
MySQL Shell 1.0

Abstract

MySQL Shell, is an advanced client and code editor for MySQL Server. This document describes the core
features of MySQL Shell. In addition to the provided SQL functionality, similar to mysql, MySQL Shell provides
scripting capabilities for JavaScript and Python and includes APIs for working with MySQL. X DevAPI enables you
to work with both relational and document data, see Using MySQL as a Document Store. AdminAPI enables you
to work with InnoDB Cluster, see MySQL AdminAPI.

MySQL Shell 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade to MySQL Shell
8.0. If you have not yet installed MySQL Shell, download it from the download site.

For notes detailing the changes in each release, see the MySQL Shell Release Notes.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using
a Commercial release of MySQL Shell, see MySQL Shell Commercial License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL Shell, see MySQL Shell Community
License Information User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2023-05-03 (revision: 75543)

https://dev.mysql.com/doc/refman/5.7/en/document-store.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://dev.mysql.com/downloads/shell
https://dev.mysql.com/doc/relnotes/mysql-shell/1.0/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf

Table of Contents
1 MySQL Shell Features ... 1
2 Getting Started with MySQL Shell .. 3

2.1 MySQL Shell Connections ... 3
2.1.1 Connecting using a URI String ... 4
2.1.2 Connecting using Individual Parameters .. 5
2.1.3 Using Encrypted Connections ... 6
2.1.4 Connections in JavaScript and Python .. 7

2.2 MySQL Shell Sessions .. 8
2.2.1 MySQL Shell Sessions Explained ... 8

2.3 MySQL Shell Global Variables .. 9
3 MySQL Shell Code Execution .. 13

3.1 Interactive Code Execution .. 13
3.2 Batch Code Execution ... 14
3.3 Output Formats ... 15

3.3.1 Table Format ... 15
3.3.2 Tab Separated Format ... 15
3.3.3 JSON Format Output .. 16
3.3.4 Result Metadata ... 17

3.4 Active Language ... 18
3.5 Batch Mode Made Interactive .. 18

3.5.1 Multiple-line Support ... 18
4 Configuring MySQL Shell ... 21

4.1 MySQL Shell Commands .. 21
5 MySQL Shell Application Log ... 25
6 Customizing MySQL Shell .. 27

6.1 Working With Start-Up Scripts ... 27
6.2 Adding Module Search Paths .. 28

6.2.1 Environment Variables .. 28
6.2.2 Startup Scripts ... 28

6.3 Overriding the Default Prompt ... 28
A MySQL Shell Command Reference .. 31

A.1 mysqlsh — The MySQL Shell ... 31

iii

iv

Chapter 1 MySQL Shell Features
The following features are available in MySQL Shell.

Interactive Code Execution
MySQL Shell provides an interactive code execution mode, where you type code at the MySQL Shell
prompt and each entered statement is processed, with the result of the processing printed onscreen.

Supported Languages
MySQL Shell processes code in the following languages: JavaScript, Python and SQL. Any entered
code is processed as one of these languages, based on the language that is currently active. There
are also specific MySQL Shell commands, prefixed with \, which enable you to configure MySQL Shell
regardless of the currently selected language. For more information see Section 4.1, “MySQL Shell
Commands”.

Batch Code Execution
In addition to the interactive execution of code, MySQL Shell can also take code from different sources
and process it. This method of processing code in a noninteractive way is called Batch Execution.

As batch execution mode is intended for script processing of a single language, it is limited to having
minimal non-formatted output and disabling the execution of commands. To avoid these limitations, use
the --interactive command-line option, which tells MySQL Shell to execute the input as if it were
an interactive session. In this mode the input is processed line by line just as if each line were typed in
an interactive session. For more information see Section 3.5, “Batch Mode Made Interactive”.

Output Formats
MySQL Shell provides output in different formats depending on how it is used: Tabbed, Table and
JSON. For more information see Section 3.3, “Output Formats”.

Multiple-line Support
Multiple-line code can be written using a command, enabling MySQL Shell to cache multiple lines
and then execute them as a single statement. For more information see Section 3.5.1, “Multiple-line
Support”.

Application Log
MySQL Shell can be configured to log information about the execution process. For more information
see Chapter 5, MySQL Shell Application Log.

Supported APIs
MySQL Shell includes the following APIs implemented in JavaScript and Python which you can use to
develop code that interacts with MySQL.

• The X DevAPI enables you to work with both relational and document data when MySQL Shell is
connected to a MySQL server using the X Protocol. For more information, see Using MySQL as a
Document Store. For documentation on the concepts and usage of X DevAPI, see X DevAPI User
Guide.

• The AdminAPI enables you to work with InnoDB Cluster, which provides an integrated solution for
high availability and scalability using InnoDB based MySQL databases, without requiring advanced
MySQL expertise. See MySQL AdminAPI.

1

https://dev.mysql.com/doc/refman/5.7/en/document-store.html
https://dev.mysql.com/doc/refman/5.7/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

X Protocol Support

For specific documentation on the implementation of the APIs see JavaScript and Python.

X Protocol Support

MySQL Shell is designed to provide an integrated command-line client for all MySQL products which
support X Protocol. The development features of MySQL Shell are designed for sessions using the X
Protocol. MySQL Shell can also connect to MySQL Servers that do not support the X Protocol using
the legacy MySQL Protocol. A minimal set of features from the X DevAPI are available for sessions
created using the classic MySQL protocol.

Global Session

Interaction with a MySQL Server is done through a Session object. For Python and JavaScript, a
Session can be created through the getSession and getNodeSession functions of the mysqlx
module. If a session is created in JavaScript mode using any of these methods, it is available only in
JavaScript mode. The same happens if the session is created in Python mode. None of these sessions
can be used in SQL mode.

For SQL Mode, the concept of Global Session is supported by the MySQL Shell. A Global Session is
created when the connection information is passed to MySQL Shell using command-line options, or by
using the \connect command.

The Global Session is used to execute statements in SQL mode and the same session is available in
both Python or JavaScript modes. When a Global Session is created, a variable called session is set
in the scripting languages, so you can execute code in the different languages by switching the active
mode.

For more information, see Section 2.2, “MySQL Shell Sessions”.

2

https://dev.mysql.com/doc/dev//mysqlsh-api-javascript/1.0/
https://dev.mysql.com/doc/dev//mysqlsh-api-python/1.0/

Chapter 2 Getting Started with MySQL Shell

Table of Contents
2.1 MySQL Shell Connections ... 3

2.1.1 Connecting using a URI String ... 4
2.1.2 Connecting using Individual Parameters .. 5
2.1.3 Using Encrypted Connections ... 6
2.1.4 Connections in JavaScript and Python .. 7

2.2 MySQL Shell Sessions .. 8
2.2.1 MySQL Shell Sessions Explained ... 8

2.3 MySQL Shell Global Variables .. 9

This section describes how to get started with MySQL Shell, explaining how to connect to a MySQL
server instance, and how to choose a session type.

2.1 MySQL Shell Connections

MySQL Shell can connect to MySQL Server using both the X Protocol and the classic MySQL protocol.
The address of the MySQL Server which you want to connect to can be specified using individual
parameters, such as user, hostname and port, or using a Uniform Resource Identifier (URI) type string.
The following sections describe these connection methods. See Connecting to the MySQL Server
Using Command Options for more background information.

