

» A cluster has been marked as invalidated during an emergency failover or controlled switchover
procedure.

Section 9.7, “InnoDB ClusterSet Status and Topology” explains how to check the status of an InnoDB
Cluster and of the whole InnoDB ClusterSet deployment, and the situations in which a cluster might
need repair. You can identify the following situations from the output of the cl ust er Set . st at us()
command:

* A cluster does not have quorum (that is, not enough members are online to have a majority).

* No members of a cluster can be reached.

A cluster's ClusterSet replication channel is stopped.

A cluster's ClusterSet replication channel is configured incorrectly.

A cluster's GTID set is inconsistent with the GTID set on the primary cluster in the InnoDB
ClusterSet.

» A cluster has been marked as invalidated. If the cluster is still online, the command warns that a split-
brain situation might result.

257

InnoDB ClusterSet Repair and Rejoin

If the cluster is the primary cluster in the InnoDB ClusterSet deployment, before repairing it, you might
need to carry out a controlled switchover or an emergency failover to demote it to a replica cluster.
After that, you can take the cluster offline if necessary to repair it, and the InnoDB ClusterSet will
remain available during that time.

» A controlled switchover is suitable if the primary cluster is functioning acceptably but requires
maintenance or has minor issues. A primary cluster that is functioning acceptably has the global
status OK when you check it using the cl ust er Set . st at us() command. Section 9.8, “InnoDB
ClusterSet Controlled Switchover” explains how to perform this operation.

» An emergency failover is suitable if you cannot contact the primary cluster at all. Section 9.9,
“InnoDB ClusterSet Emergency Failover” explains how to perform this operation.

« If the primary cluster is not functioning acceptably (with the global status NOT _OK) but it can be
contacted, make an attempt to repair any issues using the information in this section. An emergency
failover carries the risk of losing transactions and creating a split-brain situation for the InnoDB
ClusterSet. If you cannot repair the primary cluster quickly enough to restore availability, proceed
with an emergency failover and then repair it if possible.

Follow this procedure to repair an InnoDB Cluster that is part of an InnoDB ClusterSet deployment:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cl uster. set upAdm nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get
the Cl ust er Set object using a dba. get Cl ust er Set () orcl uster. get Cl uster Set ()
command. It is important to use an InnoDB Cluster administrator account or server configuration
account so that the default user account stored in the Cl ust er Set object has the correct
permissions. For example:

nysgl -j s> \connect admi n2@27.0. 0. 1: 4410

Creating a session to 'adm n2@?27.0.0. 1: 4410'

Pl ease provide the password for 'adm n2@27.0.0.1: 4410" ; *****x*xx*x
Save password for 'adm n2@27.0.0.1:4410'? [Y]es/[NJ o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press ~C to stop.

Cl osing old connection...

Your MySQL connection id is 42

Server version: 8.0.27-comercial MySQL Enterprise Server - Conmerci al
No default schenma sel ected; type \use <schema> to set one.

<C assi cSessi on: adm n2@.27. 0. 0. 1: 4410>

nysql -j s> nycl usterset = dba. get Cl uster Set ()

<Cl uster Set:testclusterset>

2. Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() command
in MySQL Shell. Use the ext ended option to see exactly where and what the issues are. For
example:

nysql -j s> nycl usterset. status({extended: 1})
For an explanation of the output, see Section 9.7, “InnoDB ClusterSet Status and Topology”.

3. Still using an InnoDB Cluster administrator account (created with
cl uster.setupAdm nAccount ()) or InnoDB Cluster server configuration account, get the
Cl ust er object using dba. get C ust er (). You can either connect to any member server in the
cluster you are repairing, or connect to any member of the InnoDB ClusterSet and use the nane
parameter on dba. get Cl ust er () to specify the cluster you want. For example:

nysql -j s> cluster2 = dba. get Cl uster Set ()
<Cl uster: cl ust ert wo>

4. Check the status of the cluster using AdminAPI's cl ust er . st at us() command in MySQL Shell.
Use the ext ended option to get the most details about the cluster. For example:

nysql -j s> cluster2. status({extended: 2})

258

Fencing Clusters in an InnoDB ClusterSet

For an explanation of the output, see Checking a cluster's Status with Cl ust er. st at us().

5. Following an emergency failover, and there is a risk of the transaction sets differing between parts
of the ClusterSet, you have to fence the cluster either from write traffic or all traffic. Section 9.10.1,
“Fencing Clusters in an InnoDB ClusterSet” explains how, to fence and unfence a cluster, from
MySQL Shell 8.0.28.

6. If the set of transactions (the GTID set) on the cluster is inconsistent, fix this first. The
cl usterSet. status() command warns you if a replica cluster's GTID set is inconsistent
with the GTID set on the primary cluster in the InnoDB ClusterSet. A replica cluster in this state
has the global status OK_NOT_CONSI STENT. You also need to check the GTID set on a former
primary cluster, or a replica cluster, that has been marked as invalidated during a controlled
switchover or emergency failover procedure. A cluster with extra transactions compared to the
other clusters in the ClusterSet can continue to function acceptably in the ClusterSet while it stays
active. However, a cluster with extra transactions cannot rejoin the ClusterSet. Section 9.10.2,
“Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters” explains how to check
for and resolve issues with the transactions on a server.

7. If there is a technical issue with a member server in the cluster, or with the overall membership of
the cluster (such as insufficient fault tolerance or a loss of quorum), you can work with individual
member servers or adjust the cluster membership to resolve this. Section 9.10.3, “Repairing
Member Servers and Clusters in an InnoDB ClusterSet” explains what operations are available to
work with the member servers in a cluster.

8. If you cannot repair a cluster, you can remove it from the InnoDB ClusterSet using a
cl usterSet.renmved uster () command. For instructions to do this, see Section 9.10.4,
“Removing a Cluster from an InnoDB ClusterSet”. A removed InnoDB Cluster cannot be added
back into an InnoDB ClusterSet deployment. If you want to use the server instances in the
deployment again, you will need to set up a new cluster using them.

9. When you have repaired a cluster or carried out the required maintenance, you can rejoin it to the
InnoDB ClusterSet using a cl ust er Set . rej oi n() command. This command validates that
the cluster is able to rejoin, updates and starts the ClusterSet replication channel, and removes
any invalidated status from the cluster. For instructions to do this, see Section 9.10.5, “Rejoining a
Cluster to an InnoDB ClusterSet”.

9.10.1 Fencing Clusters in an InnoDB ClusterSet

Following an emergency failover, and there is a risk of the transaction sets differing between parts of
the ClusterSet, you have to fence the cluster either from write traffic or all traffic.

If a network partition happens, then there is the possibility of a split-brain situation, where instances
lose synchronization and cannot communicate correctly to define the synchronization state. A split-
brain can occur in situations such as when a DBA decides to forcibly elect a replica cluster to become
the primary cluster creating more than one master, leading to the split-brain situation.

In this situation, a DBA can choose to fence the original primary cluster from:
» Writes.

 All traffic.

Three fencing operations are available:

o <Cluster>.fenceWites(): Stops write traffic to a primary cluster of a ClusterSet. Replica
clusters do not accept writes, so this operation has no effect on them.

It is possible to use on INVALIDATED Replica clusters. Also, if run against a Replica cluster with
super _read_onl y disabled, it will enable it.

259

Fencing Clusters in an InnoDB ClusterSet

e <Cluster>. unfenceWites():Resumes write traffic. This operation can be run on a cluster that
was previously fenced from write traffic using the <Cl ust er >. f enceW i t es() operation.

It is not possible to use cl ust er. unfenceW it es() on a Replica Cluster.

» <Cluster>.fenceAl | Traffic(): Fences a cluster, and all Read Replicas in that cluster, from
all traffic. If you have fenced a cluster from all traffic using <Cl ust er >. fenceAl | Traffic(), you
have to reboot the cluster using the dba. r eboot Cl ust er Fr omConpl et eQut age() MySQL Shell
command.

For more information on dba. r eboot Cl ust er Fr omConpl et eQut age() , see Section 8.8.3,
“Rebooting a Cluster from a Major Outage”.

fenceWrites()
@ Issuing . f enceW it es() on areplica cluster returns an error:

ERROR: Unable to fence Cluster fromwite traffic:

operation not permtted on REPLICA Clusters

Cluster.fenceWites: The Cluster '<Cluster> is a REPLICA C uster
of the ClusterSet '<C usterSet> (M/SQLSH 51616)

Even though you primarily use fencing on clusters belonging to a clusterset, it is also possible to fence
standalone clusters using <Cl ust er>. fenceAl | Traffic().

1. To fence a primary cluster from write traffic, use the Cluster.fenceWrites command as follows:

<Cl uster>.fenceWites()

After running the command:
e The automatic super _r ead_onl y management is disabled on the cluster.
e super _read_onl y is enabled on all the instances in the cluster.

 All applications are blocked from performing writes on the cluster.

cluster.fenceWites()
The Cluster 'primary’ will be fenced fromwite traffic

Di sabl i ng automati c super_read_only managenment on the Cluster...
Enabl i ng super_read_only on '127.0.0.1:3311'...
Enabl i ng super_read_only on '127.0.0.1:3312"'...
Enabl i ng super_read_only on '127.0.0.1:3313"...

E

NOTE: Applications will now be bl ocked fromperformng wites on Cluster 'prinmary'.
Use <Cl uster>.unfenceWites() to resune wites if you are certain a split-brain is not in effect.

Cluster successfully fenced fromwite traffic

2. To check that you have fenced a primary cluster from write traffic, use the <Cl ust er >. st at us
command as follows:

<Cl uster>.clusterset.status()

The output is as follows:

clusterset.status()
{
"clusters": {
"primary": {
"clusterErrors": [
"WARNI NG Cluster is fenced fromWite traffic.
Use cluster.unfenceWites() to unfence the Cluster."

1.

260

Fencing Clusters in an InnoDB ClusterSet

"clusterRol e": "PRI MARY",
"gl obal Status": "OK FENCED WRI TES",

“primary": null,

"status": "FENCED WRI TES",

"statusText": "Cluster is fenced fromWite Traffic."
B

"replica": {

"clusterRol e": "REPLICA",
"clusterSetReplicationStatus": "OK",
"gl obal Status": "OK"

}
b

"domai nNane": "primry",
"gl obal Pri maryl nstance": null,
"primaryCl uster”: "“primry",

"status":

" UNAVAI LABLE",

"statusText": "Primary Cluster is fenced fromwite traffic."

3. To unfence a cluster and resume write traffic to a primary cluster, use the Cluster.fenceWrites
command as follows:

<Cl uster>. unfenceWites()

The automatic super _read_onl y management on the primary cluster is enabled, and the
super _read_onl y status on the primary cluster instance.

cluster.unfenceWites()
The Cluster 'primary' will be unfenced fromwite traffic

* Enabl ing automati c super_read_only managenent on the Cluster...
* Di sabling super_read_only on the primary '127.0.0.1:3311'. ..

Cluster successfully unfenced fromwite traffic

4. To fence a cluster from all traffic, use the Cluster.fenceAllTraffic command as follows:

<Cluster>.fenceAl |l Traffic()

The super _read_onl y status is enabled on the primary instance of the cluster instance. Before
enabling of f | i ne_node on all the instances in the cluster:

cluster.fenceA |l Traffic()

The Cluster '"primary' will be fenced fromall traffic

* Enabling super_read_only on the primary '127.0.0.1:3311'. ..

* Enabling offline_node on the primary '127.0.0.1:3311"...

* Enabling offline_node on '127.0.0.1:3312"'...

* Stopping Group Replication on '127.0.0.1:3312"...

* Enabling offline_node on '127.0.0.1:3313"...

* Stopping Group Replication on '127.0.0.1:3313"...

* Stopping Group Replication on the primary '127.0.0.1:3311'...
Cluster successfully fenced fromall traffic

5. To unfence a cluster from all traffic, use the dba. r eboot Cl ust er Fr onConpl et eCut age()
MySQL Shell command. When you have restored the cluster, you rejoin the instances to the cluster
by selecting Y when asked if you want to rejoin the instance to the cluster:

cluster = dba. reboot Cl ust er Fr onConpl et eQut age()
Restoring the cluster 'primary' from conplete outage...

The instance '127.0.0.1:3312' was part of the cluster configuration.
Wuld you like to rejoin it to the cluster? [y/N: Y

The instance '127.0.0.1:3313" was part of the cluster configuration.
Wuld you like to rejoin it to the cluster? [y/N: Y

261

Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters

* WAiting for seed instance to becone ONLINE. ..

127.0.0. 1: 3311 was restored.

Rej oi ning ' 127.0.0. 1: 3312" to the cluster.

Rej oi ni ng instance '127.0.0.1:3312" to cluster 'primary'...

The instance '127.0.0.1: 3312 was successfully rejoined to the cluster.

Rej oi ning ' 127.0.0.1:3313" to the cluster.
Rej oi ni ng instance '127.0.0.1:3313" to cluster 'primary'...

The instance '127.0.0.1:3313" was successfully rejoined to the cluster.
The cluster was successfully reboot ed.

<Cl uster: primry>

9.10.2 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet
Clusters

AdminAPI's cl ust er Set . st at us() command warns you if an InnoDB Cluster's GTID set is
inconsistent with the GTID set on the primary cluster in the InnoDB ClusterSet. A cluster in this state
has extra transactions compared to the other clusters in the InnoDB ClusterSet, and has the global
status OK_NOT_CONSI STENT. The cluster continues to function in the InnoDB ClusterSet with this
status, and you can carry out an emergency failover to it if its GTID set is the most up to date of the
available replica clusters. However, it is not eligible for a controlled switchover, because the difference
in transactions might result in clients accessing incorrect data. The cluster also cannot rejoin the
InnoDB ClusterSet with extra transactions if it goes offline.

A replica cluster in an InnoDB ClusterSet is read-only, so if it has always been a replica cluster,

it should not contain extra transactions unless changes were made on the cluster without using
AdminAPI commands. If you need to carry out administrative transactions on an instance while Group
Replication is stopped, always set the value of the sql _| og_bi n system variable to OFF before
issuing administrative statements, and back to ON afterwards:

SET SQ._LOG Bl N=0;
<admi ni strator action>
SET SQ._LOG Bl N=1;

Setting this system variable to OFF means that the transactions that occur from that point until you set it
back to ON are not written to the binary log and do not have GTIDs assigned to them.

A situation that can create a diverged set of transactions with no outside changes is when the primary
cluster becomes unreachable and an emergency failover procedure is used. If the primary cluster
remains online after the failover, it could continue to accept transactions from clients through any
MySQL Router instances that are still connected to it, and pass these to any replica clusters that are
still connected to it. Alternatively, significant replication lag might cause the replica cluster selected

as the replacement primary cluster to be missing some transactions from the primary cluster. In that
case, when the old primary cluster initially comes back online as an invalidated replica cluster, the
transactions that were never transferred to the replica are identified as extra transactions.

The extended output for the cl ust er Set . st at us() command identifies any clusters that have extra
transactions, and assigns them the OK_NOT_CONSI STENT global status. For example:

nysql -j s> nycl usterset. stat us({extended: 1})
{
"clusters": {
"clusterone": {
"clusterErrors": [
"ERROR Errant transactions detected"
Il
“clusterRol e": "REPLICA",
"clusterSetReplication": {
"applierStatus": "APPLIED ALL",
"applierThreadState": "Waiting for an event from Coordinator"”,
"appl i er Wr ker Thr eads": 4,

262

Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters

“"receiver": "127.0.0.1:3310",
"receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
"source": "127.0.0.1:4410"
iE
"clusterSetReplicationStatus": "OK',
"gl obal Status": " OK_NOT_CONSI STENT",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",
"nmode": "R O,
"replicationLagFromnm medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0.1:3320": {
"address": "127.0.0.1:3320",
"menmber Rol e": " SECONDARY",
"mode": "R O,
"replicationLagFromn medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0.1:3330": {
"address": "127.0.0.1:3330",
"menber Rol e": " SECONDARY",
"mode": "R O,
"replicationLagFromn medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"

}
iE
“transactionSet": "54ff337b-2ccf-1lec-95da-3c6aa7197deb: 1- 131, 54f f 3ed7- 2ccf - 11ec- 95da- 3c6aa
"transacti onSet Consi st encyStatus”: "1 NCONSI STENT",
"transacti onSet Consi stencyStatusText": "There are 1 transactions that were executed in this
"transactionSet Errant GidSet": "c06527d6-2ce3-11lec-a55e-3c6aa7197deb: 1",
"transactionSetM ssingGidSet": ""
iE
"clustertwo": {
"clusterRol e": "PRI MARY",
"gl obal Status": "OK",
“primary": "127.0.0.1:4410",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0. 1: 4410": {
"address": "127.0.0.1: 4410",
"menber Rol e": " PRI MARY",
"nmode": "RI'W,
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0. 1: 4420": {
"address": "127.0.0.1: 4420",
"menber Rol e": " SECONDARY",
"mode": "R O,
"replicationLagFromn medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0. 1: 4430": {
"address": "127.0.0.1: 4430",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"replicationLagFromnm medi at eSource": "",

263

Repairing Member Servers and Clusters in an InnoDB ClusterSet

"replicationLagFronCri gi nal Source":
"status": "ONLINE",

"version": "8.0.27"
}
i
"transactionSet": "54ff337b-2ccf-1lec-95da-3c6aa7197deb: 1- 131, 54f f 3ed7- 2ccf - 11lec- 95da- 3c6aa719:
}
i
"dormai nNane": "testclusterset",

"gl obal Pri maryl nstance": "127.0.0. 1: 4410",

"met adat aServer": "127.0.0. 1: 4410",

"primaryC uster": "clustertwo",

"status": "AVAI LABLE",

"statusText": "Primary Cluster available, there are issues with a Replica cluster."

}

The safest method to reconcile an individual server's data with the rest of the InnoDB Cluster is to
identify the server in the InnoDB ClusterSet deployment that has the best data (the most transactions,
the most recent transactions, or the most important transactions) and use MySQL's cloning functionality
to transfer the content from that server to the affected server. For instructions to do this, see Cloning
Remote Data. Then use the cl ust er. rej oi nl nst ance() command to have the instance rejoin the
InnoDB Cluster. For details of this operation, see Section 8.8.1, “Rejoining an Instance to a Cluster”.

If the whole InnoDB Cluster is affected, remove the affected cluster from the InnoDB ClusterSet
deployment following the procedure in Section 9.10.4, “Removing a Cluster from an InnoDB
ClusterSet”, and set up a new InnoDB Cluster in its place. The server instances in the new InnoDB
Cluster will receive the correct transaction set as part of the setup process.

If you want to keep the extra transactions, an emergency failover can be carried out to make the
InnoDB Cluster with those transactions into the primary cluster, following the procedure in Section 9.9,
“InnoDB ClusterSet Emergency Failover”.

If you are able to deal with the problem transactions, use a cl ust er Set . r ej oi nCl uster ()
operation to rejoin the InnoDB Cluster to the InnoDB ClusterSet deployment. For instructions to do that,
see Section 9.10.5, “Rejoining a Cluster to an InnoDB ClusterSet”.

9.10.3 Repairing Member Servers and Clusters in an InnoDB ClusterSet

Depending on the issues or maintenance requirements for the cluster, the following operations
are available for you to work with its member servers. Unless otherwise stated, use Cl ust er and
Cl ust er Set objects that you fetched with an InnoDB Cluster administrator account or server
configuration account, so that the default user account stored in the Cl ust er Set object has the
correct permissions.

» Add further server instances to the cluster, using the cl ust er . addl nst ance() command, as
described in the procedure at Section 9.4, “Deploying InnoDB ClusterSet”. For more details of the
command, see Section 8.4.4, “Adding Instances to an InnoDB Cluster”.

Note that for this operation, you need to use the InnoDB Cluster server configuration account and
a Cl ust er object that was fetched using that account. The account must also exist on the server
instance, as explained in Section 9.3, “User Accounts for InnoDB ClusterSet”.

When you use this command to add a member server to an InnoDB Cluster that is part of an InnoDB
ClusterSet deployment, the server instance is added to the cluster and provisioned with the data for
the InnoDB ClusterSet. The ClusterSet replication channel is set up on the instance, and the required
configuration to operate in an InnoDB ClusterSet deployment is applied.

» Rejoin a server instance that was previously part of the cluster but could not automatically rejoin
the cluster, using the cl ust er. rej oi nl nst ance() command. For details of this operation, see
Section 8.8.1, “Rejoining an Instance to a Cluster”.

When you use this command to rejoin a member server to an InnoDB Cluster that is part of an
InnoDB ClusterSet deployment, the server instance is rejoined to the cluster and provisioned with the

264

https://dev.mysql.com/doc/refman/9.4/en/clone-plugin-remote.html
https://dev.mysql.com/doc/refman/9.4/en/clone-plugin-remote.html

Repairing Member Servers and Clusters in an InnoDB ClusterSet

data for the InnoDB ClusterSet. The ClusterSet replication channel is set up on the instance, and the
required configuration to operate in an InnoDB ClusterSet deployment is applied.

» Remove a server instance from the cluster, using the cl ust er. r enovel nst ance() command.
Specify the host name and port number of the server instance that is to be removed. For details of
this operation, see Removing Instances from an InnoDB Cluster. A f or ce option is available, but
this should only be used as a last resort.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell resets all configuration that was applied for InnoDB ClusterSet and resets the ClusterSet
replication channel settings.

» Change the primary of the cluster to another member server, using the
cluster.setPrimaryl nstance(instance) command. Changing the primary allows you to
carry out maintenance and upgrades on the current primary server, or to select a primary if Group
Replication's own election process does not automatically elect the primary server that you want.

Specify the host name and port number of the server instance that is to be the primary. You

can use the r unni ngTr ansact i onsTi meout option to specify a timeout between 0 and 3600
seconds for transactions that are running when you use the function, which also stops new incoming
transactions. There is no default setting for the timeout, so if you do not set it, there is no upper limit
to the wait time for the operation, and new transactions can start during that time.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell stops the ClusterSet replication channel on the server beforehand, and restarts it afterwards.
Also, if the cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than
making it read-write as would normally be the case with the primary of an InnoDB Cluster.

» Restore a cluster that has lost quorum by forcing quorum with the remaining instances, using the
cluster. forceQuorumdsi ngPartitionO (instance) command. Specify the host name
and port number of an online server instance with the correct metadata. The operation makes the
cluster consist of this and the other reachable instances, and excludes the partitioned instances. This
operation can create a split-brain scenario, so it should be considered a last resort. For details of this
operation, see Section 8.8.2, “Restoring a Cluster from Quorum Loss”.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell checks whether the target cluster is still a valid part of the ClusterSet, and warns you if it has
been invalidated. It also automatically restarts the ClusterSet replication channel afterwards. If the
cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than making it read-
write as would normally be the case with the primary of an InnoDB Cluster.

» Reboot a cluster that is completely offline, using the
dba. reboot Cl ust er Fr onConpl et eQut age() command. For details of this operation, see
Section 8.8.3, “Rebooting a Cluster from a Major Outage”.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell checks whether the target cluster is still a valid part of the ClusterSet, and warns you if it has
been invalidated.

If the cluster was not invalidated, MySQL Shell rejoins it to the InnoDB ClusterSet

deployment immediately after the reboot. If the cluster was invalidated, you must use a
clusterSet.rejoinC uster() operation to rejoin it to the InnoDB ClusterSet deployment. For
instructions to do that, see Section 9.10.5, “Rejoining a Cluster to an InnoDB ClusterSet”.

MySQL Shell also automatically restarts the ClusterSet replication channel after this operation. If the
cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than making it read-
write as would normally be the case with the primary of an InnoDB Cluster.

You cannot dissolve an InnoDB Cluster that is currently part of an InnoDB ClusterSet deployment
unless it is the only cluster in the ClusterSet or the cluster is invalidated. In all other configurations, you

265

Removing a Cluster from an InnoDB ClusterSet

must remove it from the InnoDB ClusterSet as described in Section 9.10.4, “Removing a Cluster from
an InnoDB ClusterSet”.

If the cluster is the only cluster in the ClusterSet or the cluster is invalidated, you can use
dba. dr opMet adat aSchena() orcl ust er. di ssol ve() on the cluster.

9.10.4 Removing a Cluster from an InnoDB ClusterSet

To remove a cluster from the InnoDB ClusterSet, use cl ust er Set . renoveC ust er () command. A
f or ce option is available if the cluster cannot be contacted at all.

cl usterSet.renoved uster () has the following syntax:

clusterSet.renmoveC uster(clusterNane[, options])

Clusters can be removed from a ClusterSet by removing the Cluster, but leaving it intact, or by
removing the Cluster and dissolving it into its member instances. All user data is retained by both
methods.

A removed cluster is dissolved, by default, into its component instances. This is configured by the
di ssol ve option, which defaultsto t r ue.

Important

A The primary cluster in an InnoDB ClusterSet cannot be removed using this
command. If you do need to remove the primary cluster, you must first carry
out a controlled switchover (see Section 9.8, “InnoDB ClusterSet Controlled
Switchover”) or an emergency failover (see Section 9.9, “InnoDB ClusterSet
Emergency Failover”) to demote the primary cluster to a replica cluster, and
promote one of the replica clusters to be the primary cluster. After that, the
former primary cluster can be removed using this procedure.

A dissolved InnoDB Cluster cannot be added back into an InnoDB ClusterSet
deployment. If you want to use the server instances in the deployment again,
you can use them to set up a new cluster and add that cluster to the ClusterSet.

* Removing and Dissolving a Cluster

* Removing a Cluster and Updating as Standalone

Removing and Dissolving a Cluster

To remove a cluster from the InnoDB ClusterSet, and dissolve the cluster, follow this procedure:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cl uster. set upAdni nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get the
Cl ust er Set object using dba. get Cl ust er Set () orcl uster. get C ust er Set () command.
It is important to use an InnoDB Cluster administrator account or server configuration account so
that the default user account stored in the Cl ust er Set object has the correct permissions.

2. Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() function in
MySQL Shell. For example:

nysql -j s> nycl usterset. status({extended: 1})
For an explanation of the output, see Section 9.7, “InnoDB ClusterSet Status and Topology”.

When you issue the cl ust er Set . r enoveC ust er () command, there must be an active and
reachable primary cluster in the InnoDB ClusterSet deployment, and this must not be the cluster

266

Removing a Cluster from an InnoDB ClusterSet

you are removing. The cluster you are removing must currently have the status of a replica cluster.
It can be invalidated, and does not have to be reachable.

Check the routing options that are set for each MySQL Router instance, and the global policy

for the InnoDB ClusterSet deployment, by issuing cl ust er Set . r out er Opti ons() in

MySQL Shell while connected to any member server in the InnoDB ClusterSet deployment.

Verify that no MySQL Router instances are routing traffic to the cluster that you are going to
remove. If any are, you must change their settings to route traffic to another cluster using a

cl usterSet. set Routi ngOpti on() command, as described in Section 9.6, “Integrating MySQL
Router With InnoDB ClusterSet”. A cluster cannot be removed if any MySQL Router instances
known to the InnoDB ClusterSet deployment are routing traffic to it.

Issue a cl ust er Set. removed ust er () command, naming the cluster that you want to remove
from the InnoDB ClusterSet. For example:

nmysql -j s> mycl usterset.renpved uster (' clusterone')
The Cluster 'clusterone' will be removed fromthe | nnoDB O uster Set.

* Waiting for the Custer to synchronize with the PRIMARY Cluster. ..

** Transactions replicated ####BHHHHHHHHHHHHHHHHHHHHEH R 100%
* Updati ng topol ogy

** Transactions replicated ####BHHHHHHHIHHHHHHHHHH R 100%
* Stopping and del eting C usterSet nmanaged replication channel...

The Cluster 'clusterone' was renmoved fromthe d usterSet.

e The cl ust er Nane parameter is required and specifies the identifier used for the cluster in the
InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In the
example, cl ust er one is the cluster that is to be removed.

« Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

e Use the ti neout option to specify the maximum number of seconds to wait for the cluster to
synchronize with the primary cluster in the InnoDB ClusterSet.

¢ Use the f or ce option to remove the cluster from the ClusterSet when the cluster's primary
instance is not reachable.

When you issue the cl ust er Set . r enoveC ust er () command, MySQL Shell checks that the
primary cluster in the InnoDB ClusterSet deployment is reachable, that the target cluster is not the
primary cluster, and that no MySQL Router instances are routing traffic to the target cluster. If any
of these conditions are not met, an error is returned. If they are met, MySQL Shell carries out the
following tasks to remove the target cluster from the InnoDB ClusterSet:

« Drops the replication user that was created for the ClusterSet replication channel on the target
cluster.

< Synchronizes the primary server of the target cluster with the primary cluster of the InnoDB
ClusterSet, and waits for all transactions to be applied locally. If the timeout expires before this is
completed, the operation fails. If synchronization does not work, try again with the f or ce option.

» Stops the ClusterSet replication channel, then removes the channel and resets its configuration
to the default values.

« Removes the target cluster's metadata and member information from the InnoDB ClusterSet
metadata.

e Leavesthe super read_onl y system variable set on all the member servers, to ensure that no
updates are performed on them.

267

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_super_read_only

Rejoining a Cluster to an InnoDB ClusterSet

5. Issue acl usterSet. status() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

6. A removed InnoDB Cluster cannot be added back into an InnoDB ClusterSet deployment, so if you
want to use the server instances in the deployment again, you will need to set up a new cluster
using the standalone instances. The InnoDB Cluster is implicitly dissolved during the removal
process, so that all the members become standalone instances.

Note that the Group Replication configuration is not removed from the server instances, so you
should exercise caution when reusing these in an InnoDB ClusterSet deployment, as explained in
Section 9.1, “InnoDB ClusterSet Requirements”. As the instances were configured for an InnoDB
ClusterSet deployment, the possibility of issues is lower, but you should be aware of the potential
for configuration differences especially if the instances are reused in a different InnoDB ClusterSet
deployment.

Removing a Cluster and Updating as Standalone

To remove a cluster from a ClusterSet and keep the cluster intact, as a standalone cluster, set the
di ssol ve optionto f al se.

The following example shows a cluster, named clustertwo, being removed intact from a ClusterSet:

nycl usterset.renoveC uster('clustertw', {dissolve: false})

If {di ssol ve: fal se} andf orce is not enabled, the command cannot proceed if one, or more,
members are uncontactable.

If {di ssol ve: false, force: true},thecommand proceeds even if one, or more, cluster
members are uncontactable. The cluster is removed intact from the ClusterSet, but the unreachable
members are not synchronized. However, if the cluster's primary is uncontactable, the cluster is
dissolved to its component instances. It is not possible to keep the cluster intact if the primary is
unavailable.

9.10.5 Rejoining a Cluster to an InnoDB ClusterSet

If an InnoDB Cluster is part of an InnoDB ClusterSet deployment, MySQL Shell automatically restores
it to its role in the topology immediately after a reboot, provided that it is functioning acceptably and has
not been marked as invalidated. However, if a cluster has been marked as invalidated or its ClusterSet
replication channel has stopped, you must use a cl ust er Set . r ej oi nCl ust er () operation to rejoin
it to the InnoDB ClusterSet deployment.

The cl ust er Set. rej oi nCl ust er () operation verifies that the target cluster meets these
requirements:

» The cluster has previously been a member of the ClusterSet.

e The cluster has quorum (sufficient members are online to form a majority).
» The cluster's primary server is reachable.

» The cluster is not holding any metadata locks or InnoDB transaction locks.

» The cluster's GTID set (gt i d_execut ed) contains no extra transactions compared to
the active members of the ClusterSet, with the exception of view change events. These
Group Replication internal transactions are identified by the UUID specified by the
group_replication_view change_uui d system variable, and the cluster rejoin process can
reconcile them.

If the cluster meets these requirements, the operation restarts the ClusterSet replication channel and
removes the | NVALI DATED status. If it does not, you will need to fix any issues that were identified and
retry the command.

268

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_view_change_uuid

Rejoining a Cluster to an InnoDB ClusterSet

Follow this procedure to rejoin an InnoDB Cluster to the InnoDB ClusterSet:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cl uster.setupAdn nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get the
Cl ust er Set object using dba. get Cl ust er Set () orcl uster. get d uster Set () command.
It is important to use an InnoDB Cluster administrator account or server configuration account so
that the default user account stored in the Cl ust er Set object has the correct permissions. For
example:

nysgl -j s> \connect admi n2@27.0. 0. 1: 3310

Creating a session to 'adm n2@?27.0.0.1: 3310

Pl ease provide the password for 'adm n2@27.0.0.1: 3310" ; ******x*x
Save password for 'adm n2@27.0.0.1:3310'? [Y]es/[NJ o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press ~C to stop

Cl osing ol d connection..

Your MySQL connection id is 28

Server version: 8.0.27-comercial MySQL Enterprise Server - Conmercia
No default schema sel ected; type \use <schema> to set one

<C assi cSessi on: adm n2@27. 0. 0. 1: 3310>

nysqgl -j s> nycl usterset = dba. get Cl ust er Set ()

<Cl usterSet:testclusterset>

2. Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() function in
MySQL Shell. For example:

nysqgl -j s> nycl ust erset. stat us({extended: 1})

For an explanation of the output, see Section 9.7, “InnoDB ClusterSet Status and Topology”.

3. Issueacl usterSet.rejoi nCluster() command, naming the cluster that you want to rejoin to
the InnoDB ClusterSet. For example:

nysqgl -j s> nycl usterset.rejoi nCluster('clustertw')
Rej oi ning cluster 'clustertw' to the clusterset
NOTE: Custer 'clustertwo' is invalidated

* Updati ng netadat a

* Rej oi ning cluster

** Changing replication source of 127.0.0.1:4420 to 127.0.0. 1: 3310
** Changing replication source of 127.0.0.1:4430 to 127.0.0. 1: 3310
** Changing replication source of 127.0.0.1:4410 to 127.0.0. 1: 3310

Cluster 'clustertwo' was rejoined to the clusterset

For the cl ust er Set. rej oi nCl ust er () command:

e The cl ust er Nane parameter is required and specifies the identifier used for the cluster in the
InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In the
example, cl ust er t wo is the name of the cluster that is being rejoined.

« Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

When you issue the cl ust er Set . r ej oi nCl ust er () command, MySQL Shell checks that the
target cluster meets the requirements to rejoin the ClusterSet, and returns an error if it does not. If
the target cluster meets the requirements, MySQL Shell carries out the following tasks:

« Checks whether the ClusterSet replication channel is replicating from the current primary cluster,
and reconfigures it to do that if it isn't already.

* Resets the replication user's password.

» Restarts the ClusterSet replication channel.

269

Dissolving a ClusterSet

* Clears the | NVALI DATED status for the cluster.

The target cluster rejoins the InnoDB ClusterSet as a replica cluster, even if it was previously a
primary cluster. A controlled switchover is required if you want to make the target cluster into the
primary cluster.

Note that if the target cluster has members that are not online or not reachable when you issue

the cl ust er Set . rej oi nCl ust er () command, these members are not correctly configured

by the command. If you no longer require these instances, you can remove them using the
cluster.renovel nstance() command. If you repair these instances or bring them online
again, issue the cl ust er Set . r ej oi nCl ust er () command again after those members return to
the cluster.

4. Issue acl usterSet.status() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

5. If you do want to make the rejoined cluster into the primary cluster, issue a
clusterSet.setPrimaryC uster() command, naming the rejoined cluster. Section 9.8,
“InnoDB ClusterSet Controlled Switchover” has instructions for the procedure, including how to
direct MySQL Router instances to send traffic to the new primary cluster.

9.11 Dissolving a ClusterSet

This section describes how to dissolve a ClusterSet using Cl ust er Set . di ssol ve().

Note
@ All user data is retained.

ClusterSets are dissolved in the following way:

» Replication accounts are dropped from all contactable members.

e The metadata schema is dropped from all contactable members.

e The asynchronous replication channel is stopped on all contactable members.
» Each individual Cluster is dissolved.

If any instance is unreachable, the operation fails, generating an error. To ignore unreachable
instances and dissolve the ClusterSet, use the f or ce option. You can also use this option if a timeout
is reached waiting for all transactions to be applied on a secondary member.

Cl ust er Set . di ssol ve() accepts ati neout option, which specifies the number of seconds to wait
for pending transactions to be applied in each contactable instance of the ClusterSet. The default value
is retrieved from the dba. gt i d\Wai t Ti neout option.

This command can also be run with the dr yRun option set to t r ue. This tests all settings without
making any changes.

9.12 Upgrade InnoDB ClusterSet

To upgrade the server instances in an InnoDB ClusterSet, complete the following steps:
Upgrade MySQL Router.
Upgrade MySQL Shell.

Upgrade MySQL Server:

e

Post Upgrade Status Check.

270

Upgrade MySQL Router.

Check the versions of the installed binaries:
* mysglrouter --version: Checks the version of MySQL Router installed.
* mysqglsh --version: Checks the version of MySQL Shell installed.

* mysqld --version: Checks the version of MySQL Server installed.

Upgrade MySQL Router.

To upgrade MySQL Router, complete the following steps:
1. Stop MySQL Router.

On a Unix system, if you used the optional - - di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected when you
bootstrapped the router. These files include st op. sh. Navigate to this directory and issue this
command:

./ stop. sh

On Microsoft Windows, if you used the optional - - di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected when you
bootstrapped the router. These files include st op. ps1. Navigate to this directory and issue this
command:

.\stop. psl

Or on a Linux system using syst end, stop the MySQL Router service by issuing:

systenct| stop nysqlrouter.service

Otherwise, kill the process ID (PID) of the associated mysqlrouter process.
2. Obtain and install the latest version of MySQL Router.
3. Start MySQL Router.

On a Unix system, if you used the optional -- di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected. These
files include st ar t . sh. Navigate to the directory and issue this command:

./start.sh

If the path to the new router has changed, you must update the st ar t . sh shell script to reflect the
path.

#! / bi n/ bash

basedi r =/t np/ nyr out er

ROUTER_PI D=$basedi r/ nysql rout er. pi d /usr/bin/ nysql router -c $basedir/nysql router.conf &
di sown %

If you upgrade MySQL Router manually, opposed to using package management, you can update
the basedi r =. Bootstrapping the router again also regenerates the st ar t . sh shell script.

Or on a Linux system using syst end, start the MySQL Router service by issuing:

systenct| start nysqlrouter.service

On Microsoft Windows, if you used the optional - - di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected. These
files include st ar t . ps1. Navigate to the directory and issue this command:

.\start.psl

271

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-deploying-bootstrapping.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-deploying-bootstrapping.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-server-starting.html

Upgrade MySQL Shell

On starting MySQL Router using the new router binaries, the version of the router is upgraded:

nmysql router --version

Upgrade MySQL Shell

Upgrade MySQL Shell by installing the new binaries, and stopping and starting MySQL Shell:
1. Obtain and install the latest version of MySQL Shell.
2. Stop and quit MySQL Shell by issuing:
\q
3. Restart MySQL Shell from the command line, by issuing:
nysql sh
4. Upgrade the InnoDB ClusterSet Metadata:

* To upgrade a ClusterSet, connect MySQL Shell's global session to your ClusterSet and use
the dba. upgr adeMet adat a() operation to upgrade the ClusterSet's metadata to the new
metadata.

If a ClusterSet's metadata schema needs to be upgraded, then the upgrade process itself should
be performed in the ClusterSet's primary Cluster.

Metadata Upgrade
@ The Metadata Upgrade may do nothing if the InnoDB ClusterSet already
uses the latest version.

Upgrade MySQL Server

Upgrade MySQL Server by upgrading all the replica clusters' instances first and then upgrading the
primary cluster's instances.

When upgrading each cluster, primary or replica clusters, upgrade all secondary instances before
upgrading the primary instance.

Upgrading MySQL Server is optional
@ Upgrading MySQL Server is optional. Server upgrades can have a greater
impact than upgrading MySQL Shell and MySQL Router. Also, you should

always keep MySQL Shell and MySQL Router at the latest version, even if the
server is not; this is true for InnoDB Clusters and ReplicaSets.

For details on upgrading with Group Replication, see Upgrading a Group Replication Member.
1. Stop MySQL Server by issuing one of the following commands:
e If MySQL Server is using systemd issue:
systenctl stop nysqld
e If MySQL Server is using init.d issue:
/etc/init.d/ nysqgl stop
« If MySQL Server is using service issue:

service nysql stop

« If you deployed MySQL Server on Microsoft Windows issue:

272

https://dev.mysql.com/doc/refman/9.4/en/group-replication-upgrading-member.html

Post Upgrade Status Check

nysql adm n -u root -p shutdown
Obtain and install the latest version of MySQL Server.
Start MySQL Server by issuing one of the following commands:
« If MySQL Server is using systemd issue:
systenctl start nysqld
e If MySQL Server is using init.d issue:
/etc/init.d/ nmysqgl start
< If MySQL Server is using service issue:
service nysql start
* If you deployed MySQL Server on Microsoft Windows issue:
nmysql d

When all the secondary instances are upgraded, upgrade the primary instance to complete the
upgrade process.

Post Upgrade Status Check

After upgrading MySQL Router, MySQL Shell, and MySQL Servers are upgraded:

1.

Check the status of the ClusterSet by issuing <Cl ust er Set >. st at us() . For more information
about <Cl ust er Set >. st at us(), see Section 9.7, “InnoDB ClusterSet Status and Topology”.

Resolve any cl ust er Error s and st at usText returned by the <Cl ust er Set >. st at us()
operation.

Check each Cluster in the ClusterSet by issuing <Cl ust er >. st at us() and resolve any issues.
For more information about <Cl ust er >. st at us(), see Checking a cluster's Status with
Cluster.status().

Check the details of all the registered MySQL Router instances by issuing
<Cl ust er Set >. | i st Rout er s() . For more information, see Integrating MySQL Router With
InnoDB ClusterSet.

These commands allow you to check that the upgrade has been successful or if you need to complete
any additional steps.

Note
@ The additional steps depend; on how many versions you are skipping, what

version you are upgrading, and from what version you are coming.

Begin your post upgrade check by checking the status of the InnoDB ClusterSet. This check uses
the <Cl ust er Set >. st at us({ extended: 1}) operati on.

In this example, we issue <Cl ust er Set >. st at us({ ext ended: 1}):
nysqgl - j s><Cl ust er Set >. st at us({ ext ended: 1})

"clusters": {
"cluster1": {
"clusterRole": "PR MARY",
"gl obal Status": "OK',
“primary": "127.0.0.1:3310",
"status": "OK_NO TOLERANCE',
"statusText": "Cluster is NOT tolerant to any failures.",

273

https://dev.mysql.com/doc/refman/9.4/en/general-installation-issues.html

Post Upgrade Status Check

"t opol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1: 3310",
"nmenber Rol e": " PRI MARY",

"node": "RIW,
“status": "ONLINE",
"version": "8.0.28"

}
s
“"transactionSet": "c036lcad-9093-1lec-94ce-0a0027000010: 1- 90, c0362acf - 9093- 11lec- 94ce- 0a0027
s
“replicaclusterl": {
“clusterErrors": [
"ERROR Cluster nenmbers are reachable but they're all OFFLINE. ",
"WARNI NG Replication fromthe Primary Cluster not in expected state"
I
“clusterRol e": "REPLICA",
"clusterSetReplication": {
"applierStatus": "OFF",
"appl i er ThreadState": "",
“appl i er Wr ker Thr eads": 4,
"receiver": "127.0.0.1: 3320",
"receiverStatus": "OFF",
“receiverThreadState": "",
"source": "127.0.0.1:3310"
s
"clusterSetReplicationStatus": "STOPPED',
"gl obal Status": "NOT_CK",
"status": "OFFLINE",
"statusText": "All menbers of the group are OFFLINE",
"t opol ogy": {
"127.0.0. 1: 3320": {
"address": "127.0.0.1: 3320",
"instanceErrors": [
"NOTE: group_replication is stopped."
I
"menber Rol e": " SECONDARY",
“menber State": "OFFLI NE",

"mode": "R O',
"status": "(MSSING",
"version": "8.0.28"
}
B
"transactionSet": "lec95a0b-9094- 1lec-9bc5-0a0027000010: 1, c0361cad- 9093- 1lec- 94ce
- 0a0027000010: 1- 90, c0362acf - 9093- 11ec- 94ce- 0a0027000010: 1",
"transacti onSet Consi st encyStatus": "OK",

"transactionSetErrantGidSet": "",
"transactionSet M ssing&idSet": ""
s
"“replicacluster2": {
“clusterRol e": "REPLICA",
"clusterSetReplication": {
“applierStatus”: "APPLIED ALL",
"applierThreadState": "Waiting for an event from Coordi nator"”,
"appl i er Wr ker Thr eads": 4,
“receiver": "127.0.0.1: 3330",
“receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
"source": "127.0.0.1:3310"
s
"clusterSetReplicationStatus": "OK",
"gl obal Status": "OK",
"status": "OK_NO TOLERANCE',
"statusText": "Cluster is NOT tolerant to any failures.",
"t opol ogy": {
"127.0.0.1: 3330": {
"address": "127.0.0.1: 3330",
"menber Rol e": " PRI MARY",
"mode": "R O',
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",

274

Post Upgrade Status Check

"version": "8.0.28"

}
s
"transactionSet": "329dc243-9094-1lec-b9dd- 0a0027000010: 1, c0361cad- 9093- 11ec

- 94ce- 0a0027000010: 1- 90, c0362acf - 9093- 11ec- 94ce- 0a0027000010: 1",

"transacti onSet Consi st encyStatus": "OK",
“transactionSetErrantGidSet": ""
"transactionSet M ssing&idSet": ""

}
s
“domai nNanme": "clustersetl",
"gl obal Pri maryl nstance": "127.0.0.1: 3310",
"met adat aServer": "127.0.0. 1: 3310",
“primaryCluster”: "clusterl",
"status": "AVAILABLE",
"statusText": "Primary Cluster available, there are issues with a Replica cluster."

For more information about the <Cl ust er Set >. st at us() operation, see ClusterSet.status().

Resolve any errors returned by the <Cl ust er Set >. st at us({ ext ended: 1}) operation.

In this example, we have an error returned in cl ust er Er r or s informing us that

<Cl ust er Set >. st at us({ext ended: 1}) operation was unable to connect to any online
members, and with the st at usText that the Primary Cluster is available, but there are issues with
a replica cluster in the InnoDB ClusterSet.

“replicaclusterl": {
“clusterErrors": [
"ERROR Coul d not connect to any ONLINE nmenbers but there are unreachabl e instance
that could still be ONLINE. "

1.

"statusText": "Primary Cluster available, there are issues with a Replica cluster."

In this example, we need to check the status of the InnoDB Cluster r epl i cacl ust er 1 and ensure
it is brought back online.

Once we have resolved the issues returned by the <Cl ust er Set >. st at us({ext ended: 1})
operation, we check the status of each InnoDB Cluster in the ClusterSet.

Check the status of each InnoDB Cluster, by issuing <Cl ust er >. st at us().

In the following example, <Cl ust er >. st at us({ ext ended: true}), used to provide more
detailed information about the status of the InnoDB Cluster, returns two issues:

nysql sh> cl uster. status({extended: true});
{
“clusterNane": "M/Custer",
"defaul t ReplicaSet": {
" GRPr ot ocol Version": "8.0.16",
"groupNane": "459ec434-8926-11ec-b8c3-02001707f 44a",
" groupVi ewChangeUui d": " AUTOVATI C',
"groupView d": "16443558036060755: 13",
"name": "default",
"ssl": "REQUI RED',
“status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"t opol ogy": {
"exanpl e- el 7-1644251369: 33311": {
"address": "exanpl e-el 7-1644251369: 33311",
“appl i er Wr ker Thr eads": 4,
"fenceSysVars": [],
"instanceErrors": [
"NOTE: instance server_id is not registered in the metadata.
Use cluster.rescan() to update the netadata.",

275

Post Upgrade Status Check

"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. configurelnstance() to fix it."
I
“menber | d": "247131ab-8926- 11ec- 850b- 02001707f 44a",
"menber Rol e": " PRI MARY",
“menber State": "ONLINE',
"mode": "RI'W,
"readRepl i cas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

i
"exanpl e- el 7-1644251369: 33314": {

"address": "exanpl e-el 7-1644251369: 33314",
“appl i er Wr ker Thr eads": 4,
"fenceSysVvars": [],
"instanceErrors": [
"NOTE: instance server_id is not registered in the netadata.
Use cluster.rescan() to update the netadata.",
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. configurelnstance() to fix it."
I
“menber | d": "303dcfa7-8926-1lec-abe5- 02001707f 44a",
"menber Rol e": " PRI MARY",
“menber State": "ONLINE',
"mode": "RI'W,
"readReplicas": {},
“replicationLag": null,

"role": "HA",
“status": "ONLINE",
"version": "8.0.28"

i
"exanpl e-el 7-1644251369: 33317": {

"address": "exanpl e-el 7-1644251369: 33317",
"appl i er Wr ker Thr eads": 4,
"fenceSysVvars": [],
"instanceErrors": [
"NOTE: instance server_id is not registered in the netadata.
Use cluster.rescan() to update the netadata.",
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. configurelnstance() to fix it."
I
“menber | d": "3bb2592e-8926- 11ec- 8b6f - 02001707 44a",
"menber Rol e": " PRI MARY",
“menber State": "ONLINE',
"mode": "RI'W,
"readReplicas": {},
“replicationLag": null,

“role": "HA",
"status": "ONLINE",
“version": "8.0.28"
}
s
"t opol ogyMbde": "Ml ti-Primary"
s
" groupl nf or mati onSour ceMenber": "exanpl e-el 7- 1644251369: 33311",
"met adat aVersion": "2.1.0"

<Cl uster>.status({extended: true}) displays more detailed information about

the cluster. In this example, we use the Boolean value t r ue, which is equivalent to

<Cl uster>. status({' extended': 1}). For more information, see Checking a Cluster's Status
with Cl ust er. stat us().

The i nst anceEr r or s suggest that in this upgrade, we should issue <Cl ust er >. rescan() and
dba. confi gurel nst ance() on each member in the InnoDB Cluster:

"NOTE: instance server_id is not registered in the
met adata. Use cluster.rescan() to update the netadata.",

276

Post Upgrade Status Check

"NOTE: The required parallel-appliers settings are not
enabl ed on the instance. Use dba. configurelnstance() to fix it."

The <Cl ust er >. rescan() operation enables you to rescan the InnoDB Cluster for new and
obsolete Group Replication instances, as well as changes in the used topology mode. For more
information, see Rescanning a Cluster.

nysql sh> cluster1.rescan();
Rescanni ng the cluster...

Result of the rescanning operation for the 'MCusterl cluster:

{
"nane": "M/C usterl",
"newTopol ogyMode": nul |,
"new yDi scover edl nst ances": [],
"unavai | abl el nstances": [],
"updat edl nst ances": []

Note
@ You can only run <Cl ust er >. rescan() on the individual Clusters of the
ClusterSet, not the ClusterSet as a whole.

The dba. confi gur el nst ance() function checks all of the settings required to enable the
instance to be used for InnoDB Cluster usage. For more information, see Configuring Production
Instances for InnoDB Cluster Usage.

In this example, we issue dba. confi gur el nst ance() on each member in the Cluster, to ensure
required the parallel-appliers settings are enabled on the instance:

nysql sh> dba. confi gurel nstance(' cl adm n: cl adm npw@ ocal host : 33311")
The instance 'exanpl e-el 7-1644251369: 33311' bel ongs to an | nnoDB Cl uster.
Configuring local MyYSQL instance |listening at port 33311 for use in an |nnoDB cluster...

This instance reports its own address as ~[[lnexanpl e-el 7- 1644251369: 33311"[[Om
Clients and other cluster nmenbers will communicate with it through this address by defaul t.
If this is not correct, the report_host MySQL system variabl e shoul d be changed.

appl i erWorker Threads will be set to the default val ue of 4.

A[[36mNOTE: ~[[OnBSone configuration options need to be fixed:

e —ccecccc-cccccc-cccccc-c-cococc--ccooc== fmmccccc-—ccooo- dm—cceooc--—ccooc== LT .
| Variable | Current Value | Required Value | Note

e —ccecccc-cccccc-cccccc-c-cococc--ccooc== fmmccccc-—ccooo- dm—cceooc--—ccooc== LT .
| binlog_transaction_dependency_tracking | COWM T_ORDER | WRI TESET | Update the server v:
e —ccecccc-cccccc-cccccc-c-cococc--ccooc== fmmccccc-—ccooo- dm—cceooc--—ccooc== LT .

Configuring instance...
The instance 'exanpl e-el 7-1644251369: 33311' was configured to be used in an I nnoDB cluster.

4. Once you have resolved the issues returned by the <Cl ust er Set >. st at us({ext ended: 1})
and <Cl ust er >. st at us({ext ended: 1}) operations, you must run
<ClusterSet>.listRouters().

<Cl usterSet>.1istRouters() returns details of all the registered MySQL Router instances.
The details provides information about each registered MySQL Router instance, such as its name
in the metadata, the hostname, ports, and so on. For more information, see Integrating MySQL
Router With InnoDB ClusterSet.

For example, on our example ClusterSet we issue:
nysql sh> <Cl usterSet>.|istRouters();

WARNI NG The foll owing Routers were bootstrapped before the CusterSet was created: [EXAMPLE: :R1].
Pl ease re-bootstrap the Routers to ensure the optimal configurations are set.

277

Post Upgrade Status Check

}

“domai nNane": "M/C usterSet",
“routers": {
"EXAMPLE: : R1": {

"host name": "EXAWPLE",

"l ast Checkl n": "2022-02-23 07: 14: 50",

"roPort": 6447,

"roXPort": 6449,

“routerErrors": [

"WARNI NG Router needs to be re-bootstraped."

I
"rwPort": 6446,
"rwxXPort": 6448,
“targetCluster": null,
“version": "8.0.28"

The returned information shows:

The name of the MySQL Router instance.

Last check-in timestamp, which is generated by a periodic ping from the MySQL Router stored in
the metadata.

Hostname where the MySQL Router instance is running.

Read-Only and Read-Write ports which the MySQL Router publishes for classic MySQL protocol
connections.

Read-Only and Read-Write ports which the MySQL Router publishes for X Protocol connections.
The name of the target cluster. In this example, MySQL Router directs traffic from client
applications to the cluster in the InnoDB ClusterSet deployment that is currently the primary
cluster.

Version of this MySQL Router instance.

In this example, there is also information on r out er Er r or s returned.

The r out er Err or s informs us that MySQL Router needs to be re-bootstraped. The reason for this
error is that if you create a ClusterSet based on that standalone Cluster, then MySQL Router must
be bootstrapped again to inform the Router that it is working on a ClusterSet.

Resolve these warning to complete your post-upgrade checks. If you do not receive any warnings
your post-upgrade checks are complete.

278

Chapter 10 MySQL InnoDB ReplicaSet

Table of Contents

10.1 Deploying INNODB REPICASELuuiiiiiiiieiii e e e et e e e e e eaaas 280
10.2 Configuring INnnODB ReplicaSet INStANCESccuuieiiiiiiiiie e e e e e 281
10.3 Creating an INNODB REPICASELccuuiiiii e e 281
10.4 Asynchronous Replication Channel OptionNScoiiiiiiiii i 284
10.5 Adding Instances t0 @ REPHCASELc.uuiiiiiiiii e 285

10.5.1 Provisioning Instances for INNODB ReplicaSetcccoeeviiiiiiiiiii e 285

10.5.2 Example of Adding Instances to a ReplicaSetccccviiiiiiiiiiiiii e 286
10.6 Adopting an EXxisting Replication SEtUPuiiiiiiiiii i e e 287
10.7 Changing the Primary INSLANCEc..uiiiiiiiiiii e e e e e e e e e e ees 288
10.8 Forcing a New Primary INSLANCEcouuiiiiiiiiiii e e e e e e e e e e 289
O =T T [T o = LT o] o= 1] =] € 290
10.10 Checking the Status of INNODB RePHCASELccuuiiiiiiiii e 290
10.11 Upgrade INNODB REPICASELc.uiiiiiiiii e e e e e e e e e ees 291
10.12 DisSOIVING @ REPICASEL .. .ccvniiii i e e r e e 296
10.13 Rescanning @ REPICASELuiiiiiiiii e e e e et 296
10.14 Describing @ REPICASEL ... covuiiiiiiii e e e e e e e 297

The AdminAPI includes support for InnoDB ReplicaSet, which enables you to administer a set of
MySQL instances similarly running asynchronous GTID-based replication, which is completely
transaction-based, to InnoDB Cluster. An InnoDB ReplicaSet consists of single primary and multiple
secondaries (traditionally referred to as the MySQL replication source and replicas).

You administer your ReplicaSets using a Repl i caSet object and the AdminAPI operations, for
example, to check the status of the InnoDB ReplicaSet, and manually failover to a new primary in the
event of a failure.

Similar to InnoDB Cluster, MySQL Router supports bootstrapping against InnoDB ReplicaSet, which
means you can automatically configure MySQL Router to use your InnoDB ReplicaSet without
manually configuring it. This automatic configuration makes InnoDB ReplicaSet a quick and easy way
to get MySQL replication and MySQL Router up and running. It makes it suited to scaling out r eads
and providing manual failover capabilities in use cases that do not require the high availability offered
by InnoDB Cluster.

In addition to deploying an InnoDB ReplicaSet using AdminAPI, you can adopt an existing replication
setup. AdminAPI configures the InnoDB ReplicaSet based on the topology of the replication setup.
Once you have completed the replication setup, you administer it the same way as an InnoDB
ReplicaSet deployed from scratch. You can take advantage of AdminAPI and MySQL Router without
creating a new ReplicaSet. For more information see Section 10.6, “Adopting an Existing Replication
Setup”.

You can use InnoDB ReplicaSet over a Wide Area Network (WAN) with no impact on write
performance, as the server instances are connected by asynchronous replication channels and do not
need consensus on transactions. However, replication lag is larger over a WAN. This lag causes the
secondary servers in the InnoDB ReplicaSet to be further behind the primary server.

InnoDB ReplicaSet Limitations.

An InnoDB ReplicaSet has several limitations compared to an InnoDB Cluster. It is recommended that
you deploy InnoDB Cluster wherever possible. Generally, an InnoDB ReplicaSet on its own does not
provide high availability. Among the limitations of InnoDB ReplicaSet are:

» No automatic failover. In events where the primary becomes unavailable, a failover needs to be
triggered manually using AdminAPI before any changes are possible again. However, secondary
instances remain available for reads.

279

Deploying InnoDB ReplicaSet

» No protection from partial data loss due to an unexpected halt or unavailability: Transactions that are
not complete at the time of the unexpected halt could be lost.

» No protection against inconsistencies after an unexpected exit or unavailability. If a manual failover
promotes a secondary instance while the former primary is still available, for example, due to a
network partition, the split-brain situation could introduce data inconsistencies.

» InnoDB ReplicaSet does not support a multi-primary mode. Data consistency cannot be guaranteed
with classic replication topologies that allow writes to all members.

» Read scale-out is limited. InnoDB ReplicaSet is based on asynchronous replication, and therefore
there is no possible tuning of flow control as there is with Group Replication.

» All secondary members replicate from a single source. For some particular use-cases, this could
impact the single source, for example, numerous small updates.

» Only instances running MySQL version 8.0 and later are supported.

» Only GTID-based replication is supported, Binary log file position replication is incompatible with
InnoDB ReplicaSet.

» Only Row-Based Replication (RBR) is supported, Statement-Based Replication (SBR) is
unsupported.

