
Security in MySQL

Abstract

This is the MySQL Security Guide extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-03-12 (revision: 78064)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices ... vii
1 Security ... 1
2 General Security Issues ... 3

2.1 Security Guidelines ... 3
2.2 Keeping Passwords Secure ... 5

2.2.1 End-User Guidelines for Password Security ... 5
2.2.2 Administrator Guidelines for Password Security ... 6
2.2.3 Passwords and Logging ... 6

2.3 Making MySQL Secure Against Attackers .. 7
2.4 Security-Related mysqld Options and Variables .. 9
2.5 How to Run MySQL as a Normal User .. 9
2.6 Security Considerations for LOAD DATA LOCAL .. 10
2.7 Client Programming Security Guidelines ... 14

3 Postinstallation Setup and Testing .. 17
3.1 Initializing the Data Directory ... 17
3.2 Starting the Server .. 23

3.2.1 Troubleshooting Problems Starting the MySQL Server ... 23
3.3 Testing the Server .. 25
3.4 Securing the Initial MySQL Account ... 27
3.5 Starting and Stopping MySQL Automatically ... 29

4 Access Control and Account Management .. 31
4.1 Account User Names and Passwords .. 32
4.2 Privileges Provided by MySQL .. 34
4.3 Grant Tables ... 53
4.4 Specifying Account Names .. 63
4.5 Specifying Role Names ... 65
4.6 Access Control, Stage 1: Connection Verification .. 66
4.7 Access Control, Stage 2: Request Verification .. 69
4.8 Adding Accounts, Assigning Privileges, and Dropping Accounts 71
4.9 Reserved Accounts ... 74
4.10 Using Roles .. 74
4.11 Account Categories ... 81
4.12 Privilege Restriction Using Partial Revokes ... 85
4.13 When Privilege Changes Take Effect ... 91
4.14 Assigning Account Passwords ... 92
4.15 Password Management ... 93
4.16 Server Handling of Expired Passwords ... 104
4.17 Pluggable Authentication ... 105
4.18 Multifactor Authentication ... 111
4.19 Proxy Users .. 115
4.20 Account Locking .. 122
4.21 Setting Account Resource Limits .. 123
4.22 Troubleshooting Problems Connecting to MySQL .. 125
4.23 SQL-Based Account Activity Auditing ... 129

5 Using Encrypted Connections ... 133
5.1 Configuring MySQL to Use Encrypted Connections ... 134
5.2 Encrypted Connection TLS Protocols and Ciphers .. 141
5.3 Creating SSL and RSA Certificates and Keys ... 150

5.3.1 Creating SSL and RSA Certificates and Keys using MySQL 150
5.3.2 Creating SSL Certificates and Keys Using openssl ... 153
5.3.3 Creating RSA Keys Using openssl .. 158

5.4 Connecting to MySQL Remotely from Windows with SSH ... 159
5.5 Reusing SSL Sessions .. 159

6 Security Components and Plugins .. 163
6.1 Authentication Plugins ... 164

iii

Security in MySQL

6.1.1 Native Pluggable Authentication .. 165
6.1.2 Caching SHA-2 Pluggable Authentication .. 165
6.1.3 SHA-256 Pluggable Authentication .. 171
6.1.4 Client-Side Cleartext Pluggable Authentication ... 175
6.1.5 PAM Pluggable Authentication .. 175
6.1.6 Windows Pluggable Authentication .. 186
6.1.7 LDAP Pluggable Authentication ... 191
6.1.8 Kerberos Pluggable Authentication .. 210
6.1.9 No-Login Pluggable Authentication .. 222
6.1.10 Socket Peer-Credential Pluggable Authentication ... 225
6.1.11 FIDO Pluggable Authentication .. 227
6.1.12 Test Pluggable Authentication ... 233
6.1.13 Pluggable Authentication System Variables .. 235

6.2 The Connection-Control Plugins ... 253
6.2.1 Connection-Control Plugin Installation .. 254
6.2.2 Connection-Control System and Status Variables ... 258

6.3 The Password Validation Component ... 259
6.3.1 Password Validation Component Installation and Uninstallation 261
6.3.2 Password Validation Options and Variables ... 262
6.3.3 Transitioning to the Password Validation Component .. 270

6.4 The MySQL Keyring .. 271
6.4.1 Keyring Components Versus Keyring Plugins ... 273
6.4.2 Keyring Component Installation ... 274
6.4.3 Keyring Plugin Installation ... 277
6.4.4 Using the component_keyring_file File-Based Keyring Component 279
6.4.5 Using the component_keyring_encrypted_file Encrypted File-Based Keyring
Component ... 281
6.4.6 Using the keyring_file File-Based Keyring Plugin .. 283
6.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin 284
6.4.8 Using the keyring_okv KMIP Plugin ... 285
6.4.9 Using the keyring_aws Amazon Web Services Keyring Plugin 291
6.4.10 Using the HashiCorp Vault Keyring Plugin ... 294
6.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Component 301
6.4.12 Using the Oracle Cloud Infrastructure Vault Keyring Plugin 305
6.4.13 Supported Keyring Key Types and Lengths ... 307
6.4.14 Migrating Keys Between Keyring Keystores ... 309
6.4.15 General-Purpose Keyring Key-Management Functions 315
6.4.16 Plugin-Specific Keyring Key-Management Functions ... 322
6.4.17 Keyring Metadata ... 323
6.4.18 Keyring Command Options ... 324
6.4.19 Keyring System Variables ... 326

6.5 MySQL Enterprise Audit .. 343
6.5.1 Elements of MySQL Enterprise Audit ... 344
6.5.2 Installing or Uninstalling MySQL Enterprise Audit ... 344
6.5.3 MySQL Enterprise Audit Security Considerations ... 347
6.5.4 Audit Log File Formats ... 347
6.5.5 Configuring Audit Logging Characteristics .. 368
6.5.6 Reading Audit Log Files ... 378
6.5.7 Audit Log Filtering .. 382
6.5.8 Writing Audit Log Filter Definitions ... 386
6.5.9 Disabling Audit Logging .. 404
6.5.10 Legacy Mode Audit Log Filtering ... 404
6.5.11 Audit Log Reference ... 406
6.5.12 Audit Log Restrictions ... 429

6.6 The Audit Message Component ... 429
6.7 MySQL Enterprise Firewall .. 432

6.7.1 Elements of MySQL Enterprise Firewall ... 433
6.7.2 Installing or Uninstalling MySQL Enterprise Firewall ... 434

iv

Security in MySQL

6.7.3 Using MySQL Enterprise Firewall .. 436
6.7.4 MySQL Enterprise Firewall Reference ... 450

A MySQL 8.0 FAQ: Security .. 461

v

vi

Preface and Legal Notices
This is the MySQL Security Guide extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices
Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

vii

https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Security
When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting
unnecessary privileges to users, ensuring application security by preventing SQL injections and data
corruption, and others. See Chapter 2, General Security Issues.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized
parties. For more information, see Chapter 3, Postinstallation Setup and Testing.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For
more information, see Chapter 4, Access Control and Account Management.

• The features offered by security-related plugins. See Chapter 6, Security Components and Plugins.

• Network security of MySQL and your system. The security is related to the grants for individual
users, but you may also wish to restrict MySQL so that it is available only locally on the MySQL
server host, or to a limited set of other hosts.

• Ensure that you have adequate and appropriate backups of your database files, configuration
and log files. Also be sure that you have a recovery solution in place and test that you are able to
successfully recover the information from your backups. See Backup and Recovery.

Note

Several topics in this chapter are also addressed in the Secure Deployment
Guide, which provides procedures for deploying a generic binary distribution
of MySQL Enterprise Edition Server with features for managing the security of
your MySQL installation.

1

https://dev.mysql.com/doc/refman/8.0/en/backup-and-recovery.html
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

2

Chapter 2 General Security Issues

Table of Contents
2.1 Security Guidelines ... 3
2.2 Keeping Passwords Secure ... 5

2.2.1 End-User Guidelines for Password Security ... 5
2.2.2 Administrator Guidelines for Password Security ... 6
2.2.3 Passwords and Logging ... 6

2.3 Making MySQL Secure Against Attackers .. 7
2.4 Security-Related mysqld Options and Variables .. 9
2.5 How to Run MySQL as a Normal User .. 9
2.6 Security Considerations for LOAD DATA LOCAL .. 10
2.7 Client Programming Security Guidelines ... 14

This section describes general security issues to be aware of and what you can do to make your
MySQL installation more secure against attack or misuse. For information specifically about the access
control system that MySQL uses for setting up user accounts and checking database access, see
Chapter 3, Postinstallation Setup and Testing.

For answers to some questions that are often asked about MySQL Server security issues, see
Appendix A, MySQL 8.0 FAQ: Security.

2.1 Security Guidelines
Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the
MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of
service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL
at all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the
mysql system database! This is critical.

• Learn how the MySQL access privilege system works (see Chapter 4, Access Control and Account
Management). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant
more privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked
for a password, anyone can connect to your MySQL server as the MySQL root user with full
privileges! Review the MySQL installation instructions, paying particular attention to the information
about setting a root password. See Section 3.4, “Securing the Initial MySQL Account”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the
intruder can take the full list of passwords and use them. Instead, use SHA2() or some other one-
way hashing function and store the hash value.

3

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_sha2

Security Guidelines

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

• Assume that all passwords will be subject to automated cracking attempts using lists of known
passwords, and also to targeted guessing using publicly available information about you, such
as social media posts. Do not choose passwords that consist of easily cracked or guessed items
such as a dictionary word, proper name, sports team name, acronym, or commonly known phrase,
particularly if they are relevant to you. The use of upper case letters, number substitutions and
additions, and special characters does not help if these are used in predictable ways. Also do not
choose any password you have seen used as an example anywhere, or a variation on it, even if it
was presented as an example of a strong password.

Instead, choose passwords that are as long and as unpredictable as possible. That does not
mean the combination needs to be a random string of characters that is difficult to remember and
reproduce, although this is a good approach if you have, for example, password manager software
that can generate and fill such passwords and store them securely. A passphrase containing multiple
words is easy to create, remember, and reproduce, and is much more secure than a typical user-
selected password consisting of a single modified word or a predictable sequence of characters. To
create a secure passphrase, ensure that the words and other items in it are not a known phrase or
quotation, do not occur in a predictable order, and preferably have no previous relationship to each
other at all.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306
by default. This port should not be accessible from untrusted hosts. As a simple way to check
whether your MySQL port is open, try the following command from some remote machine, where
server_host is the host name or IP address of the host on which your MySQL server runs:

$> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be.
If you get a connection and some garbage characters, the port is open, and should be closed on
your firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 2.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an
encrypted protocol such as SSL or SSH. MySQL supports internal SSL connections. Another
technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for the
communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL
data streams are unencrypted by issuing a command like the following:

$> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see cleartext data, this does not always mean that the
information actually is encrypted. If you need high security, consult with a
security expert.

4

Keeping Passwords Secure

2.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that
enable end users and administrators to keep these passwords secure and avoid exposing them. In
addition, the validate_password plugin can be used to enforce a policy on acceptable password.
See Section 6.3, “The Password Validation Component”.

2.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your
password in a way that exposes it to discovery by other users. The methods you can use to specify
your password when you run client programs are listed here, along with an assessment of the risks of
each method. In short, the safest methods are to have the client program prompt for the password or to
specify the password in a properly protected option file.

• Use the mysql_config_editor utility, which enables you to store authentication credentials
in an encrypted login path file named .mylogin.cnf. The file can be read later by MySQL
client programs to obtain authentication credentials for connecting to MySQL Server. See
mysql_config_editor — MySQL Configuration Utility.

• Use a --password=password or -ppassword option on the command line. For example:

$> mysql -u francis -pfrank db_name

Warning

This is convenient but insecure. On some systems, your password becomes
visible to system status programs such as ps that may be invoked by
other users to display command lines. MySQL clients typically overwrite
the command-line password argument with zeros during their initialization
sequence. However, there is still a brief interval during which the value is
visible. Also, on some systems this overwriting strategy is ineffective and the
password remains visible to ps. (SystemV Unix systems and perhaps others
are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your
terminal window, the password remains visible as long as the command is running, even if the
command has scrolled out of view in the window content area.

• Use the --password or -p option on the command line with no password value specified. In this
case, the client program solicits the password interactively:

$> mysql -u francis -p db_name
Enter password: ********

The * characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs
that you run interactively. If you want to invoke a client from a script that runs noninteractively, there
is no opportunity to enter the password from the keyboard. On some systems, you may even find
that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix, you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=password

5

https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password

Administrator Guidelines for Password Security

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this,
set the file access mode to 400 or 600. For example:

$> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --
defaults-file=file_name option, where file_name is the full path name to the file. For
example:

$> mysql --defaults-file=/home/francis/mysql-opts

Using Option Files, discusses option files in more detail.

On Unix, the mysql client writes a record of executed statements to a history file (see mysql Client
Logging). By default, this file is named .mysql_history and is created in your home directory.
Passwords can be written as plain text in SQL statements such as CREATE USER and ALTER
USER, so if you use these statements, they are logged in the history file. To keep this file safe, use a
restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter maintains a history, any file in which the commands are saved contains
MySQL passwords entered on the command line. For example, bash uses ~/.bash_history. Any
such file should have a restrictive access mode.

2.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user system table. Access to this table
should never be granted to any nonadministrative accounts.

Account passwords can be expired so that users must reset them. See Section 4.15, “Password
Management”, and Section 4.16, “Server Handling of Expired Passwords”.

The validate_password plugin can be used to enforce a policy on acceptable password. See
Section 6.3, “The Password Validation Component”.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable)
or the my.cnf file that specifies the plugin directory location can replace plugins and modify the
capabilities provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 2.2.3,
“Passwords and Logging”.

2.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT and SET
PASSWORD. If such statements are logged by the MySQL server as written, passwords in them become
visible to anyone with access to the logs.

Statement logging avoids writing passwords as cleartext for the following statements:

CREATE USER ... IDENTIFIED BY ...
ALTER USER ... IDENTIFIED BY ...
SET PASSWORD ...
START SLAVE ... PASSWORD = ...
START REPLICA ... PASSWORD = ...
CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWORD ...)

Passwords in those statements are rewritten to not appear literally in statement text written to the
general query log, slow query log, and binary log. Rewriting does not apply to other statements.

6

https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-logging.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-logging.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html

Making MySQL Secure Against Attackers

In particular, INSERT or UPDATE statements for the mysql.user system table that refer to literal
passwords are logged as is, so you should avoid such statements. (Direct modification of grant tables
is discouraged, anyway.)

For the general query log, password rewriting can be suppressed by starting the server with the
--log-raw option. For security reasons, this option is not recommended for production use. For
diagnostic purposes, it may be useful to see the exact text of statements as received by the server.

By default, contents of audit log files produced by the audit log plugin are not encrypted and may
contain sensitive information, such as the text of SQL statements. For security reasons, audit log files
should be written to a directory accessible only to the MySQL server and to users with a legitimate
reason to view the log. See Section 6.5.3, “MySQL Enterprise Audit Security Considerations”.

Statements received by the server may be rewritten if a query rewrite plugin is installed (see Query
Rewrite Plugins). In this case, the --log-raw option affects statement logging as follows:

• Without --log-raw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

• With --log-raw, the server logs the original statement as received.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to
syntax errors) are not written to the general query log because they cannot be known to be password
free. Use cases that require logging of all statements including those with errors should use the --
log-raw option, bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax
that expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously
for such syntax, the password is logged as given, without rewriting.

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access
to those tables only to the database administrator.

Replicas store the password for the replication source server in their connection metadata repository,
which by default is a table in the mysql database named slave_master_info. The use of a file
in the data directory for the connection metadata repository is now deprecated, but still possible (see
Relay Log and Replication Metadata Repositories). Ensure that the connection metadata repository
can be accessed only by the database administrator. An alternative to storing the password in the
connection metadata repository is to use the START REPLICA (or before MySQL 8.0.22, START
SLAVE) or START GROUP_REPLICATION statement to specify credentials for connecting to the
source.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

2.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted as
cleartext over the connection.

All other information is transferred as text, and can be read by anyone who is able to watch the
connection. If the connection between the client and the server goes through an untrusted network,
and you are concerned about this, you can use the compressed protocol to make traffic much more
difficult to decipher. You can also use MySQL's internal SSL support to make the connection even
more secure. See Chapter 5, Using Encrypted Connections. Alternatively, use SSH to get an encrypted
TCP/IP connection between a MySQL server and a MySQL client. You can find an Open Source SSH
client at http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients
at http://en.wikipedia.org/wiki/Comparison_of_SSH_clients.

7

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/replica-logs.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

Making MySQL Secure Against Attackers

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know
the identity of the person running it. It is common for client/server applications that the user can
specify any user name to the client program. For example, anyone can use the mysql program
to connect as any other person simply by invoking it as mysql -u other_user db_name if
other_user has no password. If all accounts have a password, connecting using another user's
account becomes much more difficult.

For a discussion of methods for setting passwords, see Section 4.14, “Assigning Account
Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is
the account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a
separate Unix account named mysql to make everything even more secure. Use this account only
for administering MySQL. To start mysqld as a different Unix user, add a user option that specifies
the user name in the [mysqld] group of the my.cnf option file where you specify server options.
For example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 2.5, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root
user name in the user table. User names for MySQL accounts have nothing to do with user names
for Unix accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can
write a file anywhere in the file system with the privileges of the mysqld daemon. This includes
the server's data directory containing the files that implement the privilege tables. To make FILE-
privilege operations a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite
existing files and are writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This
could be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then
can be displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Server System Variables.

• Encrypt binary log files and relay log files. Encryption helps to protect these files and the
potentially sensitive data contained in them from being misused by outside attackers, and also
from unauthorized viewing by users of the operating system where they are stored. You enable
encryption on a MySQL server by setting the binlog_encryption system variable to ON. For more
information, see Encrypting Binary Log Files and Relay Log Files.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of
mysqladmin processlist and SHOW PROCESSLIST shows the text of any statements currently
being executed, so any user who is permitted to see the server process list might be able to see
statements issued by other users.

8

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_encryption
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Security-Related mysqld Options and Variables

mysqld reserves an extra connection for users who have the CONNECTION_ADMIN or SUPER
privilege, so that a MySQL root user can log in and check server activity even if all normal
connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by
changing the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Using Symbolic Links for MyISAM Tables on Unix.

• Stored programs and views should be written using the security guidelines discussed in Stored
Object Access Control.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant
tables. In any case, you should be very careful about creating grant table entries using host name
values that contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do so by
setting the max_user_connections variable in mysqld. The CREATE USER and ALTER USER
statements also support resource control options for limiting the extent of server use permitted to an
account. See CREATE USER Statement, and ALTER USER Statement.

• If the plugin directory is writable by the server, it may be possible for a user to write executable
code to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by
making plugin_dir read only to the server or by setting secure_file_priv to a directory where
SELECT writes can be made safely.

2.4 Security-Related mysqld Options and Variables
The following table shows mysqld options and system variables that affect security. For descriptions of
each of these, see Server Command Options, and Server System Variables.

Table 2.1 Security Option and Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

allow-
suspicious-
udfs

Yes Yes

automatic_sp_privilegesYes Yes Yes Global Yes

chroot Yes Yes

local_infile Yes Yes Yes Global Yes

safe-user-
create

Yes Yes

secure_file_privYes Yes Yes Global No

skip-grant-
tables

Yes Yes

skip_name_resolveYes Yes Yes Global No

skip_networkingYes Yes Yes Global No

skip_show_databaseYes Yes Yes Global No

2.5 How to Run MySQL as a Normal User
On Windows, you can run the server as a Windows service using a normal user account.

9

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_symbolic-links
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_symbolic-links
https://dev.mysql.com/doc/refman/8.0/en/symbolic-links-to-tables.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_automatic_sp_privileges
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_chroot
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_safe-user-create
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_safe-user-create
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-show-database

Security Considerations for LOAD DATA LOCAL

On Linux, for installations performed using a MySQL repository or RPM packages, the MySQL server
mysqld should be started by the local mysql operating system user. Starting by another operating
system user is not supported by the init scripts that are included as part of the MySQL repositories.

On Unix (or Linux for installations performed using tar.gz packages) , the MySQL server mysqld can
be started and run by any user. However, you should avoid running the server as the Unix root user
for security reasons. To change mysqld to run as a normal unprivileged Unix user user_name, you
must do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files
in them (you might need to do this as the Unix root user):

$> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server cannot access databases or tables when it runs as user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not follow
symbolic links for you. If it does not, you must also follow those links and change the directories and
files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user
and use the --user=user_name option. mysqld starts, then switches to run as the Unix user
user_name before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name
by adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf
option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root account
in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.)
See Section 3.4, “Securing the Initial MySQL Account”.

2.6 Security Considerations for LOAD DATA LOCAL
The LOAD DATA statement loads a data file into a table. The statement can load a file located on the
server host, or, if the LOCAL keyword is specified, on the client host.

The LOCAL version of LOAD DATA has two potential security issues:

• Because LOAD DATA LOCAL is an SQL statement, parsing occurs on the server side, and transfer
of the file from the client host to the server host is initiated by the MySQL server, which tells the
client the file named in the statement. In theory, a patched server could tell the client program to
transfer a file of the server's choosing rather than the file named in the statement. Such a server
could access any file on the client host to which the client user has read access. (A patched server
could in fact reply with a file-transfer request to any statement, not just LOAD DATA LOCAL, so a
more fundamental issue is that clients should not connect to untrusted servers.)

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any statement against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not a remote program being run by users who connect to
the Web server.

To avoid connecting to untrusted servers, clients can establish a secure connection and verify the
server identity by connecting using the --ssl-mode=VERIFY_IDENTITY option and the appropriate

10

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

Enabling or Disabling Local Data Loading Capability

CA certificate. To implement this level of verification, you must first ensure that the CA certificate for the
server is reliably available to the replica, otherwise availability issues will result. For more information,
see Command Options for Encrypted Connections.

To avoid LOAD DATA issues, clients should avoid using LOCAL unless proper client-side precautions
have been taken.

For control over local data loading, MySQL permits the capability to be enabled or disabled. In addition,
as of MySQL 8.0.21, MySQL enables clients to restrict local data loading operations to files located in a
designated directory.

• Enabling or Disabling Local Data Loading Capability

• Restricting Files Permitted for Local Data Loading

• MySQL Shell and Local Data Loading

Enabling or Disabling Local Data Loading Capability

Administrators and applications can configure whether to permit local data loading as follows:

• On the server side:

• The local_infile system variable controls server-side LOCAL capability. Depending on the
local_infile setting, the server refuses or permits local data loading by clients that request
local data loading.

• By default, local_infile is disabled. (This is a change from previous versions of MySQL.)
To cause the server to refuse or permit LOAD DATA LOCAL statements explicitly (regardless
of how client programs and libraries are configured at build time or runtime), start mysqld with
local_infile disabled or enabled. local_infile can also be set at runtime.

• On the client side:

• The ENABLED_LOCAL_INFILE CMake option controls the compiled-in default LOCAL capability
for the MySQL client library (see MySQL Source-Configuration Options). Clients that make no
explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED_LOCAL_INFILE setting specified at MySQL build time.

• By default, the client library in MySQL binary distributions is compiled with
ENABLED_LOCAL_INFILE disabled. If you compile MySQL from source, configure it with
ENABLED_LOCAL_INFILE disabled or enabled based on whether clients that make no explicit
arrangements should have LOCAL capability disabled or enabled.

• For client programs that use the C API, local data loading capability is determined by the
default compiled into the MySQL client library. To enable or disable it explicitly, invoke the
mysql_options() C API function to disable or enable the MYSQL_OPT_LOCAL_INFILE option.
See mysql_options().

• For the mysql client, local data loading capability is determined by the default compiled into the
MySQL client library. To disable or enable it explicitly, use the --local-infile=0 or --local-
infile[=1] option.

• For the mysqlimport client, local data loading is not used by default. To disable or enable it
explicitly, use the --local=0 or --local[=1] option.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group
from option files, you can add a local-infile option setting to that group. To prevent problems
for programs that do not understand this option, specify it using the loose- prefix:

[client]

11

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysqlimport.html#option_mysqlimport_local
https://dev.mysql.com/doc/refman/8.0/en/mysqlimport.html#option_mysqlimport_local
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/option-modifiers.html

Restricting Files Permitted for Local Data Loading

loose-local-infile=0

or:

[client]
loose-local-infile=1

• In all cases, successful use of a LOCAL load operation by a client also requires that the server
permits local loading.

If LOCAL capability is disabled, on either the server or client side, a client that attempts to issue a LOAD
DATA LOCAL statement receives the following error message:

ERROR 3950 (42000): Loading local data is disabled; this must be
enabled on both the client and server side

Restricting Files Permitted for Local Data Loading

As of MySQL 8.0.21, the MySQL client library enables client applications to restrict local data loading
operations to files located in a designated directory. Certain MySQL client programs take advantage of
this capability.

Client programs that use the C API can control which files to permit for load data loading using
the MYSQL_OPT_LOCAL_INFILE and MYSQL_OPT_LOAD_DATA_LOCAL_DIR options of the
mysql_options() C API function (see mysql_options()).

The effect of MYSQL_OPT_LOAD_DATA_LOCAL_DIR depends on whether LOCAL data loading is
enabled or disabled:

• If LOCAL data loading is enabled, either by default in the MySQL client library or by explicitly enabling
MYSQL_OPT_LOCAL_INFILE, the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option has no effect.

• If LOCAL data loading is disabled, either by default in the MySQL client library or by explicitly
disabling MYSQL_OPT_LOCAL_INFILE, the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option
can be used to designate a permitted directory for locally loaded files. In this case, LOCAL data
loading is permitted but restricted to files located in the designated directory. Interpretation of the
MYSQL_OPT_LOAD_DATA_LOCAL_DIR value is as follows:

• If the value is the null pointer (the default), it names no directory, with the result that no files are
permitted for LOCAL data loading.

• If the value is a directory path name, LOCAL data loading is permitted but restricted to files located
in the named directory. Comparison of the directory path name and the path name of files to be
loaded is case-sensitive regardless of the case sensitivity of the underlying file system.

MySQL client programs use the preceding mysql_options() options as follows:

• The mysql client has a --load-data-local-dir option that takes a directory path or an empty
string. mysql uses the option value to set the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option (with an
empty string setting the value to the null pointer). The effect of --load-data-local-dir depends
on whether LOCAL data loading is enabled:

• If LOCAL data loading is enabled, either by default in the MySQL client library or by specifying --
local-infile[=1], the --load-data-local-dir option is ignored.

• If LOCAL data loading is disabled, either by default in the MySQL client library or by specifying --
local-infile=0, the --load-data-local-dir option applies.

When --load-data-local-dir applies, the option value designates the directory in which local
data files must be located. Comparison of the directory path name and the path name of files to be
loaded is case-sensitive regardless of the case sensitivity of the underlying file system. If the option

12

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir

MySQL Shell and Local Data Loading

value is the empty string, it names no directory, with the result that no files are permitted for local
data loading.

• mysqlimport sets MYSQL_OPT_LOAD_DATA_LOCAL_DIR for each file that it processes so that the
directory containing the file is the permitted local loading directory.

• For data loading operations corresponding to LOAD DATA statements, mysqlbinlog extracts the
files from the binary log events, writes them as temporary files to the local file system, and writes
LOAD DATA LOCAL statements to cause the files to be loaded. By default, mysqlbinlog writes
these temporary files to an operating system-specific directory. The --local-load option can be
used to explicitly specify the directory where mysqlbinlog should prepare local temporary files.

Because other processes can write files to the default system-specific directory, it is advisable to
specify the --local-load option to mysqlbinlog to designate a different directory for data files,
and then designate that same directory by specifying the --load-data-local-dir option to
mysql when processing the output from mysqlbinlog.

MySQL Shell and Local Data Loading

MySQL Shell provides a number of utilities to dump tables, schemas, or server instances and load
them into other instances. When you use these utilities to handle the data, MySQL Shell provides
additional functions such as input preprocessing, multithreaded parallel loading, file compression and
decompression, and handling access to Oracle Cloud Infrastructure Object Storage buckets. To get
the best functionality, always use the most recent version available of MySQL Shell's dump and dump
loading utilities.

MySQL Shell's data upload utilities use LOAD DATA LOCAL INFILE statements to upload data, so
the local_infile system variable must be set to ON on the target server instance. You can do this
before uploading the data, and remove it again afterwards. The utilities handle the file transfer requests
safely to deal with the security considerations discussed in this topic.

MySQL Shell includes these dump and dump loading utilities:

Table export utility
util.exportTable()

Exports a MySQL relational table into a data file, which can be
uploaded to a MySQL server instance using MySQL Shell's parallel
table import utility, imported to a different application, or used as
a logical backup. The utility has preset options and customization
options to produce different output formats.

Parallel table import utility
util.importTable()

Imports a data file to a MySQL relational table. The data file can
be the output from MySQL Shell's table export utility or another
format supported by the utility's preset and customization options.
The utility can carry out input preprocessing before adding the data
to the table. It can accept multiple data files to merge into a single
relational table, and automatically decompresses compressed files.

Instance dump utility
util.dumpInstance(),
schema dump utility
util.dumpSchemas(),
and table dump utility
util.dumpTables()

Export an instance, schema, or table to a set of dump files, which
can then be uploaded to a MySQL instance using MySQL Shell's
dump loading utility. The utilities provide Oracle Cloud Infrastructure
Object Storage streaming, MySQL HeatWave Service compatibility
checks and modifications, and the ability to carry out a dry run to
identify issues before proceeding with the dump.

Dump loading utility
util.loadDump()

Import dump files created using MySQL Shell's instance, schema,
or table dump utility into a MySQL HeatWave Service DB System or
a MySQL Server instance. The utility manages the upload process
and provides data streaming from remote storage, parallel loading
of tables or table chunks, progress state tracking, resume and reset
capability, and the option of concurrent loading while the dump is
still taking place. MySQL Shell’s parallel table import utility can be

13

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_local-load
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_local-load
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_load-data-local-dir
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile

Client Programming Security Guidelines

used in combination with the dump loading utility to modify data
before uploading it to the target MySQL instance.

For details of the utilities, see MySQL Shell Utilities.

2.7 Client Programming Security Guidelines

Client applications that access MySQL should use the following guidelines to avoid interpreting external
data incorrectly or exposing sensitive information.

• Handle External Data Properly

• Handle MySQL Error Messages Properly

Handle External Data Properly

Applications that access MySQL should not trust any data entered by users, who can try to trick your
code by entering special or escaped character sequences in Web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user tries to perform SQL injection
by entering something like ; DROP DATABASE mysql; into a form. This is an extreme example, but
large security leaks and data loss might occur as a result of hackers using similar techniques, if you do
not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the
query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row
in the table. This exposes every row and causes excessive server load. The simplest way to protect
from this type of attack is to use single quotation marks around the numeric constants: SELECT *
FROM table WHERE ID='234'. If the user enters extra information, it all becomes part of the string.
In a numeric context, MySQL automatically converts this string to a number and strips any trailing
nonnumeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be
protected. This is incorrect. Even if it is permissible to display any row in the database, you should still
protect against denial of service attacks (for example, those that are based on the technique in the
preceding paragraph that causes the server to waste resources). Otherwise, your server becomes
unresponsive to legitimate users.

Checklist:

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Server SQL Modes.

• Try to enter single and double quotation marks (' and ") in all of your Web forms. If you get any kind
of MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 ("), %23 (#), and %27 (') to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters
shown in the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

14

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html

Handle MySQL Error Messages Properly

Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the application to
generate statements that have a different effect than you intend:

• MySQL SQL statements: Use SQL prepared statements and accept data values only by means of
placeholders; see Prepared Statements.

• MySQL C API: Use the mysql_real_escape_string_quote() API call. Alternatively, use the C
API prepared statement interface and accept data values only by means of placeholders; see C API
Prepared Statement Interface.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also MySQL and PHP.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string_quote() function and not mysql_escape_string() or
addslashes() because only mysql_real_escape_string_quote() is character set-aware;
the other functions can be “bypassed” when using (invalid) multibyte character sets.

• Perl DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

Handle MySQL Error Messages Properly

It is the application's responsibility to intercept errors that occur as a result of executing SQL
statements with the MySQL database server and handle them appropriately.

The information returned in a MySQL error is not gratuitous because that information is key in
debugging MySQL using applications. It would be nearly impossible, for example, to debug a common
10-way join SELECT statement without providing information regarding which databases, tables, and
other objects are involved with problems. Thus, MySQL errors must sometimes necessarily contain
references to the names of those objects.

A simple but insecure approach for an application when it receives such an error from MySQL is
to intercept it and display it verbatim to the client. However, revealing error information is a known
application vulnerability type (CWE-209) and the application developer must ensure the application
does not have this vulnerability.

For example, an application that displays a message such as this exposes both a database name and
a table name to clients, which is information a client might attempt to exploit:

ERROR 1146 (42S02): Table 'mydb.mytable' doesn't exist

Instead, the proper behavior for an application when it receives such an error from MySQL is to log
appropriate information, including the error information, to a secure audit location only accessible to
trusted personnel. The application can return something more generic such as “Internal Error” to the
user.

15

https://dev.mysql.com/doc/refman/8.0/en/sql-prepared-statements.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-escape-string.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
http://cwe.mitre.org/data/definitions/209.html

16

Chapter 3 Postinstallation Setup and Testing

Table of Contents
3.1 Initializing the Data Directory ... 17
3.2 Starting the Server .. 23

3.2.1 Troubleshooting Problems Starting the MySQL Server ... 23
3.3 Testing the Server .. 25
3.4 Securing the Initial MySQL Account ... 27
3.5 Starting and Stopping MySQL Automatically ... 29

This section discusses tasks that you should perform after installing MySQL:

• If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

• Windows installation operations performed by MySQL Installer.

• Installation on Linux using a server RPM or Debian distribution from Oracle.

• Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.

• Installation on macOS using a DMG distribution.

For other platforms and installation types, you must initialize the data directory manually. These
include installation from generic binary and source distributions on Unix and Unix-like system, and
installation from a ZIP Archive package on Windows. For instructions, see Section 3.1, “Initializing
the Data Directory”.

• Start the server and make sure that it can be accessed. For instructions, see Section 3.2, “Starting
the Server”, and Section 3.3, “Testing the Server”.

• Assign passwords to the initial root account in the grant tables, if that was not already done during
data directory initialization. Passwords prevent unauthorized access to the MySQL server. For
instructions, see Section 3.4, “Securing the Initial MySQL Account”.

• Optionally, arrange for the server to start and stop automatically when your system starts and stops.
For instructions, see Section 3.5, “Starting and Stopping MySQL Automatically”.

• Optionally, populate time zone tables to enable recognition of named time zones. For instructions,
see MySQL Server Time Zone Support.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Chapter 4, Access Control and Account Management.

3.1 Initializing the Data Directory

After MySQL is installed, the data directory must be initialized, including the tables in the mysql
system schema:

• For some MySQL installation methods, data directory initialization is automatic, as described in
Chapter 3, Postinstallation Setup and Testing.

• For other installation methods, you must initialize the data directory manually. These include
installation from generic binary and source distributions on Unix and Unix-like systems, and
installation from a ZIP Archive package on Windows.

17

https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html

Data Directory Initialization Overview

This section describes how to initialize the data directory manually for MySQL installation methods for
which data directory initialization is not automatic. For some suggested commands that enable testing
whether the server is accessible and working properly, see Section 3.3, “Testing the Server”.

Note

In MySQL 8.0, the default authentication plugin has changed from
mysql_native_password to caching_sha2_password,
and the 'root'@'localhost' administrative account uses
caching_sha2_password by default. If you prefer that the root account use
the previous default authentication plugin (mysql_native_password), see
caching_sha2_password and the root Administrative Account.

• Data Directory Initialization Overview

• Data Directory Initialization Procedure

• Server Actions During Data Directory Initialization

• Post-Initialization root Password Assignment

Data Directory Initialization Overview

In the examples shown here, the server is intended to run under the user ID of the mysql login
account. Either create the account if it does not exist (see Create a mysql User and Group), or
substitute the name of a different existing login account that you plan to use for running the server.

1. Change location to the top-level directory of your MySQL installation, which is typically /usr/
local/mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

Within this directory you can find several files and subdirectories, including the bin subdirectory
that contains the server, as well as client and utility programs.

2. The secure_file_priv system variable limits import and export operations to a specific
directory. Create a directory whose location can be specified as the value of that variable:

mkdir mysql-files

Grant directory user and group ownership to the mysql user and mysql group, and set the
directory permissions appropriately:

chown mysql:mysql mysql-files
chmod 750 mysql-files

3. Use the server to initialize the data directory, including the mysql schema containing the initial
MySQL grant tables that determine how users are permitted to connect to the server. For example:

bin/mysqld --initialize --user=mysql

For important information about the command, especially regarding command options you might
use, see Data Directory Initialization Procedure. For details about how the server performs
initialization, see Server Actions During Data Directory Initialization.

Typically, data directory initialization need be done only after you first install MySQL. (For upgrades
to an existing installation, perform the upgrade procedure instead; see Upgrading MySQL.)
However, the command that initializes the data directory does not overwrite any existing mysql
schema tables, so it is safe to run in any circumstances.

4. If you want to deploy the server with automatic support for secure connections, use the
mysql_ssl_rsa_setup utility to create default SSL and RSA files:

18

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-root-account
https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-createsysuser
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Data Directory Initialization Procedure

bin/mysql_ssl_rsa_setup

For more information, see mysql_ssl_rsa_setup — Create SSL/RSA Files.

Note

The mysql_ssl_rsa_setup utility is deprecated as of MySQL 8.0.34.

5. In the absence of any option files, the server starts with its default settings. (See Server
Configuration Defaults.) To explicitly specify options that the MySQL server should use at startup,
put them in an option file such as /etc/my.cnf or /etc/mysql/my.cnf. (See Using Option
Files.) For example, you can use an option file to set the secure_file_priv system variable.

6. To arrange for MySQL to start without manual intervention at system boot time, see Section 3.5,
“Starting and Stopping MySQL Automatically”.

7. Data directory initialization creates time zone tables in the mysql schema but does not populate
them. To do so, use the instructions in MySQL Server Time Zone Support.

Data Directory Initialization Procedure

Change location to the top-level directory of your MySQL installation, which is typically /usr/local/
mysql (adjust the path name for your system as necessary):

cd /usr/local/mysql

To initialize the data directory, invoke mysqld with the --initialize or --initialize-insecure
option, depending on whether you want the server to generate a random initial password for the
'root'@'localhost' account, or to create that account with no password:

• Use --initialize for “secure by default” installation (that is, including generation of a random
initial root password). In this case, the password is marked as expired and you must choose a new
one.

• With --initialize-insecure, no root password is generated. This is insecure; it is assumed
that you intend to assign a password to the account in a timely fashion before putting the server into
production use.

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

Note

The server writes any messages (including any initial password) to its standard
error output. This may be redirected to the error log, so look there if you do not
see the messages on your screen. For information about the error log, including
where it is located, see The Error Log.

On Windows, use the --console option to direct messages to the console.

On Unix and Unix-like systems, it is important for the database directories and files to be owned by
the mysql login account so that the server has read and write access to them when you run it later.
To ensure this, start mysqld from the system root account and include the --user option as shown
here:

bin/mysqld --initialize --user=mysql
bin/mysqld --initialize-insecure --user=mysql

Alternatively, execute mysqld while logged in as mysql, in which case you can omit the --user
option from the command.

On Windows, use one of these commands:

19

https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user

Server Actions During Data Directory Initialization

bin\mysqld --initialize --console
bin\mysqld --initialize-insecure --console

Note

Data directory initialization might fail if required system libraries are missing. For
example, you might see an error like this:

bin/mysqld: error while loading shared libraries:
libnuma.so.1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your
system's package manager. Then retry the data directory initialization
command.

It might be necessary to specify other options such as --basedir or --datadir if mysqld cannot
identify the correct locations for the installation directory or data directory. For example (enter the
command on a single line):

bin/mysqld --initialize --user=mysql
 --basedir=/opt/mysql/mysql
 --datadir=/opt/mysql/mysql/data

Alternatively, put the relevant option settings in an option file and pass the name of that file to mysqld.
For Unix and Unix-like systems, suppose that the option file name is /opt/mysql/mysql/etc/
my.cnf. Put these lines in the file:

[mysqld]
basedir=/opt/mysql/mysql
datadir=/opt/mysql/mysql/data

Then invoke mysqld as follows (enter the command on a single line, with the --defaults-file
option first):

bin/mysqld --defaults-file=/opt/mysql/mysql/etc/my.cnf
 --initialize --user=mysql

On Windows, suppose that C:\my.ini contains these lines:

[mysqld]
basedir=C:\\Program Files\\MySQL\\MySQL Server 8.0
datadir=D:\\MySQLdata

Then invoke mysqld as follows (again, you should enter the command on a single line, with the --
defaults-file option first):

bin\mysqld --defaults-file=C:\my.ini
 --initialize --console

Important

When initializing the data directory, you should not specify any options other
than those used for setting directory locations such as --basedir or --
datadir, and the --user option if needed. Options to be employed by
the MySQL server during normal use can be set when restarting it following
initialization. See the description of the --initialize option for further
information.