You can configure the MySQL server instance that MySQL Shell is connected to in the following ways:

• When you start MySQL Shell using the command parameters. See Section 2.1.2, “Connecting using
Individual Parameters”.

• When MySQL Shell is running using the \connect command. See Section 4.1, “MySQL Shell
Commands”.

• When running Python or Java code using the shell.connect('instance') method. See
JavaScript and Python.

These methods all support Section 2.1.1, “Connecting using a URI String”.

Important

Regardless of the method you choose to connect it is important to understand
how passwords are handled by MySQL Shell. By default connections are
assumed to require a password. The password is requested at the login prompt.
To specify a passwordless account use the --password option and do not
specify a password, or use a : after the user in a URI type string and do not
specify a password.

If you do not specify parameters for a connection the following defaults are used:

• user defaults to the current system user name

• host defaults to localhost

• port defaults to the X Plugin port 33060 when using an X Protocol session, and port 3306 when using
a Classic session

MySQL Shell connections using X Protocol always use TCP, using Unix sockets is not supported.
MySQL Shell connections using MySQL Protocol default to using Unix sockets when the following
conditions are met:

3

https://dev.mysql.com/doc/refman/5.7/en/connecting.html
https://dev.mysql.com/doc/refman/5.7/en/connecting.html
https://dev.mysql.com/doc/dev//mysqlsh-api-javascript/8.0/
https://dev.mysql.com/doc/dev//mysqlsh-api-python/8.0/

Connecting using a URI String

• A TCP port is not specified

• A host name is not specified or it is equal to localhost

• A socket is provided with a path to a socket file

• A classic session is specified

If a host name is specified but it is not localhost, a TCP connection is established. In this case,
if a TCP port is not specified the default value of 3306 is used. If the conditions are met for a socket
connection but a path to a socket file is not specified then the default socket is used. See Connecting to
the MySQL Server Using Command Options.

2.1.1 Connecting using a URI String

You can configure the MySQL Server which MySQL Shell connects to by passing the connection data
in URI type string format. Such strings can be used with the --uri command option, the MySQL Shell
\connect command, and the shell.connect() method.

The URI type string should use the following format:

 scheme://[user[:[password]]@]target[:port][/schema][?attribute1=value1&attribute2=value2...

Important

Percent encoding must be used for reserved characters in the elements of the
URI type string. For example, if you specify a password that includes the @
character, the character must be replaced by %40.

The elements of a URI type string for a MySQL Shell connection are:

• scheme: this element is required and specifies the connection protocol to use, currently either mysql
for classic MySQL protocol and mysqlx for X Protocol.

• user: this element is optional and specifies the MySQL user account to be used for the
authentication process.

• password: this element is optional and specifies the password to be used for the authentication
process.

Warning

Storing the password in the URI type string is insecure and not
recommended.

• target: this element is required and specifies the server instance the connection refers to. Can be
either TCP connection information, a Unix socket path or a Windows named-pipe. If not specified,
localhost is used by default.

• TCP connection information can be either a host name, an IPv4 address, or an IPv6 address. Can
include an optional port number in the format host:port, where port specifies a network port
which the target MySQL server is listening on for connections. If not specified, 33060 is used by
default for X Protocol connections, and 3306 is the default for classic MySQL protocol connections.

• Unix socket and Windows named-pipe values are local file paths. There are two ways to specify
such paths, using percent encoding or surrounding the path with parentheses, removing the need
to percent encode characters such as the common directory separator /. For example, to connect
as root@localhost using the Unix socket /tmp/mysqld.sock either specify the path using
parenthesis as root@localhost?socket=(/tmp/mysqld.sock) or using percent encoding
as root@localhost?socket=%2Ftmp%2Fmysqld.sock.

4

https://dev.mysql.com/doc/refman/5.7/en/connecting.html
https://dev.mysql.com/doc/refman/5.7/en/connecting.html

Connecting using Individual Parameters

• schema: this element is optional and specifies the database to be set as default when the connection
is established.

• ?attribute=value: this element is optional and specifies a data dictionary that contains options.

If no password is specified using the URI type string, which is recommended, then the password is
prompted for. The following examples show how to specify URI type strings with the user name user,
in each case the password is prompted for:

• An X Protocol connection to a local server instance listening at port 33065.

mysqlx://user@localhost:33065

• A classic MySQL protocol connection to a local server instance listening at port 3333.

mysql://user@localhost:3333

• An X Protocol connection to a remote server instance, using a host name, an IPv4 address and an
IPv6 address.

 mysqlx://user@server.example.com/
 mysqlx://user@198.51.100.14:123
 mysqlx://user@[2001:db8:85a3:8d3:1319:8a2e:370:7348]

• An optional path can be specified, which represents a database schema.

 mysqlx://user@198.51.100.1/world%5Fx
 mysqlx://user@198.51.100.2:33060/world

• An optional query can be specified, consisting of values in the form of a key=value pair or as a
single key. The , character is used as a separator for values, a combination of multiple pairs and
keys can be specified. Values can be of type list, list values are ordered by appearance. Strings must
be percent encoded.

 ssluser@127.0.0.1?ssl-ca%3D%2Froot%2Fclientcert%2Fca-cert.pem%26ssl-cert%3D%2Fro\
 ot%2Fclientcert%2Fclient-cert.pem%26ssl-key%3D%2Froot%2Fclientcert%2Fclient-key
 .pem

Although using a passwordless account is insecure and not recommended, you can specify a user
without a password using a : after the user name, for example:

 mysqlx://user:@localhost

2.1.2 Connecting using Individual Parameters

In addition to specifying connection parameters using a URI type string, it is also possible to define the
connection data when starting MySQL Shell using separate command parameters for each value. For a
full reference of MySQL Shell command options see Section A.1, “mysqlsh — The MySQL Shell”.

Use the following connection related parameters:

• --dbuser (-u) value

• --dbpassword value

• --host (-h) value

• --port (-P) value

• --schema (-D) value

• --password (-p)

5

Using Encrypted Connections

• --socket (-S)

The first 5 parameters match the elements used in the URI type string format described at
Section 2.1.1, “Connecting using a URI String”.

The --password parameter indicates the user should connect without a password.

For consistency, the following aliases are supported for some parameters:

• --user is equivalent to --dbuser

• --password is equivalent to --dbpassword

• --database is equivalent to --schema

When parameters are specified in multiple ways, for example using both the --uri option and
specifying individual parameters such as --user, the following rules apply:

• If an argument is specified more than once the value of the last appearance is used.

• If both individual connection arguments and --uri are specified, the value of --uri is taken as the
base and the values of the individual arguments override the specific component from the base URI.

For example to override user from the URI:

$> mysqlsh --uri user@localhost:33065 --user otheruser

The following examples show how to use command parameters to specify connections. Attempt to
establish an X Protocol connection with a specified user at port 33065.

$> mysqlsh --mysqxl -u user -h localhost -P 33065

Attempt to establish a classic MySQL protocol connection with a specified user.