» Replication filters are not supported.
» Unmanaged replication channels are not allowed on any instance.

» A ReplicaSet consists of a maximum of one primary instance. One or multiple secondaries are
supported. Although there is no limit to the number of secondaries you can add to a ReplicaSet,
each MySQL Router connected to a ReplicaSet has to monitor each instance. Therefore, the more
instances added to a ReplicaSet, the more monitoring there is.

» The ReplicaSet must be managed by MySQL Shell. For example, the replication account is created
and managed by MySQL Shell. Making configuration changes to the instance outside MySQL Shell,
for example, using SQL statements directly to change the primary instance, is not supported. Always
use MySQL Shell to work with InnoDB ReplicaSet.

The main reason to use InnoDB ReplicaSets is you have better write performance. Another reason to
use InnoDB ReplicaSets is that they allows deployment on unstable or slow networks, while InnoDB
Cluster does not.

10.1 Deploying InnoDB ReplicaSet

Important

available. The latest version of MySQL Shell can be used with any GA version

A It is recommended that you always use the most recent version of MySQL Shell
of MySQL 8.0, or higher.

You deploy InnoDB ReplicaSet in a similar way to InnoDB Cluster.

1. Configure at least two MySQL server instances, see Section 6.1, “Using MySQL AdminAPI":
* One functions as the primary, in the following example, r s- 1.
< The other instance functions as the secondary, in this tutorial r s- 2, which replicates the
transactions applied by the primary.

This asynchronous MySQL replication, using source and replica, is similar to InnoDB Cluster. See
Section 8.4, “Deploying a Production InnoDB Cluster”.

2. Connect to the instances using MySQL Shell, and configure each instance you will use in your
ReplicaSet before creating a ReplicaSet. See Section 10.2, “Configuring InnoDB ReplicaSet
Instances” and Section 10.3, “Creating an InnoDB ReplicaSet”.

280

Configuring InnoDB ReplicaSet Instances

« When creating an InnoDB ReplicaSet, if you have security requirements that require all accounts
created automatically by AdminAPI to have strict authentication requirements, you can set a
value for the r epl i cati onAl | owedHost configuration option of the ReplicaSet. See InnoDB
ReplicaSet replicationAllowedHost.

3. Once you have created the ReplicaSet, you can add instances to it. For more information, see
Section 10.5, “Adding Instances to a ReplicaSet”.

InnoDB ReplicaSet is compatible with sandbox instances, which you can use to deploy locally for
testing purposes. See Section 6.8.1, “Deploying Sandbox Instances” for instructions. However, this
tutorial assumes you are deploying a production InnoDB ReplicaSet, where each instance is running on
a different host.

10.2 Configuring InnoDB ReplicaSet Instances

Use dba. confi gur eRepl i caSet | nst ance(i nstance) to configure each instance you want

to use in your ReplicaSet. MySQL Shell can either connect to an instance and then configure it, or
you can pass in an i nst ance name to configure a specific remote instance. To use an instance in a
ReplicaSet, it must support persisting settings. See Section 6.2.3, “Persisting Settings”.

When you connect to the instance for administration tasks, you require a user with suitable privileges.
The preferred method to create users to administer a ReplicaSet is using the set upAdnm nAccount ()
operation. See. Alternatively, the dba. confi gur eRepl i caSet | nst ance() operation can optionally
create an administrator account, if you provide the cl ust er Adm n option. The account is created with
the correct set of privileges required to manage InnoDB ReplicaSet.

Important

A The administrator account must have the same user name and password
across all instances of the same cluster or replica set.

To configure the instance at r s- 1: 3306, with a cluster administrator named r sadmi n, issue:

nysql -j s> dba. confi gureRepl i caSet | nstance(' root @s-1:3306', {clusterAdnmin: "'rsadnmin @rs-1%"});

The interactive prompt requests the password required by the specified user. To configure the instance
MySQL Shell is currently connected to, you can specify a null instance definition. For example, issue:

nysql -j s> dba. confi gureReplicaSetlnstance('', {clusterAdnmin: "'rsadnmin @rs-1%"});

The interactive prompt requests the password required by the specified user, this checks the instance
which MySQL Shell is currently connected to is valid for use in an InnoDB ReplicaSet. Settings that are
incompatible with InnoDB ReplicaSet are configured if possible. The cluster administrator account is
created with the privileges required for InnoDB ReplicaSet.

You can define a password expiration using the cl ust er Adimi nPasswor dExpi r at i on option. This
option can be set to a number of days, NEVER to never expire, or DEFAULT, to use the system default.

If you are using SSL certificates for authentication, you can add the certificate issuer and subject using
the cl ust er Adm nCert | ssuer andcl ust er Adm nCert Subj ect options, respectively.

10.3 Creating an InnoDB ReplicaSet

Once you have configured your instances, create an InnoDB ReplicaSet by completing the following
steps:

1. Connectto an instance and use dba. cr eat eRepl i caSet () to create a managed ReplicaSet
that uses MySQL asynchronous replication, rather than MySQL Group Replication used by InnoDB

281

ReplicaSet Encryption and Authentication

Cluster. The MySQL instance, which MySQL Shell is connected to, is used as the initial primary of
the ReplicaSet.

The dba. creat eRepl i caSet () operation performs several checks to ensure that the instance
state and configuration are compatible with a managed ReplicaSet, and if so, a metadata schema is
initialized on the instance.

If the ReplicaSet is created successfully, a Repl i caSet object is returned. Therefore, it is
best practice to assign the returned Repl i caSet to a variable. This enables you to work with
the ReplicaSet, for example by calling the <Repl i caSet >st at us() operation. To create a
ReplicaSet named exanpl e oninstance rs- 1 and assign it to the r s variable, issue:

nysql -j s> \connect root@s-1: 3306

nysql -js> var rs = dba. creat eRepl i caSet ("exanpl e")
A new replicaset with instance 'rs-1:3306' will be created.

* Checking MySQL instance at rs-1:3306

This instance reports its own address as rs-1: 3306
rs-1:3306: Instance configuration is suitable.

* Updating netadata. ..

Repl i caSet object successfully created for rs-1: 3306.
Use rs. addl nstance() to add nore asynchronously replicated instances to this replicaset
and rs.status() to check its status.

characters long. It can only start with an alphanumeric character or with _
(underscore), and can only contain alphanumeric, _ (underscore), . (period),

Note
@ The ReplicaSet's name must be non-empty and no greater than 63
or - (hyphen) characters.

2. Use the returned Repl i caSet object to verify that the operation was successful. For example, this
provides the Repl i caSet . st at us() operation, which displays information about the ReplicaSet.
The returned Repl i caSet is already assigned to the variable r s, so issue:

nmysql -js> rs.status()

{
“replicaSet": {
“nane": "exanple",
“primary": "rs-1:3306",
“status": "AVAILABLE",
"statusText": "All instances available.",
"t opol ogy": {
"rs-1:3306": {
"address": "rs-1:3306",
"instanceRol e": "PRI MARY",
"node": "RIW,
"status": "ONLI NE"
}
i
"type": "ASYNC'
}
}

This output shows that the ReplicaSet named exanpl e has been created, and that the primary
isrs- 1. Currently, there is only one instance, and the next task is to add more instances to the
ReplicaSet.

ReplicaSet Encryption and Authentication

Replicas can verify the identity of the source and use client SSL certificates for authentication. The
following options were added to dba. cr eat eRepl i caSet :

282

InnoDB ReplicaSet replicationAllowedHost

e nenber Aut hType: defines the authentication type used for the internal replication accounts. This
option takes one of the following values:

« PASSWORD: Account authenticates with password only.

* CERT_| SSUER: Account authenticates with a client certificate, which must match the expected
issuer. This value is equivalent to VERI FY_CA.

» CERT_SUBJECT: Account authenticates with a client certificate, which must match the expected
issuer and subject. This value is equivalent to VERI FY_| DENTI TY.

e CERT_| SSUER PASSWORD: Account authenticates with a combination of PASSWORD and
CERT_| SSUER values.

e CERT_SUBJECT_ PASSWORD: Account authenticates with a combination of PASSWORD and
CERT_SUBJECT values.

» certl ssuer: Defines the certificate issuer required for authentication if menber Aut hType contains
CERT_| SSUER or CERT_SUBJECT.

» cert Subj ect : Defines the certificate subject of the instance. Required if mrenber Aut hType
contains CERT_SUBJECT.

e replicationSsl Mode: Defines the authentication type of the replication channels in the replicaSet.
This option takes one of the following values:

e DI SABLED: TLS encryption is disabled for the replication channel.
« REQUI RED: TLS encryption is enabled for the replication channel.

« VERI FY_CA: The same as REQUIRED, but additionally verifies the peer server TLS certificate
against the configured Certificate Authority (CA) certificates.

* VERI FY_I DENTI TY: The same as VERIFY_CA, but additionally verifies that the peer server
certificate matches the host to which the connection is attempted.

e AUTOQO TLS encryption is enabled if supported by the instance. Disabled if the instance does not
support TLS.

For example:

nysql -j s> nyreplicaset = dba.createReplicaSet("replicaSet1",
{ "replicationSsl Mode": "VERH FY_I DENTITY", "nenberAuthType":" CERT_SUBJECT",
"certlssuer":"/CN=MyCert Authority", "certSubject": "/CN=nysql-5.1ocal"});

Note
@ All new replication channels are created with SSL enabled.

InnoDB ReplicaSet replicationAllowedHost

When creating an InnoDB ReplicaSet, if you have security requirements that want all accounts
created automatically by AdminAPI to have strict authentication requirements, you can set

a value fortherepl i cati onAl | owedHost configuration option of the ReplicaSet. The
replicationAl | owedHost MySQL Shell option allows you to set internally managed replication
accounts for a ReplicaSet to a strict subnet based filter instead of the default wildcard value

of %The repl i cati onAl | ownedHost option can take a string value. For example, to set the
replicationAl | owedHost to 192. 0. 2. 0/ 24, issue:

nmysql -j s> var rs = dba. createReplicaSet (' exanple', {replicationAllowedHost:"'192.0.2.0/24'})
A new replicaset with instance 'rs-1:3306" wll be created.

283

Asynchronous Replication Channel Options

* Checking MySQL i nstance at rs-1: 3306

This instance reports its own address as rs-1: 3306
rs-1:3306: Instance configuration is suitable.

* Updating netadata. ..
Repl i caSet object successfully created for rs-1:3306.

Use rs. addl nstance() to add nore asynchronously replicated instances to this replicaset
and rs.status() to check its status.

An InnoDB ReplicaSet can be modified after creation to set the variable r epl i cati onAl | owedHost
through the set Opt i on configuration option, by issuing:

nysql -js> rs.setOption('replicationAllowdHost', '192.0.2.0/24")

10.4 Asynchronous Replication Channel Options

The following options can be set with r epl i caSet . addl nst ance() and
replicaSet.setlnstanceQption():

» replicationConnect Retry: corresponds to the replication option SOURCE_CONNECT _RETRY.
Specifies the interval in seconds between the reconnection attempts that the replica makes after the
connection to the source times out.

e replicationRetryCount : corresponds to the replication option SOURCE_RETRY_COUNT. Sets the
maximum number of reconnection attempts that the replica makes after the connection to the source
times out. D

e replicationHeartbeat Peri od: corresponds to the replication option
SOURCE_HEARTBEAT _PERI OD. Controls the heartbeat interval, which stops the connection timeout
occurring in the absence of data if the connection is still good.

* replicationConpressi onAl gorithmns: corresponds to the replication option
SOURCE_COVPRESSI ON_ALGORI THVB. String that specifies the permitted compression algorithms
for connections to the replication source.

Note
@ Compatible with MySQL Server 8.0.18 or higher, only. Using on an earlier
version results in an error.

e replicationZstdConpressi onLevel : corresponds to the replication option
SOURCE_ZSTD COVPRESSI ON_LEVEL. Specifies the compression level to use for connections to
the replication source server that use the zst d compression algorithm.

Note
@ Compatible with MySQL Server 8.0.18 or higher, only. Using on an earlier
version results in an error.

» replicationBi nd: corresponds to the replication option SOURCE_BI ND. Determines which of the
replica’s network interfaces is chosen for connecting to the source, for use on replicas that have
multiple network interfaces.

« replicationNetwor kNamespace: corresponds to the replication option NETWORK NAMESPACE.
specifies the network namespace to use for TCP/IP connections to the replication source server
or, if the MySQL communication stack is in use, for Group Replication’s group communication
connections.

Note
@ Compatible with MySQL Server 8.0.22 or higher, only. Using on an earlier
version results in an error.

284

https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_connect_retry
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_retry_count
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_heartbeat_period
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_compression_algorithms
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_zstd_compression_level
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-source_bind
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html#crs-opt-network_namespace

Adding Instances to a ReplicaSet

For information on default values, see CHANGE REPLICATION SOURCE TO Statement.

Replication channel options are set in the metadata and do not take effect until the channel is started or
restarted, using r epl i caSet . rej oi nl nst ance() for example. These options can also be set when
the instance is OFFLINE.

If an option is set with a NULL value, the default value is used.

10.5 Adding Instances to a ReplicaSet

When you have created a ReplicaSet, you can use the Repl i caSet . addl nst ance() operation to
add an instance as a read-only secondary replica of the current primary of the ReplicaSet.

The primary of the ReplicaSet must be reachable and available during this operation. MySQL
Replication is configured between the added instance and the primary, using an automatically created
MySQL account with a random password. Before the instance can be an operational secondary, it must
be in a synchronistic arrangement with the primary. This process is called r ecover y, and InnoDB
ReplicaSet supports different methods which you configure with the r ecover yMet hod option.

For an instance to be able to join a ReplicaSet, various prerequisites must be satisfied. They are
automatically checked by Repl i caSet . addl nst ance(), and the operation fails if any issues are
found.

Use dba. confi gur eRepl i caSet | nst ance() to validate and configure binary log and replication
related options before adding an instance. MySQL Shell connects to the target instance using the
same user name and password used to obtain the Repl i caSet handle object. All instances of the
ReplicaSet are expected to have the same administrator account with the same grants and passwords.
You can create a custom administrator account with the required grants when you configure an
instance with dba. confi gur eRepl i caSet | nst ance() option. See Section 10.2, “Configuring
InnoDB ReplicaSet Instances”.

10.5.1 Provisioning Instances for InnoDB ReplicaSet

When you add new instances to an InnoDB ReplicaSet you need to provision the instances with the
existing data that the ReplicaSet contains. You can do this provisioning automatically using one of the
following methods:

» MySQL Clone: Takes a snapshot from an online instance and then replaces any data on the
new instance with the snapshot. MySQL Clone is well suited for joining a new blank instance to
an InnoDB ReplicaSet. MySQL Clone does not rely on there being a complete binary log of all
transactions applied by the InnoDB ReplicaSet.

Warning
o When you add an instance, the MySQL Clone operation destroys all the
instance's previous data.

» Incremental Recovery: Relies on MySQL Replication to apply all missing transactions on the new
instance. Incremental Recovery is the fastest method if only a few transactions are missing on the
new instance. However, you can only use this method if at least one online instance of the InnoDB
ReplicaSet has a complete binary log, which contains the entire transaction history of the InnoDB
ReplicaSet.

You cannot use this method:
« If you have purged the binary logs from all members.
« If you enabled the binary log after databases already existed in the instance.

If you have many transactions to apply, there could be a substantial delay before the instance can
join the InnoDB ReplicaSet.

285

https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html

Example of Adding Instances to a ReplicaSet

When an instance is joining a ReplicaSet, recovery is used in much the same way that it is in

InnoDB Cluster. MySQL Shell attempts to automatically select a suitable recovery method. If it is not
possible to choose a method safely, MySQL Shell prompts for what to use. For more information, see
Section 8.4.6, “Using MySQL Clone with InnoDB Cluster”. This section covers the differences when
adding instances to a ReplicaSet.

10.5.2 Example of Adding Instances to a ReplicaSet

To add instances to a ReplicaSet, complete the following steps:

1. Usethe Repl i caSet. addl nstance(i nstance) operation to add secondary instances to the
Repl i caSet . You specify the i nst ance as a URI-like connection string. The user you specify
must have the privileges required and must be the same on all instances in the ReplicaSet. For
more information, see Section 10.2, “Configuring InnoDB ReplicaSet Instances”.

For example, to add the instance at r s- 2, port number 3306, and user r sadm n, issue:
nysql -j s> rs. addl nst ance(' rsadm n@ s- 2: 3306')
Addi ng instance to the replicaset...
* Performng validation checks

This instance reports its own address as rsadm n@s-2
rsadm n@s-2: |Instance configuration is suitable.

* Checking async replication topol ogy...
* Checking transaction state of the instance...

NOTE: The target instance 'rsadm n@s-2' has not been pre-provisioned (GTlID set
is enpty). The Shell is unable to decide whether replication can conpletely
recover its state. The safest and npbst conveni ent way to provision a new
instance is through automatic clone provisioning, which will conpletely
overwite the state of 'rsadm n@s-2' with a physical snapshot from an existing
replicaset nmenmber. To use this nethod by default, set the 'recoveryMethod'
option to 'clone'.

WARNI NG It should be safe to rely on replication to increnentally recover the

state of the new instance if you are sure all updates ever processed in the

replicaset were done with GTIDs enabl ed, there are no purged transacti ons and

the new i nstance contains the sane GIID set as the replicaset, or a subset of it.

To use this nmethod by default, set the 'recoveryMethod' option to 'increnental'.

Pl ease sel ect a recovery nethod [C]lone/[|]ncrenental recovery/[A]bort (default C one):

2. In this case, we did not specify the recovery method, so the operation advises you on how to
best proceed. In this example, we choose the Cl one option because we do not have any existing
transactions on the instance joining the ReplicaSet. Therefore, there is no risk of deleting data from
the joining instance. For more information, see Section 10.5.1, “Provisioning Instances for InnoDB
ReplicaSet”.

Pl ease sel ect a recovery nethod [C]lone/[l]ncrenmental recovery/[A]bort (default Clone): C
* Updati ng topol ogy

Waiting for clone process of the new nmenber to conplete. Press "C to abort the operation.
* Waiting for clone to finish...

NOTE: rsadmi n@s-2 is being cloned fromrsadm n@s-1

** Stage DROP DATA: Conpl et ed

** (C one Transfer

FI LE COPY ######H#HTHHHHH TR HHHH T HHH T HH R T #EE . 100% Conpl et ed
PAGE COPY ###### I HHH TR HHHH T HH T H R T #E . 100% Conpl et ed
REDO COPY #######HTHHHHH TR HHHH B HHH T HHH BT T #E . 100% Conpl et ed
** Stage RECOVERY: \

NOTE: rsadmi n@s-2 is shutting down...

* Waiting for server restart... ready
* rsadm n@s-2 has restarted, waiting for clone to finish...
* Clone process has finished: 59.63 MB transferred in about 1 second (~1.00 B/s)

286

Adopting an Existing Replication Setup

** Configuring rsadmi n@s-2 to replicate fromrsadm n@s-1
** Waiting for new instance to synchronize with PRI MARY...

The instance 'rsadmi n@s-2' was added to the replicaset and is replicating fromrsadm n@s-1.

3. Assuming the instance is valid for InnoDB ReplicaSet usage, recovery proceeds. In this case, the
newly joining instance uses MySQL Clone to copy all the transactions it has not yet applied from
the primary, then it joins the ReplicaSet as an online instance. To verify, use the r s. st at us()
operation:

nysql -js> rs.status()
{
"replicaSet": {
“name": "exanple",
“primary": "rs-1:3306",
"status": "AVAI LABLE",
"statusText": "All instances available.",
"topol ogy": {
"rs-1:3306": {
"address": "rs-1:3306",
"instanceRol e": " PRI MARY",
“mode": "RIW,
"status": "ONLINE"

H
"rs-2:3306": {
"address": "rs-2:3306",
"instanceRol e": " SECONDARY",
"nmode": "R O',
"replication": {
"applierStatus": "APPLIED ALL",

"applierThreadState": "Replica has read all relay log; waiting for nore updates"”,
"receiverStatus": "ON',
"receiverThreadState": "Waiting for source to send event",
“replicationLag": null
H
“status": "ONLI NE"
}
}

"type": "ASYNC'

This output shows that the ReplicaSet named exanpl e now consists of two MySQL instances,
and that the primary is r s- 1. Currently, there is one secondary instance at r s- 2, which is a replica
of the primary. The ReplicaSet is online, which means that the primary and secondary are in
synchrony. At this point, the ReplicaSet is ready to process transactions.

4. To override the interactive MySQL Shell mode, choose the most suitable recovery method. Use
the r ecover yMet hod option to configure how the instance recovers the data required to be able
to join the ReplicaSet. For more information, see Section 8.4.6, “Using MySQL Clone with InnoDB
Cluster”.

10.6 Adopting an Existing Replication Setup

As an alternative to creating a ReplicaSet from scratch, you can adopt an existing replication setup
using the adopt Fr omAR option with dba. cr eat eRepl i caSet () . The replication setup is scanned,
and if it is compatible with the InnoDB ReplicaSet Limitations, AdminAPI creates the necessary
metadata. Once the replication setup has been adopted, you can only use AdminAPI to administer the
InnoDB ReplicaSet.

To convert an existing replication setup to an InnoDB ReplicaSet connect to the primary, also referred
to as the source. The replication topology is automatically scanned and validated, beginning from the
connected global session of the instance MySQL Shell. The configuration of all instances is checked
during the adoption to ensure they are compatible with InnoDB ReplicaSet usage:

287

Changing the Primary Instance

« All replication channels must be active, and their transaction sets as verified through GTID sets must
be consistent.

 Instances are assumed to have the same state or be able to converge.

replication groups adopted with MySQL Shell 8.0.32. Their replication channels

Note
@ All new replication channels are created with SSL enabled. This is not true for
remain unencrypted.

The replication topology is automatically scanned and validated, starting from the instance MySQL
Shell's global session is connected to. The only changes made by this operation to an adopted
ReplicaSet are the creation of the metadata schema. Existing replication channels are not changed
during adoption, although you can change them during subsequent primary switch operations.

For example, to adopt a replication topology consisting of the MySQL server instances on exanpl el
and exanpl e2 to an InnoDB ReplicaSet.

Connect to the primary at exanpl el and issue:

nmysql -js> rs = dba. createReplicaSet ('testadopt', {'adoptFromAR :1})
A new replicaset with the topol ogy visible from'exanpl el: 3306' will be created.

* Scanni ng replication topol ogy. ..
** Scanning state of instance exanpl el: 3306
** Scanning state of instance exanpl e2: 3306

* Discovering async replication topology starting with exanpl el: 3306
Di scover ed topol ogy:
- exanpl el: 3306: uui d=00371d66- 3c45- 11ea- 804b- 080027337932 read_onl y=no
- exanpl e2: 3306: uui d=59e4f 26e- 3c3c- 11ea- 8b65- 080027337932 read_onl y=no
- replicates from exanpl el: 3306
sour ce="| ocal host: 3310" channel = status=0ON recei ver =ON appl i er =ON

* Checki ng configuration of discovered instances...

This instance reports its own address as exanpl el: 3306
exanpl el: 3306: |nstance configuration is suitable.

This instance reports its own address as exanpl e2: 3306
exanpl e2: 3306: |nstance configuration is suitable.

* Checki ng discovered replication topol ogy. ..

exanpl el: 3306 detected as the PRI MARY.

Replication state of exanple2:3306 is OK

Val i dati ons conpl eted successfully.

* Updating netadata. ..

Repl i caSet object successfully created for exanpl el: 3306.

Use rs. addl nstance() to add nore asynchronously replicated instances to
this replicaset and rs.status() to check its status.

Once the InnoDB ReplicaSet has been adopted, you can use it in the same way that you would use a
ReplicaSet which was created.

Warning
O From this point, you must administer the InnoDB ReplicaSet using only
AdminAPI.

10.7 Changing the Primary Instance

Use the Repl i caSet . set Pri maryl nst ance() operation to safely perform a change of the
primary of a ReplicaSet to another instance. The current primary is demoted to a secondary and made

288

Forcing a New Primary Instance

read-only, while the promoted instance becomes the new primary and is made read-write. All other
secondary instances are updated to replicate from the new primary. MySQL Router instances, which
have been bootstrapped against the ReplicaSet automatically start redirecting read-write clients to the
new primary.

For a safe change of the primary to be possible, all ReplicaSet instances must be reachable by MySQL
Shell and have consistent GTl1 D_EXECUTED sets. If the primary is not available, and there is no way to
restore it, a forced failover might be the only option instead, see Section 10.8, “Forcing a New Primary

Instance”.

During a change of primary instance, the promoted instance is synchronized with the old primary,
ensuring that all transactions present on the primary are applied before the topology change is
committed. If this synchronization step takes too long or is not possible on any of the secondary
instances, the operation is aborted. In such a situation, the secondary instances must be repaired or
removed from the ReplicaSet for the failover to be possible.

10.8 Forcing a New Primary Instance

Unlike InnoDB Cluster, which supports automatic failover in the event of an unexpected failure of

the primary, InnoDB ReplicaSet does not have automatic failure detection or a consensus-based
protocol such as that provided by Group Replication. If the primary is not available, a manual

failover is required. An InnoDB ReplicaSet which has lost its primary is effectively read-only, and

for any write changes to be possible a new primary must be chosen. If you cannot connect to

the primary, and you cannot use Repl i caSet . set Pri maryl nst ance() to safely perform a
switchover to a new primary as described at Section 10.7, “Changing the Primary Instance”, use the
ReplicaSet.forcePrimarylnstance() operation to perform a forced failover of the primary. This
is a last resort operation that must only be used in a disaster type scenario where the current primary is
unavailable and cannot be restored in any way.

Warning
O A forced failover is a potentially destructive action and must be used with
caution.

If a target instance is not reachable (or is null), the most up-to-date instance is automatically selected
and promoted to be the new primary. If a target instance is reachable, it is promoted to be the new
primary. Other reachable secondary instances replicate from this new primary. The target instance
must have the most up-to-date GTl D_EXECUTED set among reachable instances, otherwise the
operation fails.

A failover is different from a planned primary change because it promotes a secondary instance without
synchronizing with or updating the old primary. That has the following major consequences:

» Any transactions that had not yet been applied by a secondary at the time the old primary failed are
lost.

« If the old primary is still running and processing transactions, there is a split-brain, and the datasets
of the old and new primaries diverge.

If the last known primary is still reachable, the Repl i caSet . f or cePri maryl nst ance() operation
fails, to reduce the risk of split-brain situations. But it is the administrator's responsibility to ensure that
the old primary is not reachable by the other instances to prevent or minimize such scenarios.

After a forced failover, the old primary is considered invalid by the new primary and can no longer be
part of the ReplicaSet. If you later find an instance that can be recovered, you must remove it from the
ReplicaSet and add it as a new instance. A secondary instance is considered invalid if it cannot be
switched to the new primary during the failover.

Data loss is possible after a failover because the old primary might have had transactions that were
not yet replicated to the secondary being promoted. Moreover, if the instance that was presumed to
have failed can still process transactions, for example because the network where it is located is still

289

Tagging ReplicaSets

functioning but unreachable from MySQL Shell, it continues diverging from the promoted instances.
Recovering once transaction sets on instances have diverged requires manual intervention and could
not be possible in some situations, even if the failed instances can be recovered. Often, the fastest and
simplest way to recover from a disaster that required a forced failover is by discarding such diverged
transactions and re-provisioning a new instance from the newly promoted primary.

10.9 Tagging ReplicaSets

Tagging is supported by ReplicaSets, and their instances. For the purpose of tagging, ReplicaSets
support the set Opti on(), setlnstanceOpti on() and opti ons() operations. These operations
function in generally the same way as their Cl ust er equivalents. For more information, see

Section 6.9, “Tagging Metadata”. This section documents the differences in working with tags for
ReplicaSets.

Important

instances. For ReplicaSets, the options documented at Section 8.5.1, “Setting
Options for InnoDB Cluster” are not supported. The only supported option is the

A There are no other options which can be configured for ReplicaSets and their
tagging described here.

The Repl i caSet . opti ons() operation shows information about the tags assigned to individual
ReplicaSet instances as well as to the ReplicaSet itself.

The opt i on argument of Repl i caSet . set Opti on() and Repl i caSet . set | nstanceOpti on()
only support options with the t ag namespace and throw an error otherwise.

The Repl i caSet. setl nstanceQpti on(instance, option, val ue) and
Repl i caSet.set Opti on(option, val ue) operations behave in the same way as the Cl ust er
equivalent operations.

There are no differences in hiding instances as described at Removing Instances from Routing. For
example, to hide the ReplicaSet instance r s- 1, issue:

nysql -j s> nyRepl i caSet. set| nstanceOption("i cadm n@s-1: 3306", "tag:_hi dden", true);

A MySQL Router that has been bootstrapped against the ReplicaSet detects the change and removes
the r s- 1 instance from the routing destinations.

10.10 Checking the Status of InnoDB ReplicaSet

Check information about a ReplicaSet using the Repl i caSet . st at us() operation. The
Repl i caSet . st at us() operation supports the extended option to get different levels of detail. For
example:

* ReplicaSet. status({extended: 0}): Provides a regular level of details. Only basic information
about the status of the instance and replication is included, in addition to non-default or unexpected
replication settings and status.

* ReplicaSet. status({extended: 1}): Setting extended to 1 includes Metadata Version, server
UUID, replication information such as lag and worker threads, the raw information used to derive
the status of the instance, size of the applier queue, value of system variables that protect against
unexpected writes and so on.

* ReplicaSet. status({extended: 2}): Setting extended to 2 includes important replication
related configuration settings, such as encrypted connections, and so on.

The output of ReplicaSet.status(extended=1) is similar to Cluster.status(extended=1), but the main
difference is that the replication field is always available because InnoDB ReplicaSet relies on MySQL
Replication all the time, unlike InnoDB Cluster which uses it during incremental recovery. For more
information on the fields, see Checking a cluster's Status with Cluster.status().

290

Upgrade InnoDB ReplicaSet

10.11 Upgrade InnoDB ReplicaSet

To upgrade the instances in an InnoDB ReplicaSet, complete the following steps:

1.

2.

3.

4,

Upgrade MySQL Router.
Upgrade MySQL Shell.
Upgrade MySQL Server.

Post Upgrade Status Check.

Check the versions of the installed binaries:

» mysqglrouter --version: Checks the version of MySQL Router installed.

* mysqglsh --version: Checks the version of MySQL Shell installed.

* mysqld --version: Checks the version of MySQL Server installed.

Upgrade MySQL Router.

To upgrade MySQL Router, complete the following steps:

1.

Stop MySQL Router.

On a Unix system, if you used the optional --di r ect ory bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected when you
bootstrapped the router. These files include st op. sh. Navigate to this directory and issue this
command:

./ stop.sh

On Microsoft Windows, if you used the optional - - di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected when you
bootstrapped the router. These files include st op. ps1. Navigate to this directory and issue this
command:

.\stop. psl

Or on a Linux system using syst entd, stop the MySQL Router service by issuing:

systenct| stop nysqlrouter.service

Otherwise, kill the process ID (PID) of the associated mysqlrouter process.
Obtain and install the latest version of MySQL Router.

Start MySQL Router.

On a Unix system, if you used the optional -- di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected. These
files include st ar t . sh. Navigate to the directory and issue this command:

.Istart.sh

If the path to the new router has changed, you must update the st ar t . sh shell script to reflect the
path.

#! / bi n/ bash

basedi r =/t np/ myr out er

ROUTER_PI D=$basedi r/ nysql rout er. pi d /usr/bi n/ nysql router -c $basedir/nysql router.conf &
di sown %

291

https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-deploying-bootstrapping.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-deploying-bootstrapping.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-router/9.4/en/mysql-router-server-starting.html

Upgrade MySQL Shell

If you upgrade MySQL Router manually, opposed to using package management, you can update
the basedi r =. Bootstrapping the router again also regenerates the st art . sh shell script.

Or on a Linux system using syst end, start the MySQL Router service by issuing:

systenct| start nysqlrouter.service

On Microsoft Windows, if you used the optional -- di r ect or y bootstrap option, a self-contained
installation is created with all generated directories and files at the location you selected. These
files include st art . ps1. Navigate to the directory and issue this command:

.\start.psl

On starting MySQL Router using the new router binaries, the version of the router is upgraded:

nmysql router --version

Upgrade MySQL Shell

Upgrade MySQL Shell by installing the new binaries, and stopping and starting MySQL Shell:

1.

2.

Obtain and install the latest version of MySQL Shell.
Stop and quit MySQL Shell by issuing:

\q

Restart MySQL Shell from the command line, by issuing:
nysql sh

Upgrade the InnoDB ReplicaSet Metadata:

e To upgrade an InnoDB ReplicaSet, connect MySQL Shell's global session to your ReplicaSet and
use the dba. upgr adeMet adat a() operation to upgrade the ReplicaSet's metadata to the new
metadata.

The dba. upgr adeMet adat a() function compares the version of the installed metadata
schema with the version of the metadata schema supported by this Shell. If the installed
metadata version is lower, an upgrade process is started.

Metadata Upgrade
3 The Metadata Upgrade may do nothing if the ReplicaSet already uses the
latest version.

Upgrade MySQL Server

Upgrade MySQL Server by upgrading all secondary instances before upgrading the primary instance.

1.

impact than upgrading MySQL Shell and MySQL Router. Also, you should
always keep MySQL Shell and MySQL Router at the latest version, even if the
server is not; this is true for InnoDB Clusters and ReplicaSets.

Upgrading MySQL Server is optional
@ Upgrading MySQL Server is optional. Server upgrades can have a greater

Stop MySQL Server by issuing one of the following commands:

e If MySQL Server is using systemd issue:

systenct!l stop nmysqld

292

mysql-shell-install.xml

Post Upgrade Status Check

e If MySQL Server is using init.d issue:
/etc/init.d/ mysqgl stop

« If MySQL Server is using service issue:
service nysqgl stop

« If you deployed MySQL Server on Microsoft Windows issue:

nysqgl adm n -u root -p shutdown
2. Obtain and install the latest version of MySQL Server.
3. Start MySQL Server by issuing one of the following commands:

« If MySQL Server is using systemd issue:

systenct| start nysqld

« If MySQL Server is using init.d issue:

/etc/init.d/ mysql start

« If MySQL Server is using service issue:

servi ce nysqgl start

« If you deployed MySQL Server on Microsoft Windows issue:
nysql d

4. When you have upgraded all the secondary instances, upgrade the primary instance to complete
the upgrade process.

There is no automatic primary switching in InnoDB ReplicaSet. You need to set the primary
instance to a member you have upgraded already before upgrading the primary instance.

Set an upgraded secondary instance to be the primary instance:

<Repl i caSet >. set Pri maryl nst ance(' <host >: <port>')

Use the <Repl i caSet >. set Pri maryl nst ance() operation to safely perform a change of the
primary of a ReplicaSet to another instance. The current primary is demoted to a secondary and
made read-only, while the promoted instance becomes the new primary and is made read-write. All
other secondary instances are updated to replicate from the new primary. MySQL Router instances
that you have bootstrapped against the ReplicaSet automatically start redirecting read-write clients
to the new primary.

Upgrade the ol d primary instance. Once upgraded, you can use
<Repl i caSet >. set Pri maryl nst ance() to restore this upgraded instance back to being
primary. For more information, see Section 10.7, “Changing the Primary Instance”.

Post Upgrade Status Check

After upgrading MySQL Router, MySQL Shell, and MySQL Servers are upgraded:

» Check the status of the ReplicaSet by issuing <Repl i caSet >. st at us() . In the following
example, <Repl i caSet >. st at us() returns ani nst anceErrors:

nysql sh> <Repl i caSet >. status();
{
"replicaSet": {
"nane": "nyReplicaSet",

293

https://dev.mysql.com/doc/refman/9.4/en/general-installation-issues.html

Post Upgrade Status Check

“primary": "exanpl e-el 7-1644251369: 30014",
"status": "AVAI LABLE',
"statusText": "All instances available.",
"t opol ogy": {
"exanpl e-el 7-1644251369: 30011": {
"address": "exanpl e-el 7-1644251369: 30011",
"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSetlnstance() to fix it."
I
"instanceRol e": " SECONDARY",
"nmode": "R O,
“replication": {
“applierStatus": "APPLIED ALL",

"applierThreadState": "Waiting for an event from Coordi nator",
"appl i er Wr ker Thr eads": 4,
"receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
“replicationLag": null
s
"status": "ONLI NE"
s
"exanpl e- el 7-1644251369: 30014": {
"address": "exanpl e-el 7-1644251369: 30014",
"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSetlnstance() to fix it."
I
"instanceRol e": "PRI MARY",
"mode": "RI'W,
"status": "ONLI NE"
s
"exanpl e- el 7-1644251369: 30017": {
"address": "exanpl e-el 7-1644251369: 30017",
"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSetlnstance() to fix it."
I
"instanceRol e": " SECONDARY",
"nmode": "R O,
“replication": {
“applierStatus": "APPLIED ALL",
"applierThreadState": "Waiting for an event from Coordi nator",
"appl i er Wr ker Thr eads": 4,
"receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
“replicationLag": null
s
"status": "ONLI NE"
s
"exanpl e- el 7-1644251369: 30021": {
"address": "exanpl e-el 7-1644251369: 30021",
"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSetlnstance() to fix it."
I
"instanceRol e": " SECONDARY",
"nmode": "R O,
“replication": {
“applierStatus”: "APPLIED ALL",
"applierThreadState": "Waiting for an event from Coordi nator"”,
“appl i er Wr ker Thr eads": 4,
“receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
“replicationLag": null
s
"status": "ONLI NE"
}

ype": "ASYNC'

294

Post Upgrade Status Check

The i nst anceEr r or tells us to issue dba. confi gur eRepl i caSet | nst ance() to fix the error.

dba. confi gureRepl i caSet | nst ance(i nstance) configures each instance you want to use
in the ReplicaSet. MySQL Shell can either connect to an instance and then configure it, or you can
pass in ani nst ance name to configure a specific remote instance. For more information, see
Section 6.2.3, “Persisting Settings”.

The following example shows the output of <Repl i caSet >. st at us() if the PRI MARY member has
read_only or super _read_only setto ON:

nysql sh > <Repl i caSet>. status();
replicaset.status();
{
"replicaSet": {
"nane": "nyReplicaSet",
"primary": "exanpl e-el 7-1644251369: 30014",
"status": "UNAVAI LABLE",
"statusText": "PRIMARY instance is not available, but there is at | east one SECONDARY
that could be force-pronoted.",
"t opol ogy": {
"exanpl e-el 7-1644251369: 30011": {
"address": "exanpl e-el 7-1644251369: 30011",
"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSet|nstance() to fix it."
I+
"instanceRol e": " SECONDARY",
"node": "R O',
"replication": {
"applierStatus": "APPLIED ALL",

"applierThreadState": "Waiting for an event from Coordi nator",
"appl i er Wor ker Threads": 4,

"receiverStatus": "ON',

"recei verThreadState": "Waiting for source to send event",

"“replicationLag": null
i
"status": "ONLINE"
i
"exanpl e-el 7-1644251369: 30014": {
"address": "exanpl e-el 7-1644251369: 30014",
"fenced": true,
"instanceErrors": [
"ERROR Instance is a PRIMARY but is READ-ONLY: read_onl y=0N, super_read_onl y=0ON"
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSetlnstance() to fix it."
I+
"instanceRol e": " PRI MARY",
"mode": "R O,
"status": "ERROR'
i
"exanpl e-el 7-1644251369: 30017": {
"address": "exanpl e-el 7-1644251369: 30017",
"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSetlnstance() to fix it."
I+
"instanceRol e": " SECONDARY",
"mode": "R O,
"replication": {
"applierStatus": "APPLIED ALL",

"applierThreadState": "Waiting for an event from Coordi nator",
"appl i er Wor ker Threads": 4,

"receiverStatus": "ON',

"recei verThreadState": "Waiting for source to send event",

"replicationLag": null

I
"status": "ONLINE"

295

Dissolving a ReplicaSet

"exanpl e- el 7-1644251369: 30021": {
"address": "exanpl e-el 7-1644251369: 30021",
"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on the instance.
Use dba. confi gureReplicaSetlnstance() to fix it."
I
"instanceRol e": " SECONDARY",
"nmode": "R O,
“replication": {
“applierStatus": "APPLIED ALL",

"applierThreadState": "Waiting for an event from Coordi nator",
“appl i er Wr ker Thr eads": 4,

"receiverStatus": "ON',

"recei verThreadState": "Waiting for source to send event",

“replicationLag": null

i
"status": "ONLI NE"

}

B
ype": "ASYNC'

}

For more information, see Section 10.10, “Checking the Status of InnoDB ReplicaSet". .

10.12 Dissolving a ReplicaSet

This section describes how to dissolve a ReplicaSet using r epl i caSet . di ssol ve().
ReplicaSets are dissolved in the following way:

» Replication accounts are dropped from all contactable members.

» The metadata schema is dropped from all contactable members.

» The asynchronous replication channel is stopped on all contactable members.

If any instance is unreachable, the operation fails, generating an error. To ignore unreachable
instances and dissolve the ReplicaSet, use the f or ce option. You can also use this option if a timeout
is reached waiting for all transactions to be applied on a secondary member.

replicaSet. di ssol ve() accepts ati neout option, which specifies the number of seconds to wait
for pending transactions to be applied in each contactable instance of the ReplicaSet. The default value
is retrieved from the dba. gt i d\Wai t Ti meout option.

This command can also be run with the dr yRun option set to t r ue. This tests all settings without
making any changes.

10.13 Rescanning a ReplicaSet

This section describes how to check a ReplicaSet for consistency using r epl i caSet . rescan() .
replicaSet.rescan() operation does the following:

» Ensures the replication accounts of each member are stored in the metadata.

prompts youtorunrepl i caSet.rescan() toadd any missing accounts to

Note
@ replicaSet. status() also checks for missing replication users and
the metadata.

» Checks for unmanaged members and adds them if configured to do so. Unmanaged members are
instances which are part of the ReplicaSet but are not present in the metadata.

296

Adding Unmanaged Instances

» Checks for obsolete members and removes them if configured to do so. Obsolete members are
instances which are not part of the ReplicaSet but are present in the metadata. Invalidated instances
are ignored.

» Ensures the values of server i dandserver _uui d are stored in the metadata for each member
of the ReplicaSet.

Adding Unmanaged Instances

replicaSet.rescan() can be configured to add unmanaged instances by setting the option
addUnmanaged to t r ue. By default, this option is set to f al se and lists all unmanaged instances, but
makes no changes to the ReplicaSet.

IfreplicaSet.rescan() isrun in interactive mode, the unmanaged instances are listed and you are
prompted to add them to the ReplicaSet.

Removing Obsolete Instances

replicaSet.rescan() can be configured to remove obsolete instances by setting the option
renoveosol et e tot r ue. By default, this option is set to f al se and lists all obsolete instances, but
makes no changes to the ReplicaSet.

If replicaSet.rescan() isrun in interactive mode, the obsolete instances are listed and you are
prompted to remove them.

10.14 Describing a ReplicaSet

This section describes how to retrieve a JSON object describing the structure of a ReplicaSet using
replicaSet. describe().

To retrieve the description of the ReplicaSet, you must be connected to one of the ReplicaSet
members. The following data is returned:

» nane: the name of the ReplicaSet.

e t opol ogy: an array containing the following information on each member of the ReplicaSet:
* addr ess: the instance address (host : port).
« | abel : the instance identifier.

* i nst anceRol e: the instance role, either PRI MARY, SECONDARY, or nul | if invalidated.

297

298

Chapter 11 Extending MySQL Shell

Table of Contents

11.1 Reporting With MySQL SQell ..o e 299
11.1.1 Creating MySQL Shell REPOISccoouuiiiiiiiie e 300
11.1.2 Registering MySQL Shell REPOISuuuiiiiiiieiii et 300
11.1.3 Persisting MySQL Shell REPOITSuuiiiiiiiiiiiii et 302
11.1.4 Example MySQL Shell REPOI .. .cooiiiiiieii e e 302
11.1.5 Running MySQL Shell REPOITSuiiiiiiiiiiiiiiie et 303
11.1.6 Built-in MySQL Shell REPOITSuniiiiiiiee et 304

11.2 Adding Extension Objects t0 MySQL Shellc.oiiiiiiii e 307
11.2.1 Creating User-Defined MySQL Shell Global OBjJectscooeviiiiiiiiiiiiiiiiiicci, 307
11.2.2 Creating EXENSION ODJECES ...ccouviiiiiiiiiie e 308
11.2.3 Persisting EXtENSION ODJECESuuiiiiiiiiieiiiii e 310
11.2.4 Example MySQL Shell Extension ODBJECESoviiiiiiiiiiiiii e 310

11.3 MySQL SHEll PIUGINSeuieiii ettt ettt et e et e e e e 312
11.3.1 Creating MYySQL Shell PIUGINScooiiiiiii e 312
11.3.2 Creating PIUGIN GrOUPSuuiiiiiieieiii ettt ettt e et e e e 313
11.3.3 Example MySQL Shell PIUGINScooiiiiiii e 313

11.4 Custom SQL HANIEK ... et e e e e e e e e e eanae e 315
11.4.1 Registering SQL HANAIEKccouuiiiiie e 315
11.4.2 Returning @ CUSIOM RESUILcooiui i 316
11.4.3 Result Data SPeCfiCatioNuuuiiiiiiiieiiii e 317

You can define extensions to the base functionality of MySQL Shell in the form of reports and
extension objects. Reports and extension objects can be created using JavaScript or Python, and can
be used regardless of the active MySQL Shell language. You can persist reports and extension objects
in plugins that are loaded automatically when MySQL Shell starts.

* MySQL Shell reports. See Section 11.1, “Reporting with MySQL Shell”.
» Extension objects. See Section 11.2, “Adding Extension Objects to MySQL Shell”.

» Reports and extension objects can be stored as MySQL Shell plugins. See Section 11.3, “MySQL
Shell Plugins”.

11.1 Reporting with MySQL Shell

MySQL Shell enables you to set up and run reports to display live information from a MySQL server,
such as status and performance information. MySQL Shell's reporting facility supports both built-

in reports and user-defined reports. Reports can be created directly at the MySQL Shell interactive
prompt, or defined in scripts that are automatically loaded when MySQL Shell starts.

A report is a plain JavaScript or Python function that performs operations to generate the desired
output. You register the function as a MySQL Shell report through the shel | . r egi st er Report ()
method in JavaScript or the shel | . r egi st er _report () method in Python. Section 11.1.1,
“Creating MySQL Shell Reports” has instructions to create, register, and store your reports. You can
store your report as part of a MySQL Shell plugin (see Section 11.3, “MySQL Shell Plugins”).

Reports written in any of the supported languages (JavaScript, Python, or SQL) can be run
regardless of the active MySQL Shell language. Reports can be run once using the MySQL Shell

\ show command, or run and then refreshed continuously in a MySQL Shell session using the

\ wat ch command. They can also be accessed as API functions using the shel | . r eport s object.
Section 11.1.5, “Running MySQL Shell Reports” explains how to run reports in each of these ways.

MySQL Shell includes a number of built-in reports, described in Section 11.1.6, “Built-in MySQL Shell
Reports”.

299

Creating MySQL Shell Reports

11.1.1 Creating MySQL Shell Reports

You can create and register a user-defined report for MySQL Shell in either of the supported scripting
languages, JavaScript and Python. The reporting facility handles built-in reports and user-defined
reports using the same API frontend scheme.

Reports can specify a list of report-specific options that they accept, and can also accept a specified
number of additional arguments. Your report can support both, one, or neither of these inputs. When

you request help for a report, MySQL Shell provides a listing of options and arguments, and any

available descriptions of these that are provided when the report is registered.

Signature

The signature for the Python or JavaScript function to be registered as a MySQL Shell report must be
as follows:

Di ct report(Session session, List argv, Dict options);

Where:

» session is a MySQL Shell session object that is to be used to execute the report.

e ar gv is an optional list containing string values of additional arguments that are passed to the report.

» opti ons is an optional dictionary with key names and values that correspond to any report-specific
options and their values.

Report types

A report function is expected to return data in a specific format, depending on the type you use when
registering it:

List type Returns output as a list of lists, with the first list consisting of the
names of columns, and the remainder being the content of rows.
MySQL Shell displays the output in table format by default, or in
vertical format if the - - verti cal or - - E option was specified
on the \ showor \ wat ch command. The values for the rows are
converted to string representations of the items. If a row has fewer
elements than the number of column names, the missing elements
are considered to be NULL. If a row has more elements than the
number of column names, the extra elements are ignored. When
you register this report, use the type “list”.

Report type Returns free-form output as a list containing a single item. MySQL
Shell displays this output using YAML. When you register this
report, use the type “report”.

Print type Prints the output directly to screen, and return an empty list to
MySQL Shell to show that the output has already been displayed.
When you register this report, use the type “print”.

To provide the output, the API function for the report must return a dictionary with the key r eport, and
a list of JSON objects, one for each of the items in your returned list. For the List type, use one element
for each list, for the Report type use a single element, and for the Print type use no elements.

11.1.2 Registering MySQL Shell Reports

To register your user-defined report with MySQL Shell, call the shel | . regi st er Report () method
in JavaScript or shel | . regi ster_report () in Python. The syntax for the method is as follows:

300

Registering MySQL Shell Reports

shel | . regi st er Report (nanme, type, report[, description])
Where:

e nane is a string giving the unique name of the report.

* type is a string giving the report type which determines the output format, either “list”, “report”, or
“print”.

e report isthe function to be called when the report is invoked.

» descri ption is a dictionary with options that you can use to specify the options that the report
supports, additional arguments that the report accepts, and help information that is provided in the
MySQL Shell help system.

The nane, t ype, and r eport parameters are all required. The report name must meet the following
requirements:

It must be unique in your MySQL Shell installation.

It must be a valid scripting identifier, so the first character must be a letter or underscore character,
followed by any number of letters, numbers, or underscore characters.

« It can be in mixed case, but it must still be unique in your MySQL Shell installation when converted to
lower case.

The report name is not case-sensitive during the registration process and when running the report
using the \ showand \ wat ch commands. The report name is case-sensitive when calling the
corresponding API function at the shel | . r epor t s object. There you must call the function using the
exact name that was used to register the report, whether you are in Python or JavaScript mode.

The optional dictionary contains the following keys, which are all optional:
bri ef A brief description of the report.

details A detailed description of the report, provided as an array of strings.
This is provided when you use the \ hel p command or the - - hel p
option with the \ show command.

options Any report-specific options that the report can accept. Each
dictionary in the array describes one option, and must contain the
following keys:

e nane (string, required): The name of the option in the long form,
which must be a valid scripting identifier.

e brief (string, optional): A brief description of the option.

* shortcut (string, optional): An alternate name for the option as a
single alphanumeric character.

« det ai | s (array of strings, optional): A detailed description of the
option. This is provided when you use the \ hel p command or the
- - hel p option with the \ show command.

e type (string, optional): The value type of the option. The
permitted values are “string”, “bool”, “integer”, and “float”, with a
default of “string” if t ype is not specified. If “bool” is specified,
the option acts as a switch: it defaults to f al se if not specified,
defaults to t r ue (and accepts no value) when you run the report
using the \ showor \ wat ch command, and must have a valid
value when you run the report using the shel | . report s object.

301

Persisting MySQL Shell Reports

e required (bool, optional): Whether the option is required. If
requi r ed is not specified, it defaults to f al se. If the option type
is “bool” then r equi r ed cannot be true.

« val ues (array of strings, optional): A list of allowed values for
the option. Only options with type “string” can have this key. If
val ues is not specified, the option accepts any values.

argc A string specifying the number of additional arguments that the
report expects, which can be one of the following:

¢ An exact number of arguments, which is specified as a single
number.

e Zero or more arguments, which is specified as an asterisk.

« Arange of argument numbers, which is specified as two numbers
separated by a dash (for example, “1-5").

* A range of argument numbers with a minimum but no maximum,
which is specified as a number and an asterisk separated by a
dash (for example, “1-*").

11.1.3 Persisting MySQL Shell Reports

A MySQL Shell report must be saved with a file extension of . | s for JavaScript code, or . py for
Python code, to match the scripting language used for the report. The file extension is not case-
sensitive.

The preferred way to persist a report is by adding it into a MySQL Shell plugin. Plugins and plugin
groups are loaded automatically when MySQL Shell starts, and the functions that they define and
register are available immediately. In a MySQL Shell plugin, the file containing the initialization script
must be named i nit.j s orinit.py as appropriate for the language. For instructions to use MySQL
Shell plugins, see Section 11.3, “MySQL Shell Plugins”.

As an alternative, scripts containing reports can be stored directly in the i ni t . d folder in the MySQL
Shell user configuration path. When MySQL Shell starts, all files found in the i ni t . d folder with a

.] s or. py file extension are processed automatically and the functions in them are made available.
(In this location, the file name does not matter to MySQL Shell.) The default MySQL Shell user
configuration path is ~/ . nysql sh/ on Unix and %AppDat a% MySQL\ nysqgl sh\ on Windows.

The user configuration path can be overridden on all platforms by defining the environment variable
MYSQLSH_USER_CONFI G_HOVE.

11.1.4 Example MySQL Shell Report

This example user-defined report sessi ons shows which sessions currently exist.

def sessions(session, args, options):
Sys = session. get_schema('sys')
sessi on_view = sys. get_tabl e(' session')
query = session_vi ew. sel ect (

‘thd_id', 'conn_id', 'user', 'db', 'current_statenent',

'statement _| atency AS |atency', 'current_nmenory AS nmenory')
if (options.has_key('limt")):

limt = int(options['limt'])

query.limt(limt)

resul t query. execut e()

report [resul t.get_col um_names()]

for rowin result.fetch_all():
report. append(list(row))

302

Running MySQL Shell Reports

return {'report': report}

shel | . regi ster_report(

' sessions',
"list',
sessi ons,
{
"brief': 'Shows which sessions exist.',
"details': ['You need the SELECT privil ege on sys.session view and the underlying tables and fu
‘options': [
{
"nanme': 'limt",
"brief': 'The maxi mum nunber of rows to return.',
"shortcut': "I
"type': 'integer'
}
Il
"argc': 'O
}

)
11.1.5 Running MySQL Shell Reports

Built-in reports and user-defined reports that have been registered with MySQL Shell can be run in any
interactive MySQL Shell mode (JavaScript, Python, or SQL) using the \ showor \ wat ch command, or
called using the shel | . report s object from JavaScript or Python scripts. The \ show command or

\ wat ch command with no parameters list all the available built-in and user-defined reports.

Using the Show and Watch Commands

To use the \ showand \ wat ch commands, an active MySQL session must be available.

The \ show command runs the named report, which can be either a built-in MySQL Shell report or
a user-defined report that has been registered with MySQL Shell. You can specify any options or
additional arguments that the report supports. For example, the following command runs the built-in
report quer y, which takes as an argument a single SQL statement:

\ show query show sessi on status
The report name is case-insensitive, and the dash and underscore characters are treated as the same.
The \ show command also provides the following standard options:

e --vertical (or- E)displays the results from a report that returns a list in vertical format, instead of
table format.

» --hel p displays any provided help for the named report. (Alternatively, you can use the \ hel p
command with the name of the report, which displays help for the report function.)

Standard options and report-specific options are given before the arguments. For example, the
following command runs the built-in report quer y and returns the results in vertical format:

\show query --vertical show session status

The \ wat ch command runs a report in the same way as the \ show command, but then refreshes the
results at regular intervals until you cancel the command using Ctrl + C. The \ wat ch command has
additional standard options to control the refresh behavior, as follows:

e --interval =fl oat (or-i fl oat) specifies a number of seconds to wait between refreshes. The
default is 2 seconds. Fractional seconds can be specified, with a minimum interval of 0.1 second,
and the interval can be set up to a maximum of 86400 seconds (24 hours).

- - nocl s specifies that the screen is not cleared before refreshes, so previous results can still be
seen.

303

Built-in MySQL Shell Reports

For example, the following command uses the built-in report quer y to display the statement counter
variables and refresh the results every 0.5 seconds:

\wat ch query --interval =0.5 show gl obal status |ike ' Con®

Quotes are interpreted by the command handler rather than directly by the server, so if they are used in
a query, they must be escaped by preceding them with a backslash (\).

Using the shel | . report s Object

Built-in MySQL Shell reports and user-defined reports that have been registered with MySQL Shell
can also be accessed as API functions in the shel | . report s object. The shel | . r eport s object is
available in JavaScript and Python mode, and uses the report name supplied during the registration as
the function name. The function has the following signature:

Di ct report(Session session, List argv, Dict options);

Where:

» sessi onis a MySQL Shell session object that is to be used to execute the report.

» argv is a list containing string values of additional arguments that are passed to the report.

» opti ons is a dictionary with key hames and values that correspond to any report-specific options
and their values. The short form of the options cannot be used with the shel | . r eport s object.

The return value is a dictionary with the key r epor t , and a list of JSON objects containing the report.
For the List type of report, there is an element for each list, for the Report type there is a single
element, and for the Print type there are no elements.

With the shel | . r eport s object, if a dictionary of options is present, the ar gv list is required even if
there are no additional arguments. Use the \ hel p report _nane command to display the help for the
report function and check whether the report requires any arguments or options.

For example, the following code runs a user-defined report named sessi ons which shows the
sessions that currently exist. A MySQL Shell session object is created to execute the report. A report-
specific option is used to limit the number of rows returned to 10. There are no additional arguments,
so the ar gv list is present but empty.

report = shell.reports. sessions(shell.getSession(), [], {'limt':10});

11.1.6 Built-in MySQL Shell Reports

MySQL Shell includes built-in reports to display the following information:

» The results of any specified SQL query (query.

» A listing of the current threads in the connected MySQL server (t hr eads.
» Detailed information about a specified thread (t hr ead.

As with user-defined reports, the built-in reports can be run once using the MySQL Shell \ show
command, or run and then refreshed continuously in a MySQL Shell session using the \ wat ch
command. The built-in reports support the standard options for the \ showand \ wat ch commands in
addition to their report-specific options, unless noted otherwise in their descriptions. They can also be
accessed as API functions using the shel | . r epor t s object. Section 11.1.5, “Running MySQL Shell
Reports” explains how to run reports in each of these ways.

11.1.6.1 Built-in MySQL Shell Report: Query

The built-in MySQL Shell report quer y executes the single SQL statement that is provided as an
argument, and returns the results using MySQL Shell's reporting facility. You can use the query report
as a convenient way to generate simple reports for your immediate use.

304

Built-in MySQL Shell Reports

The query report has no report-specific options, but the standard options for the \ showand \ wat ch
commands may be used, as described in Section 11.1.5, “Running MySQL Shell Reports”.

For example, the following command uses the quer y report to display the statement counter variables
and refresh the results every 0.5 seconds:

\wat ch query --interval =0.5 show gl obal status |ike ' Con®

11.1.6.2 Built-in MySQL Shell Report: Threads

The built-in MySQL Shell report t hr eads lists the current threads in the connected MySQL server
which belong to the user account that is used to run the report. The report works with servers running
all supported MySQL 5.7, 8.0, and 8.1 versions. If any item of information is not available in the MySQL
Server version of the target server, the report leaves it out.