Server Actions During Data Directory Initialization

Note

The data directory initialization sequence performed by the server does not
substitute for the actions performed by mysql_secure_installation and

20

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize

Server Actions During Data Directory Initialization

mysql_ssl_rsa_setup. See mysql_secure_installation — Improve MySQL
Installation Security, and mysql_ssl_rsa_setup — Create SSL/RSA Files.

When invoked with the --initialize or --initialize-insecure option, mysqld performs the
following actions during the data directory initialization sequence:

1. The server checks for the existence of the data directory as follows:

• If no data directory exists, the server creates it.

• If the data directory exists but is not empty (that is, it contains files or subdirectories), the server
exits after producing an error message:

[ERROR] --initialize specified but the data directory exists. Aborting.

In this case, remove or rename the data directory and try again.

An existing data directory is permitted to be nonempty if every entry has a name that begins with
a period (.).

2. Within the data directory, the server creates the mysql system schema and its tables, including the
data dictionary tables, grant tables, time zone tables, and server-side help tables. See The mysql
System Schema.

3. The server initializes the system tablespace and related data structures needed to manage InnoDB
tables.

Note

After mysqld sets up the InnoDB system tablespace, certain
changes to tablespace characteristics require setting up a whole
new instance. Qualifying changes include the file name of the first
file in the system tablespace and the number of undo logs. If you
do not want to use the default values, make sure that the settings
for the innodb_data_file_path and innodb_log_file_size
configuration parameters are in place in the MySQL configuration file
before running mysqld. Also make sure to specify as necessary other
parameters that affect the creation and location of InnoDB files, such as
innodb_data_home_dir and innodb_log_group_home_dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the --
defaults-extra-file option when you run mysqld.

4. The server creates a 'root'@'localhost' superuser account and other reserved accounts (see
Section 4.9, “Reserved Accounts”). Some reserved accounts are locked and cannot be used by
clients, but 'root'@'localhost' is intended for administrative use and you should assign it a
password.

Server actions with respect to a password for the 'root'@'localhost' account depend on how
you invoke it:

• With --initialize but not --initialize-insecure, the server generates a random
password, marks it as expired, and writes a message displaying the password:

[Warning] A temporary password is generated for root@localhost:
iTag*AfrH5ej

• With --initialize-insecure, (either with or without --initialize because --
initialize-insecure implies --initialize), the server does not generate a password or
mark it expired, and writes a warning message:

21

https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_instance
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_configuration_file
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_data_home_dir
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_log_group_home_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize

Post-Initialization root Password Assignment

[Warning] root@localhost is created with an empty password ! Please
consider switching off the --initialize-insecure option.

For instructions on assigning a new 'root'@'localhost' password, see Post-Initialization root
Password Assignment.

5. The server populates the server-side help tables used for the HELP statement (see HELP
Statement). The server does not populate the time zone tables. To do so manually, see MySQL
Server Time Zone Support.

6. If the init_file system variable was given to name a file of SQL statements, the server executes
the statements in the file. This option enables you to perform custom bootstrapping sequences.

When the server operates in bootstrap mode, some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such
as CREATE USER or GRANT), replication, and global transaction identifiers.

7. The server exits.

Post-Initialization root Password Assignment

After you initialize the data directory by starting the server with --initialize or --initialize-
insecure, start the server normally (that is, without either of those options) and assign the
'root'@'localhost' account a new password:

1. Start the server. For instructions, see Section 3.2, “Starting the Server”.

2. Connect to the server:

• If you used --initialize but not --initialize-insecure to initialize the data directory,
connect to the server as root:

mysql -u root -p

Then, at the password prompt, enter the random password that the server generated during the
initialization sequence:

Enter password: (enter the random root password here)

Look in the server error log if you do not know this password.

• If you used --initialize-insecure to initialize the data directory, connect to the server as
root without a password:

mysql -u root --skip-password

3. After connecting, use an ALTER USER statement to assign a new root password:

ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

See also Section 3.4, “Securing the Initial MySQL Account”.

Note

Attempts to connect to the host 127.0.0.1 normally resolve to the localhost
account. However, this fails if the server is run with skip_name_resolve
enabled. If you plan to do that, make sure that an account exists that can
accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

22

https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/help.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve

Starting the Server

It is possible to put those statements in a file to be executed using the
init_file system variable, as discussed in Server Actions During Data
Directory Initialization.

3.2 Starting the Server
This section describes how start the server on Unix and Unix-like systems. (For Windows, see Starting
the Server for the First Time.) For some suggested commands that you can use to test whether the
server is accessible and working properly, see Section 3.3, “Testing the Server”.

Start the MySQL server like this if your installation includes mysqld_safe:

$> bin/mysqld_safe --user=mysql &

Note

For Linux systems on which MySQL is installed using RPM packages, server
startup and shutdown is managed using systemd rather than mysqld_safe,
and mysqld_safe is not installed. See Managing MySQL Server with systemd.

Start the server like this if your installation includes systemd support:

$> systemctl start mysqld

Substitute the appropriate service name if it differs from mysqld (for example, mysql on SLES
systems).

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure
this, run mysqld_safe as root and include the --user option as shown. Otherwise, you should
execute the program while logged in as mysql, in which case you can omit the --user option from the
command.

For further instructions for running MySQL as an unprivileged user, see Section 2.5, “How to Run
MySQL as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which
by default is the host_name.err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the mysql
schema, it writes a message to its error log. Such problems can occur if you neglected to create the
grant tables by initializing the data directory before proceeding to this step, or if you ran the command
that initializes the data directory without the --user option. Remove the data directory and run the
command with the --user option.

If you have other problems starting the server, see Section 3.2.1, “Troubleshooting Problems Starting
the MySQL Server”. For more information about mysqld_safe, see mysqld_safe — MySQL Server
Startup Script. For more information about systemd support, see Managing MySQL Server with
systemd.

3.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Troubleshooting a Microsoft Windows MySQL Server
Installation.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 8.0\data on Windows, /usr/local/
mysql/data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host_name.err and

23

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/8.0/en/windows-server-first-start.html
https://dev.mysql.com/doc/refman/8.0/en/windows-server-first-start.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_user
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html#option_mysqld_safe_user
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/windows-troubleshooting.html
https://dev.mysql.com/doc/refman/8.0/en/windows-troubleshooting.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_error_log
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_data_directory

Troubleshooting Problems Starting the MySQL Server

host_name.log, where host_name is the name of your server host. Then examine the last few
lines of these files. Use tail to display them:

$> tail host_name.err
$> tail host_name.log

• Specify any special options needed by the storage engines you are using. You can create a my.cnf
file and specify startup options for the engines that you plan to use. If you are going to use storage
engines that support transactional tables (InnoDB, NDB), be sure that you have them configured the
way you want before starting the server. If you are using InnoDB tables, see InnoDB Configuration
for guidelines and InnoDB Startup Options and System Variables for option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

• Make sure that the server knows where to find the data directory. The mysqld server uses this
directory as its current directory. This is where it expects to find databases and where it expects to
write log files. The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what
the default path settings are, invoke mysqld with the --verbose and --help options. If the data
directory is located somewhere else on your system, specify that location with the --datadir option
to mysqld or mysqld_safe, on the command line or in an option file. Otherwise, the server does
not work properly. As an alternative to the --datadir option, you can specify mysqld the location
of the base directory under which MySQL is installed with the --basedir, and mysqld looks for the
data directory there.

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location to the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

$> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be
the last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this
command:

$> mysqladmin variables

Or:

$> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means
that the privileges of the data directory or its contents do not permit server access. In this case, you
change the permissions for the involved files and directories so that the server has the right to use
them. You can also start the server as root, but this raises security issues and should be avoided.

Change location to the data directory and check the ownership of the data directory and its contents
to make sure the server has access. For example, if the data directory is /usr/local/mysql/var,
use this command:

24

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-configuration.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_data_directory
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_data_directory

Testing the Server

$> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use
for running the server, change their ownership to that account. If the account is named mysql, use
these commands:

$> chown -R mysql /usr/local/mysql/var
$> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running
on your system that manages application access to various parts of the file system. In this case,
reconfigure that software to enable mysqld to access the directories it uses during normal operation.

• Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another mysqld
server) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server
before starting mysqld again. (If another server is running, and you really want to run multiple
servers, you can find information about how to do so in Running Multiple MySQL Instances on One
Machine.)

If no other server is running, execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple
of times. If you do not get an error message like telnet: Unable to connect to remote
host: Connection refused, some other program is using the TCP/IP port that mysqld is trying
to use. Track down what program this is and disable it, or tell mysqld to listen to a different port with
the --port option. In this case, specify the same non-default port number for client programs when
connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks
connections to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in /etc/hosts
that looks like this:

127.0.0.1 localhost

• If you cannot get mysqld to start, try to make a trace file to find the problem by using the --debug
option. See The DBUG Package.

3.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to
make sure that it works satisfactorily. This section assumes that your current location is the MySQL
installation directory and that it has a bin subdirectory containing the MySQL programs used here. If
that is not true, adjust the command path names accordingly.

Alternatively, add the bin directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only
its name, not its path name. See Setting Environment Variables.

Use mysqladmin to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

$> bin/mysqladmin version
$> bin/mysqladmin variables

25

https://dev.mysql.com/doc/refman/8.0/en/multiple-servers.html
https://dev.mysql.com/doc/refman/8.0/en/multiple-servers.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_port
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://dev.mysql.com/doc/refman/8.0/en/setting-environment-variables.html

Testing the Server

If you cannot connect to the server, specify a -u root option to connect as root. If you have
assigned a password for the root account already, you'll also need to specify -p on the command line
and enter the password when prompted. For example:

$> bin/mysqladmin -u root -p version
Enter password: (enter root password here)

The output from mysqladmin version varies slightly depending on your platform and version of
MySQL, but should be similar to that shown here:

$> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 8.0.36, for pc-linux-gnu on i686
...
Server version 8.0.36
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec
Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

To see what else you can do with mysqladmin, invoke it with the --help option.

Verify that you can shut down the server (include a -p option if the root account has a password
already):

$> bin/mysqladmin -u root shutdown

Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld
directly. For example:

$> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 3.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use mysqlshow to see what databases exist:

$> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

The list of installed databases may vary, but always includes at least mysql and
information_schema.

If you specify a database name, mysqlshow displays a list of the tables within the database:

$> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| component |
| db |
| default_roles |
| engine_cost |
| func |

26

https://dev.mysql.com/doc/refman/8.0/en/mysqladmin.html#option_mysqladmin_help

Securing the Initial MySQL Account

| general_log |
| global_grants |
| gtid_executed |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| password_history |
| plugin |
| procs_priv |
| proxies_priv |
| role_edges |
| server_cost |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql schema:

$> bin/mysql -e "SELECT User, Host, plugin FROM mysql.user" mysql
+------+-----------+-----------------------+
| User | Host | plugin |
+------+-----------+-----------------------+
| root | localhost | caching_sha2_password |
+------+-----------+-----------------------+

At this point, your server is running and you can access it. To tighten security if you have not yet
assigned a password to the initial account, follow the instructions in Section 3.4, “Securing the Initial
MySQL Account”.

For more information about mysql, mysqladmin, and mysqlshow, see mysql — The MySQL
Command-Line Client, mysqladmin — A MySQL Server Administration Program, and mysqlshow —
Display Database, Table, and Column Information.

3.4 Securing the Initial MySQL Account

The MySQL installation process involves initializing the data directory, including the grant tables in the
mysql system schema that define MySQL accounts. For details, see Section 3.1, “Initializing the Data
Directory”.

This section describes how to assign a password to the initial root account created during the MySQL
installation procedure, if you have not already done so.

Note

Alternative means for performing the process described in this section:

• On Windows, you can perform the process during installation with MySQL
Installer (see MySQL Installer for Windows).

• On all platforms, the MySQL distribution includes
mysql_secure_installation, a command-line utility that automates
much of the process of securing a MySQL installation.

27

https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/mysqladmin.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlshow.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlshow.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Securing the Initial MySQL Account

• On all platforms, MySQL Workbench is available and offers the ability to
manage user accounts (see MySQL Workbench).

A password may already be assigned to the initial account under these circumstances:

• On Windows, installations performed using MySQL Installer give you the option of assigning a
password.

• Installation using the macOS installer generates an initial random password, which the installer
displays to the user in a dialog box.

• Installation using RPM packages generates an initial random password, which is written to the server
error log.

• Installations using Debian packages give you the option of assigning a password.

• For data directory initialization performed manually using mysqld --initialize, mysqld
generates an initial random password, marks it expired, and writes it to the server error log. See
Section 3.1, “Initializing the Data Directory”.

The mysql.user grant table defines the initial MySQL user account and its access privileges.
Installation of MySQL creates only a 'root'@'localhost' superuser account that has all privileges
and can do anything. If the root account has an empty password, your MySQL installation is
unprotected: Anyone can connect to the MySQL server as root without a password and be granted all
privileges.

The 'root'@'localhost' account also has a row in the mysql.proxies_priv table that enables
granting the PROXY privilege for ''@'', that is, for all users and all hosts. This enables root to set
up proxy users, as well as to delegate to other accounts the authority to set up proxy users. See
Section 4.19, “Proxy Users”.

To assign a password for the initial MySQL root account, use the following procedure. Replace
root-password in the examples with the password that you want to use.

Start the server if it is not running. For instructions, see Section 3.2, “Starting the Server”.

The initial root account may or may not have a password. Choose whichever of the following
procedures applies:

• If the root account exists with an initial random password that has been expired, connect to the
server as root using that password, then choose a new password. This is the case if the data
directory was initialized using mysqld --initialize, either manually or using an installer that
does not give you the option of specifying a password during the install operation. Because the
password exists, you must use it to connect to the server. But because the password is expired, you
cannot use the account for any purpose other than to choose a new password, until you do choose
one.

1. If you do not know the initial random password, look in the server error log.

2. Connect to the server as root using the password:

$> mysql -u root -p
Enter password: (enter the random root password here)

3. Choose a new password to replace the random password:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

• If the root account exists but has no password, connect to the server as root using no password,
then assign a password. This is the case if you initialized the data directory using mysqld --
initialize-insecure.

28

https://dev.mysql.com/doc/refman/8.0/en/workbench.html

Starting and Stopping MySQL Automatically

1. Connect to the server as root using no password:

$> mysql -u root --skip-password

2. Assign a password:

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'root-password';

After assigning the root account a password, you must supply that password whenever you connect
to the server using the account. For example, to connect to the server using the mysql client, use this
command:

$> mysql -u root -p
Enter password: (enter root password here)

To shut down the server with mysqladmin, use this command:

$> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note

For additional information about setting passwords, see Section 4.14,
“Assigning Account Passwords”. If you forget your root password after setting
it, see How to Reset the Root Password.

To set up additional accounts, see Section 4.8, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”.

3.5 Starting and Stopping MySQL Automatically
This section discusses methods for starting and stopping the MySQL server.

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Starting MySQL as a Windows Service.

• On Unix and Unix-like systems, you can invoke mysqld_safe, which tries to determine the proper
options for mysqld and then runs it with those options. See mysqld_safe — MySQL Server Startup
Script.

• On Linux systems that support systemd, you can use it to control the server. See Managing MySQL
Server with systemd.

• On systems that use System V-style run directories (that is, /etc/init.d and run-level specific
directories), invoke mysql.server. This script is used primarily at system startup and shutdown. It
usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See mysql.server — MySQL Server Startup Script.

• On macOS, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking mysqld_safe. For details, see Installing and Using the
MySQL Launch Daemon. A MySQL Preference Pane also provides control for starting and stopping
MySQL through the System Preferences. See Installing and Using the MySQL Preference Pane.

• On Solaris, use the service management framework (SMF) system to initiate and control MySQL
startup.

systemd, the mysqld_safe and mysql.server scripts, Solaris SMF, and the macOS Startup Item
(or MySQL Preference Pane) can be used to start the server manually, or automatically at system
startup time. systemd, mysql.server, and the Startup Item also can be used to stop the server.

29

https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/8.0/en/windows-start-service.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/using-systemd.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-server.html
https://dev.mysql.com/doc/refman/8.0/en/macos-installation-launchd.html
https://dev.mysql.com/doc/refman/8.0/en/macos-installation-launchd.html
https://dev.mysql.com/doc/refman/8.0/en/macos-installation-prefpane.html

Starting and Stopping MySQL Automatically

The following table shows which option groups the server and startup scripts read from option files.

Table 3.1 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups

mysqld [mysqld], [server],
[mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-5.7] and
[mysqld-8.0] are read by servers having versions 5.7.x, 8.0.x, and so forth. This feature can be
used to specify options that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. To be current, you should update your option
files to use the [mysql.server] and [mysqld_safe] groups instead.

For more information on MySQL configuration files and their structure and contents, see Using Option
Files.

30

https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Chapter 4 Access Control and Account Management

Table of Contents
4.1 Account User Names and Passwords .. 32
4.2 Privileges Provided by MySQL .. 34
4.3 Grant Tables ... 53
4.4 Specifying Account Names .. 63
4.5 Specifying Role Names ... 65
4.6 Access Control, Stage 1: Connection Verification ... 66
4.7 Access Control, Stage 2: Request Verification .. 69
4.8 Adding Accounts, Assigning Privileges, and Dropping Accounts .. 71
4.9 Reserved Accounts ... 74
4.10 Using Roles .. 74
4.11 Account Categories ... 81
4.12 Privilege Restriction Using Partial Revokes .. 85
4.13 When Privilege Changes Take Effect ... 91
4.14 Assigning Account Passwords ... 92
4.15 Password Management ... 93
4.16 Server Handling of Expired Passwords ... 104
4.17 Pluggable Authentication ... 105
4.18 Multifactor Authentication ... 111
4.19 Proxy Users .. 115
4.20 Account Locking .. 122
4.21 Setting Account Resource Limits .. 123
4.22 Troubleshooting Problems Connecting to MySQL ... 125
4.23 SQL-Based Account Activity Auditing ... 129

MySQL enables the creation of accounts that permit client users to connect to the server and access
data managed by the server. The primary function of the MySQL privilege system is to authenticate a
user who connects from a given host and to associate that user with privileges on a database such as
SELECT, INSERT, UPDATE, and DELETE. Additional functionality includes the ability to grant privileges
for administrative operations.

To control which users can connect, each account can be assigned authentication credentials such
as a password. The user interface to MySQL accounts consists of SQL statements such as CREATE
USER, GRANT, and REVOKE. See Account Management Statements.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which
you connect and the user name you specify. When you issue requests after connecting, the system
grants privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement.
For example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

Internally, the server stores privilege information in the grant tables of the mysql system database. The
MySQL server reads the contents of these tables into memory when it starts and bases access-control
decisions on the in-memory copies of the grant tables.

31

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

Account User Names and Passwords

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can
verify your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table
in a database or drop a table from the database, the server verifies that you have the SELECT privilege
for the table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 4.6, “Access Control,
Stage 1: Connection Verification”, and Section 4.7, “Access Control, Stage 2: Request Verification”.
For help in diagnosing privilege-related problems, see Section 4.22, “Troubleshooting Problems
Connecting to MySQL”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 4.13, “When Privilege
Changes Take Effect”.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create
or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object
such as a database, table, or routine.

4.1 Account User Names and Passwords
MySQL stores accounts in the user table of the mysql system database. An account is defined in
terms of a user name and the client host or hosts from which the user can connect to the server. For
information about account representation in the user table, see Section 4.3, “Grant Tables”.

An account may also have authentication credentials such as a password. The credentials are handled
by the account authentication plugin. MySQL supports multiple authentication plugins. Some of them
use built-in authentication methods, whereas others enable authentication using external authentication
methods. See Section 4.17, “Pluggable Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and
your operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in
using the current Unix user name as the MySQL user name, but that is for convenience only. The
default can be overridden easily, because client programs permit any user name to be specified
with a -u or --user option. This means that anyone can attempt to connect to the server using any
user name, so you cannot make a database secure in any way unless all MySQL accounts have
passwords. Anyone who specifies a user name for an account that has no password can connect
successfully to the server.

• MySQL user names are up to 32 characters long. Operating system user names may have a
different maximum length.

Warning

The MySQL user name length limit is hardcoded in MySQL servers and
clients, and trying to circumvent it by modifying the definitions of the tables in
the mysql database does not work.

32

Account User Names and Passwords

You should never alter the structure of tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Upgrading MySQL. Attempting to redefine the MySQL system tables in any
other fashion results in undefined and unsupported behavior. The server is
free to ignore rows that become malformed as a result of such modifications.

• To authenticate client connections for accounts that use built-in authentication methods, the server
uses passwords stored in the user table. These passwords are distinct from passwords for logging
in to your operating system. There is no necessary connection between the “external” password you
use to log in to a Windows or Unix machine and the password you use to access the MySQL server
on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that
an external password is also used to authenticate to the MySQL server.

• Passwords stored in the user table are encrypted using plugin-specific algorithms.

• If the user name and password contain only ASCII characters, it is possible to connect to the server
regardless of character set settings. To enable connections when the user name or password
contain non-ASCII characters, client applications should call the mysql_options() C API function
with the MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments.
This causes authentication to take place using the specified character set. Otherwise, authentication
fails unless the server default character set is the same as the encoding in the authentication
defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. In addition, character set autodetection
is supported as described in Connection Character Sets and Collations. For programs that
use a connector that is not based on the C API, the connector may provide an equivalent to
mysql_options() that can be used instead. Check the connector documentation.

The preceding notes do not apply for ucs2, utf16, and utf32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial root account, as described
in Section 3.4, “Securing the Initial MySQL Account”, which also discusses how to assign a password
to it. Thereafter, you normally set up, modify, and remove MySQL accounts using statements such
as CREATE USER, DROP USER, GRANT, and REVOKE. See Section 4.8, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”, and Account Management Statements.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

$> mysql --user=finley --password db_name

If you prefer short options, the command looks like this:

$> mysql -u finley -p db_name

If you omit the password value following the --password or -p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

$> mysql --user=finley --password=password db_name
$> mysql -u finley -ppassword db_name

If you use the -p option, there must be no space between -p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 2.2.1,
“End-User Guidelines for Password Security”. To avoid giving the password on the command line,
use an option file or a login path file. See Using Option Files, and mysql_config_editor — MySQL
Configuration Utility.

33

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/charset-connection.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html

Privileges Provided by MySQL

For additional information about specifying user names, passwords, and other connection parameters,
see Connecting to the MySQL Server Using Command Options.

4.2 Privileges Provided by MySQL
The privileges granted to a MySQL account determine which operations the account can perform.
MySQL privileges differ in the contexts in which they apply and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges
are global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted
for specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted
for specific objects within a database, for all objects of a given type within a database (for example,
all tables in a database), or globally for all objects of a given type in all databases.

Privileges also differ in terms of whether they are static (built in to the server) or dynamic (defined at
runtime). Whether a privilege is static or dynamic affects its availability to be granted to user accounts
and roles. For information about the differences between static and dynamic privileges, see Static
Versus Dynamic Privileges.)

Information about account privileges is stored in the grant tables in the mysql system database. For a
description of the structure and contents of these tables, see Section 4.3, “Grant Tables”. The MySQL
server reads the contents of the grant tables into memory when it starts, and reloads them under the
circumstances indicated in Section 4.13, “When Privilege Changes Take Effect”. The server bases
access-control decisions on the in-memory copies of the grant tables.

Important

Some MySQL releases introduce changes to the grant tables to add new
privileges or features. To make sure that you can take advantage of any new
capabilities, update your grant tables to the current structure whenever you
upgrade MySQL. See Upgrading MySQL.

The following sections summarize the available privileges, provide more detailed descriptions of each
privilege, and offer usage guidelines.

• Summary of Available Privileges

• Static Privilege Descriptions

• Dynamic Privilege Descriptions

• Privilege-Granting Guidelines

• Static Versus Dynamic Privileges

• Migrating Accounts from SUPER to Dynamic Privileges

Summary of Available Privileges

The following table shows the static privilege names used in GRANT and REVOKE statements, along
with the column name associated with each privilege in the grant tables and the context in which the
privilege applies.

Table 4.1 Permissible Static Privileges for GRANT and REVOKE

Privilege Grant Table Column Context

ALL [PRIVILEGES] Synonym for “all privileges” Server administration

ALTER Alter_priv Tables

34

https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Summary of Available Privileges

Privilege Grant Table Column Context

ALTER ROUTINE Alter_routine_priv Stored routines

CREATE Create_priv Databases, tables, or indexes

CREATE ROLE Create_role_priv Server administration

CREATE ROUTINE Create_routine_priv Stored routines

CREATE TABLESPACE Create_tablespace_priv Server administration

CREATE TEMPORARY TABLES Create_tmp_table_priv Tables

CREATE USER Create_user_priv Server administration

CREATE VIEW Create_view_priv Views

DELETE Delete_priv Tables

DROP Drop_priv Databases, tables, or views

DROP ROLE Drop_role_priv Server administration

EVENT Event_priv Databases

EXECUTE Execute_priv Stored routines

FILE File_priv File access on server host

GRANT OPTION Grant_priv Databases, tables, or stored
routines

INDEX Index_priv Tables

INSERT Insert_priv Tables or columns

LOCK TABLES Lock_tables_priv Databases

PROCESS Process_priv Server administration

PROXY See proxies_priv table Server administration

REFERENCES References_priv Databases or tables

RELOAD Reload_priv Server administration

REPLICATION CLIENT Repl_client_priv Server administration

REPLICATION SLAVE Repl_slave_priv Server administration

SELECT Select_priv Tables or columns

SHOW DATABASES Show_db_priv Server administration

SHOW VIEW Show_view_priv Views

SHUTDOWN Shutdown_priv Server administration

SUPER Super_priv Server administration

TRIGGER Trigger_priv Tables

UPDATE Update_priv Tables or columns

USAGE Synonym for “no privileges” Server administration

The following table shows the dynamic privilege names used in GRANT and REVOKE statements, along
with the context in which the privilege applies.

Table 4.2 Permissible Dynamic Privileges for GRANT and REVOKE

Privilege Context

APPLICATION_PASSWORD_ADMIN Dual password administration

AUDIT_ABORT_EXEMPT Allow queries blocked by audit log filter

AUDIT_ADMIN Audit log administration

AUTHENTICATION_POLICY_ADMIN Authentication administration

35

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Summary of Available Privileges

Privilege Context

BACKUP_ADMIN Backup administration

BINLOG_ADMIN Backup and Replication administration

BINLOG_ENCRYPTION_ADMIN Backup and Replication administration

CLONE_ADMIN Clone administration

CONNECTION_ADMIN Server administration

ENCRYPTION_KEY_ADMIN Server administration

FIREWALL_ADMIN Firewall administration

FIREWALL_EXEMPT Firewall administration

FIREWALL_USER Firewall administration

FLUSH_OPTIMIZER_COSTS Server administration

FLUSH_STATUS Server administration

FLUSH_TABLES Server administration

FLUSH_USER_RESOURCES Server administration

GROUP_REPLICATION_ADMIN Replication administration

GROUP_REPLICATION_STREAM Replication administration

INNODB_REDO_LOG_ARCHIVE Redo log archiving administration

INNODB_REDO_LOG_ENABLE Redo log administration

MASKING_DICTIONARIES_ADMIN Server administration

NDB_STORED_USER NDB Cluster

PASSWORDLESS_USER_ADMIN Authentication administration

PERSIST_RO_VARIABLES_ADMIN Server administration

REPLICATION_APPLIER PRIVILEGE_CHECKS_USER for a replication
channel

REPLICATION_SLAVE_ADMIN Replication administration

RESOURCE_GROUP_ADMIN Resource group administration

RESOURCE_GROUP_USER Resource group administration

ROLE_ADMIN Server administration

SENSITIVE_VARIABLES_OBSERVER Server administration

SESSION_VARIABLES_ADMIN Server administration

SET_USER_ID Server administration

SHOW_ROUTINE Server administration

SKIP_QUERY_REWRITE Server administration

SYSTEM_USER Server administration

SYSTEM_VARIABLES_ADMIN Server administration

TABLE_ENCRYPTION_ADMIN Server administration

TELEMETRY_LOG_ADMIN Telemetry log administration for MySQL
HeatWave on AWS

TP_CONNECTION_ADMIN Thread pool administration

VERSION_TOKEN_ADMIN Server administration

XA_RECOVER_ADMIN Server administration

36

Static Privilege Descriptions

Static Privilege Descriptions

Static privileges are built in to the server, in contrast to dynamic privileges, which are defined at
runtime. The following list describes each static privilege available in MySQL.

Particular SQL statements might have more specific privilege requirements than indicated here. If so,
the description for the statement in question provides the details.

• ALL, ALL PRIVILEGES

These privilege specifiers are shorthand for “all privileges available at a given privilege level” (except
GRANT OPTION). For example, granting ALL at the global or table level grants all global privileges or
all table-level privileges, respectively.

• ALTER

Enables use of the ALTER TABLE statement to change the structure of tables. ALTER TABLE also
requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on the old
table, CREATE, and INSERT on the new table.

• ALTER ROUTINE

Enables use of statements that alter or drop stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFINER, also enables access to routine properties other than the routine
definition.

• CREATE

Enables use of statements that create new databases and tables.

• CREATE ROLE

Enables use of the CREATE ROLE statement. (The CREATE USER privilege also enables use of the
CREATE ROLE statement.) See Section 4.10, “Using Roles”.

The CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER because
they can be used only to create and drop accounts. They cannot be used as CREATE USER can be
modify account attributes or rename accounts. See User and Role Interchangeability.

• CREATE ROUTINE

Enables use of statements that create stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFINER, also enables access to routine properties other than the routine
definition.

• CREATE TABLESPACE

Enables use of statements that create, alter, or drop tablespaces and log file groups.

• CREATE TEMPORARY TABLES

Enables the creation of temporary tables using the CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, INSERT,
UPDATE, or SELECT. For more information, see CREATE TEMPORARY TABLE Statement.

• CREATE USER

Enables use of the ALTER USER, CREATE ROLE, CREATE USER, DROP ROLE, DROP USER,
RENAME USER, and REVOKE ALL PRIVILEGES statements.

37

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-temporary-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-temporary-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Static Privilege Descriptions

• CREATE VIEW

Enables use of the CREATE VIEW statement.

• DELETE

Enables rows to be deleted from tables in a database.

• DROP

Enables use of statements that drop (remove) existing databases, tables, and views. The DROP
privilege is required to use the ALTER TABLE ... DROP PARTITION statement on a partitioned
table. The DROP privilege is also required for TRUNCATE TABLE.

• DROP ROLE

Enables use of the DROP ROLE statement. (The CREATE USER privilege also enables use of the
DROP ROLE statement.) See Section 4.10, “Using Roles”.

The CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER because
they can be used only to create and drop accounts. They cannot be used as CREATE USER can be
modify account attributes or rename accounts. See User and Role Interchangeability.

• EVENT

Enables use of statements that create, alter, drop, or display events for the Event Scheduler.

• EXECUTE

Enables use of statements that execute stored routines (stored procedures and functions). For
routines that fall within the scope at which the privilege is granted and for which the user is not the
user named as the routine DEFINER, also enables access to routine properties other than the routine
definition.

• FILE

Affects the following operations and server behaviors:

• Enables reading and writing files on the server host using the LOAD DATA and SELECT ...
INTO OUTFILE statements and the LOAD_FILE() function. A user who has the FILE privilege
can read any file on the server host that is either world-readable or readable by the MySQL server.
(This implies the user can read any file in any database directory, because the server can access
any of those files.)

• Enables creating new files in any directory where the MySQL server has write access. This
includes the server's data directory containing the files that implement the privilege tables.

• Enables use of the DATA DIRECTORY or INDEX DIRECTORY table option for the CREATE TABLE
statement.

As a security measure, the server does not overwrite existing files.

To limit the location in which files can be read and written, set the secure_file_priv system
variable to a specific directory. See Server System Variables.

• GRANT OPTION

Enables you to grant to or revoke from other users those privileges that you yourself possess.

38

https://dev.mysql.com/doc/refman/8.0/en/create-view.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Static Privilege Descriptions

• INDEX

Enables use of statements that create or drop (remove) indexes. INDEX applies to existing tables. If
you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

• INSERT

Enables rows to be inserted into tables in a database. INSERT is also required for the ANALYZE
TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• LOCK TABLES

Enables use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes use of write locks, which prevents other sessions from reading the locked
table.

• PROCESS

The PROCESS privilege controls access to information about threads executing within the server (that
is, information about statements being executed by sessions). Thread information available using
the SHOW PROCESSLIST statement, the mysqladmin processlist command, the Information
Schema PROCESSLIST table, and the Performance Schema processlist table is accessible as
follows:

• With the PROCESS privilege, a user has access to information about all threads, even those
belonging to other users.

• Without the PROCESS privilege, nonanonymous users have access to information about their
own threads but not threads for other users, and anonymous users have no access to thread
information.

Note

The Performance Schema threads table also provides thread information,
but table access uses a different privilege model. See The threads Table.

The PROCESS privilege also enables use of the SHOW ENGINE statement, access to the
INFORMATION_SCHEMA InnoDB tables (tables with names that begin with INNODB_), and (as of
MySQL 8.0.21) access to the INFORMATION_SCHEMA FILES table.

• PROXY

Enables one user to impersonate or become known as another user. See Section 4.19, “Proxy
Users”.

• REFERENCES

Creation of a foreign key constraint requires the REFERENCES privilege for the parent table.

• RELOAD

The RELOAD enables the following operations:

• Use of the FLUSH statement.

• Use of mysqladmin commands that are equivalent to FLUSH operations: flush-hosts, flush-
logs, flush-privileges, flush-status, flush-tables, flush-threads, refresh, and
reload.

The reload command tells the server to reload the grant tables into memory. flush-
privileges is a synonym for reload. The refresh command closes and reopens the log files

39

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html

Static Privilege Descriptions

and flushes all tables. The other flush-xxx commands perform functions similar to refresh, but
are more specific and may be preferable in some instances. For example, if you want to flush just
the log files, flush-logs is a better choice than refresh.

• Use of mysqldump options that perform various FLUSH operations: --flush-logs and --
master-data.

• Use of the RESET MASTER and RESET REPLICA (or before MySQL 8.0.22, RESET SLAVE)
statements.

• REPLICATION CLIENT

Enables use of the SHOW MASTER STATUS, SHOW REPLICA STATUS, and SHOW BINARY LOGS
statements.

• REPLICATION SLAVE

Enables the account to request updates that have been made to databases on the replication
source server, using the SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS), SHOW
RELAYLOG EVENTS, and SHOW BINLOG EVENTS statements. This privilege is also required to
use the mysqlbinlog options --read-from-remote-server (-R), --read-from-remote-
source, and --read-from-remote-master. Grant this privilege to accounts that are used by
replicas to connect to the current server as their replication source server.

• SELECT

Enables rows to be selected from tables in a database. SELECT statements require the SELECT
privilege only if they actually access tables. Some SELECT statements do not access tables and can
be executed without permission for any database. For example, you can use SELECT as a simple
calculator to evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

The SELECT privilege is needed for tables or views used with EXPLAIN, including any underlying
tables in view definitions.

• SHOW DATABASES

Enables the account to see database names by issuing the SHOW DATABASE statement. Accounts
that do not have this privilege see only databases for which they have some privileges, and cannot
use the statement at all if the server was started with the --skip-show-database option.

Caution

Because any static global privilege is considered a privilege for all
databases, any static global privilege enables a user to see all database
names with SHOW DATABASES or by examining the SCHEMATA table of
INFORMATION_SCHEMA, except databases that have been restricted at the
database level by partial revokes.

• SHOW VIEW

Enables use of the SHOW CREATE VIEW statement. This privilege is also needed for views used with
EXPLAIN.

40

https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_flush-logs
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-server
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-source
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-source
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-master
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-show-database
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-schemata-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-view.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

Static Privilege Descriptions

• SHUTDOWN

Enables use of the SHUTDOWN and RESTART statements, the mysqladmin shutdown command,
and the mysql_shutdown() C API function.

• SUPER

SUPER is a powerful and far-reaching privilege and should not be granted lightly. If an account needs
to perform only a subset of SUPER operations, it may be possible to achieve the desired privilege set

41

https://dev.mysql.com/doc/refman/8.0/en/shutdown.html
https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-shutdown.html

Static Privilege Descriptions

by instead granting one or more dynamic privileges, each of which confers more limited capabilities.
See Dynamic Privilege Descriptions.

Note

SUPER is deprecated, and you should expect it to be removed in a future
version of MySQL. See Migrating Accounts from SUPER to Dynamic
Privileges.

SUPER affects the following operations and server behaviors:

• Enables system variable changes at runtime:

• Enables server configuration changes to global system variables with SET GLOBAL and SET
PERSIST.

The corresponding dynamic privilege is SYSTEM_VARIABLES_ADMIN.

• Enables setting restricted session system variables that require a special privilege.

The corresponding dynamic privilege is SESSION_VARIABLES_ADMIN.

See also System Variable Privileges.

• Enables changes to global transaction characteristics (see SET TRANSACTION Statement).

The corresponding dynamic privilege is SYSTEM_VARIABLES_ADMIN.

• Enables the account to start and stop replication, including Group Replication.

The corresponding dynamic privilege is REPLICATION_SLAVE_ADMIN for regular replication,
GROUP_REPLICATION_ADMIN for Group Replication.

• Enables use of the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23),
CHANGE MASTER TO statement (before MySQL 8.0.23), and CHANGE REPLICATION FILTER
statements.

The corresponding dynamic privilege is REPLICATION_SLAVE_ADMIN.

• Enables binary log control by means of the PURGE BINARY LOGS and BINLOG statements.

The corresponding dynamic privilege is BINLOG_ADMIN.

• Enables setting the effective authorization ID when executing a view or stored program. A user
with this privilege can specify any account in the DEFINER attribute of a view or stored program.

The corresponding dynamic privilege is SET_USER_ID.

• Enables use of the CREATE SERVER, ALTER SERVER, and DROP SERVER statements.

• Enables use of the mysqladmin debug command.

• Enables InnoDB encryption key rotation.

The corresponding dynamic privilege is ENCRYPTION_KEY_ADMIN.

• Enables execution of Version Tokens functions.

The corresponding dynamic privilege is VERSION_TOKEN_ADMIN.

42

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/binlog.html
https://dev.mysql.com/doc/refman/8.0/en/create-server.html
https://dev.mysql.com/doc/refman/8.0/en/alter-server.html
https://dev.mysql.com/doc/refman/8.0/en/drop-server.html

Dynamic Privilege Descriptions

• Enables granting and revoking roles, use of the WITH ADMIN OPTION clause of the GRANT
statement, and nonempty <graphml> element content in the result from the ROLES_GRAPHML()
function.

The corresponding dynamic privilege is ROLE_ADMIN.

• Enables control over client connections not permitted to non-SUPER accounts:

• Enables use of the KILL statement or mysqladmin kill command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

• The server does not execute init_connect system variable content when SUPER clients
connect.

• The server accepts one connection from a SUPER client even if the connection limit configured
by the max_connections system variable is reached.

• A server in offline mode (offline_mode enabled) does not terminate SUPER client connections
at the next client request, and accepts new connections from SUPER clients.

• Updates can be performed even when the read_only system variable is enabled. This applies
to explicit table updates, and to use of account-management statements such as GRANT and
REVOKE that update tables implicitly.

The corresponding dynamic privilege for the preceding connection-control operations is
CONNECTION_ADMIN.

You may also need the SUPER privilege to create or alter stored functions if binary logging is
enabled, as described in Stored Program Binary Logging.

• TRIGGER

Enables trigger operations. You must have this privilege for a table to create, drop, execute, or
display triggers for that table.

When a trigger is activated (by a user who has privileges to execute INSERT, UPDATE, or DELETE
statements for the table associated with the trigger), trigger execution requires that the user who
defined the trigger still have the TRIGGER privilege for the table.

• UPDATE

Enables rows to be updated in tables in a database.

• USAGE

This privilege specifier stands for “no privileges.” It is used at the global level with GRANT to specify
clauses such as WITH GRANT OPTION without naming specific account privileges in the privilege
list. SHOW GRANTS displays USAGE to indicate that an account has no privileges at a privilege level.

Dynamic Privilege Descriptions

Dynamic privileges are defined at runtime, in contrast to static privileges, which are built in to the
server. The following list describes each dynamic privilege available in MySQL.