$> mysqlsh --mysql -u user -h localhost

2.1.3 Using Encrypted Connections

Using encrypted connections is possible when connecting to a TLS (sometimes referred to as SSL)
enabled MySQL server. Much of the configuration of MySQL Shell is based on the options used by
MySQL server, see Using Encrypted Connections for more information.

To configure an encrypted connection at startup of MySQL Shell, use the following command options:

• --ssl : Deprecated, to be removed in a future version. This option enables or disables encrypted
connections.

• --ssl-mode : This option specifies the security state of the connection to the server.

• --ssl-ca=filename: The path to a file in PEM format that contains a list of trusted SSL Certificate
Authorities.

• --ssl-capath=directory: The path to a directory that contains trusted SSL Certificate Authority
certificates in PEM format.

• --ssl-cert=filename: The name of the SSL certificate file in PEM format to use for establishing
an encrypted connection.

• --ssl-cipher=name: The name of the SSL cipher to use for establishing an encrypted connection.

• --ssl-key=filename: The name of the SSL key file in PEM format to use for establishing an
encrypted connection.

• --ssl-crl=name: The path to a file containing certificate revocation lists in PEM format.

6

https://dev.mysql.com/doc/refman/5.7/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-crl

Connections in JavaScript and Python

• --ssl-crlpath=directory: The path to a directory that contains files containing certificate
revocation lists in PEM format.

• --tls-version=version: The TLS protocols permitted for encrypted connections.

Alternatively the SSL options can be encoded as part of a URI type string as part of the query element.
The available SSL options are the same as those listed above, but written without the proceeding
hyphens. For example ssl-ca is the equivalent of --ssl-ca.

Paths specified in a URI type string must be percent encoded, for example:

 ssluser@127.0.0.1?ssl-ca%3D%2Froot%2Fclientcert%2Fca-cert.pem%26ssl-cert%3D%2Fro\
 ot%2Fclientcert%2Fclient-cert.pem%26ssl-key%3D%2Froot%2Fclientcert%2Fclient-key
 .pem

See Section 2.1.1, “Connecting using a URI String” for more information.

2.1.4 Connections in JavaScript and Python

When a connection is made using the command options or by using any of the MySQL Shell
commands, a global session object is created. This session is global because once created, it can be
used in any of the MySQL Shell execution modes.

Any global session object is available in JavaScript or Python modes because a variable called
session holds a reference to it.

In addition to the global session object, sessions can be established and assigned to a different
variable by using the functions available in the mysql and mysqlx JavaScript and Python modules.

For example, the following functions are provided by these modules:

• mysqlx.getSession(connectionData[, password])

The returned object can be Session if the object was created or retrieved using a Session instance,
and ClassicSession if the object was created or retrieved using a ClassicSession instance.

• mysql.getClassicSession(connectionData[, password])

The returned object is a ClassicSession which uses classic MySQL protocol and has a limited
development API.

connectionData can be either a URI type string as specified at Section 2.1.1, “Connecting using a
URI String” or a dictionary containing the connection parameters.

The following example shows how to create a Session using the X Protocol:

mysql-js> var mysession1=mysqlx.getSession('root@localhost:33060', 'password');
mysql-js> session
<Session:root@localhost>
mysql-js>

The following example shows how to create a ClassicSession:

mysql-js> var mysession2=mysql.getClassicSession('root@localhost:3306', 'password');
mysql-js> session
<ClassicSession:root@localhost:3306>
mysql-js>

2.1.4.1 Using Encrypted Connections in Code

To establish an encrypted connection, set the SSL information in the connectionData dictionary. For
example:

mysql-js> var session=mysqlx.getSession({host: 'localhost',

7

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca

MySQL Shell Sessions

user: 'root',
password: 'password',
ssl_ca: "path_to_ca_file",
ssl_cert: "path_to_cert_file",
ssl_key: "path_to_key_file"});

2.2 MySQL Shell Sessions
This section explains the different types of sessions in MySQL Shell and how to create and configure
them.

2.2.1 MySQL Shell Sessions Explained

MySQL Shell is a unified interface to operate MySQL Server through scripting languages such as
JavaScript or Python. To maintain compatibility with previous versions, SQL can also be executed in
certain modes. A connection to a MySQL server is required. In MySQL Shell these connections are
handled by a Session object.

The following types of Session object are available:

• NodeSession: Use this session type for new application development to communicate with MySQL
server instances which have the X Protocol enabled. It offers the best integration with MySQL
Server, and therefore, it is used by default.

• ClassicSession Use this session type to interact with MySQL Servers that do not have the X Protocol
enabled. The development API available for this type of session is very limited. For example, there
are no CRUD operations, no collection handling, and binding is not supported.

Important

ClassicSession is specific to MySQL Shell and cannot be used with other
implementations of X DevAPI, such as MySQL Connectors.

Choosing a MySQL Shell Session Type

MySQL Shell creates a Session object by default. You can either configure the session type using
MySQL Shell command options, the scheme element of a URI type string, or provide an option to the
\connect command. To choose which type of session should be created when starting MySQL Shell,
use one of these options:

• --sqln creates a Node session, connected using X Protocol.

• --sqlc creates a ClassicSession, connected using classic MySQL protocol.

To choose which type of session to use when defining a URI type string use one of these options:

• Specify mysqlx to create an X Protocol session. The X Plugin must be installed on the server
instance, see Using MySQL as a Document Store for more information.

• Specify mysql to create a classic MySQL protocol session.

For more information, see Section 2.1.1, “Connecting using a URI String”.

Creating a Session Using Shell Commands

If you open MySQL Shell without specifying connection parameters, MySQL Shell opens without an
established global session. It is possible to establish a global session once MySQL Shell has been
started using the MySQL Shell \connect URI command, where URI is a URI type string as defined
at Section 2.1.1, “Connecting using a URI String”. For example:

• \connect URI: Creates a Node session. Attempts to use X Protocol by default, and falls back to
classic MySQL protocol.

8

https://dev.mysql.com/doc/refman/5.7/en/document-store.html

MySQL Shell Global Variables

• \connect -n URI: Creates a Node session.

• \connect -c URI: Creates a ClassicSession using classic MySQL protocol.

For example:

mysql-js> \connect mysqlx://user@localhost:33060

Alternatively, use the shell.connect('URI' method. For example this is equivalent to the above
\connect> command:

 mysql-js> shell.connect('mysqlx://user@localhost:33060')

2.3 MySQL Shell Global Variables
MySQL Shell reserves certain variables as global variables, which are assigned to commonly used
objects in scripting. This section describes the available global variables and provides examples of
working with them. The global variables are:

• session represents the global session if one has been established.

• db represents a schema if one has been defined, for example by a URI type string.

• dba represents the AdminAPI, a component of InnoDB Cluster which enables you to administer
clusters of server instances. See MySQL AdminAPI.

• shell provides general purpose functions, for example to configure MySQL Shell.

Important

These words are reserved and cannot be used, for example as names of
variables.

By using these global objects, MySQL Shell provides interactive error resolution for common situations.
For example:

• Attempting to use an undefined session global variable.

• Attempting to retrieve an nonexistent schema using session.

• Attempting to use an undefined db global variable.