The t hr eads report provides information for each thread drawn from various sources including
MySQL's Performance Schema. Using the report-specific options, you can choose to show foreground
threads, background threads, or all threads. You can report a default set of information for each thread,
or select specific information to include in the report from a larger number of available choices. You can
filter, sort, and limit the output. For details of the report-specific options and the full listing of information
that you can include in the report, issue one of the following MySQL Shell commands to view the report
help:

\ hel p t hreads
\'show t hreads --help

In addition to the report-specific options, the t hr eads report accepts the standard options for the

\ showand \ wat ch commands, as described in Section 11.1.5, “Running MySQL Shell Reports”. The
t hr eads report is of the list type, and by default the results are returned as a table, but you can use
the - -vertical (or-E)option to display them in vertical format.

The t hr eads report uses MySQL Server's f or mat _st at enent () function (see The
format_statement() Function). Any truncated statements displayed in the report are truncated according
to the setting for the st at enent _t runcat e_| en option in MySQL Server's sys_conf i g table,
which defaults to 64 characters.

The following list summarizes the capabilities provided by the report-specific options for the t hr eads
report. See the report help for full details and the short forms of the options:

--foreground, - - List foreground threads only, background threads only, or all

background, - - al | threads. The report displays a default set of appropriate fields for
your thread type selection, unless you use the - - f or nat option to
specify your own choice of fields instead.

--format Define your own custom set of information to display for each
thread, specified as a comma-separated list of columns (and display
names, if you want). The report help lists all of the columns that you
can include to customize your report.

--where,--order-by,-- Filter the returned results using logical expressions (- - wher e), sort

desc,--limt on selected columns (- - or der - by), sort in descending instead of
ascending order - - desc), or limit the number of returned threads
--limt).

For example, the following command runs the t hr eads report to display all foreground threads, with

a custom set of information comprising the thread ID, ID of any spawning thread, connection ID, user
name and host name, client program name, type of command that the thread is executing, and memory
allocated by the thread:

nysql -j s> \show threads --foreground -0 tid,ptid,cid,user, host, prognane, conmand, nenory

305

https://dev.mysql.com/doc/refman/9.4/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/9.4/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/9.4/en/sys-sys-config.html

Built-in MySQL Shell Reports

11.1.6.3 Built-in MySQL Shell Report: Thread

The built-in MySQL Shell report t hr ead provides detailed information about a specific thread in the
connected MySQL server. The report works with servers running all supported MySQL 5.7 and MySQL
8.0 versions. If any item of information is not available in the MySQL Server version of the target
server, the report leaves it out.

The t hr ead report provides information for the selected thread and its activity, drawn from various
sources including MySQL's Performance Schema. By default, the report shows information on the
thread used by the current connection, or you can identify a thread by its ID or by the connection ID.
You can select one or more categories of information, or view all of the available information about the
thread. For details of the report-specific options and the information that you can include in the report,
issue one of the following MySQL Shell commands to view the report help:

\ hel p thread
\'show thread --help

In addition to the report-specific options, the t hr ead report accepts most of the standard options for
the \ showand \ wat ch commands, as described in Section 11.1.5, “Running MySQL Shell Reports”.
The exception is the - - verti cal (or - E) option for the \ show command, which is not accepted.
The t hr ead report has a custom output format that includes vertical listings and tables presented in
different sections, and you cannot change this output format.

The t hr eads report uses MySQL Server's f or mat _st at ement () function (see The
format_statement() Function). Any truncated statements displayed in the report are truncated according
to the setting for the st at enent _t runcat e_| en option in MySQL Server's sys_conf i g table,
which defaults to 64 characters.

The following list summarizes the capabilities provided by the report-specific options for the t hr eads
report. See the report help for full details and the short forms of the options:

--tid,--cid Identify the thread ID or connection ID on which you want to report.

--general Show basic information about the thread. This information is
returned by default if you do not use any of the following options.

--brief Show a brief description of the thread on one line.
--client Show information about the client connection and client session.
--innodb Show information about the current InnoDB transaction using the

thread, if any.

--1 ocks Show information about locks blocking and blocked by the thread.

--prep-stnts Show information about the prepared statements allocated for the
thread.

--status Show information about the session status variables for the thread.

You can specify a list of prefixes to match, in which case only
matching variables are displayed.

--vars Show information about the session system variables for the thread.
You can specify a list of prefixes to match, in which case only
matching variables are displayed.

--user-vars Show information about the user-defined variables for the thread.
You can specify a list of prefixes to match, in which case only
matching variables are displayed.

--all Show all of the above information, except for the brief description.

306

https://dev.mysql.com/doc/refman/9.4/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/9.4/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/9.4/en/sys-sys-config.html

Adding Extension Objects to MySQL Shell

For example, the following command runs the t hr ead report for the thread with thread ID 53, and
returns general information about the thread, details of the client connection, and information about any
locks that the thread is blocking or is blocked by:

nmysql -py> \show thread --tid 53 --general --client --1ocks

11.2 Adding Extension Objects to MySQL Shell

You can define extension objects and make them available as part of user-defined MySQL Shell global
objects. When you create and register an extension object, it is available in both JavaScript and Python
modes.

An extension object comprises one or more members. A member can be a basic data type value, a
function written in native JavaScript or Python, or another extension object. You construct and register
extension objects using functions provided by the built-in global object shel | . You can continue to
extend the object by adding further members to it after it has been registered with MySQL Shell.

Note

@ You can register an extension object containing functions directly as a MySQL
Shell global object. However, for good management of your extension objects,
it can be helpful to create one or a small number of top-level extension objects
to act as entry points for all your extension objects, and to register these top-
level extension objects as MySQL Shell global objects. You can then add
your current and future extension objects as members of an appropriate top-
level extension object. With this structure, a top-level extension object that is
registered as a MySQL Shell global object provides a place for developers to
add various extension objects created at different times and stored in different
MySQL Shell plugins.

11.2.1 Creating User-Defined MySQL Shell Global Objects

To create a new MySQL Shell global object to act as an entry point for your extension objects, first
create a new top-level extension object using the built-in shel | . cr eat eExt ensi onChj ect ()
function in JavaScript or shel | . creat e_ext ensi on_obj ect () in Python:

shel | . cr eat eExt ensi onObj ect ()

Then register this top-level extension object as a MySQL Shell global object by calling the
shel | . regi st erd obal () method in JavaScript or shel | . regi st er _gl obal () in Python. The
syntax for the method is as follows:

shel | . regi st erd obal (nane, object[, definition])
Where:

* nane is a string giving the name (and class) of the global object. The name must be a valid scripting
identifier, so the first character must be a letter or underscore character, followed by any number
of letters, numbers, or underscore characters. The name must be unique in your MySQL Shell
installation, so it must not be the name of a built-in MySQL Shell global object (for example, db,
dba, cl ust er, sessi on, shel I ,util) and it must not be a name you have already used for a
user-defined MySQL Shell global object. The examples below show how to check whether the name
already exists before registering the global object.

Important

access the object in both JavaScript and Python modes. It is therefore good
practice to use a simple one-word name for the global object (for example,
ext). If you register the global object with a complex name in camel case

A The name that you use to register the global object is used as-is when you
or snake case (for example, myCust omObj ect), when you use the global

307

Creating Extension Objects

object, you must specify the name as it was registered. Only the names used
for members are handled in a language-appropriate way.

» obj ect is the extension object that you are registering as a MySQL Shell global object. You can
only register an extension object once.

« definitionisan optional dictionary with help information for the global object that is provided in
the MySQL Shell help system. The dictionary contains the following keys:

e brief (string, optional): A short description of the global object to be provided as help information.

e det ai | s (list of strings, optional): A detailed description of the global object to be provided as help
information.

11.2.2 Creating Extension Objects

To create a new extension object to provide one or more functions, data types, or further
extension objects, use the built-in shel | . cr eat eExt ensi onCbj ect () function in JavaScript or
shel | . creat e_ext ensi on_obj ect () in Python:

shel | . cr eat eExt ensi onObj ect ()

To add members to the extension object, use the built-in shel | . addExt ensi onChj ect Mernber ()
function in JavaScript or shel | . add_ext ensi on_obj ect _nenber () in Python:

shel | . addExt ensi onQbj ect Menber (obj ect, nane, menber[, definition])
Where:
» 0bj ect is the extension object where the new member is to be added.

» nane is the name of the new member. The name must be a valid scripting identifier, so the first

character must be a letter or underscore character, followed by any number of letters, numbers,

or underscore characters. The name must be unique among the members that have already been
added to the same extension object, and if the member is a function, the name does not have to
match the name of the defined function. The name should preferably be specified in camel case,
even if you are using Python to define and add the member. Specifying the member name in camel
case enables MySQL Shell to automatically enforce naming conventions. MySQL Shell makes the
member available in JavaScript mode using camel case, and in Python mode using snake case.

e nenber is the value of the new member, which can be any of the following:

< A supported basic data type. The supported data types are “none” or “null”, “bool”, “number”

(integer or floating point), “string”, “array”, and “dictionary”.

« A JavaScript or Python function. You can use native code in the body of functions that are added
as members to an extension object, provided that the interface (parameters and return values)
is limited to the supported data types in Table 11.1, “Supported data type pairs for extension
objects”. The use of other data types in the interface can lead to undefined behavior.

¢ Another extension object.

e definitionisan optional dictionary that can contain help information for the member, and also if
the member is a function, a list of parameters that the function receives. Help information is defined
using the following attributes:

e brief is a brief description of the member.

e det ai | s is a detailed description of the member, provided as a list of strings. This is provided
when you use the MySQL Shell \ hel p command.

Parameters for a function are defined using the following attribute:

308

Creating Extension Objects

e par anet er s is a list of dictionaries describing each parameter that the function receives. Each
dictionary describes one parameter, and can contain the following keys:

e nane (string, required): The name of the parameter.

» type (string, required): The data type of the parameter, one of “string”, “integer”, “bool”, “float”,
“array”, “dictionary”, or “object”. If the type is “object”, the c| ass or cl asses key can also be
used. If the type is “string”, the val ues key can also be used. If the type is “dictionary”, the

opt i ons key can also be used.

« cl ass (string, optional, allowed when data type is “object”): Defines the object type that is
allowed as a parameter.

« cl asses (list of strings, optional, allowed when data type is “object”): A list of classes defining
the object types that are allowed as a parameter. The supported object types for cl ass
and cl asses are those that are exposed by the MySQL Shell APls, for example Sessi on,
Cl assi cSessi on, Tabl e, or Col | ecti on. An error is raised if an object type is passed to the
function that is not in this list.

« val ues (list of strings, optional, allowed when data type is “string”): A list of values that are valid
for the parameter. An error is raised if a value is passed to the function that is not in this list.

« opti ons (list of options, optional, allowed when data type is “dictionary”): A list of options that
are allowed for the parameter. Options use the same definition structure as the parameters, with
the exception that if r equi r ed is not specified for an option, it defaults to f al se. MySQL Shell
validates the options specified by the end user and raises an error if an option is passed to the
function that is not in this list. If you create a dictionary with no list of options, any options that
the end user specifies for the dictionary are passed directly through to the function by MySQL
Shell with no validation.

e requi red (bool, optional): Whether the parameter is required. If r equi r ed is not specified for
a parameter, it defaultsto t r ue.

* brief (string, optional): A short description of the parameter to be provided as help information.

« det ai | s (list of strings, optional): A detailed description of the parameter to be provided as help
information.

An extension object is considered to be under construction until it has been registered as a MySQL
Shell global object, or added as a member to another extension object that is registered as a MySQL
Shell global object. An error is returned if you attempt to use an extension object in MySQL Shell when
it has not yet been registered.

Cross Language Considerations

An extension object can contain a mix of members defined in Python and members defined in
JavaScript. MySQL Shell manages the transfer of data from one language to the other as parameters
and return values. Table 11.1, “Supported data type pairs for extension objects” shows the data types
that MySQL Shell supports when transferring data between languages, and the pairs that are used as
representations of each other:

Table 11.1 Supported data type pairs for extension objects

JavaScript Python
Boolean Boolean
String String
Integer Long
Number Float

309

Persisting Extension Objects

JavaScript Python
Null None
Array List

Map Dictionary

An extension object is literally the same object in both languages.

11.2.3 Persisting Extension Objects

A script to define and register extension objects must have a file extension of . | s for JavaScript code,
or . py for Python code, to match the language used for the script. The file extension is not case-
sensitive.

The preferred way to persist an extension object is by adding it into a MySQL Shell plugin. Plugins and
plugin groups are loaded automatically when MySQL Shell starts, and the functions that they define
and register are available immediately. In a MySQL Shell plugin, the file containing the initialization
script must be named i nit.j s orinit.py as appropriate for the language. A plugin can only contain
code in one language, so if you are creating an extension object with a mix of members defined in
Python and members defined in JavaScript, you must store the members as separate language-
appropriate plugins. For instructions to use MySQL Shell plugins, see Section 11.3, “MySQL Shell
Plugins”.

As an alternative, scripts containing extension objects can be stored directly in the i ni t . d folder in the
MySQL Shell user configuration path. When MySQL Shell starts, all files found in the i ni t . d folder
witha. | s or. py file extension are processed automatically and the functions that they register are
made available. (In this location, the file name does not matter to MySQL Shell.) The default MySQL
Shell user configuration path is ~/ . nysql sh/ on Unix and %AppDat a% MySQL\ nysql sh\ on
Windows. The user configuration path can be overridden on all platforms by defining the environment
variable MYSQLSH_USER_CONFI G_HOVE.

11.2.4 Example MySQL Shell Extension Objects

Example 11.1 Creating and Registering Extension Objects - Python

This example creates a function hel | o_wor | d() which is made available through the user-
defined MySQL Shell global object denp. The code creates a new extension object and adds the
hel | o_wor | d() function to it as a member, then registers the extension object as the MySQL Shell
global object deno.
Define a hello_world function that will be exposed by the gl obal object 'deno'
def hello_world():

print("Hello world!")

Create an extension object where the hello_world function will be registered

pl ugi n_obj = shell.create_extensi on_object ()
shel | . add_ext ensi on_obj ect _nenber (pl ugi n_obj, "hellowrld", hello_world
{"brief": "Prints '"Hello world!'", "paraneters": []})

Registering the 'denp' gl obal object
shel | . regi st er_gl obal ("denp", pl ugi n_obj
{"brief": "A denp plugin that showcases MySQL Shell's plugin feature."})

Note that the member name is specified in camel case in the

shel | . add_ext ensi on_obj ect _nenber () function. When you call the member in Python mode,
use snake case for the member name, and MySQL Shell automatically handles the conversion. In
JavaScript mode, the function is called like this:

nysql -j s> deno. hel | oWor | d()

In Python mode, the function is called like this:

310

Example MySQL Shell Extension Objects

nmysql - py> deno. hel | o_wor | d()
Example 11.2 Creating and Registering Extension Objects - JavaScript

This example creates an extension object with the function | i st Tabl es() as a member, and
registers it directly as the MySQL Shell global object t ool s:

/Il Define a |listTables function that will be exposed by the gl obal object tools

function |istTabl es(session, schemaNanme, options) {

/] Create an extension object and add the |istTables function to it as a menber
var object = shell.createExtensi onObj ect ()

shel | . addExt ensi onObj ect Menber (obj ect, "li st Tabl es", |i st Tabl es,

{

brief:"Retrieves the tables froma given schema.",
details: ["Retrieves the tables of the schema naned schemaNane.",
"If excludeCollections is true, the collection tables will not be ret
par amet ers:
[
{

name: "session",

type: "object",

cl ass: "Session",

brief: "An X Protocol session object."

nanme: "schemaNanme",
type: "string",
brief: "The name of the schema fromwhich the table list will be pulled.”

name: "options",
type: "dictionary",
brief: "Additional options that affect the function behavior.",

options: [
{
nane: "excludeVi ews",
type: "bool",
brief: "If set to true, the views will not be included on the Iist, def
}
{
nane: "excludeColl ections",
type: "bool",
brief: "If set to true, the collections will not be included on the lis
}

/| Register the extension object as the gl obal object "tools"
shel | . regi sterd obal ("tool s", object, {brief:"d obal object for Exanpl eCom admi nistrator tools",
details:[

"d obal object to access honegrown Exanpl eCom admi ni strator tools.",
"Add new tools to this global object as nenbers with shell.addExt ensi onCbj ect Men

In JavaScript mode, the function is called like this:

nmysql -j s> tool s. |istTabl es(session, "world_x", {excludeViews: true})

In Python mode, the function is called like this:

nysql - py> tool s.|ist_tabl es(session, "world_x", {"excludeViews": True})

311

MySQL Shell Plugins

11.3 MySQL Shell Plugins

You can extend MySQL Shell with user-defined plugins that are loaded at startup. Plugins can be
written in either JavaScript or Python, and the functions they contain are available in MySQL Shell in
both JavaScript and Python modes.

11.3.1 Creating MySQL Shell Plugins

MySQL Shell plugins can be used to contain functions that are registered as MySQL Shell reports (see
Section 11.1, “Reporting with MySQL Shell”), and functions that are members of extension objects that
are made available by user-defined MySQL Shell global objects (see Section 11.2, “Adding Extension
Objects to MySQL Shell”). A single plugin can contain and register more than one function, and can
contain a mix of reports and members of extension objects. Functions that are registered as reports or
members of extension objects by a MySQL Shell plugin are available immediately when MySQL has
completed startup.

A MySQL Shell plugin is a folder containing an initialization script appropriate for the language (an
init.jsorinit.py file). The initialization script is the entry point for the plugin. A plugin can only
contain code in one language, so if you are creating an extension object with a mix of members defined
in Python and members defined in JavaScript, you must store the members as separate language-
appropriate plugins.

For a MySQL Shell plugin to be loaded automatically at startup, its folder must be located under
the pl ugi ns folder in the MySQL Shell user configuration path. MySQL Shell searches for any
initialization scripts in this location. MySQL Shell ignores any folders in the pl ugi ns location whose
name begins with a dot (.) but otherwise the name you use for a plugin's folder is not important.

The default path for the pl ugi ns folderis ~/ . nysql sh/ pl ugi ns on Unix and Y®ppDat a% My SQL
\ mysqgl sh\ pl ugi ns in Windows. The user configuration path can be overridden on all platforms by
defining the environment variable M\YSQLSH USER CONFI G_HOVE. The value of this variable replaces
Y%AppDat a% MySQL\ mysql sh\ on Windows or ~/ . nysql sh/ on Unix.

When an error is found while loading plugins, a warning is shown and the error details are available
in the MySQL Shell application log. To see more details on the loading process use the - - | 0og-
| evel =debug option when starting MySQL Shell.

When a MySQL Shell plugin is loaded, the following objects are available as global variables:
e The built in global objects shel | , dba, and uti | .

* The Shell API main module nysql .

» The X DevAPI main module nmysql x.

* The AdminAPI main module dba.

11.3.1.1 Common Code and Packages

If you use common code or inner packages in Python code that is part of a MySQL Shell plugin or
plugin group, you must follow these requirements for naming and importing to avoid potential clashes
between package names:

* The plugin or plugin group's top-level folder, and each inner folder that is to be recognized as a
package, must be a valid regular package name according to Python's PEP 8 style guide, using only
letters, numbers, and underscores.

» Each inner folder that is to be recognized as a package must contain afilenamed __init__ . py.

« When importing, the full path for the package name must be specified. For example, if a plugin group
named ext contains a plugin named deno, which has an inner package named sr ¢ containing a
module named sanpl e, the module must be imported as follows:

312

Creating Plugin Groups

from ext.deno.src inport sanple

11.3.2 Creating Plugin Groups

You can create a plugin group by placing the folders for multiple MySQL Shell plugins in a containing
folder under the pl ugi ns folder. A plugin group can contain a mix of plugins defined using JavaScript
and plugins defined using Python. Plugin groups can be used to organize plugins that have something
in common, for example:

* Plugins that provide reports on a particular theme.
» Plugins that reuse the same common code.
 Plugins that add functions to the same extension object.

If a subdirectory of the pl ugi ns folder does not contain an initialization script (aninit.j s or

i nit.py file), MySQL Shell treats it as a plugin group and searches its subfolders for the initialization
scripts for the plugins. The containing folder can contain other files with code that is shared by the
plugins in the plugin group. As for a plugin's subfolder, the containing folder is ignored if its name
begins with a dot (.) but otherwise the name is not important to MySQL Shell.

For example, a plugin group comprising all the functions provided by the user-defined MySQL Shell
global object ext can be structured like this:

e The folder C: \ User s\ exanpl euser\ AppDat a\ Roam ng\ MySQL\ nysql sh\ pl ugi ns\ ext is the
containing folder for the plugin group.

e Common code for the plugins is stored in this folder at C: \ User s\ exanpl euser\ AppDat a
\ Roam ng\ MySQL\ nysql sh\ pl ugi ns\ ext\ conmon. py

» The plugins in the plugin group are stored in subfolders of the ext folder, each withani ni t. py file,
for example C: \ User s\ exanpl euser\ AppDat a\ Roam ng\ MySQL\ nysql sh\ pl ugi ns\ ext
\hel | oworl d\i ni t. py.

» The plugins import the common code from ext . cormon and use its functions.

11.3.3 Example MySQL Shell Plugins
Example 11.3 MySQL Shell plugin containing a report and an extension object

This example defines a function show_pr ocesses() to display the currently running processes, and

afunction ki | I _process() to kill a process with a specified ID. show_pr ocesses() is going to
be a MySQL Shell report, and ki | | _process() is going to be a function provided by an extension
object.

The code registers show _processes() as a MySQL Shell report pr oc using the

shel | . regi ster_report () method. Toregisterki | | _process() asext.process. kill (),
the code checks whether the global object ext and the extension object pr ocess already exist, and
creates and registers them if not. The ki | | _process() function is then added as a member to the
pr ocess extension object.

The plugin code is saved as the file ~/ . nysql sh/ pl ugi ns/ ext/ process/init. py. At startup,
MySQL Shell traverses the folders in the plugins folder, locates this i ni t . py file, and executes the
code. The report pr oc and the function ki | | () are registered and made available for use. The global
object ext and the extension object pr ocess are created and registered if they have not yet been
registered by another plugin, otherwise the existing objects are used.

Define a show processes function that generates a M/SQL Shell report
def show_processes(session, args, options):

query = "SELECT I D, USER, HGCST, COMVAND, |NFO FROM | NFORVATI ON_SCHEMA. PROCESSLI ST
if (options.has_key(' conmand')):

313

Example MySQL Shell Plugins

query += " WHERE COMWAND = '9%'" % opti ons[' command']

result = session.sql (query).execute();
report = []
if (result.has_data()):
report = [result.get_col umm_nanes()]
for rowin result.fetch_all():
report. append(list(row))

return {"report": report}
Define a kill_process function that will be exposed by the gl obal object 'ext'
def kill _process(session, id):

result = session.runSgl ("KILL CONNECTI ON %" % i d). execute()

Regi ster the show_processes function as a MySQL Shel |l report

shel |l . register_report("proc", "list", show processes, {"brief":"Lists the processes on the target server.",
"options": [{
“name": "comrand”,
“shortcut": "c",
"brief": "Use this option to |ist processes over
HD
Register the kill_process function as ext.process.kill ()

Check if gl obal object 'ext' has already been registered
if "ext' in globals():

gl obal _obj = ext
el se:

Otherw se regi ster new gl obal object naned 'ext'

gl obal _obj = shel |l . create_extensi on_obj ect ()

shel | . regi ster_gl obal ("ext", gl obal _obj,

{"brief":"MySQL Shell extension plugins."})

Add the 'process' extension object as a nenber of the 'ext' gl obal object
try:
pl ugi n_obj = gl obal _obj . process
except | ndexError:
|f the 'process' extension object has not been registered yet, do it now
pl ugi n_obj = shell.create_extensi on_object ()

shel | . add_ext ensi on_obj ect _nenber (gl obal _obj, "process", plugin_obj,
{"brief": "Uility object for process operations."})
Add the kill _process function to the 'process' extension object as nmenmber "kill'
try:
shel | . add_ext ensi on_obj ect _nenber (pl ugi n_obj, "kill", kill_process, {"brief": "Kills the process with t
"paranmeters": [
{

"nane": "sessi on",
"type":"object",
"class": " Session",

"brief": "The session to be used on the
iE
{
"pame":"id",
"type":"integer",
"brief": "The ID of the process to be kil
}
]
9]

except Exception as e:
shell .1 og("ERROR', "Failed to register ext.process.kill ({0})."
format(str(e).rstrip()))

Here, the user runs the report pr oc using the MySQL Shell \ showcommand, then uses the
ext . process. kil | () function to stop one of the listed processes:

314

Custom SQL Handler

nmysql - py> \ show proc

doocodmocccococoococoooao dooccocococoooooocooo doocoocooo e — = = = -
| ID] USER | HOST | COMVAND | | NFO

doocodmocccococoococoooao dooccocococoooooocooo doocoocooo e — = = = -
| 66 | root | local host:53998 | Query | PLUG N: SELECT | D, USER HOST, COMVAND, |NFO FROM
| 67 | root | Iocal host: 34022 | Sleep | NULL

| 4 | event_schedul er | |ocal host | Daemon | NULL

doocodmocccococoococoooao dooccocococoooooocooo doocoocooo e — = = = -
nmysql - py> ext. process. kil | (session, 67)

nmysql - py> \ show proc

doocodmocccococoococoooao dooccocococoooooocooo doocoocooo e — = = = -
| ID] USER | HOST | COMVAND | | NFO

doocodmocccococoococoooao dooccocococoooooocooo doocoocooo e — = = = -
| 66 | root | local host:53998 | Query | PLUG N: SELECT | D, USER HOST, COMVAND, |NFO FROM
| 4 | event_schedul er | |ocal host | Daemon | NULL

doocodmocccococoococoooao dooccocococoooooocooo doocoocooo e — = = = -

11.4 Custom SQL Handler

The shel | global object is extended with r egi st er _Sql _Handl er, a function which enables you
to register a custom SQL handler. This handler can execute pre-processing steps for the given SQL
statements and extend the supported SQL statements with non-standard SQL.

The SQL handler detects SQL statements executed in one of the following ways:
» Using the \ sql command

e SQL mode.

The r unSQL function in session objects.
» Using the - - execut e/ - e command line option.

e Usingthe--file/-f command line option.

11.4.1 Registering SQL Handler

You can register an SQL handler in either of the following ways:
» Registering SQL Handler with MySQL Shell API
* Registering SQL Handler with a Python Decorator

« Listing the Registered SQL Handlers

Registering SQL Handler with MySQL Shell API

regi ster_Sqgl _Handl er has the following syntax:

shel | . regi ster_sqgl _handl er (nane, description, prefixes, callback)

* nane: the unique identifier of the SQL handler.
» descri pti on: a brief description of the SQL extensions provided by the handler.

» prefixes: alist of prefixes (string) identifying the SQL statements processed by this handler. You
must define at least one prefix.

» cal | back: name of the function to execute when a statement matching the prefix is identified.

The function must have the following signature:

315

Returning a Custom Result

function(session, sql): [Result]
Registering SQL Handler with a Python Decorator

You can also use the Python decorator @ql _handl er to register the SQL handler. The decorator
uses shel | . regi st er Sql Handl er to register the handler. The same restrictions apply for
parameters.

For example:
from nysql sh. pl ugi n_nmanager inport sql _handl er

@ql _handl er (prefixes=['SHON'])
"Prints a notice when a SHOWN command i s execut ed"
def show_preprocessor(session, sql):

pri nt (f" SHON COMVAND EXECUTED: {sql}")

Listing the Registered SQL Handlers

To list the registered SQL handlers, use shel | . i st _sql _handl er s. This function returns the
name and description of all registered SQL handlers.

11.4.2 Returning a Custom Result

The SQL handler function can return a result object. To define a custom result, use
shel | . create_result(data). The dat a can be either a dictionary, for a single result, or a list of
dictionaries, for multiple results.

» Single Result
» Multiple Result
Single Result
The data dictionary for a single result must be a dictionary and include the following:
« af f ect edl t ensCount : (integer) the number of items affected by the processed SQL.
i nf o: (string) define additional information about the result.
e executi onTi nme: (double) time, in seconds, taken to process the SQL.
» aut ol ncrenent Val ue: (integer) the last auto-generated insert ID.
e war ni ngs: list of documents describing warnings generated by the processed SQL.
» col umms: optional list describing the column metadata of the result.

» dat a: optional parameter defining the data contained in the result. See Section 11.4.3, “Result Data
Specification”.

Multiple Result

To support multiple results, define a list of dictionaries in the dat a parameter. See Single Result for
information on permitted dictionary elements.

You can also add an error definition dictionary to this list, to indicate errors which occurred during SQL
processing. The error dictionary must have the following attributes:

e error:(string) description of the error.

316

Result Data Specification

« code: (integer) code associated with the error.

The data definition of a result is composed of the following elements:

11.4.3 Result Data Specification

» Column metadata: the column names and their types. This can be defined automatically or manually.

» Data: the result's records.

The first dictionary defined in dat a is used to automatically determine the column metadata. This

dictionary includes the following:

Automatically Defined Column Data

» name: defined by each key in the dictionary.

* type: the value of each key.

Note
@ Automatic definition of the result metadata has the following limitations:

¢ You cannot define the data types used for each column.

¢ You cannot define the column order in the result.

« Name and type are the only column metadata available.

The column type and value representation in the results are mapped by language support:

Table 11.2 JavaScript Column and Result Value Type Mapping

JavaScript Value Default Column Type Result Value Type
nul | STRI NG nul |

string STRI NG string

i nt eger Bl G NT i nt eger

fl oat DOUBLE fl oat

bool ean TI NYI NT Oorl

array JSON string
dictionary JSON string

array buffer BYTES array buffer
date DATETIME dat e

Table 11.3 Python Column and Result Value Type Mapping

Python Value Default Column Type Result Value Type
None STRI NG nul |

string STRI NG string

i nt eger Bl G NT i nt eger

fl oat DOUBLE fl oat

bool ean TI NYI NT Oorl

array JSON string

di ctionary JSON string

317

Result Data Specification

Python Value Default Column Type Result Value Type
bi nary string BYTES bi nary string
date DATE date

tinme TIME time

datetine DATETIME datetinme

The following shows an example of automatic column definition:

@ql _handl er (prefixes=["SHON FI LES"])

def show fil es(session, sql):

files = [{'path': file, 'length': os.stat(file).st_size} for file in os.listdir()]
return nysgl sh. gl obal s. shell.create_result({'data': files})

Usage:

SQ.> show fil es;

doocoocooo doococccooccoooooo +
| I'ength | path |
doocoocooo doococccooccoooooo +
| 420 | sanple_file.tx |
| 50 | readne.txt |
doocoocooo doococccooccoooooo +

3 rows in set (0.0000 sec)

Manually Defined Column Data

You can define the metadata with the col unms attribute. This attribute defines the column order and
can be used to override the default column types.

col ums is defined as a list containing either a string defining the column name, or a dictionary
containing one, or more, of the following:

e nane: (mandatory) the name for the column in the result.

» type: (optional) the expected type of the column values. Permitted values are st ri ng, i nt eger,
float,]json,date,tine,datetine, andbytes

» fl ags: (optional) comma-separated list of additional flags (string). bl ob, t i nest anp, unsi gned,
zerofill,binary,enumand set.

e | engt h: (optional) length in bytes.
The following shows an example of manual column definition:

@ql _handl er (prefixes=["SHOW FI LES"])

def show fil es(session, sql):

files = [{'path': file, 'length': os.stat(file).st_size} for file in os.listdir()]
nmetadata = [{'name': 'path', 'type': 'string'}, {'name': 'length', 'type': 'integer'}]
return nysql sh. gl obal s. shel |l .create_result({'colums', netadata, 'data': files})

Usage:

nmysql -sqgl > show fil es;
Fommme e mee o [T - +
| path | length |
Fommme e mee o [T - +
| sanple_file.tx | 420 |
| readne.txt | 50 |
Fommme e mee o [T - +

3 rows in set (0.0000 sec)

318

Chapter 12 MySQL Shell Utilities

Table of Contents

12.1 Upgrade CheCKer ULIILYooe et e et e e eaaas 320
12.2 JSON IMPOIT UL ©eveeie ittt ettt e e e e e e e bbbt e e e e e e e eenerean s 328
12.2.1 RUNNING the ULHITY ...eoe et et e e e e 329
12.2.2 Importing JISON Documents With the Mysqlsh Command Interface 330
12.2.3 Importing JSON Documents With the - - i nport Commandccoooiiiiiiiniinnnns 331
12.2.4 Conversions for Representations of BSON Data TYPEScc.uvveiiiiiiiiiiiiiieiiiieeieeeiies 333
12.3 Table EXPOIt ULIHILYoceeeeieei et e e e e e et e et e et eeeaeeeens 334
12.4 Parallel Table IMpPort ULIILYco..iii e e et ea e ees 341
12.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utilitycccooiiiiiininaannnn. 350
12.6 DUMP LoAdiNG ULHILYneeeieeee ettt e et e e e e e e eens 374
12.7 Binary Log Dumping and Loading ULIITIES ... 393
12.7.1 DUMPING BINAIY LOGS ...uiiniiiteii ettt et e e et e et e et e e et e e eaeaeens 394
12.7.2 Loading Binary LOG DUMPS .. .ceuniiiiiiii et e e e e eaeaes 397
12.8 Copy Instance, Schemas, and TabIesoo e 400
12.9 DIagnOSHCS ULIILIES ... et e et e e et e et e e e e ean e 414
12.9.1 collectDIagnOStCS ULIILYoieniiieiiii e e e 414
12.9.2 collectHighLoadDiagnostiCs ULIlItYooeuniiiiiiiiei e 416
12.9.3 collectSlowQueryDiagnostiCS ULIILYooeuniiiiiiiie e 418

MySQL Shell includes utilities for working with MySQL. To access the utilities from within MySQL Shell,
use the ut i | global object, which is available in JavaScript and Python modes, but not SQL mode.
The ut i | global object provides the following functions:

checkFor Server Upgr ade() An upgrade checker utility that enables you to verify whether
MySQL server instances are ready for upgrade. See Section 12.1,
“Upgrade Checker Utility”.

i mport JSON() A JSON import utility that enables you to import JSON documents to
a MySQL Server collection or table. See Section 12.2, “JSON Import
Utility”.

export Tabl e() A table export utility that exports a MySQL relational table into

a data file, which can then be uploaded into a table on a target
MySQL server using MySQL Shell's parallel table import utility, or
to import data to a different application, or as a light-weight logical
backup for a single data table. See Section 12.3, “Table Export
Utility”.

i mport Tabl e() A parallel table import utility that splits up a single data file and
uses multiple threads to load the chunks into a MySQL table. See
Section 12.4, “Parallel Table Import Utility”.

dunpl nst ance(), An instance dump utility, schema dump utility, table dump utility that
dunpSchenas(), can export all schemas, a selected schema, selected tables and
dunpTabl es(), views, from a MySQL instance to cloud storage or a set of local files.

See Section 12.5, “Instance Dump Utility, Schema Dump Utility, and
Table Dump Utility”.

dumpBinlogs() A dump utility which can dump binary logs from a MySQL instance
to cloud storage or a set of local files.

| oadDunp() A dump loading utility that can import data dumped using MySQL
Shell's Instance, Schema, and Table dump utilities into a MySQL
instance. See Section 12.6, “Dump Loading Utility”.

319

Upgrade Checker Utility

| oadBi nl ogs() A dump loading utility that can import binary logs dumped using
MySQL Shell's binlog dump utility into a MySQL instance. See
Section 12.6, “Dump Loading Utility”.

col I ect Di agnosti cs() A diagnostics generation utility that gathers information from the
connected MySQL server, generates reports in TSV and YAML
formats, and presents them in a zip archive in the location of your
choice.

This utility enables you to retrieve diagnostic information from
standalone servers, members of replication topologies, and
HeatWave Service DB Systems.

See Section 12.9.1, “collectDiagnostics Utility”.

a result, if you connect to a MySQL Server which uses an option file, it will be
used, by default, and attempt to create a global session using that configuration.
If you do not want to use the options file, you must add - - no- def aul t s to

Important
A MySQL Shell reads MySQL Server option files and login paths by default. As
your command line.

12.1 Upgrade Checker Utility

The uti | . checkFor Server Upgrade() function is an upgrade checker utility that enables you to
verify whether MySQL server instances are ready for upgrade. You can select a target MySQL Server
release to which you plan to upgrade, ranging from the first MySQL Server 8.0 General Availability
(GA) release (8.0.11), up to the MySQL Server release number that matches the current MySQL Shell
release number. The upgrade checker utility carries out the automated checks that are relevant for the
specified target release, and advises you of further relevant checks that you should make manually.

About the Utility

Running the Utility

Utility Checks

JSON Output from the Upgrade Checker Utility

About the Utility

You can use the upgrade checker utility to check MySQL 5.7 server instances, and MySQL 8.x server
instances at another GA status release within the MySQL 8.x release series, for compatibility errors
and issues for upgrading. If you invoke checkFor Ser ver Upgr ade() without specifying a MySQL
Server instance, the instance currently connected to the global session is checked. To see the currently
connected instance, issue the \ st at us command.

Note
3 1. The upgrade checker utility does not support checking MySQL Server
instances older than MySQL 5.7.

2. MySQL Server only supports upgrade between GA releases from 5.7
onwards. Upgrades from non-GA releases are not supported. For more
information on supported upgrade paths, see Upgrade Paths.

The upgrade checker utility can check the configuration file (nmy. cnf or ny. i ni) for the server
instance. The utility checks for any system variables that are defined in the configuration file but have
been removed in the target MySQL Server release, and also for any system variables that are not
defined in the configuration file and will have a different default value in the target MySQL Server

320

https://dev.mysql.com/doc/refman/9.4/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/9.4/en/upgrade-paths.html

Running the Utility

release. For these checks, when you invoke checkFor Ser ver Upgr ade(), you must provide the file
path to the configuration file.

The upgrade checker utility can generate its output in text format, which is the default, or in JSON
format, which might be simpler to parse and process for use in devops automation.

Running the Utility

The upgrade checker utility can operate over either an X Protocol connection or a classic MySQL
protocol connection, using either TCP or Unix sockets. You can create the connection beforehand,
or specify it as arguments to the function. The utility always creates a new session to connect to the
server, so the MySQL Shell global session is not affected.

The user account that is used to run the upgrade checker utility requires RELOAD, PROCESS, and
SELECT privileges.

The upgrade checker utility has the following signature:

checkFor Ser ver Upgr ade (Connecti onData connecti onData, Dictionary options)

Both arguments are optional. The first provides connection data if the connection does not already
exist, and the second is a dictionary that you can use to specify the following options:

passwor d The password for the user account that is used to run the upgrade
checker utility. You can provide the password using this dictionary
option or as part of the connection details. If you do not provide the
password, the utility prompts for it when connecting to the server.

t ar get Ver si on The target MySQL Server version to which you plan to upgrade.
You can specify any release from 8.0.11 (the first MySQL Server
8.0 GA release) up to the MySQL Server release with the same
version number as the MySQL Shell release that you are using. If
you specify the short form version number, for example 8.0, or omit
the t ar get Ver si on option, the utility checks for upgrade to the
MySQL Server release number that matches the release number for
the MySQL Shell release that you are using.

confi gPat h The local path to the ny. cnf or my. i ni configuration file for the
MySQL server instance that you are checking, for example, C.
\ Pr ogr anDat a\ MySQL\ M\ySQL Server 8. 1\ny.ini.Ifyou
omit the file path and the upgrade checker utility needs to run a
check that requires the configuration file, that check fails with a
message informing you that you must specify the file path.

out put For nat The format in which the output from the upgrade checker utility is
returned. The default if you omit the option is text format (TEXT). If
you specify JSON, well-formatted JSON output is returned instead,
in the format listed in JSON Output from the Upgrade Checker
Utility.

i ncl ude Comma-separated list of the upgrade checks to run. Only the
specified checks are run. If a check is defined in both the i ncl ude
and excl ude list, an error is returned.

For example:

"“include": ["invalidPrivileges", "renmovedSysVars", "sysVarsNewDefaults"

See Utility Checks.

excl ude Comma-separated list of the upgrade checks to ignore. If a check is
defined in both the include and exclude list, an error is returned.

321

https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_select

Running the Utility

For example:

"exclude": ["invalidPrivileges", "renpvedSysVars", "sysVarsNewDefaul ts"]

See Utility Checks.

[ist Returns a list of all checks included and excluded from the current
configuration, a description of the check, and the versions to which it
applies.

For example:

{"list": true, "targetVersion": "8.4.0"}

See Utility Checks.

checkTi nmeout Maximum time in seconds after which the current check should be
interrupted and the next check started.

For example, the following commands verify, then check the MySQL server instance currently
connected to the global session, with output in text format:

nmysql sh> \ st at us
\status
MySQL Shell version 8.1.0-conmmrercia

Server version: 8.1.0-comercial MyYSQL Enterprise Server - Commercia

nmysql sh> util.checkFor Server Upgrade()

The following command checks the MySQL server at URI user @xanpl e. com 3306 for upgrade to
MySQL Server release 8.1.0. The user password and the configuration file path are supplied as part of
the options dictionary, and the output is returned in the default text format:

nmysql sh> util.checkFor Server Upgr ade(' user @xanpl e. com 3306’
{"password": "password", "targetVersion":"8.1.0"
"configPath":"C:./ProgranData/ MySQL/ M\ySQL Server 8.0/ny.ini"})

The following command checks the same MySQL server for upgrade to the MySQL Server release
number that matches the current MySQL Shell release number (the default), and returns JSON output
for further processing:

nysql sh> util.checkFor Server Upgrade(' user @xanpl e. com 3306’
{" password": "password", "outputFormat":"JSON',
"configPath":"C:./ProgranDat a/ MySQL/ MySQL Server 8.0/ ny.ini"})

You can start the upgrade checker utility from the command line using the nysql sh command
interface. For information on this syntax, see Section 5.8, “APlI Command Line Integration”. The
following example checks a MySQL server for upgrade to release 8.0.27, and returns JSON output:

nmysql sh -- util checkFor Server Upgrade user @ ocal host: 3306
--target-version=8.0.27 --output-fornmt=JSON
--confi g- pat h=/etc/ nysql / ny. cnf

The connection data can also be specified as named options grouped together by using curly brackets,
as in the following example, which also shows that lower case and hyphens can be used for the
method name rather than camelCase:

nmysql sh -- util check-for-server-upgrade { --user=user --host=local host --port=3306 }
--target-versi on=8.0.27 --output-format=JSON --config-pat h=/etc/ nysql/ny. cnf

The following example uses a Unix socket connection and shows the older format for invoking the utility
from the command line, which is still valid:

322

Running the Utility

./ bin/nysqgl sh --socket =/tnp/ nysql .sock --user=user -e "util.checkForServerUpgrade()" --js
Note
E MySQL Shell's default language mode is SQL. To run a JavaScript
operation from the command line, you must add - - j s to the
command. To use the Python version of an operation, such as
util.check_for_server_upgrade(), you mustadd - - py.

To get help for the upgrade checker utility, issue:

nmysql sh> util . hel p("checkFor Server Upgr ade")
util.checkFor Server Upgrade() does not return a value.

When you invoke the upgrade checker utility, MySQL Shell connects to the server instance and tests
the settings described at Preparing Your Installation for Upgrade. The output is similar to the following:

The MySQL server at exanpl e.com 3306, version
5.7.33-enterprise-comercial -advanced - MySQL Enterprise Server - Advanced Edition (Commercial),
wi Il now be checked for conpatibility issues for upgrade to MySQL 8.0. 29. ..

1) Usage of old tenporal type
No i ssues found

2) Usage of db objects with nanes conflicting with new reserved keywords
War ni ng: The followi ng objects have nanes that conflict with new reserved keywords.
Ensure queries sent by your applications use "quotes’ when referring to them
or they will result in errors.
More information: https://dev. nmysql.com doc/refman/en/ keywor ds. ht m

dbt est. System - Tabl e nane
dbt est. System JSON_TABLE - Col utm nane
dbt est. System cube - Col utm nane

3) Usage of utf8nb3 charset
Warni ng: The foll owi ng obj ects use the utf8nmb3 character set. It is recommended to
convert themto use utf8nmb4 instead, for inproved Uni code support.
More information: https://dev. mysql.com doc/refman/ 8. 0/ en/ charset -uni code- ut f 8nb3. ht ni

dbtest.viewl.coll - colum's default character set: utf8

19) Tabl es recogni zed by I nnoDB that belong to a different engine
No issues found

20) Issues reported by 'check table x for upgrade' comrand
No issues found

21) New default authentication plugin considerations

War ni ng: The new default authentication plugin 'caching_sha2_password' offers
nore secure password hashi ng than previously used 'nysqgl _native_password
(and consequent inproved client connection authentication). However, it also
has conpatibility inplications that may affect existing M/SQL installations
If your MySQL installation nust serve pre-8.0 clients and you encounter
conpatibility issues after upgrading, the sinplest way to address those
issues is to reconfigure the server to revert to the previous defaul t
aut hentication plugin (nysqgl _native_password). For exanple, use these |lines
in the server option file:

[nysgl d]
def aul t _aut henti cati on_pl ugi n=nysql _nati ve_password

However, the setting should be viewed as tenporary, not as a long term or
per manent sol uti on, because it causes new accounts created with the setting
in effect to forego the inproved authentication security.

If you are using replication please take time to understand how t he

aut henti cati on plugi n changes may i npact you.

323

https://dev.mysql.com/doc/refman/9.4/en/upgrade-prerequisites.html

Utility Checks

More i nfornmation:

links...

Errors: 7
War ni ngs: 36
Notices: O

7 errors were found. Pl ease correct these issues before upgrading to avoid conpatibility issues.

In this example, the checks carried out on the server instance returned some errors for the upgrade
scenario that were found on the checked server, so changes are required before the server instance
can be upgraded to the target MySQL 8.0 release.

When you have made the required changes to clear the error count for the report, you should

also consider making further changes to remove the warnings. Those configuration improvements
would make the server instance more compatible with the target release. The server instance can,
however, be successfully upgraded without removing the warnings.

As shown in this example, the upgrade checker utility might also provide advice and instructions for
further relevant checks that cannot be automated and that you should make manually, which are
rated as either warning or notice (informational) level.

Utility Checks

The upgrade checker performs the following checks:

ol dTenpor al : Checks for usage of deprecated temporal types.

synt ax: Checks syntax of routines, triggers, and events using the SQL language corresponding to
the target server version.

Run this check if upgrading the following:

« from an LTS series to the next LTS or Innovation series. For example: from 8.0 to 8.4.
< from an Innovation series to the next LTS series. For example: from 9.1 to 9.7.

« within an Innovation series. For example: from 9.1 to 9.2.

reser vedKeywor ds: Checks database object names for conflicts with reserved keywords. See
Keywords and Reserved Words.

ut f 8mb3: Checks for usage of the utf8mb3 character set. While utf8mb3 is supported, utf8mb4
is recommended for improved Unicode support. See The utf8mb3 Character Set (3-Byte UTF-8
Unicode Encoding).

nysql Schema: Checks for table names in the nysql schema which conflict with tables in the target
version.

nonNat i vePartiti oni ng: Checks for partitioned tables using non-native partitioning.

f or ei gnKeyLengt h: Checks for foreign key constraint names longer than 64 characters. See
Preparing Your Installation for Upgrade.

maxdbSgl ModeFl ags: Checks for usage of the obsolete sql _node flag, MAXDB.
obsol et eSql ModeFl ags: Checks for usage of obsolete sql _node flags.

enuntet El enent Lengt h: Checks for ENUMSET column definitions containing elements longer
than 255 characters.

partiti onedTabl esl nShar edTabl espaces: Checks for partitioned tables in shared
tablespaces.

324

https://dev.mysql.com/doc/refman/9.4/en/keywords.html
https://dev.mysql.com/doc/refman/9.4/en/charset-unicode-utf8mb3.html
https://dev.mysql.com/doc/refman/9.4/en/charset-unicode-utf8mb3.html
https://dev.mysql.com/doc/refman/9.4/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_mode

Utility Checks

circul arDi rect ory: Checks for circular directory references in tablespace data file paths.
renmovedFunct i ons: Checks for functions which were removed in the target version of MySQL.
gr oupbyAscSynt ax: Checks for GROUP BY ASC or DESC syntax.

renovedSysLogVar s: Checks for old system variables used to configure system logging.
sysvar : Performs the following checks:

« Checks for system variables with different default values in the target version.

¢ Checks system variables for valid values.

» Checks for system variables which are in use in the source but were deprecated or removed in the
target version. Meaning the system variables are set on the source with non-default values.

zer oDat es: Checks for zero date, datetime, and timestamp values.

schemal nconsi st ency: Checks for schema inconsistencies resulting from file removal or
corruption.

ftsl nTabl enane: Checks for tablenames containing FTS, which is not supported in MySQL 8.0 or
higher.

engi neM xup: Checks for tables recognized by InnoDB but belonging to a different engine.
ol dGeonet r yTypes: Checks for spatial data columns created in MySQL 5.6.
checkTabl eComrand: Checks for issues reported by the CHECK TABLE command.

def aul t Aut henti cati onPl ugi n: Checks for older authentication plugins, such as
nmysql _native_password.

def aul t Aut henti cati onPl ugi nMds: Checks for older authentication plugins, such as
nysql native_ password.

changedFunct i onsl nCGener at edCol umms: Checks for indexes on functions whose semantics
have changed in the target version.

col utmmsWhi chCannot HaveDef aul t s: Checks for columns which cannot have default values
(BLOB, TEXT, GEOMETRY, and JSON.)

i nval i d57Namnes: Checks for invalid table names and schema names used in MySQL 5.7.
or phanedj ect s: Checks for orphaned routines and events in MySQL 5.7.

dol | ar Si gnNane: Checks for deprecated usage of single dollar signs ($) in object names.

i ndexTooLar ge: Check for large indexes which are not supported by MySQL 8.0, or higher.
enpt yDot Tabl eSynt ax: Checks for deprecated . t abl eNane syntax used in routines.

i nval i dEngi neFor ei gnKey: Checks for columns with foreign keys pointing to tables from a
different database engine.

depr ecat edDef aul t Aut h: Checks for deprecated or invalid default authentication methods in
system variables.

depr ecat edRout er Aut hivet hod: Check for deprecated or invalid authentication methods in use
by MySQL Router internal accounts.

deprecat edTenpor al Del i mi t er : Checks for deprecated temporal delimiters in table partitions.

i nnodbRowor mat : Checks for InnoDB tables with non-default row format.

325

https://dev.mysql.com/doc/refman/9.4/en/check-table.html

JSON Output from the Upgrade Checker Utility

e aut hMet hodUsage: Checks for deprecated or invalid user authentication methods.

» pl ugi nUsage: Checks for deprecated or removed plugins.

e col umDef i ni ti on: Checks for errors in column definitions.

e invalidPrivil eges: Checks for user privileges that will be removed.

o partitionsWthPrefixKeys: Checks for partitions by key using columns with prefix key indexes.
See Restrictions and Limitations on Partitioning.

» forei gnKeyRef er ences: Checks for foreign keys referencing non-unique and partial indexes.

JSON Output from the Upgrade Checker Utility

When you select JSON output using the out put For nat dictionary option, the JSON object returned
by the upgrade checker utility has the following key-value pairs:

serverAddress

serverVersion
targetVersion
errorCount
warningCount
noticeCount

summary

checksPerformed

Host name and port number for MySQL Shell's connection to the
MySQL server instance that was checked.

Detected MySQL version of the server instance that was checked.
Target MySQL version for the upgrade checks.

Number of errors found by the utility.

Number of warnings found by the utility.

Number of notices found by the utility.

Text of the summary statement that would be provided at the end
of the text output (for example, "No known compatibility errors or
issues were found.").

An array of JSON objects, one for each individual upgrade issue
that was automatically checked (for example, usage of removed
functions). Each JSON object has the following key-value pairs:

id The ID of the check, which is a
unique string.

title A short description of the check.

status "OK" if the check ran
successfully, "ERROR"
otherwise.

description A long description of the check (if

available) incorporating advice,
or an error message if the check
failed to run.

documentationLink If available, a link to
documentation with further

information or advice.

detectedProblems An array (which might be empty)
of JSON obijects representing

the errors, warnings, or notices
that were found as a result of the
check. Each JSON object has the

following key-value pairs:

326

https://dev.mysql.com/doc/refman/9.4/en/partitioning-limitations.html

JSON Output from the Upgrade Checker Utility

level

dbObject

description

dbObjectType

327

The
messa
level,
one

of
Error,
Warnin
or
Notice.

A
string
identify
the
databa
object
to
which
the
messa
relates

If
availab
a
string
with

a
specific
descrif
of

the
issue
with
the
databa
object.

The
type

of
dbOhj
This
can

be

one

of

the
followir
Schem
Table,
View,
Columi
Index,
Foreigr
Routine
Event,

JSON Import Utility

Trigger,
SystemVar
User,
Tablespace
or

Plugin.

manualChecks An array of JSON objects, one for each individual upgrade issue
that is relevant to your upgrade path and needs to be checked
manually (for example, the change of default authentication plugin in
MySQL 8.0). Each JSON object has the following key-value pairs:

id The ID of the manual check,
which is a unique string.

title A short description of the manual
check.

description A long description of the manual
check, with information and
advice.

documentationLink If available, a link to

documentation with further
information or advice.

12.2 JSON Import Utility

MySQL Shell's JISON import utility ut i | . i nport JSON() enables you to import JSON documents
from a file (or FIFO special file) or standard input to a MySQL Server collection or relational table.
The utility checks that the supplied JSON documents are well-formed and inserts them into the target
database, removing the need to use multiple | NSERT statements or write scripts to achieve this task.

You can import the JSON documents to an existing table or collection or to a new one created for
the import. If the target table or collection does not exist in the specified database, it is automatically
created by the utility, using a default collection or table structure. The default collection is created by
calling the cr eat eCol | ecti on() function from a schena object. The default table is created as
follows:

CREATE TABLE " dbnane . tabl enane’ (
target _col umm JSON,
id | NTEGER AUTO | NCREMENT PRI MARY KEY
) CHARSET utf8nmb4 ENG NE=I nnoDB;

The default collection name or table name is the name of the supplied import file (without the file
extension), and the defaultt ar get _col urm name is doc.

The JSON import utility can process BSON (binary JSON) data types that are represented in JSON
documents. The data types used in BSON documents are not all natively supported by JSON, but
can be represented using extensions to the JSON format. The import utility can process documents
that use JSON extensions to represent BSON data types, convert them to an identical or compatible
MySQL representation, and import the data value using that representation. The resulting converted
data values can be used in expressions and indexes, and manipulated by SQL statements and X
DevAPI functions.

To convert JSON extensions for BSON types into MySQL types, you must specify the

convert BsonTypes option when you run the import utility. Additional options are available to control
the mapping and conversion for specific BSON data types. If you import documents with JISON
extensions for BSON types and do not use this option, the documents are imported in the same way as
they are represented in the input file.

328

https://dev.mysql.com/doc/refman/9.4/en/insert.html

Running the Utility

12.2.1 Running the Utility

The JSON import utility requires an existing X Protocol connection to the server. The utility cannot
operate over a classic MySQL protocol connection.

In the MySQL Shell API, the JSON import utility is a function of the ut i | global object, and has the
following signature:

i mport JSON (path, options)

pat h is a string specifying the file path for the file containing the JSON documents to be imported. This
can be a file written to disk, or a FIFO special file (named pipe).

opt i ons is a dictionary of import options that can be omitted if it is empty. The following options are
available to specify where and how the JSON documents are imported:

schema: "db_nane" The name of the target database. If you omit this option, MySQL
Shell attempts to identify and use the schema name in use for
the current session, as specified in a URI-like connection string,
\ use command, or MySQL Shell option. If the schema name is
not specified and cannot be identified from the session, an error is

returned.
col l ection: The name of the target collection. This is an alternative to specifying
"col | ecti on_nane" a table and column. If the collection does not exist, the utility

creates it. If you specify none of the col | ecti on, t abl e, or

t abl eCol umm options, the utility defaults to using or creating a
target collection with the name of the supplied import file (without
the file extension).

tabl e: "tabl e_nane" The name of the target table. This is an alternative to specifying a
collection. If the table does not exist, the utility creates it.

t abl eCol umm: The name of the column in the target table to which the JSON
“col um_nane" documents are imported. The specified column must be present
in the table if the table already exists. If you specify the t abl e
option but omit the t abl eCol unm option, the default column name
doc is used. If you specify the t abl eCol unm option but omit the
t abl e option, the name of the supplied import file (without the file
extension) is used as the table name.

convertBsonTypes: true Recognizes and converts BSON data types that are represented
using extensions to the JSON format. The default for this option
is f al se. When you specify convert BsonTypes: true, each
represented BSON type is converted to an identical or compatible
MySQL representation, and the data value is imported using
that representation. Additional options are available to control
the mapping and conversion for specific BSON data types; for
a list of these control options and the default type conversions,
see Section 12.2.4, “Conversions for Representations of BSON
Data Types”. The convert BsonO d option must also be set
to t r ue, which is that option's default setting when you specify
convertBsonTypes: true. If youimport documents with JSON
extensions for BSON types and do not use conver t BsonTypes:
t r ue, the documents are imported in the same way as they are
represented in the input file, as embedded JSON documents.

convertBsonQO d: true Recognizes and converts MongoDB ObjectIDs, which are a 12-
byte BSON type used as an _i d value for documents, represented
in MongoDB Extended JSON strict mode. The default for this

329

Importing JSON Documents With the Mysqglsh Command Interface

option is the value of the convert BsonTypes option, so if that
option is setto t r ue, MongoDB ObjectIDs are automatically also
converted. When importing data from MongoDB, convert BsonQ d
must always be set to t r ue if you do not convert the BSON types,
because MySQL Server requires the _i d value to be converted to
the var bi nary(32) type.

extract Q dTi ne: Recognizes and extracts the timestamp value that is contained in

“field _nane" a MongoDB ObijectlID in the i d field for a document, and places
it into a separate field in the imported data. ext ract O dTi ne
names the field in the document that contains the timestamp.
The timestamp is the first 4 bytes of the ObjectID, which remains
unchanged. convert BsonQ d: true must be set to use this
option, which is the default when convert BsonTypes is set to
true.

The following examples, the first in MySQL Shell's JavaScript mode and the second in MySQL Shell's
Python mode, import the JSON documents in the file / t np/ pr oduct s. j son to the pr oduct s
collection in the mydb database:

mysql -js> util.inmportJson("/tnp/products.json", {schema: "nydb", collection: "products"})

nmysql -py> util.inport_json("/tnp/products.json", {"schema": "nydb", "collection": "products"})

The following example in MySQL Shell's JavaScript mode has no options specified, so the dictionary
is omitted. mydb is the active schema for the MySQL Shell session. The utility therefore imports the
JSON documents in the file / t np/ st or es. j son to a collection named st or es in the mydb database:

nysql -j s> \use nydb
nysql-js> util.inportJson("/tnp/stores.json")

The following example in MySQL Shell's JavaScript mode imports the JSON documents in the file /
eur ope/ r egi ons. j son to the column j sondat a in a relational table named r egi ons in the nydb
database. BSON data types that are represented in the documents by JSON extensions are converted
to a MySQL representation:

nmysql -js> util.inportJson("/europel/regions.json", {schema: "nmydb", table: "regions", tableColum: "jsondat:é

The following example in MySQL Shell's JavaScript mode carries out the same import but without
converting the JSON representations of the BSON data types to MySQL representations. However, the
MongoDB ObijectIDs in the documents are converted as required by MySQL, and their timestamps are
also extracted:

nysql -js> util.inportJson("/europel/regions.json", {schema: "nydb", table: "regions", tableColumm: "jsondat:

When the import is complete, or if the import is stopped partway by the user with Ctrl+C or by an error,
a message is returned to the user showing the number of successfully imported JSON documents, and
any applicable error message. The function itself returns void, or an exception in case of an error.