Most dynamic privileges are defined at server startup. Others are defined by a particular component or
plugin, as indicated in the privilege descriptions. In such cases, the privilege is unavailable unless the
component or plugin that defines it is enabled.

Particular SQL statements might have more specific privilege requirements than indicated here. If so,
the description for the statement in question provides the details.

43

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_roles-graphml
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

Dynamic Privilege Descriptions

• APPLICATION_PASSWORD_ADMIN (added in MySQL 8.0.14)

For dual-password capability, this privilege enables use of the RETAIN CURRENT PASSWORD and
DISCARD OLD PASSWORD clauses for ALTER USER and SET PASSWORD statements that apply to
your own account. This privilege is required to manipulate your own secondary password because
most users require only one password.

If an account is to be permitted to manipulate secondary passwords for all accounts, it should be
granted the CREATE USER privilege rather than APPLICATION_PASSWORD_ADMIN.

For more information about use of dual passwords, see Section 4.15, “Password Management”.

• AUDIT_ABORT_EXEMPT (added in MySQL 8.0.28)

Allows queries blocked by an “abort” item in the audit log filter. This privilege is defined by the
audit_log plugin; see Section 6.5, “MySQL Enterprise Audit”.

Accounts created in MySQL 8.0.28 or later with the SYSTEM_USER privilege have the
AUDIT_ABORT_EXEMPT privilege assigned automatically when they are created. The
AUDIT_ABORT_EXEMPT privilege is also assigned to existing accounts with the SYSTEM_USER
privilege when you carry out an upgrade procedure with MySQL 8.0.28 or later, if no existing
accounts have that privilege assigned. Accounts with the SYSTEM_USER privilege can therefore be
used to regain access to a system following an audit misconfiguration.

• AUDIT_ADMIN

Enables audit log configuration. This privilege is defined by the audit_log plugin; see Section 6.5,
“MySQL Enterprise Audit”.

• BACKUP_ADMIN

Enables execution of the LOCK INSTANCE FOR BACKUP statement and access to the Performance
Schema log_status table.

Note

Besides BACKUP_ADMIN, the SELECT privilege on the log_status table is
also needed for its access.

The BACKUP_ADMIN privilege is automatically granted to users with the RELOAD privilege when
performing an in-place upgrade to MySQL 8.0 from an earlier version.

• AUTHENTICATION_POLICY_ADMIN (added in MySQL 8.0.27)

The authentication_policy system variable places certain constraints on how the
authentication-related clauses of CREATE USER and ALTER USER statements may be used. A user
who has the AUTHENTICATION_POLICY_ADMIN privilege is not subject to these constraints. (A
warning does occur for statements that otherwise would not be permitted.)

For details about the constraints imposed by authentication_policy, see the description of that
variable.

• BINLOG_ADMIN

Enables binary log control by means of the PURGE BINARY LOGS and BINLOG statements.

• BINLOG_ENCRYPTION_ADMIN

Enables setting the system variable binlog_encryption, which activates or deactivates
encryption for binary log files and relay log files. This ability is not provided by the BINLOG_ADMIN,
SYSTEM_VARIABLES_ADMIN, or SESSION_VARIABLES_ADMIN privileges. The related system

44

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-log-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-log-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/binlog.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_encryption

Dynamic Privilege Descriptions

variable binlog_rotate_encryption_master_key_at_startup, which rotates the binary log
master key automatically when the server is restarted, does not require this privilege.

• CLONE_ADMIN

Enables execution of the CLONE statements. Includes BACKUP_ADMIN and SHUTDOWN privileges.

• CONNECTION_ADMIN

Enables use of the KILL statement or mysqladmin kill command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

Enables setting system variables related to client connections, or circumventing restrictions related
to client connections. From MySQL 8.0.31, CONNECTION_ADMIN is required to activate MySQL
Server’s offline mode, which is done by changing the value of the offline_mode system variable to
ON.

The CONNECTION_ADMIN privilege enables administrators with it to bypass effects of these system
variables:

• init_connect: The server does not execute init_connect system variable content when
CONNECTION_ADMIN clients connect.

• max_connections: The server accepts one connection from a CONNECTION_ADMIN client even
if the connection limit configured by the max_connections system variable is reached.

• offline_mode: A server in offline mode (offline_mode enabled) does not terminate
CONNECTION_ADMIN client connections at the next client request, and accepts new connections
from CONNECTION_ADMIN clients.

• read_only: Updates from CONNECTION_ADMIN clients can be performed even when the
read_only system variable is enabled. This applies to explicit table updates, and to account
management statements such as GRANT and REVOKE that update tables implicitly.

Group Replication group members need the CONNECTION_ADMIN privilege so that Group
Replication connections are not terminated if one of the servers involved is placed in offline mode.
If the MySQL communication stack is in use (group_replication_communication_stack =
MYSQL), without this privilege, a member that is placed in offline mode is expelled from the group.

• ENCRYPTION_KEY_ADMIN

Enables InnoDB encryption key rotation.

• FIREWALL_ADMIN

Enables a user to administer firewall rules for any user. This privilege is defined by the
MYSQL_FIREWALL plugin; see Section 6.7, “MySQL Enterprise Firewall”.

• FIREWALL_EXEMPT (added in MySQL 8.0.27)

A user with this privilege is exempt from firewall restrictions. This privilege is defined by the
MYSQL_FIREWALL plugin; see Section 6.7, “MySQL Enterprise Firewall”.

• FIREWALL_USER

Enables users to update their own firewall rules. This privilege is defined by the MYSQL_FIREWALL
plugin; see Section 6.7, “MySQL Enterprise Firewall”.

• FLUSH_OPTIMIZER_COSTS (added in MySQL 8.0.23)

Enables use of the FLUSH OPTIMIZER_COSTS statement.

• FLUSH_STATUS (added in MySQL 8.0.23)

45

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_rotate_encryption_master_key_at_startup
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_communication_stack
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_communication_stack
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-optimizer-costs

Dynamic Privilege Descriptions

Enables use of the FLUSH STATUS statement.

• FLUSH_TABLES (added in MySQL 8.0.23)

Enables use of the FLUSH TABLES statement.

• FLUSH_USER_RESOURCES (added in MySQL 8.0.23)

Enables use of the FLUSH USER_RESOURCES statement.

• GROUP_REPLICATION_ADMIN

Enables the account to start and stop Group Replication using the START GROUP
REPLICATION and STOP GROUP REPLICATION statements, to change the
global setting for the group_replication_consistency system variable,
and to use the group_replication_set_write_concurrency() and
group_replication_set_communication_protocol() functions. Grant this privilege to
accounts that are used to administer servers that are members of a replication group.

• GROUP_REPLICATION_STREAM

Allows a user account to be used for establishing Group Replication's group communication
connections. It must be granted to a recovery user when the MySQL communication stack is used for
Group Replication (group_replication_communication_stack=MYSQL).

• INNODB_REDO_LOG_ARCHIVE

Enables the account to activate and deactivate redo log archiving.

• INNODB_REDO_LOG_ENABLE

Enables use of the ALTER INSTANCE {ENABLE|DISABLE} INNODB REDO_LOG statement to
enable or disable redo logging. Introduced in MySQL 8.0.21.

See Disabling Redo Logging.

• MASKING_DICTIONARIES_ADMIN

Enables the account to add and remove dictionary terms using the
masking_dictionary_term_add() and masking_dictionary_term_remove() component
functions. Accounts also require this dynamic privilege to remove a full dictionary using the
masking_dictionary_remove() function, which removes all of the terms associated with the
named dictionary currently in the mysql.masking_dictionaries table.

See MySQL Enterprise Data Masking and De-Identification.

• NDB_STORED_USER

Enables the user or role and its privileges to be shared and synchronized between all NDB-enabled
MySQL servers as soon as they join a given NDB Cluster. This privilege is available only if the NDB
storage engine is enabled.

Any changes to or revocations of privileges made for the given user or role are synchronized
immediately with all connected MySQL servers (SQL nodes). You should be aware that there is
no guarantee that multiple statements affecting privileges originating from different SQL nodes are
executed on all SQL nodes in the same order. For this reason, it is highly recommended that all user
administration be done from a single designated SQL node.

NDB_STORED_USER is a global privilege and must be granted or revoked using ON *.*. Trying
to set any other scope for this privilege results in an error. This privilege can be given to most

46

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-user-resources
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/stop-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_consistency
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-maximum-consensus.html#function_group-replication-set-write-concurrency
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-communication-protocol.html#function_group-replication-set-communication-protocol
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_communication_stack
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log.html#innodb-disable-redo-logging
https://dev.mysql.com/doc/refman/8.0/en/data-masking-component-functions.html#function_masking-dictionary-term-add
https://dev.mysql.com/doc/refman/8.0/en/data-masking-component-functions.html#function_masking-dictionary-term-remove
https://dev.mysql.com/doc/refman/8.0/en/data-masking-component-functions.html#function_masking-dictionary-remove
https://dev.mysql.com/doc/refman/8.0/en/data-masking.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Dynamic Privilege Descriptions

application and administrative users, but it cannot be granted to system reserved accounts such as
mysql.session@localhost or mysql.infoschema@localhost.

A user that has been granted the NDB_STORED_USER privilege is stored in NDB (and thus shared
by all SQL nodes), as is a role with this privilege. A user that is merely granted a role that has
NDB_STORED_USER is not stored in NDB; each NDB stored user must be granted the privilege
explicitly.

For more detailed information about how this works in NDB, see Privilege Synchronization and
NDB_STORED_USER.

The NDB_STORED_USER privilege is available beginning with NDB 8.0.18.

• PASSWORDLESS_USER_ADMIN (added in MySQL 8.0.27)

This privilege applies to passwordless user accounts:

• For account creation, a user who executes CREATE USER to create a passwordless account must
possess the PASSWORDLESS_USER_ADMIN privilege.

• In replication context, the PASSWORDLESS_USER_ADMIN privilege applies to replication users
and enables replication of ALTER USER ... MODIFY statements for user accounts that are
configured for passwordless authentication.

For information about passwordless authentication, see FIDO Passwordless Authentication.

• PERSIST_RO_VARIABLES_ADMIN

For users who also have SYSTEM_VARIABLES_ADMIN, PERSIST_RO_VARIABLES_ADMIN enables
use of SET PERSIST_ONLY to persist global system variables to the mysqld-auto.cnf option
file in the data directory. This statement is similar to SET PERSIST but does not modify the runtime
global system variable value. This makes SET PERSIST_ONLY suitable for configuring read-only
system variables that can be set only at server startup.

See also System Variable Privileges.

• REPLICATION_APPLIER

Enables the account to act as the PRIVILEGE_CHECKS_USER for a replication channel, and to
execute BINLOG statements in mysqlbinlog output. Grant this privilege to accounts that are
assigned using CHANGE REPLICATION SOURCE TO (from MySQL 8.0.23) or CHANGE MASTER
TO (before MySQL 8.0.23) to provide a security context for replication channels, and to handle
replication errors on those channels. As well as the REPLICATION_APPLIER privilege, you must
also give the account the required privileges to execute the transactions received by the replication
channel or contained in the mysqlbinlog output, for example to update the affected tables. For
more information, see Replication Privilege Checks.

• REPLICATION_SLAVE_ADMIN

Enables the account to connect to the replication source server, start and stop replication using the
START REPLICA and STOP REPLICA statements, and use the CHANGE REPLICATION SOURCE
TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) and
the CHANGE REPLICATION FILTER statements. Grant this privilege to accounts that are used by
replicas to connect to the current server as their replication source server. This privilege does not
apply to Group Replication; use GROUP_REPLICATION_ADMIN for that.

• RESOURCE_GROUP_ADMIN

Enables resource group management, consisting of creating, altering, and dropping resource groups,
and assignment of threads and statements to resource groups. A user with this privilege can perform
any operation relating to resource groups.

47

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-privilege-synchronization.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-privilege-synchronization.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html

Dynamic Privilege Descriptions

• RESOURCE_GROUP_USER

Enables assigning threads and statements to resource groups. A user with this privilege can use the
SET RESOURCE GROUP statement and the RESOURCE_GROUP optimizer hint.

• ROLE_ADMIN

Enables granting and revoking roles, use of the WITH ADMIN OPTION clause of the GRANT
statement, and nonempty <graphml> element content in the result from the ROLES_GRAPHML()
function. Required to set the value of the mandatory_roles system variable.

• SENSITIVE_VARIABLES_OBSERVER (added in MySQL 8.0.29)

Enables a holder to view the values of sensitive system variables in the Performance Schema
tables global_variables, session_variables, variables_by_thread, and
persisted_variables, to issue SELECT statements to return their values, and to track changes
to them in session trackers for connections. Users without this privilege cannot view or track those
system variable values. See Persisting Sensitive System Variables.

• SERVICE_CONNECTION_ADMIN

Enables connections to the network interface that permits only administrative connections (see
Connection Interfaces).

• SESSION_VARIABLES_ADMIN (added in MySQL 8.0.14)

For most system variables, setting the session value requires no special privileges and can be
done by any user to affect the current session. For some system variables, setting the session
value can have effects outside the current session and thus is a restricted operation. For these, the
SESSION_VARIABLES_ADMIN privilege enables the user to set the session value.

If a system variable is restricted and requires a special privilege to set the session value, the variable
description indicates that restriction. Examples include binlog_format, sql_log_bin, and
sql_log_off.

Prior to MySQL 8.0.14 when SESSION_VARIABLES_ADMIN was added, restricted session system
variables can be set only by users who have the SYSTEM_VARIABLES_ADMIN or SUPER privilege.

The SESSION_VARIABLES_ADMIN privilege is a subset of the SYSTEM_VARIABLES_ADMIN and
SUPER privileges. A user who has either of those privileges is also permitted to set restricted session
variables and effectively has SESSION_VARIABLES_ADMIN by implication and need not be granted
SESSION_VARIABLES_ADMIN explicitly.

See also System Variable Privileges.

• SET_USER_ID

Enables setting the effective authorization ID when executing a view or stored program. A user with
this privilege can specify any account as the DEFINER attribute of a view or stored program. Stored
programs execute with the privileges of the specified account, so ensure that you follow the risk
minimization guidelines listed in Stored Object Access Control.

As of MySQL 8.0.22, SET_USER_ID also enables overriding security checks designed to prevent
operations that (perhaps inadvertently) cause stored objects to become orphaned or that cause
adoption of stored objects that are currently orphaned. For details, see Orphan Stored Objects.

48

https://dev.mysql.com/doc/refman/8.0/en/set-resource-group.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-resource-group
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_roles-graphml
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-persisted-variables-table.html
https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive
https://dev.mysql.com/doc/refman/8.0/en/connection-interfaces.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_log_off
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html#stored-objects-security-orphan-objects

Dynamic Privilege Descriptions

• SHOW_ROUTINE (added in MySQL 8.0.20)

Enables a user to access definitions and properties of all stored routines (stored procedures and
functions), even those for which the user is not named as the routine DEFINER. This access
includes:

• The contents of the Information Schema ROUTINES table.

• The SHOW CREATE FUNCTION and SHOW CREATE PROCEDURE statements.

• The SHOW FUNCTION CODE and SHOW PROCEDURE CODE statements.

• The SHOW FUNCTION STATUS and SHOW PROCEDURE STATUS statements.

Prior to MySQL 8.0.20, for a user to access definitions of routines the user did not define, the user
must have the global SELECT privilege, which is very broad. As of 8.0.20, SHOW_ROUTINE may be
granted instead as a privilege with a more restricted scope that permits access to routine definitions.
(That is, an administrator can rescind global SELECT from users that do not otherwise require it and
grant SHOW_ROUTINE instead.) This enables an account to back up stored routines without requiring
a broad privilege.

• SKIP_QUERY_REWRITE (added in MySQL 8.0.31)

Queries issued by a user with this privilege are not subject to being rewritten by the Rewriter
plugin (see The Rewriter Query Rewrite Plugin).

This privilege should be granted to users issuing administrative or control statements that should not
be rewritten, as well as to PRIVILEGE_CHECKS_USER accounts (see Replication Privilege Checks)
used to apply statements from a replication source.

• SYSTEM_USER (added in MySQL 8.0.16)

The SYSTEM_USER privilege distinguishes system users from regular users:

• A user with the SYSTEM_USER privilege is a system user.

• A user without the SYSTEM_USER privilege is a regular user.

The SYSTEM_USER privilege has an effect on the accounts to which a given user can apply its other
privileges, as well as whether the user is protected from other accounts:

• A system user can modify both system and regular accounts. That is, a user who has the
appropriate privileges to perform a given operation on regular accounts is enabled by possession
of SYSTEM_USER to also perform the operation on system accounts. A system account can be
modified only by system users with appropriate privileges, not by regular users.

• A regular user with appropriate privileges can modify regular accounts, but not system accounts. A
regular account can be modified by both system and regular users with appropriate privileges.

This also means that database objects created by users with the SYSTEM_USER privilege cannot be
modified or dropped by users without the privilege. This also applies to routines for which the definer
has this privilege.

For more information, see Section 4.11, “Account Categories”.

The protection against modification by regular accounts that is afforded to system accounts by
the SYSTEM_USER privilege does not apply to regular accounts that have privileges on the mysql
system schema and thus can directly modify the grant tables in that schema. For full protection, do

49

https://dev.mysql.com/doc/refman/8.0/en/information-schema-routines-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-function.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/show-function-code.html
https://dev.mysql.com/doc/refman/8.0/en/show-procedure-code.html
https://dev.mysql.com/doc/refman/8.0/en/show-function-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-procedure-status.html
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html

Dynamic Privilege Descriptions

not grant mysql schema privileges to regular accounts. See Protecting System Accounts Against
Manipulation by Regular Accounts.

If the audit_log plugin is in use (see Section 6.5, “MySQL Enterprise Audit”), from MySQL 8.0.28,
accounts with the SYSTEM_USER privilege are automatically assigned the AUDIT_ABORT_EXEMPT
privilege, which permits their queries to be executed even if an “abort” item configured in the filter
would block them. Accounts with the SYSTEM_USER privilege can therefore be used to regain access
to a system following an audit misconfiguration.

• SYSTEM_VARIABLES_ADMIN

Affects the following operations and server behaviors:

• Enables system variable changes at runtime:

• Enables server configuration changes to global system variables with SET GLOBAL and SET
PERSIST.

• Enables server configuration changes to global system variables with SET PERSIST_ONLY, if
the user also has PERSIST_RO_VARIABLES_ADMIN.

• Enables setting restricted session system variables that require a special privilege. In effect,
SYSTEM_VARIABLES_ADMIN implies SESSION_VARIABLES_ADMIN without explicitly granting
SESSION_VARIABLES_ADMIN.

See also System Variable Privileges.

• Enables changes to global transaction characteristics (see SET TRANSACTION Statement).

• TABLE_ENCRYPTION_ADMIN (added in MySQL 8.0.16)

Enables a user to override default encryption settings when
table_encryption_privilege_check is enabled; see Defining an Encryption Default for
Schemas and General Tablespaces.

• TELEMETRY_LOG_ADMIN

Enables telemetry log configuration. This privilege is defined by the telemetry_log plugin, which
is deployed through MySQL HeatWave on AWS.

• TP_CONNECTION_ADMIN

Enables connecting to the server with a privileged connection. When the limit defined by
thread_pool_max_transactions_limit has been reached, new connections are not
permitted. A privileged connection ignores the transaction limit and permits connecting to the server
to increase the transaction limit, remove the limit, or kill running transactions. This privilege is not
granted to any user by default. To establish a privileged connection, the user initiating a connection
must have the TP_CONNECTION_ADMIN privilege.

A privileged connection can execute statements and start transactions when the limit defined by
thread_pool_max_transactions_limit has been reached. A privileged connection is placed
in the Admin thread group. See Privileged Connections.

• VERSION_TOKEN_ADMIN

Enables execution of Version Tokens functions. This privilege is defined by the version_tokens
plugin; see Version Tokens.

50

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_table_encryption_privilege_check
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-schema-tablespace-encryption-default
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html#innodb-schema-tablespace-encryption-default
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_thread_pool_max_transactions_limit
https://dev.mysql.com/doc/refman/8.0/en/thread-pool-operation.html#privileged-connections
https://dev.mysql.com/doc/refman/8.0/en/version-tokens.html

Privilege-Granting Guidelines

• XA_RECOVER_ADMIN

Enables execution of the XA RECOVER statement; see XA Transaction SQL Statements.

Prior to MySQL 8.0, any user could execute the XA RECOVER statement to discover the XID
values for outstanding prepared XA transactions, possibly leading to commit or rollback of an XA
transaction by a user other than the one who started it. In MySQL 8.0, XA RECOVER is permitted
only to users who have the XA_RECOVER_ADMIN privilege, which is expected to be granted only to
administrative users who have need for it. This might be the case, for example, for administrators of
an XA application if it has crashed and it is necessary to find outstanding transactions started by the
application so they can be rolled back. This privilege requirement prevents users from discovering
the XID values for outstanding prepared XA transactions other than their own. It does not affect
normal commit or rollback of an XA transaction because the user who started it knows its XID.

Privilege-Granting Guidelines

It is a good idea to grant to an account only those privileges that it needs. You should exercise
particular caution in granting the FILE and administrative privileges:

• FILE can be abused to read into a database table any files that the MySQL server can read on the
server host. This includes all world-readable files and files in the server's data directory. The table
can then be accessed using SELECT to transfer its contents to the client host.

• GRANT OPTION enables users to give their privileges to other users. Two users that have different
privileges and with the GRANT OPTION privilege are able to combine privileges.

• ALTER may be used to subvert the privilege system by renaming tables.

• SHUTDOWN can be abused to deny service to other users entirely by terminating the server.

• PROCESS can be used to view the plain text of currently executing statements, including statements
that set or change passwords.

• SUPER can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql system database itself can be used to change passwords and other
access privilege information:

• Passwords are stored encrypted, so a malicious user cannot simply read them to know the
plain text password. However, a user with write access to the mysql.user system table
authentication_string column can change an account's password, and then connect to the
MySQL server using that account.

• INSERT or UPDATE granted for the mysql system database enable a user to add privileges or
modify existing privileges, respectively.

• DROP for the mysql system database enables a user to remote privilege tables, or even the
database itself.

Static Versus Dynamic Privileges

MySQL supports static and dynamic privileges:

• Static privileges are built in to the server. They are always available to be granted to user accounts
and cannot be unregistered.

• Dynamic privileges can be registered and unregistered at runtime. This affects their availability: A
dynamic privilege that has not been registered cannot be granted.

For example, the SELECT and INSERT privileges are static and always available, whereas a dynamic
privilege becomes available only if the component that implements it has been enabled.

51

https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/xa-statements.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Static Versus Dynamic Privileges

The remainder of this section describes how dynamic privileges work in MySQL. The discussion uses
the term “components” but applies equally to plugins.

Note

Server administrators should be aware of which server components define
dynamic privileges. For MySQL distributions, documentation of components that
define dynamic privileges describes those privileges.

Third-party components may also define dynamic privileges; an administrator
should understand those privileges and not install components that might
conflict or compromise server operation. For example, one component conflicts
with another if both define a privilege with the same name. Component
developers can reduce the likelihood of this occurrence by choosing privilege
names having a prefix based on the component name.

The server maintains the set of registered dynamic privileges internally in memory. Unregistration
occurs at server shutdown.

Normally, a component that defines dynamic privileges registers them when it is installed, during its
initialization sequence. When uninstalled, a component does not unregister its registered dynamic
privileges. (This is current practice, not a requirement. That is, components could, but do not,
unregister at any time privileges they register.)

No warning or error occurs for attempts to register an already registered dynamic privilege. Consider
the following sequence of statements:

INSTALL COMPONENT 'my_component';
UNINSTALL COMPONENT 'my_component';
INSTALL COMPONENT 'my_component';

The first INSTALL COMPONENT statement registers any privileges defined by component
my_component, but UNINSTALL COMPONENT does not unregister them. For the second INSTALL
COMPONENT statement, the component privileges it registers are found to be already registered, but no
warnings or errors occur.

Dynamic privileges apply only at the global level. The server stores information about current
assignments of dynamic privileges to user accounts in the mysql.global_grants system table:

• The server automatically registers privileges named in global_grants during server startup
(unless the --skip-grant-tables option is given).

• The GRANT and REVOKE statements modify the contents of global_grants.

• Dynamic privilege assignments listed in global_grants are persistent. They are not removed at
server shutdown.

Example: The following statement grants to user u1 the privileges required to control replication
(including Group Replication) on a replica, and to modify system variables:

GRANT REPLICATION_SLAVE_ADMIN, GROUP_REPLICATION_ADMIN, BINLOG_ADMIN
ON *.* TO 'u1'@'localhost';

Granted dynamic privileges appear in the output from the SHOW GRANTS statement and the
INFORMATION_SCHEMA USER_PRIVILEGES table.

For GRANT and REVOKE at the global level, any named privileges not recognized as static are checked
against the current set of registered dynamic privileges and granted if found. Otherwise, an error
occurs to indicate an unknown privilege identifier.

For GRANT and REVOKE the meaning of ALL [PRIVILEGES] at the global level includes all static
global privileges, as well as all currently registered dynamic privileges:

52

https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-component.html
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-user-privileges-table.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Migrating Accounts from SUPER to Dynamic Privileges

• GRANT ALL at the global level grants all static global privileges and all currently registered dynamic
privileges. A dynamic privilege registered subsequent to execution of the GRANT statement is not
granted retroactively to any account.

• REVOKE ALL at the global level revokes all granted static global privileges and all granted dynamic
privileges.

The FLUSH PRIVILEGES statement reads the global_grants table for dynamic privilege
assignments and registers any unregistered privileges found there.

For descriptions of the dynamic privileges provided by MySQL Server and components included in
MySQL distributions, see Section 4.2, “Privileges Provided by MySQL”.

Migrating Accounts from SUPER to Dynamic Privileges

In MySQL 8.0, many operations that previously required the SUPER privilege are also associated
with a dynamic privilege of more limited scope. (For descriptions of these privileges, see Section 4.2,
“Privileges Provided by MySQL”.) Each such operation can be permitted to an account by granting the
associated dynamic privilege rather than SUPER. This change improves security by enabling DBAs to
avoid granting SUPER and tailor user privileges more closely to the operations permitted. SUPER is now
deprecated; expect it to be removed in a future version of MySQL.

When removal of SUPER occurs, operations that formerly required SUPER fail unless accounts granted
SUPER are migrated to the appropriate dynamic privileges. Use the following instructions to accomplish
that goal so that accounts are ready prior to SUPER removal:

1. Execute this query to identify accounts that are granted SUPER:

SELECT GRANTEE FROM INFORMATION_SCHEMA.USER_PRIVILEGES
WHERE PRIVILEGE_TYPE = 'SUPER';

2. For each account identified by the preceding query, determine the operations for which it needs
SUPER. Then grant the dynamic privileges corresponding to those operations, and revoke SUPER.

For example, if 'u1'@'localhost' requires SUPER for binary log purging and system variable
modification, these statements make the required changes to the account:

GRANT BINLOG_ADMIN, SYSTEM_VARIABLES_ADMIN ON *.* TO 'u1'@'localhost';
REVOKE SUPER ON *.* FROM 'u1'@'localhost';

After you have modified all applicable accounts, the INFORMATION_SCHEMA query in the first step
should produce an empty result set.

4.3 Grant Tables

The mysql system database includes several grant tables that contain information about user
accounts and the privileges held by them. This section describes those tables. For information about
other tables in the system database, see The mysql System Schema.

The discussion here describes the underlying structure of the grant tables and how the server uses
their contents when interacting with clients. However, normally you do not modify the grant tables
directly. Modifications occur indirectly when you use account-management statements such as CREATE
USER, GRANT, and REVOKE to set up accounts and control the privileges available to each one. See
Account Management Statements. When you use such statements to perform account manipulations,
the server modifies the grant tables on your behalf.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE,
or DELETE is discouraged and done at your own risk. The server is free to
ignore rows that become malformed as a result of such modifications.

53

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/system-schema.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Grant Table Overview

For any operation that modifies a grant table, the server checks whether the
table has the expected structure and produces an error if not. To update the
tables to the expected structure, perform the MySQL upgrade procedure. See
Upgrading MySQL.

• Grant Table Overview

• The user and db Grant Tables

• The tables_priv and columns_priv Grant Tables

• The procs_priv Grant Table

• The proxies_priv Grant Table

• The global_grants Grant Table

• The default_roles Grant Table

• The role_edges Grant Table

• The password_history Grant Table

• Grant Table Scope Column Properties

• Grant Table Privilege Column Properties

• Grant Table Concurrency

Grant Table Overview

These mysql database tables contain grant information:

• user: User accounts, static global privileges, and other nonprivilege columns.

• global_grants: Dynamic global privileges.

• db: Database-level privileges.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

• proxies_priv: Proxy-user privileges.

• default_roles: Default user roles.

• role_edges: Edges for role subgraphs.

• password_history: Password change history.

For information about the differences between static and dynamic global privileges, see Static Versus
Dynamic Privileges.)

In MySQL 8.0, grant tables use the InnoDB storage engine and are transactional. Before MySQL 8.0,
grant tables used the MyISAM storage engine and were nontransactional. This change of grant table
storage engine enables an accompanying change to the behavior of account-management statements
such as CREATE USER or GRANT. Previously, an account-management statement that named multiple
users could succeed for some users and fail for others. Now, each statement is transactional and either
succeeds for all named users or rolls back and has no effect if any error occurs.

54

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Grant Table Overview

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of 'h1.example.net' and
'bob' applies to authenticating connections made to the server from the host h1.example.net by
a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column
values of 'h1.example.net', 'bob' and 'reports' applies when bob connects from the host
h1.example.net to access the reports database. The tables_priv and columns_priv
tables contain scope columns indicating tables or table/column combinations to which each row
applies. The procs_priv scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 4.7, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

In addition, a grant table may contain columns used for purposes other than scope or privilege
assessment.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's static global
privileges. Any privileges granted in this table apply to all databases on the server.

Caution

Because any static global privilege is considered a privilege for all
databases, any static global privilege enables a user to see all database
names with SHOW DATABASES or by examining the SCHEMATA table of
INFORMATION_SCHEMA, except databases that have been restricted at the
database level by partial revokes.

• The global_grants table lists current assignments of dynamic global privileges to user accounts.
For each row, the scope columns determine which user has the privilege named in the privilege
column.

• The db table scope columns determine which users can access which databases from which hosts.
The privilege columns determine the permitted operations. A privilege granted at the database level
applies to the database and to all objects in the database, such as tables and stored programs.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies
only to a specific column.

• The procs_priv table applies to stored routines (stored procedures and functions). A privilege
granted at the routine level applies only to a single procedure or function.

• The proxies_priv table indicates which users can act as proxies for other users and whether a
user can grant the PROXY privilege to other users.

• The default_roles and role_edges tables contain information about role relationships.

• The password_history table retains previously chosen passwords to enable restrictions on
password reuse. See Section 4.15, “Password Management”.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload
the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-
privileges or mysqladmin reload command. Changes to the grant tables take effect as indicated
in Section 4.13, “When Privilege Changes Take Effect”.

55

https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-schemata-table.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

The user and db Grant Tables

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHOW GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob
and pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

To display nonprivilege properties of an account, use SHOW CREATE USER:

SHOW CREATE USER 'bob'@'pc84.example.com';

The user and db Grant Tables

The server uses the user and db tables in the mysql database at both the first and second stages of
access control (see Chapter 4, Access Control and Account Management). The columns in the user
and db tables are shown here.

Table 4.3 user and db Table Columns

Table Name user db

Scope columns Host Host

User Db

User

Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

Index_priv Index_priv

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Trigger_priv Trigger_priv

Event_priv Event_priv

Create_tmp_table_priv Create_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

56

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html

The user and db Grant Tables

Table Name user db

Repl_client_priv

Create_user_priv

Create_tablespace_priv

Create_role_priv

Drop_role_priv

Security columns ssl_type

ssl_cipher

x509_issuer

x509_subject

plugin

authentication_string

password_expired

password_last_changed

password_lifetime

account_locked

Password_reuse_history

Password_reuse_time

Password_require_current

User_attributes

Resource control columns max_questions

max_updates

max_connections

max_user_connections

The user table plugin and authentication_string columns store authentication plugin and
credential information.

The server uses the plugin named in the plugin column of an account row to authenticate connection
attempts for the account.

The plugin column must be nonempty. At startup, and at runtime when FLUSH PRIVILEGES is
executed, the server checks user table rows. For any row with an empty plugin column, the server
writes a warning to the error log of this form:

[Warning] User entry 'user_name'@'host_name' has an empty plugin
value. The user will be ignored and no one can login with this user
anymore.

To assign a plugin to an account that is missing one, use the ALTER USER statement.

The password_expired column permits DBAs to expire account passwords and require users to
reset their password. The default password_expired value is 'N', but can be set to 'Y' with the
ALTER USER statement. After an account's password has been expired, all operations performed by
the account in subsequent connections to the server result in an error until the user issues an ALTER
USER statement to establish a new account password.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different

57

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

The user and db Grant Tables

password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

password_last_changed is a TIMESTAMP column indicating when the password was last
changed. The value is non-NULL only for accounts that use a MySQL built-in authentication plugin
(mysql_native_password, sha256_password, or caching_sha2_password). The value is
NULL for other accounts, such as those authenticated using an external authentication system.

password_last_changed is updated by the CREATE USER, ALTER USER, and SET PASSWORD
statements, and by GRANT statements that create an account or change an account password.

password_lifetime indicates the account password lifetime, in days. If the password is past
its lifetime (assessed using the password_last_changed column), the server considers the
password expired when clients connect using the account. A value of N greater than zero means
that the password must be changed every N days. A value of 0 disables automatic password
expiration. If the value is NULL (the default), the global expiration policy applies, as defined by the
default_password_lifetime system variable.

account_locked indicates whether the account is locked (see Section 4.20, “Account Locking”).

Password_reuse_history is the value of the PASSWORD HISTORY option for the account, or NULL
for the default history.

Password_reuse_time is the value of the PASSWORD REUSE INTERVAL option for the account, or
NULL for the default interval.

Password_require_current (added in MySQL 8.0.13) corresponds to the value of the PASSWORD
REQUIRE option for the account, as shown by the following table.

Table 4.4 Permitted Password_require_current Values

Password_require_current Value Corresponding PASSWORD REQUIRE Option

'Y' PASSWORD REQUIRE CURRENT

'N' PASSWORD REQUIRE CURRENT OPTIONAL

NULL PASSWORD REQUIRE CURRENT DEFAULT

User_attributes (added in MySQL 8.0.14) is a JSON-format column that stores account attributes
not stored in other columns. As of MySQL 8.0.21, the INFORMATION_SCHEMA exposes these attributes
through the USER_ATTRIBUTES table.

The User_attributes column may contain these attributes:

• additional_password: The secondary password, if any. See Dual Password Support.

• Restrictions: Restriction lists, if any. Restrictions are added by partial-revoke operations.
The attribute value is an array of elements that each have Database and Restrictions keys
indicating the name of a restricted database and the applicable restrictions on it (see Section 4.12,
“Privilege Restriction Using Partial Revokes”).

• Password_locking: The conditions for failed-login tracking and temporary account locking,
if any (see Failed-Login Tracking and Temporary Account Locking). The Password_locking
attribute is updated according to the FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME
options of the CREATE USER and ALTER USER statements. The attribute value is a hash with
failed_login_attempts and password_lock_time_days keys indicating the value of such
options as have been specified for the account. If a key is missing, its value is implicitly 0. If a key
value is implicitly or explicitly 0, the corresponding capability is disabled. This attribute was added in
MySQL 8.0.19.

• multi_factor_authentication: Rows in the mysql.user system table have a plugin
column that indicates an authentication plugin. For single-factor authentication, that plugin is the only

58

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/information-schema-user-attributes-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

The tables_priv and columns_priv Grant Tables

authentication factor. For two-factor or three-factor forms of multifactor authentication, that plugin
corresponds to the first authentication factor, but additional information must be stored for the second
and third factors. The multi_factor_authentication attribute holds this information. This
attribute was added in MySQL 8.0.27.

The multi_factor_authentication value is an array, where each array element is a hash that
describes an authentication factor using these attributes:

• plugin: The name of the authentication plugin.

• authentication_string: The authentication string value.

• passwordless: A flag that denotes whether the user is meant to be used without a password
(with a security token as the only authentication method).

• requires_registration: a flag that defines whether the user account has registered a security
token.

The first and second array elements describe multifactor authentication factors 2 and 3.

If no attributes apply, User_attributes is NULL.

Example: An account that has a secondary password and partially revoked database privileges has
additional_password and Restrictions attributes in the column value:

mysql> SELECT User_attributes FROM mysql.User WHERE User = 'u'\G
*************************** 1. row ***************************
User_attributes: {"Restrictions":
 [{"Database": "mysql", "Privileges": ["SELECT"]}],
 "additional_password": "hashed_credentials"}

To determine which attributes are present, use the JSON_KEYS() function:

SELECT User, Host, JSON_KEYS(User_attributes)
FROM mysql.user WHERE User_attributes IS NOT NULL;

To extract a particular attribute, such as Restrictions, do this:

SELECT User, Host, User_attributes->>'$.Restrictions'
FROM mysql.user WHERE User_attributes->>'$.Restrictions' <> '';

Here is an example of the kind of information stored for multi_factor_authentication:

{
 "multi_factor_authentication": [
 {
 "plugin": "authentication_ldap_simple",
 "passwordless": 0,
 "authentication_string": "ldap auth string",
 "requires_registration": 0
 },
 {
 "plugin": "authentication_fido",
 "passwordless": 0,
 "authentication_string": "",
 "requires_registration": 1
 }
]
}

The tables_priv and columns_priv Grant Tables

During the second stage of access control, the server performs request verification to ensure that
each client has sufficient privileges for each request that it issues. In addition to the user and db grant
tables, the server may also consult the tables_priv and columns_priv tables for requests that

59

https://dev.mysql.com/doc/refman/8.0/en/json-search-functions.html#function_json-keys

The procs_priv Grant Table

involve tables. The latter tables provide finer privilege control at the table and column levels. They have
the columns shown in the following table.

Table 4.5 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

Db Db

User User

Table_name Table_name

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER
value, respectively, but are otherwise unused.

The procs_priv Grant Table

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 4.6 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The Routine_type column is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to
indicate the type of routine the row refers to. This column enables privileges to be granted separately
for a function and a procedure with the same name.

The Timestamp and Grantor columns are unused.

The proxies_priv Grant Table

The proxies_priv table records information about proxy accounts. It has these columns:

• Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied
account.

• Proxied_host, Proxied_user: The proxied account.

• Grantor, Timestamp: Unused.

• With_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

60

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/enum.html

The global_grants Grant Table

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in
the proxies_priv table with With_grant set to 1 and Proxied_host and Proxied_user
set to indicate the account or accounts for which the privilege can be granted. For example, the
'root'@'localhost' account created during MySQL installation has a row in the proxies_priv
table that enables granting the PROXY privilege for ''@'', that is, for all users and all hosts. This
enables root to set up proxy users, as well as to delegate to other accounts the authority to set up
proxy users. See Section 4.19, “Proxy Users”.

The global_grants Grant Table

The global_grants table lists current assignments of dynamic global privileges to user accounts.
The table has these columns:

• USER, HOST: The user name and host name of the account to which the privilege is granted.

• PRIV: The privilege name.

• WITH_GRANT_OPTION: Whether the account can grant the privilege to other accounts.

The default_roles Grant Table

The default_roles table lists default user roles. It has these columns:

• HOST, USER: The account or role to which the default role applies.

• DEFAULT_ROLE_HOST, DEFAULT_ROLE_USER: The default role.

The role_edges Grant Table

The role_edges table lists edges for role subgraphs. It has these columns:

• FROM_HOST, FROM_USER: The account that is granted a role.

• TO_HOST, TO_USER: The role that is granted to the account.

• WITH_ADMIN_OPTION: Whether the account can grant the role to and revoke it from other accounts
by using WITH ADMIN OPTION.

The password_history Grant Table

The password_history table contains information about password changes. It has these columns:

• Host, User: The account for which the password change occurred.

• Password_timestamp: The time when the password change occurred.

• Password: The new password hash value.

The password_history table accumulates a sufficient number of nonempty passwords per account
to enable MySQL to perform checks against both the account password history length and reuse
interval. Automatic pruning of entries that are outside both limits occurs when password-change
attempts occur.

Note

The empty password does not count in the password history and is subject to
reuse at any time.

If an account is renamed, its entries are renamed to match. If an account is dropped or its
authentication plugin is changed, its entries are removed.