Undefined Global Session

The global session variable is set when a global session is established. When a global session is
established, issuing a session statement in MySQL Shell displays the session type and its URI as
follows:

 mysql-js> session
 <NodeSession:root@localhost:33060>
 mysql-js>

If no global session has been established, MySQL Shell displays the following:

 mysql-js> session
 <Undefined>
 mysql-js>

If you attempt to use the session variable when no global session is established, interactive error
resolution starts and you are prompted to provide the required information to establish a global session.
If the session is successfully established, it is assigned to the session variable. The prompts are:

9

https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

Undefined db Variable

• An initial prompt explains that no global session is established and asks if one should be established.

• If you choose to set a global session, the session type is requested.

• The URI type string to connect to the server instance is requested. See Section 2.1.1, “Connecting
using a URI String”.

• If required, a password is requested.

For example:

 mysql-js> session.uri
 The global session is not set, do you want to establish a session?

 1) MySQL Document Store Session through X Protocol
 2) Classic MySQL Session

 Please select the session type or ENTER to cancel: 2
 Please specify the MySQL server URI: root@localhost
 Enter password:
 root@localhost:
 mysql-js> session
 <ClassicSession:root@localhost:>

Undefined db Variable

The global db variable is set when a global session is established and a default schema is configured.
For example, using a URI type string such as root@localhost/sakila to establish a global session
connected to the MySQL Server at localhost, on port 33060, as the user root, assigns the schema
sakila to the global variable db. Once a schema is defined, issuing db at the MySQL Shell prompt
prints the schema name as follows:

 mysql-js> db
 <Schema:world_x>
 mysql-js>

If there is no global session established, the following is displayed:

 mysql-js> db
 <Undefined>
 mysql-js>

If you attempt to use the db variable when no global session has been established, the following error
is displayed:

 mysql-js> db.getCollections()
 LogicError: The db variable is not set, establish a global session first.
 at (shell):1:2
 in db.getCollections()
 ^

If a global session has been established but you attempt to use an undefined db, interactive error
resolution begins and you are prompted to define an active schema by providing the schema name. If
this succeeds the db variable is set to the defined schema. For example:

 mysql-js> db.getCollections()
 The db variable is not set, do you want to set the active schema? [y/N]:y
 Please specify the schema:world_x
 [
 <Collection:countryinfo>
]
 mysql-js> db
 <Schema:world_x>

10

Retrieving an Nonexistent Schema

 mysql-js>

Retrieving an Nonexistent Schema

If you attempt to use session to retrieve an nonexistent schema, interactive error resolution provides
the option to create the schema.

 mysql-js> var mySchema = session.getSchema('my_test')
 The schema my_test does not exist, do you want to create it? [y/N]: y

 mysql-js> mySchema
 <Schema:my_test>
 mysql-js>

In all cases, if you do not provide the information required to resolve each situation, a proper result of
executing the requested statement on an undefined variable is displayed.

11

12

Chapter 3 MySQL Shell Code Execution

Table of Contents
3.1 Interactive Code Execution .. 13
3.2 Batch Code Execution ... 14
3.3 Output Formats ... 15

3.3.1 Table Format ... 15
3.3.2 Tab Separated Format ... 15
3.3.3 JSON Format Output .. 16
3.3.4 Result Metadata ... 17

3.4 Active Language ... 18
3.5 Batch Mode Made Interactive .. 18

3.5.1 Multiple-line Support ... 18

This section explains how code execution works in MySQL Shell.

3.1 Interactive Code Execution
The default mode of MySQL Shell provides interactive execution of database operations that you type
at the command prompt. These operations can be written in JavaScript, Python or SQL depending on
the curent Section 3.4, “Active Language”. When executed, the results of the operation are displayed
on-screen.

As with any other language interpreter, MySQL Shell is very strict regarding syntax. For example, the
following JavaScript snippet reads and prints the documents in a collection:

 var mysqlx = require('mysqlx').mysqlx;
 var mySession = mysqlx.getSession('user:pwd@localhost');
 var result = mySession.world_x.countryinfo.find().execute();
 var record = result.fetchOne();
 while(record){
 print(record);
 record = result.fetchOne();
 }

As seen above, the call to find() is followed by the execute() function. CRUD database
commands are only actually executed on the MySQL Server when execute() is called. However,
when working with MySQL Shell interactively, execute() is implicitly called whenever you press
Return on a statement. Then the results of the operation are fetched and displayed on-screen. The
rules for when you need to call execute() or not are as follows:

• When using MySQL Shell in this way, calling execute() becomes optional on:

• Collection.add()

• Collection.find()

• Collection.remove()

• Collection.modify()

• Table.insert()

• Table.select()

• Table.delete()

• Table.update()

13

Formatting Results Vertically

• NodeSession.sql()

• Automatic execution is disabled if the object is assigned to a variable. In such a case calling
execute() is mandatory to perform the operation.

• When a line is processed and the function returns any of the available Result objects, the
information contained in the Result object is automatically displayed on screen. The functions that
return a Result object include:

• The SQL execution and CRUD operations (listed above)

• Transaction handling and drop functions of the session objects in both mysql and mysqlx modules:
-

• startTransaction()

• commit()

• rollback()

• dropSchema()

• dropTable()

• dropCollection()

• dropView()

• ClassicSession.runSql()

Based on the above rules, the statements needed in the MySQL Shell in interactive mode to establish
a session, query, and print the documents in a collection are:

 mysql-js> var mysqlx = require('mysqlx').mysqlx;
 mysql-js> var mySession = mysqlx.getSession('user:pwd@localhost');

No call to execute() is needed and the Result object is automatically printed.

 mysql-js> mySession.world_x.countryinfo.find();

Formatting Results Vertically

When executing SQL using MySQL Shell you can display results in a column-per-row format with the
\G command, in a similar way to mysql. If a statement is terminated with \G instead of the active
delimiter (which defaults to ;), it is executed by the server and the results are displayed in vertical
format, regardless of the current default output format. For example issuing a statement such as

SELECT * FROM mysql.user \G

displays the results vertically.

Multiple SQL statements on the same line which are separated by \G are executed separately as if
they appeared one per line., for example

select 1\Gselect 2\Gselect 3\G

In other words \G functions as a normal delimiter.

3.2 Batch Code Execution
As well as interactive code execution, MySQL Shell provides batch code execution from:

14

Executable Scripts

• A file loaded for processing.

• A file containing code that is redirected to the standard input for execution.

• Code from a different source that is redirected to the standard input for execution.

The input is processed based on the current programming language selected in MySQL Shell, which
defaults to JavaScript. For example:

Loading JavaScript code from a file for batch processing.

 $> mysqlsh --file code.js

Redirecting a JavaScript file to standard input for execution.

 $> mysqlsh < code.js

Redirecting SQL to standard input for execution.

 $> echo "show databases;" | mysqlsh --sql --uri root@198.51.100.141:33060

Executable Scripts

Starting with version 1.0.4, on Linux you can create executable scripts that run with MySQL Shell by
including a #! line as the first line of the script. This line should provide the full path to MySQL Shell
and include the --file option. For example:

 #!/usr/local/mysql-shell/bin/mysqlsh --file
 print("Hello World\n");

The script file must be marked as executable in the filesystem. Running the script invokes MySQL Shell
and it executes the contents of the script.

3.3 Output Formats
The output of the commands processed on the server can be formatted in different ways. This section
details the different available output formats.