The JSON import utility can also be invoked from the command line. Two alternative formats are
available for the command line invocation. You can use the nysql sh command interface, which
accepts input only from a file (or FIFO special file), or the - - i nport command, which accepts input
from standard input or a file. For instructions, see Section 12.2.2, “Importing JSON Documents With
the Mysqlsh Command Interface” or Section 12.2.3, “Importing JSON Documents With the - - i nport
Command”.

12.2.2 Importing JSON Documents With the Mysqlsh Command Interface

With the nysql sh command interface, you invoke the JSON import utility as follows:

nysql sh user @ost: port/nydb -- util inportJson <path> [options]

330

Importing JSON Documents With the - - i nport Command

or
nmysql sh user @ost: port/nydb -- util inport-json <path> [options]

For information on this syntax, see Section 5.8, “API Command Line Integration”. For the JSON import
utility, specify the parameters as follows:

user The user name for the user account that is used to run the JISON
import utility.

host The host name for the MySQL server.

port The port number for MySQL Shell's connection to the MySQL

server. The default port for this connection is 33060.

nmydb The name of the target database. When invoking the JSON import
utility from the command line, you must specify the target database.
You can either specify it in the URI-like connection string, or using
an additional - - schena command line option.

pat h The file path for the file (or FIFO special file) containing the JSON
documents to be imported.

options The - -col | ection,--tabl e,and - -t abl eCol unm options
specify a target collection or a target table and column. The
relationships and defaults when the JSON import utility is invoked
using the mysql sh command interface are the same as when the
corresponding options are used in a MySQL Shell session. If you
specify none of these options, the utility defaults to using or creating
a target collection with the name of the supplied import file (without
the file extension).

The - - conver t BsonTypes option converts BSON data types
that are represented using extensions to the JSON format. The
additional control options for specific BSON data types can also

be specified; for a list of these control options and the default type
conversions, see Section 12.2.4, “Conversions for Representations
of BSON Data Types”. The - - conver t BsonQO d option is
automatically set on when you specify - - convert BsonTypes.
When importing data from MongoDB, - - convert BsonO d must
be specified if you do not convert the BSON types, because
MySQL Server requires the _i d value to be converted to the

var bi nary(32) type.--extractQ dTi ne=fi el d_namne can be
used to extract the timestamp from the _i d value into a separate
field.

The following example imports the JSON documents in the file pr oduct s. j son to the pr oduct s
collection in the mydb database:

nysql sh user @ocal host/nydb -- util inportJson products.json --collection=products

12.2.3 Importing JSON Documents With the - - i nport Command

Note
g The - -i nport command is deprecated and is subject to removal in a future
version.

The - - i nport command is available as an alternative to the nysql sh command interface for
command line invocation of the JSON import utility. This command provides a short form syntax
without using option nhames, and it accepts JSON documents from standard input. The syntax is as
follows:

331

Importing JSON Documents With the - - i nport Command

nmysql sh user @ost: port/nydb --inport <path> [target] [tabl eCol um] [options]

As with the nysqgl sh command interface, you must specify the target database, either in the URI-
like connection string, or using an additional - - schenma command line option. The first parameter for
the - - i nport command is the file path for the file containing the JSON documents to be imported.
To read JSON documents from standard input, specify a dash (-) instead of the file path. The end of
the input stream is the end-of-file indicator, which is Ctrl+D on Unix systems and Ctrl+Z on Windows
systems.

After specifying the path (or - for standard input), the next parameter is the name of the target
collection or table. If standard input is used, you must specify a target.

« If you use standard input and the specified target is a relational table that exists in the specified
schema, the documents are imported to it. You can specify a further parameter giving a column
name, in which case the specified column is used for the import destination. Otherwise the default
column name doc is used, which must be present in the existing table. If the target is not an
existing table, the utility searches for any collection with the specified target name, and imports
the documents to it. If no such collection is found, the utility creates a collection with the specified
target name and imports the documents to it. To create and import to a table, you must also specify
a column name as a further parameter, in which case the utility creates a relational table with the
specified table name and imports the data to the specified column.

« If you specify a file path and a target, the utility searches for any collection with the specified target
name. If none is found, the utility by default creates a collection with that name and imports the
documents to it. To import the file to a table, you must also specify a column name as a further
parameter, in which case the utility searches for an existing relational table and imports to it, or
creates a relational table with the specified table name and imports the data to the specified column.

« If you specify a file path but do not specify a target, the utility searches for any existing collection
in the specified schema that has the name of the supplied import file (without the file extension). If
one is found, the documents are imported to it. If no collection with the name of the supplied import
file is found in the specified schema, the utility creates a collection with that name and imports the
documents to it.

If you are importing documents containing representations of BSON (binary JSON) data types,
you can also specify the options - - convert BsonQO d, - - ext ract O dTi ne=fi el d_nane,
--convert BsonTypes, and the control options listed in Section 12.2.4, “Conversions for
Representations of BSON Data Types”.

The following example reads JSON documents from standard input and imports them to a target
namedterritories inthe nydb database. If no collection or table namedterritori es is found,
the utility creates a collection named t errit ori es and imports the documents to it. If you want

to create and import the documents to a relational table named t erri t ori es, you must specify a
column name as a further parameter.

nmysql sh user @ocal host/nydb --inport - territories

The following example with a file path and a target imports the JSON documents in the file / eur ope/
regi ons. j son to the columnj sondat a in a relational table named r egi ons in the nydb database.
The schema name is specified using the - - schema command line option instead of in the URI-like
connection string:

nmysql sh user @ ocal host: 33062 --inport /europe/regions.json regions jsondata --schema=nydb

The following example with a file path but no target specified imports the JSON documents in the

file / eur ope/ r egi ons. j son. If no collection or table named r egi ons (the name of the supplied
import file without the extension) is found in the specified nydb database, the utility creates a collection
named r egi ons and imports the documents to it. If there is already a collection named r egi ons, the
utility imports the documents to it.

nysql sh user @ocal host/ nydb --inport /europel/regions.json

332

Conversions for Representations of BSON Data Types

MySQL Shell returns a message confirming the parameters for the import, for example, | nporti ng
fromfile "/europe/regions.json" to table “nydb . 'regions” in MySQ Server

at 127.0.0. 1: 33062.

When an import is complete, or if the import is stopped partway by the user with Ctrl+C or by an error,
a message is returned to the user showing the number of successfully imported JSON documents,
and any applicable error message. The process returns zero if the import finished successfully, or a
nonzero exit code if there was an error.

12.2.4 Conversions for Representations of BSON Data Types

When you specify the conver t BsonTypes: true (--convert BsonTypes) option to convert BSON
data types that are represented by JSON extensions, by default, the BSON types are imported as

follows:

Date (“date”)

Timestamp (“timestamp”)
Decimal (“decimal”)
Integer (“int” or “long”)

Regular expression (“regex”
plus options)

Binary data (“binData”)

ObjectID (“objectld”)

Simple value containing the value of the field.

MySQL timestamp created using the t i ne_t value.

Simple value containing a string representation of the decimal value.
Integer value.

String containing the regular expression only, and ignoring the
options. A warning is printed if options are present.

Baseb64 string.

Simple value containing the value of the field.

The following control options can be specified to adjust the mapping and conversion of these BSON

types. convert BsonTypes:

control options:

i gnoreDate: true(--
i gnor eDat e)

i gnoreTi mestanp: true
(--ignoreTi mest anp)

deci mal AsDoubl e: true
(- - deci nal AsDoubl e)
i gnor eRegex: true (--

i gnor eRegex)

i gnor eRegexOpt i ons:
fal se (--

i gnor eRegexOpt i ons=f al se)

i gnoreBinary: true(--
i gnor eBi nary)

true (--convert BsonTypes) must be specified to use any of these

Disable conversion of the BSON “date” type. The data is imported
as an embedded JSON document exactly as in the input file.

Disable conversion of the BSON “timestamp” type. The data is
imported as an embedded JSON document exactly as in the input
file.

Convert the value of the BSON “decimal” type to the MySQL
DOUBLE type, rather than a string.

Disable conversion of regular expressions (the BSON “regex” type).
The data is imported as an embedded JSON document exactly as in
the input file.

Include the options associated with a regular expression in the
string, as well as the regular expression itself (in the format /
<regul ar expressi on>/ <opti ons>). By default, the options
are ignored (i gnor eRegexOpt i ons: true), butawarning is
printed if any options were present. i gnor eRegex must be set to
the default of f al se to specify i gnor eRegexQpt i ons.

Disable conversion of the BSON “binData” type. The data is
imported as an embedded JSON document exactly as in the input
file.

The following example imports documents from the file / eur ope/ r egi ons. j son to the column
j sondat a in a relational table named r egi ons in the mydb database. BSON data types that are

333

Table Export Utility

represented by JSON extensions are converted to MySQL representations, with the exception of
regular expressions, which are imported as embedded JSON documents:

nysql sh user @ocal host/ nydb --inport /europe/regions.json regions jsondata --convertBsonTypes --ignoreRege>

12.3 Table Export Utility

MySQL Shell's table export utility uti | . export Tabl e() exports a MySQL relational table into a data
file, either on the local server or in an Oracle Cloud Infrastructure Object Storage bucket. The data

can then be uploaded into a table on a target MySQL server using MySQL Shell's parallel table import
utility uti | . i mport Tabl e() (see Section 12.4, “Parallel Table Import Utility”), which uses parallel
connections to provide rapid data import for large data files. The data file can also be used to import
data to a different application, or as a lightweight logical backup for a single data table.

» About the Utility

» Requirements and Restrictions

* Running the Utility

» Options

» Options for OCI Cloud Infrastructure
» Options for S3-compatible Services

» Options for Microsoft Azure Blob Storage

About the Utility

By default, the table export utility produces a data file in the default format for MySQL Shell's parallel
table import utility. Preset options are available to export CSV files for either DOS or UNIX systems,
and TSV files. The table export utility cannot produce JSON data. You can also set field- and line-
handling options as for the SELECT. . . | NTO OUTFI LE statement to create data files in arbitrary
formats.

util.exportTabl e() can be used with partitioned and subpartitioned tables, but does not perform
any special handling of these. One file is always created per table by this utility, regardless of release
version.

When choosing a destination for the table export file, note that for import into a HeatWave Service

DB System, the MySQL Shell instance where you run the parallel table import utility must be installed
on an Oracle Cloud Infrastructure Compute instance that has access to the HeatWave Service DB
System. If you export the table to a file in an Object Storage bucket, you can access the Object Storage
bucket from the Compute instance. If you create the table export file on your local system, you need

to transfer it to the Oracle Cloud Infrastructure Compute instance using the copy utility of your choice,
depending on the operating system you chose for your Compute instance.

The data file or files can be exported to any of the following locations:
» A location that is accessible to the client host as a local disk.

« A remote location that is accessible to the client host through HTTP or HTTPS, specified with a URL.
Pattern matching is not supported for files accessed in this way.

« An Oracle Cloud Infrastructure Object Storage bucket.
Requirements and Restrictions

The following requirements apply to exports using the table export utility:

» MySQL 5.7 or later is required for the source MySQL instance and the destination MySQL instance.

334

https://dev.mysql.com/doc/refman/9.4/en/select-into.html

Running the Utility

» The upload method used to transfer files to an Oracle Cloud Infrastructure Object Storage bucket
has a file size limit of 1.2 TiB.

Running the Utility

The table export utility uses the MySQL Shell global session to obtain the connection details of the
target MySQL server from which the export is carried out. You must open the global session (which
can have an X Protocol connection or a classic MySQL protocol connection) before running the utility.
The utility opens its own session for each thread, copying options such as connection compression and
SSL options from the global session, and does not make any further use of the global session. You can
limit the maximum rate of data transfer to balance the load on the network.

In the MySQL Shell API, the table export utility is a function of the ut i | global object, and has the
following signature:

util.exportTabl e(table, outputUrl[, options])

t abl e is the name of the relational data table to be exported to the data file. The table name can be
qualified with a valid schema name, and quoted with the backtick character if needed. If the schema is
omitted, the active schema for the MySQL Shell global session is used.

opt i ons is a dictionary of options that can be omitted if it is empty. The options are listed in the final
section of this topic.

If you are exporting the data to the local filesystem, out put Ur | is a string specifying the path to

the exported data file, and the file name itself, with an appropriate extension. You can specify an
absolute path or a path relative to the current working directory. You can prefix a local directory path
withthefil e:// schema. In this example in MySQL Shell's JavaScript mode, the user exports the
enpl oyees table from the hr schema using the default dialect. The file is written to the exports
directory in the user's home directory, and is given a . t xt extension that is appropriate for a file in this
format:

shel |l -j s> util.exportTabl e("hr.enpl oyees", "file:///honme/hannal/exports/enployees.txt")

The target directory must exist before the export takes place, but it does not have to be empty. If the
exported data file already exists there, it is overwritten. For an export to a local directory, the data file is
created with the access permissions r w-r - - - - - (on operating systems where these are supported).
The owner of the file is the user account that is running MySQL Shell.

If you are exporting the data to an Oracle Cloud Infrastructure Object Storage bucket, or to S3-
compatible storage,out put Ur | is the name for the data file in the bucket, including a suitable

file extension. You can include directory separators to simulate a directory structure. Use the
osBucket Nane option to provide the name of the Object Storage bucket, and the osNanespace
option to identify the namespace for the bucket. In this example in MySQL Shell's Python mode, the
user exports the enpl oyees table from the hr schema as a file in TSV format to the Object Storage
bucket hanna- bucket :

shel | -py> util.export_tabl e("hr.enpl oyees", "dunp/enployees.tsv", {
> dialect: "tsv", "osBucketNane": "hanna-bucket", "osNanespace": "idx28wlckztqg" })

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the oci Conf i gFi | e and oci Prof i | e options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File.

Options

where: "string" A valid SQL condition expression used to filter the data being
exported.

335

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Options

partitions:
["string","string",..]

di al ect :

[defaul t]csv]|

CSV-uni x| t sv]

Note
@ The SQL is validated only when it is

executed. If you are exporting many tables,
any SQL-syntax-related issues will only

be seen late in the process. As such, it is
recommended you test your SQL condition
before using it in a long-running export
process.

In the following example, wher e exports only those rows of the table
saki | a. act or where the value of act or _i d is greater than 150,
to a file named dunp. csv:

util.exportTabl e("sakila.actor", "dunp.csv", {"where" : "actc

A list of valid partition names which limits the export to the specified
partitions.

The following example exports the partitions p1 and p2 from
schena. t abl e to a file named dunp. csv:

util.exportTabl e("schema.table", "dunp.csv", {"partitions"

Specify a set of field- and line-handling options for the format
of the exported data file. You can use the selected dialect as
a base for further customization, by also specifying one or
more of the | i nesTer m nat edBy, fi el dsTer ni nat edBy,
fi el dsEncl osedBy, fi el dsOpti onal | yEncl osed, and
fi el dsEscapedBy options to change the settings.

The default dialect produces a data file matching what would be
created using a SELECT. . . | NTO OUTFI LE statement with the
default settings for that statement. . t xt is an appropriate file
extension to assign to these output files. Other dialects are available
to export CSYV files for either DOS or UNIX systems (. csv), and
TSV files (. t sv).

The settings applied for each dialect are as follows:

Table 12.1 Dialect settings for table export utility

di al ect |l i nesTer [fii re tobsolyfriie at e ces eetpltfii ek al S Belfragd emtByd
defaul t |[LF] [TAB] [empty] |fal se \
csv [CR][LF] |, " true \
CSv- [LF] , " fal se \
uni x
tsv [CR][LF] |[TAB] " true \
Note

@ 1. The carriage return and line feed values

for the dialects are operating system

independent.

2. Ifyou usethe |l i nesTer ni nat edBy,
fi el dsTer ni nat edBy,

336

https://dev.mysql.com/doc/refman/9.4/en/select-into.html

Options

fi el dsEncl osedBy,

fiel dsOptional | yEncl osed, and
fi el dsEscapedBy options, depending
on the escaping conventions of your
command interpreter, the backslash
character (\) might need to be doubled if
you use it in the option values.

3. Like the MySQL server with the
SELECT. . . | NTO QUTFI LE statement,
MySQL Shell does not validate the
field- and line-handling options that you
specify. Inaccurate selections for these
options can cause data to be exported
partially or incorrectly. Always verify your
settings before starting the export, and
verify the results afterwards.

| i nesTer m nat edBy: One or more characters (or an empty string) with which the utility

"characters" terminates each of the lines in the exported data file. The default
is as for the specified dialect, or a linefeed character (\ n) if the
dialect option is omitted. This option is equivalent to the LI NES
TERM NATED BY option for the SELECT. . . | NTO OUTFI LE
statement. Note that the utility does not provide an equivalent for the
LI NES STARTI NG BY option for the SELECT. . . | NTO OUTFI LE
statement, which is set to the empty string.

fi el dsTer m nat edBy: One or more characters (or an empty string) with which the

"charact ers” utility terminates each of the fields in the exported data file. The
default is as for the specified dialect, or a tab character (\ t) if the
dialect option is omitted. This option is equivalent to the FI ELDS
TERM NATED BY option for the SELECT. . . | NTO OUTFI LE

statement.
fi el dsEncl osedBy: A single character (or an empty string) with which the utility encloses
"character™ each of the fields in the exported data file. The default is as for the

specified dialect, or the empty string if the dialect option is omitted.
This option is equivalent to the FI ELDS ENCLOSED BY option for
the SELECT. . . | NTO OUTFI LE statement.

fieldsOptional | yEncl osed: Whether the character given for fi el dsEncl osedBy is to

[true | false] enclose all of the fields in the exported data file (f al se), or to
enclose a field only if it has a string data type such as CHAR,
Bl NARY, TEXT, or ENUM(t r ue). The default is as for the specified
dialect, or f al se if the dialect option is omitted. This option
makes the f i el dsEncl osedBy option equivalent to the FI ELDS
OPTI ONALLY ENCLOSED BY option for the SELECT. . . | NTO
OUTFI LE statement.

fiel dsEscapedBy: The character that is to begin escape sequences in the exported
“character™ data file. The default is as for the specified dialect, or a backslash
(\) if the dialect option is omitted. This option is equivalent to
the FI ELDS ESCAPED BY option for the SELECT. . . | NTO
OUTFI LE statement. If you set this option to the empty string,
no characters are escaped, which is not recommended because
special characters used by SELECT. . . | NTO QUTFI LE must be
escaped.

maxRate: "string" The maximum number of bytes per second per thread for data read
throughput during the export. The unit suffixes k for kilobytes, Mfor

337

https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html

Options for OCI Cloud Infrastructure

showProgress: [true |
fal se]

conpr essi on:
"string;level =n"

def aul t Char act er Set :
"string"

megabytes, and Gfor gigabytes can be used (for example, setting
100Mlimits throughput to 100 megabytes per second per thread).
Setting 0 (which is the default value), or setting the option to an
empty string, means no limit is set.

Display (t r ue) or hide (f al se) progress information for the export.
The defaultis t r ue if st dout is a terminal (t t y), such as when
MySQL Shell is in interactive mode, and f al se otherwise. The
progress information includes the estimated total number of rows
to be exported, the number of rows exported so far, the percentage
complete, and the throughput in rows and bytes per second.

The compression type and level of compression to use when writing
the exported data file. The following compression options are
available:

« none: Default. No compression is applied.

e gzi p: Uses the gzip compression library. Compression level can
be set from 0 to 9. Default compression level is 1. For example:

"conpression": "gzip;level =4"

e zst d: Uses the zstd compression library. Compression level can
be set from 1 to 22. Default compression level is 1. For example:

"conpression": "zstd;I|evel =15"

The character set to be used during the session connections that
are opened by MySQL Shell to the server for the export. The
default is ut f 8nmb4. The session value of the system variables
character_set _client,character_set_connection,
and character _set _resul ts are set to this value for

each connection. The character set must be permitted by the
character_set _client system variable and supported by the
MySQL instance.

Options for OCI Cloud Infrastructure

osBucket Nanme: "string"

osNanespace: "string"

oci ConfigFile: "string"

The name of the Oracle Cloud Infrastructure Object Storage
bucket to which the exported data file is to be written. By default,
the [DEFAULT] profile in the Oracle Cloud Infrastructure CLI
configuration file located at ~/ . oci / conf i g is used to establish
a connection to the bucket. You can substitute an alternative
profile to be used for the connection with the oci Confi gFi | e and
oci Profi | e options. For instructions to set up a CLI configuration
file, see SDK and CLI Configuration File.

The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

338

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_client
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Options for S3-compatible Services

oci Profile: "string" The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

oci Aut h:"string" The authentication method to use when connecting to Oracle Cloud
Infrastructure. This option requires osBucket Nane is configured
with a valid value.

The following options are available:

e api _key: OCI connections use the OCI configuration file. See
Section 4.8.1, “Oracle Cloud Infrastructure Object Storage”.

If osBucket Nane is defined with a valid value, but oci Aut h is
not defined, api _key is the default value used.

e instance_princi pal : OCI connections use instance principal
authentication. See Instance Principal Authentication.

This option can not be used if oci Confi gFil e oroci Profile
are defined.

e resource_princi pal : OCI connections use resource principal
authentication. See Resource Principal Authentication.

This option can not be used if oci Confi gFi |l e oroci Profile
are defined.

e security_token: OCI connections use a temporary, generated
session token. See Session Token-Based Authentication.

Options for S3-compatible Services

MySQL Shell supports exporting tables to S3-compatible buckets, such as Amazon Web Services

(AWS) S3.

Note
@ MySQL Shell supports AWS S3 configuration in command line options,

environment variables, and configuration files. Command line options override
environment variables, configuration files, and default options.
For information on configuration requirements, see Section 4.8, “Cloud Service
Configuration”.

s3Bucket Name: "string" The name of the S3 bucket to which the export is to be written. By

default, the def aul t profile of the confi g and credenti al s
files located at ~/ . aws/ are used to establish a connection

to the S3 bucket. You can substitute alternative configurations
and credentials for the connection with the s3Conf i gFi | e and
s3Credenti al sFi | e options. For instructions on installing and
configuring the AWS CLI, see Getting started with the AWS CLI.

s3Credenti al sFi | e: "string"A credentials file that contains the user's credentials to use
for the connection, instead of the one in the default location,
~/ . aws/ cr edent i al s. Typically, the credentials file contains the
aws_access_key idandaws_secret _access_key to use for
the connection.

s3ConfigFile: "string" A configuration file that contains the profile to use for the
connection, instead of the one in the default location, such as

339

https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_instance_principaldita
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_resource_principal
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_session_token
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Options for Microsoft Azure Blob Storage

~/ . aws/ conf i g. Typically, the config file contains the region and
output type to use for the connection.

s3Profile: "string" The profile name of the s3 CLI profile to use for the connection,
instead of the def aul t profile.

s3Regi on: "string" The name of the region to use for the connection.
s3Endpoi nt Overri de: The URL of the endpoint to use instead of the default.
"string"

When connecting to the Oracle Cloud Infrastructure S3

compatibility API, the endpoint takes the following format:

htt ps:// nanespace. conpat . obj ect st or age. r egi on. or acl ecl oud. cc
Replace nanespace with the Object Storage namespace and

r egi on with your region identifier. For example, the region identifier

for the US East (Ashburn) region is us- ashbur n- 1.

For a namespace named axaxnpcrorw5 in the US East (Ashburn)
region:

htt ps: // axaxnpcrorwh. conpat . obj ect st or age. us-
ashbur n- 1. oracl ecl oud. com

Options for Microsoft Azure Blob Storage

MySQL Shell supports exporting to Microsoft Azure Blob Storage.

Note

@ MySQL Shell supports Microsoft Azure Blob Storage configuration in command
line options, environment variables, and configuration files. Command line
options override environment variables, and configuration files.

For information on configuration requirements and the order of precedence of
the configuration types, see Section 4.8, “Cloud Service Configuration”.

azur eCont ai ner Nane: Mandatory. The name of the Azure container to which the export is
"string" to be written. The container must exist.
azureConfigFil e: Optional. A configuration file that contains the storage connection
"string" parameters, instead of the one in the default location, such as
~/ . azur e/ conf i g. If this is not defined, the default configuration
file is used.

azur eCont ai ner Name must be defined, and not be empty.

azur eSt or ageAccount : Optional. The name of the Azure storage account to use for the
"string" operation.

azur eSt or ageSasToken: Optional. Azure Shared Access Signature (SAS) token to be used
"string" for the authentication of the operation, instead of a key.

In the following example, the configuration uses a configuration string for the connection parameters,
which means the expor t Tabl e command requires only the azur eCont ai ner Nane.

Example conf i g file:

[cl oud]
name = AzureCl oud

[st orage]
connecti on_stri ng=al phanunmeri cConnecti onStri ng

340

Parallel Table Import Utility

Example export Tabl e command, which exports the saki | a. act or table, as a TSV file, to a
container named nysql shel | azur e:

util.export Tabl e("sakila.actor", "actor.tsv", {dialect: "tsv", azureContainerNane: "nysql shell a

12.4 Parallel Table Import Utility

MySQL Shell's parallel table import utility uti | . i nport Tabl e() provides rapid data import to a
MySQL relational table for large data files. The utility analyzes an input data file, distributes it into
chunks, and uploads the chunks to the target MySQL server using parallel connections. The utility is
capable of completing a large data import many times faster than a standard single-threaded upload
using a LOAD DATA statement.

» About the Utility

* Requirements and Restrictions

* Running the Utility

» Options for Importing Tables

» Options for Oracle Cloud Infrastructure
» Options for S3-Compatible Services

» Options for Microsoft Azure Blob Storage

About the Utility

MySQL Shell's parallel table import utility supports the output from MySQL Shell's table export utility,
which can compress the data file it produces as output, and can export it to a local folder or an Object
Storage bucket. The default dialect for the parallel table import utility is the default for the output file
produced by the table export utility. The parallel table import utility can also be used to upload files from
other sources.

The data file or files to be imported can be in any of the following locations:
» Alocation that is accessible to the client host as a local disk.

» A remote location that is accessible to the client host through HTTP or HTTPS, specified with a URL.
Pattern matching is not supported for files accessed in this way.

» An Oracle Cloud Infrastructure Object Storage bucket.

The data is imported to a single relational table in the MySQL server to which the active MySQL
session is connected.

When you run the parallel table import utility, you specify the mapping between the fields in the data
file or files, and the columns in the MySQL table. You can set field- and line-handling options as for the
LOAD DATA statement to handle data files in arbitrary formats. For multiple files, all the files must be
in the same format. The default dialect for the utility maps to a file created using a SELECT. . . | NTO
OUTFI LE statement with the default settings for that statement. The utility also has preset dialects that
map to the standard data formats for CSV files (created on DOS or UNIX systems), TSV files, and
JSON, and you can customize these using the field- and line-handling options as necessary. Note that
JSON data must be in document-per-line format.

A number of functions have been added to the parallel table import utility since it was introduced, so
use the most recent version of MySQL Shell to get the utility's full functionality.

Input preprocessing The parallel table import utility can capture columns from the data
file or files for input preprocessing, in the same way as with a LOAD
DATA statement. The selected data can be discarded, or you can
transform the data and assign it to a column in the target table.

341

https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html

Requirements and Restrictions

Oracle Cloud Infrastructure The data must be imported from a location that is accessible to

Object Storage import the client host as a local disk or the data can be imported from an
Oracle Cloud Infrastructure Object Storage bucket, specified by the
osBucket Nane option.

Multiple data file import The parallel table import utility can import a single input data file to
a single relational table and is also capable of importing a specified
list of files, and it supports wildcard pattern matching to include all
relevant files from a location. Multiple files uploaded by a single run
of the utility are placed into a single relational table, so for example,
data that has been exported from multiple hosts could be merged
into a single table to be used for analytics.

Compressed file handling The parallel table import utility can accept an uncompressed input
data file. The utility analyzes the data file, distributes it into chunks,
and uploads the chunks to the relational table in the target MySQL
server, dividing the chunks up between the parallel connections.
The utility can also accept data files compressed in the gzi p (. gz)
and zst d (. zst) formats, detecting the format automatically
based on the file extension. The utility uploads a compressed
file from storage in the compressed format, saving bandwidth for
that part of the transfer. Compressed files cannot be distributed
into chunks, so instead the utility uses its parallel connections
to decompress and upload multiple files simultaneously to the
target server. If there is only one input data file, the upload of a
compressed file can only use a single connection.

MySQL Shell's dump loading utility ut i | . | oadDunp() is designed to import the combination

of chunked output files and metadata produced by MySQL Shell's instance dump utility

util.dunpl nstance(), schema dump utility uti | . dunpSchenas(), and table dump utility
util.dunpTabl es() . The parallel table import utility can be used in combination with the dump
loading utility if you want to modify any of the data in the chunked output files before uploading it to
the target server. To do this, first use the dump loading utility to load only the DDL for the selected
table, to create the table on the target server. Then use the parallel table import utility to capture and
transform data from the output files for the table, and import it to the target table. Repeat that process
as necessary for any other tables where you want to modify the data. Finally, use the dump loading
utility to load the DDL and data for any remaining tables that you do not want to modify, excluding the
tables that you did modify. For a description of the procedure, see Modifying Dumped Data.

Requirements and Restrictions

Note
@ The parallel table import utility requires a classic connection to the target server.
It does not currently support X Protocol connections.

The parallel table import utility uses LOAD DATA LOCAL | NFI LE statements to upload data, so the
| ocal _i nfil e system variable must be set to ON on the target server. You can do this by issuing the
following statement in SQL mode before running the parallel table import utility:

SET GLOBAL local _infile = 1;

To avoid a known potential security issue with LOAD DATA LOCAL, when the MySQL server replies to
the parallel table import utility's LOAD DATA requests with file transfer requests, the utility only sends
the predetermined data chunks, and ignores any specific requests attempted by the server. For more
information, see Security Considerations for LOAD DATA LOCAL.

Running the Utility

The parallel table import utility requires an existing classic MySQL protocol connection to the target
MySQL server. Each thread opens its own session to send chunks of the data to the MySQL server, or

342

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/9.4/en/load-data-local-security.html

Running the Utility

in the case of compressed files, to send multiple files in parallel. You can adjust the number of threads,
number of bytes sent in each chunk, and maximum rate of data transfer per thread, to balance the load
on the network and the speed of data transfer. The utility cannot operate over X Protocol connections,
which do not support LOAD DATA statements.

In the MySQL Shell API, the parallel table import utility is a function of the ut i | global object, and has
the following signature:

importTable ({file_name | file_list}, options)

opt i ons is a dictionary of import options that can be omitted if it is empty. The options are listed in the
final section of this topic.

file_name is a string specifying the name and path for a single file containing the data to be
imported. Alternatively, fil e | i st is an array of file paths specifying multiple data files. On Windows,
backslashes must be escaped in file paths, or you can use forward slashes instead.

 For files that are accessible to the client host on a local disk, you can prefix the directory path with
thefil e:// schema, or allow it to default to that. For files accessed in this way, file paths can
contain the wildcards * (multiple characters) and ? (single character) for pattern matching. Note that
if these wildcard characters are present in file paths, the utility treats them as wildcards and might
therefore attempt an incorrect strategy for file transfer.

 For files that are accessible to the client host through HTTP or HTTPS, provide a URL or a list of
URLs, prefixed with the ht t p: // or htt ps:// schema as appropriate, in the format htt p[s]://
host . domai n[: port]/ pat h. For files accessed in this way, pattern matching is not available. The
HTTP server must support the Range request header, and must return the Content-Range response
header to the client.

» For files in an Oracle Cloud Infrastructure Object Storage bucket, specify a path to the file in the
bucket, and use the osBucket Nane option to specify the bucket name.

The function returns void, or an exception in case of an error. If the import is stopped partway by the
user with Ctrl+C or by an error, the utility stops sending data. When the server finishes processing the
data it received, messages are returned showing the chunk that was being imported by each thread at
the time, the percentage complete, and the number of records that were updated in the target table.

The following examples, the first in MySQL Shell's JavaScript mode and the second in MySQL Shell's
Python mode, import the data in a single CSV file / t np/ pr oduct r ange. csv to the pr oduct s table
in the nydb database, skipping a header row in the file:

nmysql -js> util.inportTabl e("/tnp/productrange. csv', {schema: "nydb", table: "products", dialect: "csv-u

nysql -py> util.inport_table("/tnp/productrange.csv', {"schema": "nydb", "table": "products", "dialect":

The following example in MySQL Shell's Python mode only specifies the dialect for the CSV file. mydb
is the active schema for the MySQL Shell session. The utility therefore imports the data in the file /
t mp/ product range. csv to the product r ange table in the nydb database:

nysql - py> \use nydb
nysql -py> util.inport_table("/tnp/productrange.csv', {"dialect": "csv-unix"})

The following example in MySQL Shell's Python mode imports the data from multiple files, including
a mix of individually named files, ranges of files specified using wildcard pattern matching, and
compressed files:

nmysql - py> util.inport_tabl e(
[

"data_a. csv",
"data_b*",
"data_c*",
"data_d.tsv.zst",
"data_e.tsv.zst",
"data_f.tsv.gz",

343

Options for Importing Tables

"/ backup/replica3/2021_01_12/data_g.tsv"
"/ backup/replica3/2021_01_13/*.tsv"
s
{"schema": "nydb", "table": "productrange"}
)

The parallel table import utility can also be invoked from the command line using the nysql sh
command interface. With this interface, you invoke the utility as in the following examples:

nysql sh nysql ://root: @27.0.0.1: 3366 --ssl-node=Dl SABLED -- uti

i mport-table /r/nytable.dunp --schema=nydl

When you import multiple data files, ranges of files specified using wildcard pattern matching are
expanded by MySQL Shell's glob pattern matching logic if they are quoted, as in the following example.
Otherwise they are expanded by the pattern matching logic for the user shell where you entered the

nysgl sh command.

nmysql sh nmysql ://root: @27.0.0.1:3366 -- util inport-table data_a.csv "data_b*" data_d.tsv.zst --schema=nydt

Note that as shown in the above example, line feed characters must be passed using ANSI-C quoting
in shells that support this function (such as bash, ksh, nksh, and zsh). For information on the
nmysgl sh command-line integration, see Section 5.8, “API Command Line Integration”.

Options for Importing Tables

The following import options are available for the parallel table import utility to specify how the data is

imported:

schema: "db_nane" The name of the target database on the connected MySQL server.
If you omit this option, the utility attempts to identify and use the
schema name in use for the current MySQL Shell session, as
specified in a connection URI string, \ use command, or MySQL
Shell option. If the schema name is not specified and cannot be
identified from the session, an error is returned.

table: "table_ nane" The name of the target relational table. If you omit this option, the
utility assumes the table name is the name of the data file without
the extension. The target table must exist in the target database.

colums: array of colum An array of strings containing column names from the import file

nanes or files, given in the order that they map to columns in the target
relational table. Use this option if the imported data does not contain
all the columns of the target table, or if the order of the fields in the
imported data differs from the order of the columns in the table. If
you omit this option, input lines are expected to contain a matching
field for each column in the target table.

You can use this option to capture columns from the import file or
files for input preprocessing, in the same way as with a LOAD DATA
statement. When you use an integer value in place of a column
name in the array, that column in the import file or files is captured
as a user variable @ nt , for example @.. The selected data can be
discarded, or you can use the decodeCol urms option to transform
the data and assign it to a column in the target table.

In this example in MySQL Shell's JavaScript mode, the second

and fourth columns from the import file are assigned to the user
variables @ and @, and no decodeCol unms option is present to
assign them to any column in the target table, so they are discarded.

nysql-js> util.inportTable('file.txt', {
table: "t1',
colums: ['columl', 1, 'colum?2', 2, 'colum3']

344

https://dev.mysql.com/doc/refman/9.4/en/load-data.html

Options for Importing Tables

decodeCol umms:
di ctionary

ski pRows: numnber

repl aceDupl i cat es:
[true| fal se]

di al ect: [default]|csv|
csv-uni x| tsv|j son]

1)

A dictionary of key-value pairs that assigns import file columns
captured as user variables by the col urms option to columns in the
target table, and specifies preprocessing transformations for them in
the same way as the SET clause of a LOAD DATA statement.

In this example in MySQL Shell's JavaScript mode, the first input
column from the data file is used as the first column in the target
table. The second input column, which has been assigned to the
variable @ by the col umms option, is subjected to a division
operation before being used as the value of the second column in
the target table.

nmysql -js> util.inportTable('file.txt', {
colums: ['columl', 1],
decodeCol ums: {'colum?2': '@ / 100'}

1)

In this example in MySQL Shell's JavaScript mode, the input
columns from the data file are both assigned to variables, then
transformed in various ways and used to populate the columns of
the target table:

nmysql -js> util.inmportTable('file.txt', {
table: "t1',
colums: [1, 2],
decodeCol ums: {

‘al: 'ad’,
b @,
‘sum: '@ + @',

‘nmultiple': '@ * @',
‘power': 'PON@, @)
}
1)

Skip this number of rows at the beginning of the import file, or in the
case of multiple import files, at the beginning of every file included
in the file list. You can use this option to omit an initial header line
containing column names from the upload to the table. The default
is that no rows are skipped.

Whether input rows that have the same value for a primary key
or unique index as an existing row should be replaced (t r ue) or
skipped (f al se). The defaultis f al se.

Use a set of field- and line-handling options appropriate for

the specified file format. You can use the selected dialect as

a base for further customization, by also specifying one or

more of the | i nesTer m nat edBy, fi el dsTer ni nat edBy,

fi el dsEncl osedBy, fi el dsOpti onal | yEncl osed, and

fi el dsEscapedBy options to change the settings. The default
dialect maps to a file created using a SELECT. . . | NTO OUTFI LE
statement with the default settings for that statement. This is the
default for the output file produced by MySQL Shell's table export
utility. Other dialects are available to suit CSV files (created on
either DOS or UNIX systems), TSV files, and JSON data. The
settings applied for each dialect are as follows:

Table 12.2 Dialect settings for parallel table import utility

di al ect |l i nesTer |fii retcesdmyfriient atsdefi e ett@pfii e ald Bofrag entl

defaul t |[LF] [TAB] [empty] |fal se \

345

https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html

Options for Importing Tables

| i nesTer m nat edBy:
"characters”

fiel dsTer n nat edBy:
"char act ers”

fi el dsEncl osedBy:
"character"

fiel dsOptional | yEncl osed:
[true | false]

fraq entiyd

di al ect |linesTer rﬁirﬂtdeﬂB;rfrﬁmaiSEEtﬂWicmeiﬂyatﬂimiajstd

CcsV [CR]ILF] |, " true \

CSv- [LF] , " fal se \

uni x

tsv [CR][LF] |[TAB] " true \

j son [LF] [LF] [empty] |fal se [empty]
Note

K

1. The carriage return and line feed values
for the dialects are operating system
independent.

2. Ifyou use the | i nesTer ni nat edBy,
fi el dsTer nm nat edBy,
fi el dsEncl osedBy,
fiel dsOptional | yEncl osed, and
fi el dsEscapedBy options, depending
on the escaping conventions of your
command interpreter, the backslash
character (\) might need to be doubled if
you use it in the option values.

3. Like the MySQL server with the LOAD
DATA statement, MySQL Shell does
not validate the field- and line-handling
options that you specify. Inaccurate
selections for these options can cause
data to be imported into the wrong fields,
partially, and/or incorrectly. Always verify
your settings before starting the import,
and verify the results afterwards.

One or more characters (or an empty string) that terminates each
of the lines in the input data file or files. The default is as for the
specified dialect, or a linefeed character (\ n) if the dialect option is
omitted. This option is equivalent to the LI NES TERM NATED BY
option for the LOAD DATA statement. Note that the utility does not
provide an equivalent for the LI NES STARTI NG BY option for the
LOAD DATA statement, which is set to the empty string.

One or more characters (or an empty string) that terminates each
of the fields in the input data file or files. The default is as for the
specified dialect, or a tab character (\ t) if the dialect option is
omitted. This option is equivalent to the FI ELDS TERM NATED BY
option for the LOAD DATA statement.

A single character (or an empty string) that encloses each of the
fields in the input data file or files. The default is as for the specified
dialect, or the empty string if the dialect option is omitted. This
option is equivalent to the FI ELDS ENCLOSED BY option for the
LOAD DATA statement.

Whether the character given for f i el dsEncl osedBy encloses
all of the fields in the input data file or files (f al se), or encloses
the fields only in some cases (t r ue). The default is as for the
specified dialect, or f al se if the dialect option is omitted. This
option makes the f i el dsEncl osedBy option equivalent to the

346

https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html

Options for Importing Tables

fi el dsEscapedBy:
“character"

char act er Set :

byt esPer Chunk:

t hr eads:

maxRat e:

nunber

"rate"

"charset"

"size"

FI ELDS OPTI ONALLY ENCLOSED BY option for the LOAD DATA
statement.

The character that begins escape sequences in the input data file or
files. If this is not provided, escape sequence interpretation does not
occur. The default is as for the specified dialect, or a backslash (\) if
the dialect option is omitted. This option is equivalent to the FI ELDS
ESCAPED BY option for the LOAD DATA statement.

This option specifies a character set encoding with which the input
data is interpreted during the import. Setting the option to bi nary
means that no conversion is done during the import. When you
omit this option, the import uses the character set specified by the
charact er_set dat abase system variable to interpret the input
data.

For a list of multiple input data files, this option is not available. For
a single input data file, this option specifies the number of bytes
(plus any additional bytes required to reach the end of the row)
that threads send for each LOAD DATA call to the target server.
The utility distributes the data into chunks of this size for threads
to pick up and send to the target server. The chunk size can be
specified as a number of bytes, or using the suffixes k (kilobytes), M
(megabytes), G (gigabytes). For example, byt esPer Chunk="2k"
makes threads send chunks of approximately 2 kilobytes. The
minimum chunk size is 131072 bytes, and the default chunk size is
50M.

The maximum number of parallel threads to use to send the data

in the input file or files to the target server. If you do not specify a
number of threads, the default maximum is 8. For a list of multiple
input data files, the utility creates the specified or maximum number
of threads. For a single input data file, the utility calculates an
appropriate number of threads to create up to this maximum, using
the following formula:

m n{ max{1, threads}, chunks}}

where t hr eads is the maximum number of threads, and chunks

is the number of chunks that the data will be split into, which is
calculated by dividing the file size by the byt esPer Chunk size then
adding 1. The calculation ensures that if the maximum number of
threads exceeds the number of chunks that will actually be sent, the
utility does not create more threads than necessary.

Compressed files cannot be distributed into chunks, so instead the
utility uses its parallel connections to upload multiple files at a time.
If there is only one input data file, the upload of a compressed file
can only use a single connection.

The maximum limit on data throughput in bytes per second

per thread. Use this option if you need to avoid saturating the
network or the 1/0 or CPU for the client host or target server. The
maximum rate can be specified as a number of bytes, or using the
suffixes k (kilobytes), M (megabytes), G (gigabytes). For example,
maxRat e="5M' limits each thread to 5MB of data per second,
which for eight threads gives a transfer rate of 40MB/second. The
default is 0, meaning that there is no limit.

347

https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/9.4/en/load-data.html

Options for Oracle Cloud Infrastructure

showProgress: [true | Display (t r ue) or hide (f al se) progress information for the

fal se] import. The default is t r ue if stdout is a terminal (tty), and f al se
otherwise.

sessionlnitSqgl: list of A list of SQL statements to run at the start of each client session

strings used for loading data into the target MySQL instance. You can use

this option to change session variables. For example, the following
statements skip binary logging on the target MySQL instance for
the sessions used by the utility during the course of the import, and
increase the number of threads available for index creation:

sessionlnitSQ.: ["SET SESSI ON sqgl _| og_bi n=0;", "SET SESSI ON i nnodb_ddl _t hre

If an error occurs while running the SQL statements, the import
stops and returns an error message.

Options for Oracle Cloud Infrastructure

MySQL Shell supports importing input data files stored in Oracle Cloud Infrastructure Object Storage
buckets.

osBucket Nanme: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket
where the input data file is located. By default, the [DEFAULT]
profile in the Oracle Cloud Infrastructure CLI configuration file
located at ~/ . oci / confi g is used to establish a connection to the
bucket. You can substitute an alternative profile to be used for the
connection with the oci Conf i gFi | e and oci Profi | e options.
For instructions to set up a CLI configuration file, see SDK and CLI
Configuration File.

osNanespace: "string" The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

oci ConfigFile: "string" An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

oci Profile: "string" The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

oci Aut h:"string" The authentication method to use when connecting to Oracle Cloud
Infrastructure. This option requires osBucket Nane is configured
with a valid value.

The following options are available:

e api _key: OCI connections use the OCI configuration file. See
Section 4.8.1, “Oracle Cloud Infrastructure Object Storage”.

If osBucket Nane is defined with a valid value, but oci Aut h is
not defined, api _key is the default value used.

e instance_princi pal : OCI connections use instance principal
authentication. See Instance Principal Authentication.

348

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_instance_principaldita

Options for S3-Compatible Services

This option can not be used if oci Confi gFi |l e oroci Profile
are defined.

e resource_princi pal : OCI connections use resource principal
authentication. See Resource Principal Authentication.

This option can not be used if oci Confi gFi |l e oroci Profile
are defined.

e security_token: OCI connections use a temporary, generated
session token. See Session Token-Based Authentication.

Options for S3-Compatible Services

MySQL Shell supports importing input data files stored in S3-compatible buckets, such as Amazon

Web Services (AWS) S3.

Note

@ MySQL Shell supports AWS S3 configuration in command line options,
environment variables, and configuration files. Command line options override
environment variables, configuration files, and default options.

For information on configuration requirements, see Section 4.8, “Cloud Service

Configuration”.

s3Bucket Nanme: "string'

s3Credenti al sFil e:
"string"

s3ConfigFile: "string

s3Profile: "string"

s3Regi on: "string"

s3Endpoi nt Overri de:
"string"

The name of the S3 bucket where the dump files are located. By
default, the def aul t profile in the Amazon Web Services (AWS)
CLlconfigandcredenti al s files located at ~/ . aws/ are used
to establish a connection to the S3 bucket. You can substitute
alternative configurations and credentials for the connection with
the s3Confi gFi | e and s3Cr edent i al sFi | e options. For
instructions on installing and configuring the AWS CLI, see Getting
started with the AWS CLI.

A credentials file that contains the user's credentials to use

for the connection, instead of the one in the default location,

~/ . aws/ cr edent i al s. Typically, the credentials file contains the
aws_access_key idandaws_secret _access_key to use for
the connection.

An AWS CLI configuration file that contains the profile to use for
the connection, instead of the one in the default location ~/ . aws/
confi g. Typically, the config file contains the region and output
type to use for the connection.

The profile name of the s3 CLI profile to use for the connection,
instead of the def aul t profile in the AWS CLI configuration file
used for the connection.

The name of the region to use for the connection.
The URL of the endpoint to use instead of the default.

When connecting to the Oracle Cloud Infrastructure S3
compatibility API, the endpoint takes the following format:

htt ps:// namespace. conpat . obj ect st or age. r egi on. or acl ecl ouc

Replace nanespace with the Object Storage namespace and
r egi on with your region identifier. For example, the region identifier
for the US East (Ashburn) region is us- ashbur n- 1.

349

https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_resource_principal
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_session_token
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Options for Microsoft Azure Blob Storage

For a namespace named axaxnpcrorw5 in the US East (Ashburn)
region:

htt ps:// axaxnpcrorws. conpat . obj ect st or age. us-
ashburn-1. oracl ecl oud. com

Options for Microsoft Azure Blob Storage

MySQL Shell supports importing from Microsoft Azure Blob Storage.

Note

S MySQL Shell supports Microsoft Azure Blob Storage configuration in command

line options, environment variables, and configuration files. Command line
options override environment variables and configuration files.

For information on configuration requirements and the order of precedence of
the configuration types, see Section 4.8, “Cloud Service Configuration”.

azur eCont ai ner Nane:
"string"

azureConfigFile:
"string"

azur eSt or ageAccount :
"string"

azur eSt or ageSasToken:
"string"

Mandatory. The name of the Azure container from which the table is
to be imported. The container must exist.

Optional. A configuration file that contains the storage connection
parameters, instead of the one in the default location, such as

~/ . azur e/ confi g. If this is not defined, the default configuration
file is used.

azur eCont ai ner Nanme must be defined, and not be empty.

Optional. The name of the Azure storage account to use for the
operation.

Optional. Azure Shared Access Signature (SAS) token to be used
for the authentication of the operation, instead of a key.

12.5 Instance Dump Utility, Schema Dump Utility, and Table Dump

Utility

MySQL Shell's instance dump utility uti | . dunpl nst ance() and schema dump utility
util.dunpSchemas(), support the export of all schemas or a selected schema from an on-premise
MySQL instance into an Oracle Cloud Infrastructure Object Storage bucket or a set of local files. The
table dump utility uti | . dunpTabl es() supports the same operations for a selection of tables or
views from a schema. The exported items can then be imported into a HeatWave Service DB System
or a MySQL Server instance using the uti | . | oadDunp() utility (see Section 12.6, “Dump Loading
Utility”). To get the best functionality, always use the most recent version available of MySQL Shell's

dump and dump loading utilities.

» About the Utilities

» Requirements and Restrictions

* Running the Utilities

» Options for Dump Control

« Options for Dump Output

» Options for Filtering

» Options for HeatWave Service and Oracle Cloud Infrastructure

350

About the Utilities

» Options for S3-compatible Services

Options for Microsoft Azure Blob Storage

» Dumping to Object Storage Bucket with PAR

Utility Error Messages

About the Utilities

MySQL Shell's instance dump utility, schema dump utility, and table dump utility provide Oracle Cloud
Infrastructure Object Storage streaming, HeatWave Service compatibility checks and modifications,
parallel dumping with multiple threads, and file compression, which are not provided by nysql dunp.
Progress information is displayed during the dump. You can carry out a dry run with your chosen

set of dump options to show information about what actions would be performed, what items would
be dumped, and (for the instance dump utility and schema dump utility) what HeatWave Service
compatibility issues would need to be fixed, when you run the utility for real with those options.

When choosing a destination for the dump files, note that for import into a HeatWave Service DB
System, the MySQL Shell instance where you run the dump loading utility must be installed on an
Oracle Cloud Infrastructure Compute instance that has access to the HeatWave Service DB System.

If you dump the instance, schema, or tables to an Object Storage bucket, you can access the Object
Storage bucket from the Compute instance. If you create the dump files on your local system, you
need to transfer them to the Oracle Cloud Infrastructure Compute instance using the copy utility of your
choice, depending on the operating system you chose for your Compute instance.

The dumps created by MySQL Shell's instance dump utility, schema dump utility, and table dump
utility comprise DDL files specifying the schema structure, and tab-separated . t sv files containing the
data. You can also choose to produce the DDL files only or the data files only, if you want to set up the
exported schema as a separate exercise from populating it with the exported data. You can choose
whether or not to lock the instance for backup during the dump for data consistency. By default, the
dump utilities chunk table data into multiple data files and compress the files.

You can use options for the utilities to include or exclude specified schemas and tables, users and their
roles and grants, events, routines, and triggers. If you specify conflicting include and exclude options
or name an object that is not included in the dump, an error is reported and the dump stops so you

can correct the options. If you need to dump the majority of the schemas in a MySQL instance, as an
alternative strategy, you can use the instance dump utility rather than the schema dump utility, and
specify the excl udeSchemnas option to list those schemas that are not to be dumped. Similarly, if you
need to dump the majority of the tables in a schema, you can use the schema dump utility with the
excl udeTabl es option rather than the table dump utility.

The data for the nysql . appl y_st at us, nysql . general _| og, nysql . schena, and

nmysql . sl ow_| og tabl es is always excluded from a dump created by MySQL Shell's schema dump
utility, although their DDL statements are included. The i nf or mat i on_schemg, nysql , ndbi nf o,
per f or mance_schenm, and sys schemas are always excluded from an instance dump.

By default, the time zone is standardized to UTC in all the timestamp data in the dump output, which
facilitates moving data between servers with different time zones and handling data that has multiple
time zones. You can use thet zUt c: f al se option to keep the original timestamps if preferred.

The MySQL Shell dump loading utility uti | . | oadDunp() supports loading exported instances and
schemas from an Object Storage bucket using a pre-authenticated request (PAR). For information
about loading dumps using a PAR, see Section 12.6, “Dump Loading Utility”.

MySQL Shell's instance dump utility, schema dump utility, and table dump utility are partition aware
(see Partitioning, in the MySQL Manual). When a table being dumped is partitioned, each partition

is treated as an independent table; if the table has subpartitions each subpartition is treated as an
independent table. This also means that, when chunking is enabled, each partition or subpartition of
a partitioned or subpartitioned table is chunked independently. The base names of dump files created
for partitioned tables use the format schenma@ abl e@artiti on, where schena andt abl e are,

351

https://dev.mysql.com/doc/refman/9.4/en/partitioning.html

Requirements and Restrictions

respectively the names of the parent schema and table, and parti ti on is the URL-encoded name of
the partition or subpartition.

To manage additions of features that are not supported by earlier versions of the MySQL Shell utilities,
util.dunplnstance(),util.dunpSchemas(),util.dunpTables(),andutil.|oadDunp()
write a list of features used in creating the dump to the dump metadata file; for each such feature,

an element is added to the list. When the dump loading utility reads the metadata file and finds an
unsupported feature listed, it reports an error; the error message includes a version of MySQL Shell
that supports the feature.

Requirements and Restrictions

The instance dump utility, schema dump utility, and table dump utility only support General
Availability (GA) releases of MySQL Server versions.

MySQL 5.7 or later is required for the destination MySQL instance where the dump will be loaded.

For the source MySQL instance, dumping from MySQL 5.7 or later is fully supported in all MySQL
Shell releases where the utilities are available.

Object names in the instance or schema must be in the | at i n1 or ut f 8 characterset.
Data consistency is guaranteed only for tables that use the | nnoDB storage engine.

The minimum required set of privileges that the user account used to run the utility must have on all
the schemas involved is as follows: EVENT, RELOAD, SELECT, SHOW VI EW and TRI GGER.

« Ifthe consi st ent option is settot r ue, which is the default, the LOCK TABLES privilege on all
dumped tables can substitute for the RELOAD privilege if the latter is not available.

« If the user account does not have the BACKUP_ADM N privilege and LOCK | NSTANCE FOR
BACKUP cannot be executed, the utilities make an extra consistency check during the dump. If
this check fails, an instance dump is stopped, but a schema dump or a table dump continues and
returns an error message to alert the user that the consistency check failed.

« Ifthe consi st ent optionis setto f al se, the BACKUP_ADM N and RELOAD privileges are not
required.

« If the dump is from a MySQL 5.6 instance and includes user accounts (which is possible only with
the instance dump utility), the SUPER privilege is also required.

e Ifactivate_all _rol es_on_| ogi nisenabled, the user requires SELECT on
mysql . rol e_edges. Ifitis not enabled, the user requires SELECT on nysql . defaul t _rol es.

The user account used to run the utility needs the REPLI CATI ON CLI ENT privilege in order

for the utility to be able to include the binary log file name and position in the dump metadata.

If the user ID does not have that privilege, the dump continues but does not include the

binary log information. The binary log information can be used after loading the dumped

data into the replica server to set up replication with a non-GTID source server, using the

ASSI GN_GT1 DS_TO_ANONYMOUS_TRANSACTI ONS option of the CHANGE REPLI CATI ON SOURCE
TOstatement.

The upload method used to transfer files to an Oracle Cloud Infrastructure Object Storage bucket
has a file size limit of 1.2 TiB.

The utilities convert columns with data types that are not safe to be stored in text form (such as
BLOB) to Base64. The size of these columns therefore must not exceed approximately 0.74 times
the value of the mex_al | owed_packet system variable (in bytes) that is configured on the target
MySQL instance.

For the table dump utility, exported views and triggers must not use qualified names to reference
other views or tables.

352

https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_max_allowed_packet

Running the Utilities

e The table dump utility does not dump routines, so any routines referenced by the dumped objects
(for example, by a view that uses a function) must already exist when the dump is loaded.

» For import into a HeatWave Service DB System, set the oci nds optionto t r ue, to ensure
compatibility with HeatWave Service.

Important

A When migrating to HeatWave Service, it is recommended to always use the
latest available version of MySQL Shell.

» For compatibility with HeatWave Service, all tables must use the | nnoDB storage engine. The
oci nds option checks for any exceptions found in the dump, and the conpat i bi | i t y option alters
the dump files to replace other storage engines with | nnoDB.

» For the instance dump utility and schema dump utility, for compatibility with HeatWave Service, all
tables in the instance or schema must be located in the MySQL data directory and must use the
default schema encryption. The oci nds option alters the dump files to apply these requirements.

» HeatWave Service uses parti al _revokes=0N, which means database-level user grants on
schemas which contain wildcards, such as _ or % are reported as errors.

You can also use the compatibility options, i gnore_wi | dcard_gr ant s and
strip_invalid grants

See Options for HeatWave Service and Oracle Cloud Infrastructure for more information.

« A number of other security related restrictions and requirements apply to items such as tablespaces
and privileges for compatibility with HeatWave Service. The oci nds option checks for any
exceptions found during the dump, and the conpat i bi | i t y option automatically alters the dump
files to resolve some of the compatibility issues. You might need (or prefer) to make some changes
manually. For more details, see the description for the conpat i bi | i t y option.

» For HeatWave Service High Availability, which uses Group Replication, primary keys are required
on every table. The oci nds option checks and reports an error for any tables in the dump that are
missing primary keys. The conpat i bi | i t y option can be set to ignore missing primary keys if you
do not need them, or to notify MySQL Shell’'s dump loading utility to add primary keys in invisible
columns where they are not present. For details, see the description for the conpat i bi | i ty option.
If possible, instead of managing this in the utility, consider creating primary keys in the tables on the
source server before dumping them again.

« If any of the dump utilities are run against MySQL 5.7, with " oci nds": true,
util.checkFor Server Upgr ade is run automatically, unless these checks are disabled by
ski pUpgr adeChecks. Pre-upgrade checks are run depending on the type of objects included in the
dump.

Running the Utilities

The instance dump utility, schema dump utility, and table dump utility use the MySQL Shell global
session to obtain the connection details of the target MySQL server from which the export is carried
out. You must open the global session (which can have an X Protocol connection or a classic MySQL
protocol connection) before running one of the utilities. The utilities open their own sessions for each
thread, copying options such as connection compression and SSL options from the global session, and
do not make any further use of the global session.

In the MySQL Shell API, the instance dump utility, schema dump utility, and table dump utility are
functions of the ut i | global object, and have the following signatures:

util.dunpl nstance(outputUrl[, options])
util.dunpSchemas(schemas, outputUrl[, options])
util.dunpTabl es(schema, tables, outputUrl[, options])

353

https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html

Running the Utilities

opt i ons is a dictionary of options that can be omitted if it is empty. The available options for the
instance dump utility, schema dump utility, and table dump utility are listed in the remaining sections in
this topic.

For the schema dump utility, schemnas specifies a list of one or more schemas to be dumped from the
MySQL instance.