61

Grant Table Scope Column Properties

Grant Table Scope Column Properties

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 4.7 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters

Host, Proxied_host 255 (60 prior to MySQL 8.0.17)

User, Proxied_user 32

Db 64

Table_name 64

Column_name 64

Routine_name 64

Host and Proxied_host values are converted to lowercase before being stored in the grant tables.

For access-checking purposes, comparisons of User, Proxied_user, authentication_string,
Db, and Table_name values are case-sensitive. Comparisons of Host, Proxied_host,
Column_name, and Routine_name values are not case-sensitive.

Grant Table Privilege Column Properties

The user and db tables list each privilege in a separate column that is declared as ENUM('N','Y')
DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the default being
disabled.

The tables_priv, columns_priv, and procs_priv tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 4.8 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert',
'Update', 'Delete',
'Create', 'Drop',
'Grant', 'References',
'Index', 'Alter',
'Create View', 'Show
view', 'Trigger'

tables_priv Column_priv 'Select', 'Insert',
'Update', 'References'

columns_priv Column_priv 'Select', 'Insert',
'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter
Routine', 'Grant'

Only the user and global_grants tables specify administrative privileges, such as RELOAD,
SHUTDOWN, and SYSTEM_VARIABLES_ADMIN. Administrative operations are operations on the server
itself and are not database-specific, so there is no reason to list these privileges in the other grant
tables. Consequently, the server need consult only the user and global_grants tables to determine
whether a user can perform an administrative operation.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as
such, but a user's ability to read or write files on the server host is independent of the database being
accessed.

62

https://dev.mysql.com/doc/refman/8.0/en/set.html

Grant Table Concurrency

Grant Table Concurrency

As of MySQL 8.0.22, to permit concurrent DML and DDL operations on MySQL grant tables, read
operations that previously acquired row locks on MySQL grant tables are executed as non-locking
reads. Operations that are performed as non-locking reads on MySQL grant tables include:

• SELECT statements and other read-only statements that read data from grant tables through join lists
and subqueries, including SELECT ... FOR SHARE statements, using any transaction isolation
level.

• DML operations that read data from grant tables (through join lists or subqueries) but do not modify
them, using any transaction isolation level.

Statements that no longer acquire row locks when reading data from grant tables report a warning if
executed while using statement-based replication.

When using -binlog_format=mixed, DML operations that read data from grant tables are written to
the binary log as row events to make the operations safe for mixed-mode replication.

SELECT ... FOR SHARE statements that read data from grant tables report a warning. With the FOR
SHARE clause, read locks are not supported on grant tables.

DML operations that read data from grant tables and are executed using the SERIALIZABLE isolation
level report a warning. Read locks that would normally be acquired when using the SERIALIZABLE
isolation level are not supported on grant tables.

4.4 Specifying Account Names

MySQL account names consist of a user name and a host name, which enables creation of distinct
accounts for users with the same user name who connect from different hosts. This section describes
the syntax for account names, including special values and wildcard rules.

In most respects, account names are similar to MySQL role names, with some differences described at
Section 4.5, “Specifying Role Names”.

Account names appear in SQL statements such as CREATE USER, GRANT, and SET PASSWORD and
follow these rules:

• Account name syntax is 'user_name'@'host_name'.

• The @'host_name' part is optional. An account name consisting only of a user name is equivalent
to 'user_name'@'%'. For example, 'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers.
Quotes must be used if a user_name string contains special characters (such as space or -), or a
host_name string contains special characters or wildcard characters (such as . or %). For example,
in the account name 'test-user'@'%.com', both the user name and host name parts require
quotes.

• Quote user names and host names as identifiers or as strings, using either backticks (`), single
quotation marks ('), or double quotation marks ("). For string-quoting and identifier-quoting
guidelines, see String Literals, and Schema Object Names. In SHOW statement results, user names
and host names are quoted using backticks (`).

• The user name and host name parts, if quoted, must be quoted separately. That is,
write 'me'@'localhost', not 'me@localhost'. (The latter is actually equivalent to
'me@localhost'@'%', although this behavior is now deprecated.)

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the
current client's user name and host name literally.

63

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/identifiers.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Specifying Account Names

MySQL stores account names in grant tables in the mysql system database using separate columns
for the user name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user
name and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases.
These tables have User and Host columns to store the account name. Each row in these tables
associates with the account in the user table that has the same User and Host values.

• For access-checking purposes, comparisons of User values are case-sensitive. Comparisons of Host
values are not case-sensitive.

For additional detail about the properties of user names and host names as stored in the grant tables,
such as maximum length, see Grant Table Scope Column Properties.

User names and host names have certain special values or wildcard conventions, as described
following.

The user name part of an account name is either a nonblank value that literally matches the user name
for incoming connection attempts, or a blank value (the empty string) that matches any user name.
An account with a blank user name is an anonymous user. To specify an anonymous user in SQL
statements, use a quoted empty user name part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address (IPv4 or IPv6). The name 'localhost'
indicates the local host. The IP address '127.0.0.1' indicates the IPv4 loopback interface. The IP
address '::1' indicates the IPv6 loopback interface.

• Use of the % and _ wildcard characters is permitted in host name or IP address values, but is
deprecated as of MySQL 8.0.35, and thus subject to removal in a future version of MySQL.
These characters have the same meaning as for pattern-matching operations performed with the
LIKE operator. For example, a host value of '%' matches any host name, whereas a value of
'%.mysql.com' matches any host in the mysql.com domain. '198.51.100.%' matches any
host in the 198.51.100 class C network.

Because IP wildcard values are permitted in host values (for example, '198.51.100.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
198.51.100.somewhere.com. To foil such attempts, MySQL does not perform matching on host
names that start with digits and a dot. For example, if a host is named 1.2.example.com, its name
never matches the host part of account names. An IP wildcard value can match only IP addresses,
not host names.

If partial_revokes is ON, MySQL treats % and _ in grants as literal characters, and not as
wildcards. Beginning with MySQL 8.0.35, use of these wildcards is deprecated (regardless of this
variable's value), and you should expect this functionality to be removed in a future version of
MySQL.

• For a host value specified as an IPv4 address, a netmask can be given to indicate how many
address bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'198.51.100.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

64

https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Specifying Role Names

client_ip & 255.255.255.0 = 198.51.100.0

IP addresses that satisfy this condition range from 198.51.100.0 to 198.51.100.255.

A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

• 198.0.0.0/255.0.0.0: Any host on the 198 class A network

• 198.51.0.0/255.255.0.0: Any host on the 198.51 class B network

• 198.51.100.0/255.255.255.0: Any host on the 198.51.100 class C network

• 198.51.100.1: Only the host with this specific IP address

• As of MySQL 8.0.23, a host value specified as an IPv4 address can be written using CIDR notation,
such as 198.51.100.44/24.

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, the server performs this comparison as a string
match, even for an account host value given as an IP address. This means that you should specify
account host values in the same format used by DNS. Here are examples of problems to watch out for:

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values.
If DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 198.51.100.2, that matches an account host
value of 198.51.100.2 but not 198.051.100.2. Similarly, it matches an account host pattern like
198.51.100.% but not 198.051.100.%.

To avoid problems like these, it is advisable to check the format in which your DNS returns host names
and addresses. Use values in the same format in MySQL account names.

4.5 Specifying Role Names
MySQL role names refer to roles, which are named collections of privileges. For role usage examples,
see Section 4.10, “Using Roles”.

Role names have syntax and semantics similar to account names; see Section 4.4, “Specifying
Account Names”. As stored in the grant tables, they have the same properties as account names,
which are described in Grant Table Scope Column Properties.

Role names differ from account names in these respects:

• The user part of role names cannot be blank. Thus, there is no “anonymous role” analogous to the
concept of “anonymous user.”

• As for an account name, omitting the host part of a role name results in a host part of '%'. But unlike
'%' in an account name, a host part of '%' in a role name has no wildcard properties. For example,
for a name 'me'@'%' used as a role name, the host part ('%') is just a literal value; it has no “any
host” matching property.

• Netmask notation in the host part of a role name has no significance.

• An account name is permitted to be CURRENT_USER() in several contexts. A role name is not.

It is possible for a row in the mysql.user system table to serve as both an account and a role. In this
case, any special user or host name matching properties do not apply in contexts for which the name
is used as a role name. For example, you cannot execute the following statement with the expectation
that it sets the current session roles using all roles that have a user part of myrole and any host name:

65

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Access Control, Stage 1: Connection Verification

SET ROLE 'myrole'@'%';

Instead, the statement sets the active role for the session to the role with exactly the name
'myrole'@'%'.

For this reason, role names are often specified using only the user name part and letting the host name
part implicitly be '%'. Specifying a role with a non-'%' host part can be useful if you intend to create a
name that works both as a role an as a user account that is permitted to connect from the given host.

4.6 Access Control, Stage 1: Connection Verification
When you attempt to connect to a MySQL server, the server accepts or rejects the connection based
on these conditions:

• Your identity and whether you can verify it by supplying the proper credentials.

• Whether your account is locked or unlocked.

The server checks credentials first, then account locking state. A failure at either step causes the
server to deny access to you completely. Otherwise, the server accepts the connection, and then
enters Stage 2 and waits for requests.

The server performs identity and credentials checking using columns in the user table, accepting the
connection only if these conditions are satisfied:

• The client host name and user name match the Host and User columns in some user table row.
For the rules governing permissible Host and User values, see Section 4.4, “Specifying Account
Names”.

• The client supplies the credentials specified in the row (for example, a password), as indicated by
the authentication_string column. Credentials are interpreted using the authentication plugin
named in the plugin column.

• The row indicates that the account is unlocked. Locking state is recorded in the account_locked
column, which must have a value of 'N'. Account locking can be set or changed with the CREATE
USER or ALTER USER statement.

Your identity is based on two pieces of information:

• Your MySQL user name.

• The client host from which you connect.

If the User column value is nonblank, the user name in an incoming connection must match exactly.
If the User value is blank, it matches any user name. If the user table row that matches an incoming
connection has a blank user name, the user is considered to be an anonymous user with no name, not
a user with the name that the client actually specified. This means that a blank user name is used for
all further access checking for the duration of the connection (that is, during Stage 2).

The authentication_string column can be blank. This is not a wildcard and does not mean
that any password matches. It means that the user must connect without specifying a password. The
authentication method implemented by the plugin that authenticates the client may or may not use
the password in the authentication_string column. In this case, it is possible that an external
password is also used to authenticate to the MySQL server.

Nonblank password values stored in the authentication_string column of the user table are
encrypted. MySQL does not store passwords as cleartext for anyone to see. Rather, the password
supplied by a user who is attempting to connect is encrypted (using the password hashing method
implemented by the account authentication plugin). The encrypted password then is used during the
connection process when checking whether the password is correct. This is done without the encrypted
password ever traveling over the connection. See Section 4.1, “Account User Names and Passwords”.

66

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Access Control, Stage 1: Connection Verification

From the MySQL server's point of view, the encrypted password is the real password, so you should
never give anyone access to it. In particular, do not give nonadministrative users read access to tables
in the mysql system database.

The following table shows how various combinations of User and Host values in the user table apply
to incoming connections.

User Value Host Value Permissible Connections

'fred' 'h1.example.net' fred, connecting from
h1.example.net

'' 'h1.example.net' Any user, connecting from
h1.example.net

'fred' '%' fred, connecting from any host

'' '%' Any user, connecting from any
host

'fred' '%.example.net' fred, connecting from any host
in the example.net domain

'fred' 'x.example.%' fred, connecting from
x.example.net,
x.example.com,
x.example.edu, and so on;
this is probably not useful

'fred' '198.51.100.177' fred, connecting from
the host with IP address
198.51.100.177

'fred' '198.51.100.%' fred, connecting from any host
in the 198.51.100 class C
subnet

'fred' '198.51.100.0/255.255.255.0'Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than
one row in the user table. The preceding set of examples demonstrates this: Several of the entries
shown match a connection from h1.example.net by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this
issue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first:

• Literal IP addresses and host names are the most specific.

• Prior to MySQL 8.0.23, the specificity of a literal IP address is not affected by whether it has a
netmask, so 198.51.100.13 and 198.51.100.0/255.255.255.0 are considered equally
specific. As of MySQL 8.0.23, accounts with an IP address in the host part have this order of
specificity:

• Accounts that have the host part given as an IP address:

CREATE USER 'user_name'@'127.0.0.1';
CREATE USER 'user_name'@'198.51.100.44';

• Accounts that have the host part given as an IP address using CIDR notation:

67

Access Control, Stage 1: Connection Verification

CREATE USER 'user_name'@'192.0.2.21/8';
CREATE USER 'user_name'@'198.51.100.44/16';

• Accounts that have the host part given as an IP address with a subnet mask:

CREATE USER 'user_name'@'192.0.2.0/255.255.255.0';
CREATE USER 'user_name'@'198.51.0.0/255.255.0.0';

• The pattern '%' means “any host” and is least specific.

• The empty string '' also means “any host” but sorts after '%'.

Non-TCP (socket file, named pipe, and shared memory) connections are treated as local connections
and match a host part of localhost if there are any such accounts, or host parts with wildcards that
match localhost otherwise (for example, local%, l%, %).

The treatment of '%' as equivalent to localhost is deprecated as of MySQL 8.0.35, and you should
expect this behavior to removed from a future version of MySQL.

Rows with the same Host value are ordered with the most-specific User values first. A blank User
value means “any user” and is least specific, so for rows with the same Host value, nonanonymous
users sort before anonymous users.

For rows with equally-specific Host and User values, the order is nondeterministic.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The
result after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the
one with Host and User values of 'localhost' and '', and the one with values of '%' and
'jeffrey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| h1.example.net | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-

68

Access Control, Stage 2: Request Verification

| Host | User | ...
+----------------+----------+-
| h1.example.net | | ...
| % | jeffrey | ...
+----------------+----------+-

The first row matches a connection by any user from h1.example.net, whereas the second row
matches a connection by jeffrey from any host.

Note

It is a common misconception to think that, for a given user name, all rows
that explicitly name that user are used first when the server attempts to find a
match for the connection. This is not true. The preceding example illustrates
this, where a connection from h1.example.net by jeffrey is first matched
not by the row containing 'jeffrey' as the User column value, but by the row
with no user name. As a result, jeffrey is authenticated as an anonymous
user, even though he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably
are being authenticated as some other account. To find out what account the server used to
authenticate you, use the CURRENT_USER() function. (See Information Functions.) It returns a value
in user_name@host_name format that indicates the User and Host values from the matching user
table row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In
other words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to
see where the first match is being made.

4.7 Access Control, Stage 2: Request Verification
After the server accepts a connection, it enters Stage 2 of access control. For each request that you
issue through the connection, the server determines what operation you want to perform, then checks
whether your privileges are sufficient. This is where the privilege columns in the grant tables come
into play. These privileges can come from any of the user, global_grants, db, tables_priv,
columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 4.3, “Grant Tables”,
which lists the columns present in each grant table.)

The user and global_grants tables grant global privileges. The rows in these tables for a given
account indicate the account privileges that apply on a global basis no matter what the default
database is. For example, if the user table grants you the DELETE privilege, you can delete rows from
any table in any database on the server host. It is wise to grant privileges in the user table only to
people who need them, such as database administrators. For other users, leave all privileges in the
user table set to 'N' and grant privileges at more specific levels only (for particular databases, tables,
columns, or routines). It is also possible to grant database privileges globally but use partial revokes to
restrict them from being exercised on specific databases (see Section 4.12, “Privilege Restriction Using
Partial Revokes”).

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

• A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

69

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html

Access Control, Stage 2: Request Verification

• The wildcard characters % and _ can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LIKE operator. If you want to use
either character literally when granting privileges, you must escape it with a backslash. For example,
to include the underscore character (_) as part of a database name, specify it as _ in the GRANT
statement.

• A '%' or blank Host value means “any host.”

• A '%' or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table.
The server sorts the db table based on the Host, Db, and User scope columns. As with the user
table, sorting puts the most-specific values first and least-specific values last, and when the server
looks for matching rows, it uses the first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific,
and routine-specific privileges. Values in the scope columns of these tables can take the following
forms:

• The wildcard characters % and _ can be used in the Host column. These have the same meaning as
for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host,
Db, and User columns. This is similar to db table sorting, but simpler because only the Host column
can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user and
global_privilege tables because those are the only tables that specify administrative privileges.
The server grants access if a row for the account in those tables permits the requested operation and
denies access otherwise. For example, if you want to execute mysqladmin shutdown but your
user table row does not grant the SHUTDOWN privilege to you, the server denies access without even
checking the db table. (The latter table contains no Shutdown_priv column, so there is no need to
check it.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges in the user table row (less any privilege restrictions imposed by partial revokes). If the
row permits the requested operation, access is granted. If the global privileges in the user table are
insufficient, the server determines the user's database-specific privileges from the db table:

• The server looks in the db table for a match on the Host, Db, and User columns.

• The Host and User columns are matched to the connecting user's host name and MySQL user
name.

• The Db column is matched to the database that the user wants to access.

• If there is no row for the Host and User, access is denied.

After determining the database-specific privileges granted by the db table rows, the server adds them
to the global privileges granted by the user table. If the result permits the requested operation, access
is granted. Otherwise, the server successively checks the user's table and column privileges in the
tables_priv and columns_priv tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_priv table
rather than tables_priv and columns_priv.

70

https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Adding Accounts, Assigning Privileges, and Dropping Accounts

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR database privileges
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global privileges are initially found to be insufficient for the requested
operation, the server adds those privileges to the database, table, and column privileges later. The
reason is that a request might require more than one type of privilege. For example, if you execute
an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT privileges.
Your privileges might be such that the user table row grants one privilege global and the db table row
grants the other specifically for the relevant database. In this case, you have the necessary privileges
to perform the request, but the server cannot tell that from either your global or database privileges
alone. It must make an access-control decision based on the combined privileges.

4.8 Adding Accounts, Assigning Privileges, and Dropping
Accounts

To manage MySQL accounts, use the SQL statements intended for that purpose:

• CREATE USER and DROP USER create and remove accounts.

• GRANT and REVOKE assign privileges to and revoke privileges from accounts.

• SHOW GRANTS displays account privilege assignments.

Account-management statements cause the server to make appropriate modifications to the underlying
grant tables, which are discussed in Section 4.3, “Grant Tables”.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE,
or DELETE is discouraged and done at your own risk. The server is free to
ignore rows that become malformed as a result of such modifications.

For any operation that modifies a grant table, the server checks whether the
table has the expected structure and produces an error if not. To update the
tables to the expected structure, perform the MySQL upgrade procedure. See
Upgrading MySQL.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmin is one such program.

This section discusses the following topics:

• Creating Accounts and Granting Privileges

• Checking Account Privileges and Properties

• Revoking Account Privileges

• Dropping Accounts

For additional information about the statements discussed here, see Account Management Statements.

Creating Accounts and Granting Privileges

The following examples show how to use the mysql client program to set up new accounts. These
examples assume that the MySQL root account has the CREATE USER privilege and all privileges
that it grants to other accounts.

71

https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html

Creating Accounts and Granting Privileges

At the command line, connect to the server as the MySQL root user, supplying the appropriate
password at the password prompt:

$> mysql -u root -p
Enter password: (enter root password here)

After connecting to the server, you can add new accounts. The following example uses CREATE USER
and GRANT statements to set up four accounts (where you see 'password', substitute an appropriate
password):

CREATE USER 'finley'@'localhost'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'localhost'
 WITH GRANT OPTION;
CREATE USER 'finley'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT ALL
 ON *.*
 TO 'finley'@'%.example.com'
 WITH GRANT OPTION;
CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'password';
GRANT RELOAD,PROCESS
 ON *.*
 TO 'admin'@'localhost';
CREATE USER 'dummy'@'localhost';

The accounts created by those statements have the following properties:

• Two accounts have a user name of finley. Both are superuser accounts with full global privileges
to do anything. The 'finley'@'localhost' account can be used only when connecting from the
local host. The 'finley'@'%.example.com' account uses the '%' wildcard in the host part, so it
can be used to connect from any host in the example.com domain.

The 'finley'@'localhost' account is necessary if there is an anonymous-user account for
localhost. Without the 'finley'@'localhost' account, that anonymous-user account takes
precedence when finley connects from the local host and finley is treated as an anonymous
user. The reason for this is that the anonymous-user account has a more specific Host column
value than the 'finley'@'%' account and thus comes earlier in the user table sort order. (For
information about user table sorting, see Section 4.6, “Access Control, Stage 1: Connection
Verification”.)

• The 'admin'@'localhost' account can be used only by admin to connect from the local host.
It is granted the global RELOAD and PROCESS administrative privileges. These privileges enable
the admin user to execute the mysqladmin reload, mysqladmin refresh, and mysqladmin
flush-xxx commands, as well as mysqladmin processlist . No privileges are granted for
accessing any databases. You could add such privileges using GRANT statements.

• The 'dummy'@'localhost' account has no password (which is insecure and not recommended).
This account can be used only to connect from the local host. No privileges are granted. It is
assumed that you grant specific privileges to the account using GRANT statements.

The previous example grants privileges at the global level. The next example creates three accounts
and grants them access at lower levels; that is, to specific databases or objects within databases. Each
account has a user name of custom, but the host name parts differ:

CREATE USER 'custom'@'localhost'
 IDENTIFIED BY 'password';
GRANT ALL
 ON bankaccount.*
 TO 'custom'@'localhost';
CREATE USER 'custom'@'host47.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

72

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Checking Account Privileges and Properties

 ON expenses.*
 TO 'custom'@'host47.example.com';
CREATE USER 'custom'@'%.example.com'
 IDENTIFIED BY 'password';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 ON customer.addresses
 TO 'custom'@'%.example.com';

The three accounts can be used as follows:

• The 'custom'@'localhost' account has all database-level privileges to access the
bankaccount database. The account can be used to connect to the server only from the local host.

• The 'custom'@'host47.example.com' account has specific database-level privileges to access
the expenses database. The account can be used to connect to the server only from the host
host47.example.com.

• The 'custom'@'%.example.com' account has specific table-level privileges to access the
addresses table in the customer database, from any host in the example.com domain. The
account can be used to connect to the server from all machines in the domain due to use of the %
wildcard character in the host part of the account name.

Checking Account Privileges and Properties

To see the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO `admin`@`localhost` |
+---+

To see nonprivilege properties for an account, use SHOW CREATE USER:

mysql> SET print_identified_with_as_hex = ON;
mysql> SHOW CREATE USER 'admin'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for admin@localhost: CREATE USER `admin`@`localhost`
IDENTIFIED WITH 'caching_sha2_password'
AS 0x24412430303524301D0E17054E2241362B1419313C3E44326F294133734B30792F436E77764270373039612E32445250786D43594F45354532324B6169794F47457852796E32
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK
PASSWORD HISTORY DEFAULT
PASSWORD REUSE INTERVAL DEFAULT
PASSWORD REQUIRE CURRENT DEFAULT

Enabling the print_identified_with_as_hex system variable (available as of MySQL
8.0.17) causes SHOW CREATE USER to display hash values that contain unprintable characters as
hexadecimal strings rather than as regular string literals.

Revoking Account Privileges

To revoke account privileges, use the REVOKE statement. Privileges can be revoked at different levels,
just as they can be granted at different levels.

Revoke global privileges:

REVOKE ALL
 ON *.*
 FROM 'finley'@'%.example.com';
REVOKE RELOAD
 ON *.*
 FROM 'admin'@'localhost';

Revoke database-level privileges:

REVOKE CREATE,DROP

73

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_print_identified_with_as_hex
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Dropping Accounts

 ON expenses.*
 FROM 'custom'@'host47.example.com';

Revoke table-level privileges:

REVOKE INSERT,UPDATE,DELETE
 ON customer.addresses
 FROM 'custom'@'%.example.com';

To check the effect of privilege revocation, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT PROCESS ON *.* TO `admin`@`localhost` |
+---+

Dropping Accounts

To remove an account, use the DROP USER statement. For example, to drop some of the accounts
created previously:

DROP USER 'finley'@'localhost';
DROP USER 'finley'@'%.example.com';
DROP USER 'admin'@'localhost';
DROP USER 'dummy'@'localhost';

4.9 Reserved Accounts
One part of the MySQL installation process is data directory initialization (see Section 3.1, “Initializing
the Data Directory”). During data directory initialization, MySQL creates user accounts that should be
considered reserved:

• 'root'@'localhost: Used for administrative purposes. This account has all privileges, is a
system account, and can perform any operation.

Strictly speaking, this account name is not reserved, in the sense that some installations rename
the root account to something else to avoid exposing a highly privileged account with a well-known
name.

• 'mysql.sys'@'localhost': Used as the DEFINER for sys schema objects. Use of the
mysql.sys account avoids problems that occur if a DBA renames or removes the root account.
This account is locked so that it cannot be used for client connections.

• 'mysql.session'@'localhost': Used internally by plugins to access the server. This account is
locked so that it cannot be used for client connections. The account is a system account.

• 'mysql.infoschema'@'localhost': Used as the DEFINER for INFORMATION_SCHEMA views.
Use of the mysql.infoschema account avoids problems that occur if a DBA renames or removes
the root account. This account is locked so that it cannot be used for client connections.

4.10 Using Roles
A MySQL role is a named collection of privileges. Like user accounts, roles can have privileges granted
to and revoked from them.

A user account can be granted roles, which grants to the account the privileges associated with each
role. This enables assignment of sets of privileges to accounts and provides a convenient alternative to
granting individual privileges, both for conceptualizing desired privilege assignments and implementing
them.

The following list summarizes role-management capabilities provided by MySQL:

74

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/sys-schema.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html

Creating Roles and Granting Privileges to Them

• CREATE ROLE and DROP ROLE create and remove roles.

• GRANT and REVOKE assign privileges to revoke privileges from user accounts and roles.

• SHOW GRANTS displays privilege and role assignments for user accounts and roles.

• SET DEFAULT ROLE specifies which account roles are active by default.

• SET ROLE changes the active roles within the current session.

• The CURRENT_ROLE() function displays the active roles within the current session.

• The mandatory_roles and activate_all_roles_on_login system variables enable defining
mandatory roles and automatic activation of granted roles when users log in to the server.

For descriptions of individual role-manipulation statements (including the privileges required to use
them), see Account Management Statements. The following discussion provides examples of role
usage. Unless otherwise specified, SQL statements shown here should be executed using a MySQL
account with sufficient administrative privileges, such as the root account.

• Creating Roles and Granting Privileges to Them

• Defining Mandatory Roles

• Checking Role Privileges

• Activating Roles

• Revoking Roles or Role Privileges

• Dropping Roles

• User and Role Interchangeability

Creating Roles and Granting Privileges to Them

Consider this scenario:

• An application uses a database named app_db.

• Associated with the application, there can be accounts for developers who create and maintain the
application, and for users who interact with it.

• Developers need full access to the database. Some users need only read access, others need read/
write access.

To avoid granting privileges individually to possibly many user accounts, create roles as names for the
required privilege sets. This makes it easy to grant the required privileges to user accounts, by granting
the appropriate roles.

To create the roles, use the CREATE ROLE statement:

CREATE ROLE 'app_developer', 'app_read', 'app_write';

Role names are much like user account names and consist of a user part and host part in
'user_name'@'host_name' format. The host part, if omitted, defaults to '%'. The user and host
parts can be unquoted unless they contain special characters such as - or %. Unlike account names,
the user part of role names cannot be blank. For additional information, see Section 4.5, “Specifying
Role Names”.

To assign privileges to the roles, execute GRANT statements using the same syntax as for assigning
privileges to user accounts:

GRANT ALL ON app_db.* TO 'app_developer';

75

https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/set-default-role.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Defining Mandatory Roles

GRANT SELECT ON app_db.* TO 'app_read';
GRANT INSERT, UPDATE, DELETE ON app_db.* TO 'app_write';

Now suppose that initially you require one developer account, two user accounts that need read-
only access, and one user account that needs read/write access. Use CREATE USER to create the
accounts:

CREATE USER 'dev1'@'localhost' IDENTIFIED BY 'dev1pass';
CREATE USER 'read_user1'@'localhost' IDENTIFIED BY 'read_user1pass';
CREATE USER 'read_user2'@'localhost' IDENTIFIED BY 'read_user2pass';
CREATE USER 'rw_user1'@'localhost' IDENTIFIED BY 'rw_user1pass';

To assign each user account its required privileges, you could use GRANT statements of the same
form as just shown, but that requires enumerating individual privileges for each user. Instead, use an
alternative GRANT syntax that permits granting roles rather than privileges:

GRANT 'app_developer' TO 'dev1'@'localhost';
GRANT 'app_read' TO 'read_user1'@'localhost', 'read_user2'@'localhost';
GRANT 'app_read', 'app_write' TO 'rw_user1'@'localhost';

The GRANT statement for the rw_user1 account grants the read and write roles, which combine to
provide the required read and write privileges.

The GRANT syntax for granting roles to an account differs from the syntax for granting privileges:
There is an ON clause to assign privileges, whereas there is no ON clause to assign roles. Because
the syntaxes are distinct, you cannot mix assigning privileges and roles in the same statement. (It
is permitted to assign both privileges and roles to an account, but you must use separate GRANT
statements, each with syntax appropriate to what is to be granted.) As of MySQL 8.0.16, roles cannot
be granted to anonymous users.

A role when created is locked, has no password, and is assigned the default authentication plugin.
(These role attributes can be changed later with the ALTER USER statement, by users who have the
global CREATE USER privilege.)

While locked, a role cannot be used to authenticate to the server. If unlocked, a role can be used to
authenticate. This is because roles and users are both authorization identifiers with much in common
and little to distinguish them. See also User and Role Interchangeability.

Defining Mandatory Roles

It is possible to specify roles as mandatory by naming them in the value of the mandatory_roles
system variable. The server treats a mandatory role as granted to all users, so that it need not be
granted explicitly to any account.

To specify mandatory roles at server startup, define mandatory_roles in your server my.cnf file:

[mysqld]
mandatory_roles='role1,role2@localhost,r3@%.example.com'

To set and persist mandatory_roles at runtime, use a statement like this:

SET PERSIST mandatory_roles = 'role1,role2@localhost,r3@%.example.com';

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change the value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See SET
Syntax for Variable Assignment.

Setting mandatory_roles requires the ROLE_ADMIN privilege, in addition to the
SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege) normally required to set a
global system variable.

Mandatory roles, like explicitly granted roles, do not take effect until activated (see Activating Roles). At
login time, role activation occurs for all granted roles if the activate_all_roles_on_login system

76

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login

Checking Role Privileges

variable is enabled, or for roles that are set as default roles otherwise. At runtime, SET ROLE activates
roles.

Roles named in the value of mandatory_roles cannot be revoked with REVOKE or dropped with
DROP ROLE or DROP USER.

To prevent sessions from being made system sessions by default, a role that has the SYSTEM_USER
privilege cannot be listed in the value of the mandatory_roles system variable:

• If mandatory_roles is assigned a role at startup that has the SYSTEM_USER privilege, the server
writes a message to the error log and exits.

• If mandatory_roles is assigned a role at runtime that has the SYSTEM_USER privilege, an error
occurs and the mandatory_roles value remains unchanged.

Even with this safeguard, it is better to avoid granting the SYSTEM_USER privilege through a role in
order to guard against the possibility of privilege escalation.

If a role named in mandatory_roles is not present in the mysql.user system table, the role is not
granted to users. When the server attempts role activation for a user, it does not treat the nonexistent
role as mandatory and writes a warning to the error log. If the role is created later and thus becomes
valid, FLUSH PRIVILEGES may be necessary to cause the server to treat it as mandatory.

SHOW GRANTS displays mandatory roles according to the rules described in SHOW GRANTS
Statement.

Checking Role Privileges

To verify the privileges assigned to an account, use SHOW GRANTS. For example:

mysql> SHOW GRANTS FOR 'dev1'@'localhost';
+---+
| Grants for dev1@localhost |
+---+
| GRANT USAGE ON *.* TO `dev1`@`localhost` |
| GRANT `app_developer`@`%` TO `dev1`@`localhost` |
+---+

However, that shows each granted role without “expanding” it to the privileges the role represents.
To show role privileges as well, add a USING clause naming the granted roles for which to display
privileges:

mysql> SHOW GRANTS FOR 'dev1'@'localhost' USING 'app_developer';
+--+
| Grants for dev1@localhost |
+--+
| GRANT USAGE ON *.* TO `dev1`@`localhost` |
| GRANT ALL PRIVILEGES ON `app_db`.* TO `dev1`@`localhost` |
| GRANT `app_developer`@`%` TO `dev1`@`localhost` |
+--+

Verify each other type of user similarly:

mysql> SHOW GRANTS FOR 'read_user1'@'localhost' USING 'app_read';
+--+
| Grants for read_user1@localhost |
+--+
| GRANT USAGE ON *.* TO `read_user1`@`localhost` |
| GRANT SELECT ON `app_db`.* TO `read_user1`@`localhost` |
| GRANT `app_read`@`%` TO `read_user1`@`localhost` |
+--+
mysql> SHOW GRANTS FOR 'rw_user1'@'localhost' USING 'app_read', 'app_write';
+--+
| Grants for rw_user1@localhost |
+--+
| GRANT USAGE ON *.* TO `rw_user1`@`localhost` |
| GRANT SELECT, INSERT, UPDATE, DELETE ON `app_db`.* TO `rw_user1`@`localhost` |

77

https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

Activating Roles

| GRANT `app_read`@`%`,`app_write`@`%` TO `rw_user1`@`localhost` |
+--+

SHOW GRANTS displays mandatory roles according to the rules described in SHOW GRANTS
Statement.

Activating Roles

Roles granted to a user account can be active or inactive within account sessions. If a granted role is
active within a session, its privileges apply; otherwise, they do not. To determine which roles are active
within the current session, use the CURRENT_ROLE() function.

By default, granting a role to an account or naming it in the mandatory_roles system variable value
does not automatically cause the role to become active within account sessions. For example, because
thus far in the preceding discussion no rw_user1 roles have been activated, if you connect to the
server as rw_user1 and invoke the CURRENT_ROLE() function, the result is NONE (no active roles):

mysql> SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| NONE |
+----------------+

To specify which roles should become active each time a user connects to the server and
authenticates, use SET DEFAULT ROLE. To set the default to all assigned roles for each account
created earlier, use this statement:

SET DEFAULT ROLE ALL TO
 'dev1'@'localhost',
 'read_user1'@'localhost',
 'read_user2'@'localhost',
 'rw_user1'@'localhost';

Now if you connect as rw_user1, the initial value of CURRENT_ROLE() reflects the new default role
assignments:

mysql> SELECT CURRENT_ROLE();
+--------------------------------+
| CURRENT_ROLE() |
+--------------------------------+
| `app_read`@`%`,`app_write`@`%` |
+--------------------------------+

To cause all explicitly granted and mandatory roles to be automatically activated when users connect to
the server, enable the activate_all_roles_on_login system variable. By default, automatic role
activation is disabled.

Within a session, a user can execute SET ROLE to change the set of active roles. For example, for
rw_user1:

mysql> SET ROLE NONE; SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| NONE |
+----------------+
mysql> SET ROLE ALL EXCEPT 'app_write'; SELECT CURRENT_ROLE();
+----------------+
| CURRENT_ROLE() |
+----------------+
| `app_read`@`%` |
+----------------+
mysql> SET ROLE DEFAULT; SELECT CURRENT_ROLE();
+--------------------------------+
| CURRENT_ROLE() |
+--------------------------------+

78

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role
https://dev.mysql.com/doc/refman/8.0/en/set-default-role.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-role
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://dev.mysql.com/doc/refman/8.0/en/set-role.html

Revoking Roles or Role Privileges

| `app_read`@`%`,`app_write`@`%` |
+--------------------------------+

The first SET ROLE statement deactivates all roles. The second makes rw_user1 effectively read
only. The third restores the default roles.

The effective user for stored program and view objects is subject to the DEFINER and SQL SECURITY
attributes, which determine whether execution occurs in invoker or definer context (see Stored Object
Access Control):

• Stored program and view objects that execute in invoker context execute with the roles that are
active within the current session.

• Stored program and view objects that execute in definer context execute with the default roles of
the user named in their DEFINER attribute. If activate_all_roles_on_login is enabled, such
objects execute with all roles granted to the DEFINER user, including mandatory roles. For stored
programs, if execution should occur with roles different from the default, the program body can
execute SET ROLE to activate the required roles. This must be done with caution since the privileges
assigned to roles can be changed.

Revoking Roles or Role Privileges

Just as roles can be granted to an account, they can be revoked from an account:

REVOKE role FROM user;

Roles named in the mandatory_roles system variable value cannot be revoked.

REVOKE can also be applied to a role to modify the privileges granted to it. This affects not only the
role itself, but any account granted that role. Suppose that you want to temporarily make all application
users read only. To do this, use REVOKE to revoke the modification privileges from the app_write
role:

REVOKE INSERT, UPDATE, DELETE ON app_db.* FROM 'app_write';

As it happens, that leaves the role with no privileges at all, as can be seen using SHOW GRANTS (which
demonstrates that this statement can be used with roles, not just users):

mysql> SHOW GRANTS FOR 'app_write';
+---------------------------------------+
| Grants for app_write@% |
+---------------------------------------+
| GRANT USAGE ON *.* TO `app_write`@`%` |
+---------------------------------------+

Because revoking privileges from a role affects the privileges for any user who is assigned the modified
role, rw_user1 now has no table modification privileges (INSERT, UPDATE, and DELETE are no longer
present):

mysql> SHOW GRANTS FOR 'rw_user1'@'localhost'
 USING 'app_read', 'app_write';
+--+
| Grants for rw_user1@localhost |
+--+
| GRANT USAGE ON *.* TO `rw_user1`@`localhost` |
| GRANT SELECT ON `app_db`.* TO `rw_user1`@`localhost` |
| GRANT `app_read`@`%`,`app_write`@`%` TO `rw_user1`@`localhost` |
+--+

In effect, the rw_user1 read/write user has become a read-only user. This also occurs for any other
accounts that are granted the app_write role, illustrating how use of roles makes it unnecessary to
modify privileges for individual accounts.

To restore modification privileges to the role, simply re-grant them:

GRANT INSERT, UPDATE, DELETE ON app_db.* TO 'app_write';

79

https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_activate_all_roles_on_login
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

Dropping Roles

Now rw_user1 again has modification privileges, as do any other accounts granted the app_write
role.

Dropping Roles

To drop roles, use DROP ROLE:

DROP ROLE 'app_read', 'app_write';

Dropping a role revokes it from every account to which it was granted.

Roles named in the mandatory_roles system variable value cannot be dropped.

User and Role Interchangeability

As has been hinted at earlier for SHOW GRANTS, which displays grants for user accounts or roles,
accounts and roles can be used interchangeably.

One difference between roles and users is that CREATE ROLE creates an authorization identifier
that is locked by default, whereas CREATE USER creates an authorization identifier that is unlocked
by default. You should keep in mind that this distinction is not immutable; a user with appropriate
privileges can lock or unlock roles or (other) users after they have been created.

If a database administrator has a preference that a specific authorization identifier must be a role, a
name scheme can be used to communicate this intention. For example, you could use a r_ prefix for
all authorization identifiers that you intend to be roles and nothing else.

Another difference between roles and users lies in the privileges available for administering them:

• The CREATE ROLE and DROP ROLE privileges enable only use of the CREATE ROLE and DROP
ROLE statements, respectively.

• The CREATE USER privilege enables use of the ALTER USER, CREATE ROLE, CREATE USER, DROP
ROLE, DROP USER, RENAME USER, and REVOKE ALL PRIVILEGES statements.

Thus, the CREATE ROLE and DROP ROLE privileges are not as powerful as CREATE USER and may be
granted to users who should only be permitted to create and drop roles, and not perform more general
account manipulation.

With regard to privileges and interchangeability of users and roles, you can treat a user account like a
role and grant that account to another user or a role. The effect is to grant the account's privileges and
roles to the other user or role.