3.3.1 Table Format

The table format is used by default when MySQL Shell is in interactive mode. The output is presented
as a formatted table for a better view and to aid analysis.

 mysql-sql> select * from sakila.actor limit 3;
 +----------+-------------+----------------+----------------------+
 | actor_id | first_name | last_name | last_update |
 +----------+-------------+----------------+----------------------+
 | 1 | PENELOPE | GUINESS | 2006-02-15 4:34:33 |
 | 2 | NICK | WAHLBERG | 2006-02-15 4:34:33 |
 | 3 | ED | CHASE | 2006-02-15 4:34:33 |
 +----------+-------------+----------------+----------------------+
 3 rows in set (0.00 sec)

 mysql-sql>

To get this output format when running in batch mode, use the --table command-line option.

3.3.2 Tab Separated Format

This format is used by default when running MySQL Shell in batch mode, to have better output for
automated analysis.

15

JSON Format Output

 >echo "select * from sakila.actor limit 3;" | mysqlsh --classic --uri root@198.51.100.141:33460
 actor_id first_name last_name last_update
 1 PENELOPE GUINESS 2006-02-15 4:34:33
 2 NICK WAHLBERG 2006-02-15 4:34:33
 3 ED CHASE 2006-02-15 4:34:33

3.3.3 JSON Format Output

MySQL Shell supports the JSON format for output and it is available both in interactive and batch
mode. This output format can be enabled using the --json command-line option:

JSON Format in Batch Mode

 $>echo "select * from sakila.actor limit 3;" | mysqlsh --json --sqlc --uri root@198.51.100.141:3306
 {"duration":"0.00 sec","info":"","row_count":3,"rows":[[1,"PENELOPE","GUINESS",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}],[2,"NICK","WAHLBERG",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}],[3,"ED","CHASE",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}]],"warning_count":0}

 $>echo "select * from sakila.actor limit 3;" | mysqlsh --json=raw --sqlc --uri root@198.51.100.141:3306
 {"duration":"0.00 sec","info":"","row_count":3,"rows":[[1,"PENELOPE","GUINESS",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}],[2,"NICK","WAHLBERG",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}],[3,"ED","CHASE",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}]],"warning_count":0}

 $>echo "select * from sakila.actor limit 3;" | mysqlsh --json=pretty --sqlc --uri root@198.51.100.141:3306
 {
 "duration": "0.00 sec",
 "info": "",
 "row_count": 3,
 "rows": [
 [
 1,
 "PENELOPE",
 "GUINESS",
 {
 "year": 2006,
 "month": 1,
 "day": 15,
 "hour": 4,
 "minute": 34,
 "second": 33.0
 }
],
 [
 2,
 "NICK",
 "WAHLBERG",
 {
 "year": 2006,
 "month": 1,
 "day": 15,
 "hour": 4,
 "minute": 34,
 "second": 33.0
 }
],
 [
 3,
 "ED",
 "CHASE",
 {
 "year": 2006,
 "month": 1,
 "day": 15,
 "hour": 4,
 "minute": 34,
 "second": 33.0
 }
]
],
 "warning_count": 0
 }
 $>

16

Result Metadata

JSON Format in Interactive Mode (started with --json=raw)

 mysql-sql> select * from sakila.actor limit 3;
 {"duration":"0.00 sec","info":"","row_count":3,"rows":[[1,"PENELOPE","GUINESS",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}],[2,"NICK","WAHLBERG",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}],[3,"ED","CHASE",{"year":2006,"month":1,"day":15,"hour":4,"minute":34,"second":33.0}]],"warning_count":0}

 mysql-sql>

JSON Format in Interactive Mode (started with --json=pretty)

 mysql-sql> select * from sakila.actor limit 3;
 {
 "duration": "0.00 sec",
 "info": "",
 "row_count": 3,
 "rows": [
 [
 1,
 "PENELOPE",
 "GUINESS",
 {
 "year": 2006,
 "month": 1,
 "day": 15,
 "hour": 4,
 "minute": 34,
 "second": 33.0
 }
],
 [
 2,
 "NICK",
 "WAHLBERG",
 {
 "year": 2006,
 "month": 1,
 "day": 15,
 "hour": 4,
 "minute": 34,
 "second": 33.0
 }
],
 [
 3,
 "ED",
 "CHASE",
 {
 "year": 2006,
 "month": 1,
 "day": 15,
 "hour": 4,
 "minute": 34,
 "second": 33.0
 }
]
],
 "warning_count": 0
 }

 mysql-sql>

3.3.4 Result Metadata

When an operation is executed, in addition to any results returned, some additional information is
available. This includes information such as the number of affected rows, warnings, duration, and so
on, when any of these conditions is true:

• JSON format is being used for the output

• MySQL Shell is running in interactive mode.

17

Active Language

3.4 Active Language

MySQL Shell can execute SQL, JavaScript or Python code, but only one language can be active at a
time. The active mode determines how the executed statements are processed:

• If using SQL mode, statements are processed as SQL which means they are sent to the MySQL
server for execution.

• If using JavaScript mode, statements are processed as JavaScript code.

• If using Python mode, statements are processed as Python code.

When running MySQL Shell in interactive mode, activate a specific language by entering the
commands: \sql, \js, \py.

When running MySQL Shell in batch mode, activate a specific language by passing any of these
command-line options: --js, --py or --sql. The default mode if none is specified is JavaScript.

Use MySQL Shell to execute the content of the file code.sql as SQL.

 $> mysqlsh --sql < code.sql

Use MySQL Shell to execute the content of the file code.js as JavaScript code.

 $> mysqlsh < code.js

Use MySQL Shell to execute the content of the file code.py as Python code.

 $> mysqlsh --py < code.py

3.5 Batch Mode Made Interactive

This section describes code execution in batch mode.

• In batch mode, all the command logic described above is not available, only valid code for the active
language can be executed.

• When processing SQL code, it is executed statement by statement using the following logic: read/
process/print result.

• When processing non-SQL code, it is loaded entirely from the input source and executed as a unit.

Use the --interactive (or -i) command-line option to configure MySQL Shell to process the input
source as if it were being issued in interactive mode; this enables all the features provided by the
Interactive mode to be used in batch processing.

Note

In this case, whatever the source is, it is read line by line and processed using
the interactive pipeline.

3.5.1 Multiple-line Support

It is possible to specify statements over multiple lines. When in Python or JavaScript mode, multiple-
line mode is automatically enabled when a block of statements starts like in function definitions, if/
then statements, for loops, and so on. In SQL mode multiple line mode starts when the command \ is
issued.

Once multiple-line mode is started, the subsequently entered statements are cached.

18

Multiple-line Support

For example:

 mysql-sql> \
 ... create procedure get_actors()
 ... begin
 ... select first_name from sakila.actor;
 ... end
 ...
 mysql-sql>

19

20

Chapter 4 Configuring MySQL Shell

Table of Contents
4.1 MySQL Shell Commands .. 21

This section explains how to configure MySQL Shell using commands executable from the interactive
code editor and command options. For a description of MySQL Shell command options, see
Section A.1, “mysqlsh — The MySQL Shell”.