For the table dump utility, schena specifies the schema that contains the items to be dumped, and

t abl es is an array of strings specifying the tables or views to be dumped. The table dump includes the
information required to set up the specified schema in the target MySQL instance, although it can be
loaded into an alternative target schema by using the dump loading utility's schema option.

The table dump utility can be used to select individual tables from a schema, for example if you want
to transfer tables between schemas. In this example in MySQL Shell's JavaScript mode, the tables
enpl oyees and sal ari es from the hr schema are exported to the local directory enp, which the
utility creates in the current working directory:

shell -js> util.dunpTabl es("hr", ["enpl oyees", "salaries"], "emp")

To dump all of the views and tables from the specified schema, use the al | option and set the t abl es
parameter to an empty array, as in this example:

shell -js> util.dunmpTabl es("hr", [], "emp", { "all": true })

If you are dumping to the local filesystem, out put Ur | is a string specifying the path to a local directory
where the dump files are to be placed. You can specify an absolute path or a path relative to the
current working directory. You can prefix a local directory path with the fi | e: // schema. In this
example, the connected MySQL instance is dumped to a local directory, with some modifications made
in the dump files for compatibility with HeatWave Service. The user first carries out a dry run to inspect
the schemas and view the compatibility issues, then runs the dump with the appropriate compatibility
options applied to remove the issues:

shell -j s> util.dunpl nstance("C:/Users/hanna/wor| ddunp”, {dryRun: true, ocinds: true})
Checking for conpatibility with Heat Wave Service 8.0. 33

Conpatibility issues with Heat Wave Service 8.0.33 were found. Please use the
‘conpatibility' option to apply conpatibility adaptati ons to the dunped DDL.
Util.dunplnstance: Conpatibility issues were found (Runti neError)
shel | -j s> util.dunpl nstance("C:/Users/hanna/ wor | ddump”, {

> ocinds: true, conpatibility: ["strip_definers", "strip_restricted_grants"]})

The target directory must be empty before the export takes place. If the directory does not yet exist

in its parent directory, the utility creates it. For an export to a local directory, the directories created
during the dump are created with the access permissions r wxr - x- - - , and the files are created with
the access permissions r w-r - - - - - (on operating systems where these are supported). The owner of
the files and directories is the user account that is running MySQL Shell.

If you are dumping to an Oracle Cloud Infrastructure Object Storage bucket, out put Ur | is a path
that will be used to prefix the dump files in the bucket, to simulate a directory structure. Use the
osBucket Nanme option to provide the name of the Object Storage bucket, and the osNanespace
option to identify the namespace for the bucket. In this example, the user dumps the wor | d schema
from the connected MySQL instance to an Object Storage bucket, with the same compatibility
modifications as in the previous example:

shell -js> util.dunpSchemas(["world"], "worlddump", {
> "osBucket Name": "hanna-bucket", "osNamespace": "idx28wlckztq",
> "ocimds": "true", "conpatibility": ["strip_definers", "strip_restricted_grants"]})

In the Object Storage bucket, the dump files all appear with the prefix wor | ddunp, for example:

wor | ddunp/ @ done. j son
wor | ddunp/ @j son

wor | ddunp/ @ post . sql
wor | ddunp/ @ sql

wor | ddunp/ wor | d. j son
wor | ddunp/ wor | d. sql

354

Options for Dump Control

wor | ddunp/ wor | d@ity.json
wor | ddunp/ wor |l d@i ty. sql

wor | ddunp/ wor | d@i t y@D. t sv. zst

wor | ddunp/ wor | d@i ty@D. t sv. zst . i dx

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the oci Confi gFi | e and oci Prof i | e options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File.

Options for Dump Control

dryRun: [true | false]

showPr ogr ess:

fal se]

t hreads: int

[true |

maxRat e: "string"

def aul t Char act er Set :

"string"

consi stent:
fal se]

[

true

Display information about what would be dumped with the

specified set of options, and about the results of HeatWave Service
compatibility checks (if the oci nds option is specified), but do not
proceed with the dump. Setting this option enables you to list out all
of the compatibility issues before starting the dump. The default is
fal se.

Display (t r ue) or hide (f al se) progress information for the dump.
The defaultist r ue if st dout is a terminal (t t y), such as when
MySQL Shell is in interactive mode, and f al se otherwise. The
progress information includes the estimated total number of rows
to be dumped, the number of rows dumped so far, the percentage
complete, and the throughput in rows and bytes per second.

The number of parallel threads to use to dump chunks of data from
the MySQL instance. Each thread has its own connection to the
MySQL instance. The default is 4.

The maximum number of bytes per second per thread for data read
throughput during the dump. The unit suffixes k for kilobytes, Mfor
megabytes, and G for gigabytes can be used (for example, setting
100Mlimits throughput to 100 megabytes per second per thread).
Setting O (which is the default value), or setting the option to an
empty string, means no limit is set.

The character set to be used during the session connections

that are opened by MySQL Shell to the server for the dump. The
default is ut f 8nb4. The session value of the system variables
character_set _client,character_set connection,
and character_set resul ts are set to this value for

each connection. The character set must be permitted by the
character_set client system variable and supported by the
MySQL instance.

Enable (t r ue) or disable (f al se) consistent data dumps by locking
the instance for backup during the dump. The defaultist r ue.

When t r ue is set, the utility sets a global read lock using the FLUSH
TABLES W TH READ LOCK statement (if the user ID used to

run the utility has the RELOAD privilege), or a series of table locks
using LOCK TABLES statements (if the user ID does not have the
REL OAD privilege but does have LOCK TABLES). The transaction
for each thread is started using the statements SET SESSI ON
TRANSACTI ON | SOLATI ON LEVEL REPEATABLE READand
START TRANSACTI ON W TH CONSI STENT SNAPSHOT. When

all threads have started their transactions, the instance is locked

355

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_lock-tables

Options for Dump Output

ski pConsi st encyChecks:
[true | false]

ski pUpgr adeChecks: [true
| false]

Options for Dump Output

tzUtc: [true | false]

conpr essi on:
"string;level =n"

checksum [true
fal se]

for backup (as described in LOCK INSTANCE FOR BACKUP
and UNLOCK INSTANCE Statements) and the global read lock is
released.

If the user account does not have the BACKUP_ADM N privilege and
LOCK | NSTANCE FOR BACKUP cannot be executed, the utilities
make an extra consistency check during the dump. If this check
fails, an instance dump is stopped, but a schema dump or a table
dump continues and returns an error message to alert the user that
the consistency check failed.

Enable (t r ue) or disable (f al se) the extra consistency check
performed when consi stent: true. Defaultisf al se.

This option is ignored if consi stent: fal se.

Default is f al se. Enable to disable the upgrade checks which are
normally run by default when oci nds: true.Compatibility issues
related to MySQL version upgrades will not be checked. Use this
option only when executing the Upgrade Checker separately.

Include a statement at the start of the dump to set the time zone

to UTC. All timestamp data in the dump output is converted to this
time zone. The defaultis t r ue, so timestamp data is converted

by default. Setting the time zone to UTC facilitates moving data
between servers with different time zones, or handling a set of data
that has multiple time zones. Set this option to f al se to keep the
original timestamps if preferred.

The compression type and level of compression to use when
creating the dump files. The following compression options are
available:

¢ none:No compression is applied.

e gzi p: Uses the gzip compression library. Compression level can
be set from 0 to 9. Default compression level is 1. For example:

"conpression": "gzip;level =4"

e zst d: Default. Uses the zstd compression library. Compression
level can be set from 1 to 22. Default compression level is 1. For
example:

"conpression": "zstd;|evel =15"

If enabled, a metadata file, @ checksuns. j son is generated
with the dump. This file contains the checksum data for the dump,
enabling data verification when loading the dump. See Options for
Load Control.

The following conditions apply if checksum true:

e Ifddl Onl y: fal se and chunki ng: t r ue, a checksum is
generated for each dumped table and partition chunk.

e Ifddl Onl y: fal se and chunki ng: f al se, a checksum is
generated for each dumped table and table partition.

356

https://dev.mysql.com/doc/refman/9.4/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/9.4/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin

Options for Dump Output

chunki ng:
fal se]

byt esPer Chunk:

di al ect:

[

true

"string"

[defaul t]|csv|
csv-uni x| t sv]

e Ifddl Onl y: t rue, a checksum is generated for each dumped

table and table partition.

Enable (t r ue) or disable (f al se) chunking for table data, which
splits the data for each table into multiple files. The defaultis t r ue,
so chunking is enabled by default. Use byt esPer Chunk to specify
the chunk size. If you set the chunking option to f al se, chunking
does not take place and the utility creates one data file for each

table.

If a table has no primary key or unique index, chunking is done
based on the number of rows in the table, the average row length,

and the byt esPer Chunk value.

Sets the approximate number of bytes to be written to each data file
when chunking is enabled. The unit suffixes k for kilobytes, Mfor
megabytes, and Gfor gigabytes can be used. The default is 64 MB .
Specifying this option sets chunki ng to t r ue implicitly. The utility
aims to chunk the data for each table into files each containing this
amount of data before compression is applied. The chunk size is an
average and is calculated based on table statistics and explain plan

estimates.

Specify a set of field- and line-handling options for the format
of the exported data file. You can use the selected dialect as
a base for further customization, by also specifying one or

more of the | i nesTer m nat edBy, fi el dsTer ni nat edBy,
fi el dsEncl osedBy, fi el dsOpti onal | yEncl osed, and
fi el dsEscapedBy options to change the settings.

The default dialect produces a data file matching what would be
created using a SELECT. . . | NTO OUTFI LE statement with the
default settings for that statement. . t xt is an appropriate file
extension to assign to these output files. Other dialects are available
to export CSYV files for either DOS or UNIX systems (. csv), and
TSV files (. t sv).

The settings applied for each dialect are as follows:

Table 12.3 Dialect settings for table export utility

K

1. The carriage return and line feed values
for the dialects are operating system
independent.

2. Ifyou use the | i nesTer ni nat edBy,
fiel dsTer ni nat edBy,

fi el dsEncl osedBy,

fiel dsOptional | yEncl osed, and

357

di al ect |l i nesTer |fii redtosoyf riien at et ced ett@yplfii et al S Bfrag et
defaul t |[LF] [TAB] [empty] |fal se \
csv [CR]LF] |, " true \
CSv- [LF] , " fal se \
uni x
tsv [CR][LF] |[TAB] " true \
Note

https://dev.mysql.com/doc/refman/9.4/en/select-into.html

Options for Dump Output

| i nesTer nm nat edBy:
“characters"

fi el dsTer m nat edBy:
"characters”

fi el dsEncl osedBy:
"character"

fiel dsOptional | yEncl osed:
[true | false]

fi el dsEscapedBy:
"character"

fi el dsEscapedBy options, depending
on the escaping conventions of your
command interpreter, the backslash
character (\) might need to be doubled if
you use it in the option values.

3. Like the MySQL server with the
SELECT. . . I NTO QUTFI LE statement,
MySQL Shell does not validate the
field- and line-handling options that you
specify. Inaccurate selections for these
options can cause data to be exported
partially or incorrectly. Always verify your
settings before starting the export, and
verify the results afterwards.

One or more characters (or an empty string) with which the utility
terminates each of the lines in the exported data file. The default

is as for the specified dialect, or a linefeed character (\ n) if the
dialect option is omitted. This option is equivalent to the LI NES
TERM NATED BY option for the SELECT. . . | NTO OUTFI LE
statement. Note that the utility does not provide an equivalent for the
LI NES STARTI NG BY option for the SELECT. . . | NTO OUTFI LE
statement, which is set to the empty string.

One or more characters (or an empty string) with which the

utility terminates each of the fields in the exported data file. The
default is as for the specified dialect, or a tab character (\ t) if the
dialect option is omitted. This option is equivalent to the FI ELDS
TERM NATED BY option for the SELECT. . . | NTO OUTFI LE
statement.

A single character (or an empty string) with which the utility encloses
each of the fields in the exported data file. The default is as for the
specified dialect, or the empty string if the dialect option is omitted.
This option is equivalent to the FI ELDS ENCLOSED BY option for
the SELECT. . . | NTO OUTFI LE statement.

Whether the character given for f i el dsEncl osedBy is to
enclose all of the fields in the exported data file (f al se), or to
enclose a field only if it has a string data type such as CHAR,

Bl NARY, TEXT, or ENUM(t r ue). The default is as for the specified
dialect, or f al se if the dialect option is omitted. This option
makes the f i el dsEncl osedBy option equivalent to the FI ELDS
OPTI ONALLY ENCLGOSED BY option for the SELECT. . . | NTO
OUTFI LE statement.

The character that is to begin escape sequences in the exported
data file. The default is as for the specified dialect, or a backslash
(\) if the dialect option is omitted. This option is equivalent to

the FI ELDS ESCAPED BY option for the SELECT. . . | NTO
OUTFI LE statement. If you set this option to the empty string,

no characters are escaped, which is not recommended because
special characters used by SELECT. . . | NTO OUTFI LE must be
escaped.

358

https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html
https://dev.mysql.com/doc/refman/9.4/en/select-into.html

Options for Filtering

Options for Filtering

wher e: A key-value pair comprising of a valid table identifier, of the form
schemaNane. t abl eNane, and a valid SQL condition expression
used to filter the data being exported.

Note
@ The SQL is validated only when it is

executed. If you are exporting many tables,
any SQL-syntax-related issues will only

be seen late in the process. As such, it is
recommended you test your SQL condition
before using it in a long-running export
process.

In the following example, wher e exports only those rows of the
tablesaki | a. act or and saki | a. act or _i nf o where the value of
act or _id is greater than 150, to a local folder named out :

util.dunpTabl es("sakila", ["actor","actor_info"], "out", {"where"
{"sakila.actor": "actor_id > 150", "sakila.actor_info": "actor_id >
partitions: A list of valid partition names which limits the export to the specified
{schemaNane. t abl eNane: partitions.

["string","string",..]}
For example, to export only the partitions named p1 and p2 from the
table schema. tabl e:partitions: {schema.table:["pl",

"p2'1}.

The following example exports the partitions p1 and p2 from tablel
and the partition p2 from table2:

util.dunpTabl es("schema", [“table","table2"], "out", {"partitions"
{ "schema.tablel": ["pl", "p2"],"schema.table2": ["p2"]}})
ddiOnly: [true | Setting this option to t r ue includes only the DDL files for the
fal se] dumped items in the dump, and does not dump the data. The

defaultis f al se.

dataOnly: [true Setting this option to t r ue includes only the data files for the
fal se] dumped items in the dump, and does not include DDL files. The
defaultis f al se.

users: [true | false] (Instance dump utility only) Include (t r ue) or exclude (f al se)
users and their roles and grants in the dump. The defaultis t r ue,
so users are included by default. The schema dump utility and table
dump utility do not include users, roles, and grants in a dump.

You can use the excl udeUser s ori ncl udeUser s option to
specify individual user accounts to be excluded or included in the
dump files. These options can also be used with MySQL Shell's
dump loading utility ut i | . | oadDunp() to exclude or include

359

Options for Filtering

excludeUsers: array of
strings
i ncl udeUsers: array of

strings

excl udeSchenmas: array of
strings
i ncl udeSchemas: array of
strings
excl udeTabl es: array of
strings
i ncl udeTabl es: array of

strings

individual user accounts at the point of import, depending on the
requirements of the target MySQL instance.

Y|

(Instance dump utility only) Exclude the named user accounts
from the dump files. You can use it to exclude user accounts

that are not accepted for import to a HeatWave Service DB

System, or that already exist or are not wanted on the target
MySQL instance. Specify each user account string in the format
"'user_nanme' @host nane'" for an account that is defined with
a user name and host name, or "' user _nane' " for an account
that is defined with a user name only. If you do not supply a host
name, all accounts with that user name are excluded.

Note

If dumping users from a MySQL 5.6 instance,
the user performing the copy must have the
SUPER privilege.

(Instance dump utility only) Include only the named user
accounts in the dump files. Specify each user account string as

for the excl udeUser s option. This option is an alternative to

excl udeUser s if only a few user accounts are required in the
dump. You can also specify both options to include some accounts
and exclude others.

(Instance dump utility only) Exclude the named schemas from the
dump. Note that the i nf or mat i on_schenws, nysql , ndbi nf o,
per f or mance_schenm, and sys schemas are always excluded
from an instance dump.

(Instance dump utility only) Include only the named schemas
in the dump. You cannot include the i nf or mat i on_schema,
nysql , ndbi nf o, perf or mance_scheng, or sys schemas by
naming them on this option. If you want to dump one or more of
these schemas, you can do this using the schema dump utility
util.dunpSchemas().

(Instance dump utility and schema dump utility only) Exclude
the named tables from the dump. Table names must be qualified
with a valid schema name, and quoted with the backtick character

if needed. Tables named by the excl udeTabl es option do not
have DDL files or data files in the dump. Note that the data for the
nysql . appl y_st at us, nysql . general _I og, mysqgl . schens,
and nmysqgl . sl ow_| og t abl es is always excluded from a schema
dump, although their DDL statements are included, and you cannot
include that data by naming the table in another option or utility.

Y|

(Instance dump utility and schema dump utility only) Include
only the named tables in the dump. Table names must be qualified

Note

Schema and table names containing multi-
byte characters must be surrounded with
backticks.

Options for Filtering

events: [true | false]

excl udeEvents: array of
strings

i ncl udeEvents: array of
strings

routines: [true |

fal se]

excl udeRouti nes: array
of strings

i ncl udeRouti nes: array
of strings

all: [true | false]
triggers: [true |

fal se]

excl udeTriggers: array
of strings

i ncl udeTri ggers: array

of strings

with a valid schema name, and quoted with the backtick character if
needed.

K

(Instance dump utility and schema dump utility only) Include
(t rue) or exclude (f al se) events for each schema in the dump.
The defaultis t r ue.

Note

Schema and table names containing multi-
byte characters must be surrounded with
backticks.

(Instance dump utility and schema dump utility only) Exclude
the named events from the dump. Names of events must be
qualified with a valid schema name, and quoted with the backtick
character if needed.

(Instance dump utility and schema dump utility only) Include
only the named events in the dump. Event names must be qualified
with a valid schema name, and quoted with the backtick character if
needed.

(Instance dump utility and schema dump utility only) Include
(t rue) or exclude (f al se) functions and stored procedures for
each schema in the dump. The default is t r ue. Note that user-
defined functions are not included, even when r out i nes is set to
true.

(Instance dump utility and schema dump utility only) Exclude
the named functions and stored procedures from the dump. Names
of routines must be qualified with a valid schema name, and quoted
with the backtick character if needed.

(Instance dump utility and schema dump utility only) Include
only the named functions and stored procedures in the dump.
Names of routines must be qualified with a valid schema name, and
quoted with the backtick character if needed.

(Table dump utility only) Setting this option to t r ue includes
all views and tables from the specified schema in the dump. The
default is f al se. When you use this option, setthe t abl es
parameter to an empty array, for example:

shell -js> util.dunmpTables("hr", [], "emp", { "all": true })

(All dump utilities) Include (t r ue) or exclude (f al se) triggers for
each table in the dump. The defaultis t r ue.

(All dump utilities) Exclude the named triggers from the dump.
Names of triggers must be qualified with a valid schema name

and table name (schena. t abl e. tri gger), and quoted with the
backtick character if needed. You can exclude all triggers for a
specific table by specifying a schema name and table name with this
option (schenm. t abl e).

(All dump utilities) Include only the named triggers in the dump.
Names of triggers must be qualified with a valid schema name

and table name (schena. t abl e. t ri gger), and quoted with

the backtick character if needed. You can include all triggers for a
specific table by specifying a schema name and table name with this
option (schena. t abl e).

361

Options for HeatWave Service and Oracle Cloud Infrastructure

[ibraries: [
fal se]

true |

i ncl udeLi braries: array
of strings
excl udeLi braries: array

of strings

(Instance dump utility and schema dump utility only)

Include (true, default) or exclude (false) libraries from the dump.

If set to true, dumps all libraries in the source instance. If the

| i brari es option is not provided, it is assumed to be true and all
libraries in the source instance are included in the dump.

If the target version is set to a version which does not support
libraries, and the dump contains libraries, a warning is displayed.

See Using JavaScript Libraries for information on libraries.

(Instance dump utility and schema dump utility only)

List of library objects to be included in the dump in the format
schema. library.

For example:
"“includeLibraries": [""sakila . libraryl’", "“sakila
(Instance dump utility and schema dump utility only)
List of library objects to be excluded from the dump in the format
schema. library.
For example:
"excludeLibraries": [""sakila . libraryl’", "“sakila

Options for HeatWave Service and Oracle Cloud Infrastructure

osBucket Nane: "string"
osNanmespace: "string"
oci ConfigFile: "string"
oci Profile: "string"

oci Aut h:"string"

The name of the Oracle Cloud Infrastructure Object Storage bucket
to which the dump is to be written. By default, the [DEFAULT]
profile in the Oracle Cloud Infrastructure CLI configuration file
located at ~/ . oci / confi g is used to establish a connection to the
bucket. You can substitute an alternative profile to be used for the
connection with the oci Confi gFi | e and oci Profi | e options.
For instructions to set up a CLI configuration file, see SDK and CLI
Configuration File.

The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

The authentication method to use when connecting to Oracle Cloud
Infrastructure. This option requires osBucket Nane is configured
with a valid value.

362

b

b

https://dev.mysql.com/doc/refman/9.4/en/srjs-libraries.html
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Options for HeatWave Service and Oracle Cloud Infrastructure

oci nds:

[

true |

fal se]

targetVersion:n.n.n

The following options are available:

e api _key: OCI connections use the OCI configuration file. See
Section 4.8.1, “Oracle Cloud Infrastructure Object Storage”.

If osBucket Nane is defined with a valid value, but oci Aut h is
not defined, api _key is the default value used.

e instance_princi pal : OCI connections use instance principal
authentication. See Instance Principal Authentication.

This option can not be used if oci Confi gFi |l e oroci Profile
are defined.

e resource_princi pal : OCI connections use resource principal
authentication. See Resource Principal Authentication.

This option can not be used if oci Confi gFil e oroci Profile
are defined.

e security_token: OCI connections use a temporary, generated
session token. See Session Token-Based Authentication.

Setting this option to t r ue enables checks and modifications for
compatibility with HeatWave Service. The defaultis f al se.

Important

A ‘ When migrating to HeatWave Service, it

is recommended to always use the latest
available version of MySQL Shell.

When this option is setto t r ue, DATA DI RECTORY, | NDEX

DI RECTCRY, and ENCRYPTI ON options in CREATE TABLE
statements are commented out in the DDL files, to ensure that all
tables are located in the MySQL data directory and use the default
schema encryption. Checks are carried out for any storage engines
in CREATE TABLE statements other than | nnoDB, for grants of
unsuitable privileges to users or roles, and for other compatibility
issues. If any non-conforming SQL statement is found, an exception
is raised and the dump is halted. Use the dr yRun option to list out
all of the issues with the items in the dump before the dumping
process is started. Use the conpat i bi | i t y option to automatically
fix the issues in the dump output.

This option is set to f al se by default and is only enabled if set to
t r ue explicitly.

Note
@ If any of the dump utilities are run against

MySQL 5.7, with " oci mds": true,
util.checkFor Server Upgrade is run
automatically. Pre-upgrade checks are run
depending on the type of objects included in
the dump.

Define the version of the target MySQL instance, in n.n.n format.
Such as 8.1.0, for example. If the value is not set, the MySQL Shell
version is used.

363

https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_instance_principaldita
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_resource_principal
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_session_token
https://dev.mysql.com/doc/refman/9.4/en/create-table.html
https://dev.mysql.com/doc/refman/9.4/en/create-table.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html

Options for HeatWave Service and Oracle Cloud Infrastructure

The compatibility checks are adjusted depending on the value of
t ar get Ver si on.

conpatibility: array of Apply the specified requirements for compatibility with HeatWave
strings Service for all tables in the dump output, altering the dump files as
necessary.

The following modifications can be specified as an array of strings:

force_i nnodb Change CREATE TABLE
statements to use the | nnoDB
storage engine for any tables that
do not already use it.

skip_invalid_accounts Remove user accounts created
with external authentication
plugins that are not supported in
HeatWave Service. This option
also removes user accounts
that do not have passwords set,
except where an account with no
password is identified as a role,
in which case it is dumped using
the CREATE ROLE statement.

strip_definers Note
@ This

option

is not
required

if the
destination
HeatWave
Service
instance
is version
8.2.0 or
higher.

SET_USER I D,
deprecated

in MySQL

8.2.0 and

removed

in 8.4.0, is

replaced

by

SET_ANY_DEFI NER
and

ALLOW NONEXI STENT_DE
This

change

impacts

the way

MySQL

Shell

handles

364

https://dev.mysql.com/doc/refman/9.4/en/create-table.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_set-user-id
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_set-any-definer
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_allow-nonexistent-definer

Options for HeatWave Service and Oracle Cloud Infrastructure

strip restricted grants

dumps

for use in
HeatWave
Service
(oci nds:
true)
because
the
administrator
user

has the
SET_ANY_DEFI NER
privilege
and is
able to
execute
statements
with the
DEFI NER
clause.
This

was not
possible

in
previous
versions.

Remove the DEFI NER clause
from views, routines, events,
and triggers, so these objects
are created with the default
definer (the user invoking the
schema), and change the

SQL SECURI TY clause for
views and routines to specify

I NVOKER instead of DEFI NER.
HeatWave Service requires
special privileges to create
these objects with a definer
other than the user loading the
schema. If your security model
requires that views and routines
have more privileges than the
account querying or calling them,
you must manually modify the
schema before loading it.

Remove specific privileges that
are restricted by HeatWave
Service from GRANT statements,
so users and their roles cannot
be given these privileges (which
would cause user creation to
fail). This option also removes
REVCKE statements for system
schemas (mysql and sys) if the
administrative user account on
an Oracle Cloud Infrastructure

365

https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_set-any-definer
https://dev.mysql.com/doc/refman/9.4/en/grant.html
https://dev.mysql.com/doc/refman/9.4/en/revoke.html

Options for HeatWave Service and Oracle Cloud Infrastructure

strip_tabl espaces

i gnore_m ssi ng_pks

i gnore_wi | dcard_grants

strip_invalid_grants

unescape_wi | dcard_grants

Compute instance does not itself
have the relevant privileges, so
cannot remove them.

Remove the TABLESPACE clause
from CREATE TABLE statements,
so all tables are created in their
default tablespaces. HeatWave
Service has some restrictions on
tablespaces.

Make the instance, schema,

or table dump utility ignore

any missing primary keys

when the dump is carried out,
so that the oci nds option

can still be used without the
dump stopping due to this
check. Dumps created with this
modification cannot be loaded
into a HeatWave Service High
Availability instance, because
primary keys are required

for HeatWave Service High
Availability, which uses Group
Replication. To add the missing
primary keys instead, use the
create_invisible pks
modification, or consider creating
primary keys in the tables on the
source server.

If enabled, ignores errors

from grants on schemas with
wildcards, which are interpreted
differently in systems where the
partial _revokes system
variable is enabled.

If enabled, strips grant
statements which would fail when
users are loaded. Such as grants
referring to a specific routine
which does not exist.

If enabled, strips escape
characters in grants on schemas,
replacing escaped\ _and\ %
wildcards in schema names with
__and %wildcard characters.
When the partial _revokes
system variable is enabled,

the \ character is treated as

a literal, which could lead to
unexpected results. It is strongly
recommended to check each
such grant before enabling this
option.

366

https://dev.mysql.com/doc/refman/9.4/en/create-table.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_partial_revokes

Options for HeatWave Service and Oracle Cloud Infrastructure

create_invisible_pks

Add a flag in the dump metadata
to notify MySQL Shell’'s dump
loading utility to add primary keys
in invisible columns, for each
table that does not contain a
primary key. This modification
enables a dump where some
tables lack primary keys to be
loaded into a HeatWave Service
High Availability instance.
Primary keys are required

for HeatWave Service High
Availability, which uses Group
Replication.

The dump data is unchanged by
this modification, as the tables do
not contain the invisible columns
until they have been processed
by the dump loading utility. The
invisible columns (which are
named "my_row_i d") have no
impact on applications that use
the uploaded tables.

Adding primary keys in this way
does not yet enable inbound
replication of the modified tables
to a High Availability instance,
as that feature currently requires
the primary keys to exist in both
the source server and the replica
server. If possible, instead of
using this modification, consider
creating primary keys in the
tables on the source server,
before dumping them again. You
can do this with no impact to
applications by using invisible
columns to hold the primary
keys. This is a best practice for
performance and usability, and
helps the dumped database to
work seamlessly with HeatWave
Service.

Note
g MySQL
Shell’'s
dump
loading
utility
can only
be used
to load

dumps

367

Options for S3-compatible Services

created
with the
create_invisible_pks
option on
a target
MySQL
instance
version
8.0.24

or later,
duetoa
limitation
on hidden
columns
in MySQL
8.0.23.

force_non_standard fks In MySQL 8.4.0,restrict _fk on_non_standard key was
added, prohibiting creation of non-standard foreign keys when
enabled. That is, keys that reference non-unique keys or partial
fields of composite keys. HeatWave Service DB Systems have this
variable enabled by default, which causes dumps with such tables
to fail to load. This option disables checks for non-standard foreign
keys, and configures the dump loader to set the session value of
restrict _fk on _non_standard_key variable to OFF. Creation
of foreign keys with non-standard keys may cause replication to fail.

Options for S3-compatible Services

MySQL Shell supports dumping MySQL data to S3-compatible buckets, such as Amazon Web
Services (AWS) S3.

Note

@ MySQL Shell supports AWS S3 configuration in command line options,
environment variables, and configuration files. Command line options override
environment variables, configuration files, and default options.

For information on configuration requirements, see Section 4.8, “Cloud Service
Configuration”.

s3Bucket Nanme: "string" The name of the S3 bucket to which the dump is to be written. By
default, the def aul t profile of the confi g and credenti al s
files located at ~/ . aws/ are used to establish a connection
to the S3 bucket. You can substitute alternative configurations
and credentials for the connection with the s3Conf i gFi | e and
s3Credenti al sFi | e options. For instructions on installing and
configuring the AWS CLI, see Getting started with the AWS CLI.

s3Credenti al sFi | e: "string"A credentials file that contains the user's credentials to use
for the connection, instead of the one in the default location,
~/ . aws/ cr edent i al s. Typically, the credentials file contains the
aws_access_key idandaws_secret _access_key to use for
the connection.

s3ConfigFile: "string" A configuration file that contains the profile to use for the
connection, instead of the one in the default location, such as
~/ . aws/ confi g. Typically, the config file contains the region and
output type to use for the connection.

368

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_restrict_fk_on_non_standard_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_restrict_fk_on_non_standard_key
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Options for Microsoft Azure Blob Storage

s3Profile: "string" The profile name of the s3 CLI profile to use for the connection,
instead of the def aul t profile.

s3Regi on: "string" The name of the region to use for the connection.
s3Endpoi nt Overri de: The URL of the endpoint to use instead of the default.
“string"

When connecting to the Oracle Cloud Infrastructure S3

compatibility API, the endpoint takes the following format:

htt ps:// nanespace. conpat . obj ect st or age. r egi on. or acl ecl ouc
Replace nanespace with the Object Storage hamespace and

r egi on with your region identifier. For example, the region identifier

for the US East (Ashburn) region is us- ashbur n- 1.

For a namespace named axaxnpcrorw5 in the US East (Ashburn)
region:

htt ps: // axaxnpcrorwh. conpat . obj ect st or age. us-
ashbur n- 1. oracl ecl oud. com

The following example shows the dump of a MySQL instance to a folder, t est, in an S3 bucket,
Bucket 001, with some compatibility options:

util.dunplnstance("test", {s3bucket Nane: "Bucket001", threads: 4,
conpatibility: ["strip_restricted_grants", "strip_definers", "ignore_nm ssing pks"]})

The following example shows the dump of a MySQL instance to a prefix, t est, in an object storage
bucket, Bucket 001, using a configuration profile, oci , the s3Endpoi nt Overri de to direct the
connection to the OCI endpoint of the required tenancy and region, and some compatibility options:

util.dunpl nstance("test", { s3Bucket Nane: "Bucket 001",

s3Endpoi nt Override: "https://axaxnpcrorws. conpat . obj ect st or age. us- ashbur n- 1. or acl ecl oud. cont',
s3Profile: "oci", threads: 4,

conmpatibility: ["strip_restricted_grants", "strip_definers", "ignore_m ssing_pks"]})

Options for Microsoft Azure Blob Storage

MySQL Shell supports dumping to Microsoft Azure Blob Storage.

Note

@ MySQL Shell supports Microsoft Azure Blob Storage configuration in command
line options, environment variables, and configuration files. Command line
options override environment variables, and configuration files.

For information on configuration requirements and the order of precedence of
the configuration types, see Section 4.8, “Cloud Service Configuration”.

azur eCont ai ner Name: Mandatory. The name of the Azure container to which the dump is
"string" to be written. The container must exist.
azureConfigFil e: Optional. A configuration file that contains the storage connection
"string" parameters, instead of the one in the default location, such as
~/ . azur e/ confi g. If this is not defined, the default configuration
file is used.

azur eCont ai ner Name must be defined, and not be empty.

azur eSt or ageAccount : Optional. The name of the Azure storage account to use for the
"string" operation.

369

Dumping to Object Storage Bucket with PAR

azur eSt or ageSasToken: Optional. Azure Shared Access Signature (SAS) token to be used
"string" for the authentication of the operation, instead of a key.

In the following example, the configuration uses a configuration string for the connection parameters,
which means the dump command only requires the azur eCont ai ner Nane.

Example confi g file:

[cl oud]
name = Azur eC oud

[st orage]
connecti on_string=al phanuneri cConnecti onStri ng

Example dunpl nst ance command, which exports the contents of the instance to a folder named
prefix1,in acontainer named mysql shel | azur e:

util.dunpl nstance("prefix1", {azureContainer Nane: "nysql shellazure", threads: 4})

Dumping to Object Storage Bucket with PAR

The out put URL can also be a bucket or prefix Pre-Authenticated Request (PAR). This enables you to
dump your data directly to an OCI Object Storage bucket.

The PAR must be defined with the following permissions enabled:
» Permit object reads and writes
» Enable Object Listing

If a PAR is defined as out put URL, the following options are not supported and will result in an error if
used:

e 0sBucket Nane
* s3Bucket Nane

e azur eCont ai ner Nane

use an object PAR.

If the PAR is not supported, or does not have the correct permissions defined,

Note
@ Only bucket and prefix PARs are supported as out put URL. It is not possible to
an OCI error is returned.

If the target bucket is not empty, the operation fails and an error is returned. If objects exist with the
defined prefix, the operation fails and an error is returned.

Note
@ When you define a prefix par, the generated PAR URL does not contain the
defined prefix. You must add it to the URL manually.

Bucket PAR examples

The following example dumps the instance to the defined bucket PAR:

util.dunpl nstance("https://objectstorage.region. oracl ecl oud. com p/ secret/n/ nyTenancy/ b/ nyBucket/o/")

The following example dumps the schema saki | a to the defined bucket PAR:

370

Utility Error Messages

util.dumpSchemas(["sakila"], "https://objectstorage.region.oracl ecl oud. com p/ secret/n/ myTenancy/ b

The following example dumps the table saki | a. act or to the defined bucket PAR:

util.dunpTabl es("sakila", ["actor"], "https://objectstorage.region.oracl ecl oud. com p/ secret/n/ nyT

Prefix PAR examples

When you define a prefix par, the generated PAR URL does not contain the defined prefix. You must
add it to the URL manually.

The following example dumps the instance to the prefix MyPr ef i x, in the defined bucket PAR:

util.dunpl nstance("https://objectstorage. region. oracl ecl oud. conl p/ secr et/ n/ nyTenancy/ b/ nyBucket / o

The following example dumps the schema saki | a to the prefix MyPr ef i x, in the defined bucket PAR:

util.dunpSchemas(["sakila"], "https://objectstorage.region.oracl ecl oud. com p/ secret/n/ myTenancy/ b

The following example dumps the table saki | a. act or to the prefix MyPr ef i x, in the defined bucket
PAR:

util.dunpTabl es("sakila", ["actor"], "https://objectstorage.region.oracl ecl oud. com p/ secret/n/ nyT

Utility Error Messages

Error numbers in the range 52000-52999 are specific to MySQL Shell's instance dump utility
util.dunpl nstance(), schema dump utility uti | . dunpSchenas(), and table dump utility
util.dunpTabl es() . The following errors might be returned:

» Error number: 52000; Symbol: SHERR DUMP_LOCK TABLES M SSI NG PRI VI LEGES
Message: User %s is missing the following privilege(s) for %s: %s.

« Error number: 52001; Symbol: SHERR DUMP_GLOBAL_READ LOCK_FAI LED
Message: Unable to acquire global read lock

« Error number: 52002; Symbol: SHERR_DUMP_LOCK_TABLES FAI LED
Message: Unable to lock tables: %s.

e Error number: 52003; Symbol: SHERR DUMP_CONSI STENCY CHECK FAI LED
Message: Consistency check has failed.

» Error number: 52004; Symbol: SHERR DUMP_COVPATI BI LI TY_| SSUES FOUND
Message: Compatibility issues were found

* Error number: 52005; Symbol: SHERR_DUMP_COVPATI BI LI TY_OPTI ONS_FAI LED
Message: Could not apply some of the compatibility options

« Error number: 52006; Symbol: SHERR DUMP_WORKER THREAD FATAL ERROR
Message: Fatal error during dump

e Error number: 52007; Symbol: SHERR_DUMP_M SSI NG GLOBAL_ PRI VI LECGES

371

Utility Error Messages

Message: User %s is missing the following global privilege(s): %s.

» Error number: 52008; Symbol: SHERR_DUMP_M SSI NG_SCHENMA PRI VI LECGES
Message: User %s is missing the following privilege(s) for schema %s: %s.

* Error number: 52009; Symbol: SHERR_DUMP_M SSI NG TABLE_ PRI VI LEGES
Message: User %s is missing the following privilege(s) for table %s: %s.

» Error number: 52010; Symbol: SHERR _DUMP_NO_SCHENAS_ SELECTED
Message: Filters for schemas result in an empty set.

» Error number: 52011; Symbol: SHERR DUMP_MANI FEST_PAR CREATI ON_FAI LED
Message: Failed creating PAR for object '%s'": %s

» Error number: 52012; Symbol: SHERR_DUMP_DW WRI TE_FAI LED
Message: Failed to write %s into file %s

e Error number: 52013; Symbol: SHERR DUMP_| C FAI LED TO FETCH VERSI ON
Message: Failed to fetch version of the server.

« Error number: 52014; Symbol: SHERR_DUMP_SD_CHARSET NOT_FOUND
Message: Unable to find charset: %s

e Error number: 52015; Symbol: SHERR_DUMP_SD WRI TE_FAI LED
Message: Got errno %d on write

* Error number: 52016; Symbol: SHERR_DUMP_SD_QUERY_FAILED
Message: Could not execute '%s": %s

» Error number: 52017; Symbol: SHERR DUMP_SD COLLATI ON_DATABASE ERROR
Message: Error processing select @ @collation_database; results

e Error number: 52018; Symbol: SHERR DUVMP_SD CHARACTER SET RESULTS ERROR
Message: Unable to set character_set_results to: %s

e Error number: 52019; Symbol: SHERR DUMP_SD CANNOT CREATE DELI M TER
Message: Can't create delimiter for event: %s

» Error number: 52020; Symbol: SHERR_DUMP_SD | NSUFFI Cl ENT_PRI VI LEGE
Message: %s has insufficient privileges to %s!

« Error number: 52021; Symbol: SHERR DUMP_SD M SSI NG TABLE
Message: %s not present in information_schema

« Error number: 52022; Symbol: SHERR DUMP_SD SHOW CREATE_TABLE_FAI LED
Message: Failed running: show create table %s with error: %s

* Error number: 52023; Symbol: SHERR_DUMP_SD SHOW CREATE TABLE EMPTY

372

Utility Error Messages

Message: Empty create table for table: %s

Error number: 52024; Symbol: SHERR DUMP_SD SHOW FI ELDS FAI LED
Message: SHOW FIELDS FROM failed on view: %s

Error number: 52025; Symbol: SHERR DUVP_SD SHOW KEYS FAI LED
Message: Can't get keys for table %s: %s

Error number: 52026; Symbol: SHERR_DUVP_SD_SHOW CREATE_VI EW FAI LED
Message: Failed: SHOW CREATE TABLE %s

Error number: 52027; Symbol: SHERR DUVMP_SD SHOW CREATE_VI EW EMPTY
Message: No information about view: %s

Error number: 52028; Symbol: SHERR DUVMP_SD SCHEMA DDL_ERROR
Message: Error while dumping DDL for schema '%s": %s

Error number: 52029; Symbol: SHERR DUMP_SD TABLE DDL_ERROR

Message: Error while dumping DDL for table '%s".'%s": %s

Error number: 52030; Symbol: SHERR_DUMP_SD VI EW TEMPORARY _DDL_ERROR
Message: Error while dumping temporary DDL for view '%s".'%s". %s

Error number: 52031; Symbol: SHERR_DUVP_SD VI EW DDL_ERROR

Message: Error while dumping DDL for view '%s'.'%s": %s

Error number: 52032; Symbol: SHERR_ DUMP_SD TRl GGER COUNT ERROR
Message: Unable to check trigger count for table: '%s".'%s'

Error number: 52033; Symbol: SHERR_DUMP_SD TRI GGER_DDL_ERROR
Message: Error while dumping triggers for table '%s".'%s'": %s

Error number: 52034; Symbol: SHERR DUMP_SD EVENT DDL_ERROR

Message: Error while dumping events for schema '%s'": %s

Error number: 52035; Symbol: SHERR DUMP_SD ROUTI NE_DDL ERROR
Message: Error while dumping routines for schema '%s": %s

Error number: 52036; Symbol: SHERR DUMP_ACCOUNT W TH_APOSTROPHE
Message: Account %s contains the ' character, which is not supported

Error number: 52037; Symbol: SHERR DUMP_USERS MARI A DB_NOT _SUPPORTED

Message: Dumping user accounts is currently not supported in MariaDB. Set the 'users' option to
false to continue.

Error number: 52038; Symbol: SHERR DUMP_| NVALI D_GRANT _STATEMENT

Message: Dump contains an invalid grant statement. Use the 'strip_invalid_grants' compatibility
option to fix this.

373

Dump Loading Utility

e Error number: 52039; Symbol; SHERR DUVP_| C | NVALI D_VI EW5

Message: Dump contains one or more invalid views. Fix them manually, or use the 'excludeTables'
option to exclude them.

Error numbers in the range 54000-54999 are for connection and network errors experienced by
MySQL Shell's dump loading utility ut i | . | oadDunp() , or by MySQL Shell's instance dump utility
util.dunpl nstance(), schema dump utility uti | . dunpSchenmas(), and table dump utility
util.dunpTabl es() . In most cases, the error code matches the HTTP error involved — for example,
error 54404 occurs when the target of a URL is not found (HTTP 404 Not Found). The following errors
might be returned:

» Error number: 54000; Symbol: SHERR DL COVMON_CONNECTI ON_ERROR
Message: %sConnection error: %s.
e Error number: 54100 to 54511; Symbol: SHERR NETWORK [HTTP error nane]

Message: Context-specific message

12.6 Dump Loading Utility

MySQL Shell's dump loading utility ut i | . | oadDunp() supports the import into a HeatWave

Service DB System or a MySQL Server instance of schemas or tables dumped using MySQL Shell's
Section 12.5, “Instance Dump Utility, Schema Dump Utility, and Table Dump Utility”. The dump loading
utility provides data streaming from remote storage, parallel loading of tables or table chunks, progress
state tracking, resume and reset capability, and the option of concurrent loading while the dump is

still taking place. To get the best functionality, always use the most recent version available of MySQL
Shell's dump and dump loading utilities.

» About the Utility

* Requirements and Restrictions

» Using PARs to Load Dump Files

* Running the Utility

» Options for Load Control

« Options for Load Content

» Options for HeatWave Service and Oracle Cloud Infrastructure
» Options for S3-compatible Services

» Options for Microsoft Azure Blob Storage
» Options for Filtering

» Generated Invisible Primary Key Mode

* Modifying Dumped Data

« Utility Error Messages

About the Utility

For import into a HeatWave Service DB System, MySQL Shell must be installed on an Oracle Cloud
Infrastructure Compute instance that has access to the HeatWave Service DB System. If the dump files
are in an Oracle Cloud Infrastructure Object Storage bucket, you can access the Object Storage bucket
from the Compute instance. If the dump files are on your local system, you need to transfer them to

374

About the Utility

the Oracle Cloud Infrastructure Compute instance using the copy utility of your choice, depending

on the operating system you chose for your Compute instance. Ensure the dump was created with
the oci nds option setto t r ue in MySQL Shell's instance dump utility or schema dump utility, for

compatibility with HeatWave Service. MySQL Shell's table dump utility does not use this option.

For output produced by the instance dump utility or schema dump utility, MySQL Shell's dump loading
utility uses the DDL files and tab-separated . t sv data files to set up the server instance or schema in
the target MySQL instance, then loads the data. Dumps containing only the DDL files or only the data
files can be used to perform these tasks separately. The dump loading utility also lets you separately
apply the DDL files and data files from a regular dump that contains both sorts of files.

You can use options for the utility to include or exclude specified schemas and tables, users and their
roles and grants, events, routines, and triggers from the import. Note that users and their roles and
grants are excluded from the load by default. If you specify conflicting include and exclude options or
name an object that is not included in the dump files anyway, an error is reported and the load stops so
you can correct the options.

For output produced by MySQL Shell's table dump utility, the dump contains the information required
to set up the schema that originally contained the table. By default, from that release, the schema is
recreated in the target MySQL instance if it does not already exist. Alternatively, you can specify the
schena option in the dump loading utility to load the table into an alternative schema in the target
MySQL instance, which must exist there.

You can carry out a dry run with your chosen set of dump loading options to show what actions would
be performed when you run the utility for real with those options.

The wai t DunpTi nmeout option lets you apply a dump that is still in the process of being created.
Tables are loaded as they become available, and the utility waits for the specified number of seconds
after new data stops arriving in the dump location. When the timeout elapses, the utility assumes the
dump is complete and stops importing.

Progress state for an import is stored in a persistent progress state file, which records steps
successfully completed and steps that were interrupted or failed. By default, the progress state file

is named | oad- progress. server _uui d. j son and created in the dump directory, but you can
choose a different name and location. The dump loading utility references the progress state file when
you resume or retry the import for a dump, and skips completed steps. Deduplication is automatically
managed for tables that were partially loaded. If you interrupt a dump in progress by using Ctrl + C, on
the first use of that key combination, no new tasks are started by the utility but existing tasks continue.
Pressing Ctrl + C again stops existing tasks, resulting in error messages. In either case, the utility can
still resume the import from where it stopped.

You can choose to reset the progress state and start the import for a dump again from the beginning,
but in this case the utility does not skip objects that were already created and does not manage
deduplication. If you do this, to ensure a correct import, you must manually remove from the target
MySQL instance all previously loaded objects from that dump, including schemas, tables, users,
views, triggers, routines, and events. Otherwise, the import stops with an error if an object in the
dump files already exists in the target MySQL instance. With appropriate caution, you may use the

i gnor eExi sti ngOhj ect s option to make the utility report duplicate objects but skip them and
continue with the import. Note that the utility does not check whether the contents of the object in the
target MySQL instance and in the dump files are different, so it is possible for the resulting import to
contain incorrect or invalid data.

Important

A Do not change the data in the dump files between a dump stopping and a dump
resuming. Resuming a dump after changing the data has undefined behavior
and can lead to data inconsistency and data loss. If you need to change the
data after partially loading a dump, manually drop all objects that were created
during the partial import (as listed in the progress state file), then run the dump
loading utility with the r eset Pr ogr ess option to start again from the beginning.

375

Requirements and Restrictions

If you need to modify any data in the dump’s data files before importing it to the target MySQL instance,
you can do this by combining MySQL Shell’s parallel table import utility ut i | . i nport Tabl e()

with the dump loading utility. To do this, first use the dump loading utility to load only the DDL for the
selected table, to create the table on the target server. Then use the parallel table import utility to
capture and transform data from the output files for the table, and import it to the target table. Repeat
that process as necessary for any other tables where you want to modify the data. Finally, use the
dump loading utility to load the DDL and data for any remaining tables that you do not want to modify,
excluding the tables that you did modify. For a description of the procedure, see Modifying Dumped
Data.

The tables in a dump are loaded in parallel by the number of threads you specify using the t hr eads
option, which defaults to 4. If table data was chunked when the dump was created, multiple threads
can be used for a table, otherwise each thread loads one table at a time. The dump loading utility
schedules data imports across threads to maximize parallelism. A pool of background threads is used
to fetch the contents of files. If the dump files were compressed by MySQL Shell's dump utilities, the
dump loading utility handles decompression for them.

By default, fulltext indexes for a table are created only after the table is completely loaded, which
speeds up the import. You can choose to defer all index creation (except the primary index) until each
table is completely loaded. You can also opt to create all indexes during the table import. You can also
choose to disable index creation during the import, and create the indexes afterwards, for example if
you want to make changes to the table structure after loading.

For an additional improvement to data loading performance, you can disable the | nnoDB redo log on
the target MySQL instance during the import. Note that this should only be done on a new MySQL
Server instance (not a production system), and this feature is not available on MySQL DB System. For
more information, see Disabling Redo Logging.

Requirements and Restrictions

e MySQL 5.7 or later is required for the destination MySQL instance where the dump is loaded.

* MySQL Shell's dump loading utility from versions of MySQL Shell previous to 8.0.27 cannot load
dumps that are created using the dump utilities in MySQL Shell 8.0.27 or later. This is because from
MySQL Shell8.0.27, information is included in the dump metadata about features used in creating
the dump. This feature list is not backward compatible, but it supports backward compatibility when
new features are added in future releases. To get the best functionality, always use the most recent
version available of MySQL Shell's dump and dump loading utilities.

* The dump loading utility uses the LOAD DATA LOCAL | NFI LE statement, so the global setting of
the |l ocal _i nfil e system variable on the target MySQL instance must be ON for the duration of
the import. By default, this system variable is set to ONin a standard HeatWave Service DB System
configuration.

» The LOAD DATA LOCAL | NFI LE statement uses nonrestrictive data interpretation, which turns
errors into warnings and continues with the load operation. This process can include assigning
default values and implicit default values to fields, and converting invalid values to the closest valid
value for the column data type. For details of the statement's behavior, see LOAD DATA.

« On the target MySQL instance, the dump loading utility checks whether the
sql _require_primary_key system variable is set to ON, and if it is, returns an error if there
is a table in the dump files with no primary key. By default, this system variable is set to OFF in a
standard HeatWave Service DB System configuration.

» The dump loading utility does not automatically apply the gt i d_execut ed GTID set from the
source MySQL instance on the target MySQL instance. The GTID set is included in the dump
metadata from MySQL Shell's instance dump utility, schema dump utility, or table dump utility, as the
gt i dExecut ed field in the @ j son dump file. To apply these GTIDs on the target MySQL instance
for use with replication, use the updat eG i dSet option or import them manually, depending on
the release of the target MySQL instance and the MySQL Shell release. This is also supported on

376

https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-redo-log.html#innodb-disable-redo-logging
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_require_primary_key
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed

Using PARs to Load Dump Files

HeatWave Service DB System instances. See the description of the updat eG i dSet option for
details.

Using PARs to Load Dump Files

MySQL Shell supports loading dump files from an Object Storage bucket using a pre-authenticated
request (PAR). PARs provide a way to let users access a bucket or an object without having their own

credentials.
Important

A Before using this access method, assess the business requirement for and the
security ramifications of pre-authenticated access to a bucket or objects in a
bucket. A PAR gives anyone who has the PAR access to the targets identified
in the request. Carefully manage the distribution of PARs.

MySQL Shell supports using a read access PAR (an Object Read PAR) for all objects in a bucket or
objects in a bucket with a specific prefix. For information about creating bucket PARs and prefix PARSs,
see Using Pre-Authenticated Requests. When using a bucket PAR or prefix PAR, the dump loading
utility requires a local progress state file. The content of the file is in JSON format, so a text file with

a .] son extension is appropriate (for example, pr ogr ess. j son). The following example shows the
syntax for loading dump files using a PAR created for all objects in a bucket:

JS> util .| oadDunp("Bucket PARURL", {progressFile: "progress.json"})

The same syntax is used to load objects in a bucket with a specific prefix, but in this case, the PAR
URL includes the prefix:

shel | -js> util .| oadDunp("Prefi xPARURL", progressFile: "progress.json"})

Running the Utility

The dump loading utility uses the MySQL Shell global session to obtain the connection details of the
target MySQL instance to which the dump is to be imported. You must open the global session (which
can have an X Protocol connection or a classic MySQL protocol connection) before running the utility.
The utility opens its own sessions for each thread, copying options such as connection compression
and SSL options from the global session, and does not make any further use of the global session.

In the MySQL Shell API, the dump loading utility is a function of the ut i | global object, and has the
following signature:

util.loadDunmp(url[, options])

opt i ons is a dictionary of options that can be omitted if it is empty. The options are listed in the
remaining sections in this topic.

If you are importing a dump that is located in the Oracle Cloud Infrastructure Compute instance's
filesystem where you are running the utility, ur | is a string specifying the path to a local directory
containing the dump files. You can prefix a local directory path with the fi | e: // schema. In this
example in MySQL Shell's JavaScript mode, a dry run is carried out to check that there will be no
issues when the dump files are loaded from a local directory into the connected MySQL instance:

shell -js> util.|oadDunp("/mt/data/worl ddunp", {dryRun: true})

If you are importing a dump from an Oracle Cloud Infrastructure Object Storage bucket, ur | is

the path prefix that the dump files have in the bucket, which was assigned using the out put Ur |
parameter when the dump was created. Use the osBucket Nane option to provide the name of the
Object Storage bucket, and the osNanespace option to identify the namespace for the bucket. In this
example in MySQL Shell's JavaScript mode, the dump prefixed wor | ddunp is loaded from an Object
Storage bucket into the connected HeatWave Service DB System using 8 threads:

377

https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm

Options for Load Control

shell -js> util.|oadDunp("worl| ddump", {
threads: 8, osBucket Name: "hanna-bucket", osNamespace: "idx28wlckztq"})

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the oci Confi gFi | e and oci Prof i | e options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File.

Options for Load Control

dryRun: [true | false]

wai t DunpTi meout : nunber

schema: "string"

t hr eads: nunber

backgroundThr eads:
number

progressFile: "string

Display information about what actions would be performed given
the specified options and dump files, including any errors that would
be returned based on the dump contents, but do not proceed with
the import. The defaultis f al se.

Setting this option to a value greater than 0 activates concurrent
loading of the dump while it is still being produced. The value is

a timeout (in seconds) for which the utility waits for further data
after all uploaded data chunks in the dump location have been
processed. This allows the utility to import the dump while it is still
in the process of being created. Data is processed as it becomes
available, and the import stops when the timeout is exceeded with
no further data appearing in the dump location. The default setting,
0, means that the utility marks the dump as complete when all
uploaded data chunks have been processed and does not wait for
more data. With the default setting, concurrent loading is disabled.

The target schema into which a dump produced by MySQL Shell's
dump utilities must be loaded.

If the schema does not exist, it is created, and the dump is loaded to
that new schema. If the new schema name differs from the schema
name in the dump, the dump is loaded to the new schema, but no
changes are made to the loaded data. That is, any reference to the
old schema name remains in the data. All stored procedures, views,
and so on, refer to the original schema, not the new one.

This load option is supported for single schema dumps, or for
filtering options which result in a single schema.

The number of parallel threads to use to upload chunks of data to
the target MySQL instance. Each thread has its own connection to
the MySQL instance. The default is 4. if the dump was created with
chunking enabled (which is the default), the utility can use multiple
threads to load data for a table; otherwise a thread is only used for
one table.

The number of threads in the pool of background threads used to
fetch the contents of files. The default is the value of the t hr eads
option for a dump loaded from the local server, or four times the
value of the t hr eads option for a dump loaded from a non-local
server.

Specifies the path to a local progress state file for tracking load
progress. Other values are permitted depending on the type of load
operation;

When loading a dump from local storage:

378

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Options for Load Control

showProgress: [true |

fal se]

reset Progress: [true |

fal se]

ski pBi nl og:
fal se]

[true |

e The progressFi | e option may be omitted. In this case,
a progress state file named | oad- pr ogr ess- server -
uui d. j son is automatically created in the dump directory.

e The progressFi | e option can be set to an empty string to
disable progress state tracking, which means that the dump
loading utility cannot resume a partially completed import.

When loading a dump from OCI Object Storage using a pre-
authenticated request (PAR), the pr ogr essFi | e option is
mandatory.

« If the load operation is performed using a bucket or prefix PAR,
set the pr ogr essFi | e option to the path of a local progress
state file.

« If the load operation is performed using a manifest file PAR, set
the pr ogr essFi | e option to the path of a local progress state
file or specify a write PAR for a progress state file residing in the
same location as the manifest file.

If a local progress state file or a valid write PAR is specified but the
progress state file does not exist, the file will be created.

Display (t r ue) or hide (f al se) progress information for the import.
The defaultis t r ue if st dout is a terminal (t t y), such as when
MySQL Shell is in interactive mode, and f al se otherwise. The
progress information includes the number of active threads and their
actions, the amount of data loaded so far, the percentage complete
and the rate of throughput. When the progress information is not
displayed, progress state is still recorded in the dump loading utility's
progress state file.

Setting this option to t r ue resets the progress state and starts the
import again from the beginning. The default is f al se. Note that
with this option, the dump loading utility does not skip objects that
were already created and does not manage reduplication. If you
want to use this option, to ensure a correct import, you must first
manually remove from the target MySQL instance all previously
loaded objects, including schemas, tables, users, views, triggers,
routines, and events from that dump. Otherwise, the import stops
with an error if an object in the dump files already exists in the
target MySQL instance. With appropriate caution, you may use
the i gnor eExi sti ngOhj ect s option to make the utility report
duplicate objects but skip them and continue with the import.

Skips binary logging on the target MySQL instance for the
sessions used by the utility during the course of the import,

by issuing a SET sql | og_bi n=0 statement. The default is

f al se, so binary logging is active by default. For HeatWave
Service DB System, this option is not used, and the import stops
with an error if you attempt to set it to t r ue. For other MySQL
instances, always set ski pBi nl og tot r ue if you are applying the
gtid_execut ed GTID set from the source MySQL instance on the
target MySQL instance, either using the updat eG i dSet option
or manually. When GTIDs are in use on the target MySQL instance
(gt i d_node=0ON), setting this option to t r ue prevents new GTIDs
from being generated and assigned as the import is being carried
out, so that the original GTID set from the source server can be

379

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed

Options for Load Control

i gnoreVersion: [true |
fal se]

dr opExi sti ngQbj ect s:
[true | false]

i gnor eExi stingChj ect s:
[true | false]

used. The user account must have the required permissions to set
the sql _| og_bi n system variable.

Import the dump even if the major version number of the MySQL
instance from which the data was dumped is non-consecutive to the
major version number of the MySQL instance to which the data will
be uploaded. The default is f al se, meaning that an error is issued
and the import does not proceed if the major version number is non-
consecutive. When this option is setto t r ue, a warning is issued
and the import proceeds. Note that the import will only be successful
if the schemas in the dump files have no compatibility issues with
the new major version.