This set of statements demonstrates that you can grant a user to a user, a role to a user, a user to a
role, or a role to a role:

CREATE USER 'u1';
CREATE ROLE 'r1';
GRANT SELECT ON db1.* TO 'u1';
GRANT SELECT ON db2.* TO 'r1';
CREATE USER 'u2';
CREATE ROLE 'r2';
GRANT 'u1', 'r1' TO 'u2';
GRANT 'u1', 'r1' TO 'r2';

The result in each case is to grant to the grantee object the privileges associated with the granted
object. After executing those statements, each of u2 and r2 have been granted privileges from a user
(u1) and a role (r1):

mysql> SHOW GRANTS FOR 'u2' USING 'u1', 'r1';
+-------------------------------------+
| Grants for u2@% |
+-------------------------------------+
| GRANT USAGE ON *.* TO `u2`@`%` |

80

https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-role.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Account Categories

| GRANT SELECT ON `db1`.* TO `u2`@`%` |
| GRANT SELECT ON `db2`.* TO `u2`@`%` |
| GRANT `u1`@`%`,`r1`@`%` TO `u2`@`%` |
+-------------------------------------+
mysql> SHOW GRANTS FOR 'r2' USING 'u1', 'r1';
+-------------------------------------+
| Grants for r2@% |
+-------------------------------------+
| GRANT USAGE ON *.* TO `r2`@`%` |
| GRANT SELECT ON `db1`.* TO `r2`@`%` |
| GRANT SELECT ON `db2`.* TO `r2`@`%` |
| GRANT `u1`@`%`,`r1`@`%` TO `r2`@`%` |
+-------------------------------------+

The preceding example is illustrative only, but interchangeability of user accounts and roles has
practical application, such as in the following situation: Suppose that a legacy application development
project began before the advent of roles in MySQL, so all user accounts associated with the project are
granted privileges directly (rather than granted privileges by virtue of being granted roles). One of these
accounts is a developer account that was originally granted privileges as follows:

CREATE USER 'old_app_dev'@'localhost' IDENTIFIED BY 'old_app_devpass';
GRANT ALL ON old_app.* TO 'old_app_dev'@'localhost';

If this developer leaves the project, it becomes necessary to assign the privileges to another user, or
perhaps multiple users if development activities have expanded. Here are some ways to deal with the
issue:

• Without using roles: Change the account password so the original developer cannot use it, and have
a new developer use the account instead:

ALTER USER 'old_app_dev'@'localhost' IDENTIFIED BY 'new_password';

• Using roles: Lock the account to prevent anyone from using it to connect to the server:

ALTER USER 'old_app_dev'@'localhost' ACCOUNT LOCK;

Then treat the account as a role. For each developer new to the project, create a new account and
grant to it the original developer account:

CREATE USER 'new_app_dev1'@'localhost' IDENTIFIED BY 'new_password';
GRANT 'old_app_dev'@'localhost' TO 'new_app_dev1'@'localhost';

The effect is to assign the original developer account privileges to the new account.

4.11 Account Categories
As of MySQL 8.0.16, MySQL incorporates the concept of user account categories, based on the
SYSTEM_USER privilege.

• System and Regular Accounts

• Operations Affected by the SYSTEM_USER Privilege

• System and Regular Sessions

• Protecting System Accounts Against Manipulation by Regular Accounts

System and Regular Accounts

MySQL incorporates the concept of user account categories, with system and regular users
distinguished according to whether they have the SYSTEM_USER privilege:

• A user with the SYSTEM_USER privilege is a system user.

• A user without the SYSTEM_USER privilege is a regular user.

81

Operations Affected by the SYSTEM_USER Privilege

The SYSTEM_USER privilege has an effect on the accounts to which a given user can apply its other
privileges, as well as whether the user is protected from other accounts:

• A system user can modify both system and regular accounts. That is, a user who has the
appropriate privileges to perform a given operation on regular accounts is enabled by possession of
SYSTEM_USER to also perform the operation on system accounts. A system account can be modified
only by system users with appropriate privileges, not by regular users.

• A regular user with appropriate privileges can modify regular accounts, but not system accounts. A
regular account can be modified by both system and regular users with appropriate privileges.

If a user has the appropriate privileges to perform a given operation on regular accounts,
SYSTEM_USER enables the user to also perform the operation on system accounts. SYSTEM_USER
does not imply any other privilege, so the ability to perform a given account operation remains
predicated on possession of any other required privileges. For example, if a user can grant the SELECT
and UPDATE privileges to regular accounts, then with SYSTEM_USER the user can also grant SELECT
and UPDATE to system accounts.

The distinction between system and regular accounts enables better control over certain account
administration issues by protecting accounts that have the SYSTEM_USER privilege from accounts
that do not have the privilege. For example, the CREATE USER privilege enables not only creation of
new accounts, but modification and removal of existing accounts. Without the system user concept, a
user who has the CREATE USER privilege can modify or drop any existing account, including the root
account. The concept of system user enables restricting modifications to the root account (itself a
system account) so they can be made only by system users. Regular users with the CREATE USER
privilege can still modify or drop existing accounts, but only regular accounts.

Operations Affected by the SYSTEM_USER Privilege

The SYSTEM_USER privilege affects these operations:

• Account manipulation.

Account manipulation includes creating and dropping accounts, granting and revoking privileges,
changing account authentication characteristics such as credentials or authentication plugin, and
changing other account characteristics such as password expiration policy.

The SYSTEM_USER privilege is required to manipulate system accounts using account-management
statements such as CREATE USER and GRANT. To prevent an account from modifying system
accounts this way, make it a regular account by not granting it the SYSTEM_USER privilege.
(However, to fully protect system accounts against regular accounts, you must also withhold
modification privileges for the mysql system schema from regular accounts. See Protecting System
Accounts Against Manipulation by Regular Accounts.)

• Killing current sessions and statements executing within them.

To kill a session or statement that is executing with the SYSTEM_USER privilege, your own
session must have the SYSTEM_USER privilege, in addition to any other required privilege
(CONNECTION_ADMIN or the deprecated SUPER privilege).

From MySQL 8.0.30, if the user that puts a server in offline mode does not have the SYSTEM_USER
privilege, connected client users who have the SYSTEM_USER privilege are also not disconnected.
However, these users cannot initiate new connections to the server while it is in offline mode, unless
they have the CONNECTION_ADMIN or SUPER privilege as well. It is only their existing connection
that is not terminated, because the SYSTEM_USER privilege is required to do that.

Prior to MySQL 8.0.16, CONNECTION_ADMIN privilege (or the deprecated SUPER privilege) is
sufficient to kill any session or statement.

• Setting the DEFINER attribute for stored objects.

82

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

System and Regular Sessions

To set the DEFINER attribute for a stored object to an account that has the SYSTEM_USER
privilege, you must have the SYSTEM_USER privilege, in addition to any other required privilege
(SET_USER_ID or the deprecated SUPER privilege).

Prior to MySQL 8.0.16, the SET_USER_ID privilege (or the deprecated SUPER privilege) is sufficient
to specify any DEFINER value for stored objects.

• Specifying mandatory roles.

A role that has the SYSTEM_USER privilege cannot be listed in the value of the mandatory_roles
system variable.

Prior to MySQL 8.0.16, any role can be listed in mandatory_roles.

• Overriding “abort” items in MySQL Enterprise Audit’s audit log filter.

From MySQL 8.0.28, accounts with the SYSTEM_USER privilege are automatically assigned the
AUDIT_ABORT_EXEMPT privilege, so that queries from the account are always executed even if an
“abort” item in the audit log filter would block them. Accounts with the SYSTEM_USER privilege can
therefore be used to regain access to a system following an audit misconfiguration. See Section 6.5,
“MySQL Enterprise Audit”.

System and Regular Sessions

Sessions executing within the server are distinguished as system or regular sessions, similar to the
distinction between system and regular users:

• A session that possesses the SYSTEM_USER privilege is a system session.

• A session that does not possess the SYSTEM_USER privilege is a regular session.

A regular session is able to perform only operations permitted to regular users. A system session is
additionally able to perform operations permitted only to system users.

The privileges possessed by a session are those granted directly to its underlying account, plus those
granted to all roles currently active within the session. Thus, a session may be a system session
because its account has been granted the SYSTEM_USER privilege directly, or because the session has
activated a role that has the SYSTEM_USER privilege. Roles granted to an account that are not active
within the session do not affect session privileges.

Because activating and deactivating roles can change the privileges possessed by sessions, a
session may change from a regular session to a system session or vice versa. If a session activates or
deactivates a role that has the SYSTEM_USER privilege, the appropriate change between regular and
system session takes place immediately, for that session only:

• If a regular session activates a role with the SYSTEM_USER privilege, the session becomes a system
session.

• If a system session deactivates a role with the SYSTEM_USER privilege, the session becomes a
regular session, unless some other role with the SYSTEM_USER privilege remains active.

These operations have no effect on existing sessions:

• If the SYSTEM_USER privilege is granted to or revoked from an account, existing sessions for the
account do not change between regular and system sessions. The grant or revoke operation affects
only sessions for subsequent connections by the account.

• Statements executed by a stored object invoked within a session execute with the system or regular
status of the parent session, even if the object DEFINER attribute names a system account.

Because role activation affects only sessions and not accounts, granting a role that has the
SYSTEM_USER privilege to a regular account does not protect that account against regular users.

83

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mandatory_roles

Protecting System Accounts Against Manipulation by Regular Accounts

The role protects only sessions for the account in which the role has been activated, and protects the
session only against being killed by regular sessions.

Protecting System Accounts Against Manipulation by Regular Accounts

Account manipulation includes creating and dropping accounts, granting and revoking privileges,
changing account authentication characteristics such as credentials or authentication plugin, and
changing other account characteristics such as password expiration policy.

Account manipulation can be done two ways:

• By using account-management statements such as CREATE USER and GRANT. This is the preferred
method.

• By direct grant-table modification using statements such as INSERT and UPDATE. This method is
discouraged but possible for users with the appropriate privileges on the mysql system schema that
contains the grant tables.

To fully protect system accounts against modification by a given account, make it a regular account
and do not grant it modification privileges for the mysql schema:

• The SYSTEM_USER privilege is required to manipulate system accounts using account-management
statements. To prevent an account from modifying system accounts this way, make it a regular
account by not granting SYSTEM_USER to it. This includes not granting SYSTEM_USER to any roles
granted to the account.

• Privileges for the mysql schema enable manipulation of system accounts through direct modification
of the grant tables, even if the modifying account is a regular account. To restrict unauthorized direct
modification of system accounts by a regular account, do not grant modification privileges for the
mysql schema to the account (or any roles granted to the account). If a regular account must have
global privileges that apply to all schemas, mysql schema modifications can be prevented using
privilege restrictions imposed using partial revokes. See Section 4.12, “Privilege Restriction Using
Partial Revokes”.

Note

Unlike withholding the SYSTEM_USER privilege, which prevents an account
from modifying system accounts but not regular accounts, withholding mysql
schema privileges prevents an account from modifying system accounts as well
as regular accounts. This should not be an issue because, as mentioned, direct
grant-table modification is discouraged.

Suppose that you want to create a user u1 who has all privileges on all schemas, except that
u1 should be a regular user without the ability to modify system accounts. Assuming that the
partial_revokes system variable is enabled, configure u1 as follows:

CREATE USER u1 IDENTIFIED BY 'password';
GRANT ALL ON *.* TO u1 WITH GRANT OPTION;
-- GRANT ALL includes SYSTEM_USER, so at this point
-- u1 can manipulate system or regular accounts
REVOKE SYSTEM_USER ON *.* FROM u1;
-- Revoking SYSTEM_USER makes u1 a regular user;
-- now u1 can use account-management statements
-- to manipulate only regular accounts
REVOKE ALL ON mysql.* FROM u1;
-- This partial revoke prevents u1 from directly
-- modifying grant tables to manipulate accounts

To prevent all mysql system schema access by an account, revoke all its privileges on the mysql
schema, as just shown. It is also possible to permit partial mysql schema access, such as read-only
access. The following example creates an account that has SELECT, INSERT, UPDATE, and DELETE
privileges globally for all schemas, but only SELECT for the mysql schema:

84

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes

Privilege Restriction Using Partial Revokes

CREATE USER u2 IDENTIFIED BY 'password';
GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO u2;
REVOKE INSERT, UPDATE, DELETE ON mysql.* FROM u2;

Another possibility is to revoke all mysql schema privileges but grant access to specific mysql tables
or columns. This can be done even with a partial revoke on mysql. The following statements enable
read-only access to u1 within the mysql schema, but only for the db table and the Host and User
columns of the user table:

CREATE USER u3 IDENTIFIED BY 'password';
GRANT ALL ON *.* TO u3;
REVOKE ALL ON mysql.* FROM u3;
GRANT SELECT ON mysql.db TO u3;
GRANT SELECT(Host,User) ON mysql.user TO u3;

4.12 Privilege Restriction Using Partial Revokes
Prior to MySQL 8.0.16, it is not possible to grant privileges that apply globally except for certain
schemas. As of MySQL 8.0.16, that is possible if the partial_revokes system variable is enabled.
Specifically, for users who have privileges at the global level, partial_revokes enables privileges
for specific schemas to be revoked while leaving the privileges in place for other schemas. Privilege
restrictions thus imposed may be useful for administration of accounts that have global privileges but
should not be permitted to access certain schemas. For example, it is possible to permit an account to
modify any table except those in the mysql system schema.

• Using Partial Revokes

• Partial Revokes Versus Explicit Schema Grants

• Disabling Partial Revokes

• Partial Revokes and Replication

Note

For brevity, CREATE USER statements shown here do not include passwords.
For production use, always assign account passwords.

Using Partial Revokes

The partial_revokes system variable controls whether privilege restrictions can be placed on
accounts. By default, partial_revokes is disabled and attempts to partially revoke global privileges
produce an error:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT ON *.* TO u1;
mysql> REVOKE INSERT ON world.* FROM u1;
ERROR 1141 (42000): There is no such grant defined for user 'u1' on host '%'

To permit the REVOKE operation, enable partial_revokes:

SET PERSIST partial_revokes = ON;

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to
carry over to subsequent server restarts. To change the value for the running MySQL instance without
having it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See SET
Syntax for Variable Assignment.

With partial_revokes enabled, the partial revoke succeeds:

mysql> REVOKE INSERT ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |

85

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes

Using Partial Revokes

+--+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
| REVOKE INSERT ON `world`.* FROM `u1`@`%` |
+--+

SHOW GRANTS lists partial revokes as REVOKE statements in its output. The result indicates that u1
has global SELECT and INSERT privileges, except that INSERT cannot be exercised for tables in the
world schema. That is, access by u1 to world tables is read only.

The server records privilege restrictions implemented through partial revokes in the mysql.user
system table. If an account has partial revokes, its User_attributes column value has a
Restrictions attribute:

mysql> SELECT User, Host, User_attributes->>'$.Restrictions'
 FROM mysql.user WHERE User_attributes->>'$.Restrictions' <> '';
+------+------+--+
| User | Host | User_attributes->>'$.Restrictions' |
+------+------+--+
| u1 | % | [{"Database": "world", "Privileges": ["INSERT"]}] |
+------+------+--+

Note

Although partial revokes can be imposed for any schema, privilege restrictions
on the mysql system schema in particular are useful as part of a strategy for
preventing regular accounts from modifying system accounts. See Protecting
System Accounts Against Manipulation by Regular Accounts.

Partial revoke operations are subject to these conditions:

• It is possible to use partial revokes to place restrictions on nonexistent schemas, but only if the
revoked privilege is granted globally. If a privilege is not granted globally, revoking it for a nonexistent
schema produces an error.

• Partial revokes apply at the schema level only. You cannot use partial revokes for privileges that
apply only globally (such as FILE or BINLOG_ADMIN), or for table, column, or routine privileges.

• In privilege assignments, enabling partial_revokes causes MySQL to interpret occurrences of
unescaped _ and % SQL wildcard characters in schema names as literal characters, just as if they
had been escaped as _ and \%. Because this changes how MySQL interprets privileges, it may be
advisable to avoid unescaped wildcard characters in privilege assignments for installations where
partial_revokes may be enabled.

As mentioned previously, partial revokes of schema-level privileges appear in SHOW GRANTS output as
REVOKE statements. This differs from how SHOW GRANTS represents “plain” schema-level privileges:

• When granted, schema-level privileges are represented by their own GRANT statements in the
output:

mysql> CREATE USER u1;
mysql> GRANT UPDATE ON mysql.* TO u1;
mysql> GRANT DELETE ON world.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---------------------------------------+
| Grants for u1@% |
+---------------------------------------+
| GRANT USAGE ON *.* TO `u1`@`%` |
| GRANT UPDATE ON `mysql`.* TO `u1`@`%` |
| GRANT DELETE ON `world`.* TO `u1`@`%` |
+---------------------------------------+

• When revoked, schema-level privileges simply disappear from the output. They do not appear as
REVOKE statements:

mysql> REVOKE UPDATE ON mysql.* FROM u1;

86

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Using Partial Revokes

mysql> REVOKE DELETE ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--------------------------------+
| Grants for u1@% |
+--------------------------------+
| GRANT USAGE ON *.* TO `u1`@`%` |
+--------------------------------+

When a user grants a privilege, any restriction the grantor has on the privilege is inherited by the
grantee, unless the grantee already has the privilege without the restriction. Consider the following two
users, one of whom has the global SELECT privilege:

CREATE USER u1, u2;
GRANT SELECT ON *.* TO u2;

Suppose that an administrative user admin has a global but partially revoked SELECT privilege:

mysql> CREATE USER admin;
mysql> GRANT SELECT ON *.* TO admin WITH GRANT OPTION;
mysql> REVOKE SELECT ON mysql.* FROM admin;
mysql> SHOW GRANTS FOR admin;
+--+
| Grants for admin@% |
+--+
| GRANT SELECT ON *.* TO `admin`@`%` WITH GRANT OPTION |
| REVOKE SELECT ON `mysql`.* FROM `admin`@`%` |
+--+

If admin grants SELECT globally to u1 and u2, the result differs for each user:

• If admin grants SELECT globally to u1, who has no SELECT privilege to begin with, u1 inherits the
admin privilege restriction:

mysql> GRANT SELECT ON *.* TO u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT ON *.* TO `u1`@`%` |
| REVOKE SELECT ON `mysql`.* FROM `u1`@`%` |
+--+

• On the other hand, u2 already holds a global SELECT privilege without restriction. GRANT can only
add to a grantee's existing privileges, not reduce them, so if admin grants SELECT globally to u2, u2
does not inherit the admin restriction:

mysql> GRANT SELECT ON *.* TO u2;
mysql> SHOW GRANTS FOR u2;
+---------------------------------+
| Grants for u2@% |
+---------------------------------+
| GRANT SELECT ON *.* TO `u2`@`%` |
+---------------------------------+

If a GRANT statement includes an AS user clause, the privilege restrictions applied are those on
the user/role combination specified by the clause, rather than those on the user who executes the
statement. For information about the AS clause, see GRANT Statement.

Restrictions on new privileges granted to an account are added to any existing restrictions for that
account:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO u1;
mysql> REVOKE INSERT ON mysql.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |

87

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Using Partial Revokes

| REVOKE INSERT ON `mysql`.* FROM `u1`@`%` |
+---+
mysql> REVOKE DELETE, UPDATE ON db2.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE UPDATE, DELETE ON `db2`.* FROM `u1`@`%` |
| REVOKE INSERT ON `mysql`.* FROM `u1`@`%` |
+---+

Aggregation of privilege restrictions applies both when privileges are partially revoked explicitly (as just
shown) and when restrictions are inherited implicitly from the user who executes the statement or the
user mentioned in an AS user clause.

If an account has a privilege restriction on a schema:

• The account cannot grant to other accounts a privilege on the restricted schema or any object within
it.

• Another account that does not have the restriction can grant privileges to the restricted account
for the restricted schema or objects within it. Suppose that an unrestricted user executes these
statements:

CREATE USER u1;
GRANT SELECT, INSERT, UPDATE ON *.* TO u1;
REVOKE SELECT, INSERT, UPDATE ON mysql.* FROM u1;
GRANT SELECT ON mysql.user TO u1; -- grant table privilege
GRANT SELECT(Host,User) ON mysql.db TO u1; -- grant column privileges

The resulting account has these privileges, with the ability to perform limited operations within the
restricted schema:

mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE ON *.* TO `u1`@`%` |
| REVOKE SELECT, INSERT, UPDATE ON `mysql`.* FROM `u1`@`%` |
| GRANT SELECT (`Host`, `User`) ON `mysql`.`db` TO `u1`@`%` |
| GRANT SELECT ON `mysql`.`user` TO `u1`@`%` |
+---+

If an account has a restriction on a global privilege, the restriction is removed by any of these actions:

• Granting the privilege globally to the account by an account that has no restriction on the privilege.

• Granting the privilege at the schema level.

• Revoking the privilege globally.

Consider a user u1 who holds several privileges globally, but with restrictions on INSERT, UPDATE and
DELETE:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO u1;
mysql> REVOKE INSERT, UPDATE, DELETE ON mysql.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE INSERT, UPDATE, DELETE ON `mysql`.* FROM `u1`@`%` |
+--+

Granting a privilege globally to u1 from an account with no restriction removes the privilege restriction.
For example, to remove the INSERT restriction:

88

Using Partial Revokes

mysql> GRANT INSERT ON *.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE UPDATE, DELETE ON `mysql`.* FROM `u1`@`%` |
+---+

Granting a privilege at the schema level to u1 removes the privilege restriction. For example, to remove
the UPDATE restriction:

mysql> GRANT UPDATE ON mysql.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE, DELETE ON *.* TO `u1`@`%` |
| REVOKE DELETE ON `mysql`.* FROM `u1`@`%` |
+---+

Revoking a global privilege removes the privilege, including any restrictions on it. For example, to
remove the DELETE restriction (at the cost of removing all DELETE access):

mysql> REVOKE DELETE ON *.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT, UPDATE ON *.* TO `u1`@`%` |
+---+

If an account has a privilege at both the global and schema levels, you must revoke it at the schema
level twice to effect a partial revoke. Suppose that u1 has these privileges, where INSERT is held both
globally and on the world schema:

mysql> CREATE USER u1;
mysql> GRANT SELECT, INSERT ON *.* TO u1;
mysql> GRANT INSERT ON world.* TO u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
| GRANT INSERT ON `world`.* TO `u1`@`%` |
+---+

Revoking INSERT on world revokes the schema-level privilege (SHOW GRANTS no longer displays the
schema-level GRANT statement):

mysql> REVOKE INSERT ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+---+
| Grants for u1@% |
+---+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
+---+

Revoking INSERT on world again performs a partial revoke of the global privilege (SHOW GRANTS
now includes a schema-level REVOKE statement):

mysql> REVOKE INSERT ON world.* FROM u1;
mysql> SHOW GRANTS FOR u1;
+--+
| Grants for u1@% |
+--+
| GRANT SELECT, INSERT ON *.* TO `u1`@`%` |
| REVOKE INSERT ON `world`.* FROM `u1`@`%` |
+--+

89

https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html

Partial Revokes Versus Explicit Schema Grants

Partial Revokes Versus Explicit Schema Grants

To provide access to accounts for some schemas but not others, partial revokes provide an alternative
to the approach of explicitly granting schema-level access without granting global privileges. The two
approaches have different advantages and disadvantages.

Granting schema-level privileges and not global privileges:

• Adding a new schema: The schema is inaccessible to existing accounts by default. For any account
to which the schema should be accessible, the DBA must grant schema-level access.

• Adding a new account: The DBA must grant schema-level access for each schema to which the
account should have access.

Granting global privileges in conjunction with partial revokes:

• Adding a new schema: The schema is accessible to existing accounts that have global privileges.
For any such account to which the schema should be inaccessible, the DBA must add a partial
revoke.

• Adding a new account: The DBA must grant the global privileges, plus a partial revoke on each
restricted schema.

The approach that uses explicit schema-level grant is more convenient for accounts for which access is
limited to a few schemas. The approach that uses partial revokes is more convenient for accounts with
broad access to all schemas except a few.

Disabling Partial Revokes

Once enabled, partial_revokes cannot be disabled if any account has privilege restrictions. If any
such account exists, disabling partial_revokes fails:

• For attempts to disable partial_revokes at startup, the server logs an error message and
enables partial_revokes.

• For attempts to disable partial_revokes at runtime, an error occurs and the partial_revokes
value remains unchanged.

To disable partial_revokes when restrictions exist, the restrictions first must be removed:

1. Determine which accounts have partial revokes:

SELECT User, Host, User_attributes->>'$.Restrictions'
FROM mysql.user WHERE User_attributes->>'$.Restrictions' <> '';

2. For each such account, remove its privilege restrictions. Suppose that the previous step shows
account u1 to have these restrictions:

[{"Database": "world", "Privileges": ["INSERT", "DELETE"]

Restriction removal can be done various ways:

• Grant the privileges globally, without restrictions:

GRANT INSERT, DELETE ON *.* TO u1;

• Grant the privileges at the schema level:

GRANT INSERT, DELETE ON world.* TO u1;

• Revoke the privileges globally (assuming that they are no longer needed):

REVOKE INSERT, DELETE ON *.* FROM u1;

90

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes

Partial Revokes and Replication

• Remove the account itself (assuming that it is no longer needed):

DROP USER u1;

After all privilege restrictions are removed, it is possible to disable partial revokes:

SET PERSIST partial_revokes = OFF;

Partial Revokes and Replication

In replication scenarios, if partial_revokes is enabled on any host, it must be enabled on all hosts.
Otherwise, REVOKE statements to partially revoke a global privilege do not have the same effect for all
hosts on which replication occurs, potentially resulting in replication inconsistencies or errors.

When partial_revokes is enabled, an extended syntax is recorded in the binary log for GRANT
statements, including the current user that issued the statement and their currently active roles. If a
user or a role recorded in this way does not exist on the replica, the replication applier thread stops
at the GRANT statement with an error. Ensure that all user accounts that issue or might issue GRANT
statements on the replication source server also exist on the replica, and have the same set of roles as
they have on the source.

4.13 When Privilege Changes Take Effect

If the mysqld server is started without the --skip-grant-tables option, it reads all grant table
contents into memory during its startup sequence. The in-memory tables become effective for access
control at that point.

If you modify the grant tables indirectly using an account-management statement, the server notices
these changes and loads the grant tables into memory again immediately. Account-management
statements are described in Account Management Statements. Examples include GRANT, REVOKE,
SET PASSWORD, and RENAME USER.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE (which is
not recommended), the changes have no effect on privilege checking until you either tell the server to
reload the tables or restart it. Thus, if you change the grant tables directly but forget to reload them, the
changes have no effect until you restart the server. This may leave you wondering why your changes
seem to make no difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

A grant table reload affects privileges for each existing client session as follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not
be visible to them without actually changing to a different database.

• Static global privileges and passwords are unaffected for a connected client. These changes take
effect only in sessions for subsequent connections. Changes to dynamic global privileges apply
immediately. For information about the differences between static and dynamic privileges, see Static
Versus Dynamic Privileges.)

Changes to the set of active roles within a session take effect immediately, for that session only. The
SET ROLE statement performs session role activation and deactivation (see SET ROLE Statement).

91

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_partial_revokes
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/set-role.html
https://dev.mysql.com/doc/refman/8.0/en/set-role.html

Assigning Account Passwords

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Any user can connect and perform any operation, which is insecure. To
cause a server thus started to read the tables and enable access checking, flush the privileges.

4.14 Assigning Account Passwords
Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores credentials in the user table in the mysql system database. Operations that assign
or modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively,
privileges for the mysql database (INSERT privilege to create new accounts, UPDATE privilege to
modify existing accounts). If the read_only system variable is enabled, use of account-modification
statements such as CREATE USER or ALTER USER additionally requires the CONNECTION_ADMIN
privilege (or the deprecated SUPER privilege).

The discussion here summarizes syntax only for the most common password-assignment statements.
For complete details on other possibilities, see CREATE USER Statement, ALTER USER Statement,
and SET PASSWORD Statement.

MySQL uses plugins to perform client authentication; see Section 4.17, “Pluggable Authentication”.
In password-assigning statements, the authentication plugin associated with an account performs
any hashing required of a cleartext password specified. This enables MySQL to obfuscate passwords
prior to storing them in the mysql.user system table. For the statements described here, MySQL
automatically hashes the password specified. There are also syntax for CREATE USER and ALTER
USER that permits hashed values to be specified literally. For details, see the descriptions of those
statements.

To assign a password when you create a new account, use CREATE USER and include an
IDENTIFIED BY clause:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

CREATE USER also supports syntax for specifying the account authentication plugin. See CREATE
USER Statement.

To assign or change a password for an existing account, use the ALTER USER statement with an
IDENTIFIED BY clause:

ALTER USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

If you are not connected as an anonymous user, you can change your own password without naming
your own account literally:

ALTER USER USER() IDENTIFIED BY 'password';

To change an account password from the command line, use the mysqladmin command:

mysqladmin -u user_name -h host_name password "password"

The account for which this command sets the password is the one with a row in the mysql.user
system table that matches user_name in the User column and the client host from which you connect
in the Host column.

Warning

Setting a password using mysqladmin should be considered insecure. On
some systems, your password becomes visible to system status programs such
as ps that may be invoked by other users to display command lines. MySQL
clients typically overwrite the command-line password argument with zeros
during their initialization sequence. However, there is still a brief interval during
which the value is visible. Also, on some systems this overwriting strategy is

92

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Password Management

ineffective and the password remains visible to ps. (SystemV Unix systems and
perhaps others are subject to this problem.)

If you are using MySQL Replication, be aware that, currently, a password used by a replica as part
of a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO
statement (before MySQL 8.0.23) is effectively limited to 32 characters in length; if the password is
longer, any excess characters are truncated. This is not due to any limit imposed by MySQL Server
generally, but rather is an issue specific to MySQL Replication.

4.15 Password Management
MySQL supports these password-management capabilities:

• Password expiration, to require passwords to be changed periodically.

• Password reuse restrictions, to prevent old passwords from being chosen again.

• Password verification, to require that password changes also specify the current password to be
replaced.

• Dual passwords, to enable clients to connect using either a primary or secondary password.

• Password strength assessment, to require strong passwords.

• Random password generation, as an alternative to requiring explicit administrator-specified literal
passwords.

• Password failure tracking, to enable temporary account locking after too many consecutive incorrect-
password login failures.

The following sections describe these capabilities, except password strength assessment, which
is implemented using the validate_password component and is described in Section 6.3, “The
Password Validation Component”.

• Internal Versus External Credentials Storage

• Password Expiration Policy

• Password Reuse Policy

• Password Verification-Required Policy

• Dual Password Support

• Random Password Generation

• Failed-Login Tracking and Temporary Account Locking

Important

MySQL implements password-management capabilities using tables in the
mysql system database. If you upgrade MySQL from an earlier version, your
system tables might not be up to date. In that case, the server writes messages
similar to these to the error log during the startup process (the exact numbers
may vary):

[ERROR] Column count of mysql.user is wrong. Expected
49, found 47. The table is probably corrupted
[Warning] ACL table mysql.password_history missing.
Some operations may fail.

To correct the issue, perform the MySQL upgrade procedure. See Upgrading
MySQL. Until this is done, password changes are not possible.

93

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Internal Versus External Credentials Storage

Internal Versus External Credentials Storage

Some authentication plugins store account credentials internally to MySQL, in the mysql.user system
table:

• mysql_native_password

• caching_sha2_password

• sha256_password

Most discussion in this section applies to such authentication plugins because most password-
management capabilities described here are based on internal credentials storage handled by MySQL
itself. Other authentication plugins store account credentials externally to MySQL. For accounts that
use plugins that perform authentication against an external credentials system, password management
must be handled externally against that system as well.

The exception is that the options for failed-login tracking and temporary account locking apply to all
accounts, not just accounts that use internal credentials storage, because MySQL is able to assess
the status of login attempts for any account no matter whether it uses internal or external credentials
storage.

For information about individual authentication plugins, see Section 6.1, “Authentication Plugins”.

Password Expiration Policy

MySQL enables database administrators to expire account passwords manually, and to establish a
policy for automatic password expiration. Expiration policy can be established globally, and individual
accounts can be set to either defer to the global policy or override the global policy with specific per-
account behavior.

To expire an account password manually, use the ALTER USER statement:

ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE;

This operation marks the password expired in the corresponding row in the mysql.user system table.

Password expiration according to policy is automatic and is based on password age, which for a given
account is assessed from the date and time of its most recent password change. The mysql.user
system table indicates for each account when its password was last changed, and the server
automatically treats the password as expired at client connection time if its age is greater than its
permitted lifetime. This works with no explicit manual password expiration.

To establish automatic password-expiration policy globally, use the default_password_lifetime
system variable. Its default value is 0, which disables automatic password expiration. If the value of
default_password_lifetime is a positive integer N, it indicates the permitted password lifetime,
such that passwords must be changed every N days.

Examples:

• To establish a global policy that passwords have a lifetime of approximately six months, start the
server with these lines in a server my.cnf file:

[mysqld]
default_password_lifetime=180

• To establish a global policy such that passwords never expire, set default_password_lifetime
to 0:

[mysqld]
default_password_lifetime=0

• default_password_lifetime can also be set and persisted at runtime:

94

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_password_lifetime

Password Expiration Policy

SET PERSIST default_password_lifetime = 180;
SET PERSIST default_password_lifetime = 0;

SET PERSIST sets a value for the running MySQL instance. It also saves the value to carry over
to subsequent server restarts; see SET Syntax for Variable Assignment. To change the value for
the running MySQL instance without having it carry over to subsequent restarts, use the GLOBAL
keyword rather than PERSIST.

The global password-expiration policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD EXPIRE option of the CREATE USER and
ALTER USER statements. See CREATE USER Statement, and ALTER USER Statement.

Example account-specific statements:

• Require the password to be changed every 90 days:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE INTERVAL 90 DAY;

This expiration option overrides the global policy for all accounts named by the statement.

• Disable password expiration:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE NEVER;

This expiration option overrides the global policy for all accounts named by the statement.

• Defer to the global expiration policy for all accounts named by the statement:

CREATE USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;
ALTER USER 'jeffrey'@'localhost' PASSWORD EXPIRE DEFAULT;

When a client successfully connects, the server determines whether the account password has
expired:

• The server checks whether the password has been manually expired.

• Otherwise, the server checks whether the password age is greater than its permitted lifetime
according to the automatic password expiration policy. If so, the server considers the password
expired.

If the password is expired (whether manually or automatically), the server either disconnects the client
or restricts the operations permitted to it (see Section 4.16, “Server Handling of Expired Passwords”).
Operations performed by a restricted client result in an error until the user establishes a new account
password:

mysql> SELECT 1;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.
mysql> ALTER USER USER() IDENTIFIED BY 'password';
Query OK, 0 rows affected (0.01 sec)
mysql> SELECT 1;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

After the client resets the password, the server restores normal access for the session, as well as for
subsequent connections that use the account. It is also possible for an administrative user to reset the
account password, but any existing restricted sessions for that account remain restricted. A client using
the account must disconnect and reconnect before statements can be executed successfully.

95

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Password Reuse Policy

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

Password Reuse Policy

MySQL enables restrictions to be placed on reuse of previous passwords. Reuse restrictions can
be established based on number of password changes, time elapsed, or both. Reuse policy can be
established globally, and individual accounts can be set to either defer to the global policy or override
the global policy with specific per-account behavior.

The password history for an account consists of passwords it has been assigned in the past. MySQL
can restrict new passwords from being chosen from this history:

• If an account is restricted on the basis of number of password changes, a new password cannot be
chosen from a specified number of the most recent passwords. For example, if the minimum number
of password changes is set to 3, a new password cannot be the same as any of the most recent 3
passwords.

• If an account is restricted based on time elapsed, a new password cannot be chosen from
passwords in the history that are newer than a specified number of days. For example, if the
password reuse interval is set to 60, a new password must not be among those previously chosen
within the last 60 days.

Note

The empty password does not count in the password history and is subject to
reuse at any time.

To establish password-reuse policy globally, use the password_history and
password_reuse_interval system variables.

Examples:

• To prohibit reusing any of the last 6 passwords or passwords newer than 365 days, put these lines in
the server my.cnf file:

[mysqld]
password_history=6
password_reuse_interval=365

• To set and persist the variables at runtime, use statements like this:

SET PERSIST password_history = 6;
SET PERSIST password_reuse_interval = 365;

SET PERSIST sets a value for the running MySQL instance. It also saves the value to carry over
to subsequent server restarts; see SET Syntax for Variable Assignment. To change the value for
the running MySQL instance without having it carry over to subsequent restarts, use the GLOBAL
keyword rather than PERSIST.

The global password-reuse policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD HISTORY and PASSWORD REUSE
INTERVAL options of the CREATE USER and ALTER USER statements. See CREATE USER
Statement, and ALTER USER Statement.

Example account-specific statements:

• Require a minimum of 5 password changes before permitting reuse:

96

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_history
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_reuse_interval
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Password Verification-Required Policy

CREATE USER 'jeffrey'@'localhost' PASSWORD HISTORY 5;
ALTER USER 'jeffrey'@'localhost' PASSWORD HISTORY 5;

This history-length option overrides the global policy for all accounts named by the statement.

• Require a minimum of 365 days elapsed before permitting reuse:

CREATE USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL 365 DAY;
ALTER USER 'jeffrey'@'localhost' PASSWORD REUSE INTERVAL 365 DAY;

This time-elapsed option overrides the global policy for all accounts named by the statement.

• To combine both types of reuse restrictions, use PASSWORD HISTORY and PASSWORD REUSE
INTERVAL together:

CREATE USER 'jeffrey'@'localhost'
 PASSWORD HISTORY 5
 PASSWORD REUSE INTERVAL 365 DAY;
ALTER USER 'jeffrey'@'localhost'
 PASSWORD HISTORY 5
 PASSWORD REUSE INTERVAL 365 DAY;

These options override both global policy reuse restrictions for all accounts named by the statement.

• Defer to the global policy for both types of reuse restrictions:

CREATE USER 'jeffrey'@'localhost'
 PASSWORD HISTORY DEFAULT
 PASSWORD REUSE INTERVAL DEFAULT;
ALTER USER 'jeffrey'@'localhost'
 PASSWORD HISTORY DEFAULT
 PASSWORD REUSE INTERVAL DEFAULT;

Password Verification-Required Policy

As of MySQL 8.0.13, it is possible to require that attempts to change an account password be verified
by specifying the current password to be replaced. This enables DBAs to prevent users from changing
a password without proving that they know the current password. Such changes could otherwise
occur, for example, if one user walks away from a terminal session temporarily without logging out,
and a malicious user uses the session to change the original user's MySQL password. This can have
unfortunate consequences:

• The original user becomes unable to access MySQL until the account password is reset by an
administrator.

• Until the password reset occurs, the malicious user can access MySQL with the benign user's
changed credentials.

Password-verification policy can be established globally, and individual accounts can be set to either
defer to the global policy or override the global policy with specific per-account behavior.

For each account, its mysql.user row indicates whether there is an account-specific setting requiring
verification of the current password for password change attempts. The setting is established by the
PASSWORD REQUIRE option of the CREATE USER and ALTER USER statements:

• If the account setting is PASSWORD REQUIRE CURRENT, password changes must specify the current
password.

• If the account setting is PASSWORD REQUIRE CURRENT OPTIONAL, password changes may but
need not specify the current password.

• If the account setting is PASSWORD REQUIRE CURRENT DEFAULT, the
password_require_current system variable determines the verification-required policy for the
account:

97

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current

Password Verification-Required Policy

• If password_require_current is enabled, password changes must specify the current
password.

• If password_require_current is disabled, password changes may but need not specify the
current password.

In other words, if the account setting is not PASSWORD REQUIRE CURRENT DEFAULT, the account
setting takes precedence over the global policy established by the password_require_current
system variable. Otherwise, the account defers to the password_require_current setting.

By default, password verification is optional: password_require_current is disabled and accounts
created with no PASSWORD REQUIRE option default to PASSWORD REQUIRE CURRENT DEFAULT.

The following table shows how per-account settings interact with password_require_current
system variable values to determine account password verification-required policy.

Table 4.9 Password-Verification Policy

Per-Account Setting password_require_current
System Variable

Password Changes Require
Current Password?

PASSWORD REQUIRE CURRENT OFF Yes

PASSWORD REQUIRE CURRENT ON Yes

PASSWORD REQUIRE CURRENT
OPTIONAL

OFF No

PASSWORD REQUIRE CURRENT
OPTIONAL

ON No

PASSWORD REQUIRE CURRENT
DEFAULT

OFF No

PASSWORD REQUIRE CURRENT
DEFAULT

ON Yes

Note

Privileged users can change any account password without specifying the
current password, regardless of the verification-required policy. A privileged
user is one who has the global CREATE USER privilege or the UPDATE privilege
for the mysql system database.

To establish password-verification policy globally, use the password_require_current system
variable. Its default value is OFF, so it is not required that account password changes specify the
current password.

Examples:

• To establish a global policy that password changes must specify the current password, start the
server with these lines in a server my.cnf file:

[mysqld]
password_require_current=ON

• To set and persist password_require_current at runtime, use a statement such as one of
these:

SET PERSIST password_require_current = ON;
SET PERSIST password_require_current = OFF;

SET PERSIST sets a value for the running MySQL instance. It also saves the value to carry over
to subsequent server restarts; see SET Syntax for Variable Assignment. To change the value for

98

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Password Verification-Required Policy

the running MySQL instance without having it carry over to subsequent restarts, use the GLOBAL
keyword rather than PERSIST.

The global password verification-required policy applies to all accounts that have not been set to
override it. To establish policy for individual accounts, use the PASSWORD REQUIRE options of the
CREATE USER and ALTER USER statements. See CREATE USER Statement, and ALTER USER
Statement.