4.1 MySQL Shell Commands

MySQL Shell provides commands which enable you to modify the execution environment of the code
editor, for example to configure the active programming language or a MySQL Server connection. The
following table lists the commands that are available regardless of the currently selected language.
As commands need to be available independent of the execution mode, they start with an escape
sequence, the \ character.

Command Alias/Shortcut Description

\help \h or \? Prints help about MySQL Shell
commands.

\quit \q or \exit Exit MySQL Shell.

\ In SQL mode, begin multiple-
line mode. Code is cached and
executed when an empty line is
entered.

\status \s Show the current MySQL Shell
status.

\js Switch execution mode to
JavaScript.

\py Switch execution mode to
Python.

\sql Switch execution mode to SQL.

\connect \c Connect to a MySQL Server with
a URI using an Node session (X
Protocol).

\connect_node \cn (Removed in version 1.0.4, use
\connect -n) Connect to a
MySQL Server with a URI using
a Node session.

\connect_classic \cc (Removed in version 1.0.4,
use \connect -c) Connect
to a MySQL Server with a URI
using a Classic session (MySQL
Protocol).

\use Specify the schema to use.

\source \. Execute a script file using the
active language.

\warnings \W Show any warnings generated by
a statement.

21

Help Command

Command Alias/Shortcut Description

\nowarnings \w Do not show any warnings
generated by a statement.

\lsconn \lsc Print the connection data for the
stored sessions.

\saveconn \savec Save connection data of a
session, optionaly use -f to
force overwriting an existing
connection.

\addconn \addc (Removed in version 1.0.4,
see \saveconn) Store the
connection data of a session.

\rmconn Removes a stored session.

\chconn (Removed in version 1.0.4, see
\saveconn) Updates a stored
session.

Help Command

The \help command can be used with or without parameters. When used without parameters a
general help is printed including information about:

• Available commands.

• Available commands for the active mode.

When used with a parameter, the parameter must be a valid command. If that is the case, help for that
specific command is printed including:

• Description

• Supported aliases if any

• Additional help if any

For example:

\help connect

If the parameter is not a valid command, the general help is printed.

Connect Command

The \connect command is used to connect to a MySQL Server using an URI type string. See
Section 2.1.1, “Connecting using a URI String”.

For example:

\connect root@localhost:3306

If a password is required you are prompted for it.

Use the -n option to create a Node session, using the X Protocol to connect to a single server. For
example:

\connect -n root@localhost:3306

Use the -c option to create a Classic session, enabling you to use the MySQL Protocol to issue SQL
commands directly on a server. For example:

22

Status Command

\connect -c root@localhost:3306

Status Command

The \status command displays information about the current global connection. This includes
information about the server connected to, the character set in use, uptime, and so on.

Source Command

The \source command is used to execute code from a script at a given path. For example:

\source /tmp/mydata.sql

You can execute either SQL, JavaScript or Python code. The code in the file is executed using the
active language, so to process SQL code the MySQL Shell must be in SQL mode.

Warning

As the code is executed using the active language, executing a script in a
different language than the currently selected execution mode language could
lead to unexpected results.

Use Command

The \use command enables you to choose which schema is active, for example:

\use schema_name

The \use command requires a global development session to be active. The \use command sets
the current schema to the specified schema_name and updates the db variable to the object that
represents the selected schema.

23

24

Chapter 5 MySQL Shell Application Log
This section explains the logging provided by MySQL Shell, where to find logs and how to configure the
level of logging.

MySQL Shell can be configured to generate an application log file with information about issues of
varying severity. You can use this information to verify the state of MySQL Shell while it is running. The
log format is plain text and entries contain a timestamp and description of the problem. For example:

2016-04-05 22:23:01: Error: Default Domain: (shell):1:8: MySQLError: You have an error
in your SQL syntax; check the manual that corresponds to your MySQL server version for
the right syntax to use near '' at line 1 (1064) in session.sql("select * from t
limit").execute().all();

The amount of information to add to the log can be configured using --log-level. See Configuring
Logging.

MySQL Shell Log File Location

The location of the log file is the user configuration path and the file is named mysqlsh.log.

Log File on Windows

On Windows, the default path to the log file is %APPDATA%\MySQL\mysqlsh\mysqlsh.log

To find the location of %APPDATA% on your system, echo it from the comand-line. For example:

C:>echo %APPDATA%
C:\Users\exampleuser\AppData\Roaming

On Windows, the path is determined by the result of gathering the %APPDATA% folder specific to
that user, and then appending MySQL\mysqlsh. Using the above example results in C:\Users
\exampleuser\AppData\Roaming\MySQL\mysqlsh\mysqlsh.log.

Log File on Unix-based Systems

For a machine running Unix, the default path is ~/.mysqlsh/mysqlsh.log where “~” represents
your home directory. The environment variable HOME also represents the home directory. Appending
.mysqlsh to the this home directory determines the default path to the logs. For example:

$>echo $HOME
/home/exampleuser

Therefore the location of the MySQL Shell file on this system is /home/exampleuser/.mysqlsh/
mysqlsh.log.

These paths can be overridden on all platforms by defining the environment variable
MYSQL_USER_CONFIG_PATH. The value of this variable replaces %APPDATA% in Windows or $HOME in
Unix.

Configuring Logging

By default, logging is disabled in MySQL Shell. To enable logging use the --log-level command
option when starting MySQL Shell. The value assigned to --log-level controls the level of detail
in the log. The level of logging can be defined using either numeric levels from 1 to 8, or equivalent
named levels as shown in the following table.

Log Level Number Log Level Name Meaning

1 none No logging, the default

25

Configuring Logging

Log Level Number Log Level Name Meaning

2 internal Internal Error

3 error Errors are logged

4 warning Warnings are logged

5 info Information is logged

6 debug Debug information is logged

7 debug2 Debug with more information is
logged

8 debug3 Debug with full information is
logged

The numeric and named levels are equivalent. For example there is no difference in logging when
starting MySQL Shell in either of these ways:

$>mysqlsh --log-level=4
$>mysqlsh --log-level=warning

26

Chapter 6 Customizing MySQL Shell

Table of Contents
6.1 Working With Start-Up Scripts ... 27
6.2 Adding Module Search Paths .. 28

6.2.1 Environment Variables .. 28
6.2.2 Startup Scripts ... 28

6.3 Overriding the Default Prompt ... 28

MySQL Shell offers the ability to customize the behavior and code execution environment through
startup scripts, which are executed when the application is first run. Using such scripts enables you to:

• Add additional search paths for Python or JavaScript modules.

• Override the default prompt used by the Python and JavaScript modes.

• Define global functions or variables.

• Any other possible initialization through JavaScript or Python.

6.1 Working With Start-Up Scripts

When MySQL Shell enters either into JavaScript or Python mode, it searches for startup scripts to be
executed. The startup scripts are JavaScript or Python specific scripts containing the instructions to be
executed when the corresponding mode is initialized.

Startup scripts must be named as follows:

• For JavaScript mode: mysqlshrc.js

• For Python mode: mysqlshrc.py

MySQL Shell searches the following paths for these files (in order of execution).