Note
@ i gnor eVer si on is not required for copying

between consecutive major versions, such
as 8.0to 8.1.

Before attempting an import using the i gnor eVer si on

option, use MySQL Shell's upgrade checker utility

checkFor Ser ver Upgr ade() to check the schemas on the source
MySQL instance. Fix any compatibility issues identified by the utility
before dumping the schemas and importing them to the target
MySQL instance.

The default value is false.
Import the dump even if it contains user accounts or DDL objects
that already exist in the target database. If this option is set to false,

any existing object results in an error. Setting it to true drops existing
user accounts and objects before creating them.

Note
3 Schemas are not dropped.

Note
3 It is not possible to enable

dr opExi sti ngQbj ect s if
i gnor eExi sti ngObj ect s is enabled, or if
| oadDdl is disabled.

Import the dump even if it contains objects that already exist in

the target schema in the MySQL instance. The defaultis f al se,
meaning that an error is issued and the import stops when a
duplicate object is found, unless the import is being resumed from
a previous attempt using a progress state file, in which case the
check is skipped. When this option is set to t r ue, duplicate objects
are reported but no error is generated and the import proceeds.
This option should be used with caution, because the utility does
not check whether the contents of the object in the target MySQL
instance and in the dump files are different, so it is possible for the
resulting import to contain incorrect or invalid data. An alternative
strategy is to use the excl udeTabl es option to exclude tables that
you have already loaded where you have verified the object in the
dump files is identical with the imported object in the target MySQL

380

Options for Load Control

instance. The safest choice is to remove duplicate objects from the
target MySQL instance before restarting the dump.

This option also permits the import of a dump created without the
use of the oci nds option into a HeatWave Service instance.

Note
@ It is not possible to enable

i gnor eExi stingQhj ects if
dr opExi sti ngObj ect s is enabled.

handl eGrant Errors: The action taken in the event of errors related to GRANT or REVOKE
abort | drop_account | errors.
i gnore

e abort : (default) stops the load process and displays an error.

e drop_account : deletes the account and continues the load
process.

* i gnor e: ignores the error and continues the load process.

characterSet: "string" The character set to be used for the import to the target MySQL
instance, for example in the CHARACTER SET option of the LOAD
DATA statement. The default is the character set given in the dump
metadata that was used when the dump was created by MySQL
Shell's instance dump utility, schema dump utility, or table dump
utility, which default to using ut f 8nb4. The character set must be
permitted by the char act er _set _cl i ent system variable and
supported by the MySQL instance.

maxByt esPer Tr ansact i on: The maximum number of bytes that can be loaded from a data
nunber file in a single LOAD DATA statement. If a data file exceeds
the maxByt esPer Tr ansact i on value, multiple LOAD DATA
statements load data from the file in chunks less than or equal to the
nmaxByt esPer Tr ansact i on value.

The unit suffixes k for kilobytes, Mfor megabytes, and Gfor
gigabytes can be used. The minimum value is 4096 bytes. If

a lesser value is specified, the 4096 byte minimum is used
implicitly. If the naxByt esPer Tr ansact i on option is unset, the
byt esPer Chunk value used to dump the data is used as the
default setting for files larger than 1.5 * the byt esPer Chunk value.
If the maxByt esPer Tr ansact i on option is unset and the data file
is less than 1.5 * the byt esPer Chunk value, the data is requested
in a single LOAD DATA statement.

If a data file contains a row that is larger than the

maxByt esPer Tr ansact i on setting, the row's data is requested in
a single LOAD DATA statement. A warning is emitted for the first row
encountered that exceeds the maxByt esPer Tr ansact i on setting.

If a load operation with a configured naxByt esPer Tr ansacti on
setting is interrupted and resumes execution, chunks that were
already loaded are skipped. The resumed load operation uses the
current maxByt esPer Tr ansact i on setting. The setting used

381

https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html

Options for Load Content

before the operation was interrupted is not saved to the progress
state file.

An intended use for this option is to load data in smaller

chunks when a data file is too large for the target

server's limits, such as the limits defined by the server's
group_replication_transaction_size limt or

max_bi nl og_cache_si ze settings. For example, If you

receive the error " MSQL Error 1197 (HYO00): Multi-
statenment transaction required nore than
"max_binl og cache_size' hytes of storage" when
loading data, set naxByt esPer Tr ansact i on to a value less
than or equal to the server instance’s max_bi nl og_cache_si ze

setting.
sessionlnitSqgl: |ist of A list of SQL statements to run at the start of each client session
strings used for loading data into the target MySQL instance. You can use

this option to change session variables. For example, the following
statements skip binary logging on the target MySQL instance for
the sessions used by the utility during the course of the import, and
increase the number of threads available for index creation:

sessionlnitSQ.: ["SET SESSI ON sqgl _| og_bi n=0; ", "SET SESSI ON i nnodb_ddl _t hre

If an error occurs while running the SQL statements, the import
stops and returns an error message.

Options for Load Content

| oadl ndexes: [true | Create (t r ue) or do not create (f al se) secondary indexes for

fal se] tables. The default is t r ue. When this option is setto f al se,
secondary indexes are not created during the import, and you
must create them afterwards. This can be useful if you are
loading the DDL files and data files separately, and if you want to
make changes to the table structure after loading the DDL files.
Afterwards, you can create the secondary indexes by running the
dump loading utility again with | oadl ndexes settotrue and
def er Tabl el ndexes setto al | .

MySQL Shell utilizes MySQL Server's parallel index creation.
Previously, the dump loading utilities added indexes sequentially,
one at a time. As of this release, all indexes in a table are added
simultaneously.

See Configuring Parallel Threads for Online DDL Operations for
restrictions and configuration.

def er Tabl el ndexes: [of f Deferthe creation of secondary indexes until after the table data

| fulltext | all] is loaded. This can reduce loading times. of f means all indexes
are created during the table load. The default setting f ul | t ext
defers full-text indexes only. al | defers all secondary indexes and
only creates primary indexes during the table load, and also indexes
defined on columns containing auto-increment values.

anal yzeTabl es: [off | Execute ANALYZE TABLE for tables when they have been loaded.

on | histogram] on analyzes all tables, and hi st ogr amanalyzes only tables that
have histogram information stored in the dump. The default is of f .
You can run the dump loading utility with this option to analyze the
tables even if the data has already been loaded.

382

https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_transaction_size_limit
https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size
https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size
https://dev.mysql.com/doc/refman/9.4/en/online-ddl-parallel-thread-configuration.html

Options for Load Content

checksum

[true| fal se]

showMet adata: [true |

fal se]

update& i
append |

dSet: [off
repl ace |

If enabled, the | oadDunp utility checks the checksum data
generated by the dump utility after the corresponding data is
loaded. The verification is limited to data which was dumped,
ignoring generated data such as invisible primary keys added by the
loadDump utility.

Errors are returned if a checksum does not match or if a table is
missing and cannot be verified.

If checksum true but no data was loaded, either due to

| oadDat a: f al se or no data being dumped, the utility verifies the
dump's checksum information against the current contents of the
affected tables.

« If a table does not exist, an error is displayed for each missing
table.

e Ifchecksum true anddryRun: true,the checksum is not
verified. A message is displayed stating that no verification took
place.

Prints the gt i d_execut ed GTID set and the binary log file

name and position from the source instance, taken from the

dump metadata included with dumps produced by MySQL Shell's
instance dump utility, schema dump utility, or table dump utility. The
metadata is printed in YAML format.

The gti d_execut ed GTID set is always included in the dump

as the gt i dExecut ed field in the @ j son dump file. The dump
loading utility does not automatically apply the gt i d_execut ed
GTID set from the source MySQL instance on the target MySQL
instance. To apply these GTIDs on the target MySQL instance for
use with replication, use the updat eG i dSet option or import them
manually, depending on the release of the target MySQL instance.
This is also supported on HeatWave Service DB System instances.
See the description of the updat eG i dSet option for details.

The binary log file name and position are included provided

that the user account used to run the dump utility had the

REPLI CATI ON CLI ENT privilege. The binary log file name and
position can be used to set up replication from a source server

that does not have GTIDs enabled and does not use GTID-

based replication, to a replica that has GTIDs enabled, using the
ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS option of the
CHANGE REPLI CATI ON SOURCE TOstatement (which is available
from MySQL Server 8.0.23).

Apply the gt i d_execut ed GTID set from the source MySQL
instance, as recorded in the dump metadata, to the gt i d_pur ged
GTID set on the target MySQL instance. The gti d_pur ged GTID
set holds the GTIDs of all transactions that have been applied on
the server, but do not exist on any binary log file on the server. The
default is of f , meaning that the GTID set is not applied.

Do not use this option for a dump produced by MySQL Shell's table
dump utility, only for dumps produced by MySQL Shell's instance

383

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged

Options for Load Content

dump utility or schema dump utility. Also, do not use this option
when Group Replication is running on the target MySQL instance.

For MySQL instances that are not HeatWave Service DB System
instances, when you set append or r epl ace to update the GTID
set, also set the ski pBi nl og optionto t r ue. This ensures the
GTIDs on the source server match the GTIDs on the target server.
For HeatWave Service DB System instances, this option is not
used.

For a target MySQL instance from MySQL 8.0, you can set the
option to append, which appends the gt i d_execut ed GTID set
from the source MySQL instance to the gt i d_pur ged GTID set on
the target MySQL instance. The gt i d_execut ed GTID set to be
applied, which is shown in the gt i dExecut ed field inthe @ j son
dump file, must not intersect with the gt i d_execut ed set already
on the target MySQL instance. For example, you can use this option
when importing a schema from a different source MySQL instance
to a target MySQL instance that already has schemas from other
source servers.

You can also use r epl ace for a target MySQL instance from
MySQL 8.0, to replace the gt i d_pur ged GTID set on the target
MySQL instance with the gt i d_execut ed GTID set from the
source MySQL instance. To do this, the gt i d_execut ed GTID
set from the source MySQL instance must be a superset of the
gti d_purged GTID set on the target MySQL instance, and

must not intersect with the set of transactions in the target's
gtid_execut ed GTID set that are notinitsgti d_pur ged GTID
set.

For a target MySQL instance at MySQL 5.7, set the option to
repl ace, which replaces the gt i d_pur ged GTID set on the
target MySQL instance with the gt i d_execut ed GTID set

from the source MySQL instance. In MySQL 5.7, to do this the
gtid executedandgtid purged GTID sets on the target
MySQL instance must be empty, so the instance must be unused
with no previously imported GTID sets.

For HeatWave Service DB System, this method is not supported.

To apply the GTID set, after the import, use MySQL Shell's \ sql
command (or enter SQL mode) to issue the following statement on
the connected MySQL instance, copying the gt i d_execut ed GTID
set from the gt i dExecut ed field in the @ j son dump file in the
dump metadata:

shel |l -js> \sql SET @aLOBAL. gti d_purged= "+gti dExecuted_set";

This statement, which works from MySQL 8.0, adds the source
MySQL Server instance's gt i d_execut ed GTID set to the target
MySQL instance's gt i d_pur ged GTID set. For MySQL 5.7,

the plus sign (+) must be omitted, and the gt i d_execut ed and
gti d_purged GTID sets on the target MySQL instance must be
empty. For more details, see the description of the gti d_pur ged
system variable in the release of the target MySQL instance.

creat el nvi si bl ePKs: Add primary keys in invisible columns for each table in
[true | false] the dump that does not contain a primary key. The t r ue
setting is applied automatically if the dump was created with

384

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged

Options for HeatWave Service and Oracle Cloud Infrastructure

the creat e_i nvi si bl e_pks option by MySQL Shell’'s

instance dump utility ut i | . dunpl nst ance(), schema

dump utility uti | . dunpSchemas(), or table dump utility
util.dunpTabl es(). The primary keys are only added if the DDL
for the dump is loaded (| oadDdl : true). The invisible columns
(which are named "my_r ow_i d") have no impact on applications
that use the uploaded tables.

When cr eat el nvi si bl ePKs is settot r ue, the target MySQL
instance must be MySQL Server 8.0.24 or later, or the load fails.
Invisible columns are available from MySQL Server 8.0.23, but a
limitation on them in that release prevents the use of this function.

Adding primary keys in this way does not yet enable inbound
replication of the modified tables to a HeatWave Service High
Availability DB System, as that feature currently requires the primary
keys to exist in both the source server and the replica server. If
possible, instead of using this option, consider creating primary
keys in the tables on the source server, before dumping them again.
From MySQL 8.0.23, you can do this with no impact to applications
by using invisible columns to hold the primary keys. This is a best
practice for performance and usability, and helps the dumped
database to work seamlessly with HeatWave Service.

Options for HeatWave Service and Oracle Cloud Infrastructure

osBucket Nane: "string"

osNanespace: "string"

oci ConfigFile: "string"

oci Profile: "string"

oci Aut h:"string"

The name of the Oracle Cloud Infrastructure Object Storage bucket
where the dump files are located. By default, the [DEFAULT]

profile in the Oracle Cloud Infrastructure CLI configuration file
located at ~/ . oci / confi g is used to establish a connection to the
bucket. You can substitute an alternative profile to be used for the
connection with the oci Conf i gFi | e and oci Profi | e options.
For instructions to set up a CLI configuration file, see SDK and CLI
Configuration File.

The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

The authentication method to use when connecting to Oracle Cloud
Infrastructure. This option requires osBucket Nane is configured
with a valid value.

The following options are available:

e api _key: OCI connections use the OCI configuration file. See
Section 4.8.1, “Oracle Cloud Infrastructure Object Storage”.

385

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Options for S3-compatible Services

If osBucket Nane is defined with a valid value, but oci Aut h is
not defined, api _key is the default value used.

e instance_princi pal : OCI connections use instance principal
authentication. See Instance Principal Authentication.

This option can not be used if oci Confi gFi | e oroci Profile
are defined.

e resource_princi pal : OCI connections use resource principal
authentication. See Resource Principal Authentication.

This option can not be used if oci Confi gFil e oroci Profile
are defined.

e security_token: OCI connections use a temporary, generated
session token. See Session Token-Based Authentication.

Options for S3-compatible Services

MySQL Shell supports loading dumps stored in S3-compatible buckets, such as Amazon Web Services

(AWS) S3.

Note

@ MySQL Shell supports AWS S3 configuration in command line options,
environment variables, and configuration files. Command line options override
environment variables, configuration files, and default options.

For information on configuration requirements, see Section 4.8, “Cloud Service

Configuration”.

s3Bucket Name: "string"

s3Credenti al sFi |l e:
"string"

s3ConfigFile: "string"

s3Profile: "string"

s3Regi on: "string"

s3Endpoi nt Overri de:
"string"

The name of the S3 bucket where the dump files are located. By
default, the def aul t profile in the Amazon Web Services (AWS)
ClLIconfigandcredenti al s files located at ~/ . aws/ are used
to establish a connection to the S3 bucket. You can substitute
alternative configurations and credentials for the connection with
the s3Confi gFi | e and s3Cr edent i al sFi | e options. For
instructions on installing and configuring the AWS CLI, see Getting
started with the AWS CLI.

A credentials file that contains the user's credentials to use

for the connection, instead of the one in the default location,

~/ . aws/ cr edent i al s. Typically, the credentials file contains the
aws_access_key idandaws_secret _access_key to use for
the connection.

An AWS CLI configuration file that contains the profile to use for
the connection, instead of the one in the default location ~/ . aws/
confi g. Typically, the config file contains the region and output
type to use for the connection.

The profile name of the s3 CLI profile to use for the connection,
instead of the def aul t profile in the AWS CLI configuration file
used for the connection.

The name of the region to use for the connection.

The URL of the endpoint to use instead of the default.

386

https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_instance_principaldita
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_resource_principal
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_session_token
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Options for Microsoft Azure Blob Storage

When connecting to the Oracle Cloud Infrastructure S3

compatibility API, the endpoint takes the following format:

htt ps:// namespace. conpat . obj ect st or age. r egi on. or acl ecl ouc
Replace nanespace with the Object Storage namespace and

r egi on with your region identifier. For example, the region identifier

for the US East (Ashburn) region is us- ashbur n- 1.

For a namespace named axaxnpcrorw5 in the US East (Ashburn)
region:

htt ps:// axaxnpcrorwbs. conpat . obj ect st or age. us-
ashbur n-1. or acl ecl oud. com

The following example shows the load of a MySQL dump from a folder, t est , in an AWS S3 bucket,
Bucket 001, :

util .l oadDunp("test", {s3Bucket Name: "Bucket 001", threads: 4})

The following example shows the load of a MySQL dump from a prefix, t est, in an Object Storage
bucket, Bucket 001, using a configuration profile, oci , and the s3Endpoi nt Over ri de to direct the
connection to the OCI endpoint of the required tenancy and region:

util .l oadDunp("test", {s3Bucket Name: "Bucket 001",
s3Endpoi nt Override: "https://axaxnpcrorws. conpat . obj ect st or age. us- ashburn- 1. or acl ecl oud. cont',
s3Profile: "oci", threads: 4})

Options for Microsoft Azure Blob Storage

MySQL Shell supports loading from Microsoft Azure Blob Storage.

Note

@ MySQL Shell supports Microsoft Azure Blob Storage configuration in command
line options, environment variables, and configuration files. Command line
options override environment variables, and configuration files.

For information on configuration requirements and the order of precedence of
the configuration types, see Section 4.8, “Cloud Service Configuration”.

azur eCont ai ner Nane: Mandatory. The name of the Azure container from which the dump
"string" is to be loaded. The container must exist.
azureConfigFile: Optional. A configuration file that contains the storage connection
"string" parameters, instead of the one in the default location, such as
~/ . azur e/ confi g. If this is not defined, the default configuration
file is used.

azur eCont ai ner Name must be defined, and not be empty.

azur eSt or ageAccount : Optional. The name of the Azure storage account to use for the
"string" operation.

azur eSt or ageSasToken: Optional. Azure Shared Access Signature (SAS) token to be used
"string" for the authentication of the operation, instead of a key.

387

Options for Filtering

In the following example, the configuration uses a configuration string for the connection parameters,
which means the dump command only requires the azur eCont ai ner Nane.

Example confi g file:

[cl oud]
nane = AzureC oud

[st orage]

connecti on_stri ng=al phanuneri cConnecti onStri ng

Example | oadDunp command, which imports the contents of a folder named pr ef i x1, in a container
named nysql shel | azur e, to the connected MySQL instance:

util .l oadDunp("prefix1",

Options for Filtering
| oadDdl : [true |

fal se]

| oadData: [true
fal se]

| oadUsers: [true |
fal se]

excl udeUsers: array of
strings

i ncl udeUsers: array of
strings

{azur eCont ai ner Nane: "nysql shel | azure", threads: 4})

Setting this option to f al se excludes the DDL files in the dump
from the load. The default is t r ue, meaning that the DDL files are
loaded.

Setting this option to f al se excludes the data files in the dump
from the load. The default is t r ue, meaning that the data files are
loaded.

Import (t r ue) or do not import (f al se) users and their roles and
grants into the target MySQL instance. The defaultis f al se, so
users are not imported by default. Statements for the current user
are skipped. If a user already exists in the target MySQL instance,
an error is returned and the user's grants from the dump files are not
applied. You can use the excl udeUser s ori ncl udeUser s option
in the dump loading utility to specify user accounts to be excluded or
included in the import.

MySQL Shell's schema dump utility and table dump utility do
not include users, roles, and grants in a dump, but the instance
dump utility can, and does by default. The excl udeUser s and
i ncl udeUser s options can also be used in the instance dump
utility to exclude or include named user accounts from the dump
files.

If you specify t r ue but the supplied dump files do not contain user
accounts, the utility returns a warning and continues.

Exclude the named user accounts from the import. You can use
it to exclude user accounts that are not accepted for import to

a HeatWave Service DB System, or that already exist or are
not wanted on the target MySQL instance. Specify each user
account string in the format "' user _nane' @ host _nane
an account that is defined with a user name and host name, or
"'user_nane'" for an account that is defined with a user name
only. If you do not supply a host name, all accounts with that user
name are excluded.

for

Include only the named user accounts in the import. Specify each
user account string as for the excl udeUser s option. You can use it
as an alternative to excl udeUser s if only a few user accounts are
required in the target MySQL instance. You can also specify both
options to include some accounts and exclude others.

388

Options for Filtering

excl udeSchenas:
strings

i ncl udeSchenas:
strings

excl udeTabl es:
strings

i ncl udeTabl es:
strings

excl udeEvent s:
strings

i ncl udeEvent s:
strings

excl udeRout i nes
of strings

i ncl udeRout i nes:

of strings

excl udeTri ggers:

of strings

i ncl udeTri ggers:

of strings

array of

array of

array of

array of

array of

array of

©oarray

array

array

array

i ncl udeLi braries: array

of strings

Exclude the named schemas from the import. Note

that the i nf or mat i on_schenm, nysql , ndbi nf o,

per for mance_schenm, and sys schemas are always excluded
from a dump that is created by MySQL Shell's instance dump utility.

Load only the named schemas from the dump files. You can specify
both options to include some schemas and exclude others.

Exclude the named tables from the import, so that they are

not uploaded to the target MySQL instance. Table names

must be qualified with a valid schema name, and quoted with

the backtick character if needed. Note that the data for the

nysql . appl y_st at us, nysql . general _| og, mysqgl . schens,
and mysqgl . sl ow | og t abl es is always excluded from a dump
created by MySQL Shell's schema dump utility, although their DDL
statements are included.

Load only the named tables from the dump files. Table names must
be qualified with a valid schema name, and quoted with the backtick
character if needed. You can specify both options to include some
tables and exclude others.

Exclude the named events from the import. Names of events must
be qualified with a valid schema name, and quoted with the backtick
character if needed.

Load only the named events from the dump files. Event names must
be qualified with a valid schema name, and quoted with the backtick
character if needed.

Exclude the named functions and stored procedures from the
import. Names of routines must be qualified with a valid schema
name, and quoted with the backtick character if needed.

Load only the named functions and stored procedures from the
dump files. Names of routines must be qualified with a valid schema
name, and quoted with the backtick character if needed.

Exclude the named triggers from the import. Names of triggers
must be qualified with a valid schema name and table name
(schema. t abl e. trigger), and quoted with the backtick
character if needed. You can exclude all triggers for a specific
table by specifying a schema name and table name with this option
(schema. t abl e).

Load only the named triggers from the dump files. Names of
triggers must be qualified with a valid schema name and table
name (schena. t abl e. tri gger), and quoted with the backtick
character if needed. You can include all triggers for a specific table
by specifying a schema name and table name with this option
(schena. t abl e).

List of library objects to be loaded from the dump, in the format
schena. | i brary. By default, all library objects are loaded.

For example:

"includeLibraries": ["“sakila . libraryl’", "“sakila .’

See Using JavaScript Libraries for information on libraries.

389

https://dev.mysql.com/doc/refman/9.4/en/srjs-libraries.html

Generated Invisible Primary Key Mode

excludeLi braries: array Listof library objects to be loaded from the dump, in the format
of strings schema. library.

For example:

"excludeLibraries": ["“sakila . libraryl'", "“sakila . libr

Generated Invisible Primary Key Mode

MySQL Server 8.0.30 introduced GIPK mode, Generated Invisible Primary Keys. When running in
this mode, for any InnoDB table that is created without an explicit primary key, the MySQL server
automatically adds a generated invisible primary key (GIPK) to the table. This mode is enabled by
setting sql _generate_invisible prinmary key to ON.

MySQL Shell's load utility option cr eat el nvi si bl ePKs uses the server's GIPK mode to generate
invisible primary keys for tables which do not have primary keys.

Under certain circumstances, if a user has insufficient privileges to use GIPK mode, MySQL Shell can
fall back to the previous method of generating invisible primary keys.

If creat el nvi si bl ePKs: fal se and sql _generate_i nvi si bl e_primary_key=0FF, primary
keys are not generated for any table loaded from the dump.

If creat el nvi si bl ePKs: fal se andsql _generate_invisible primry_key=0N, MySQL
Shell attempts to set sql _generate_i nvi si bl e_pri mary_key=0FF. If the change is successful,
primary keys are not generated for any table loaded from the dump.

If creat el nvi si bl ePKs: true and sql _generate_invisible primry_key=0FF, MySQL
Shell attempts to set sql _generate_invi si bl e _primary_key=0N. If the change is successful,
primary keys are generated for every table without primary keys loaded from the dump.

If createl nvisi bl ePKs: true and sql _generate_invisi bl e_primary_key=0N, primary keys
are generated for every table loaded using the MySQL Server GIPK mode.

If the user running the MySQL Shell load utility does not have the required MYSQL Server privileges,
the attempt to set sql _generat e_i nvi si bl e_pri mary_key fails. If the attempt fails and

creat el nvi si bl ePKs: t rue, MySQL Shell generates the invisible primary keys for any table which
does not have them.

If the GIPK server option, sql _generate_i nvisible_primary_key is enabled and the
MySQL Shell load utility option cr eat el nvi si bl ePKs is disabled, and the user does not have
the required privileges to change sql _generate_invi si bl e_pri mary_key, an erroris
generated and the load fails. It is possible to override this behavior by enabling the MySQL Shell
environment variable, MYSQLSH ALLOW ALWAYS @ PK. This environment variable overrides
creat el nvi si bl ePKs: f al se, enabling invisible private keys on all loaded tables, if the

sql _generate_invisible_ primry_key is enabled.

If the MySQL Shell load utility option cr eat el nvi si bl ePKs is enabled, but the GIPK server

option, sql _generate_invi si bl e_primary_key is disabled, MySQL Shell attempts to enable

sql _generate_invisible primary_key. If the user has the appropriate privileges on the target
MySQL server, sql _generate_invisible_primary_key is enabled, and the load utility uses the
server's GIPK mode to create the invisible primary keys on the loaded tables. If the user does not have
the required privileges, such as on HeatWave Service, MySQL Shell falls back to the previous behavior
and creates the primary keys on the table without using the server's GIPK mode.

Modifying Dumped Data
MySQL Shell's parallel table import utility ut i | . i nport Tabl e() can be used in combination with the

dump loading utility uti | . | cadDunp() to modify data in the chunked output files before uploading it
to the target MySQL instance. You can modify the data for one table at a time by this method.

390

https://dev.mysql.com/doc/refman/9.4/en/create-table-gipks.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_sql_generate_invisible_primary_key

Utility Error Messages

1. Use the dump loading utility with the | cadDdl : true and | oadDat a: f al se options, to load the
DDL file only, and create the selected table on the target MySQL instance with no data.
shell -js> util.|oadDunp("/ mt/data/proddunp", {
> includeTabl es: ["product.pricing"],

> | oadDdl : true,
> | oadData: false});

2. Use the parallel table import utility to capture and transform the data for the table, and import it to
the empty table on the target MySQL instance. In this example, the data for the pri ci ng table is in
multiple compressed files, which are specified using wildcard pattern matching. The values from the
i d and pr odnane columns in the dump files are assigned unchanged to the same columns in the
target table. The values from the pri ce column in the dump files are captured and assigned to the
variable @.. The decodeCol unms option is then used to reduce the prices by a standard amount,
and the reduced prices are placed in the pri ce column of the target table.

shell-js> util.inportTable ("/mt/datal/proddunp/ product @ricing@.zst", {
> schema: "product",
> table: "pricing",
> colums: ["id", "prodnanme", 1],
> decodeCol ums: { "price": "0.8 * @"}});

3. Repeat Steps 1 and 2 as needed for any other tables in the dump files where you need to modify
the data.

4. When you have finished uploading all the tables and data that needed to be modified, use the dump
loading utility to load both the DDL and the data for any remaining tables that you do not need to
modify. Be sure to exclude the tables that you did modify in the previous steps.

shel |l -js> util.| oadDunp("/ mt/data/ proddunp", {excludeTables: ["product.pricing"]});
Utility Error Messages

Error numbers in the range 53000-53999 are specific to MySQL Shell's dump loading utility
util .l oadDunmp() . The following errors might be returned:

» Error number: 53000; Symbol: SHERR LOAD MANI FEST_EXPI RED PARS
Message: The PARs in the manifest file have expired, the expiration time was set to: %s
« Error number: 53001; Symbol: SHERR LOAD MANI FEST_PAR M SNATCH
Message: The provided PAR must be a file on the dump location: '%s'
e Error number: 53002; Symbol: SHERR LOAD SPLI TTI NG DDL_FAI LED
Message: Error splitting DDL script for table %s: %s
« Error number: 53003; Symbol: SHERR LOAD SECONDARY ENG NE_ERROR
Message: The table %s has a secondary engine set, but not all indexes have been recreated
» Error number: 53004; Symbol: SHERR _LOAD FAI LED TO DI SABLE BI NLOG
Message: 'SET sql_log_bin=0' failed with error: %s
« Error number: 53005; Symbol: SHERR LOAD WORKER THREAD FATAL ERROR
Message: Error loading dump
e Error number: 53006; Symbol: SHERR LOAD UNSUPPORTED DUMP_VERSI ON
Message: Unsupported dump version

 Error number: 53007; Symbol: SHERR_LOAD_UNSUPPORTED_DUVP_CAPABI LI Tl ES

391

Utility Error Messages

Message: Unsupported dump capabilities

Error number: 53008; Symbol: SHERR LQOAD | NCOVPLETE_DUMP

Message: Incomplete dump

Error number: 53009; Symbol: SHERR_LOAD UNSUPPORTED SERVER VERSI ON
Message: Loading dumps is only supported in MySQL 5.7 or newer

Error number: 53010; Symbol: SHERR _LOAD DUVP_NOT _MDS_COVPATI BLE

Message: Dump is not MDS compatible

Error number: 53011; Symbol: SHERR LOAD SERVER VERSI ON_M SNVATCH

Message: MySQL version mismatch

Error number: 53012; Symbol: SHERR_LOAD UPDATE _GTI D_GR | S _RUNNI NG
Message: The updateGtidSet option cannot be used on server with group replication running.
Error number: 53013; Symbol: SHERR _LQOAD UPDATE_GTI D_APPEND NOT _SUPPORTED
Message: Target MySQL server does not support updateGtidSet:'append'.

Error number: 53014; Symbol: SHERR LOAD UPDATE GTI D REQUI RES SKI P_BI NLOG

Message: The updateGtidSet option on MySQL 5.7 target server can only be used if the skipBinlog
option is enabled.

Error number: 53015; Symbol:
SHERR_LOAD_UPDATE_GTI D_REPLACE_REQUI RES_EMPTY_VARI ABLES

Message: The updateGtidSet:'replace’ option can be used on target server version only if
GTID_PURGED and GTID_EXECUTED are empty, but they are not.

Error number: 53016; Symbol: SHERR LOAD UPDATE GTI D REPLACE SETS | NTERSECT

Message: The updateGtidSet:'replace’ option can only be used if
gtid_subtract(gtid_executed,gtid_purged) on target server does not intersect with the dumped GTID
set.

Error number: 53017; Symbol: SHERR_LOAD_UPDATE_GTI D_REPLACE_REQUI RES_SUPERSET

Message: The updateGtidSet:'replace’ option can only be used if the dumped GTID set is a superset
of the current value of gtid_purged on target server.

Error number: 53018; Symbol: SHERR_LOAD UPDATE_GTI D_APPEND_SETS_| NTERSECT

Message: The updateGtidSet:'append' option can only be used if gtid_executed on target server
does not intersect with the dumped GTID set.

Error number: 53019; Symbol: SHERR_LOAD | NVI SI BLE_PKS_UNSUPPORTED_SERVER VERSI ON
Message: The 'createlnvisiblePKs' option requires server 8.0.24 or newer.

Error number: 53020; Symbol: SHERR LOAD REQUI RE_PRI MARY KEY ENABLED

Message: sqgl_require_primary_key enabled at destination server

Error number: 53021; Symbol: SHERR LOAD_DUPL| CATE_OBJECTS_FOUND

392

Binary Log Dumping and Loading Utilities

Message: Duplicate objects found in destination database

e Error number: 53022; Symbol: SHERR LOAD DUMP_WAI T_TI MEQUT
Message: Dump timeout

* Error number: 53023; Symbol: SHERR_LQAD | NVALI D METADATA FI LE
Message: Invalid metadata file %s

» Error number: 53024; Symbol: SHERR_LOAD_PARSI NG_METADATA_FI LE_FAI LED
Message: Could not parse metadata file %s: %s

* Error number: 53025; Symbol: SHERR_LOAD LOCAL_| NFI LE_DI SABLED
Message: local_infile disabled in server

» Error number: 53026; Symbol: SHERR LOAD PROGRESS Fl LE ERROR
Message: Error loading load progress file '%s'": %s

* Error number: 53027; Symbol: SHERR_LOAD PROGRESS FI LE_UUI D M SNVATCH
Message: Progress file was created for a server with UUID %s, while the target server has UUID: %s

e Error number: 53028; Symbol: SHERR LOAD NMANI FEST UNKNOWN_ OBJECT
Message: Unknown object in manifest: %s

* Error number: 53029; Symbol: SHERR _LOAD CORRUPTED DUVP_M SSI NG_METADATA
Message: Dump directory is corrupted, some of the metadata files are missing

» Error number: 53030; Symbol: SHERR_LOAD_CORRUPTED_DUVP_M SSI NG_DATA
Message: Dump directory is corrupted, some of the data files are missing

* Error number: 53031; Symbol: SHERR_LOAD CHECKSUM VERI FI CATI ON_FAI LED
Message: Checksum verification failed

Error numbers in the range 54000-54999 are for connection and network errors experienced by
MySQL Shell's dump loading utility uti | . | oadDunp(), or by MySQL Shell's instance dump utility
util.dunpl nstance(), schema dump utility uti | . dunpSchenas(), and table dump utility
util.dunpTabl es().In most cases, the error code matches the HTTP error involved — for example,
error 54404 occurs when the target of a URL is not found (HTTP 404 Not Found). The following errors
might be returned:

» Error number: 54000; Symbol: SHERR DL COVMON_CONNECTI ON_ERROR
Message: %sConnection error: %s.
e Error number: 54100 to 54511; Symbol: SHERR NETWORK [HTTP error nane]

Message: Context-specific message

12.7 Binary Log Dumping and Loading Utilities

The binary log dump and load utilities provide similar features to the mysqlbinlog utility, enabling multi-
threaded dumps of multiple binlogs at once, compression of the dumped data and support for remote
storage.They enable you to apply changes from a source to a target previously loaded with a dump
created with ut i | . dunpl nst ance(), allowing for point-in-time recovery.

393

Dumping Binary Logs

12.7.1 Dumping Binary Logs

This section describes ut i | . dunpBi nl ogs. This utility dumps binary logs generated since a specific
point in time to the given local or remote directory. The starting point can be automatically determined
from a previous dump, either by reusing the same output directory or by using the si nce option, or as
a explicitly specified binlog file and position in the st ar t Fr omoption.

The utility's syntax is:
util.dunpBinl ogs(outputUrl[, options])
out put Ur | : A local file path or cloud storage. If the location specified exists and contains a dump

created by this utility, the snapshot information in that dump is used as the starting point for the binary
log dump.

See Options.

Requirements and Restrictions

Options

» The source instance must have binary logging enabled.
e gti d_nopde must be set to a value other than OFF or OFF_PERM SSI VE.

« If the source instance was started with either - - bi nl og- do- db or - - bi nl og-i gnor e- db, a note
shall be printed.

If another dump is used as the starting point for the binary log dump, an exception is thrown if any of
the following are true:

* The dump is incomplete.

e The dump was created for an instance different from the current source instance and either are not
part of the same InnoDB cluster or the current source instance is not an ONLINE member of that
InnoDB cluster.

» The dump's snapshot information is newer than the current source instance.

» The first binlog file to be dumped does not exist or gt i d_pur ged contains transactions that would
be dumped.

» The dump was created for an instance with different major.minor version than the current source
instance.

» si nce: (string) path or URL to a local or remote directory containing a dump created by
util.dunplnstance() orutil.dunpBinl ogs().The dump must be complete, created by
MySQL Shell 9.2.0 or later, and consistent. If oci nds: t r ue, or any of the compatibility options were
used, an exception is thrown.

Note
@ This option cannot be used with st art Fr om

» start From (string) the position of the binary log file to start dumping from. This value uses the
format bi nary-1og-file[:binary-log-file-position].Wherebinary-log-fileisthe
name of the binary log and bi nary-1o0g-fil e-positi on is an unsigned integer specifying a
position in that file.

394

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#option_mysqld_binlog-do-db
https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#option_mysqld_binlog-ignore-db

Dumping Binary Logs

Note
@ This option cannot be used with si nce.

» i gnoreDdl Changes: (boolean) prints a warning instead of an exception if oci nds: t r ue, or any of
the compatibility options were used in the dump.

Default value is false.

» t hreads: (int) the number of additional threads to use when dumping the binary logs.
Default value is 4.

» dr yRun:(boolean) Prints information about what would be dumped, but does not dump anything.
Default value is false.

e conpression:"string;level =n" The compression type and level of compression to use when
creating the dump files. The following compression options are available:

« none: No compression is applied.

* gzip: Uses the gzip compression library. Compression level can be set from 0 to 9. Default
compression level is 1.

« zstd: Default. Uses the zstd compression library. Compression level can be set from 1 to 22.
Default compression level is 1.

» showPr ogr ess: Display (t r ue) or hide (f al se) progress information for the dump. The default is
true if st dout is aterminal (t t y), such as when MySQL Shell is in interactive mode, and f al se
otherwise.

Options for HeatWave Service and Oracle Cloud Infrastructure

osBucket Nanme: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket
to which the dump is to be written. By default, the [DEFAULT]
profile in the Oracle Cloud Infrastructure CLI configuration file
located at ~/ . oci / confi g is used to establish a connection to the
bucket. You can substitute an alternative profile to be used for the
connection with the oci Confi gFi | e and oci Profi | e options.
For instructions to set up a CLI configuration file, see SDK and CLI
Configuration File.

osNanmespace: "string" The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

oci ConfigFile: "string" AnOracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

oci Profile: "string" The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

oci Aut h:"string" The authentication method to use when connecting to Oracle Cloud
Infrastructure. This option requires osBucket Nane is configured
with a valid value.

395

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Dumping Binary Logs

The following options are available:

* api _key: OCI connections use the OCI configuration file. See
Section 4.8.1, “Oracle Cloud Infrastructure Object Storage”.

If osBucket Nane is defined with a valid value, but oci Aut h is
not defined, api _key is the default value used.

e instance_princi pal : OCI connections use instance principal
authentication. See Instance Principal Authentication.

This option can not be used if oci Confi gFil e oroci Profile
are defined.

e resource_princi pal : OCI connections use resource principal
authentication. See Resource Principal Authentication.

This option can not be used if oci Confi gFil e oroci Profile
are defined.

e security_token: OCI connections use a temporary, generated
session token. See Session Token-Based Authentication.

Options for S3-compatible Services

MySQL Shell supports dumping MySQL data to S3-compatible buckets, such as Amazon Web
Services (AWS) S3.

Note

@ MySQL Shell supports AWS S3 configuration in command line options,
environment variables, and configuration files. Command line options override
environment variables, configuration files, and default options.

For information on configuration requirements, see Section 4.8, “Cloud Service
Configuration”.

s3Bucket Nanme: "string" The name of the S3 bucket to which the dump is to be written. By
default, the def aul t profile of the confi g and credenti al s
files located at ~/ . aws/ are used to establish a connection
to the S3 bucket. You can substitute alternative configurations
and credentials for the connection with the s3Conf i gFi | e and
s3Credenti al sFi | e options. For instructions on installing and
configuring the AWS CLI, see Getting started with the AWS CLI.

s3Credenti al sFil e:"string"A credentials file that contains the user's credentials to use
for the connection, instead of the one in the default location,
~/ . aws/ cr edent i al s. Typically, the credentials file contains the
aws_access_key idandaws_secret _access_key to use for
the connection.

s3ConfigFile: "string" A configuration file that contains the profile to use for the
connection, instead of the one in the default location, such as
~/ . aws/ confi g. Typically, the config file contains the region and
output type to use for the connection.

s3Profile: "string" The profile name of the s3 CLI profile to use for the connection,
instead of the def aul t profile.

s3Regi on: "string" The name of the region to use for the connection.

396

https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_instance_principaldita
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_resource_principal
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_session_token
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Loading Binary Log Dumps

s3Endpoi nt Overri de: The URL of the endpoint to use instead of the default.

"string"
9 When connecting to the Oracle Cloud Infrastructure S3

compatibility API, the endpoint takes the following format:

htt ps:// namespace. conpat . obj ect st or age. r egi on. or acl ecl ouc
Replace nanespace with the Object Storage hamespace and

r egi on with your region identifier. For example, the region identifier

for the US East (Ashburn) region is us- ashbur n- 1.

For a namespace named axaxnpcrorw5 in the US East (Ashburn)
region:

htt ps:// axaxnpcrorwbs. conpat . obj ect st or age. us-
ashbur n- 1. oracl ecl oud. com

Options for Microsoft Azure Blob Storage

MySQL Shell supports dumping to Microsoft Azure Blob Storage.

Note

@ MySQL Shell supports Microsoft Azure Blob Storage configuration in command
line options, environment variables, and configuration files. Command line
options override environment variables, and configuration files.

For information on configuration requirements and the order of precedence of
the configuration types, see Section 4.8, “Cloud Service Configuration”.

azur eCont ai ner Nane: Mandatory. The name of the Azure container to which the dump is
“string" to be written. The container must exist.
azureConfigFil e: Optional. A configuration file that contains the storage connection
"string" parameters, instead of the one in the default location, such as
~/ . azur e/ confi g. If this is not defined, the default configuration
file is used.

azur eCont ai ner Name must be defined, and not be empty.

azur eSt or ageAccount : Optional. The name of the Azure storage account to use for the
"string" operation.

azur eSt or ageSasToken: Optional. Azure Shared Access Signature (SAS) token to be used
"string" for the authentication of the operation, instead of a key.

12.7.2 Loading Binary Log Dumps

This section describes ut i | . | oadBi nl ogs. This utility enables you to load a binary log dump from
local or cloud storage.

The utility's syntax is:

util.loadBinlogs(Ul[, options])
Ur | : Alocal file path or cloud storage. If the location specified exists and contains a dump created by
this utility, the snapshot information in that dump is used as the starting point for the binary log dump.
See Options.
Requirements and Restrictions
The following must be true:

e The directory must contain a dump created by uti | . dunpBi nl ogs() .

397

Loading Binary Log Dumps

Options

The dump must be compatible with the current version of MySQL Shell.
The dump must be finished.
The snapshot information must be contiguous.

The current value of gt i d_execut ed in the target instance must fully contain the value of
gti d_execut ed of the first binary log file to be loaded (in chronological order of GTIDs), ignoring
any extra transactions at the target

i gnor eVer si on: (boolean) Load the dump even if version of the target instance is incompatible
with the version of the source instance the binary logs were dumped from.

Default value is false.

i gnore& i dGap: (boolean) Load the dumps even if the current value of gt i d_execut ed in the
target instance does not fully contain the starting value of gt i d_execut ed of the first binary log file
to be loaded.

Default value is false.

st opBef or e: (string) Stops the load before the specified binary log event is applied. Accepts a
GTID in the following format: UUI O : t ag] : t ransacti on-i d.

st opAf t er: (string) Stops the load after the specified binary log event is applied. Accepts a GTID in
the following format: UUI O : t ag] : t ransacti on-i d.

dr yRun: (boolean) Prints information about what would be loaded, but does not load anything.
Default value is false.

showPr ogr ess: Display (t r ue) or hide (f al se) progress information for the load. The default is
true if st dout is aterminal (t t y), such as when MySQL Shell is in interactive mode, and f al se
otherwise.

Options for HeatWave Service and Oracle Cloud Infrastructure

osBucket Nanme: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket

where the dump files are located. By default, the [DEFAULT]

profile in the Oracle Cloud Infrastructure CLI configuration file
located at ~/ . oci / confi g is used to establish a connection to the
bucket. You can substitute an alternative profile to be used for the
connection with the oci Confi gFi | e and oci Profi | e options.
For instructions to set up a CLI configuration file, see SDK and CLI
Configuration File.

osNanespace: "string" The Oracle Cloud Infrastructure namespace where the Object

Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

oci ConfigFile: "string" An Oracle Cloud Infrastructure CLI configuration file that contains

the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

oci Profile: "string" The profile name of the Oracle Cloud Infrastructure profile to use

for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

398

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Loading Binary Log Dumps

oci Aut h:"string" The authentication method to use when connecting to Oracle Cloud
Infrastructure. This option requires osBucket Nane is configured
with a valid value.

The following options are available:

e api _key: OCI connections use the OCI configuration file. See
Section 4.8.1, “Oracle Cloud Infrastructure Object Storage”.

If osBucket Nane is defined with a valid value, but oci Aut h is
not defined, api _key is the default value used.

e instance_princi pal : OCI connections use instance principal
authentication. See Instance Principal Authentication.

This option can not be used if oci Confi gFi |l e oroci Profile
are defined.

e resource_princi pal : OCI connections use resource principal
authentication. See Resource Principal Authentication.

This option can not be used if oci Confi gFi |l e oroci Profile
are defined.

e security_token: OCI connections use a temporary, generated
session token. See Session Token-Based Authentication.

Options for S3-compatible Services

MySQL Shell supports loading dumps stored in S3-compatible buckets, such as Amazon Web Services

(AWS) S3.
Note
@ MySQL Shell supports AWS S3 configuration in command line options,
environment variables, and configuration files. Command line options override
environment variables, configuration files, and default options.
For information on configuration requirements, see Section 4.8, “Cloud Service
Configuration”.
s3Bucket Name: "string" The name of the S3 bucket where the dump files are located. By
default, the def aul t profile in the Amazon Web Services (AWS)
ClLIconfigandcredenti al s files located at ~/ . aws/ are used
to establish a connection to the S3 bucket. You can substitute
alternative configurations and credentials for the connection with
the s3Confi gFi | e and s3Cr edent i al sFi | e options. For
instructions on installing and configuring the AWS CLI, see Getting
started with the AWS CLI.
s3Credenti al sFil e: A credentials file that contains the user's credentials to use
"string" for the connection, instead of the one in the default location,
~/ . aws/ cr edent i al s. Typically, the credentials file contains the
aws_access_key idandaws_secret _access_key to use for
the connection.
s3ConfigFile: "string" An AWS CLI configuration file that contains the profile to use for

the connection, instead of the one in the default location ~/ . aws/
conf i g. Typically, the config file contains the region and output
type to use for the connection.

399

https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_instance_principaldita
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_resource_principal
https://docs.public.oneportal.content.oci.oraclecloud.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm#sdk_authentication_methods_session_token
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Copy Instance, Schemas, and Tables

s3Profile: "string" The profile name of the s3 CLI profile to use for the connection,
instead of the def aul t profile in the AWS CLI configuration file
used for the connection.

s3Regi on: "string" The name of the region to use for the connection.
s3Endpoi nt Overri de: The URL of the endpoint to use instead of the default.
"string"

When connecting to the Oracle Cloud Infrastructure S3

compatibility API, the endpoint takes the following format:

htt ps:// nanespace. conpat . obj ect st or age. r egi on. or acl ecl oud. cc
Replace nanespace with the Object Storage hamespace and

r egi on with your region identifier. For example, the region identifier

for the US East (Ashburn) region is us- ashbur n- 1.

For a namespace named axaxnpcrorw5 in the US East (Ashburn)
region:

htt ps:// axaxnpcrorwb. conpat . obj ect st or age. us-
ashburn- 1. or acl ecl oud. com

Options for Microsoft Azure Blob Storage

MySQL Shell supports loading from Microsoft Azure Blob Storage.

Note

@ MySQL Shell supports Microsoft Azure Blob Storage configuration in command
line options, environment variables, and configuration files. Command line
options override environment variables, and configuration files.

For information on configuration requirements and the order of precedence of
the configuration types, see Section 4.8, “Cloud Service Configuration”.

azur eCont ai ner Nane: Mandatory. The name of the Azure container from which the dump
"string" is to be loaded. The container must exist.
azureConfigFil e: Optional. A configuration file that contains the storage connection
"string" parameters, instead of the one in the default location, such as
~/ . azur e/ conf i g. If this is not defined, the default configuration
file is used.

azur eCont ai ner Name must be defined, and not be empty.

azur eSt or ageAccount : Optional. The name of the Azure storage account to use for the
"string" operation.

azur eSt or ageSasToken: Optional. Azure Shared Access Signature (SAS) token to be used
"string" for the authentication of the operation, instead of a key.

12.8 Copy Instance, Schemas, and Tables
This section describes the MySQL Shell copy utilities:
» About the Utilities
* Requirements and Restrictions
* Running the Utilities

» Options for Copy Control

400

About the Utilities

» Options for Filtering

» Examples

About the Utilities

The copy utilities enable you to copy DDL and data between MySQL instances, without the need for
intermediate storage. The data is streamed from source to destination.

Approximately 32MB of memory is pre-allocated to store metadata files which are discarded as they
are read and the copy is processed.

It is possible to copy from a source to an HeatWave Service DB System. If you defined a DB System
as the target, the utility detects this and enables HeatWave Service compatibility checks by default.
See Section 12.5, “Instance Dump Utility, Schema Dump Utility, and Table Dump Utility” for more
information on these checks.

The copy utilities combine dump and load utilities into a single operation, for ease of use. The majority
of the options available to the load and dump utilities are also available to the copy utilities and are
documented in the following sections.

Requirements and Restrictions

* The copy utilities use LOAD DATA LOCAL | NFI LE statements to upload data, so the
| ocal _i nfil e system variable must be set to ON on the target server. You can do this by issuing
the following statement on the target instance before running the copy utility:

SET GLOBAL local _infile = 1;

To avoid a known potential security issue with LOAD DATA LOCAL, when the MySQL server
replies to the utility's LOAD DATA requests with file transfer requests, the utility only sends the
predetermined data chunks, and ignores any specific requests attempted by the server. For more
information, see Security Considerations for LOAD DATA LOCAL.

» The copy utilities only support General Availability (GA) releases of MySQL Server versions.

e MySQL 5.7 or later is required for the destination MySQL instance where the copy will be loaded.
» Object names in the instance or schema must be inthe | at i n1 or ut f 8 characterset.

» Data consistency is guaranteed only for tables that use the | nnoDB storage engine.

» The minimum required set of privileges that the user account used to run the utility must have on all
the schemas involved is as follows: EVENT, RELOAD, SELECT, SHOW VI EW and TRI GGER.

« Ifthe consi st ent option is settot r ue, which is the default, the LOCK TABLES privilege on all
copied tables can substitute for the RELOAD privilege if the latter is not available.

« If the user account does not have the BACKUP_ADM N privilege and LOCK | NSTANCE FOR
BACKUP cannot be executed, the utilities make an extra consistency check during the copy. If this
check fails, an instance copy is stopped, but a schema copy or a table copy continues and returns
an error message to alert the user that the consistency check failed.

e Ifthe consi st ent optionis setto f al se, the BACKUP_ADM N and RELOAD privileges are not
required.

» The user account used to run the utility needs the REPLI CATI ON CLI ENT privilege in order for the
utility to be able to include the binary log file name and position in the metadata. If the user ID does
not have that privilege, the copy continues but does not include the binary log information. The binary
log information can be used after loading the copied data into the replica server to set up replication

401

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/9.4/en/load-data-local-security.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_replication-client

Running the Utilities

with a non-GTID source server, using the ASSI GN_GTI DS TO _ANONYMOUS TRANSACTI ONS option
of the CHANGE REPLI CATI ON SOURCE TOstatement.

The utilities convert columns with data types that are not safe to be stored in text form (such as
BLOB) to Base64. The size of these columns therefore must not exceed approximately 0.74 times
the value of the mex_al | owed_packet system variable (in bytes) that is configured on the target
MySQL instance.

For compatibility with HeatWave Service, all tables must use the | nnoDB storage engine. If you
defined a DB System as the target, the utility detects this, enables HeatWave Service compatibility
checks by default, and checks for any exceptions found in the source, and the conpati bility
option alters the copy to replace other storage engines with | nnoDB.

For the instance and schema copy utilities, for compatibility with HeatWave Service, all tables in the
instance or schema must be located in the MySQL data directory and must use the default schema
encryption.

HeatWave Service uses parti al _r evokes=0N, which means database-level user grants on
schemas which contain wildcards, such as _ or % are reported as errors.

You can also use the compatibility options, i gnore_wi | dcard_grant s and
strip_invalid_grants

See Options for HeatWave Service and Oracle Cloud Infrastructure for more information.

A number of other security related restrictions and requirements apply to items such as tablespaces
and privileges for compatibility with HeatWave Service. The conpati bi | i t y option automatically
alters the copy to resolve some of the compatibility issues. You might need (or prefer) to make some
changes manually. For more details, see the description for the conpat i bi | i t y option.

For HeatWave Service High Availability, which uses Group Replication, primary keys are required
on every table. MySQL Shell checks and reports an error for any tables in the copy that are missing
primary keys. The conpat i bi | i t y option can be set to ignore missing primary keys if you do not
need them, or to add primary keys in invisible columns where they are not present. For details, see
the description for the conpat i bi | i ty option. If possible, instead of managing this in the utility,
consider creating primary keys in the tables on the source server before copying them.

If the source is MySQL 5.7, and the target is a DB System, ut i | . checkFor Ser ver Upgr ade is run
automatically. Pre-upgrade checks are run depending on the type of objects included in the copy.

Progress resumption is not supported by the copy utilities.

Running the Utilities

The copy instance, copy schema, and copy table utilities use the MySQL Shell global session to obtain
the connection details of the MySQL server from which the copy is carried out. You must open the
global session (which can have an X Protocol connection or a classic MySQL protocol connection)
before running one of the utilities. The utilities open their own sessions for each thread, copying options
such as connection compression and SSL options from the global session, and do not make any
further use of the global session.

util.copylnstance(connectionData[, options]):Enables copying of an entire instance to
another server.

e connect i onDat a: Defines the connection details for the destination server you want to copy to.
This can be one of the following:
e Asimple user @ost string.

e A connection URI such as nmysql : / / user @ost : port ?opti on=val ue, opti on=val ue

402

https://dev.mysql.com/doc/refman/9.4/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html

Options for Copy Control

e A connection dictionary, suchas{ "schene": "nysql", "user": "u", "host": "h",
"port": 1234, "option": "val ue" }

e util.copySchemas(schenmalLi st, connectionData[, options]):Enables copying of one
or more schemas to another server.

« schenali st : Defines the list of schemas to copy from the current server to the destination server.

e util.copyTabl es(schemaNanme, tabl esList, connectionData[, options]):Enables
copying of one or more tables from a schema to another server.

* schenmaNane: Defines the name of the schema from which to copy tables.

e tabl esLi st : Defines the names of the tables from the named schema to copy to the destination

server.

Options for Copy Control

dryRun: [true | false]

showProgress: [true |
fal se]

t hreads: int

maxRate: "string"

def aul t Char act er Set :

"string"

checksum [true|fal se]

Displays information about the copy with the specified set of options,
and about the results of HeatWave Service compatibility checks, but
does not proceed with the copy. Setting this option enables you to
list out all of the compatibility issues before starting the copy. The
defaultis f al se.

Display (t r ue) or hide (f al se) progress information for the copy.
The defaultis t r ue if st dout is a terminal (t t y), such as when
MySQL Shell is in interactive mode, and f al se otherwise. The
progress information includes the estimated total number of rows
to be copied, the number of rows copied so far, the percentage
complete, and the throughput in rows and bytes per second.

The number of parallel threads to use to copy chunks of data from
the MySQL instance. Each thread has its own connection to the
MySQL instance. The default is 4.

The copy utilities require twice the number of threads, one thread to
copy and one thread to write. If threads is set to N, 2N threads are
used.

The maximum number of bytes per second per thread for data read
throughput during the copy. The unit suffixes k for kilobytes, Mfor
megabytes, and G for gigabytes can be used (for example, setting
100Mlimits throughput to 100 megabytes per second per thread).
Setting O (which is the default value), or setting the option to an
empty string, means no limit is set.

The character set to be used during the session connections

that are opened by MySQL Shell to the target server. The

default is ut f 8mb4. The session value of the system variables
character_set _client,character_set_connection,
and character_set _resul ts are set to this value for

each connection. The character set must be permitted by the
character_set client system variable and supported by the
MySQL instance.

If enabled, on dump, a metadata file, @ checksuns. j son is
generated with the copy. This file contains the checksum data for
the copy, enabling data verification.

403

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_character_set_client

Options for Copy Control

The following conditions apply if checksum tr ue during the copy
process:

e Ifddl Onl y: fal se and chunki ng: t r ue, a checksum is
generated for each copied table and partition chunk.

e Ifddl Onl y: f al se and chunki ng: f al se, a checksum is
generated for each copied table and table partition.

e Ifddl Onl y: t rue, a checksum is generated for each copied table
and table partition.

If enabled, the utility checks the generated checksum data after
the corresponding data is loaded. The verification is limited to data
which was dumped, ignoring generated data such as invisible
primary keys.

Errors are returned if a checksum does not match or if a table is
missing and cannot be verified.

If checksum true but no data was loaded, either due to

| oadDat a: f al se or no data being dumped, the utility verifies the
dump's checksum information against the current contents of the
affected tables.

« If a table does not exist, an error is displayed for each missing
table.

e Ifchecksum true anddryRun: true,the checksum is not
verified. A message is displayed stating that no verification took

place.
consistent: [true | Enable (t r ue) or disable (f al se) consistent data copies by locking
fal se] the instance for backup during the copy. The defaultis t r ue.

When t r ue is set, the utility sets a global read lock using the FLUSH
TABLES W TH READ LOCK statement (if the user ID used to

run the utility has the RELQOAD privilege), or a series of table locks
using LOCK TABLES statements (if the user ID does not have the
REL OAD privilege but does have LOCK TABLES). The transaction
for each thread is started using the statements SET SESSI ON
TRANSACTI ON | SOLATI ON LEVEL REPEATABLE READ and
START TRANSACTI ON W TH CONSI STENT SNAPSHOT. When
all threads have started their transactions, the instance is locked
for backup (as described in LOCK INSTANCE FOR BACKUP
and UNLOCK INSTANCE Statements) and the global read lock is
released.

If the user account does not have the BACKUP_ADM N privilege and
LOCK | NSTANCE FOR BACKUP cannot be executed, the utilities
make an extra consistency check during the copy. If this check fails,
an instance copy is stopped, but a schema or table copy continues
and returns an error message to alert the user that the consistency

check failed.
ski pConsi st encyChecks: Enable (t r ue) or disable (f al se) the extra consistency check
[true | false] performed when consi stent: true. Defaultisf al se.

This option is ignored if consi stent: fal se.

404

https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/9.4/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/9.4/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/9.4/en/privileges-provided.html#priv_backup-admin

Options for Copy Control

schema: "string"
skipBinlog: [true |
fal se]

i gnoreVersion: [
fal se]

true |

dr opExi sti ngQbj ect s:

[

true |

fal se]

The target schema into which the contents of the copied schema
must be loaded.

If the schema does not exist, it is created, and the copied schema
is loaded to that new schema. If the new schema name differs
from the schema name in the copy, the copy is loaded to the new
schema, but no changes are made to the loaded data. That is, any
reference to the old schema name remains in the data. All stored
procedures, views, and so on, refer to the original schema, not the
new one.