Example account-specific statements:

• Require that password changes specify the current password:

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT;
ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT;

This verification option overrides the global policy for all accounts named by the statement.

• Do not require that password changes specify the current password (the current password may but
need not be given):

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT OPTIONAL;
ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT OPTIONAL;

This verification option overrides the global policy for all accounts named by the statement.

• Defer to the global password verification-required policy for all accounts named by the statement:

CREATE USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT DEFAULT;
ALTER USER 'jeffrey'@'localhost' PASSWORD REQUIRE CURRENT DEFAULT;

Verification of the current password comes into play when a user changes a password using the ALTER
USER or SET PASSWORD statement. The examples use ALTER USER, which is preferred over SET
PASSWORD, but the principles described here are the same for both statements.

In password-change statements, a REPLACE clause specifies the current password to be replaced.
Examples:

• Change the current user's password:

ALTER USER USER() IDENTIFIED BY 'auth_string' REPLACE 'current_auth_string';

• Change a named user's password:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED BY 'auth_string'
 REPLACE 'current_auth_string';

• Change a named user's authentication plugin and password:

ALTER USER 'jeffrey'@'localhost'
 IDENTIFIED WITH caching_sha2_password BY 'auth_string'
 REPLACE 'current_auth_string';

The REPLACE clause works like this:

• REPLACE must be given if password changes for the account are required to specify the current
password, as verification that the user attempting to make the change actually knows the current
password.

• REPLACE is optional if password changes for the account may but need not specify the current
password.

• If REPLACE is specified, it must specify the correct current password, or an error occurs. This is true
even if REPLACE is optional.

99

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html

Dual Password Support

• REPLACE can be specified only when changing the account password for the current user. (This
means that in the examples just shown, the statements that explicitly name the account for jeffrey
fail unless the current user is jeffrey.) This is true even if the change is attempted for another user
by a privileged user; however, such a user can change any password without specifying REPLACE.

• REPLACE is omitted from the binary log to avoid writing cleartext passwords to it.

Dual Password Support

As of MySQL 8.0.14, user accounts are permitted to have dual passwords, designated as primary and
secondary passwords. Dual-password capability makes it possible to seamlessly perform credential
changes in scenarios like this:

• A system has a large number of MySQL servers, possibly involving replication.

• Multiple applications connect to different MySQL servers.

• Periodic credential changes must be made to the account or accounts used by the applications to
connect to the servers.

Consider how a credential change must be performed in the preceding type of scenario when an
account is permitted only a single password. In this case, there must be close cooperation in the timing
of when the account password change is made and propagated throughout all servers, and when all
applications that use the account are updated to use the new password. This process may involve
downtime during which servers or applications are unavailable.

With dual passwords, credential changes can be made more easily, in phases, without requiring close
cooperation, and without downtime:

1. For each affected account, establish a new primary password on the servers, retaining the current
password as the secondary password. This enables servers to recognize either the primary or
secondary password for each account, while applications can continue to connect to the servers
using the same password as previously (which is now the secondary password).

2. After the password change has propagated to all servers, modify applications that use any affected
account to connect using the account primary password.

3. After all applications have been migrated from the secondary passwords to the primary passwords,
the secondary passwords are no longer needed and can be discarded. After this change has
propagated to all servers, only the primary password for each account can be used to connect. The
credential change is now complete.

MySQL implements dual-password capability with syntax that saves and discards secondary
passwords:

• The RETAIN CURRENT PASSWORD clause for the ALTER USER and SET PASSWORD statements
saves an account current password as its secondary password when you assign a new primary
password.

• The DISCARD OLD PASSWORD clause for ALTER USER discards an account secondary password,
leaving only the primary password.

Suppose that, for the previously described credential-change scenario, an account named
'appuser1'@'host1.example.com' is used by applications to connect to servers, and that the
account password is to be changed from 'password_a' to 'password_b'.

To perform this change of credentials, use ALTER USER as follows:

1. On each server that is not a replica, establish 'password_b' as the new appuser1 primary
password, retaining the current password as the secondary password:

ALTER USER 'appuser1'@'host1.example.com'
 IDENTIFIED BY 'password_b'

100

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Random Password Generation

 RETAIN CURRENT PASSWORD;

2. Wait for the password change to replicate throughout the system to all replicas.

3. Modify each application that uses the appuser1 account so that it connects to the servers using a
password of 'password_b' rather than 'password_a'.

4. At this point, the secondary password is no longer needed. On each server that is not a replica,
discard the secondary password:

ALTER USER 'appuser1'@'host1.example.com'
 DISCARD OLD PASSWORD;

5. After the discard-password change has replicated to all replicas, the credential change is complete.

The RETAIN CURRENT PASSWORD and DISCARD OLD PASSWORD clauses have the following effects:

• RETAIN CURRENT PASSWORD retains an account current password as its secondary password,
replacing any existing secondary password. The new password becomes the primary password, but
clients can use the account to connect to the server using either the primary or secondary password.
(Exception: If the new password specified by the ALTER USER or SET PASSWORD statement is
empty, the secondary password becomes empty as well, even if RETAIN CURRENT PASSWORD is
given.)

• If you specify RETAIN CURRENT PASSWORD for an account that has an empty primary password,
the statement fails.

• If an account has a secondary password and you change its primary password without specifying
RETAIN CURRENT PASSWORD, the secondary password remains unchanged.

• For ALTER USER, if you change the authentication plugin assigned to the account, the secondary
password is discarded. If you change the authentication plugin and also specify RETAIN CURRENT
PASSWORD, the statement fails.

• For ALTER USER, DISCARD OLD PASSWORD discards the secondary password, if one exists. The
account retains only its primary password, and clients can use the account to connect to the server
only with the primary password.

Statements that modify secondary passwords require these privileges:

• The APPLICATION_PASSWORD_ADMIN privilege is required to use the RETAIN CURRENT
PASSWORD or DISCARD OLD PASSWORD clause for ALTER USER and SET PASSWORD statements
that apply to your own account. The privilege is required to manipulate your own secondary
password because most users require only one password.

• If an account is to be permitted to manipulate secondary passwords for all accounts, it should be
granted the CREATE USER privilege rather than APPLICATION_PASSWORD_ADMIN.

Random Password Generation

As of MySQL 8.0.18, the CREATE USER, ALTER USER, and SET PASSWORD statements have the
capability of generating random passwords for user accounts, as an alternative to requiring explicit
administrator-specified literal passwords. See the description of each statement for details about the
syntax. This section describes the characteristics common to generated random passwords.

By default, generated random passwords have a length of 20 characters. This length is controlled by
the generated_random_password_length system variable, which has a range from 5 to 255.

For each account for which a statement generates a random password, the statement stores the
password in the mysql.user system table, hashed appropriately for the account authentication
plugin. The statement also returns the cleartext password in a row of a result set to make it available
to the user or application executing the statement. The result set columns are named user, host,
generated password, and auth_factor indicating the user name and host name values that

101

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_generated_random_password_length

Failed-Login Tracking and Temporary Account Locking

identify the affected row in the mysql.user system table, the cleartext generated password, and the
authentication factor the displayed password value applies to.

mysql> CREATE USER
 'u1'@'localhost' IDENTIFIED BY RANDOM PASSWORD,
 'u2'@'%.example.com' IDENTIFIED BY RANDOM PASSWORD,
 'u3'@'%.org' IDENTIFIED BY RANDOM PASSWORD;
+------+---------------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+---------------+----------------------+-------------+
u1	localhost	iOeqf>Mh9:;XD&qn(Hl}	1
u2	%.example.com	sXTSAEvw3St-R+_-C3Vb	1
u3	%.org	nEVe%Ctw/U/*Md)Exc7&	1
+------+---------------+----------------------+-------------+
mysql> ALTER USER
 'u1'@'localhost' IDENTIFIED BY RANDOM PASSWORD,
 'u2'@'%.example.com' IDENTIFIED BY RANDOM PASSWORD;
+------+---------------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+---------------+----------------------+-------------+
| u1 | localhost | Seiei:&cw}8]@3OA64vh | 1 |
| u2 | %.example.com | j@&diTX80l8}(NiHXSae | 1 |
+------+---------------+----------------------+-------------+
mysql> SET PASSWORD FOR 'u3'@'%.org' TO RANDOM;
+------+-------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+-------+----------------------+-------------+
| u3 | %.org | n&cz2xF;P3!U)+]Vw52H | 1 |
+------+-------+----------------------+-------------+

A CREATE USER, ALTER USER, or SET PASSWORD statement that generates a random password
for an account is written to the binary log as a CREATE USER or ALTER USER statement with an
IDENTIFIED WITH auth_plugin AS 'auth_string', clause, where auth_plugin is the
account authentication plugin and 'auth_string' is the account hashed password value.

If the validate_password component is installed, the policy that it implements has no effect
on generated passwords. (The purpose of password validation is to help humans create better
passwords.)

Failed-Login Tracking and Temporary Account Locking

As of MySQL 8.0.19, administrators can configure user accounts such that too many consecutive login
failures cause temporary account locking.

“Login failure” in this context means failure of the client to provide a correct password during a
connection attempt. It does not include failure to connect for reasons such as unknown user or network
issues. For accounts that have dual passwords (see Dual Password Support), either account password
counts as correct.

The required number of login failures and the lock time are configurable per account, using the
FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME options of the CREATE USER and ALTER
USER statements. Examples:

CREATE USER 'u1'@'localhost' IDENTIFIED BY 'password'
 FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 3;
ALTER USER 'u2'@'localhost'
 FAILED_LOGIN_ATTEMPTS 4 PASSWORD_LOCK_TIME UNBOUNDED;

When too many consecutive login failures occur, the client receives an error that looks like this:

ERROR 3957 (HY000): Access denied for user user.
Account is blocked for D day(s) (R day(s) remaining)
due to N consecutive failed logins.

Use the options as follows:

• FAILED_LOGIN_ATTEMPTS N

102

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

Failed-Login Tracking and Temporary Account Locking

This option indicates whether to track account login attempts that specify an incorrect password. The
number N specifies how many consecutive incorrect passwords cause temporary account locking.

• PASSWORD_LOCK_TIME {N | UNBOUNDED}

This option indicates how long to lock the account after too many consecutive login attempts provide
an incorrect password. The value is a number N to specify the number of days the account remains
locked, or UNBOUNDED to specify that when an account enters the temporarily locked state, the
duration of that state is unbounded and does not end until the account is unlocked. The conditions
under which unlocking occurs are described later.

Permitted values of N for each option are in the range from 0 to 32767. A value of 0 disables the option.

Failed-login tracking and temporary account locking have these characteristics:

• For failed-login tracking and temporary locking to occur for an account, its
FAILED_LOGIN_ATTEMPTS and PASSWORD_LOCK_TIME options both must be nonzero.

• For CREATE USER, if FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME is not specified,
its implicit default value is 0 for all accounts named by the statement. This means that failed-login
tracking and temporary account locking are disabled. (These implicit defaults also apply to accounts
created prior to the introduction of failed-login tracking.)

• For ALTER USER, if FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME is not specified, its
value remains unchanged for all accounts named by the statement.

• For temporary account locking to occur, password failures must be consecutive. Any successful
login that occurs prior to reaching the FAILED_LOGIN_ATTEMPTS value for failed logins causes
failure counting to reset. For example, if FAILED_LOGIN_ATTEMPTS is 4 and three consecutive
password failures have occurred, one more failure is necessary for locking to begin. But if the next
login succeeds, failed-login counting for the account is reset so that four consecutive failures are
again required for locking.

• Once temporary locking begins, successful login cannot occur even with the correct password until
either the lock duration has passed or the account is unlocked by one of the account-reset methods
listed in the following discussion.

When the server reads the grant tables, it initializes state information for each account regarding
whether failed-login tracking is enabled, whether the account is currently temporarily locked and when
locking began if so, and the number of failures before temporary locking occurs if the account is not
locked.

An account's state information can be reset, which means that failed-login counting is reset, and the
account is unlocked if currently temporarily locked. Account resets can be global for all accounts or per
account:

• A global reset of all accounts occurs for any of these conditions:

• A server restart.

• Execution of FLUSH PRIVILEGES. (Starting the server with --skip-grant-tables causes the
grant tables not to be read, which disables failed-login tracking. In this case, the first execution of
FLUSH PRIVILEGES causes the server to read the grant tables and enable failed-login tracking,
in addition to resetting all accounts.)

• A per-account reset occurs for any of these conditions:

• Successful login for the account.

• The lock duration passes. In this case, failed-login counting resets at the time of the next login
attempt.

103

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

Server Handling of Expired Passwords

• Execution of an ALTER USER statement for the account that sets either
FAILED_LOGIN_ATTEMPTS or PASSWORD_LOCK_TIME (or both) to any value (including the
current option value), or execution of an ALTER USER ... UNLOCK statement for the account.

Other ALTER USER statements for the account have no effect on its current failed-login count or
its locking state.

Failed-login tracking is tied to the login account that is used to check credentials. If user proxying is
in use, tracking occurs for the proxy user, not the proxied user. That is, tracking is tied to the account
indicated by USER(), not the account indicated by CURRENT_USER(). For information about the
distinction between proxy and proxied users, see Section 4.19, “Proxy Users”.

4.16 Server Handling of Expired Passwords
MySQL provides password-expiration capability, which enables database administrators to require
that users reset their password. Passwords can be expired manually, and on the basis of a policy for
automatic expiration (see Section 4.15, “Password Management”).

The ALTER USER statement enables account password expiration. For example:

ALTER USER 'myuser'@'localhost' PASSWORD EXPIRE;

For each connection that uses an account with an expired password, the server either disconnects
the client or restricts the client to “sandbox mode,” in which the server permits the client to perform
only those operations necessary to reset the expired password. Which action is taken by the server
depends on both client and server settings, as discussed later.

If the server disconnects the client, it returns an ER_MUST_CHANGE_PASSWORD_LOGIN error:

$> mysql -u myuser -p
Password: ******
ERROR 1862 (HY000): Your password has expired. To log in you must
change it using a client that supports expired passwords.

If the server restricts the client to sandbox mode, these operations are permitted within the client
session:

• The client can reset the account password with ALTER USER or SET PASSWORD. After that has been
done, the server restores normal access for the session, as well as for subsequent connections that
use the account.

Note

Although it is possible to “reset” an expired password by setting it to its
current value, it is preferable, as a matter of good policy, to choose a different
password. DBAs can enforce non-reuse by establishing an appropriate
password-reuse policy. See Password Reuse Policy.

• Prior to MySQL 8.0.27, the client can use the SET statement. As of MySQL 8.0.27, this is no longer
permitted.

For any operation not permitted within the session, the server returns an
ER_MUST_CHANGE_PASSWORD error:

mysql> USE performance_schema;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.
mysql> SELECT 1;
ERROR 1820 (HY000): You must reset your password using ALTER USER
statement before executing this statement.

That is what normally happens for interactive invocations of the mysql client because by default such
invocations are put in sandbox mode. To resume normal functioning, select a new password.

104

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password_login
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password

Pluggable Authentication

For noninteractive invocations of the mysql client (for example, in batch mode), the server normally
disconnects the client if the password is expired. To permit noninteractive mysql invocations to stay
connected so that the password can be changed (using the statements permitted in sandbox mode),
add the --connect-expired-password option to the mysql command.

As mentioned previously, whether the server disconnects an expired-password client or restricts it
to sandbox mode depends on a combination of client and server settings. The following discussion
describes the relevant settings and how they interact.

Note

This discussion applies only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords.
For clients that use the C client library, there are two ways to do this:

• Pass the MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_options() prior to
connecting:

bool arg = 1;
mysql_options(mysql,
 MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS,
 &arg);

This is the technique used within the mysql client, which enables
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS if invoked interactively or with the --connect-
expired-password option.

• Pass the CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS flag to mysql_real_connect() at
connect time:

MYSQL mysql;
mysql_init(&mysql);
if (!mysql_real_connect(&mysql,
 host, user, password, db,
 port, unix_socket,
 CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS))
{
 ... handle error ...
}

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox
mode. See the documentation for the Connector in which you are interested.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in
sandbox mode.

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
disconnect_on_expired_password system variable:

• If disconnect_on_expired_password is enabled (the default), the server disconnects the client
with an ER_MUST_CHANGE_PASSWORD_LOGIN error.

• If disconnect_on_expired_password is disabled, the server puts the client in sandbox mode.

4.17 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client and
the client host to select the appropriate account row from the mysql.user system table. The server
then authenticates the client, determining from the account row which authentication plugin applies to
the client:

105

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/c-api/8.0/en/mysql-real-connect.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_must_change_password_login
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_disconnect_on_expired_password

Available Authentication Plugins

• If the server cannot find the plugin, an error occurs and the connection attempt is rejected.

• Otherwise, the server invokes that plugin to authenticate the user, and the plugin returns a status to
the server indicating whether the user provided the correct password and is permitted to connect.

Pluggable authentication enables these important capabilities:

• Choice of authentication methods. Pluggable authentication makes it easy for DBAs to choose
and change the authentication method used for individual MySQL accounts.

• External authentication. Pluggable authentication makes it possible for clients to connect to
the MySQL server with credentials appropriate for authentication methods that store credentials
elsewhere than in the mysql.user system table. For example, plugins can be created to use
external authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

• Proxy users: If a user is permitted to connect, an authentication plugin can return to the server
a user name different from the name of the connecting user, to indicate that the connecting user is
a proxy for another user (the proxied user). While the connection lasts, the proxy user is treated,
for purposes of access control, as having the privileges of the proxied user. In effect, one user
impersonates another. For more information, see Section 4.19, “Proxy Users”.

Note

If you start the server with the --skip-grant-tables option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure, if
the server is started with the --skip-grant-tables option, it also disables
remote connections by enabling skip_networking.

• Available Authentication Plugins

• The Default Authentication Plugin

• Authentication Plugin Usage

• Authentication Plugin Client/Server Compatibility

• Authentication Plugin Connector-Writing Considerations

• Restrictions on Pluggable Authentication

Available Authentication Plugins

MySQL 8.0 provides these authentication plugins:

• A plugin that performs native authentication; that is, authentication based on the password
hashing method in use from before the introduction of pluggable authentication in MySQL. The
mysql_native_password plugin implements authentication based on this native password
hashing method. See Section 6.1.1, “Native Pluggable Authentication”.

Note

As of MySQL 8.0.34, the mysql_native_password authentication plugin is
deprecated and subject to removal in a future version of MySQL.

• Plugins that perform authentication using SHA-256 password hashing. This is stronger encryption
than that available with native authentication. See Section 6.1.2, “Caching SHA-2 Pluggable
Authentication”, and Section 6.1.3, “SHA-256 Pluggable Authentication”.

• A client-side plugin that sends the password to the server without hashing or encryption. This
plugin is used in conjunction with server-side plugins that require access to the password exactly as
provided by the client user. See Section 6.1.4, “Client-Side Cleartext Pluggable Authentication”.

106

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

The Default Authentication Plugin

• A plugin that performs external authentication using PAM (Pluggable Authentication Modules),
enabling MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users
as well. See Section 6.1.5, “PAM Pluggable Authentication”.

• A plugin that performs external authentication on Windows, enabling MySQL Server to use native
Windows services to authenticate client connections. Users who have logged in to Windows can
connect from MySQL client programs to the server based on the information in their environment
without specifying an additional password. This plugin supports proxy users as well. See
Section 6.1.6, “Windows Pluggable Authentication”.

• Plugins that perform authentication using LDAP (Lightweight Directory Access Protocol) to
authenticate MySQL users by accessing directory services such as X.500. These plugins support
proxy users as well. See Section 6.1.7, “LDAP Pluggable Authentication”.

• A plugin that performs authentication using Kerberos to authenticate MySQL users that correspond
to Kerberos principals. See Section 6.1.8, “Kerberos Pluggable Authentication”.

• A plugin that prevents all client connections to any account that uses it. Use cases for this plugin
include proxied accounts that should never permit direct login but are accessed only through proxy
accounts and accounts that must be able to execute stored programs and views with elevated
privileges without exposing those privileges to ordinary users. See Section 6.1.9, “No-Login
Pluggable Authentication”.

• A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.1.10, “Socket Peer-Credential Pluggable Authentication”.

• A plugin that authenticates users to MySQL Server using FIDO authentication. See Section 6.1.11,
“FIDO Pluggable Authentication”.

Note

As of MySQL 8.0.35, the authentication_fido and
authentication_fido_client authentication plugins are deprecated and
subject to removal in a future version of MySQL.

• A test plugin that checks account credentials and logs success or failure to the server error log.
This plugin is intended for testing and development purposes, and as an example of how to write an
authentication plugin. See Section 6.1.12, “Test Pluggable Authentication”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Restrictions on
Pluggable Authentication.

Third-party connector developers should read that section to determine the
extent to which a connector can take advantage of pluggable authentication
capabilities and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Writing Authentication Plugins.

The Default Authentication Plugin

The CREATE USER and ALTER USER statements have syntax for specifying how an account
authenticates. Some forms of this syntax do not explicitly name an authentication plugin (there is no
IDENTIFIED WITH clause). For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'password';

In such cases, the server assigns the default authentication plugin to the account. Prior to MySQL
8.0.27, this default is the value of the default_authentication_plugin system variable.

107

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin

Authentication Plugin Usage

As of MySQL 8.0.27, which introduces multifactor authentication, there can be up to three clauses that
specify how an account authenticates. The rules that determine the default authentication plugin for
authentication methods that name no plugin are factor-specific:

• Factor 1: If authentication_policy element 1 names an authentication plugin,
that plugin is the default. If authentication_policy element 1 is *, the value of
default_authentication_plugin is the default.

Given the rules above, the following statement creates a two-factor authentication account,
with the first factor authentication method determined by the authentication_policy or
default_authentication_plugin setting:

CREATE USER 'wei'@'localhost' IDENTIFIED BY 'password'
 AND IDENTIFIED WITH authentication_ldap_simple;

In the same way, this example creates a three-factor authentication account:

CREATE USER 'mateo'@'localhost' IDENTIFIED BY 'password'
 AND IDENTIFIED WITH authentication_ldap_simple
 AND IDENTIFIED WITH authentication_fido;

You can use SHOW CREATE USER to view the applied authentication methods.

• Factor 2 or 3: If the corresponding authentication_policy element names an authentication
plugin, that plugin is the default. If the authentication_policy element is * or empty, there is no
default; attempting to define an account authentication method for the factor without naming a plugin
is an error, as in the following examples:

mysql> CREATE USER 'sofia'@'localhost' IDENTIFIED WITH authentication_ldap_simple
 AND IDENTIFIED BY 'abc';
ERROR 1524 (HY000): Plugin '' is not loaded
mysql> CREATE USER 'sofia'@'localhost' IDENTIFIED WITH authentication_ldap_simple
 AND IDENTIFIED BY 'abc';
ERROR 1524 (HY000): Plugin '*' is not loaded

Authentication Plugin Usage

This section provides general instructions for installing and using authentication plugins. For
instructions specific to a given plugin, see the section that describes that plugin under Section 6.1,
“Authentication Plugins”.

In general, pluggable authentication uses a pair of corresponding plugins on the server and client
sides, so you use a given authentication method like this:

• If necessary, install the plugin library or libraries containing the appropriate plugins. On the server
host, install the library containing the server-side plugin, so that the server can use it to authenticate
client connections. Similarly, on each client host, install the library containing the client-side plugin for
use by client programs. Authentication plugins that are built in need not be installed.

• For each MySQL account that you create, specify the appropriate server-side plugin to use for
authentication. If the account is to use the default authentication plugin, the account-creation
statement need not specify the plugin explicitly. The server assigns the default authentication plugin,
determined as described in The Default Authentication Plugin.

• When a client connects, the server-side plugin tells the client program which client-side plugin to use
for authentication.

In the case that an account uses an authentication method that is the default for both the server and
the client program, the server need not communicate to the client which client-side plugin to use, and a
round trip in client/server negotiation can be avoided.

For standard MySQL clients such as mysql and mysqladmin, the --default-auth=plugin_name
option can be specified on the command line as a hint about which client-side plugin the program can

108

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-auth

Authentication Plugin Client/Server Compatibility

expect to use, although the server overrides this if the server-side plugin associated with the user
account requires a different client-side plugin.

If the client program does not find the client-side plugin library file, specify a --plugin-
dir=dir_name option to indicate the plugin library directory location.

Authentication Plugin Client/Server Compatibility

Pluggable authentication enables flexibility in the choice of authentication methods for MySQL
accounts, but in some cases client connections cannot be established due to authentication plugin
incompatibility between the client and server.

The general compatibility principle for a successful client connection to a given account on a given
server is that the client and server both must support the authentication method required by the
account. Because authentication methods are implemented by authentication plugins, the client and
server both must support the authentication plugin required by the account.

Authentication plugin incompatibilities can arise in various ways. Examples:

• Connect using a MySQL 5.7 client from 5.7.22 or lower to a MySQL 8.0 server account that
authenticates with caching_sha2_password. This fails because the 5.7 client does not recognize
the plugin, which was introduced in MySQL 8.0. (This issue is addressed in MySQL 5.7 as of 5.7.23,
when caching_sha2_password client-side support was added to the MySQL client library and
client programs.)

• Connect using a MySQL 5.7 client to a pre-5.7 server account that authenticates with
mysql_old_password. This fails for multiple reasons. First, such a connection requires --
secure-auth=0, which is no longer a supported option. Even were it supported, the 5.7 client does
not recognize the plugin because it was removed in MySQL 5.7.

• Connect using a MySQL 5.7 client from a Community distribution to a MySQL 5.7 Enterprise server
account that authenticates using one of the Enterprise-only LDAP authentication plugins. This fails
because the Community client does not have access to the Enterprise plugin.

In general, these compatibility issues do not arise when connections are made between a client and
server from the same MySQL distribution. When connections are made between a client and server
from different MySQL series, issues can arise. These issues are inherent in the development process
when MySQL introduces new authentication plugins or removes old ones. To minimize the potential for
incompatibilities, regularly upgrade the server, clients, and connectors on a timely basis.

Authentication Plugin Connector-Writing Considerations

Various implementations of the MySQL client/server protocol exist. The libmysqlclient C API
client library is one implementation. Some MySQL connectors (typically those not written in C) provide
their own implementation. However, not all protocol implementations handle plugin authentication the
same way. This section describes an authentication issue that protocol implementors should take into
account.

In the client/server protocol, the server tells connecting clients which authentication plugin it considers
the default. If the protocol implementation used by the client tries to load the default plugin and that
plugin does not exist on the client side, the load operation fails. This is an unnecessary failure if the
default plugin is not the plugin actually required by the account to which the client is trying to connect.

If a client/server protocol implementation does not have its own notion of default authentication plugin
and always tries to load the default plugin specified by the server, it fails with an error if that plugin is
not available.

To avoid this problem, the protocol implementation used by the client should have its own default
plugin and should use it as its first choice (or, alternatively, fall back to this default in case of failure to
load the default plugin specified by the server). Example:

109

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_plugin-dir

Restrictions on Pluggable Authentication

• In MySQL 5.7, libmysqlclient uses as its default choice either mysql_native_password or
the plugin specified through the MYSQL_DEFAULT_AUTH option for mysql_options().

• When a 5.7 client tries to connect to an 8.0 server, the server specifies caching_sha2_password
as its default authentication plugin, but the client still sends credential details per either
mysql_native_password or whatever is specified through MYSQL_DEFAULT_AUTH.

• The only time the client loads the plugin specified by the server is for a change-plugin request, but in
that case it can be any plugin depending on the user account. In this case, the client must try to load
the plugin, and if that plugin is not available, an error is not optional.

Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 4.17, “Pluggable Authentication”. The second part
describes how third-party connector developers can determine the extent to which a connector can
take advantage of pluggable authentication capabilities and what steps to take to become more
compliant.

The term “native authentication” used here refers to authentication against passwords stored in
the mysql.user system table. This is the same authentication method provided by older MySQL
servers, before pluggable authentication was implemented. “Windows native authentication” refers to
authentication using the credentials of a user who has already logged in to Windows, as implemented
by the Windows Native Authentication plugin (“Windows plugin” for short).

• General Pluggable Authentication Restrictions

• Pluggable Authentication and Third-Party Connectors

General Pluggable Authentication Restrictions

• Connector/C++: Clients that use this connector can connect to the server only through accounts that
use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to libmysqlclient
dynamically (rather than statically) and it loads the current version of libmysqlclient if that
version is installed, or if the connector is recompiled from source to link against the current
libmysqlclient.

For information about writing connectors to handle information from the server about the default
server-side authentication plugin, see Authentication Plugin Connector-Writing Considerations.

• Connector/NET: Clients that use Connector/NET can connect to the server through accounts that
use native authentication or Windows native authentication.

• Connector/PHP: Clients that use this connector can connect to the server only through accounts
that use native authentication, when compiled using the MySQL native driver for PHP (mysqlnd).

• Windows native authentication: Connecting through an account that uses the Windows plugin
requires Windows Domain setup. Without it, NTLM authentication is used and then only local
connections are possible; that is, the client and server must run on the same computer.

• Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a
user name different from that of the connecting user). For example, the PAM and Windows plugins
support proxy users. The mysql_native_password and sha256_password authentication
plugins do not support proxy users by default, but can be configured to do so; see Server Support for
Proxy User Mapping.

• Replication: Replicas can not only employ replication user accounts using native authentication, but
can also connect through replication user accounts that use nonnative authentication if the required

110

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Multifactor Authentication

client-side plugin is available. If the plugin is built into libmysqlclient, it is available by default.
Otherwise, the plugin must be installed on the replica side in the directory named by the replica's
plugin_dir system variable.

• FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a
connector to take advantage of pluggable authentication capabilities and what steps to take to become
more compliant:

• An existing connector to which no changes have been made uses native authentication and
clients that use the connector can connect to the server only through accounts that use native
authentication. However, you should test the connector against a recent version of the server to
verify that such connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
to libmysqlclient dynamically (rather than statically) and it loads the current version of
libmysqlclient if that version is installed.

• To take advantage of pluggable authentication capabilities, a connector that is libmysqlclient-
based should be relinked against the current version of libmysqlclient. This enables the
connector to support connections though accounts that require client-side plugins now built into
libmysqlclient (such as the cleartext plugin needed for PAM authentication and the Windows
plugin needed for Windows native authentication). Linking with a current libmysqlclient also
enables the connector to access client-side plugins installed in the default MySQL plugin directory
(typically the directory named by the default value of the local server's plugin_dir system
variable).

If a connector links to libmysqlclient dynamically, it must be ensured that the newer version of
libmysqlclient is installed on the client host and that the connector loads it at runtime.

• Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/NET uses this approach to provide support for Windows native
authentication.

• If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities
for this include a command-line option or environment variable from which the connector can obtain
the directory name. Standard MySQL client programs such as mysql and mysqladmin implement a
--plugin-dir option. See also C API Client Plugin Interface.

• Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

4.18 Multifactor Authentication

Authentication involves one party establishing its identity to the satisfaction of a second party.
Multifactor authentication (MFA) is the use of multiple authentication values (or “factors”) during the
authentication process. MFA provides greater security than one-factor/single-factor authentication
(1FA/SFA), which uses only one authentication method such as a password. MFA enables additional
authentication methods, such as authentication using multiple passwords, or authentication using
devices like smart cards, security keys, and biometric readers.

MySQL 8.0.27 and higher includes support for multifactor authentication. This capability includes forms
of MFA that require up to three authentication values. That is, MySQL account management supports
accounts that use 2FA or 3FA, in addition to the existing 1FA support.

111

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html

Elements of Multifactor Authentication Support

When a client attempts a connection to the MySQL server using a single-factor account, the server
invokes the authentication plugin indicated by the account definition and accepts or rejects the
connection depending on whether the plugin reports success or failure.

For an account that has multiple authentication factors, the process is similar. The server invokes
authentication plugins in the order listed in the account definition. If a plugin reports success, the server
either accepts the connection if the plugin is the last one, or proceeds to invoke the next plugin if any
remain. If any plugin reports failure, the server rejects the connection.

The following sections cover multifactor authentication in MySQL in more detail.

• Elements of Multifactor Authentication Support

• Configuring the Multifactor Authentication Policy

• Getting Started with Multifactor Authentication

Elements of Multifactor Authentication Support

Authentication factors commonly include these types of information:

• Something you know, such as a secret password or passphrase.

• Something you have, such as a security key or smart card.

• Something you are; that is, a biometric characteristic such as a fingerprint or facial scan.

The “something you know” factor type relies on information that is kept secret on both sides of the
authentication process. Unfortunately, secrets may be subject to compromise: Someone might see you
enter your password or fool you with a phishing attack, a password stored on the server side might be
exposed by a security breach, and so forth. Security can be improved by using multiple passwords, but
each may still be subject to compromise. Use of the other factor types enables improved security with
less risk of compromise.

Implementation of multifactor authentication in MySQL comprises these elements:

• The authentication_policy system variable controls how many authentication factors can
be used and the types of authentication permitted for each factor. That is, it places constraints on
CREATE USER and ALTER USER statements with respect to multifactor authentication.

• CREATE USER and ALTER USER have syntax enabling multiple authentication methods to be
specified for new accounts, and for adding, modifying, or dropping authentication methods for
existing accounts. If an account uses 2FA or 3FA, the mysql.user system table stores information
about the additional authentication factors in the User_attributes column.

• To enable authentication to the MySQL server using accounts that require multiple passwords, client
programs have --password1, --password2, and --password3 options that permit up to three
passwords to be specified. For applications that use the C API, the MYSQL_OPT_USER_PASSWORD
option for the mysql_options4() C API function enables the same capability.

• The server-side authentication_fido plugin (deprecated) enables authentication using
devices. This server-side FIDO authentication plugin is included only in MySQL Enterprise
Edition distributions. It is not included in MySQL community distributions. However, the client-
side authentication_fido_client plugin (deprecated) is included in all distributions,
including community distributions. This enables clients from any distribution to connect to accounts
that use authentication_fido to authenticate on a server that has that plugin loaded. See
Section 6.1.11, “FIDO Pluggable Authentication”.

• authentication_fido also enables passwordless authentication, if it is the only authentication
plugin used by an account. See FIDO Passwordless Authentication.

112

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password1
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password2
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password3
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options4.html

Configuring the Multifactor Authentication Policy

• Multifactor authentication can use non-FIDO MySQL authentication methods, the FIDO
authentication method, or a combination of both.

• These privileges enable users to perform certain restricted multifactor authentication-related
operations:

• A user who has the AUTHENTICATION_POLICY_ADMIN privilege is not subject to the constraints
imposed by the authentication_policy system variable. (A warning does occur for
statements that otherwise would not be permitted.)

• The PASSWORDLESS_USER_ADMIN privilege enables creation of passwordless-authentication
accounts and replication of operations on them.

Configuring the Multifactor Authentication Policy

The authentication_policy system variable defines the multifactor authentication policy.
Specifically, it defines how many authentication factors accounts may have (or are required to have)
and the authentication methods that can be used for each factor.

The value of authentication_policy is a list of 1, 2, or 3 comma-separated elements. Each
element in the list corresponds to an authentication factor and can be an authentication plugin name,
an asterisk (*), empty, or missing. (Exception: Element 1 cannot be empty or missing.) The entire list
is enclosed in single quotes. For example, the following authentication_policy value includes an
asterisk, an authentication plugin name, and an empty element:

authentication_policy = '*,authentication_fido,'

An asterisk (*) indicates that an authentication method is required but any method is permitted. An
empty element indicates that an authentication method is optional and any method is permitted.
A missing element (no asterisk, empty element, or authentication plugin name) indicates that an
authentication method is not permitted. When a plugin name is specified, that authentication method is
required for the respective factor when creating or modifying an account.

The default authentication_policy value is '*,,' (an asterisk and two empty elements),
which requires a first factor, and optionally permits second and third factors. The default
authentication_policy value is thus backward compatible with existing 1FA accounts, but also
permits creation or modification of accounts to use 2FA or 3FA.

A user who has the AUTHENTICATION_POLICY_ADMIN privilege is not subject to the constraints
imposed by the authentication_policy setting. (A warning occurs for statements that otherwise
would not be permitted.)

authentication_policy values can be defined in an option file or specified using a SET GLOBAL
statement:

SET GLOBAL authentication_policy='*,*,';

There are several rules that govern how the authentication_policy value can be defined. Refer
to the authentication_policy system variable description for a compete account of those rules.
The following table provides several authentication_policy example values and the policy
established by each.

Table 4.10 Example authentication_policy Values

authentication_policy Value Effective Policy

'*' Permit only creating or altering accounts with one
factor.

'*,*' Permit only creating or altering accounts with two
factors.

113

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy

Getting Started with Multifactor Authentication

authentication_policy Value Effective Policy

'*,*,*' Permit only creating or altering accounts with
three factors.

'*,' Permit creating or altering accounts with one or
two factors.

'*,,' Permit creating or altering accounts with one, two,
or three factors.

'*,*,' Permit creating or altering accounts with two or
three factors.

'*,auth_plugin' Permit creating or altering accounts with two
factors, where the first factor can be any
authentication method, and the second factor
must be the named plugin.

'auth_plugin,*,' Permit creating or altering accounts with two or
three factors, where the first factor must be the
named plugin.

'auth_plugin,' Permit creating or altering accounts with one or
two factors, where the first factor must be the
named plugin.

'auth_plugin,auth_plugin,auth_plugin' Permits creating or altering accounts with three
factors, where the factors must use the named
plugins.

Getting Started with Multifactor Authentication

By default, MySQL uses a multifactor authentication policy that permits any authentication plugin
for the first factor, and optionally permits second and third authentication factors. This policy is
configurable; for details, see Configuring the Multifactor Authentication Policy.

Note

It is not permitted to use any internal credential storage plugins
(caching_sha2_password or mysql_native_password) for factor 2 or 3.

Suppose that you want an account to authenticate first using the caching_sha2_password plugin,
then using the authentication_ldap_sasl SASL LDAP plugin. (This assumes that LDAP
authentication is already set up as described in Section 6.1.7, “LDAP Pluggable Authentication”, and
that the user has an entry in the LDAP directory corresponding to the authentication string shown in the
example.) Create the account using a statement like this:

CREATE USER 'alice'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=u1_ldap,ou=People,dc=example,dc=com';

To connect, the user must supply two passwords. To enable authentication to the MySQL server using
accounts that require multiple passwords, client programs have --password1, --password2, and
--password3 options that permit up to three passwords to be specified. These options are similar to
the --password option in that they can take a password value following the option on the command
line (which is insecure) or if given without a password value cause the user to be prompted for one.
For the account just created, factors 1 and 2 take passwords, so invoke the mysql client with the --
password1 and --password2 options. mysql prompts for each password in turn:

$> mysql --user=alice --password1 --password2
Enter password: (enter factor 1 password)
Enter password: (enter factor 2 password)

114

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password1
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password2
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password3
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password1
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password1
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password2

Proxy Users

Suppose you want to add a third authentication factor. This can be achieved by dropping and
recreating the user with a third factor or by using ALTER USER user ADD factor syntax. Both
methods are shown below:

DROP USER 'alice'@'localhost';

CREATE USER 'alice'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=u1_ldap,ou=People,dc=example,dc=com'
 AND IDENTIFIED WITH authentication_fido;

ADD factor syntax includes the factor number and FACTOR keyword:

ALTER USER 'alice'@'localhost' ADD 3 FACTOR IDENTIFIED WITH authentication_fido;

ALTER USER user DROP factor syntax permits dropping a factor. The following example drops the
third factor (authentication_fido) that was added in the previous example:

ALTER USER 'alice'@'localhost' DROP 3 FACTOR;

ALTER USER user MODIFY factor syntax permits changing the plugin or authentication string for
a particular factor, provided that the factor exists. The following example modifies the second factor,
changing the authentication method from authentication_ldap_sasl to authetication_fido:

ALTER USER 'alice'@'localhost' MODIFY 2 FACTOR IDENTIFIED WITH authentication_fido;

Use SHOW CREATE USER to view the authentication methods defined for an account:

SHOW CREATE USER 'u1'@'localhost'\G
*************************** 1. row ***************************
CREATE USER for u1@localhost: CREATE USER `u1`@`localhost`
IDENTIFIED WITH 'caching_sha2_password' AS 'sha2_password'
AND IDENTIFIED WITH 'authentication_fido' REQUIRE NONE
PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK PASSWORD HISTORY
DEFAULT PASSWORD REUSE INTERVAL DEFAULT PASSWORD REQUIRE
CURRENT DEFAULT

4.19 Proxy Users
The MySQL server authenticates client connections using authentication plugins. The plugin that
authenticates a given connection may request that the connecting (external) user be treated as a
different user for privilege-checking purposes. This enables the external user to be a proxy for the
second user; that is, to assume the privileges of the second user:

• The external user is a “proxy user” (a user who can impersonate or become known as another user).