On Windows:

1. %PROGRAMDATA%MySQLmysqlshmysqlshrc.[js|py]

2. %MYSQLSH_HOME%sharedmysqlshmysqlshrc.[js|py]

3. <mysqlsh binary path>mysqlshrc.[js|py]

4. %APPDATA%MySQLmysqlshmysqlshrc.[js|py]

On Linux and macOS:

1. /etc/mysql/mysqlsh/mysqlshrc.[js|py]

2. $MYSQLSH_HOME/shared/mysqlsh/mysqlshrc.[js|py]

3. <mysqlsh binary path>/mysqlshrc.[js|py]

4. $HOME/.mysqlsh/mysqlshrc.[js|py]

The environment variable MYSQLSH_HOME defines the root folder of a standard setup of MySQL Shell.
If MYSQLSH_HOME is not defined it is automatically calculated based on the location of the MySQL Shell
binary, therefore on many standard setups it is not required to define MYSQLSH_HOME.

27

Adding Module Search Paths

If MYSQLSH_HOME is not defined and the MySQL Shell binary is not in a standard install folder
structure, then the path defined in option 3 in the above lists is used. If using a standard install or if
MYSQLSH_HOME points to a standard install folder structure, then the path defined in option 3 is not
used.

Warning

The lists above also define the order of searching the paths, so if something is
defined in two different scripts, the script executed later takes precedence.

6.2 Adding Module Search Paths
There are two ways to add additional module search paths:

• Through environment variables

• Through startup scripts

6.2.1 Environment Variables

Python uses the PYTHONPATH environment variable to allow extending the search paths for python
modules. The value of this variable is a list of paths separated by:

• A colon character in Linux and macOS

• A semicolon character in Windows

To achieve this in JavaScript, MySQL Shell supports defining additional JavaScript module paths using
the MYSQLSH_JS_MODULE_PATH environment variable. The value of this variable is a list of semicolon
separated paths.

6.2.2 Startup Scripts

The addition of module search paths can be achieved for both languages through the corresponding
startup script.

For Python modify the mysqlshrc.py file and append the required paths into the sys.path array.

Import the sys module
import sys

Append the additional module paths
sys.path.append('~/custom/python')
sys.path.append('~/other/custom/modules')

For JavaScript the same task is achieved by adding code into the mysqlshrc.js file to append the
required paths into the predefined shell.js_module_paths array.

// Append the additional module paths
shell.js.module_paths[shell.js.module_paths.length] = '~/custom/js';
shell.js.module_paths[shell.js.module_paths.length] = '~/other/custom/modules';

6.3 Overriding the Default Prompt
MySQL Shell uses a default prompt for both Python (mysql-py>) and JavaScript (mysql-js>).

You can customize the language specific prompt using the shell.custom_prompt() function. This
function must return a string that is used as the prompt. To have a custom prompt when MySQL Shell
starts, define this function in a startup script. The following example shows how this functionality can be
used.

In Python shell.custom_prompt() could be defined as:

28

Overriding the Default Prompt

Import the sys module
from time import gmtime, strftime

def my_prompt():
 ret_val = strftime("%H:%M:%S", gmtime())

 if session and session.isOpen():
 data = shell.parseUri(session.getUri())

 ret_val = "%s-%s-%s-py> " % (ret_val, data.dbUser, data.host)
 else:
 ret_val = "%s-disconnected-py> " % ret_val

 return ret_val

shell.custom_prompt = my_prompt

In JavaScript shell.custom_prompt() could be defined as:

shell.custom_prompt = function(){
 var now = new Date();

 var ret_val = now.getHours().toString()+ ":" + now.getMinutes().toString() + ":" + now.getSeconds().toString();

 if (session && session.isOpen()){
 var data = shell.parseUri(session.getUri());

 ret_val += "-" + data.dbUser + "-" + data.host + "-js> ";
 }
 else
 ret_val += "-disconnected-js> ";

 return ret_val;
}

The following example demonstrates using the custom prompt functions defined above in startup script.
The prompts show the current system time, and if a session is open the current user and host:

Welcome to MySQL Shell 1.0.4 Development Preview

Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type '\help', '\h' or '\?' for help.

Currently in JavaScript mode. Use \sql to switch to SQL mode and execute queries.
14:34:32-disconnected-js> \py
Switching to Python mode...

19:34:39-disconnected-py> \connect root:@localhost
Creating an X Session to root@localhost:33060
No default schema selected.

19:34:50-root-localhost-py> \js
Switching to JavaScript mode...
14:34:57-root-localhost-js>

29

30

Appendix A MySQL Shell Command Reference

Table of Contents
A.1 mysqlsh — The MySQL Shell ... 31

This appendix describes the mysqlsh command.

A.1 mysqlsh — The MySQL Shell

MySQL Shell is an advanced command-line client and code editor for MySQL. In addition to SQL,
MySQL Shell also offers scripting capabilities for JavaScript and Python. For information about using
MySQL Shell, see MySQL Shell 1.0. When MySQL Shell is connected to the MySQL Server through
the X Protocol, the X DevAPI can be used to work with both relational and document data, see Using
MySQL as a Document Store. MySQL Shell includes the AdminAPI that enables you to work with
InnoDB Cluster, see MySQL AdminAPI.

Many of the options described here are related to connections between MySQL Shell and a MySQL
Server instance. See Section 2.1, “MySQL Shell Connections” for more information.

mysqlsh supports the following command-line options.

Table A.1 mysqlsh Options

Option Name Description

--auth-method Authentication method to use

--classic Create a classic MySQL protocol session

--database The schema to use (alias for --schema)

--dba Enable X Protocol on connection with MySQL 5.7
server

--dbpassword Password to use when connecting to server

--dbuser MySQL user name to use when connecting to
server

--execute Execute the command and quit

--file File to process in batch mode

--force Continue in SQL and batch modes even if errors
occur

--help Display help message and exit

--host Host on which MySQL server instance is located

--interactive Emulate Interactive mode in batch mode

--js, --javascript Start in JavaScript mode

--json Print output in JSON format

--log-level Specify logging level

--no-wizard, --nw Disable the interactive wizards

--node Create a NodeSession

--password Password to use when connecting to server (alias
for --dbpassword)

31

https://dev.mysql.com/doc/refman/5.7/en/document-store.html
https://dev.mysql.com/doc/refman/5.7/en/document-store.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html

mysqlsh — The MySQL Shell

Option Name Description

--passwords-from-stdin Read the password from stdin

--port TCP/IP port number for connection

--py, --python Start in Python mode

--recreate-schema Drop and recreate schema

--schema The schema to use

--show-warnings Show warnings after each statement if there are
any (in SQL mode)

--socket Unix socket file or Windows named pipe to use
(classic MySQL protocol only)

--sql Start in SQL mode, auto-detecting protocol to use
for connection

--sqlc Start in SQL mode using a classic MySQL
protocol connection

--ssl Enable an SSL connection. Deprecated in version
1.0.10; use --ssl-mode instead

--ssl-ca File that contains list of trusted SSL Certificate
Authorities

--ssl-capath Directory that contains trusted SSL Certificate
Authority certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Name of the SSL cipher to use

--ssl-crl File that contains certificate revocation lists

--ssl-crlpath Directory that contains certificate revocation list
files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of connection to server

--table Display output in table format

--tls-version Permissible TLS protocol for encrypted
connections

--uri Session information in URI format

--user MySQL user name to use when connecting to
server (alias for --dbuser)

--version Display version information and exit

--vertical Display all SQL results vertically

• --help

Display a help message and exit.