This load option is supported for single schema copies, or for
filtering options which result in a single schema. That is, if you are
using copyl nst ance to copy data to a new instance, you can
copy all the data to a single schema if the source contains only one
schema, or the defined filters result in a single schema being copied
to the destination.

Skips binary logging on the target MySQL instance for the
sessions used by the utility during the course of the copy, by
issuing a SET sql _| og_bi n=0 statement. The default is

f al se, so binary logging is active by default. For HeatWave
Service DB Systems, this option is not used, and the import stops
with an error if you attempt to set it to t r ue. For other MySQL
instances, always set ski pBi nl og tot r ue if you are applying the
gtid_execut ed GTID set from the source MySQL instance on the
target MySQL instance, either using the updat eG i dSet option
or manually. When GTIDs are in use on the target MySQL instance
(gt i d_node=0ON), setting this option to t r ue prevents new GTIDs
from being generated and assigned as the import is being carried
out, so that the original GTID set from the source server can be
used. The user account must have the required permissions to set
the sql _| og_bi n system variable.

Copy even if the major version number of the source from which the
data was copied is hon-consecutive to the major version number of
the destination, such as 5.6 to 8.1. The default is f al se, meaning
that an error is issued and the copy stops if the major version
number is different. When this option is setto t r ue, a warning

is issued and the copy proceeds. Note that the copy will only be
successful if the copied schemas have no compatibility issues with
the new major version.

Note
@ i gnor eVer si on is not required for copying

between consecutive major versions, such
as 5.7t0 8.1.

Before attempting a copy using the i gnor eVer si on

option, use MySQL Shell's upgrade checker utility

checkFor Server Upgr ade() to check the source instance and fix
any compatibility issues identified by the utility before attempting to

copy.

The default value is false.

Copy the instance even if it contains user accounts or DDL objects
that already exist in the target instance. If this option is set to false,

405

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed

Options for Copy Control

i gnor eExi sti nglhj ects:
[true | false]

handl eGrant Errors:
[abort | drop_account
i gnore]

maxByt esPer Tr ansact i on:
nunber

any existing object results in an error. Setting it to true drops existing
user accounts and objects before creating them.

Note

3 Schemas are not dropped.
Note

3 It is not possible to enable

dr opExi sti nglbj ect s if
i gnor eExi stingCbj ects ordataOnly
are enabled.

Copy even if the copy contains objects that already exist in the
target instance. The default is f al se, meaning that an error is
issued and the copy stops when a duplicate object is found. When
this option is set to t r ue, duplicate objects are reported but no
error is generated and the copy proceeds. This option should be
used with caution, because the utility does not check whether the
contents of the object in the target MySQL instance and in the
dump files are different, so it is possible for the resulting copy to
contain incorrect or invalid data. An alternative strategy is to use the
excl udeTabl es option to exclude tables that you have already
copied where you have verified the object in the dump files is
identical with the imported object in the target MySQL instance. The
safest choice is to remove duplicate objects from the target MySQL
instance before restarting the copy.

The action taken in the event of errors related to GRANT or REVOKE
errors.

e abort : (default) stops the copy process and displays an error.

e drop_account : deletes the account and continues the copy
process.

e i gnor e: ignores the error and continues the copy process.

The maximum number of bytes that can be copied from a data
chunk in a single LOAD DATA statement. If a data file exceeds

the maxByt esPer Tr ansact i on value, multiple LOAD DATA
statements load data from the file in chunks less than or equal to the
maxByt esPer Tr ansact i on value.

The unit suffixes k for kilobytes, Mfor megabytes, and Gfor
gigabytes can be used. The minimum value is 4096 bytes.

If a lesser value is specified, an exception is thrown. If the

maxByt esPer Tr ansact i on option is unset, the byt esPer Chunk
value is used instead.

If a data file contains a row that is larger than the

maxByt esPer Tr ansact i on setting, the row's data is requested in
a single LOAD DATA statement. A warning is emitted for the first row
encountered that exceeds the maxByt esPer Tr ansact i on setting.

An intended use for this option is to load data in smaller
chunks when a data file is too large for the target
server's limits, such as the limits defined by the server's
group_replication_transaction_size limt or

406

https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/group-replication-system-variables.html#sysvar_group_replication_transaction_size_limit

Options for Copy Control

max_bi nl og_cache_si ze settings. For example, If you

receive the error " MySQL Error 1197 (HYO00): Multi-
statenment transaction required nore than
"max_binl og cache _size' hytes of storage" when
loading data, set naxByt esPer Tr ansact i on to a value less
than or equal to the server instance’s max_bi nl og_cache_si ze

setting.
sessionlnitSgl: list of Alistof SQL statements to run at the start of each client session
strings used for copying data into the target MySQL instance. You can use

this option to change session variables. For example, the following
statements skip binary logging on the target MySQL instance for
the sessions used by the utility during the course of the import, and
increase the number of threads available for index creation:

sessionlnitSQ.: ["SET SESSI ON sqgl _| og_bi n=0; ", "SET SESSI ON i nnodb_ddI _

If an error occurs while running the SQL statements, the copy stops
and returns an error message.

tzUc: [true | false] Include a statement at the start of the copy to set the time zone to
UTC. All timestamp data in the output is converted to this time zone.
The default is t r ue. Setting the time zone to UTC facilitates moving
data between servers with different time zones, or handling a set of
data that has multiple time zones. Set this option to f al se to keep
the original timestamps if preferred.

chunking: [true | Enable (t r ue) or disable (f al se) chunking for table data, which

fal se] splits the data for each table into multiple files. The defaultis t r ue.
Use byt esPer Chunk to specify the chunk size. If you set the
chunking option to f al se, chunking does not take place and the
utility creates one data file for each table.

If a table has no primary key or unique index, chunking is done
based on the number of rows in the table, the average row length,
and the byt esPer Chunk value.

byt esPer Chunk: "string" Sets the approximate number of bytes to be written to each data file
when chunking is enabled. The unit suffixes k for kilobytes, Mfor
megabytes, and Gfor gigabytes can be used. The default is 64 MB
(64M), and the minimum is 128 KB (128k). Specifying this option
sets chunki ng to t r ue implicitly.

| oadl ndexes: [true | Create (t r ue) or do not create (f al se) secondary indexes for

fal se] tables. The default is t r ue. When this option is setto f al se,
secondary indexes are not created during the import, and you
must create them afterwards. This can be useful if you are
loading the DDL files and data files separately, and if you want to
make changes to the table structure after loading the DDL files.
Afterwards, you can create the secondary indexes by running the
dump loading utility again with | oadl ndexes settotrue and
def er Tabl el ndexes setto al | .

MySQL Shell utilizes MySQL Server's parallel index creation. All
indexes in a table are added simultaneously.

See Configuring Parallel Threads for Online DDL Operations for
restrictions and configuration.

def er Tabl el ndexes: [of f Deferthe creation of secondary indexes until after the table data
| fulltext | all] is loaded. This can reduce loading times. of f means all indexes

407

https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size
https://dev.mysql.com/doc/refman/9.4/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size
https://dev.mysql.com/doc/refman/9.4/en/online-ddl-parallel-thread-configuration.html

Options for Copy Control

anal yzeTabl es: [off
on | histogram]

update&@idSet: [off

append |

repl ace]

are created during the table load. The default setting f ul | t ext
defers full-text indexes only. al | defers all secondary indexes and
only creates primary indexes during the table load, and also indexes
defined on columns containing auto-increment values.

Execute ANALYZE TABLE for tables when they have been loaded.
on analyzes all tables, and hi st ogr amanalyzes only tables that
have histogram information stored in the dump. The default is of f .
You can run the dump loading utility with this option to analyze the
tables even if the data has already been loaded.

Apply the gt i d_execut ed GTID set from the source MySQL
instance, as recorded in the dump metadata, to the gt i d_pur ged
GTID set on the target MySQL instance. The gt i d_pur ged GTID
set holds the GTIDs of all transactions that have been applied on
the server, but do not exist on any binary log file on the server. The
default is of f , meaning that the GTID set is not applied.

Do not use this option when Group Replication is running on the
target MySQL instance.

For MySQL instances that are not HeatWave Service DB System
instances, when you set append or r epl ace to update the GTID
set, also set the ski pBi nl og optionto t r ue. This ensures the
GTIDs on the source server match the GTIDs on the target server.
For HeatWave Service DB System instances, this option is not
used.

For a target MySQL instance from MySQL 8.0, you can set the
option to append, which appends the gt i d_execut ed GTID set
from the source MySQL instance to the gt i d_pur ged GTID set on
the target MySQL instance. The gt i d_execut ed GTID set to be
applied, which is shown in the gt i dExecut ed field in the @ j son
dump file, must not intersect with the gt i d_execut ed set already
on the target MySQL instance. For example, you can use this option
when importing a schema from a different source MySQL instance
to a target MySQL instance that already has schemas from other
source servers.

You can also use r epl ace for a target MySQL instance from
MySQL 8.0, to replace the gt i d_pur ged GTID set on the target
MySQL instance with the gt i d_execut ed GTID set from the
source MySQL instance. To do this, the gt i d_execut ed GTID
set from the source MySQL instance must be a superset of the
gti d_purged GTID set on the target MySQL instance, and

must not intersect with the set of transactions in the target's
gtid_executed GTID setthatare notinitsgti d_purged GTID
set.

For a target MySQL instance at MySQL 5.7, set the option to
repl ace, which replaces the gt i d_pur ged GTID set on the
target MySQL instance with the gt i d_execut ed GTID set

from the source MySQL instance. In MySQL 5.7, to do this the
gtid_executedandgtid _purged GTID sets on the target
MySQL instance must be empty, so the instance must be unused
with no previously imported GTID sets.

To apply the GTID set, after the import, use MySQL Shell's \ sqgl
command (or enter SQL mode) to issue the following statement on

408

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged

Options for Copy Control

conmpatibility:
strings

array of

the connected MySQL instance, copying the gt i d_execut ed GTID
set from the gt i dExecut ed field in the @ j son dump file in the
dump metadata:

shel |l -js> \sgl SET @aLOBAL. gtid_purged= "+gti dExecuted_set";

This statement, which works from MySQL 8.0, adds the source
MySQL Server instance's gt i d_execut ed GTID set to the target
MySQL instance's gt i d_pur ged GTID set. For MySQL 5.7,

the plus sign (+) must be omitted, and the gt i d_execut ed and
gti d_purged GTID sets on the target MySQL instance must be
empty. For more details, see the description of the gti d_pur ged
system variable in the release of the target MySQL instance.

Apply the specified requirements for compatibility with HeatWave
Service for all tables in the copy, altering the dump files as
necessary.

The following modifications can be specified as an array of strings:

force_i nnodb Change CREATE TABLE
statements to use the | nnoDB
storage engine for any tables that
do not already use it.

skip_invalid_accounts Remove user accounts created
with external authentication
plugins that are not supported in
HeatWave Service. This option
also removes user accounts
that do not have passwords set,
except where an account with no
password is identified as a role,
in which case it is copied using
the CREATE ROLE statement.

strip_definers Remove the DEFI NER clause
from views, routines, events,
and triggers, so these objects
are created with the default
definer (the user invoking the
schema), and change the
SQL SECURI TY clause for
views and routines to specify
| NVOKER instead of DEFI NER.
HeatWave Service requires
special privileges to create
these objects with a definer
other than the user loading the
schema. If your security model
requires that views and routines
have more privileges than the
account querying or calling them,
you must manually modify the
schema before copying it.

strip restricted grants Remove specific privileges that
are restricted by HeatWave
Service from GRANT statements,

409

https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/9.4/en/create-table.html
https://dev.mysql.com/doc/refman/9.4/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.4/en/create-role.html
https://dev.mysql.com/doc/refman/9.4/en/grant.html

Options for Copy Control

strip_tabl espaces

i gnore_m ssi ng_pks

i gnore_wi | dcard_grants

strip_invalid_grants

create_invisible pks

so users and their roles cannot
be given these privileges (which
would cause user creation to
fail). This option also removes
REVOKE statements for system
schemas (nmysql and sys) if the
administrative user account on
an Oracle Cloud Infrastructure
Compute instance does not itself
have the relevant privileges, so
cannot remove them.

Remove the TABLESPACE clause
from CREATE TABLE statements,
so all tables are created in their
default tablespaces. HeatWave
Service has some restrictions on
tablespaces.

Make the instance, schema,

or table copy utility ignore

any missing primary keys

when the dump is carried

out. Dumps created with this
modification cannot be loaded
into a HeatWave Service High
Availability instance, because
primary keys are required

for HeatWave Service High
Availability, which uses Group
Replication. To add missing
primary keys automatically, use
the creat e_i nvi si bl e_pks
modification, or consider creating
primary keys in the tables on the
source server.

If enabled, ignores errors

from grants on schemas with
wildcards, which are interpreted
differently in systems where the
partial _revokes system
variable is enabled.

If enabled, strips grant
statements which would fail when
users are copied. Such as grants
referring to a specific routine
which does not exist.

Adds primary keys in invisible
columns for each table that
does not contain a primary
key. This modification enables
a copy where some tables
lack primary keys to be loaded
into a HeatWave Service High
Availability instance. Primary

410

https://dev.mysql.com/doc/refman/9.4/en/revoke.html
https://dev.mysql.com/doc/refman/9.4/en/create-table.html

Options for Filtering

Options for Filtering

wher e:

{" schemaNan®e. t abl eNane":

"string"}

partitions:
{schemaNane. t abl eNane:
["string”,"string",..]}

ddl Only: [
fal se]

true |

dat aOnl y:
fal se]

[true |

users: [true | false]

excl udeUser s:
strings

array of

keys are required for HeatWave
Service High Availability, which
uses Group Replication.

The data is unchanged by this
modification, as the tables do not
contain the invisible columns until
they have been processed by the
copy utility. The invisible columns
(which are named "my_r ow_i d")
have no impact on applications
that use the uploaded tables.

A key-value pair comprising of a valid table identifier, of the form
schenmaNane. t abl eNane, and a valid SQL condition expression
used to filter the data being copied.

K

Note

The SQL is validated only when it is
executed. If you are copying many tables,
any SQL-syntax-related issues will only

be seen late in the process. As such, it is
recommended you test your SQL condition
before using it in a long-running export
process.

A key-value pair comprising of a valid table identifier, of the form
schemaNane. t abl eNane, and a list of valid partitions.

For example, to copy only the partitions named p1 and p2 from
the table schema. t abl e: partitions: {'schena.table':

["p1", "p2'1}

Setting this option to t r ue includes only the DDL files for the items
in the copy, and does not copy the data. The defaultis f al se.

Setting this option to t r ue includes only the data files for the items
in the copy, and does not include DDL files. The default is f al se.

(Instance copy utility only) Include (t r ue) or exclude (f al se)
users and their roles and grants in the copy. The defaultis t r ue.
The schema and table copy utilities do not include users, roles, or
grants in a copy.

You can use the excl udeUser s ori ncl udeUser s option to
specify individual user accounts to be excluded from or included in
the copy.

Note
@ If copying users from a MySQL 5.6 instance,

the user performing the copy must have the
SUPER privilege.

(Instance copy utility only) Exclude the named user accounts from
the copy. Use to exclude user accounts that are not accepted for
import to a HeatWave Service DB System, or that already exist or

411

Options for Filtering

i ncl udeUsers: array of
strings

excl udeSchenmas: array of
strings

i ncl udeSchemas: array of
strings

excl udeTabl es: array of
strings

i ncl udeTabl es: array of
strings

events: [true | false]

excl udeEvents: array of
strings

i ncl udeEvents: array of
strings

routines: [true |
fal se]

excl udeRouti nes: array
of strings

are not wanted on the target MySQL instance. Specify each user
account string in the format "' user _nane' @ host _nane' " for
an account that is defined with a user name and host name, or
"'user_nane'" for an account that is defined with a user name
only. If you do not supply a host name, all accounts with that user
name are excluded.

(Instance copy utility only) Include only the named user
accounts in the copy. Specify each user account string as for the
excl udeUser s option. Use as an alternative to excl udeUser s
if only a few user accounts are required in the copy. You can also
specify both options to include some accounts and exclude others.

(Instance copy utility only) Exclude the named schemas from the
copy. Note that the i nf or mat i on_schens, nysql , ndbi nf o,
per formance_schenm, and sys schemas are always excluded
from an instance copy.

(Instance copy utility only) Include only the named schemas
in the copy. You cannot include the i nf or mati on_schens,
nysql , ndbi nf o, per f or mance_schemma, or sys schemas by
naming them on this option. If you want to copy one or more of
these schemas, you can do this using the schema copy utility
util.copySchemas().

(Instance and schema copy utilities only) Exclude the named
tables (DDL and data) from the copy. Table names must be qualified
with a valid schema name, and quoted with the backtick character

if needed. Note that the data for the mysql . appl y_st at us,

nmysql . general _| og, nysql . schemg, and nysql . sl ow_| og

t abl es is always excluded from a schema copy, although their
DDL statements are included, and you cannot include that data by
naming the table in another option or utility.

(Instance and schema copy utilities only) Include only the named
tables in the copy. Table names must be qualified with a valid
schema name, and quoted with the backtick character if needed.

(Instance and schema copy utilities only) Include (t r ue) or
exclude (f al se) events for each schema in the copy. The default is
true.

(Instance and schema copy utilities only) Exclude the named
events from the copy. Names of events must be qualified with

a valid schema name, and quoted with the backtick character if
needed.

(Instance and schema copy utilities only) Include only the named
events in the copy. Event names must be qualified with a valid
schema name, and quoted with the backtick character if needed.

(Instance and schema copy utilities only) Include (t r ue) or
exclude (f al se) functions and stored procedures for each schema
in the copy. The defaultis t r ue. Note that user-defined functions
are not included, even when rout i nes issettotr ue.

(Instance and schema copy utilities only) Exclude the named
functions and stored procedures from the copy. Names of routines
must be qualified with a valid schema name, and quoted with the
backtick character if needed.

412

Examples

i ncl udeRouti nes: array
of strings

all: [true | false]
triggers: [true

fal se]

excl udeTriggers: array
of strings

i ncl udeTri ggers: array
of strings

[ibraries: [true

fal se]

i ncl udeLi braries: array
of strings

excl udeLi braries: array

of strings

Examples

(Instance and schema copy utilities only) Include only the named
functions and stored procedures in the copy. Names of routines
must be qualified with a valid schema name, and quoted with the
backtick character if needed.

(Table copy utility only) Setting this option to t r ue includes all
views and tables from the specified schema in the copy. The default
is f al se. When you use this option, set the t abl es parameter to
an empty array.

(All copy utilities) Include (t r ue) or exclude (f al se) triggers for
each table in the copy. The defaultis t r ue.

(All copy utilities) Exclude the named triggers from the copy.
Names of triggers must be qualified with a valid schema name

and table name (schena. t abl e. tri gger), and quoted with the
backtick character if needed. You can exclude all triggers for a
specific table by specifying a schema name and table name with this
option (schenm. t abl e).

(All copy utilities) Include only the named triggers in the copy.
Names of triggers must be qualified with a valid schema name

and table name (schena. t abl e. t ri gger), and quoted with

the backtick character if needed. You can include all triggers for a
specific table by specifying a schema name and table name with this
option (schena. t abl e).

(Instance copy utility and schema copy utilities only)

Include (true, default) or exclude (false) libraries from the dump. If
set to true, copies all libraries in the copy. If the | i br ari es option
is not provided, it is assumed to be true and all libraries are copied.

If the target version does not support libraries, a warning is
displayed.

See Using JavaScript Libraries for information on libraries.
(Instance copy utility and schema copy utilities only)

List of library objects to be included in the dump in the format
schena. library.

For example:

"includeLibraries": ["“sakila . libraryl™"

(Instance copy utility and schema copy utilities only)

List of library objects to be excluded from the dump in the format
schema. library.

For example:

"excludeLibraries": ["“sakila . libraryl™"

The following examples show how to use the copy utilities:

» Copying an instance from local to HeatWave Service High Availability DB System:

413

"“sakila .’

"“sakila .’

https://dev.mysql.com/doc/refman/9.4/en/srjs-libraries.html

Diagnostics Utilities

JS> util.copyl nstance(' mysql :// User 001@BSyst eml PAddr ess' , {t hreads: 6, deferTabl el ndexes: "all"
compatibility: ["strip_ restricted_grants", "strip_definers", "create_invisible pks"]})

This example copies an instance to a DB System, with the user User 001 and a

series of compatibility options which make the instance compatible with a DB System.
create_invisibl e pksisincluded because a High Availability DB System uses Group
Replication, which requires that each table have a Primary Key. This option adds an invisible primary
key to each table.

» Copying a schema to the target instance and renaming the schema:

util.copySchemas(['sakila'], 'user@ocal host:4101', {schema: "mySakil aSchema"})
This example copies the contents of a schema from the source to a schema with a different name on
the destination, | ocal host : 4101.

» Copying a table from a schema to another schema on the destination:

util.copyTabl es('sakila', ['"actor'], 'root@ocal host:4101', {schema: "nySakilaSchema"})

This example copies the act or table from the saki | a schema, to the nmySaki | aSchenma on the
destination, | ocal host: 4101.

12.9 Diagnostics Utilities

MySQL Shell diagnostic utilities enable you to analyze the performance of your servers and generate
diagnostics reports on overall health, performance under load, and individual queries.

an instance using X Protocol, and runs any of the diagnostics utilities, they

Note
@ The diagnostics utilities use classic connections, only. If the user connects to
automatically establish a classic connection to the instance.

12.9.1 collectDiagnostics Utility

The debugging and diagnostics utility ut i | . debug. col | ect Di agnosti cs() enables you to collect
diagnostic data on your MySQL server.

» About the Utility
* Requirements and Restrictions
* Running the Utility
» Options for Collecting Diagnostics
About the Utility
The diagnostic report is generated as a zip file to either the local directory or a specified path.

util.debug. col |l ect Di agnosti cs() enables you to collect raw diagnostic data from standalone
servers, members of replication topologies, InnoDB Clusters, and MySQL HeatWave Service DB
Systems.

The utility generates files in both TSV and YAML format.
Requirements and Restrictions

The following requirements apply to exports using the diagnostics collection utility:

414

collectDiagnostics Utility

e MySQL 5.7 or later is required.

* The utility must be run as root.

Running the Utility

The diagnostics utility has the following signature:

util.debug. col | ect Di agnostics("path/", {options})
» "pat h":you can specify a path, flename, or path and filename.

If a filename is not provided, the file is written to the specified location and the filename nysql -
di agnosti cs- YYYYMVDD- HHWVSS. zi p is used.

If a filename is provided without a path, the file is written to the current directory.

« opti ons: dictionary of options that can be omitted if empty. See Options for Collecting Diagnostics
for the available options.

If options are not defined, the utility generates a default set of diagnostics. Each option adds one or
more reports to the output.

The following example, run on April 6th, 2022, at 10:02:06AM, generates a default set of diagnostics,
nmysql - di agnosti cs-20220406-100206. zi p, inthe C: / Tenp/ directory:

util.debug. col | ect Di agnostics("C:./Tenp/")

The following example generates a default set of diagnostics in a file named nyDi agnosti cs. zi p in
the C. / Tenp/ directory:

util . debug. col | ect Di agnosti cs("C:/ Tenp/ nyDi agnosti cs. zi p")

The trailing forward slash is required to define a path. If you omit it, the utility creates a file named
Tenp. zi p in the named path. C. / Tenp. zi p for example. It is not possible to overwrite an existing
file.

Host information (host _i nf 0) is collected from the localhost, only. It is not possible to collect host
information from a remote host. If your MySQL server is running on a remote host, only the MySQL
server information is collected.

On Microsoft Windows platforms, host information is collected using the MBI nf o utility. This spawns an
additional progress dialog while the utility is running.

Options for Collecting Diagnostics

al | Menmbers: [true|false] Defaultfal se.lIfsettotrue,generates diagnostics for all
members of a managed topology, such as InnoDB Cluster, and
pings each member of the topology. Each diagnostic is prefixed with
a number, 1 (one) for the server MySQL Shell is connected to, and
incremented for each member detected.

Ping results (pi ng. t xt) are generated only if Shell is connected
to a member of the topology on the localhost. It is not possible to
request ping results from a remote host.

al | Menber s: true does not create additional reports. All
collected data is included in the default reports.

i nnodbMut ex: [true]| Default f al se. If settot r ue, collects the output of SHONV ENG NE
fal se] | NNCDB MUTEX.

415

https://dev.mysql.com/doc/refman/9.4/en/show-engine.html
https://dev.mysql.com/doc/refman/9.4/en/show-engine.html

collectHighLoadDiagnostics Utility

schenmaStats: [true|
fal se]

sl owQueries: [true|
fal se]

i gnoreErrors: [true|
fal se]

hostInfo: [true|false]

cust onql : array

cust onthel | : array

This option generates the following additional report:

e i nnodb_nut ex: lists the output of SHON ENG NE | NNODB

MUTEX.

K

Note
This option can impact performance.

Default f al se. If setto t r ue, collects schema size statistics.

This option generates the following additional report:

e schema_obj ect _overvi ew lists the contents of the

schena_obj ect _overvi ewview.

e top_bi ggest tabl es: lists the largest tables on the connected
server and the slow performance indicators.

Default f al se. If settot r ue, collects slow query information from

the The Slow Query Log.

This option requires you to enable sl ow _| og on the target server
and configure its output to TABLE.

This option generates the following additional report:

« sl ow | og: lists the contents of the nysql . sl ow | og table.

Default f al se. If settot r ue, ignores any errors generated by the
queries used to generate the diagnostic reports.

Default t r ue. If setto t r ue, and the target is the localhost, collects
host diagnostics information. If set to f al se, and the target is the
localhost, does not collect any host diagnostics information.

One or more SQL statements to run.

For example:

{"custonBSqgl ": ["

st at ement 1",

"st at emrent 2",

"statenment3"]}

One or more shell (DOS, BOURNE, and so on) commands to run.

For example:

{"cust ontShel | ":

Important

[" commandl”,

"command2",

"conmand3"] }

the user running MySQL Shell and should be
used with caution.

A ‘ These commands run with the privileges of

12.9.2 collectHighLoadDiagnostics Utility

» About the Utility

* Requirements and Restrictions

416

https://dev.mysql.com/doc/refman/9.4/en/show-engine.html
https://dev.mysql.com/doc/refman/9.4/en/show-engine.html
https://dev.mysql.com/doc/refman/9.4/en/sys-schema-object-overview.html
https://dev.mysql.com/doc/refman/9.4/en/slow-query-log.html

collectHighLoadDiagnostics Utility

* Running the Utility
» Options for Collecting High Load Diagnostics
About the Utility

util.debug. col | ect H ghLoadDi agnosti cs() runs multiple iterations of diagnostic reporting on
your MySQL server, enabling you to analyze multiple aspects of your server while under load.

The High Load diagnostic report is generated as a zip file to either the local directory or a specified
path.

The utility generates files in both TSV and YAML format.

Requirements and Restrictions
The following requirements apply to exports using the diagnostics collection utility:
* MySQL 5.7 or later is required.

* The utility must be run as root.
Running the Utility

The diagnostics utility has the following signature:

util . debug. col | ect H ghLoadDi agnosti cs(path, {options})

The following example writes the zip file to the user's temp directory, performs 5 iterations of collection,
and enables all Performance Schema instruments and consumers:

util . debug. col | ect H ghLoadDi agnosti cs("/ hone/ user Nane/t enp/ hi ghLoad. zi p*, {iterations: 5, pfslnst

Note
@ The data returned by this utility also includes data collected by
util.debug. col | ect Di agnostics().

Options for Collecting High Load Diagnhostics

iterations: number Default is 2. Number of iterations of high load diagnostic data
collection.
delay: number Default is 300 seconds. Number of seconds between iterations of
high load diagnostic data collection.
innodbMutex: [true | false] Default is false. If set to true, the output of SHOW ENG NE | NNCDB
MUTEX is collected.
Note
@ This parameter can affect performance.
pfsinstrumentation: [current | Default is current. Defines which Performance Schema instruments
medium | full] and consumers are used. Possible values are:

e current: The currently enabled Performance Schema
instruments and consumers. No changes are made to your
server's configuration.

417

collectSlowQueryDiagnostics Utility

e medi um Enables all consumers except %hi st ory and
%i st ory_| ong, and all instruments except wai t / synch/ %

« ful | : Enables all consumers and all instruments.

customSql: ar r ay One or more SQL statements to run. You can control when the
statements are run with the following prefixes:

* PRE: Default. The statement is run once, before the metrics
collection iterations begin.

* POST: The statement is run once, after the metrics collection
iterations complete.

* | TER: The statement is run once for each iteration of the metrics

collection.
For example:
{"custonBqgl ": ["statenmentl", "statenment2", "statenment3"]}
customShell ar r ay One or more Shell commands to run. You can control when the

commands are run with the following prefixes:

* BEFORE: Default. The statement is run once, before the metrics
collection iterations begin.

* DURI NG The statement is run once for each iteration of the
metrics collection.

* AFTER: The statement is run once, after the metrics collection
iterations complete.

For example:

{"custonthel | ": ["commandl", "command2", "command3"]}

Important

A ‘ These commands run with the privileges of

the user running MySQL Shell and should be
used with caution.

12.9.3 collectSlowQueryDiagnostics Utility

About the Utility

» Requirements and Restrictions

Running the Utility

» Options for Collecting Diagnostics

About the Utility

util.debug. col | ect SI owQuer yDi agnosti cs() runs multiple iterations of diagnostic reporting
on your MySQL server, enabling you to analyze multiple aspects of your server while a specified query
is processed.

418

collectSlowQueryDiagnostics Utility

The diagnostic report is generated as a zip file to either the local directory or a specified path.

The utility generates files in both TSV and YAML format.

Requirements and Restrictions
The following requirements apply to exports using the diagnostics collection utility:
* MySQL 5.7 or later is required.

» The utility must be run as root.
Running the Utility

The diagnostics utility has the following signature:

uti|.debug. col | ect S| owQuer yDi agnosti cs("path", "query", {options})

collected by uti | . debug. col | ect Di agnosti cs() and

Note
@ The data returned by this utility also includes the default data
util.debug. col | ect H ghLoadDi agnosti cs().

» "pat h": the location the diagnostics archive is written to. If empty, it is written to the current
directory.

"query":the SQL query to analyze.
"opti ons": dictionary of optional arguments. See Options for Collecting Diagnostics.

In addition to the contents of the ut i | . debug. col | ect H ghLoadDi agnosti cs() diagnostics,
util.debug. col | ect SI owQuer yDi agnost i cs collects the following information:

» The EXPLAI N output of the query.
» The Optimizer trace of the query.
» DDL of the tables used in the query.

» Warnings generated by the query.

Options for Collecting Diagnostics

delay: nunmber Number of seconds to wait between iterations of data collection.
Default is 30. Data is collected only as long as the defined query
runs. When the query is complete, the data collection stops.

innodbMutex: true | false If true, also collects the output of SHOW ENG NE | NNCDB MUTEX.
This command is disabled by default, as it can have an impact on
production performance.

pfsinstrumentation: [current | Defines which Performance Schema instruments and consumers
medium | full] are used. Possible values are:

e current : Default. The currently enabled Performance Schema
instruments and consumers. No changes are made to your
server's configuration.

419

collectSlowQueryDiagnostics Utility

e medi um Enables all consumers except %hi st ory and
%i st ory_| ong, and all instruments except wai t / synch/ %

« ful | : Enables all consumers and all instruments.

customSql: ar r ay One or more SQL statements to run. You can control when the
statements are run with the following prefixes:

« BEFORE, or nothing: Default. The custom SQL is run once, before
the metrics collection iterations begin.

e AFTER: The custom SQL is run once, after the metrics collection
iterations complete.

¢ DURI NG The custom SQL is run once for each iteration of the
metrics collection.

For example:

{"custonf5ql ": ["statenentl", "statenent2", "statement3"]}

customShell: ar r ay One or more shell (DOS, BOURNE, and so on) commands to run.
You can control when the commands are run with the following
prefixes:

« BEFORE: Default. The command(s) run once, before the metrics
collection iterations begin.

* DURI NG The command(s) run once for each iteration of the
metrics collection.

¢ AFTER: The command(s) run once, after the metrics collection
iterations complete.

For example:

{"custonthel | ": ["comandl", "command2", "command3"]}

Important

A ‘ These commands run with the privileges of

the user running MySQL Shell and should be
used with caution.

420

Chapter 13 MySQL Shell Logging and Debug

Table of Contents

RS Y o] o] o= 1o o N I Yo RO PP PTUPTUPR 422
13.2 VEIDOSE OULPUL ..ttt ettt ettt ettt et e ettt et e e et e e et e e e e e e tn e e e et e eeanaaenas 423
13.3 System Logging for User SQL State@mMeNntscc.uiiiiiiiiiiiiiiiei e 424
13.4 MySQL Shell SQL LOGQING -..cuuuiiitiiiteiia ettt e e et e e e et e et e e e e een e e et e aeanaaeees 425

You can use MySQL Shell's logging feature to verify the state of MySQL Shell while it is running and to
troubleshoot any issues.

By default, MySQL Shell sends logging information at logging level 5 (error, warning, and informational
messages) to an application log file. You can also configure MySQL Shell to send the information to an
optional additional viewable location, and to the console as verbose output.

You can control the level of detail to be sent to each destination. For the application log and additional
viewable location, you can specify any of the available levels as the maximum level of detail. For
verbose output, you can specify a setting that maps to a maximum level of detail. The following levels
of detail are available:

Table 13.1 Logging levels in MySQL Shell

Logging Level - Logging Level - Text |Meaning Verbose Setting
Numeric

1 none No logging 0

2 i nternal Internal Error 1

3 error Error 1

4 war ni ng Warning 1

5 info Informational 1

6 debug Debug 2

7 debug2 Debug?2 3

8 debug3 Debug3 4

You can choose to send SQL statements that you issue interactively in MySQL Shell's SQL mode
to the operating system’s system logging facility (sysl og on Unix, or the Windows Event Log). SQL
statements that would be excluded from the MySQL Shell code history are not sent to the system
logging facility.

By default, MySQL Shell does not log or output SQL statements that are executed by MySQL Shell
itself in the course of AdminAPI operations. You can activate logging for these statements if you want
to observe the progress of these operations in terms of SQL execution, in addition to the messages
returned during the operations. The statements are written to the MySQL Shell application log file as
informational messages provided that the logging level is set to 5 or above. They are also sent to the
console as verbose output provided that the verbose setting is 1 or above.

By default, MySQL Shell sends all logging for a program to the same application log file, and all output
for a program to the same destination. The function shel | . cr eat e_cont ext can be used in MySQL
Shell's Python mode to support multithreading by Python programs. The function is used inside a new
Python thread to create a scope which isolates logging, interrupts, and delegates. The context wrapper
handles and isolates output printed to st dout and st der r and diagnostic output, and also user input,
with separate handling for passwords. You can also create an individual application log file specific to
the thread.

421

Application Log

For instructions to configure the application log and the optional additional destination, which is
st derr on Unix-based systems or the Qut put DebugSt ri ng() function on Windows systems, see
Section 13.1, “Application Log".

For instructions to send logging information to the console as verbose output, see Section 13.2,
“Verbose Output”.

For instructions to send interactive SQL statements to the system logging facility, see Section 13.3,
“System Logging for User SQL Statements”.

For instructions to activate logging for SQL statements that are executed by AdminAPI operations, see
Section 13.4, “MySQL Shell SQL Logging”.

13.1 Application Log

The location of the MySQL Shell application log file is the user configuration path and the file is named
nysgl sh. | og. By default, MySQL Shell sends logging information at logging level 5 (error, warning,
and informational messages) to this file.

Note
@ Log messages are timestamped in UTC format.

To change the level of logging information that is sent, or to disable logging to the application log file,
choose one of these options:

e Usethe--10g-| evel command-line option when starting MySQL Shell.

* Use the MySQL Shell \ opt i on command to set the | ogLevel MySQL Shell configuration option.
For instructions to use this command, see Section 14.4, “Configuring MySQL Shell Options”.

» Usethe shel | . opti ons object to setthe | ogLevel MySQL Shell configuration option. For
instructions to use this configuration interface, see Section 14.4, “Configuring MySQL Shell Options”.

The available logging levels are as listed in Table 13.1, “Logging levels in MySQL Shell”. If you specify
a logging level of 1 or none for the option, logging to the application log file is disabled. All other values
leave logging enabled and set the level of detail in the log file. The option requires a value.

With the - - | og- | evel command-line option, you can specify the logging level using its text name or
the numeric equivalent, so the following examples have the same effect:

$> nysql sh --1o0g-Ilevel =4
$> nysqgl sh --1o0g-1evel =war ni ng

With the | ogLevel MySQL Shell configuration option, you can only specify a numeric logging level.

If you prepend the logging level with @ (at sign), log entries are output to an additional viewable
location as well as being written to the MySQL Shell log file. The following examples have the same
effect:

$> nysql sh --1o0g-I|evel =@
$> nysql sh --1o0g-Ievel =@ebug3

On Unix-based systems, the log entries are output to st der r in the output format that is currently set
for MySQL Shell. This is the value of the r esul t For mat MySQL Shell configuration option, unless
JSON wrapping has been activated by starting MySQL Shell with the - -] son command line option.

On Windows systems, the log entries are printed using the Qut put DebugSt ri ng() function, whose
output can be viewed in an application debugger, the system debugger, or a capture tool for debug
output.

The MySQL Shell log file format is plain text and entries contain a timestamp and description of the
problem, along with the logging level from the above list. For example:

422

Log File Location on Windows

2016- 04-05 22:23:01: Error: Default Domain: (shell):1:8: MySQ.Error: You have an error
in your SQL syntax; check the manual that corresponds to your MySQL server version for
the right syntax to use near '' at line 1 (1064) in session.runSql ("select * fromt
limt").execute().all();

Log File Location on Windows

On Windows, the default path to the application log file is “%APPDATA% My SQL\ nysql sh
\ mysqgl sh. | og. To find the location of %APPDATA%o0n your system, echo it from the command line.
For example:

C. >echo YAPPDATAY%

C: \ User s\ exanpl euser\ AppDat a\ Roani ng

On Windows, the path is the %APPDATA%folder specific to the user, with My SQL\ nysql sh added.
Using the above example the path would be C: \ User s\ exanpl euser\ AppDat a\ Roam ng\ MySQL
\ nmysql sh\ nysqgl sh. 1 og .

If you want the application log file to be stored in a different location, you can override the default user
configuration path by defining the environment variable M\YSQLSH USER CONFI G_HOVE. The value of
this variable replaces %AppDat a% MySQL\ nysql sh\ on Windows.

You can also use the - -1 og-f i | e option to override the user configuration path when you run
nysgl sh from the command line. The - - | og-fi | e option applies to the individual MySQL Shell
instance, meaning that different instances can write to different locations.

Log File Location on Unix-based Systems

For a machine running Unix, the default path to the application log file is ~/ . mysql sh/ nmysql sh. | og
where “~" represents the user's home directory. The environment variable HOVE also represents the
user's home directory. Appending . mysql sh to the user's home directory determines the default path
to the log.

If you want the application log file to be stored in a different location, you can override the default user
configuration path by defining the environment variable MYSQLSH_USER_CONFI G_HOVE. The value of
this variable replaces ~/ . nysql sh/ on Unix.

You can also use the - -1 og-fi | e option to override the user configuration path when you run
nysgl sh from the command line. The - - | og-fi | e option applies to the individual MySQL Shell
instance, meaning that different instances can write to different locations.

13.2 Verbose Output

You can send MySQL Shell logging information to the console to help with debugging. Logging
messages sent to the console are given the ver bose: prefix. When you send logging information to
the console, it is still sent to the application log file.

To send logging information to the console as verbose output, choose one of these options:
* Use the - - ver bose command-line option when starting MySQL Shell.

* Use the MySQL Shell \ opt i on command to set the ver bose MySQL Shell configuration option.
For instructions to use this command, see Section 14.4, “Configuring MySQL Shell Options”.

» Usethe shel | . opti ons object to set the ver bose MySQL Shell configuration option. For
instructions to use this configuration interface, see Section 14.4, “Configuring MySQL Shell Options”.

The available settings are as listed in Table 13.1, “Logging levels in MySQL Shell”. The settings for the
ver bose option display messages at the following levels of detail:

0 No messages. Equivalent to a logging level of 1 for the application log.

423

System Logging for User SQL Statements

1 Internal error, error, warning, and informational messages. Equivalent to
a logging level of 5 for the application log.

2 Adds debug messages. Equivalent to a logging level of 6 for the
application log.

3 Adds debug2 messages. Equivalent to a logging level of 7 for the
application log.

4 Adds debug3 messages, the highest level of detail. Equivalent to a
logging level of 8 for the application log.

If the ver bose option is not set on the command line or in the configuration file, or if you specify a
setting of O for the option, verbose output to the console is disabled. All other values enable verbose
output and set the level of detail for the messages sent to the console. If you specify the option without
a value, which is permitted as a command-line option when starting MySQL Shell (- - ver bose) but
not with other methods of setting the option, setting 1 (internal error, error, warning, and informational
messages) is used.

13.3 System Logging for User SQL Statements

SQL statements that you issue in MySQL Shell's SQL mode can be sent to the operating system’s
system logging facility. On Unix, this is sysl og; on Windows, it is the Windows Event Log. The
destination where logged messages appear is system dependent. On Linux, the destination is often the
/var /| og/ nessages file.

When you activate system logging for SQL statements, the following items are written to the system
logging facility:

* SQL statements that you issue interactively in MySQL Shell’'s SQL mode.

 Single SQL statements that you execute by entering them immediately after the \ sql command
while in MySQL Shell’'s JavaScript or Python mode.

* Instances of the \ sour ce command that you issue interactively in MySQL Shell's SQL mode.
The following items are excluded and are not written to the system logging facility:

» The contents of a script file that you execute using the \ sour ce command. Only the \ sour ce
command itself is written to the system logging facility.

» SQL statements that MySQL Shell executes itself in the course of AdminAPI operations. You can
log these to the MySQL Shell application log file, as explained in Section 13.4, “MySQL Shell SQL

Logging”.

» SQL statements that would be excluded from the MySQL Shell code history, as specified by the
hi story. sql . ignorePattern MySQL Shell configuration option, or the - - hi sti gnore
command-line option (which sets the value of hi st ory. sql . i gnor ePat t er n for the current
session only).

To send SQL statements that you issue in MySQL Shell’'s SQL mode to the operating system’s system
logging facility, choose one of these options:

* Use the - - sysl og command-line option when starting MySQL Shell.

* Use the MySQL Shell\ opt i on command to set the hi st ory. sqgl . sysl og MySQL Shell
configuration option. For instructions to use this command, see Section 14.4, “Configuring MySQL
Shell Options”.

e Usethe shel | . opti ons object to set the hi st ory. sql . sysl og MySQL Shell configuration
option. For instructions to use this configuration interface, see Section 14.4, “Configuring MySQL
Shell Options”.

424

Log message format

System logging for SQL statements only takes place when MySQL Shell is started in interactive mode,
so either a normal start or a start with the - - i nt er act i ve option. It does not take place if the - -
executeor--fil e options are used at startup to run nysql sh in batch mode to process a command
or file.

Log message format

The log message for an SQL statement is formatted as a series of key-value pairs separated by a
space character. The key-value pairs are as follows:

SYSTEM_USER = The login name of the operating system user, or - - if this user name
is unknown.

MYSQL_USER = The name of the MySQL user, or - - if this user name is unknown.

CONNECTION_ID = The identifier for the MySQL Shell connection.

DB_SERVER = The server’'s host name, or - - if the host name is unknown.

DB = The default database, or - - if no database has been selected.

QUERY = The text of the logged SQL statement.

The log message is truncated to 1024 bytes if it exceeds that length.

Here is a sample of output generated on Linux by using - - sysl og. This output is formatted for
readability; each logged message actually takes a single line.

Mar 1 17:35: 33 nyhost mysql sh[33060] :

SYSTEM USER=hanna_j MYSQ._USER=hanna

CONNECTI ON_| D=14 DB_SERVER=I| ocal host DB='--'
QUERY='create table test.test (c int, my_row.id Bl G NT AUTO | NCREMENT | NVl SI BLE PRI MARY KEY) ;'

13.4 MySQL Shell SQL Logging

You can log all SQL statements executed by MySQL Shell commands or utilities to the MySQL Shell

log file.
Note
@ | 0gSql replaces dba. | 0ogSql if dba. | 0ogSql is disabled, | ogSql takes
precedence. However, if dba. | 0gSql is enabled, it takes precedence over
| 0gSql , but only for log messages in the dba. * context.

The application log level must be set to at least | NFO (5) , for these messages to be written to the
MySQL Shell log.

SQL Logging Options
MySQL Shell SQL logging can be enabled, disabled, or altered in one of the following ways:
* Command line: - - | 0og- sqgl =l ogOpt i on in your MySQL Shell startup command.
* MySQL Shell configuration options: shel | . options[' | 0gSqgl '] ="10gOpti on" during your
MySQL Shell session.
The following options are available:
off No MySQL Shell SQL statements are logged.

error (Default) only MySQL Shell failed SQL statements with are logged.

425

Filtering SQL Logging

on All MySQL Shell SQL statements are logged, except those which
match the ignore pattern defined in | ogSql . i gnor ePat t ern and
| 0gSql . i gnor ePatt er nUnsaf e. See Filtering SQL Logging for
more information.

all All MySQL Shell SQL statements are logged, except
those which match the ignore pattern defined in the
l 0ogSql . i gnor ePatt er nUnsaf e] . See Filtering SQL Logging for
more information.

unfiltered All MySQL Shell SQL statements are logged, no filtering is
performed.

Filtering SQL Logging
The log is filtered using a colon-separated list of glob patterns. The following options are available:

* 1 0gSql . i gnorePatt ern: This option defines a colon-separated list of statement patterns to filter
out. Default value is * SELECT* : * SHOW .

e 1 0gSql . i gnorePatternUnsaf e: This option defines a colon-separated list of statement patterns
to filter out. Default value is * | DENTI FI ED* : * PASSWORD* .

For information on working with shel | . opti ons, see Section 14.4, “Configuring MySQL Shell
Options”.

Log Format
The log messages use the following format:
Dat e&Ti ne: LoglLevel : LogContext: tid=: SQ.:
Date&Time Date and time of the log message.

LogLevel The log level. For more information on log levels, seeTable 13.1,
“Logging levels in MySQL Shell”.

All successful SQL statements and error messages for unsuccessful
statements are logged with | NFOlog level.

LogContext The origin of the log message. Can be one of the following values:
¢ main: base MySQL Shell context.
¢ sql: SQL mode context.
* js: JavaScript mode context.
e py: Python mode context.

e obj ect. net hod: Global object method context. For example,
Dba. creat ed ust er or C ust er. st at us.

tid The MySQL thread ID.
SQL The logged SQL statement or error message.

The following example shows an SQL INFO message with a Dba. depl oySandbox| nst ance context:

2022-06-17 15:06: 00: | nfo: Dba.depl oySandboxl nstance: tid=9: SQ.: SET SESSI ON "autoconmit’

426

Chapter 14 Customizing MySQL Shell

Table of Contents

14.1 Working With STArtUD SCHIPLSvuuiiiiiiiee it e e e e e et e e e ena e eees 427
14.2 Adding Module Search Pathsccoiiiiiiiii e 428
14.2.1 Module Search Path Environment Variablescccooooiiiiiiiiii e 429
14.2.2 Module Search Path Variable in Startup SCrPtSooviiiiiiiiiiiiie e 429
14.3 CuStOmMIZING the PrOMIPT ...ttt e e e e et e e e eba e eeees 430
14.4 Configuring MySQL Shell OPLONScooiiiiiiiiie et 431

MySQL Shell offers these customization options for you to change its behavior and code execution
environment to suit your preferences:

» Create startup scripts that are executed when MySQL Shell is started in JavaScript or Python mode.
See Section 14.1, “Working With Startup Scripts”.

» Add non-standard module search paths for JavaScript or Python mode. See Section 14.2, “Adding
Module Search Paths”.

» Customize the MySQL Shell prompt. See Section 14.3, “Customizing the Prompt”.

» Set configuration options to change MySQL Shell's behavior for the current session or permanently.
See Section 14.4, “Configuring MySQL Shell Options”.

14.1 Working With Startup Scripts

When MySQL Shell is started in JavaScript or Python mode, and also when you switch to JavaScript
or Python mode for the first time, MySQL Shell searches for startup scripts to be executed. The startup
scripts are JavaScript or Python specific scripts containing the instructions to be executed when
MySQL Shell first enters the corresponding language mode. Startup scripts let you customize the
JavaScript or Python code execution environment in any of these ways:

» Adding additional search paths for Python or JavaScript modules.
» Defining global functions or variables.
 Carrying out any other possible initialization through JavaScript or Python.

The relevant startup script is loaded when you start or restart MySQL Shell in either JavaScript or
Python mode, and also the first time you change to the other one of those modes while MySQL Shell is
running. After this, MySQL Shell does not search for startup scripts again, so implementing updates to
a startup script requires a restart of MySQL Shell if you have already entered the relevant mode. When
MySQL Shell is started in SQL mode or you switch to that mode, no startup script is loaded.

The startup scripts are optional, and you can create them if you want to use them for customization.
The startup scripts must be named as follows:

» For JavaScript mode: nysql shrc. s
» For Python mode: nysqgl shrc. py

You can place your startup scripts in any of the locations listed below. MySQL Shell searches all of
the stated paths, in the order stated, for startup scripts with the file name nmysql shr ¢ and the file
extension that matches the scripting mode that is being initialized (. j s by default if MySQL Shell is
started with no language mode specified). Note that MySQL Shell executes all appropriate startup
scripts found for the scripting mode, in the order they are found. If something is defined in two different
startup scripts, the script executed later takes precedence.

427

Adding Module Search Paths

1. Inthe platform's standard global configuration path.
e On Windows: %°ROCRAMDATA% My SQL\ nysql sh\ nysqgl shrc. [j s| py]
e OnUnix:/etc/ mysql / nmysql sh/ nysql shrc. [] s| py]

2. Inthe shar e/ mysqgl sh subdirectory of the MySQL Shell home folder, which can be defined by
the environment variable MYSQLSH_HOVE, or identified by MySQL Shell. If MYSQLSH HOVE is not
defined, MySQL Shell identifies its own home folder as the parent folder of the folder named bi n
that contains the nysql sh binary, if such a folder exists. (For many standard installations it is
therefore not necessary to define MYSQLSH_HOVE.)

¢ On Windows: %8WSQLSH HOVE% shar e\ nmysql sh\ nysql shrc. [] s| py]
e On Unix; $MYSQLSH HOVE/ shar e/ mysql sh/ mysql shrc. [s| py]

3. In the folder containing the mysqlsh binary, but only if the MySQL Shell home folder described in
option 2 is neither specified nor identified by MySQL Shell in the expected standard location.

e On Windows: <nysql sh bi nary path>\nysql shrc.[] s| py]
e On Unix: <nysql sh bi nary path>/ nysql shrc.[j s]| py]

4. Inthe MySQL Shell user configuration path, as defined by the environment variable
MYSQLSH_USER_CONFI G_HQOVE.

¢ On Windows: %8WSQLSH USER CONFI G_HOVE% nysql shrc. [] s| py]
e On Unix: SMYSQLSH USER CONFI G HOVE/ nysql shrc. [] s| py]

5. In the platform's standard user configuration path, but only if the MySQL Shell user configuration
path described in option 4 is not specified.

¢ On Windows: %APPDATA% MySQL\ nysql sh\ nysql shrc. [] s| py]

e On Unix: $HOVE/ . nysql sh/ nysql shrc. [] s| py]

14.2 Adding Module Search Paths

When you use the r equi r e() function in JavaScript or the i nport function in Python, the module
search paths listed for the sys. pat h variable are used to search for the specified module. MySQL
Shell initializes the sys. pat h variable to contain the following module search paths:

» The folders specified by the module search path environment variable (MYSQLSH JS_MODULE_PATH
in JavaScript mode, or PYTHONPATH in Python mode).

» For JavaScript, the subfolder shar e/ mysql sh/ nodul es/ j s of the MySQL Shell home folder, or
the subfolder / modul es/ | s of the folder containing the nysql sh binary, if the home folder is not
present.

» For Python, installation-dependent default paths, as for Python's standard import machinery.

MySQL Shell can also load the built-in modules nysql and nmysql x using the r equi re() ori nport
function, and these modules do not need to be specified using the sys. pat h variable.

For JavaScript mode, MySQL Shell loads the first module found in the specified location that is (in
order of preference) a file with the specified name, or a file with the specified name plus the file
extension . j s,oraninit. | s file contained in a folder with the specified name. For Python mode,
Python's standard import machinery is used to load all modules for MySQL Shell.

For JavaScript mode, MySQL Shell also provides support for loading of local modules by the
requi re() function. If you specify the module name or path prefixed with . / or . ./, in batch mode,

428

Module Search Path Environment Variables

MySQL Shell searches for the specified module in the folder that contains the JavaScript file or module
currently being executed. In interactive mode, given one of those prefixes, MySQL Shell searches in
the current working directory. If the module is not found in that folder, MySQL Shell proceeds to check
the module search paths specified by the sys. pat h variable.

You can add further module search paths to the sys. pat h variable either by appending them to the
module search path environment variable for JavaScript mode or Python mode (see Section 14.2.1,
“Module Search Path Environment Variables”), or by appending them directly to the sys. pat h
variable using the MySQL Shell startup script for JavaScript mode or Python mode (see Section 14.2.2,
“Module Search Path Variable in Startup Scripts”). You can also modify the sys. pat h variable at
runtime, which changes the behavior of the r equi re() ori nport function immediately.

14.2.1 Module Search Path Environment Variables

You can add folders to the module search path by adding them to the appropriate language-specific
module search path environment variable. MySQL Shell includes these folders in the module search
paths when you start or restart MySQL Shell. If you want to add to the search path immediately, modify
the sys. pat h variable directly.

For JavaScript, add folders to the MYSQLSH JS MODULE_ PATH environment variable. The value of this
variable is a list of paths separated by a semicolon character.

For Python, add folders to the PYTHONPATH environment variable. The value of this variable is a list
of paths separated by a semicolon character on Windows platforms, or by a colon character on Unix
platforms.

For JavaScript, folders added to the environment variable are placed at the end of the sys. pat h
variable value, and for Python, they are placed at the start.

Note that Python's behavior for loading modules is not controlled by MySQL Shell; the normal import
behaviors for Python apply.

14.2.2 Module Search Path Variable in Startup Scripts

The sys. pat h variable can be customized using the MySQL Shell startup script nysql shrc.j s

for JavaScript mode or nysql shr c. py for Python mode. For more information on the startup scripts
and their locations, see Section 14.1, “Working With Startup Scripts”. Using the startup script, you can
append module paths directly to the sys. pat h variable.

Note that each startup script is only used in the relevant language mode, so the module search paths
specified in mysql shrc. j s for JavaScript mode are only available in Python mode if they are also
listed in mysql shrc. py.

For Python modify the nysql shr c. py file to append the required paths into the sys. pat h array:

Inport the sys nodul e
i mport sys

Append the additional nodul e paths
sys. pat h. append(' ~/ cust oni pyt hon')
sys. pat h. append(' ~/ ot her/ cust onl nodul es')

For JavaScript modify the mysql shr c. j s file to append the required paths into the sys. pat h array:

/'l Append the additional nodul e paths
sys.path = [...sys.path, '~/customjs'];
sys.path = [...sys.path, '~/other/custom nodul es'];

A relative path that you append to the sys. pat h array is resolved relative to the current working
directory.

429

Customizing the Prompt

The startup scripts are loaded when you start or restart MySQL Shell in either JavaScript or Python
mode, and also the first time you change to the other one of those modes while MySQL Shell is
running. After this, MySQL Shell does not search for startup scripts again, so implementing updates
to a startup script requires a restart of MySQL Shell if you have already entered the relevant mode.
Alternatively, you can modify the sys. pat h variable at runtime, in which case the r equi re() or

i mport function uses the new search paths immediately.

14.3 Customizing the Prompt

The MySQL Shell prompt can be customized using prompt theme files. To customize the prompt theme
file, either set the MYSQLSH PROVPT _THEME environment variable to a prompt theme file name, or
copy a prompt theme file to the ~/ . mysql sh/ directory on Linux and macQOS, or the ¥%®ppDat a%

\ Roam ng\ MySQL\ nysqgl sh\ directory on Windows. The file must be named pr onpt . j son, and
MySQL Shell must be restarted before changes take effect.

Figure 14.1 MySQL Shell prompt

localhost:3306 ssl B> \sql

Switching to SQL mode... Commands end with ;
VSIoIl localhost:3306 ssl1 | SQL > \py

Switching to Python mode...
U\YAlo]M localhost:3306 ssl Py > \Jjs
Switching to JavaScript mode...

IVl IN localhost:3306 ssl >]

There are six parts that can make up the prompt:

» Status: Whether it is a production system and whether the connection has been lost.

» MySQL: A reminder that you are working with a MySQL database.

e Connection: Which host you are connected to, and on which port that SSL is being used.
» Schema: The current default schema.

* Mode: The mode you are using: JS = JavaScript, PY = Python, and SQL = SQL.

e End: The prompt ends with >.

The user configuration path for the mysql sh directory where the pr onpt . j son is located can be
overridden on all platforms by defining the environment variable MYSQLSH USER _CONFI G_HOVE. The
value of this variable replaces ¥%#AppDat a% Roan ng\ MySQL\ mysqgl sh\ on Microsoft Windows or
~/ . nysql sh/ on Unix.

On Microsoft Windows, find the prompt theme files in the following directory: %pr ogr anfi | es%
\ MySQL\ MySQL Shel I 8. 0\ shar e\ nysql sh\ pronpt\.

On macOS, find the prompt theme files in the following directory: / usr /| ocal / nmysql - shel | /
shar e/ nysql sh/ pronpt.

On Linux, find the prompt theme files in the following directory: / usr/ shar e/ nysql sh/ pronpt /.

The format of the prompt theme file is described in the READVE. pr onpt file. Some sample prompt
theme files are also included, for example, pr onpt _256. j son:

In the sample prompt theme pr onpt 256. j son, there is an object with the classes di sconnect ed
% ost %and % s_pr oduct i on% The variables are defined in this file or come from MySQL Shell

430

Configuring MySQL Shell Options

itself, for example, %ost and %por t . In this example, the host is included in the environment variable
PRODUCTI ON_SERVERS.

"variabl es" : {
"is_production": {
"match" : {
"pattern": "*;%ost%*"
"val ue": "; %env: PRODUCTI ON_SERVERS% "
b

The background and foreground colors are defined using the bg and f g elements. These elements
allow you to customize the colors used in the prompt. Specify the colors in one of the following ways:

« By Name: Use a color defined by name.

* By Index: Use a value between 0 and 255 (inclusive) where 0 is black, 63 light blue, 127 magenta,
193 yellow, and 255 is white.

* By RGB: Use a value in the #r r ggbb format. The terminal must support Tr ueCol or .

Named colors are used in this example, with a text PRODUCTI ON output if the Boolean
i s_producti on elements returns TRUE.