• The second user is a “proxied user” (a user whose identity and privileges can be assumed by a proxy
user).

This section describes how the proxy user capability works. For general information about
authentication plugins, see Section 4.17, “Pluggable Authentication”. For information about specific
plugins, see Section 6.1, “Authentication Plugins”. For information about writing authentication plugins
that support proxy users, see Implementing Proxy User Support in Authentication Plugins.

• Requirements for Proxy User Support

• Simple Proxy User Example

• Preventing Direct Login to Proxied Accounts

• Granting and Revoking the PROXY Privilege

• Default Proxy Users

115

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-authentication-plugins-proxy-users.html

Requirements for Proxy User Support

• Default Proxy User and Anonymous User Conflicts

• Server Support for Proxy User Mapping

• Proxy User System Variables

Note

One administrative benefit to be gained by proxying is that the DBA can set up
a single account with a set of privileges and then enable multiple proxy users
to have those privileges without having to assign the privileges individually to
each of those users. As an alternative to proxy users, DBAs may find that roles
provide a suitable way to map users onto specific sets of named privileges.
Each user can be granted a given single role to, in effect, be granted the
appropriate set of privileges. See Section 4.10, “Using Roles”.

Requirements for Proxy User Support

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

• Proxying must be supported, either by the plugin itself, or by the MySQL server on behalf of the
plugin. In the latter case, server support may need to be enabled explicitly; see Server Support for
Proxy User Mapping.

• The account for the external proxy user must be set up to be authenticated by the plugin. Use the
CREATE USER statement to associate an account with an authentication plugin, or ALTER USER to
change its plugin.

• The account for the proxied user must exist and be granted the privileges to be assumed by the
proxy user. Use the CREATE USER and GRANT statements for this.

• Normally, the proxied user is configured so that it can be used only in proxying scenarios and not for
direct logins.

• The proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

• For a client connecting to the proxy account to be treated as a proxy user, the authentication plugin
must return a user name different from the client user name, to indicate the user name of the proxied
account that defines the privileges to be assumed by the proxy user.

Alternatively, for plugins that are provided proxy mapping by the server, the proxied user is
determined from the PROXY privilege held by the proxy user.

The proxy mechanism permits mapping only the external client user name to the proxied user name.
There is no provision for mapping host names:

• When a client connects to the server, the server determines the proper account based on the user
name passed by the client program and the host from which the client connects.

• If that account is a proxy account, the server attempts to determine the appropriate proxied account
by finding a match for a proxied account using the user name returned by the authentication plugin
and the host name of the proxy account. The host name in the proxied account is ignored.

Simple Proxy User Example

Consider the following account definitions:

-- create proxy account
CREATE USER 'employee_ext'@'localhost'
 IDENTIFIED WITH my_auth_plugin
 AS 'my_auth_string';
-- create proxied account and grant its privileges;

116

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Preventing Direct Login to Proxied Accounts

-- use mysql_no_login plugin to prevent direct login
CREATE USER 'employee'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL
 ON employees.*
 TO 'employee'@'localhost';
-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'employee'@'localhost'
 TO 'employee_ext'@'localhost';

When a client connects as employee_ext from the local host, MySQL uses the plugin named
my_auth_plugin to perform authentication. Suppose that my_auth_plugin returns a user name
of employee to the server, based on the content of 'my_auth_string' and perhaps by consulting
some external authentication system. The name employee differs from employee_ext, so returning
employee serves as a request to the server to treat the employee_ext external user, for purposes of
privilege checking, as the employee local user.

In this case, employee_ext is the proxy user and employee is the proxied user.

The server verifies that proxy authentication for employee is possible for the employee_ext user by
checking whether employee_ext (the proxy user) has the PROXY privilege for employee (the proxied
user). If this privilege has not been granted, an error occurs. Otherwise, employee_ext assumes
the privileges of employee. The server checks statements executed during the client session by
employee_ext against the privileges granted to employee. In this case, employee_ext can access
tables in the employees database.

The proxied account, employee, uses the mysql_no_login authentication plugin to prevent clients
from using the account to log in directly. (This assumes that the plugin is installed. For instructions,
see Section 6.1.9, “No-Login Pluggable Authentication”.) For alternative methods of protecting proxied
accounts against direct use, see Preventing Direct Login to Proxied Accounts.

When proxying occurs, the USER() and CURRENT_USER() functions can be used to see the difference
between the connecting user (the proxy user) and the account whose privileges apply during the
current session (the proxied user). For the example just described, those functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------------+--------------------+
| USER() | CURRENT_USER() |
+------------------------+--------------------+
| employee_ext@localhost | employee@localhost |
+------------------------+--------------------+

In the CREATE USER statement that creates the proxy user account, the IDENTIFIED WITH
clause that names the proxy-supporting authentication plugin is optionally followed by an AS
'auth_string' clause specifying a string that the server passes to the plugin when the user
connects. If present, the string provides information that helps the plugin determine how to map the
proxy (external) client user name to a proxied user name. It is up to each plugin whether it requires the
AS clause. If so, the format of the authentication string depends on how the plugin intends to use it.
Consult the documentation for a given plugin for information about the authentication string values it
accepts.

Preventing Direct Login to Proxied Accounts

Proxied accounts generally are intended to be used only by means of proxy accounts. That is, clients
connect using a proxy account, then are mapped onto and assume the privileges of the appropriate
proxied user.

There are multiple ways to ensure that a proxied account cannot be used directly:

• Associate the account with the mysql_no_login authentication plugin. In this case, the account
cannot be used for direct logins under any circumstances. This assumes that the plugin is installed.
For instructions, see Section 6.1.9, “No-Login Pluggable Authentication”.

117

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Granting and Revoking the PROXY Privilege

• Include the ACCOUNT LOCK option when you create the account. See CREATE USER Statement.
With this method, also include a password so that if the account is unlocked later, it cannot be
accessed with no password. (If the validate_password component is enabled, creating an
account without a password is not permitted, even if the account is locked. See Section 6.3, “The
Password Validation Component”.)

• Create the account with a password but do not tell anyone else the password. If you do not let
anyone know the password for the account, clients cannot use it to connect directly to the MySQL
server.

Granting and Revoking the PROXY Privilege

The PROXY privilege is needed to enable an external user to connect as and have the privileges of
another user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON 'proxied_user' TO 'proxy_user';

The statement creates a row in the mysql.proxies_priv grant table.

At connect time, proxy_user must represent a valid externally authenticated MySQL user, and
proxied_user must represent a valid locally authenticated user. Otherwise, the connection attempt
fails.

The corresponding REVOKE syntax is:

REVOKE PROXY ON 'proxied_user' FROM 'proxy_user';

MySQL GRANT and REVOKE syntax extensions work as usual. Examples:

-- grant PROXY to multiple accounts
GRANT PROXY ON 'a' TO 'b', 'c', 'd';
-- revoke PROXY from multiple accounts
REVOKE PROXY ON 'a' FROM 'b', 'c', 'd';
-- grant PROXY to an account and enable the account to grant
-- PROXY to the proxied account
GRANT PROXY ON 'a' TO 'd' WITH GRANT OPTION;
-- grant PROXY to default proxy account
GRANT PROXY ON 'a' TO ''@'';

The PROXY privilege can be granted in these cases:

• By a user that has GRANT PROXY ... WITH GRANT OPTION for proxied_user.

• By proxied_user for itself: The value of USER() must exactly match CURRENT_USER() and
proxied_user, for both the user name and host name parts of the account name.

The initial root account created during MySQL installation has the PROXY ... WITH GRANT
OPTION privilege for ''@'', that is, for all users and all hosts. This enables root to set up proxy
users, as well as to delegate to other accounts the authority to set up proxy users. For example, root
can do this:

CREATE USER 'admin'@'localhost'
 IDENTIFIED BY 'admin_password';
GRANT PROXY
 ON ''@''
 TO 'admin'@'localhost'
 WITH GRANT OPTION;

Those statements create an admin user that can manage all GRANT PROXY mappings. For example,
admin can do this:

GRANT PROXY ON sally TO joe;

Default Proxy Users

118

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Default Proxy Users

To specify that some or all users should connect using a given authentication plugin, create a “blank”
MySQL account with an empty user name and host name (''@''), associate it with that plugin, and let
the plugin return the real authenticated user name (if different from the blank user). Suppose that there
exists a plugin named ldap_auth that implements LDAP authentication and maps connecting users
onto either a developer or manager account. To set up proxying of users onto these accounts, use the
following statements:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH ldap_auth
 AS 'O=Oracle, OU=MySQL';
-- create proxied accounts; use
-- mysql_no_login plugin to prevent direct login
CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'manager'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- grant to default proxy account the
-- PROXY privilege for proxied accounts
GRANT PROXY
 ON 'manager'@'localhost'
 TO ''@'';
GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';

Now assume that a client connects as follows:

$> mysql --user=myuser --password ...
Enter password: myuser_password

The server does not find myuser defined as a MySQL user, but because there is a blank user account
(''@'') that matches the client user name and host name, the server authenticates the client against
that account. The server invokes the ldap_auth authentication plugin and passes myuser and
myuser_password to it as the user name and password.

If the ldap_auth plugin finds in the LDAP directory that myuser_password is not the correct
password for myuser, authentication fails and the server rejects the connection.

If the password is correct and ldap_auth finds that myuser is a developer, it returns the user name
developer to the MySQL server, rather than myuser. Returning a user name different from the client
user name of myuser signals to the server that it should treat myuser as a proxy. The server verifies
that ''@'' can authenticate as developer (because ''@'' has the PROXY privilege to do so) and
accepts the connection. The session proceeds with myuser having the privileges of the developer
proxied user. (These privileges should be set up by the DBA using GRANT statements, not shown.) The
USER() and CURRENT_USER() functions return these values:

mysql> SELECT USER(), CURRENT_USER();
+------------------+---------------------+
| USER() | CURRENT_USER() |
+------------------+---------------------+
| myuser@localhost | developer@localhost |
+------------------+---------------------+

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the
user name and the session proceeds with myuser having the privileges of the manager proxied user.

mysql> SELECT USER(), CURRENT_USER();
+------------------+-------------------+
| USER() | CURRENT_USER() |
+------------------+-------------------+
| myuser@localhost | manager@localhost |
+------------------+-------------------+

For simplicity, external authentication cannot be multilevel: Neither the credentials for developer nor
those for manager are taken into account in the preceding example. However, they are still used if a

119

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Default Proxy User and Anonymous User Conflicts

client tries to connect and authenticate directly as the developer or manager account, which is why
those proxied accounts should be protected against direct login (see Preventing Direct Login to Proxied
Accounts).

Default Proxy User and Anonymous User Conflicts

If you intend to create a default proxy user, check for other existing “match any user” accounts that take
precedence over the default proxy user because they can prevent that user from working as intended.

In the preceding discussion, the default proxy user account has '' in the host part, which matches any
host. If you set up a default proxy user, take care to also check whether nonproxy accounts exist with
the same user part and '%' in the host part, because '%' also matches any host, but has precedence
over '' by the rules that the server uses to sort account rows internally (see Section 4.6, “Access
Control, Stage 1: Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

-- create default proxy account
CREATE USER ''@''
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create anonymous account
CREATE USER ''@'%'
 IDENTIFIED BY 'anon_user_password';

The first account (''@'') is intended as the default proxy user, used to authenticate connections
for users who do not otherwise match a more-specific account. The second account (''@'%') is an
anonymous-user account, which might have been created, for example, to enable users without their
own account to connect anonymously.

Both accounts have the same user part (''), which matches any user. And each account has a
host part that matches any host. Nevertheless, there is a priority in account matching for connection
attempts because the matching rules sort a host of '%' ahead of ''. For accounts that do not match
any more-specific account, the server attempts to authenticate them against ''@'%' (the anonymous
user) rather than ''@'' (the default proxy user). As a result, the default proxy account is never used.

To avoid this problem, use one of the following strategies:

• Remove the anonymous account so that it does not conflict with the default proxy user.

• Use a more-specific default proxy user that matches ahead of the anonymous user. For example, to
permit only localhost proxy connections, use ''@'localhost':

CREATE USER ''@'localhost'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

In addition, modify any GRANT PROXY statements to name ''@'localhost' rather than ''@'' as
the proxy user.

Be aware that this strategy prevents anonymous-user connections from localhost.

• Use a named default account rather than an anonymous default account. For an example of
this technique, consult the instructions for using the authentication_windows plugin. See
Section 6.1.6, “Windows Pluggable Authentication”.

• Create multiple proxy users, one for local connections and one for “everything else” (remote
connections). This can be useful particularly when local users should have different privileges from
remote users.

Create the proxy users:

-- create proxy user for local connections
CREATE USER ''@'localhost'

120

Server Support for Proxy User Mapping

 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';
-- create proxy user for remote connections
CREATE USER ''@'%'
 IDENTIFIED WITH some_plugin
 AS 'some_auth_string';

Create the proxied users:

-- create proxied user for local connections
CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- create proxied user for remote connections
CREATE USER 'developer'@'%'
 IDENTIFIED WITH mysql_no_login;

Grant to each proxy account the PROXY privilege for the corresponding proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'localhost';
GRANT PROXY
 ON 'developer'@'%'
 TO ''@'%';

Finally, grant appropriate privileges to the local and remote proxied users (not shown).

Assume that the some_plugin/'some_auth_string' combination causes some_plugin to map
the client user name to developer. Local connections match the ''@'localhost' proxy user,
which maps to the 'developer'@'localhost' proxied user. Remote connections match the
''@'%' proxy user, which maps to the 'developer'@'%' proxied user.

Server Support for Proxy User Mapping

Some authentication plugins implement proxy user mapping for themselves (for example, the PAM and
Windows authentication plugins). Other authentication plugins do not support proxy users by default.
Of these, some can request that the MySQL server itself map proxy users according to granted proxy
privileges: mysql_native_password, sha256_password. If the check_proxy_users system
variable is enabled, the server performs proxy user mapping for any authentication plugins that make
such a request:

• By default, check_proxy_users is disabled, so the server performs no proxy user mapping even
for authentication plugins that request server support for proxy users.

• If check_proxy_users is enabled, it may also be necessary to enable a plugin-specific system
variable to take advantage of server proxy user mapping support:

• For the mysql_native_password plugin, enable mysql_native_password_proxy_users.

• For the sha256_password plugin, enable sha256_password_proxy_users.

For example, to enable all the preceding capabilities, start the server with these lines in the my.cnf
file:

[mysqld]
check_proxy_users=ON
mysql_native_password_proxy_users=ON
sha256_password_proxy_users=ON

Assuming that the relevant system variables have been enabled, create the proxy user as usual using
CREATE USER, then grant it the PROXY privilege to a single other account to be treated as the proxied
user. When the server receives a successful connection request for the proxy user, it finds that the user
has the PROXY privilege and uses it to determine the proper proxied user.

-- create proxy account

121

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_mysql_native_password_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_proxy_users
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Proxy User System Variables

CREATE USER 'proxy_user'@'localhost'
 IDENTIFIED WITH mysql_native_password
 BY 'password';
-- create proxied account and grant its privileges;
-- use mysql_no_login plugin to prevent direct login
CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- grant privileges to proxied account
GRANT ...
 ON ...
 TO 'proxied_user'@'localhost';
-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'proxy_user'@'localhost';

To use the proxy account, connect to the server using its name and password:

$> mysql -u proxy_user -p
Enter password: (enter proxy_user password here)

Authentication succeeds, the server finds that proxy_user has the PROXY privilege for
proxied_user, and the session proceeds with proxy_user having the privileges of
proxied_user.

Proxy user mapping performed by the server is subject to these restrictions:

• The server does not proxy to or from an anonymous user, even if the associated PROXY privilege is
granted.

• When a single account has been granted proxy privileges for more than one proxied account, server
proxy user mapping is nondeterministic. Therefore, granting to a single account proxy privileges for
multiple proxied accounts is discouraged.

Proxy User System Variables

Two system variables help trace the proxy login process:

• proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user
account. For example, if a client authenticates through the ''@'' proxy account, this variable is set
as follows:

mysql> SELECT @@proxy_user;
+--------------+
| @@proxy_user |
+--------------+
| ''@'' |
+--------------+

• external_user: Sometimes the authentication plugin may use an external user to authenticate
to the MySQL server. For example, when using Windows native authentication, a plugin that
authenticates using the windows API does not need the login ID passed to it. However, it still uses a
Windows user ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8
bytes of it) to the server using the external_user read-only session variable. If the plugin does not
set this variable, its value is NULL.

4.20 Account Locking

MySQL supports locking and unlocking user accounts using the ACCOUNT LOCK and ACCOUNT
UNLOCK clauses for the CREATE USER and ALTER USER statements:

• When used with CREATE USER, these clauses specify the initial locking state for a new account. In
the absence of either clause, the account is created in an unlocked state.

122

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_proxy_user
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Setting Account Resource Limits

If the validate_password component is enabled, creating an account without a password is not
permitted, even if the account is locked. See Section 6.3, “The Password Validation Component”.

• When used with ALTER USER, these clauses specify the new locking state for an existing account.
In the absence of either clause, the account locking state remains unchanged.

As of MySQL 8.0.19, ALTER USER ... UNLOCK unlocks any account named by the statement that
is temporarily locked due to too many failed logins. See Section 4.15, “Password Management”.

Account locking state is recorded in the account_locked column of the mysql.user system table.
The output from SHOW CREATE USER indicates whether an account is locked or unlocked.

If a client attempts to connect to a locked account, the attempt fails. The server increments the
Locked_connects status variable that indicates the number of attempts to connect to a locked
account, returns an ER_ACCOUNT_HAS_BEEN_LOCKED error, and writes a message to the error log:

Access denied for user 'user_name'@'host_name'.
Account is locked.

Locking an account does not affect being able to connect using a proxy user that assumes the identity
of the locked account. It also does not affect the ability to execute stored programs or views that have
a DEFINER attribute naming the locked account. That is, the ability to use a proxied account or stored
programs or views is not affected by locking the account.

The account-locking capability depends on the presence of the account_locked column in the
mysql.user system table. For upgrades from MySQL versions older than 5.7.6, perform the MySQL
upgrade procedure to ensure that this column exists. See Upgrading MySQL. For nonupgraded
installations that have no account_locked column, the server treats all accounts as unlocked, and
using the ACCOUNT LOCK or ACCOUNT UNLOCK clauses produces an error.

4.21 Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global
max_user_connections system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user_connections does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server
resources:

• The number of queries an account can issue per hour

• The number of updates an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit. Only statements that modify
databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user system table. That is, a
connection is assessed against the User and Host values in the user table row that applies to the
connection. For example, an account 'usera'@'%.example.com' corresponds to a row in the user
table that has User and Host values of usera and %.example.com, to permit usera to connect
from any host in the example.com domain. In this case, the server applies resource limits in this row
collectively to all connections by usera from any host in the example.com domain because all such
connections use the same account.

123

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Locked_connects
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_account_has_been_locked
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections

Setting Account Resource Limits

Before MySQL 5.0, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the --old-style-
user-limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.
If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

Note

The --old-style-user-limits option is deprecated in MySQL 8.0.30, and
is subject to removal in a future release of MySQL. Use of this option on the
command line or in an option file in MySQL 8.0.30 or later causes the server to
raise a warning.

To establish resource limits for an account at account-creation time, use the CREATE USER statement.
To modify the limits for an existing account, use ALTER USER. Provide a WITH clause that names each
resource to be limited. The default value for each limit is zero (no limit). For example, to create a new
account that can access the customer database, but only in a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank'
 -> WITH MAX_QUERIES_PER_HOUR 20
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5
 -> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is
also zero, there is no limit for the account.

To modify limits for an existing account, use an ALTER USER statement. The following statement
changes the query limit for francis to 100:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> ALTER USER 'francis'@'localhost' WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that
the global max_user_connections value is 10 and three accounts have individual resource limits
specified as follows:

ALTER USER 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
ALTER USER 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
ALTER USER 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has
a MAX_USER_CONNECTIONS limit of zero. user2 and user3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account.
The max_questions, max_updates, and max_connections columns store the per-hour limits, and
the max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 4.3,
“Grant Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of
the resources.

124

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_old-style-user-limits
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_old-style-user-limits
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_old-style-user-limits
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_user_connections

Troubleshooting Problems Connecting to MySQL

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or
updates, the server rejects further queries or updates until the hour is up. In all such cases, the server
issues appropriate error messages.

Resource counting occurs per account, not per client. For example, if your account has a query limit of
50, you cannot increase your limit to 100 by making two simultaneous client connections to the server.
Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a
given account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be reset to zero by setting any of its limits again. Specify a
limit value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result
in an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not
fully processed the disconnect by the time the connect occurs. When the server finishes disconnect
processing, another connection is once more permitted.

4.22 Troubleshooting Problems Connecting to MySQL
If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an
attempt to connect to the server fails with a message such as one of those following, one cause
might be that the server is not running:

$> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
$> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe,
or Unix socket file different from the one on which the server is listening. To correct this when you
invoke a client program, specify a --port option to indicate the proper port number, or a --socket
option to indicate the proper named pipe or Unix socket file. To find out where the socket file is, you
can use this command:

$> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with the skip_networking system variable enabled, no TCP/
IP connections are accepted. If the server was started with the bind_address system variable set
to 127.0.0.1, it listens for TCP/IP connections only locally on the loopback interface and does not
accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be
configured on the basis of the application being executed, or the port number used by MySQL for

125

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-user-resources
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_too_many_user_connections
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_user_limit_reached
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_port
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_socket
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_bind_address

Troubleshooting Problems Connecting to MySQL

communication (3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration
to ensure that the port has not been blocked. Under Windows, applications such as ZoneAlarm or
Windows Firewall may need to be configured not to block the MySQL port.

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM and DEB distributions
on Linux), the installation process initializes the MySQL data directory, including the mysql system
database containing the grant tables. For distributions that do not do this, you must initialize the data
directory manually. For details, see Chapter 3, Postinstallation Setup and Testing.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database
directory. If not, initialize the data directory. After doing so and starting the server, you should be able
to connect to the server.

• After a fresh installation, if you try to log on to the server as root without using a password, you
might get the following error message.

$> mysql -u root
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO)

It means a root password has already been assigned during installation and it has to be supplied.
See Section 3.4, “Securing the Initial MySQL Account” on the different ways the password could
have been assigned and, in some cases, how to find it. If you need to reset the root password, see
instructions in How to Reset the Root Password. After you have found or reset your password, log on
again as root using the --password (or -p) option:

$> mysql -u root -p
Enter password:

However, the server is going to let you connect as root without using a password if you have
initialized MySQL using mysqld --initialize-insecure (see Section 3.1, “Initializing the Data
Directory” for details). That is a security risk, so you should set a password for the root account; see
Section 3.4, “Securing the Initial MySQL Account” for instructions.

• If you have updated an existing MySQL installation to a newer version, did you perform the MySQL
upgrade procedure? If not, do so. The structure of the grant tables changes occasionally when new
capabilities are added, so after an upgrade you should always make sure that your tables have the
current structure. For instructions, see Upgrading MySQL.

• If a client program receives the following error message when it tries to connect, it means that the
server expects passwords in a newer format than the client is capable of generating:

$> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

• Remember that client programs use connection parameters specified in option files or
environment variables. If a client program seems to be sending incorrect default connection
parameters when you have not specified them on the command line, check any applicable option
files and your environment. For example, if you get Access denied when you run a client without
any options, make sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

$> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Using Option Files. Environment variables are listed in
Environment Variables.

• If you get the following error, it means that you are using an incorrect root password:

126

https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/environment-variables.html

Troubleshooting Problems Connecting to MySQL

$> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 4.14, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see How to Reset the Root Password.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a --host=127.0.0.1 option to name the server host explicitly. This causes a TCP/IP
connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that
uses the actual host name of the local host. In this case, the host name must be specified in a user
table row on the server host, even though you are running the client program on the same host as
the server.

• The Access denied error message tells you who you are trying to log in as, the client host from
which you are trying to connect, and whether you were using a password. Normally, you should have
one row in the user table that exactly matches the host name and user name that were given in the
error message. For example, if you get an error message that contains using password: NO, it
means that you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u
root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name
and your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the
MySQL server is running, it means that there is no row in the user table with a Host value that
matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that
you are using when trying to connect.

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from
the client machine, use a SELECT USER() query to see how you really did connect. Then change
the '%' in the user table row to the actual host name that shows up in the log. Otherwise, your
system is left insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version
that is compiled with a different version of the glibc library than the one you are using. In this case,
you should either upgrade your operating system or glibc, or download a source distribution of
MySQL version and compile it yourself. A source RPM is normally trivial to compile and install, so
this is not a big problem.

• If you specify a host name when trying to connect, but get an error message where the host name
is not shown or is an IP address, it means that the MySQL server got an error when trying to resolve
the IP address of the client host to a name:

$> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

127

https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_host
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_host

Troubleshooting Problems Connecting to MySQL

If you try to connect as root and get the following error, it means that you do not have a row in the
user table with a User column value of 'root' and that mysqld cannot resolve the host name for
your client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See DNS Lookups and the Host Cache.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on
Windows.

• Start mysqld with the skip_name_resolve system variable enabled.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to
localhost. For connections to localhost, MySQL programs attempt to connect to the local
server by using a Unix socket file, unless there are connection parameters specified to ensure that
the client makes a TCP/IP connection. For more information, see Connecting to the MySQL Server
Using Command Options.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root works but mysql -h your_hostname -u root results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host 'pluto' in
the user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the
row does not work. Try adding a row to the user table that contains the IP address of your host as
the Host column value. (Alternatively, you could add a row to the user table with a Host value
that contains a wildcard (for example, 'pluto.%'). However, use of Host values ending with % is
insecure and is not recommended!)

• If mysql -u user_name works but mysql -u user_name some_db does not, you have not
granted access to the given user for the database named some_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -
u user_name does not work when executed on a remote client host, you have not enabled access
to the server for the given user name from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all rows that
have Host values containing wildcards (rows that contain '%' or '_' characters). A very common
error is to insert a new row with Host='%' and User='some_user', thinking that this enables
you to specify localhost to connect from the same machine. The reason that this does not work
is that the default privileges include a row with Host='localhost' and User=''. Because that
row has a Host value 'localhost' that is more specific than '%', it is used in preference to the
new row when connecting from localhost! The correct procedure is to insert a second row with
Host='localhost' and User='some_user', or to delete the row with Host='localhost' and
User=''. After deleting the row, remember to issue a FLUSH PRIVILEGES statement to reload the
grant tables. See also Section 4.6, “Access Control, Stage 1: Connection Verification”.

128

https://dev.mysql.com/doc/refman/8.0/en/host-cache.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-host-cache
https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

SQL-Based Account Activity Auditing

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA statement, your row in the user table does
not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE
statements) and your changes seem to be ignored, remember that you must execute a FLUSH
PRIVILEGES statement or a mysqladmin flush-privileges command to cause the server to
reload the privilege tables. Otherwise, your changes have no effect until the next time the server is
restarted. Remember that after you change the root password with an UPDATE statement, you do
not need to specify the new password until after you flush the privileges, because the server does
not know until then that you have changed the password.

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL
administrator has changed them. Reloading the grant tables affects new client connections, but it
also affects existing connections as indicated in Section 4.13, “When Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the
server with mysql -u user_name db_name or mysql -u user_name -ppassword db_name.
If you are able to connect using the mysql client, the problem lies with your program, not with the
access privileges. (There is no space between -p and the password; you can also use the --
password=password syntax to specify the password. If you use the -p or --password option with
no password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then
you can change the MySQL grant tables and use the SHOW GRANTS statement to check whether
your modifications have the desired effect. When you are satisfied with your changes, execute
mysqladmin flush-privileges to tell the mysqld server to reload the privileges. This enables
you to begin using the new grant table contents without stopping and restarting the server.

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as
well as information about each command issued. See The DBUG Package.

• If you have any other problems with the MySQL grant tables and ask on the MySQL Community
Slack, always provide a dump of the MySQL grant tables. You can dump the tables with the
mysqldump mysql command. To file a bug report, see the instructions at How to Report Bugs or
Problems. In some cases, you may need to restart mysqld with --skip-grant-tables to run
mysqldump.

4.23 SQL-Based Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity
to MySQL accounts.

MySQL accounts correspond to rows in the mysql.user system table. When a client connects
successfully, the server authenticates the client to a particular row in this table. The User
and Host column values in this row uniquely identify the account and correspond to the
'user_name'@'host_name' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its
value is constructed from the User and Host columns of the user table row for the account.

However, there are circumstances under which the CURRENT_USER() value corresponds not to the
client user but to a different account. This occurs in contexts when privilege checking is not based the
client's account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic

• Views defined with the SQL SECURITY DEFINER characteristic

129

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://mysqlcommunity.slack.com/
https://mysqlcommunity.slack.com/
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

SQL-Based Account Activity Auditing

• Triggers and events

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER()
refers to that account, not to the account for the client who invoked the stored routine or view or who
caused the trigger to activate. To determine the invoking user, you can call the USER() function, which
returns a value indicating the actual user name provided by the client and the host from which the client
connected. However, this value does not necessarily correspond directly to an account in the user
table, because the USER() value never contains wildcards, whereas account values (as returned by
CURRENT_USER()) may contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables
clients to connect as an anonymous user from the local host with any user name. In this case, if a client
connects as user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can also contain wildcards. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value does not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return
different values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within
triggers) but must also be able to associate the USER() value with an account in the user table, it
is necessary to avoid accounts that contain wildcards in the User or Host column. Specifically, do
not permit User to be empty (which creates an anonymous-user account), and do not permit pattern
characters or netmask notation in Host values. All accounts must have a nonempty User value and
literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+
mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+
| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |

130

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_substring-index

SQL-Based Account Activity Auditing

+--+

131

132

Chapter 5 Using Encrypted Connections

Table of Contents
5.1 Configuring MySQL to Use Encrypted Connections ... 134
5.2 Encrypted Connection TLS Protocols and Ciphers .. 141
5.3 Creating SSL and RSA Certificates and Keys ... 150

5.3.1 Creating SSL and RSA Certificates and Keys using MySQL 150
5.3.2 Creating SSL Certificates and Keys Using openssl ... 153
5.3.3 Creating RSA Keys Using openssl .. 158

5.4 Connecting to MySQL Remotely from Windows with SSH ... 159
5.5 Reusing SSL Sessions .. 159

With an unencrypted connection between the MySQL client and the server, someone with access to
the network could watch all your traffic and inspect the data being sent or received between client and
server.

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of
encrypted messages or replaying data twice.

MySQL supports encrypted connections between clients and the server using the TLS (Transport
Layer Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer) but MySQL
does not actually use the SSL protocol for encrypted connections because its encryption is weak (see
Section 5.2, “Encrypted Connection TLS Protocols and Ciphers”).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It
has mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide
identity verification using the X.509 standard.

X.509 makes it possible to identify someone on the Internet. In basic terms, there should be some
entity called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs
them. Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key
and a secret key). A certificate owner can present the certificate to another party as proof of identity. A
certificate consists of its owner's public key. Any data encrypted using this public key can be decrypted
only using the corresponding secret key, which is held by the owner of the certificate.

Support for encrypted connections in MySQL is provided using OpenSSL. For information about the
encryption protocols and ciphers that OpenSSL supports, see Section 5.2, “Encrypted Connection TLS
Protocols and Ciphers”.

By default, MySQL instances link to an available installed OpenSSL library at runtime for support of
encrypted connections and other encryption-related operations. You may compile MySQL from source
and use the WITH_SSL CMake option to specify the path to a particular installed OpenSSL version or
an alternative OpenSSL system package. In that case, MySQL selects that version. For instructions to
do this, see Configuring SSL Library Support.

 From MySQL 8.0.11 to 8.0.17, it was possible to compile MySQL using wolfSSL as an alternative to
OpenSSL. As of MySQL 8.0.18, support for wolfSSL is removed and all MySQL builds use OpenSSL.

You can check what version of the OpenSSL library is in use at runtime using the
Tls_library_version system status variable, which is available from MySQL 8.0.30.

If you compile MySQL with one version of OpenSSL and want to change to a different version without
recompiling, you may do this by editing the dynamic library loader path (LD_LIBRARY_PATH on Unix
systems or PATH on Windows systems). Remove the path to the compiled version of OpenSSL, and
add the path to the replacement version, placing it before any other OpenSSL libraries on the path.

133

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ssl
https://dev.mysql.com/doc/refman/8.0/en/source-ssl-library-configuration.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Tls_library_version

Configuring MySQL to Use Encrypted Connections

At startup, when MySQL cannot find the version of OpenSSL specified with WITH_SSL on the path, it
uses the first version specified on the path instead.

By default, MySQL programs attempt to connect using encryption if the server supports encrypted
connections, falling back to an unencrypted connection if an encrypted connection cannot be
established. For information about options that affect use of encrypted connections, see Section 5.1,
“Configuring MySQL to Use Encrypted Connections” and Command Options for Encrypted
Connections.

MySQL performs encryption on a per-connection basis, and use of encryption for a given user can be
optional or mandatory. This enables you to choose an encrypted or unencrypted connection according
to the requirements of individual applications. For information on how to require users to use encrypted
connections, see the discussion of the REQUIRE clause of the CREATE USER statement in CREATE
USER Statement. See also the description of the require_secure_transport system variable at
Server System Variables

Encrypted connections can be used between source and replica servers. See Setting Up Replication to
Use Encrypted Connections.

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

It is also possible to connect using encryption from within an SSH connection to the MySQL server
host. For an example, see Section 5.4, “Connecting to MySQL Remotely from Windows with SSH”.

5.1 Configuring MySQL to Use Encrypted Connections
Several configuration parameters are available to indicate whether to use encrypted connections,
and to specify the appropriate certificate and key files. This section provides general guidance about
configuring the server and clients for encrypted connections:

• Server-Side Startup Configuration for Encrypted Connections

• Server-Side Runtime Configuration and Monitoring for Encrypted Connections

• Client-Side Configuration for Encrypted Connections

• Configuring Encrypted Connections as Mandatory

Encrypted connections also can be used in other contexts, as discussed in these additional sections:

• Between source and replica replication servers. See Setting Up Replication to Use Encrypted
Connections.

• Among Group Replication servers. See Securing Group Communication Connections with Secure
Socket Layer (SSL).

• By client programs that are based on the MySQL C API. See Support for Encrypted Connections.

Instructions for creating any required certificate and key files are available in Section 5.3, “Creating
SSL and RSA Certificates and Keys”.

Server-Side Startup Configuration for Encrypted Connections

On the server side, the --ssl option specifies that the server permits but does not require encrypted
connections. This option is enabled by default, so it need not be specified explicitly.

To require that clients connect using encrypted connections, enable the
require_secure_transport system variable. See Configuring Encrypted Connections as
Mandatory.

These system variables on the server side specify the certificate and key files the server uses when
permitting clients to establish encrypted connections:

134

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ssl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport

Server-Side Startup Configuration for Encrypted Connections

• ssl_ca: The path name of the Certificate Authority (CA) certificate file. (ssl_capath is similar but
specifies the path name of a directory of CA certificate files.)

• ssl_cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

• ssl_key: The path name of the server private key file.

For example, to enable the server for encrypted connections, start it with these lines in the my.cnf file,
changing the file names as necessary:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem

To specify in addition that clients are required to use encrypted connections, enable the
require_secure_transport system variable:

[mysqld]
ssl_ca=ca.pem
ssl_cert=server-cert.pem
ssl_key=server-key.pem
require_secure_transport=ON

Each certificate and key system variable names a file in PEM format. Should you need to create
the required certificate and key files, see Section 5.3, “Creating SSL and RSA Certificates and
Keys”. MySQL servers compiled using OpenSSL can generate missing certificate and key files
automatically at startup. See Section 5.3.1, “Creating SSL and RSA Certificates and Keys using
MySQL”. Alternatively, if you have a MySQL source distribution, you can test your setup using the
demonstration certificate and key files in its mysql-test/std_data directory.

The server performs certificate and key file autodiscovery. If no explicit encrypted-connection options
are given other than --ssl (possibly along with ssl_cipher) to configure encrypted connections, the
server attempts to enable encrypted-connection support automatically at startup:

• If the server discovers valid certificate and key files named ca.pem, server-cert.pem, and
server-key.pem in the data directory, it enables support for encrypted connections by clients. (The
files need not have been generated automatically; what matters is that they have those names and
are valid.)

• If the server does not find valid certificate and key files in the data directory, it continues executing
but without support for encrypted connections.

If the server automatically enables encrypted connection support, it writes a note to the error
log. If the server discovers that the CA certificate is self-signed, it writes a warning to the error
log. (The certificate is self-signed if created automatically by the server or manually using
mysql_ssl_rsa_setup.)

MySQL also provides these system variables for server-side encrypted-connection control:

• ssl_cipher: The list of permissible ciphers for connection encryption.

• ssl_crl: The path name of the file containing certificate revocation lists. (ssl_crlpath is similar
but specifies the path name of a directory of certificate revocation-list files.)

• tls_version, tls_ciphersuites: Which encryption protocols and ciphersuites the server
permits for encrypted connections; see Section 5.2, “Encrypted Connection TLS Protocols and
Ciphers”. For example, you can configure tls_version to prevent clients from using less-secure
protocols.

If the server cannot create a valid TLS context from the system variables for server-side encrypted-
connection control, the server executes without support for encrypted connections.

135

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crlpath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version

Server-Side Runtime Configuration and Monitoring for Encrypted Connections

Server-Side Runtime Configuration and Monitoring for Encrypted
Connections

Prior to MySQL 8.0.16, the tls_xxx and ssl_xxx system variables that configure encrypted-
connection support can be set only at server startup. These system variables therefore determine the
TLS context the server uses for all new connections.

As of MySQL 8.0.16, the tls_xxx and ssl_xxx system variables are dynamic and can be set at
runtime, not just at startup. If changed with SET GLOBAL, the new values apply only until server restart.
If changed with SET PERSIST, the new values also carry over to subsequent server restarts. See
SET Syntax for Variable Assignment. However, runtime changes to these variables do not immediately
affect the TLS context for new connections, as explained later in this section.

Along with the change in MySQL 8.0.16 that enables runtime changes to the TLS context-related
system variables, the server enables runtime updates to the actual TLS context used for new
connections. This capability may be useful, for example, to avoid restarting a MySQL server that has
been running so long that its SSL certificate has expired.

To create the initial TLS context, the server uses the values that the context-related system variables
have at startup. To expose the context values, the server also initializes a set of corresponding
status variables. The following table shows the system variables that define the TLS context and the
corresponding status variables that expose the currently active context values.

Table 5.1 System and Status Variables for Server Main Connection Interface TLS Context

System Variable Name Corresponding Status Variable Name

ssl_ca Current_tls_ca

ssl_capath Current_tls_capath

ssl_cert Current_tls_cert

ssl_cipher Current_tls_cipher

ssl_crl Current_tls_crl

ssl_crlpath Current_tls_crlpath

ssl_key Current_tls_key

tls_ciphersuites Current_tls_ciphersuites

tls_version Current_tls_version

As of MySQL 8.0.21, those active TLS context values are also exposed as properties in the
Performance Schema tls_channel_status table, along with the properties for any other active TLS
contexts.

To reconfigure the TLS context at runtime, use this procedure:

1. Set each TLS context-related system variable that should be changed to its new value.

2. Execute ALTER INSTANCE RELOAD TLS. This statement reconfigures the active TLS context
from the current values of the TLS context-related system variables. It also sets the context-
related status variables to reflect the new active context values. The statement requires the
CONNECTION_ADMIN privilege.

3. New connections established after execution of ALTER INSTANCE RELOAD TLS use the new TLS
context. Existing connections remain unaffected. If existing connections should be terminated, use
the KILL statement.

The members of each pair of system and status variables may have different values temporarily due to
the way the reconfiguration procedure works:

• Changes to the system variables prior to ALTER INSTANCE RELOAD TLS do not change the
TLS context. At this point, those changes have no effect on new connections, and corresponding

136

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_capath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crl
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_crl
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_crlpath
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_crlpath
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Current_tls_version
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tls-channel-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls

Client-Side Configuration for Encrypted Connections

context-related system and status variables may have different values. This enables you to make
any changes required to individual system variables, then update the active TLS context atomically
with ALTER INSTANCE RELOAD TLS after all system variable changes have been made.

• After ALTER INSTANCE RELOAD TLS, corresponding system and status variables have the same
values. This remains true until the next change to the system variables.

In some cases, ALTER INSTANCE RELOAD TLS by itself may suffice to reconfigure the TLS context,
without changing any system variables. Suppose that the certificate in the file named by ssl_cert
has expired. It is sufficient to replace the existing file contents with a nonexpired certificate and
execute ALTER INSTANCE RELOAD TLS to cause the new file contents to be read and used for new
connections.