• --auth-method=method

Authentication method to use for the account. Depends on the authentication plugin used for the
account's password. MySQL Shell currently supports the following methods:

• mysql_native_password - see Native Pluggable Authentication

• mysql_old_password - see Old Native Pluggable Authentication

• sha256_password - see Caching SHA-2 Pluggable Authentication

32

https://dev.mysql.com/doc/refman/5.7/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/5.7/en/old-native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/5.7/en/caching-sha2-pluggable-authentication.html

mysqlsh — The MySQL Shell

• --classic

Creates a Classic session, to connect using MySQL Protocol.

• --cluster

Ensures that the target server is part of an InnoDB cluster and if so, sets the cluster global
variable to the cluster object.

• --database=name

The default schema to use. This is an alias for --schema.

• --dba=enableXProtocol

Enable X Plugin on connection with MySQL 5.7 server, so that you can use X Protocol connections
for subsequent connections. Requires a connection using classic MySQL protocol.

Not relevant for MySQL 8.0 servers, which have X Plugin enabled by default.

• --dbpassword[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you
cannot have a space between the option and the password. If you omit the password value
following the --dbpassword or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. To avoid giving the
password on the command line, use an option file. See End-User Guidelines for Password Security.

• --dbuser=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --execute=command, -e command

Execute the command using the currently active language and quit.

• --file=file_name, -f file_name

Specify file to process in Batch mode.

• --force

Continue processing in SQL and Batch modes even if errors occur.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --get-server-public-key

MySQL Shell equivalent of --get-server-public-key.

Important

Only supported with classic MySQL protocol connections.

See Caching SHA-2 Pluggable Authentication.

• --interactive[=full]

Emulate Interactive mode in Batch mode.

• --js

33

https://dev.mysql.com/doc/refman/5.7/en/password-security-user.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/refman/5.7/en/caching-sha2-pluggable-authentication.html

mysqlsh — The MySQL Shell

Start in JavaScript mode.

• --json[={pretty|raw}]

Print output in JSON format. With an option value of pretty, output is pretty-printed. With no option
value or a value of raw, output is in raw JSON format.

• --log-level=N

Specify the logging level. The value can be either an integer in the range from 1 to 8, or one of none,
internal, error, warning, info, debug, debug2, or debug3. See Chapter 5, MySQL Shell
Application Log.

• -ma

Detects the session type automatically.

• --mysql

Sets the session created at start up to create the connection using classic MySQL protocol.

• --mysqlx

Sets the session created at start up to create the connection using X Protocol.

• --node

Creates a Node session connected using X Protocol to a single server.

• --name-cache

Enable automatic loading of table names based on the active default schema.

• --no-name-cache

Disable loading of table names for autocompletion based on the active default schema and the
DevAPI db object. Use \rehash to reload the name information manually.

• --no-password

When connecting to the server, if the user has a passwordless account, which is insecure and not
recommended, or if socket peer-credential authentication is in use (for Unix socket connections),
you must use --no-password to explicitly specify that no password is provided and the password
prompt is not required.

• --no-wizard

Disables the connection wizard which provides help when creating connections.

• --passwords-from-stdin

Read the password from stdin.

• --password[=password]

The password to use when connecting to the server. With a value provided, --password is an alias
for --dbpassword. With an empty value provided, --password= has the same effect as --no-
password, which specifies that no password is provided and the password prompt is not required.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection. The default is port 33060.

• --py

34

mysqlsh — The MySQL Shell

Start in Python mode.

• --recreate-schema

Drop and recreate schema.

• --redirect-primary

Ensures that the target server is part of an InnoDB cluster and if it is not a primary, finds the cluster's
primary and connects to it. MySQL Shell exits with an error if any of the following is true when using
this option:

• Group Replication is not active

• InnoDB cluster metadata does not exist

• There is no quorum

• --redirect-secondary

Ensures that the target server is part of an InnoDB cluster and if it is not a secondary, finds a
secondary and connects to it. MySQL Shell exits with an error if any of the following is true when
using this option:

• Group Replication is not active

• InnoDB cluster metadata does not exist

• There is no quorum

• The cluster is not single-primary and is running in multi-primary mode

• There is no secondary in the cluster, for example because there is just one server instance

• --schema=name, -D name

The default schema to use.

• --server-public-key-path=file_name

MySQL Shell equivalent of --server-public-key-path.

Important

Only supported with classic MySQL protocol connections.

See caching_sha2_password plugin Caching SHA-2 Pluggable Authentication.

• --show-warnings

Cause warnings to be shown after each statement if there are any.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named
pipe to use. This option applies to Classic sessions only.

• --sql

Start in SQL mode.

• --sqlc

35

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/5.7/en/caching-sha2-pluggable-authentication.html

mysqlsh — The MySQL Shell

Start in SQL mode using a ClassicSession.

• --sqln

Start in SQL mode using a NodeSession.

• --sqlx

Start in SQL mode and create connection using X Protocol.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. The mysqlsh SSL options function in the same way as
the SSL options for MySQL Server, see Command Options for Encrypted Connections for more
information.

mysqlsh accepts these SSL options: --ssl-mode, --ssl-ca, --ssl-capath, --ssl-cert, --
ssl-cipher, --ssl-crl, --ssl-crlpath, --ssl-key. --tls-version.

• --table

Display output in table format in Batch mode.

• --uri=str

Create a connection upon startup, specifying the connection options in a URI string format, see
Section 2.1.1, “Connecting using a URI String”.

• --user=user_name

The MySQL user name to use when connecting to the server. This is an alias for --dbuser.

• --version, -V

Display version information and exit.

• --vertical, -E

Display results of SQL queries vertically.

36

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version

	MySQL Shell 1.0
	Table of Contents
	Chapter 1 MySQL Shell Features
	Chapter 2 Getting Started with MySQL Shell
	2.1 MySQL Shell Connections
	2.1.1 Connecting using a URI String
	2.1.2 Connecting using Individual Parameters
	2.1.3 Using Encrypted Connections
	2.1.4 Connections in JavaScript and Python
	2.1.4.1 Using Encrypted Connections in Code

	2.2 MySQL Shell Sessions
	2.2.1 MySQL Shell Sessions Explained

	2.3 MySQL Shell Global Variables

	Chapter 3 MySQL Shell Code Execution
	3.1 Interactive Code Execution
	3.2 Batch Code Execution
	3.3 Output Formats
	3.3.1 Table Format
	3.3.2 Tab Separated Format
	3.3.3 JSON Format Output
	3.3.4 Result Metadata

	3.4 Active Language
	3.5 Batch Mode Made Interactive
	3.5.1 Multiple-line Support

	Chapter 4 Configuring MySQL Shell
	4.1 MySQL Shell Commands

	Chapter 5 MySQL Shell Application Log
	Chapter 6 Customizing MySQL Shell
	6.1 Working With Start-Up Scripts
	6.2 Adding Module Search Paths
	6.2.1 Environment Variables
	6.2.2 Startup Scripts

	6.3 Overriding the Default Prompt

	Appendix A MySQL Shell Command Reference
	A.1 mysqlsh — The MySQL Shell