"production" : {
"text": " PRODUCTION ",
"bg": "red",

"fg": "white"

}
These elements output the prompt in the following format:

Figure 14.2 MySQL Shell prompt

PRODUCTION HEVEPIM localhost:3386 ssl

Color display depends on the support available from the terminal. Most terminals support 256 colors
in Linux and Mac. In Windows, color support requires either a 3rd party terminal program with support
for ANSI/VT100 escapes, or Windows 10. By default, MySQL Shell attempts to detect the terminal
type and handle colors appropriately. If auto-detection does not work for your terminal type, or if you
want to modify the color mode due to accessibility requirements or for other purposes, you can define
the environment variable M\YSQLSH TERM COLOR_MODE to force MySQL Shell to use a specific color
mode. The possible values for this environment variable are r gb, 256, 16, and nocol or .

On startup, if an error is found in the prompt theme file, an error message is printed and a default
prompt theme is used. Some of the sample prompt theme files require a special font (for example
Sour ceCodePr o+Power | i ne+Awesone+Regul ar . ttf). If you set the MYSQLSH PROVPT_THEME
environment variable to an empty value, MySQL Shell uses a minimal prompt with no color.

14.4 Configuring MySQL Shell Options

You can configure MySQL Shell to match your preferences, for example to start up to a certain
programming language or to provide output in a particular format. Configuration options can be set for
the current session only, or options can be set permanently by persisting changes to the MySQL Shell
configuration file. Online help for all options is provided. You can configure options using the MySQL
Shell \ opt i on command, which is available in all MySQL Shell modes for querying and changing
configuration options. Alternatively in JavaScript and Python modes, use the shel | . opt i ons object.

431

Valid Configuration Options

Valid Configuration Options

The following configuration options can be set using either the \ opt i on command or
shel | . opt i ons scripting interface:

optionName

DefaultValue

Type

Effect

aut oconpl et e. naneCg

troe

boolean

Enable database
name caching for
autocompletion.

bat chCont i nueOnErr g

false

boolean (READ ONLY)

In SQL batch mode,
force processing to
continue if an error is
found. Settotrue

by adding - - f orce

on the command line.
See Appendix A,
MySQL Shell Command
Reference.

connect Ti neout

10

float greater than 0

The time in seconds
to wait before the
connection of any
session not using
AdminAPI times out.

dba. connect Ti neout

float greater than O

The time in seconds

to wait before the
connection of any
session using AdminAPI
times out.

credenti al St ore. exd

bogty-i | ters

array

An array of URLs

for which automatic
password storage is
disabled, supports glob
characters * and ?.

credenti al Store. hel

Pepends on platform

string

Name of the credential
helper used to fetch

or store passwords. A
special value def aul t
is supported to use
the platform's default
helper. The special
value >di sabl ed<
disables the credential
store.

credenti al Store. say

pRABpBtAVOr ds

string

Controls automatic
password storage,
supported values:

al ways, pronpt or
never.

dba. connecti vi t yChe

trike

boolean

Defines if connectivity
checks are

performed for

cl uster. addl nst ance
clusterSet.createRe
and

replicaSet. addl nst g

432

(),

plicad us

nce(),

Valid Configuration Options

optionName

DefaultValue

Type

Effect

using the defined SSL
configuration.

If an SSL error occurs,
the command stops and
an error is returned.

dba. gt i dWai t Ti neout

60

integer greater than 0

The time in seconds

to wait for GTID
transactions to

be applied, when
required by AdminAPI
operations. See

Section 8.9, “Modifying
or Dissolving an InnoDB
Cluster”.

dba. | ogSql

integer ranging from O to
2

(Deprecated in MySQL
Shell 8.0.30. Use

| 0gSql instead.)

Log SQL statements
that are executed by
AdminAPI operations
(see Chapter 13,
MySQL Shell Logging
and Debug).

dba. restart Wi t Ti nH

60t

integer greater than 0

The time in seconds

to wait for transactions
to be applied during a
recovery operation. Use
to configure a longer
timeout when a joining
instance has to recover
a large amount of data.
See Section 8.4.6,
“Using MySQL Clone
with InnoDB Cluster”).

dba. ver si onConpat i b

truet yChecks

boolean

Checks version
compatibility for
asynchronous
replication when
managing a ReplicaSet,
ClusterSet, or a Cluster
with Read-Replicas.

def aul t Conpr ess

false

boolean

Request compression
for information sent
between the client

and the server in

every global session.
Affects classic MySQL
protocol connections
only (see Section 4.3.8,
“Using Compressed
Connections”).

def aul t Mode

None

string (sq, js or py)

The mode to use when
MySQL Shell is started

433

Valid Configuration Options

optionName

DefaultValue

Type

Effect

(SQL, JavaScript or
Python).

devapi . dbQbj ect Hand

trae

boolean

Enable table and
collection name handles
for the X DevAPI db
object.

hi story. aut oSave

true

boolean

Save (true) or clear
(false) entries in the
MySQL Shell code
history when you exit
the application (see
Section 5.5, “Code
History”).

hi story. maxSi ze

1000

integer

The maximum number
of entries to store in
the MySQL Shell code
history.

hi story. sql.ignoreHR

PESEEECT*:SHOW*

string

Strings that match these
patterns are not added
to the MySQL Shell
code history.

hi story. sql . sysl og

false

boolean

Send interactive SQL
statements to the
operating system’s
system logging facility
(see Section 13.3,
“System Logging for
User SQL Statements”).

| ogFile

Path to the MySQL Shell
log file.

string

Displays the path

to the MySQL Shell

log file. (Read-only)
This value can only

be changed from the
command line, using the
--log-fil e=path/
to/logfile.log
option. See Appendix A,
MySQL Shell Command
Reference.

| ogLevel

info

integer ranging from

1 to 8 or any of none,
internal, error, warning,
info, debug, debug2,
debugs3, respectively

Set a logging level for
the application log (see
Chapter 13, MySQL
Shell Logging and
Debug).

l 0gSql

error

string (off, error, on, all)

Log SQL statements
that are executed

by MySQL Shell
operations (see
Section 13.4, “MySQL
Shell SQL Logging”).
This log option does
not log user SQL
statements executed

Valid Configuration Options

optionName

DefaultValue

Type

Effect

interactively from the
SQL mode, only SQL
statements executed

by MySQL Shell
operations. Logs all

SQL statements except
those defined in the

| ogSql . i gnorePatter
and

| ogSql . i gnorePatter
options.

« off: no SQL
statements are
logged.

« error: only SQL
statements with error
messages are logged
when an error occurs.

e on: logs all SQL
statements except
those defined in the
 0ogSql . i gnorePatt
and
 ogSql . i gnorePatt
options.

e all:logs all SQL
statements except
those defined in
 ogSql . i gnor ePat t

| ogSql . i gnorePatter

NSELECT* : * SHOWN

string

Specify colon-separated
list of glob pattern

to filter out of SQL
statements logged

by | ogSql (see
Section 13.4, “MySQL
Shell SQL Logging”).

| ogSql . i gnorePatter

hUDEATeFl ED* : * PASSV

\SHRInY

Specify defines a
colon-separated list
of statement patterns
to filter out of SQL
statements logged

by | ogSql (see
Section 13.4, “MySQL
Shell SQL Logging”).

nUnsaf

er nuns

ern

er nuns

nysql Pl ugi nDi r

MySQL Shell's MySQL
plugin directory. That
is, the l'i b/ mysql /

pl ugi ns directory

of your MySQL Shell
installation on Linux
platforms, and | i b

string

Set a persistent path to
a plugin directory.

435

Valid Configuration Options

optionName DefaultValue Type Effect
\ mysqgl \ pl ugi ns on
Windows platforms.
oci.configFile The default location for |string Set a persistent path to
your platform. an OCI CLI config file.
oci.profile DEFAULT string Specify which profile
to use in the OCI CLI
config file.
pager None string Use the specified
external pager tool
to display text and
results. Command-
line arguments for the
tool can be added (see
Section 4.7, “Using a
Pager”).
passwor dsFrontt di n |false boolean Read passwords from
st di n instead of
terminal.
resul t For mat table string (table, tabbed, The default output

vertical, json | json/
pretty, ndjson | json/raw,
json/array)

format for printing result
sets (see Section 5.7,
“Output Formats”).

sandboxDi r

Depends on platform

string

The sandbox directory.
On Windows, the
default is C: \ User s

\ MyUser\ MySQL

\ nysql - sandboxes,
and on Unix systems,
the default is $HOVE/
nmysql - sandboxes.

showCol umTypel nf o

false

boolean

In SQL mode, display
column metadata for
result sets.

showMar ni ngs

true

boolean

In SQL mode,
automatically display
SQL warnings if any.

ssh. bufferSi ze

10240

integer greater than O

The buffer size in bytes
for data transfer through
an SSH tunnel (see
Section 4.3.7, “Using an
SSH Tunnel”).

ssh.configFile

empty

string

The path to a custom
SSH configuration

file that replaces

the standard SSH
configuration file

~/ .ssh/config

as the default for

SSH tunneling (see
Section 4.3.7, “Using an
SSH Tunnel”).

useW zar ds

true

boolean

Enable wizard mode.

Using the \ opt i on Command

a level of detail (see
Chapter 13, MySQL
Shell Logging and
Debug).

optionName DefaultValue Type Effect
ver bose 0 integer ranging from 0O to | Enable verbose output
4 to the console and set

Note
@ String values are case-sensitive.

Options listed as “READ ONLY” cannot be modified.

Using the \ opti on Command

The MySQL Shell \ opt i on command enables you to query and change configuration options in all
modes, enabling configuration from SQL mode in addition to JavaScript and Python modes.

The command is used as follows:

e \option -h, --help [filter] - print help for options matching fil ter.

e \option -I, --list [--showorigin] -listall the options. - - show- ori gi n augments the

list with information about how the value was last changed, possible values are:
e Command |ine
e Conpi |l ed default
e Configuration file
e Environnent variabl e
e User defined
« \option option_nane - print the current value of the option.

e \option [--persist] option_nanme val ue or nane=val ue - set the value of the option
and if - - per si st is specified save it to the configuration file.

e \option --unset [--persist] <option_name> -resetoption's value to default and if - -
per si st is specified, removes the option from the MySQL Shell configuration file.

Note
@ The value of opti on_nane and fi | t er are case-sensitive.

See Valid Configuration Options for a list of possible values for opt i on_narne.

Using the shel | . opt i ons Configuration Interface

The shel | . opt i ons object is available in JavaScript and Python mode to change MySQL Shell
option values. You can use specific methods to configure the options, or key-value pairs as follows:

M/SQL JS > shel | . options['history. aut oSave']=1
In addition to the key-value pair interface, the following methods are available:

* shel |l . options[optionNane]: lists the current value of the option.

437

Configuration File

e shell.options.set(optionNane, val ue): setsthe opti onNane to val ue for this session,
the change is not saved to the configuration file.

» shell.options. setPersist(optionNane, val ue): setsthe opti onNane to val ue
for this session, and saves the change to the configuration file. In Python mode, the method is
shel | . options. set _persi st.

» shel |l .options.unset (optionNane) : resets the opt i onNane to the default value for this
session, the change is not saved to the configuration file.

e shell.options. unset Persi st (optionNane): resets the opt i onNane to the default value
for this session, and saves the change to the configuration file. In Python mode, the method is
shel | . opti ons. unset _persi st.

Option names are treated as strings, and as such should be surrounded by ' characters. See Valid
Configuration Options for a list of possible values for opt i onNane.

Use the commands to configure MySQL Shell options as follows:
M/SQL JS > shel |l . options. set (' history. maxSi ze', 5000)

M/SQL JS > shel |l . options. set Persi st (' useWzards', 'true')
M/SQL JS > shel |l . options. set Persi st (' history. aut oSave', 1)

Return options to their default values as follows:

M/SQL JS > shel |l . options. unset (' hi story. maxSi ze')
MySQL JS > shel | . options. unset Persi st (' useW zards')

Configuration File

The MySQL Shell configuration file stores the values of the option to ensure they are persisted across
sessions. Values are read at startup and when you use the persist feature, settings are saved to the
configuration file.

The location of the configuration file is the user configuration path and the file is named
opt i ons. j son. Assuming that the default user configuration path has not been overridden by defining
the environment variable M\YSQLSH USER CONFI G_HOVE, the path to the configuration file is:

e on Windows YAPPDATA% My SQL\ nysql sh
» on Unix ~/ . mysqgl sh where ~ represents the user's home directory.

The configuration file is created the first time you customize a configuration option. This file is internally
maintained by MySQL Shell and should not be edited manually. If an unrecognized option or an option
with an incorrect value is found in the configuration file on startup, MySQL Shell exits with an error.

438

Appendix A MySQL Shell Command Reference

Table of Contents
A.1 mysqlsh — The MySQL Shelloiiiii e e 439

This appendix describes the nysqgl sh command.

A.1 mysqglsh — The MySQL Shell

MySQL Shell is an advanced command-line client and code editor for MySQL. In addition to SQL,
MySQL Shell also offers scripting capabilities for JavaScript and Python. For information about using
MySQL Shell, see MySQL Shell 9.4. When MySQL Shell is connected to the MySQL Server through
the X Protocol, the X DevAPI can be used to work with both relational and document data, see Using
MySQL as a Document Store. MySQL Shell includes the AdminAPI that enables you to work with
InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet deployments; see Chapter 6, MySQL
AdminAPI.

Many of the options described here are related to connections between MySQL Shell and a MySQL
Server instance. See Section 4.3, “MySQL Shell Connections” for more information.

nysgl sh supports the following command-line options.

Table A.1 mysqlsh Options

Option Name Description

-- Start of API command line integration

--auth-method Authentication method to use

--authentication-oci-client-config-profile Profile in the OCI configuration file

--authentication-openid-connect-client-id-token-file | The file path to an Openld Connect authorization
token file

--cluster Connect to an InnoDB cluster

--column-type-info Print metadata for columns in result sets

--compress Compress all information sent between client and
server

--compression-algorithms Permitted compression algorithms for connections
to server

--zstd-compression-level Compression level for connections to server that

use any compression algorithm over X Protocol or
for zstd only on classic connections.

--connect-timeout Connection timeout for global session

--credential-store-helper The Secret Store helper for passwords

--database The schema to use (alias for --schema)

--dba Enable X Protocol on connection with MySQL 5.7
server

--dba-log-sql Log SQL statements that are executed by
AdminAPI operations

--disable-plugins Disable loading user plugins

--execute Execute the command and quit

--file File to process in batch mode

439

https://dev.mysql.com/doc/refman/9.4/en/document-store.html
https://dev.mysql.com/doc/refman/9.4/en/document-store.html

mysqlsh — The MySQL Shell

Option Name

Description

--force

Continue in SQL and batch modes even if errors
occur

--get-server-public-key

Request RSA public key from server

--help Display help message and exit

--histignore Strings that are not added to the history

--host Host on which MySQL server instance is located
--interactive Emulate Interactive mode in batch mode

--js, --javascript

Start in JavaScript mode

--json Print output in JSON format

--local-infile Whether LOCAL is supported for LOAD DATA
statements in the client. Must be defined on server
also

--log-file Log file location for this instance

--log-level Specify logging level

--log-sql Log all MySQL Shell-generated SQL statements
to the MySQL Shell log file.

--mysq|l, --mc Create a session using classic MySQL protocol

--mysql-plugin-dir

Directory where the client-side plugins are
installed

--mysqlx, --mx

Create a session using X Protocol

--name-cache

Enable automatic loading of table names based
on the active default schema

--no-name-cache

Disable autocompletion

--no-password

No password is provided for this connection

--no-wizard, --nw

Disable the interactive wizards

--oci-config-file

Path to the OCI configuration file to use

--pager The external pager tool used to display output

--password Password to use when connecting to server

--passwordl Password 1 for multifactor authentication
(equivalent to --password)

--password?2 Password 2 for multifactor authentication

--password3 Password 3 for multifactor authentication

--passwords-from-stdin

Read the password from stdin

--plugin-authentication-kerberos-client-mode

Allows defining the kerberos client mode (SSPI or
GSSAPI) when using kerberos authentication

--plugin-authentication-webauthn-client-preserve-
privacy

Enable user to choose a key to be used for
assertion

--plugin-authentication-webauthn-device

Specifies which libfido2 device to use. Default is O
(first device)

--port TCP/IP port number for connection
--py, --python Start in Python mode
--pyc Execute a Python command and quit. Any options

specified after this are treated as arguments of the
processed command.

440

mysqlsh — The MySQL Shell

Option Name

Description

—-pym

Password 3 for multifactor authentication

--quiet-start

Start without printing introductory information

--redirect-primary

Ensure connection to an InnoDB cluster's primary

--redirect-secondary

Ensure connection to an InnoDB cluster's
secondary

--register-factor

Multifactor authentication factors for which
registration must be done

--replicaset

Ensures that the target server belongs to an
InnoDB ReplicaSet, and populates the rs global
variable with the InnoDB ReplicaSet the target
instance belongs to

--result-format

Set the output format for this session

--save-passwords

How passwords are stored in the Secret Store

--schema

The schema to use

--server-public-key-path

Path name to file containing RSA public key

--show-warnings

Show warnings after each statement if there are
any (in SQL mode)

--socket Unix socket file or Windows named pipe to use
(classic MySQL protocol only)

--sgl Start in SQL mode, auto-detecting protocol to use
for connection

--sqlc Start in SQL mode using a classic MySQL
protocol connection

--sqlx Start in SQL mode using an X Protocol connection

--ssh URI for connection to SSH server

--ssh-config-file

Configuration file for connection to SSH server

--ssh-identity-file

Identity file for connection to SSH server

--ssl-ca File that contains list of trusted SSL Certificate
Authorities

--ssl-capath Directory that contains trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher List of permissible encryption ciphers for
connections that use TLS protocols up through
TLSv1.2

--ssl-crl File that contains certificate revocation lists

--ssl-crlpath Directory that contains certificate revocation list
files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of connection to server

--syslog Log interactive SQL statements to the system
logging facility

--tabbed Display output in tab separated format

--table Display output in table format

--ts-ciphersuites

TLS v1.3 cipher to use

441

mysqlsh — The MySQL Shell

Option Name Description

--tls-version Permissible TLS protocol for encrypted
connections

--uri Session information in URI format

--user MySQL user name to use when connecting to
server

--verbose Activate verbose output to the console

--version Display version information and exit

--vertical Display all SQL results vertically

--zstd-compression-level Compression level for connections to server that
use zstd compression

--help,-?

Display a help message and exit.

Marks the end of the list of mysqlsh options and the start of a command and its arguments for
MySQL Shell's APl command line integration. You can execute methods of the MySQL Shell global
objects from the command line using this syntax:

nmysql sh [options] -- object nmethod [argunents]
See Section 5.8, “API Command Line Integration” for more information.
- - aut h- net hod=net hod

Authentication method to use for the account. Depends on the authentication plugin used for the
account's password. For MySQL Shell connections using classic MySQL protocol, specify the name
of the authentication plugin, for example cachi ng_sha2_passwor d. For MySQL Shell connections
using X Protocol, specify one of the following options:

AUTO Let the library select the authentication method.

FALLBACK Let the library select the authentication method, but do not use
any authentication method that is not compatible with MySQL 5.7.

FROM_CAPABILITIES Let the library select the authentication method, using the
capabilities announced by the server instance.

MYSQL41 Use the challenge-response authentication protocol supported
by MySQL 4.1 and later, which does not send a plaintext
password. This option is compatible with accounts that use the
mysqgl _native_passwor d authentication plugin.

PLAIN Send a plaintext password for authentication. Use this option
only with encrypted connections. This option can be used to
authenticate with cached credentials for an account that uses
the cachi ng_sha2_ passwor d authentication plugin, provided
there is an SSL connection. See Using X Plugin with the Caching
SHA-2 Authentication Plugin.

SHA256_MEMORY Authenticate using a hashed password stored in memory. This
option can be used to authenticate with cached credentials for an
account that uses the cachi ng_sha2_passwor d authentication
plugin, where there is a non-SSL connection. See Using X Plugin
with the Caching SHA-2 Authentication Plugin.

442

https://dev.mysql.com/doc/refman/9.4/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/9.4/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/9.4/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/9.4/en/x-plugin-sha2-cache-plugin.html

mysqlsh — The MySQL Shell

For MySQL Shell connections using classic MySQL protocol, specify the name of the authentication
plugin used by the user account, for example cachi ng_sha2_passwor d (which is the default

for user accounts created in MySQL 8.0). MySQL Shell uses the MySQL client library for client-
side authentication for these connections. The following authentication methods require additional
configuration:

clear_text password The nysql _cl ear passwor d client-side plugin is required
for simple LDAP authentication. It is built in to the MySQL client
library, but for security it is not enabled by default. MySQL Shell
enables and uses the plugin when you specify it with the - -
aut h- met hod=cl ear _t ext passwor d connection option.
This authentication type is only suitable for a secure connection
that uses SSL or sockets, so you must configure the secure
connection before using it. Note that with the option ssl -
node=pr ef er r ed, the SSL connection is not guaranteed, so
a connection with this option set is not considered to be an SSL
connection. For more information, see Section 4.3.4, “Using
Encrypted Connections”.

authentication_ldap_sasl_client The aut henti cati on_| dap_sasl _cl i ent client-side plugin is
for SASL-based LDAP authentication, including GSSAPI/Kerberos
authentication. It is not built in to the MySQL client library, but it is
shipped in the MySQL Server packages. To load it, you must use
the - - mysql - pl ugi n- di r option to specify a path to the plugin
in the MySQL Server packages.

authentication_kerberos_client ~ The aut henti cati on_kerberos_cl i ent client-side plugin is
for Kerberos authentication. It is not built in to the MySQL client
library, but it is shipped in the MySQL Server packages. To load it,
you must use the - - mysql - pl ugi n-di r option to specify a path
to the plugin in the MySQL Server packages.

Cached ticket-granting tickets (TGTs) for Kerberos authentication are supported from MySQL 8.0.27
when the - - aut h- met hod option is used to specify the aut henti cati on_| dap_sasl| _client
oraut hentication_kerberos_client plugin, and the - - nysql - pl ugi n-di r option is used
to provide a path to the plugin. To use cached TGTs, do not specify a user and password in the
connection options. When you specify one of these plugins and do not specify a user and password,
MySQL Shell does not supply the system user name, does not prompt for a password, and does not
attempt to use the Secret Store helper to retrieve or store credentials.

For more information, see Section 4.3.5, “Using LDAP and Kerberos Authentication”.

--cluster

Ensures that the target server is part of an InnoDB Cluster and if so, sets the cl ust er global
variable to the cluster object.

--colum-type-info

In SQL mode, before printing the returned result set for a query, print metadata for each column in
the result set, such as the column type and collation.

The column type is returned as both the type used by MySQL Shell (Type), and the type used by the
original database (DBType). For MySQL Shell connections using classic MySQL protocol, DBType

is as returned by the protocol, and for X Protocol connections, DBType is inferred from the available
information. The column length (Lengt h) is returned in bytes.

443

mysqlsh — The MySQL Shell

--conpress[={required|preferred|disabled}],-C [{required]|preferred|
di sabl ed}]

Controls compression of information sent between the client and the server using this connection.
It is also available for classic MySQL protocol and X Protocol connections, and you can optionally
specify requi r ed, pref erred, or di sabl ed. When just - - conpr ess is specified, the value
defaults to - - conpr ess=r equi r ed. See Section 4.3.8, “Using Compressed Connections” for
information on using MySQL Shell's compression control in all releases.

--conpression-al gorithnms=val ue

Command-Line Format --conpressi on-al gorit hnms=val ue
Type Set
Default Value unconpr essed
Valid Values zlib
zstd
unconpr essed

The permitted compression algorithms for connections to the server.

See Section 4.3.8.1, “Compression Control For MySQL Shell”.

--conpressi on-1 evel =l evel

Command-Line Format --zstd-conpression-|evel =#

Type Integer

Compression level for connections to server that use any compression algorithm over X Protocol or
for zstd only on classic connections.

See Section 4.3.8.1, “Compression Control For MySQL Shell”.

--zstd-conpression-1 evel =| evel

Command-Line Format --zstd-conpression-|evel =#

Type Integer

The compression level to use for connections to the server that use the zst d compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression.
The default zst d compression level is 3. The compression level setting has no effect on connections
that do not use zst d compression.

See Section 4.3.8.1, “Compression Control For MySQL Shell”.

--connect -ti neout =ns

Configures how long MySQL Shell waits (in milliseconds) to establish a global session specified
through command-line arguments.

444

--credential - store-hel per=hel per

The Secret Store Helper that is to be used to store and retrieve passwords. See Section 4.4,
“Pluggable Password Store”.

mysqlsh — The MySQL Shell

- - dat abase=nane, - D nane
The default schema to use. This is an alias for - - schemna.
- - di sabl e- pl ugi ns
Disables user plugins.
--local -infil e[=OFF| O\]
This variable controls client-side LOCAL capability for LOAD DATA statements.

The following options are available:

OFF (Default) It is not possible to use LOAD DATA LOCAL | NFI LE
statements.
ON It is possible to use LOAD DATA LOCAL | NFI LE statements, if

the server has been configured to permit them.
--log-sql[=of f|error|on|all|unfiltered]
Log all SQL statements executed by MySQL Shell to the MySQL Shell log file, nysql sh. | og

The following options are available:

off No MySQL Shell SQL statements are logged.

error (Default value) only MySQL Shell failed SQL statements with are
logged.

on All MySQL Shell SQL statements are logged, except those which

match the ignore pattern defined in | ogSql . i gnorePattern
and | ogSql . i gnor ePat t er nUnsaf e. See Filtering SQL
Logging for more information.

all All MySQL Shell SQL statements are logged, except
those which match the ignore pattern defined in
| 0gSql . i gnorePatt er nUnsaf e. See Filtering SQL Logging
for more information.

unfiltered All MySQL Shell SQL statements are logged, no filtering is
performed.

- - execut e=command, - e conmand

Execute the command using the currently active language and quit. This option is mutually exclusive
with the - - f i | e=fi | e_nan®e option.

--file=file_nanme,-f file_nane

Specify a file to process in Batch mode. Any options specified after this are used as arguments of the
processed file.

--force
Continue processing in SQL and Batch modes even if errors occur.
--hi stignore=strings

Specify strings that are not added to the MySQL Shell history. Strings are separated by a colon.
Matching is case insensitive, and the wildcards * and ? can be used. The default ignored strings are
specified as “* | DENTI FI ED*: * PASSWORD* ”. See Section 5.5, “Code History”.

445

https://dev.mysql.com/doc/refman/9.4/en/load-data.html
https://dev.mysql.com/doc/refman/9.4/en/load-data.html

mysqlsh — The MySQL Shell

--host =host _nane, - h host _nane

Connect to the MySQL server on the given host. On Windows, if you specify - - host =. or-h .
(giving the host name as a period), MySQL Shell connects using the default named pipe (which has
the name MySQL), or an alternative named pipe that you specify using the - - socket option.

--get-server-public-key
MySQL Shell equivalent of - - get - ser ver - publ i c- key.

If - -server-public-key-path=fil e_nane is given and specifies a valid public key file, it takes
precedence over - - get - server - publ i c- key.

Important
A Only supported with classic MySQL protocol connections.

See Caching SHA-2 Pluggable Authentication.
--interactive[=full],-i

Emulate Interactive mode in Batch mode.
--js,--javascript

Start in JavaScript mode.
--json[={of f|pretty|raw}]

Controls JSON wrapping for MySQL Shell output from this session. This option is intended for
interfacing MySQL Shell with other programs, for example as part of testing. For changing query
results output to use the JSON format, see - -resul t - f or nat .

When the - - j son option has no value or a value of pr et t y, the output is generated as pretty-
printed JSON. With a value of r aw, the output is generated in raw JSON format. In any of these
cases, the - -resul t - f or mat option and its aliases and the value of the r esul t For nat MySQL
Shell configuration option are ignored. With a value of of f , JSON wrapping does not take place,
and result sets are output as normal in the format specified by the - - resul t - f or mat option or the
resul t For mat configuration option.

--log-file=path

Change the location of the MySQL Shell application log file nysql sh. | og for this MySQL Shell
instance. The default location for the application log file is the user configuration path, which defaults
to YAPPDATA% My SQL\ nysql sh\ on Windows or ~/ . mysql sh/ on Unix. You can override

the user configuration path for all MySQL Shell instances by defining the environment variable
MYSQLSH USER CONFI G HOVE. The - - | og-fi | e option applies to the individual MySQL Shell
instance, meaning that different instances can write to different locations.

--log-1evel =N

Change the logging level for the MySQL Shell application log file mysql sh. | og, or disable logging
to the file. The option requires a value, which can be either an integer in the range from 1 to 8, or one
of none, i nternal, error,warning,info, debug, debug2, or debug3. Specifying 1 or none
disables logging to the application log file. Level 5 (i nf 0) is the default if you do not specify this
option. See Chapter 13, MySQL Shell Logging and Debug.

--mysql,--nt
Sets the global session created at start up to use a classic MySQL protocol connection.

--nysql - pl ugi n-di r=path

446

https://dev.mysql.com/doc/refman/9.4/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/refman/9.4/en/caching-sha2-pluggable-authentication.html

mysqlsh — The MySQL Shell

Sets a non-persistent path to the client-side authentication plugins by overriding the value of the
shel | . options. nysql Pl ugi nDi r setting. Client-side plugins are shipped in the MySQL Server
packages and can be located relative to the MySQL base directory (the value of the basedi r
system variable). For example:

e C\programfiles\nysql\nmysgl Server 8.0\lib\pluginonWindows host types

e Jusr/local/mysqgl/lib/pluginon Linux host types

For a list of the client authentication plugins that ship with the server, see Available Authentication
Plugins.

--nysql x, - - nx
Sets the global session created at start up to use an X Protocol connection.

--nane-cache

Enable automatic loading of table names based on the active default schema.

--no- nane-cache, - A

Disable loading of table names for autocompletion based on the active default schema and the
DevAPI db object. Use \ r ehash to reload the name information manually.

- -no- passwor d

When connecting to the server, if the user has a passwordless account, which is insecure and not
recommended, or if socket peer-credential authentication is in use (for Unix socket connections),
you must use - - no- passwor d to explicitly specify that no password is provided and the password
prompt is not required.

--no-w zard, - nw

Disables the interactive wizards provided by operations such as creating connections,

dba. confi gurel nstance(), C uster.reboot C ust er FronConpl et eCut age() and so on.
Use this option when you want to script MySQL Shell and not have the interactive prompts displayed.
For more information see Section 5.6, “Batch Code Execution” and Section 5.8, “API Command Line
Integration”.

--oci-config-fil e=pathToConfigFile

Configures a path to the OCI config file to use with OCI authentication to connect to a HeatWave
Service DB System.

The value defined here overrides the value defined in the oci . conf i gFi | e option.

For more information, see Authenticating Using authentication_oci Plugin.

--aut hentication-oci-client-config-profile=profil eNane

Configures the profile in the OCI config file to use with OCI authentication to connect to a HeatWave
Service DB System.

The value defined here overrides the value defined in the oci . pr of i | e option.

For more information, see Authenticating Using authentication_oci Plugin.

447

https://dev.mysql.com/doc/refman/9.4/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/9.4/en/pluggable-authentication.html#pluggable-authentication-available-plugins
https://dev.mysql.com/doc/refman/9.4/en/pluggable-authentication.html#pluggable-authentication-available-plugins
https://docs.oracle.com/en-us/iaas/mysql-database/doc/authenticating-using-authentication_oci-plugin.html
https://docs.oracle.com/en-us/iaas/mysql-database/doc/authenticating-using-authentication_oci-plugin.html

mysqlsh — The MySQL Shell

--aut henti cati on-openi d-connect-client-id-token-file=filenane
The file path to an Openld Connect authorization token file
See Section 4.3.6, “Using OpenID Connect”.
Important

A OpenlD Connect authentication is supported by MySQL Enterprise Edition,
only.

- - pager =name

The external pager tool used by MySQL Shell to display text output for statements executed in
SQL mode and other selected commands such as online help. If you do not set a pager, the pager
specified by the PAGER environment variable is used. See Section 4.7, “Using a Pager”.

--passwords-fromstdin

Read the password from standard input, rather than from the terminal. This option does not affect
any other password behaviors, such as the password prompt.

- - passwor d[=passwor d] , - ppasswor d

The password to use when connecting to the server. The maximum password length that is accepted
for connecting to MySQL Shell is 128 characters.

e --passwor d=passwor d (- ppasswor d) with a value supplies a password to be used for the
connection. With the long form - - passwor d=, you must use an equals sign and not a space
between the option and its value. With the short form - p, there must be no space between the
option and its value. If a space is used in either case, the value is not interpreted as a password
and might be interpreted as another connection parameter.

Specifying a password on the command line should be considered insecure. See End-User
Guidelines for Password Security. You can use an option file to avoid giving the password on the
command line.

e --passwor d with no value and no equal sign, or - p without a value, requests the password
prompt.

e --passwor d= with an empty value has the same effect as - - no- passwor d, which specifies
that the user is connecting without a password. When connecting to the server, if the user has
a passwordless account, which is insecure and not recommended, or if socket peer-credential
authentication is in use (for Unix socket connections), you must use one of these methods to
explicitly specify that no password is provided and the password prompt is not required.

- - passwor d1[=passwor d]

- - passwor dl, - - passwor d2 and - - passwor d3 are the passwords to use for accounts that
require multifactor authentication. You can supply up to three passwords. The options work in the
same way as the - - passwor d option, and - - passwor d1 is treated as equivalent to that option.
You can specify a password value following the option on the command line (which is insecure), or if
the options are given without a password value, MySQL Shell prompts the user for each password in
turn. Only supported for classic MySQL protocol connections made using command-line arguments.

- - passwor d2[=passwor d]

The password for the second authentication method for accounts that require multifactor
authentication. See the description for the - - passwor d1 option.

448

https://dev.mysql.com/doc/refman/9.4/en/password-security-user.html
https://dev.mysql.com/doc/refman/9.4/en/password-security-user.html

mysqlsh — The MySQL Shell

- - passwor d3[=passwor d]

The password for the third authentication method for accounts that require multifactor authentication.
See the description for the - - passwor d1 option.

--pl ugi n-aut hent i cati on-ker ber os-cl i ent-node={ SSPI | GSSAPI }

Command-Line Format - - pl ugi n-aut henti cati on- ker ber os-
cl i ent - node

Type String

Default Value SSPI

Valid Values SSPI
GSSAPI

On Microsoft Windows platforms, allows defining the kerberos client mode (SSPI or GSSAPI) when
using kerberos authentication.

If pl ugi n-aut henti cati on-ker ber os-cl i ent - node is not defined, SSPI is used by default.

When connecting to a MySQL server using Kerberos authentication, the authentication modes have
the following behavior:

* GSSAPI :

« If a password is not provided, the authentication ticket is retrieved from the MIT Kerberos cache.
If a valid ticket cannot be found, the connection fails.

« If a password is provided, the authentication ticket is retrieved from the Kerberos server and
stored in the MIT Kerberos cache.

« If an account name is not provided, the Windows user name is used as the MySQL account
name.

* SSPI:
« If a password is not provided, the Windows single-sign-on ticket is used.
« If a password is provided, the authentication ticket is stored in temporary, in-memory storage.

- - pl ugi n- aut hent i cati on-webaut hn-cl i ent-preserve-privacy={ OFF O\}

Command-Line Format - - pl ugi n-aut hent i cati on-webaut hn-
client-preserve-privacy

Type Boolean

Default Value fal se

Determines how assertions are sent to server in case there are more than one discoverable
credentials stored for a given RP ID (a unique name given to the relying-party server, which is

the MySQL server). If the FIDO2 device contains multiple resident keys for a given RP ID, this
option allows the user to choose a key to be used for assertion. It provides two possible values that
the client user can set. The default value is f al se. If setto f al se, the challenge is signed by all

449

mysqlsh — The MySQL Shell

credentials available for a given RP ID and all signatures are sent to server. If setto t r ue, the user
is prompted to choose the credential to be used for signature.

Note
@ This option has no effect if the device does not support the resident-key
feature.

For more information, see WebAuthn Pluggable Authentication.

- - pl ugi n-aut hent i cati on-webaut hn- devi ce=n

Command-Line Format - - pl ugi n- aut hent i cat i on- webaut hn-
devi ce

Type Integer

Default Value 0

Specifies which libfido2 device to use. Default is O (first device). Supported over classic protocol,
only.

For more information, see WebAuthn Pluggable Authentication.
--port=port_num-P port_num

The TCP/IP port number to use for the connection. The default is port 33060.
--py, --pyt hon

Start in Python mode.
- - pyc=pyt honComand, - c

Execute a Python command and quit. Any options specified after this are treated as arguments of the
processed command.

--pym

Execute the specified Python module as a script in MySQL Shell's Python mode. - - pymworks in the
same way as Python's - mcommand line option.

--quiet-start[=1] 2]

Start without printing introductory information. MySQL Shell normally prints information about the
product, information about the session (such as the default schema and connection ID), warning
messages, and any errors that are returned during startup and connection. When you specify - -
gui et - st art with no value or a value of 1, information about the MySQL Shell product is not
printed, but session information, warnings, and errors are printed. With a value of 2, only errors are
printed.

--redirect-primry

Ensures that the target server is part of an InnoDB Cluster or InnoDB ReplicaSet and if it is not the
primary, finds the primary and connects to it. MySQL Shell exits with an error if any of the following is
true when using this option:

* No instance is specified
< On an InnoDB Cluster, Group Replication is not active

* InnoDB Cluster metadata does not exist

450

https://dev.mysql.com/doc/refman/9.4/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/9.4/en/webauthn-pluggable-authentication.html

mysqlsh — The MySQL Shell

e There is no quorum

--register-factor=val ue

Command-Line Format --register-factor=val ue

Type String

The factor or factors for which FIDO/FIDO2 device registration must be performed before WebAuthn
device-based authentication can be used. This option value must be a single value, or two values
separated by commas. Each value must be 2 or 3, so the permitted option values are' 2' ,' 3",
2,3 and'3,2".

For example, an account that requires registration for a 3rd authentication factor invokes the nysq|l

client as follows:

nmysql sh --user=user_nanme --register-factor=3

An account that requires registration for a 2nd and 3rd authentication factor invokes the mysql client
as follows:

nysql sh --user=user_nane --register-factor=2,3

If registration is successful, a connection is established. If there is an authentication factor with a
pending registration, a connection is placed into pending registration mode when attempting to
connect to the server. In this case, disconnect and reconnect with the correct - - r egi st er - f act or
value to complete the registration.

Registration is a two step process comprising initiate registration and finish registration steps. The
initiate registration step executes this statement:

ALTER USER user factor |N Tl ATE REG STRATI ON

The statement returns a result set containing a 32 byte challenge, the user name, and the relying
party ID (see aut henti cati on_webaut hn_rp_i d).

The finish registration step executes this statement:

ALTER USER user factor FI N SH REG STRATI ON SET CHALLENGE_RESPONSE AS 'auth_string

The statement completes the registration and sends the following information to the server as part
of the aut h_st ri ng: authenticator data, an optional attestation certificate in X.509 format, and a
signature.

The initiate and registration steps must be performed in a single connection, as the challenge
received by the client during the initiate step is saved to the client connection handler. Registration
would fail if the registration step was performed by a different connection. The - - r egi st er -

f act or option executes both the initiate and registration steps, which avoids the failure scenario
described above and prevents having to execute the ALTER USER initiate and registration
statements manually.

The - -regi st er-fact or option is only available for the mysqgl client. Other MySQL client
programs do not support it.

For related information, see Using WebAuthn Authentication.
--replicaset

Ensures that the target server belongs to an InnoDB ReplicaSet, and if so, populates the r s global
variable with the InnoDB ReplicaSet. You can then administer the InnoDB ReplicaSet using the r s
global variable, for example by issuing r s. st at us() .

451

https://dev.mysql.com/doc/refman/9.4/en/mysql-command-options.html#option_mysql_register-factor
https://dev.mysql.com/doc/refman/9.4/en/pluggable-authentication-system-variables.html#sysvar_authentication_webauthn_rp_id
https://dev.mysql.com/doc/refman/9.4/en/mysql-command-options.html#option_mysql_register-factor
https://dev.mysql.com/doc/refman/9.4/en/mysql-command-options.html#option_mysql_register-factor
https://dev.mysql.com/doc/refman/9.4/en/alter-user.html
https://dev.mysql.com/doc/refman/9.4/en/webauthn-pluggable-authentication.html#webauthn-pluggable-authentication-usage

mysqlsh — The MySQL Shell

--redirect-secondary

Ensures that the target server is part of a single-primary InnoDB Cluster or InnoDB ReplicaSet and if
it is not a secondary, finds a secondary and connects to it. MySQL Shell exits with an error if any of
the following is true when using this option:

« On an InnoDB Cluster, Group Replication is not active

* InnoDB Cluster metadata does not exist

e There is no quorum

¢ The cluster is not single-primary and is running in multi-primary mode

< There is no secondary available, for example because there is just one server instance

--result-format ={tabl e| t abbed| vertical |json|json/pretty|ndjson|json/raw
json/array}

Set the value of the r esul t For mat MySQL Shell configuration option for this session. Formats are
as follows:

table The default for interactive mode, unless another value has been
set persistently for the r esul t For mat configuration option in the
configuration file, in which case that default applies. The - - t abl e
alias can also be used.

tabbed The default for batch mode, unless another value has been set
persistently for the r esul t For mat configuration option in the
configuration file, in which case that default applies. The - -
t abbed alias can also be used.

vertical Produces output equivalent to the \ Gterminator for an SQL query.
The - -verti cal or- E aliases can also be used.

json or json/pretty Produces pretty-printed JSON.
ndjson or json/raw Produces raw JSON delimited by newlines.
json/array Produces raw JSON wrapped in a JSON array.

If the - - j son command line option is used to activate JSON wrapping for output for the session, the
--resul t-format option and its aliases and the value of the r esul t For mat configuration option
are ignored.

- - save- passwor ds={ al ways| pronpt | never}

Controls whether passwords are automatically stored in the secret store. al ways means passwords
are always stored unless they are already in the store or the server URL is excluded by a filter.
never means passwords are never stored. pr onpt , which is the default, means users are asked
whether to store the password or not. See Section 4.4, “Pluggable Password Store”.

- -schema=nane, - D nane

The default schema to use.
--server-public-key-path=fil e_nane

MySQL Shell equivalent of - - ser ver - publ i c- key- pat h.

If - -server-public-key-pat h=fil e_nane is given and specifies a valid public key file, it takes
precedence over - - get - server - publ i c- key.

452

https://dev.mysql.com/doc/refman/9.4/en/mysql-command-options.html#option_mysql_server-public-key-path

mysqlsh — The MySQL Shell

Important

A Only supported with classic MySQL protocol connections.

See cachi ng_sha2_passwor d plugin Caching SHA-2 Pluggable Authentication.

--show war ni ngs={true| fal se}

When true is specified, which is the default, in SQL mode, MySQL Shell displays warnings after each
SQL statement if there are any. If false is specified, warning are not displayed.

--socket[=path],-S [path]

On Unix, when a path is specified, the path is the name of the Unix socket file to use for the
connection. If you specify - - socket with no value and no equal sign, or - S without a value, the
default Unix socket file for the appropriate protocol is used.

On Windows, the path is the name of the named pipe to use for the connection. The pipe name is
not case-sensitive. On Windows, you must specify a path, and the - - socket option is available for
classic MySQL protocol sessions only.

You cannot specify a socket if you specify a port or a host name other than | ocal host on Unix or a
period (.) on Windows.

--sql

Start in SQL mode, auto-detecting the protocol to use if it is not specified as part of the connection
information. When the protocol to use is not specified, defaults to an X Protocol connection, falling
back to a classic MySQL protocol connection. To force a connection to use a specific protocol

see the - - sqgl x or - - sgl c options. Alternatively, specify a protocol to use as part of a URI-like
connection string or use the - - port option. See Section 4.3, “MySQL Shell Connections” and
MySQL Shell Ports. for more information.

--sqglc

Start in SQL mode forcing the connection to use classic MySQL protocol, for example to use MySQL
Shell with a server that does not support X Protocol. If you do not specify the port as part of the
connection, when you provide this option MySQL Shell uses the default classic MySQL protocol

port which is usually 3306. The port you are connecting to must support classic MySQL protocol,

so for example if the connection you specify uses the X Protocol default port 33060, the connection
fails with an error. See Section 4.3, “MySQL Shell Connections” and MySQL Shell Ports. for more
information.

--sql x

Start in SQL mode forcing the connection to use X Protocol. If you do not specify the port as part of
the connection, when you provide this option MySQL Shell uses the default X Protocol port which

is usually 33060. The port you are connecting to must support X Protocol, so for example if the
connection you specify uses the classic MySQL protocol default port 3306, the connection fails with
an error. See Section 4.3, “MySQL Shell Connections” and MySQL Shell Ports. for more information.

453

https://dev.mysql.com/doc/refman/9.4/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-port-reference-tables.html#GUID-65C1FF7E-5357-4E58-8D68-A0C3D24C0832__MYSQL-SHELL-PORTS
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-port-reference-tables.html#GUID-65C1FF7E-5357-4E58-8D68-A0C3D24C0832__MYSQL-SHELL-PORTS
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-port-reference-tables.html#GUID-65C1FF7E-5357-4E58-8D68-A0C3D24C0832__MYSQL-SHELL-PORTS

mysqlsh — The MySQL Shell

--ssh=str

Create an SSH tunnel that provides an encrypted connection to the MySQL server instance. Supply
the URI for connection to the SSH server in the format [user @ host [: port], for example:

--ssh root @98. 51. 100. 4: 2222

When you use this option, you must also specify the - - user, - - host , and - - por t options, or a
URI, for connection to the MySQL server instance. For information on SSH tunnel connections from
MySQL Shell, see Section 4.3.7, “Using an SSH Tunnel”.

--ssh-config-fil e=path

Specify the path to an SSH configuration file for the connection to the SSH server. You can use the
MySQL Shell configuration option ssh. conf i gFi | e to set a custom file as the default if this option
is not specified. If ssh. confi gFi | e has not been set, the default is the standard SSH configuration
file ~/ . ssh/ confi g. If you specify - - ssh- confi g-fi | e with an empty value, the default file
specified by ssh. confi gFi | e isignored, and the ~/ . ssh/ confi g file is used instead.

--ssh-identity-file=path

Specify the path to an identity file for the connection to the SSH server. The default if this option is
not specified is the standard private key file in the SSH configuration folder (~/ . ssh/i d_r sa).

--ss|*

Options that begin with - - ss| specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. The nmysql sh SSL options function in the same way as
the SSL options for MySQL Server, see Command Options for Encrypted Connections for more
information.

nysql sh accepts these SSL options: - - ssl - node, - - ssl -ca, - - ssl - capat h, - -ssl -
cert,--ssl-cipher,--ssl-crl,--ssl-crlpath,--ssl-key,--tls-version,--tls-
ci phersuites.

--sysl og

Send SQL statements that you issue in MySQL Shell's SQL mode to the operating system’s system
logging facility (sys| og on Unix, or the Windows Event Log). System logging for SQL statements
only takes place when MySQL Shell is started in interactive mode, so either a normal start or a start
with the - - i nt er act i ve option. It does not take place if the - - execut e or - - f i | e options are
used at startup to run nysql sh in batch mode. See Section 13.3, “System Logging for User SQL
Statements” for more information.

- -t abbed

Display results in tab separated format in interactive mode. The default for that mode is table format.
This option is an alias of the - - r esul t - f or nat =t abbed option.

--table

Display results in table format in batch mode. The default for that mode is tab separated format. This
option is an alias of the - - r esul t - f or mat =t abl e option.

--uri=str

Create a connection upon startup, specifying the connection options in a URI-like string as described
at Connecting to the Server Using URI-Like Strings or Key-Value Pairs.

--usSer=user_naneg, -u user_nane

The MySQL user name to use when connecting to the server.

454

https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/9.4/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/9.4/en/connecting-using-uri-or-key-value-pairs.html

mysqlsh — The MySQL Shell

--ver bose[=0| 1| 2| 3| 4]

Activate verbose output to the console and specify the level of detail. The value is an integer in the
range from 0 to 4. 0 displays no messages, which is the default verbosity setting when you do not
specify the option. 1 displays error, warning and informational messages (this is the default setting if
you specify the option on the command line without a value). 2, 3, and 4 add higher levels of debug
messages. See Chapter 13, MySQL Shell Logging and Debug for more information.

--version,-V
Display the version of MySQL Shell and exit.
--vertical,-E

Display results vertically, as when the \ Gterminator is used for an SQL query. This option is an alias
ofthe --resul t-format=vertical option.

455

456

	MySQL Shell 9.4
	Table of Contents
	Chapter 1 MySQL Shell Features
	Chapter 2 Installing MySQL Shell
	2.1 Installing MySQL Shell on Microsoft Windows
	2.2 Installing MySQL Shell on Linux
	2.3 Installing MySQL Shell on macOS

	Chapter 3 Using MySQL Shell Commands
	3.1 MySQL Shell Commands

	Chapter 4 Getting Started with MySQL Shell
	4.1 Starting MySQL Shell
	4.2 MySQL Shell Sessions
	4.2.1 Creating the Session Global Object While Starting MySQL Shell
	4.2.2 Creating the Session Global Object After Starting MySQL Shell
	4.2.3 Scripting Sessions in JavaScript and Python Mode

	4.3 MySQL Shell Connections
	4.3.1 Connecting using Individual Parameters
	4.3.2 Connecting using login-path and Options Files
	4.3.3 Connecting using Unix Sockets and Windows Named Pipes
	4.3.4 Using Encrypted Connections
	4.3.5 Using LDAP and Kerberos Authentication
	4.3.6 Using OpenID Connect
	4.3.7 Using an SSH Tunnel
	4.3.8 Using Compressed Connections
	4.3.8.1 Compression Control For MySQL Shell

	4.4 Pluggable Password Store
	4.4.1 Pluggable Password Configuration Options
	4.4.2 Working with Credentials

	4.5 Generic Secret Storage
	4.6 MySQL Shell Global Objects
	4.7 Using a Pager
	4.8 Cloud Service Configuration
	4.8.1 Oracle Cloud Infrastructure Object Storage
	4.8.2 S3-compatible Storage
	4.8.3 Azure Blob Storage

	4.9 OCI Authentication Connection Options

	Chapter 5 MySQL Shell Code Execution
	5.1 Active Language
	5.2 Interactive Code Execution
	5.3 Code Autocompletion
	5.4 Editing Code
	5.5 Code History
	5.6 Batch Code Execution
	5.7 Output Formats
	5.7.1 Table Format
	5.7.2 Tab Separated Format
	5.7.3 Vertical Format
	5.7.4 JSON Format Output
	5.7.5 JSON Wrapping
	5.7.6 Result Metadata

	5.8 API Command Line Integration
	5.8.1 Command Line Integration Overview
	5.8.2 Command Line Integration Details
	5.8.2.1 Command Line Integration for MySQL Shell API Functions
	5.8.2.2 Defining Arguments
	5.8.2.3 Data Type Handling
	User Data Types
	Data Type Resolution

	5.8.2.4 Command Line Help
	5.8.2.5 Support for MySQL Shell Plugins

	5.9 JSON Integration
	5.10 Limitations

	Chapter 6 MySQL AdminAPI
	6.1 Using MySQL AdminAPI
	6.2 Installing AdminAPI Software Components
	6.2.1 Configuring the Host Name
	6.2.2 Connecting to Server Instances
	6.2.3 Persisting Settings

	6.3 Retrieving a Handler Object
	6.4 Creating User Accounts for AdminAPI
	6.5 Verbose Logging
	6.6 Finding the Primary
	6.7 Scripting AdminAPI
	6.8 AdminAPI MySQL Sandboxes
	6.8.1 Deploying Sandbox Instances
	6.8.2 Managing Sandbox Instances
	6.8.3 Setting up InnoDB Cluster and MySQL Router

	6.9 Tagging Metadata
	6.10 Upgrade Metadata Schema
	6.11 Locking Mechanism for AdminAPI Operations
	6.12 Executing SQL on Topologies
	6.13 Replication Compatibility Checks

	Chapter 7 MySQL Router and AdminAPI
	7.1 Bootstrapping MySQL Router
	7.2 Configuring the MySQL Router User
	7.3 Deploying MySQL Router
	7.4 Routing Options
	7.5 Using ReplicaSets with MySQL Router
	7.6 Testing InnoDB Cluster High Availability
	7.7 Working with a Cluster's Routers
	7.8 Routing Guidelines
	7.8.1 Routing Guidelines JSON Syntax
	7.8.2 Create and Activate Routing Guidelines
	7.8.3 Importing and Exporting Routing Guidelines
	7.8.4 Edit Routing Guidelines
	7.8.5 Visualize Routing Guidelines
	7.8.6 Routing Guidelines Examples

	Chapter 8 MySQL InnoDB Cluster
	8.1 InnoDB Cluster Requirements
	8.2 InnoDB Cluster Limitations
	8.3 User Accounts for InnoDB Cluster
	8.4 Deploying a Production InnoDB Cluster
	8.4.1 Pre-Checking Instance Configuration for InnoDB Cluster Usage
	8.4.2 Configuring Production Instances for InnoDB Cluster Usage
	8.4.3 Creating an InnoDB Cluster
	8.4.4 Adding Instances to an InnoDB Cluster
	8.4.5 Configuring InnoDB Cluster Ports
	8.4.6 Using MySQL Clone with InnoDB Cluster
	8.4.6.1 Working with a Cluster that uses MySQL Clone

	8.4.7 Adopting a Group Replication Deployment

	8.5 Configuring InnoDB Cluster
	8.5.1 Setting Options for InnoDB Cluster
	8.5.2 Customizing InnoDB Cluster Member Servers
	8.5.3 Configuring the Election Process
	8.5.4 Configuring Failover Consistency
	8.5.5 Configuring Automatic Rejoin of Instances
	8.5.6 Configuring the Parallel Replication Applier
	8.5.7 InnoDB Cluster and Auto-increment
	8.5.8 InnoDB Cluster and Binary Log Purging
	8.5.9 Configuring the Group Replication Communication Stack

	8.6 Securing InnoDB Cluster
	8.7 Monitoring InnoDB Cluster
	8.8 Restoring and Rebooting an InnoDB Cluster
	8.8.1 Rejoining an Instance to a Cluster
	8.8.2 Restoring a Cluster from Quorum Loss
	8.8.3 Rebooting a Cluster from a Major Outage
	8.8.4 Rescanning a Cluster
	8.8.5 Fencing a Cluster

	8.9 Modifying or Dissolving an InnoDB Cluster
	8.10 Upgrade InnoDB Cluster
	8.10.1 InnoDB Cluster Upgrade
	8.10.2 Troubleshooting InnoDB Cluster Upgrades

	8.11 MySQL InnoDB Cluster Read Replicas
	8.11.1 Prerequisites
	8.11.2 Creating Read Replicas
	8.11.3 Modifying or Removing Read Replicas
	8.11.4 Monitoring Read Replicas

	Chapter 9 MySQL InnoDB ClusterSet
	9.1 InnoDB ClusterSet Requirements
	9.2 InnoDB ClusterSet Limitations
	9.3 User Accounts for InnoDB ClusterSet
	9.4 Deploying InnoDB ClusterSet
	9.5 Asynchronous Replication Channel Options
	9.6 Integrating MySQL Router With InnoDB ClusterSet
	9.7 InnoDB ClusterSet Status and Topology
	9.8 InnoDB ClusterSet Controlled Switchover
	9.9 InnoDB ClusterSet Emergency Failover
	9.10 InnoDB ClusterSet Repair and Rejoin
	9.10.1 Fencing Clusters in an InnoDB ClusterSet
	9.10.2 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters
	9.10.3 Repairing Member Servers and Clusters in an InnoDB ClusterSet
	9.10.4 Removing a Cluster from an InnoDB ClusterSet
	9.10.5 Rejoining a Cluster to an InnoDB ClusterSet

	9.11 Dissolving a ClusterSet
	9.12 Upgrade InnoDB ClusterSet

	Chapter 10 MySQL InnoDB ReplicaSet
	10.1 Deploying InnoDB ReplicaSet
	10.2 Configuring InnoDB ReplicaSet Instances
	10.3 Creating an InnoDB ReplicaSet
	10.4 Asynchronous Replication Channel Options
	10.5 Adding Instances to a ReplicaSet
	10.5.1 Provisioning Instances for InnoDB ReplicaSet
	10.5.2 Example of Adding Instances to a ReplicaSet

	10.6 Adopting an Existing Replication Setup
	10.7 Changing the Primary Instance
	10.8 Forcing a New Primary Instance
	10.9 Tagging ReplicaSets
	10.10 Checking the Status of InnoDB ReplicaSet
	10.11 Upgrade InnoDB ReplicaSet
	10.12 Dissolving a ReplicaSet
	10.13 Rescanning a ReplicaSet
	10.14 Describing a ReplicaSet

	Chapter 11 Extending MySQL Shell
	11.1 Reporting with MySQL Shell
	11.1.1 Creating MySQL Shell Reports
	11.1.2 Registering MySQL Shell Reports
	11.1.3 Persisting MySQL Shell Reports
	11.1.4 Example MySQL Shell Report
	11.1.5 Running MySQL Shell Reports
	11.1.6 Built-in MySQL Shell Reports
	11.1.6.1 Built-in MySQL Shell Report: Query
	11.1.6.2 Built-in MySQL Shell Report: Threads
	11.1.6.3 Built-in MySQL Shell Report: Thread

	11.2 Adding Extension Objects to MySQL Shell
	11.2.1 Creating User-Defined MySQL Shell Global Objects
	11.2.2 Creating Extension Objects
	11.2.3 Persisting Extension Objects
	11.2.4 Example MySQL Shell Extension Objects

	11.3 MySQL Shell Plugins
	11.3.1 Creating MySQL Shell Plugins
	11.3.1.1 Common Code and Packages

	11.3.2 Creating Plugin Groups
	11.3.3 Example MySQL Shell Plugins

	11.4 Custom SQL Handler
	11.4.1 Registering SQL Handler
	11.4.2 Returning a Custom Result
	11.4.3 Result Data Specification

	Chapter 12 MySQL Shell Utilities
	12.1 Upgrade Checker Utility
	12.2 JSON Import Utility
	12.2.1 Running the Utility
	12.2.2 Importing JSON Documents With the Mysqlsh Command Interface
	12.2.3 Importing JSON Documents With the --import Command
	12.2.4 Conversions for Representations of BSON Data Types

	12.3 Table Export Utility
	12.4 Parallel Table Import Utility
	12.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utility
	12.6 Dump Loading Utility
	12.7 Binary Log Dumping and Loading Utilities
	12.7.1 Dumping Binary Logs
	12.7.2 Loading Binary Log Dumps

	12.8 Copy Instance, Schemas, and Tables
	12.9 Diagnostics Utilities
	12.9.1 collectDiagnostics Utility
	12.9.2 collectHighLoadDiagnostics Utility
	12.9.3 collectSlowQueryDiagnostics Utility

	Chapter 13 MySQL Shell Logging and Debug
	13.1 Application Log
	13.2 Verbose Output
	13.3 System Logging for User SQL Statements
	13.4 MySQL Shell SQL Logging

	Chapter 14 Customizing MySQL Shell
	14.1 Working With Startup Scripts
	14.2 Adding Module Search Paths
	14.2.1 Module Search Path Environment Variables
	14.2.2 Module Search Path Variable in Startup Scripts

	14.3 Customizing the Prompt
	14.4 Configuring MySQL Shell Options

	Appendix A MySQL Shell Command Reference
	A.1 mysqlsh — The MySQL Shell