As of MySQL 8.0.21, the server implements independent connection-encryption configuration for the
administrative connection interface. See Administrative Interface Support for Encrypted Connections.
In addition, ALTER INSTANCE RELOAD TLS is extended with a FOR CHANNEL clause that enables
specifying the channel (interface) for which to reload the TLS context. See ALTER INSTANCE
Statement. There are no status variables to expose the administrative interface TLS context, but the
Performance Schema tls_channel_status table exposes TLS properties for both the main and
administrative interfaces. See The tls_channel_status Table.

Updating the main interface TLS context has these effects:

• The update changes the TLS context used for new connections on the main connection interface.

• The update also changes the TLS context used for new connections on the administrative interface
unless some nondefault TLS parameter value is configured for that interface.

• The update does not affect the TLS context used by other enabled server plugins or components
such as Group Replication or X Plugin:

• To apply the main interface reconfiguration to Group Replication's group communication
connections, which take their settings from the server's TLS context-related system variables, you
must execute STOP GROUP_REPLICATION followed by START GROUP_REPLICATION to stop
and restart Group Replication.

• X Plugin initializes its TLS context at plugin initialization as described at Using Encrypted
Connections with X Plugin. This context does not change thereafter.

By default, the RELOAD TLS action rolls back with an error and has no effect if the configuration values
do not permit creation of the new TLS context. The previous context values continue to be used for
new connections. If the optional NO ROLLBACK ON ERROR clause is given and the new context cannot
be created, rollback does not occur. Instead, a warning is generated and encryption is disabled for new
connections on the interface to which the statement applies.

Options that enable or disable encrypted connections on a connection interface have an effect only at
startup. For example, the --ssl and --admin-ssl options affect only at startup whether the main
and administrative interfaces support encrypted connections. Such options are ignored and have
no effect on the operation of ALTER INSTANCE RELOAD TLS at runtime. For example, you can
use --ssl=OFF to start the server with encrypted connections disabled on the main interface, then
reconfigure TLS and execute ALTER INSTANCE RELOAD TLS to enable encrypted connections at
runtime.

Client-Side Configuration for Encrypted Connections

For a complete list of client options related to establishment of encrypted connections, see Command
Options for Encrypted Connections.

By default, MySQL client programs attempt to establish an encrypted connection if the server supports
encrypted connections, with further control available through the --ssl-mode option:

137

https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/administrative-connection-interface.html#administrative-interface-encrypted-connections
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tls-channel-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tls-channel-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/stop-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_admin-ssl
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

Client-Side Configuration for Encrypted Connections

• In the absence of an --ssl-mode option, clients attempt to connect using encryption, falling back
to an unencrypted connection if an encrypted connection cannot be established. This is also the
behavior with an explicit --ssl-mode=PREFERRED option.

• With --ssl-mode=REQUIRED, clients require an encrypted connection and fail if one cannot be
established.

• With --ssl-mode=DISABLED, clients use an unencrypted connection.

• With --ssl-mode=VERIFY_CA or --ssl-mode=VERIFY_IDENTITY, clients require an
encrypted connection, and also perform verification against the server CA certificate and (with
VERIFY_IDENTITY) against the server host name in its certificate.

Important

The default setting, --ssl-mode=PREFERRED, produces an encrypted
connection if the other default settings are unchanged. However, to help prevent
sophisticated man-in-the-middle attacks, it is important for the client to verify
the server’s identity. The settings --ssl-mode=VERIFY_CA and --ssl-
mode=VERIFY_IDENTITY are a better choice than the default setting to help
prevent this type of attack. VERIFY_CA makes the client check that the server’s
certificate is valid. VERIFY_IDENTITY makes the client check that the server’s
certificate is valid, and also makes the client check that the host name the client
is using matches the identity in the server’s certificate. To implement one of
these settings, you must first ensure that the CA certificate for the server is
reliably available to all the clients that use it in your environment, otherwise
availability issues will result. For this reason, they are not the default setting.

Attempts to establish an unencrypted connection fail if the require_secure_transport system
variable is enabled on the server side to cause the server to require encrypted connections. See
Configuring Encrypted Connections as Mandatory.

The following options on the client side identify the certificate and key files clients use when
establishing encrypted connections to the server. They are similar to the ssl_ca, ssl_cert, and
ssl_key system variables used on the server side, but --ssl-cert and --ssl-key identify the
client public and private key:

• --ssl-ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must
specify the same certificate used by the server. (--ssl-capath is similar but specifies the path
name of a directory of CA certificate files.)

• --ssl-cert: The path name of the client public key certificate file.

• --ssl-key: The path name of the client private key file.

For additional security relative to that provided by the default encryption, clients can supply a CA
certificate matching the one used by the server and enable host name identity verification. In this way,
the server and client place their trust in the same CA certificate and the client verifies that the host to
which it connected is the one intended:

• To specify the CA certificate, use --ssl-ca (or --ssl-capath), and specify --ssl-
mode=VERIFY_CA.

• To enable host name identity verification as well, use --ssl-mode=VERIFY_IDENTITY rather than
--ssl-mode=VERIFY_CA.

Note

Host name identity verification with VERIFY_IDENTITY does not work with
self-signed certificates that are created automatically by the server or manually
using mysql_ssl_rsa_setup (see Section 5.3.1, “Creating SSL and RSA

138

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

Client-Side Configuration for Encrypted Connections

Certificates and Keys using MySQL”). Such self-signed certificates do not
contain the server name as the Common Name value.

Prior to MySQL 8.0.12, host name identity verification also does not work with
certificates that specify the Common Name using wildcards because that name
is compared verbatim to the server name.

MySQL also provides these options for client-side encrypted-connection control:

• --ssl-cipher: The list of permissible ciphers for connection encryption.

• --ssl-crl: The path name of the file containing certificate revocation lists. (--ssl-crlpath is
similar but specifies the path name of a directory of certificate revocation-list files.)

• --tls-version, --tls-ciphersuites: The permitted encryption protocols and ciphersuites;
see Section 5.2, “Encrypted Connection TLS Protocols and Ciphers”.

Depending on the encryption requirements of the MySQL account used by a client, the client may be
required to specify certain options to connect using encryption to the MySQL server.

Suppose that you want to connect using an account that has no special encryption requirements or that
was created using a CREATE USER statement that included the REQUIRE SSL clause. Assuming that
the server supports encrypted connections, a client can connect using encryption with no --ssl-mode
option or with an explicit --ssl-mode=PREFERRED option:

mysql

Or:

mysql --ssl-mode=PREFERRED

For an account created with a REQUIRE SSL clause, the connection attempt fails if an encrypted
connection cannot be established. For an account with no special encryption requirements, the attempt
falls back to an unencrypted connection if an encrypted connection cannot be established. To prevent
fallback and fail if an encrypted connection cannot be obtained, connect like this:

mysql --ssl-mode=REQUIRED

If the account has more stringent security requirements, other options must be specified to establish an
encrypted connection:

• For accounts created with a REQUIRE X509 clause, clients must specify at least --ssl-cert
and --ssl-key. In addition, --ssl-ca (or --ssl-capath) is recommended so that the public
certificate provided by the server can be verified. For example (enter the command on a single line):

mysql --ssl-ca=ca.pem
 --ssl-cert=client-cert.pem
 --ssl-key=client-key.pem

• For accounts created with a REQUIRE ISSUER or REQUIRE SUBJECT clause, the encryption
requirements are the same as for REQUIRE X509, but the certificate must match the issue or
subject, respectively, specified in the account definition.

For additional information about the REQUIRE clause, see CREATE USER Statement.

MySQL servers can generate client certificate and key files that clients can use to connect to MySQL
server instances. See Section 5.3, “Creating SSL and RSA Certificates and Keys”.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key

139

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Configuring Encrypted Connections as Mandatory

usage must include client authentication (clientAuth). If the SSL certificate
is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no extendedKeyUsage extension in
SSL certificates generated by MySQL Server (as described in Section 5.3.1,
“Creating SSL and RSA Certificates and Keys using MySQL”), and SSL
certificates created using the openssl command following the instructions
in Section 5.3.2, “Creating SSL Certificates and Keys Using openssl”. If
you use your own client certificate created in another way, ensure any
extendedKeyUsage extension includes client authentication.

To prevent use of encryption and override other --ssl-xxx options, invoke the client program with --
ssl-mode=DISABLED:

mysql --ssl-mode=DISABLED

To determine whether the current connection with the server uses encryption, check the session value
of the Ssl_cipher status variable. If the value is empty, the connection is not encrypted. Otherwise,
the connection is encrypted and the value indicates the encryption cipher. For example:

mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';
+---------------+---------------------------+
| Variable_name | Value |
+---------------+---------------------------+
| Ssl_cipher | DHE-RSA-AES128-GCM-SHA256 |
+---------------+---------------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES128-GCM-SHA256
...

Configuring Encrypted Connections as Mandatory

For some MySQL deployments it may be not only desirable but mandatory to use encrypted
connections (for example, to satisfy regulatory requirements). This section discusses configuration
settings that enable you to do this. These levels of control are available:

• You can configure the server to require that clients connect using encrypted connections.

• You can invoke individual client programs to require an encrypted connection, even if the server
permits but does not require encryption.

• You can configure individual MySQL accounts to be usable only over encrypted connections.

To require that clients connect using encrypted connections, enable the
require_secure_transport system variable. For example, put these lines in the server my.cnf
file:

[mysqld]
require_secure_transport=ON

Alternatively, to set and persist the value at runtime, use this statement:

SET PERSIST require_secure_transport=ON;

140

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport

Encrypted Connection TLS Protocols and Ciphers

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to be
used for subsequent server restarts. See SET Syntax for Variable Assignment.

With require_secure_transport enabled, client connections to the server are required to use
some form of secure transport, and the server permits only TCP/IP connections that use SSL, or
connections that use a socket file (on Unix) or shared memory (on Windows). The server rejects
nonsecure connection attempts, which fail with an ER_SECURE_TRANSPORT_REQUIRED error.

To invoke a client program such that it requires an encrypted connection whether or not the
server requires encryption, use an --ssl-mode option value of REQUIRED, VERIFY_CA, or
VERIFY_IDENTITY. For example:

mysql --ssl-mode=REQUIRED
mysqldump --ssl-mode=VERIFY_CA
mysqladmin --ssl-mode=VERIFY_IDENTITY

To configure a MySQL account to be usable only over encrypted connections, include a REQUIRE
clause in the CREATE USER statement that creates the account, specifying in that clause the
encryption characteristics you require. For example, to require an encrypted connection and the use of
a valid X.509 certificate, use REQUIRE X509:

CREATE USER 'jeffrey'@'localhost' REQUIRE X509;

For additional information about the REQUIRE clause, see CREATE USER Statement.

To modify existing accounts that have no encryption requirements, use the ALTER USER statement.

5.2 Encrypted Connection TLS Protocols and Ciphers
MySQL supports multiple TLS protocols and ciphers, and enables configuring which protocols and
ciphers to permit for encrypted connections. It is also possible to determine which protocol and cipher
the current session uses.

• Supported TLS Protocols

• Removal of Support for the TLSv1 and TLSv1.1 Protocols

• Connection TLS Protocol Configuration

• Connection Cipher Configuration

• Connection TLS Protocol Negotiation

• Monitoring Current Client Session TLS Protocol and Cipher

Supported TLS Protocols

The set of protocols permitted for connections to a given MySQL server instance is subject to multiple
factors as follows:

MySQL Server release • Up to and including MySQL 8.0.15, MySQL supports the TLSv1,
TLSv1.1, and TLSv1.2 protocols.

• As of MySQL 8.0.16, MySQL also supports the TLSv1.3 protocol.
To use TLSv1.3, both the MySQL server and the client application
must be compiled using OpenSSL 1.1.1 or higher. The Group
Replication component supports TLSv1.3 from MySQL 8.0.18 (for
details, see Securing Group Communication Connections with
Secure Socket Layer (SSL)).

• As of MySQL 8.0.26, the TLSv1 and TLSv1.1 protocols are
deprecated. These protocol versions are old, released in 1996
and 2006, respectively, and the algorithms used are weak and

141

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_secure_transport_required
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html

Supported TLS Protocols

outdated. For background, refer to the IETF memo Deprecating
TLSv1.0 and TLSv1.1.

• As of MySQL 8.0.28, MySQL no longer supports the TLSv1 and
TLSv1.1 protocols. From this release, clients cannot make a TLS/
SSL connection with the protocol set to TLSv1 or TLSv1.1. For
more details, see Removal of Support for the TLSv1 and TLSv1.1
Protocols.

Table 5.2 MySQL Server TLS Protocol Support

MySQL Server Release TLS Protocols Supported

MySQL 8.0.15 and below TLSv1, TLSv1.1, TLSv1.2

MySQL 8.0.16 and MySQL
8.0.17

TLSv1, TLSv1.1, TLSv1.2,
TLSv1.3 (except Group
Replication)

MySQL 8.0.18 through MySQL
8.0.25

TLSv1, TLSv1.1, TLSv1.2,
TLSv1.3 (including Group
Replication)

MySQL 8.0.26 and MySQL
8.0.27

TLSv1 (deprecated), TLSv1.1
(deprecated), TLSv1.2, TLSv1.3

MySQL 8.0.28 and above TLSv1.2, TLSv1.3

SSL library If the SSL library does not support a particular protocol, neither
does MySQL, and any parts of the following discussion that specify
that protocol do not apply. In particular, note that to use TLSv1.3,
both the MySQL server and the client application must be compiled
using OpenSSL 1.1.1 or higher. MySQL Server checks the version
of OpenSSL at startup, and if it is lower than 1.1.1, TLSv1.3 is
removed from the default value for the server system variables
relating to TLS versions (tls_version, admin_tls_version,
and group_replication_recovery_tls_version).

MySQL instance configuration Permitted TLS protocols can be configured on both the server
side and client side to include only a subset of the supported TLS
protocols. The configuration on both sides must include at least
one protocol in common or connection attempts cannot negotiate
a protocol to use. For details, see Connection TLS Protocol
Negotiation.

System-wide host configuration The host system may permit only certain TLS protocols, which
means that MySQL connections cannot use nonpermitted protocols
even if MySQL itself permits them:

• Suppose that MySQL configuration permits TLSv1, TLSv1.1,
and TLSv1.2, but your host system configuration permits only
connections that use TLSv1.2 or higher. In this case, you cannot
establish MySQL connections that use TLSv1 or TLSv1.1, even
though MySQL is configured to permit them, because the host
system does not permit them.

• If MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2,
but your host system configuration permits only connections that
use TLSv1.3 or higher, you cannot establish MySQL connections
at all, because no protocol permitted by MySQL is permitted by
the host system.

Workarounds for this issue include:

142

https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_tls_version

Removal of Support for the TLSv1 and TLSv1.1 Protocols

• Change the system-wide host configuration to permit additional
TLS protocols. Consult your operating system documentation
for instructions. For example, your system may have an /etc/
ssl/openssl.cnf file that contains these lines to restrict TLS
protocols to TLSv1.2 or higher:

[system_default_sect]
MinProtocol = TLSv1.2

Changing the value to a lower protocol version or None makes the
system more permissive. This workaround has the disadvantage
that permitting lower (less secure) protocols may have adverse
security consequences.

• If you cannot or prefer not to change the host system TLS
configuration, change MySQL applications to use higher (more
secure) TLS protocols that are permitted by the host system. This
may not be possible for older versions of MySQL that support only
lower protocol versions. For example, TLSv1 is the only supported
protocol prior to MySQL 5.6.46, so attempts to connect to a
pre-5.6.46 server fail even if the client is from a newer MySQL
version that supports higher protocol versions. In such cases,
an upgrade to a version of MySQL that supports additional TLS
versions may be required.

Removal of Support for the TLSv1 and TLSv1.1 Protocols

Support for the TLSv1 and TLSv1.1 connection protocols is removed as of MySQL 8.0.28. The
protocols were deprecated from MySQL 8.0.26. For background, refer to the IETF memo Deprecating
TLSv1.0 and TLSv1.1. It is recommended that connections be made using the more-secure TLSv1.2
and TLSv1.3 protocols. TLSv1.3 requires that both the MySQL server and the client application are
compiled with OpenSSL 1.1.1.

Support for TLSv1 and TLSv1.1 is removed because those protocol versions are old, released in
1996 and 2006, respectively. The algorithms used are weak and outdated. Unless you are using very
old versions of MySQL Server or connectors, you are unlikely to have connections using TLSv1.0 or
TLSv1.1. MySQL connectors and clients select the highest TLS version available by default.

In the releases where the TLSv1 and TLSv1.1 connection protocols are unsupported (from MySQL
8.0.28 onwards), clients, including MySQL Shell, that support a --tls-version option for specifying
TLS protocols for connections to the MySQL server cannot make a TLS/SSL connection with the
protocol set to TLSv1 or TLSv1.1. If a client attempts to connect using these protocols, for TCP
connections, the connection fails, and an error is returned to the client. For socket connections, if --
ssl-mode is set to REQUIRED, the connection fails, otherwise the connection is made but with TLS/
SSL disabled.

On the server side, the following settings are changed from MySQL 8.0.28:

• The default values of the server’s tls_version and admin_tls_version system variables no
longer include TLSv1 and TLSv1.1.

• The default value of the Group Replication system variable
group_replication_recovery_tls_version no longer includes TLSv1 and TLSv1.1.

• For asynchronous replication, replicas cannot set the protocol for connections to the source server to
TLSv1 or TLSv1.1 (the SOURCE_TLS_VERSION option of the CHANGE REPLICATION SOURCE TO
statement).

In the releases where the TLSv1 and TLSv1.1 connection protocols are deprecated (MySQL 8.0.26
and MySQL 8.0.27), the server writes a warning to the error log if they are included in the values of the

143

https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_tls_version
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Connection TLS Protocol Configuration

tls_version or admin_tls_version system variable, and if a client successfully connects using
them. A warning is also returned if you set the deprecated protocols at runtime and implement them
using the ALTER INSTANCE RELOAD TLS statement. Clients, including replicas that specify TLS
protocols for connections to the source server and Group Replication group members that specify TLS
protocols for distributed recovery connections, do not issue warnings if they are configured to permit a
deprecated TLS protocol.

For more information, see Does MySQL 8.0 support TLS 1.0 and 1.1?

Connection TLS Protocol Configuration

On the server side, the value of the tls_version system variable determines which TLS protocols
a MySQL server permits for encrypted connections. The tls_version value applies to connections
from clients, regular source/replica replication connections where this server instance is the source,
Group Replication group communication connections, and Group Replication distributed recovery
connections where this server instance is the donor. The administrative connection interface is
configured similarly, but uses the admin_tls_version system variable (see Administrative
Connection Management). This discussion applies to admin_tls_version as well.

The tls_version value is a list of one or more comma-separated TLS protocol versions, which is not
case-sensitive. By default, this variable lists all protocols that are supported by the SSL library used
to compile MySQL and by the MySQL Server release. The default settings are therefore as shown in
Table 5.3, “MySQL Server TLS Protocol Default Settings”.

Table 5.3 MySQL Server TLS Protocol Default Settings

MySQL Server Release tls_version Default Setting

MySQL 8.0.15 and below TLSv1,TLSv1.1,TLSv1.2

MySQL 8.0.16 and MySQL 8.0.17 TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 (with
OpenSSL 1.1.1)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Group Replication does not support TLSv1.3

MySQL 8.0.18 through MySQL 8.0.25 TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 (with
OpenSSL 1.1.1)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

Group Replication supports TLSv1.3

MySQL 8.0.26 and MySQL 8.0.27 TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 (with
OpenSSL 1.1.1)

TLSv1,TLSv1.1,TLSv1.2 (otherwise)

TLSv1 and TLSv1.1 are deprecated

MySQL 8.0.28 and above TLSv1.2,TLSv1.3

To determine the value of tls_version at runtime, use this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'tls_version';
+---------------+-----------------------+
| Variable_name | Value |
+---------------+-----------------------+
| tls_version | TLSv1.2,TLSv1.3 |
+---------------+-----------------------+

To change the value of tls_version, set it at server startup. For example, to permit connections that
use the TLSv1.2 or TLSv1.3 protocol, but prohibit connections that use the less-secure TLSv1 and
TLSv1.1 protocols, use these lines in the server my.cnf file:

144

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/faqs-security.html#faq-mysql-tls-versions
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/administrative-connection-interface.html
https://dev.mysql.com/doc/refman/8.0/en/administrative-connection-interface.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version

Connection TLS Protocol Configuration

[mysqld]
tls_version=TLSv1.2,TLSv1.3

To be even more restrictive and permit only TLSv1.3 connections, set tls_version like this:

[mysqld]
tls_version=TLSv1.3

As of MySQL 8.0.16, tls_version can be changed at runtime. See Server-Side Runtime
Configuration and Monitoring for Encrypted Connections.

On the client side, the --tls-version option specifies which TLS protocols a client program permits
for connections to the server. The format of the option value is the same as for the tls_version
system variable described previously (a list of one or more comma-separated protocol versions).

For source/replica replication connections where this server instance is the replica, the
SOURCE_TLS_VERSION | MASTER_TLS_VERSION option for the CHANGE REPLICATION SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) specifies
which TLS protocols the replica permits for connections to the source. The format of the option value is
the same as for the tls_version system variable described previously. See Setting Up Replication to
Use Encrypted Connections.

The protocols that can be specified for SOURCE_TLS_VERSION | MASTER_TLS_VERSION depend
on the SSL library. This option is independent of and not affected by the server tls_version value.
For example, a server that acts as a replica can be configured with tls_version set to TLSv1.3 to
permit only incoming connections that use TLSv1.3, but also configured with SOURCE_TLS_VERSION |
MASTER_TLS_VERSION set to TLSv1.2 to permit only TLSv1.2 for outgoing replica connections to the
source.

For Group Replication distributed recovery connections where this server instance
is the joining member that initiates distributed recovery (that is, the client), the
group_replication_recovery_tls_version system variable specifies which protocols
are permitted by the client. Again, this option is independent of and not affected by the server
tls_version value, which applies when this server instance is the donor. A Group Replication
server generally participates in distributed recovery both as a donor and as a joining member over the
course of its group membership, so both these system variables should be set. See Securing Group
Communication Connections with Secure Socket Layer (SSL).

TLS protocol configuration affects which protocol a given connection uses, as described in Connection
TLS Protocol Negotiation.

Permitted protocols should be chosen such as not to leave “holes” in the list. For example, these server
configuration values do not have holes:

tls_version=TLSv1,TLSv1.1,TLSv1.2,TLSv1.3
tls_version=TLSv1.1,TLSv1.2,TLSv1.3
tls_version=TLSv1.2,TLSv1.3
tls_version=TLSv1.3

These values do have holes and should not be used:

tls_version=TLSv1,TLSv1.2 (TLSv1.1 is missing)
tls_version=TLSv1.1,TLSv1.3 (TLSv1.2 is missing)

The prohibition on holes also applies in other configuration contexts, such as for clients or replicas.

Unless you intend to disable encrypted connections, the list of permitted protocols should not be empty.
If you set a TLS version parameter to the empty string, encrypted connections cannot be established:

• tls_version: The server does not permit encrypted incoming connections.

• --tls-version: The client does not permit encrypted outgoing connections to the server.

145

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version

Connection Cipher Configuration

• SOURCE_TLS_VERSION | MASTER_TLS_VERSION: The replica does not permit encrypted outgoing
connections to the source.

• group_replication_recovery_tls_version: The joining member does not permit encrypted
connections to the distributed recovery connection.

Connection Cipher Configuration

A default set of ciphers applies to encrypted connections, which can be overridden by explicitly
configuring the permitted ciphers. During connection establishment, both sides of a connection must
permit some cipher in common or the connection fails. Of the permitted ciphers common to both sides,
the SSL library chooses the one supported by the provided certificate that has the highest priority.

To specify a cipher or ciphers applicable for encrypted connections that use TLS protocols up through
TLSv1.2:

• Set the ssl_cipher system variable on the server side, and use the --ssl-cipher option for
client programs.

• For regular source/replica replication connections, where this server instance is the source,
set the ssl_cipher system variable. Where this server instance is the replica, use the
SOURCE_SSL_CIPHER | MASTER_SSL_CIPHER option for the CHANGE REPLICATION SOURCE
TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). See
Setting Up Replication to Use Encrypted Connections.

• For a Group Replication group member, for Group Replication group communication
connections and also for Group Replication distributed recovery connections where this
server instance is the donor, set the ssl_cipher system variable. For Group Replication
distributed recovery connections where this server instance is the joining member, use the
group_replication_recovery_ssl_cipher system variable. See Securing Group
Communication Connections with Secure Socket Layer (SSL).

For encrypted connections that use TLSv1.3, OpenSSL 1.1.1 and higher supports the following
ciphersuites, the first three of which are enabled by default:

TLS_AES_128_GCM_SHA256
TLS_AES_256_GCM_SHA384
TLS_CHACHA20_POLY1305_SHA256
TLS_AES_128_CCM_SHA256

Note

Prior to MySQL 8.0.35, TLS_AES_128_CCM_8_SHA256 was supported for
use with server system variables --tls-ciphersuites or --admin-tls-
ciphersuites. TLS_AES_128_CCM_8_SHA256 generates a deprecation
warning if configured for MySQL 8.0.35 and higher.

To configure the permitted TLSv1.3 ciphersuites explicitly, set the following parameters. In each case,
the configuration value is a list of zero or more colon-separated ciphersuite names.

• On the server side, use the tls_ciphersuites system variable. If this variable is not set, its
default value is NULL, which means that the server permits the default set of ciphersuites. If the
variable is set to the empty string, no ciphersuites are enabled and encrypted connections cannot be
established.

• On the client side, use the --tls-ciphersuites option. If this option is not set, the client permits
the default set of ciphersuites. If the option is set to the empty string, no ciphersuites are enabled and
encrypted connections cannot be established.

• For regular source/replica replication connections, where this server instance is the source,
use the tls_ciphersuites system variable. Where this server instance is the replica, use

146

https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites

Connection Cipher Configuration

the SOURCE_TLS_CIPHERSUITES | MASTER_TLS_CIPHERSUITES option for the CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23). See Setting Up Replication to Use Encrypted Connections.

• For a Group Replication group member, for Group Replication group communication
connections and also for Group Replication distributed recovery connections where this server
instance is the donor, use the tls_ciphersuites system variable. For Group Replication
distributed recovery connections where this server instance is the joining member, use the
group_replication_recovery_tls_ciphersuites system variable. See Securing Group
Communication Connections with Secure Socket Layer (SSL).

Note

Ciphersuite support is available as of MySQL 8.0.16, but requires that both the
MySQL server and the client application be compiled using OpenSSL 1.1.1 or
higher.

In MySQL 8.0.16 through 8.0.18, the
group_replication_recovery_tls_ciphersuites system variable and
the SOURCE_TLS_CIPHERSUITES | MASTER_TLS_CIPHERSUITES option for
the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23) are not available. In
these releases, if TLSv1.3 is used for source/replica replication connections, or
in Group Replication for distributed recovery (supported from MySQL 8.0.18),
the replication source or Group Replication donor servers must permit the use
of at least one TLSv1.3 ciphersuite that is enabled by default. From MySQL
8.0.19, you can use the options to configure client support for any selection of
ciphersuites, including only non-default ciphersuites if you want.

A given cipher may work only with particular TLS protocols, which affects the TLS protocol negotiation
process. See Connection TLS Protocol Negotiation.

To determine which ciphers a given server supports, check the session value of the
Ssl_cipher_list status variable:

SHOW SESSION STATUS LIKE 'Ssl_cipher_list';

The Ssl_cipher_list status variable lists the possible SSL ciphers (empty for non-SSL
connections). If MySQL supports TLSv1.3, the value includes the possible TLSv1.3 ciphersuites.

Note

ECDSA ciphers only work in combination with an SSL certificate that uses
ECDSA for the digital signature, and they do not work with certificates that
use RSA. MySQL Server’s automatic generation process for SSL certificates
does not generate ECDSA signed certificates, it generates only RSA signed
certificates. Do not select ECDSA ciphers unless you have an ECDSA
certificate available to you.

For encrypted connections that use TLS.v1.3, MySQL uses the SSL library default ciphersuite list.

For encrypted connections that use TLS protocols up through TLSv1.2, MySQL passes the following
default cipher list to the SSL library.

ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-ECDSA-CHACHA20-POLY1305
ECDHE-RSA-CHACHA20-POLY1305
ECDHE-ECDSA-AES256-CCM
ECDHE-ECDSA-AES128-CCM

147

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_tls_ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher_list
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher_list

Connection Cipher Configuration

DHE-RSA-AES128-GCM-SHA256
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES256-CCM
DHE-RSA-AES128-CCM
DHE-RSA-CHACHA20-POLY1305

These cipher restrictions are in place:

• As of MySQL 8.0.35, the following ciphers are deprecated and produce a warning when used with
the server system variables --ssl-cipher and --admin-ssl-cipher:

ECDHE-ECDSA-AES128-SHA256
ECDHE-RSA-AES128-SHA256
ECDHE-ECDSA-AES256-SHA384
ECDHE-RSA-AES256-SHA384
DHE-DSS-AES128-GCM-SHA256
DHE-RSA-AES128-SHA256
DHE-DSS-AES128-SHA256
DHE-DSS-AES256-GCM-SHA384
DHE-RSA-AES256-SHA256
DHE-DSS-AES256-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-GCM-SHA256
DH-DSS-AES128-GCM-SHA256
ECDH-ECDSA-AES128-GCM-SHA256
AES256-GCM-SHA384
DH-DSS-AES256-GCM-SHA384
ECDH-ECDSA-AES256-GCM-SHA384
AES128-SHA256
DH-DSS-AES128-SHA256
ECDH-ECDSA-AES128-SHA256
AES256-SHA256
DH-DSS-AES256-SHA256
ECDH-ECDSA-AES256-SHA384
AES128-SHA
DH-DSS-AES128-SHA
ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DH-RSA-AES128-GCM-SHA256
ECDH-RSA-AES128-GCM-SHA256
DH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-GCM-SHA384
DH-RSA-AES128-SHA256
ECDH-RSA-AES128-SHA256
DH-RSA-AES256-SHA256
ECDH-RSA-AES256-SHA384
ECDHE-RSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA
ECDHE-RSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA
DHE-DSS-AES128-SHA
DHE-RSA-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
DHE-RSA-AES256-SHA
AES128-SHA
DH-DSS-AES128-SHA
ECDH-ECDSA-AES128-SHA
AES256-SHA
DH-DSS-AES256-SHA
ECDH-ECDSA-AES256-SHA
DH-RSA-AES128-SHA
ECDH-RSA-AES128-SHA
DH-RSA-AES256-SHA

148

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_admin_ssl_cipher

Connection TLS Protocol Negotiation

ECDH-RSA-AES256-SHA
DES-CBC3-SHA

• The following ciphers are permanently restricted:

!DHE-DSS-DES-CBC3-SHA
!DHE-RSA-DES-CBC3-SHA
!ECDH-RSA-DES-CBC3-SHA
!ECDH-ECDSA-DES-CBC3-SHA
!ECDHE-RSA-DES-CBC3-SHA
!ECDHE-ECDSA-DES-CBC3-SHA

• The following categories of ciphers are permanently restricted:

!aNULL
!eNULL
!EXPORT
!LOW
!MD5
!DES
!RC2
!RC4
!PSK
!SSLv3

If the server is started with the ssl_cert system variable set to a certificate that uses any of
the preceding restricted ciphers or cipher categories, the server starts with support for encrypted
connections disabled.

Connection TLS Protocol Negotiation

Connection attempts in MySQL negotiate use of the highest TLS protocol version available on both
sides for which a protocol-compatible encryption cipher is available on both sides. The negotiation
process depends on factors such as the SSL library used to compile the server and client, the TLS
protocol and encryption cipher configuration, and which key size is used:

• For a connection attempt to succeed, the server and client TLS protocol configuration must permit
some protocol in common.

• Similarly, the server and client encryption cipher configuration must permit some cipher in common.
A given cipher may work only with particular TLS protocols, so a protocol available to the negotiation
process is not chosen unless there is also a compatible cipher.

• If TLSv1.3 is available, it is used if possible. (This means that server and client configuration both
must permit TLSv1.3, and both must also permit some TLSv1.3-compatible encryption cipher.)
Otherwise, MySQL continues through the list of available protocols, using TLSv1.2 if possible, and
so forth. Negotiation proceeds from more secure protocols to less secure. Negotiation order is
independent of the order in which protocols are configured. For example, negotiation order is the
same regardless of whether tls_version has a value of TLSv1,TLSv1.1,TLSv1.2,TLSv1.3 or
TLSv1.3,TLSv1.2,TLSv1.1,TLSv1.

• TLSv1.2 does not work with all ciphers that have a key size of 512 bits or less. To use this protocol
with such a key, set the ssl_cipher system variable on the server side or use the --ssl-cipher
client option to specify the cipher name explicitly:

AES128-SHA
AES128-SHA256
AES256-SHA
AES256-SHA256
CAMELLIA128-SHA
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-RSA-AES256-SHA
RC4-MD5
RC4-SHA
SEED-SHA

149

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher

Monitoring Current Client Session TLS Protocol and Cipher

• For better security, use a certificate with an RSA key size of at least 2048 bits.

If the server and client do not have a permitted protocol in common, and a protocol-compatible cipher
in common, the server terminates the connection request. Examples:

• If the server is configured with tls_version=TLSv1.1,TLSv1.2:

• Connection attempts fail for clients invoked with --tls-version=TLSv1, and for older clients
that support only TLSv1.

• Similarly, connection attempts fail for replicas configured with MASTER_TLS_VERSION =
'TLSv1', and for older replicas that support only TLSv1.

• If the server is configured with tls_version=TLSv1 or is an older server that supports only TLSv1:

• Connection attempts fail for clients invoked with --tls-version=TLSv1.1,TLSv1.2.

• Similarly, connection attempts fail for replicas configured with MASTER_TLS_VERSION =
'TLSv1.1,TLSv1.2'.

MySQL permits specifying a list of protocols to support. This list is passed directly down to the
underlying SSL library and is ultimately up to that library what protocols it actually enables from
the supplied list. Please refer to the MySQL source code and the OpenSSL SSL_CTX_new()
documentation for information about how the SSL library handles this.

Monitoring Current Client Session TLS Protocol and Cipher

To determine which encryption TLS protocol and cipher the current client session uses, check the
session values of the Ssl_version and Ssl_cipher status variables:

mysql> SELECT * FROM performance_schema.session_status
 WHERE VARIABLE_NAME IN ('Ssl_version','Ssl_cipher');
+---------------+---------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+---------------+---------------------------+
| Ssl_cipher | DHE-RSA-AES128-GCM-SHA256 |
| Ssl_version | TLSv1.2 |
+---------------+---------------------------+

If the connection is not encrypted, both variables have an empty value.

5.3 Creating SSL and RSA Certificates and Keys
The following discussion describes how to create the files required for SSL and RSA support in
MySQL. File creation can be performed using facilities provided by MySQL itself, or by invoking the
openssl command directly.

SSL certificate and key files enable MySQL to support encrypted connections using SSL. See
Section 5.1, “Configuring MySQL to Use Encrypted Connections”.

RSA key files enable MySQL to support secure password exchange over unencrypted connections
for accounts authenticated by the sha256_password or caching_sha2_password plugin. See
Section 6.1.3, “SHA-256 Pluggable Authentication”, and Section 6.1.2, “Caching SHA-2 Pluggable
Authentication”.

5.3.1 Creating SSL and RSA Certificates and Keys using MySQL

MySQL provides these ways to create the SSL certificate and key files and RSA key-pair files
required to support encrypted connections using SSL and secure password exchange using RSA over
unencrypted connections, if those files are missing:

• The server can autogenerate these files at startup, for MySQL distributions.

150

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_new.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_version
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_cipher

Creating SSL and RSA Certificates and Keys using MySQL

• Users can invoke the mysql_ssl_rsa_setup utility manually (deprecated as of MySQL 8.0.34).

• For some distribution types, such as RPM and DEB packages, mysql_ssl_rsa_setup invocation
occurs during data directory initialization. In this case, the MySQL distribution need not have been
compiled using OpenSSL as long as the openssl command is available.

Important

Server autogeneration and mysql_ssl_rsa_setup help lower the barrier
to using SSL by making it easier to generate the required files. However,
certificates generated by these methods are self-signed, which may not be
very secure. After you gain experience using such files, consider obtaining
certificate/key material from a registered certificate authority.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (clientAuth). If the SSL certificate
is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to
the MySQL server instance fails. There is no extendedKeyUsage extension
in SSL certificates generated by MySQL Server. If you use your own client
certificate created in another way, ensure any extendedKeyUsage extension
includes client authentication.

• Automatic SSL and RSA File Generation

• Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

• SSL and RSA File Characteristics

Automatic SSL and RSA File Generation

For MySQL distributions compiled using OpenSSL, the MySQL server has the
capability of automatically generating missing SSL and RSA files at startup. The
auto_generate_certs, sha256_password_auto_generate_rsa_keys, and
caching_sha2_password_auto_generate_rsa_keys system variables control automatic
generation of these files. These variables are enabled by default. They can be enabled at startup and
inspected but not set at runtime.

At startup, the server automatically generates server-side and client-side SSL certificate and key files
in the data directory if the auto_generate_certs system variable is enabled, no SSL options other
than --ssl are specified, and the server-side SSL files are missing from the data directory. These
files enable encrypted client connections using SSL; see Section 5.1, “Configuring MySQL to Use
Encrypted Connections”.

1. The server checks the data directory for SSL files with the following names:

ca.pem
server-cert.pem
server-key.pem

2. If any of those files are present, the server creates no SSL files. Otherwise, it creates them, plus
some additional files:

ca.pem Self-signed CA certificate
ca-key.pem CA private key
server-cert.pem Server certificate
server-key.pem Server private key
client-cert.pem Client certificate
client-key.pem Client private key

151

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_ssl

Creating SSL and RSA Certificates and Keys using MySQL

3. If the server autogenerates SSL files, it uses the names of the ca.pem, server-cert.pem, and
server-key.pem files to set the corresponding system variables (ssl_ca, ssl_cert, ssl_key).

At startup, the server automatically generates RSA private/public key-pair files in the data directory
if all of these conditions are true: The sha256_password_auto_generate_rsa_keys or
caching_sha2_password_auto_generate_rsa_keys system variable is enabled; no RSA
options are specified; the RSA files are missing from the data directory. These key-pair files enable
secure password exchange using RSA over unencrypted connections for accounts authenticated by
the sha256_password or caching_sha2_password plugin; see Section 6.1.3, “SHA-256 Pluggable
Authentication”, and Section 6.1.2, “Caching SHA-2 Pluggable Authentication”.

1. The server checks the data directory for RSA files with the following names:

private_key.pem Private member of private/public key pair
public_key.pem Public member of private/public key pair

2. If any of these files are present, the server creates no RSA files. Otherwise, it creates them.

3. If the server autogenerates the RSA files, it uses their names to set the
corresponding system variables (sha256_password_private_key_path and
sha256_password_public_key_path; caching_sha2_password_private_key_path and
caching_sha2_password_public_key_path).

Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

MySQL distributions include a mysql_ssl_rsa_setup utility (deprecated as of MySQL 8.0.34)
that can be invoked manually to generate SSL and RSA files. This utility is included with all MySQL
distributions, but it does require that the openssl command be available. For usage instructions, see
mysql_ssl_rsa_setup — Create SSL/RSA Files.

SSL and RSA File Characteristics

SSL and RSA files created automatically by the server or by invoking mysql_ssl_rsa_setup have
these characteristics:

• SSL and RSA have a size of 2048 bits.

• The SSL CA certificate is self signed.

• The SSL server and client certificates are signed with the CA certificate and key, using the
sha256WithRSAEncryption signature algorithm.

• SSL certificates use these Common Name (CN) values, with the appropriate certificate type (CA,
Server, Client):

ca.pem: MySQL_Server_suffix_Auto_Generated_CA_Certificate
server-cert.pm: MySQL_Server_suffix_Auto_Generated_Server_Certificate
client-cert.pm: MySQL_Server_suffix_Auto_Generated_Client_Certificate

The suffix value is based on the MySQL version number. For files generated by
mysql_ssl_rsa_setup, the suffix can be specified explicitly using the --suffix option.

For files generated by the server, if the resulting CN values exceed 64 characters, the _suffix
portion of the name is omitted.

• SSL files have blank values for Country (C), State or Province (ST), Organization (O), Organization
Unit Name (OU) and email address.

• SSL files created by the server or by mysql_ssl_rsa_setup are valid for ten years from the time
of generation.

• RSA files do not expire.

152

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html#option_mysql_ssl_rsa_setup_suffix

Creating SSL Certificates and Keys Using openssl

• SSL files have different serial numbers for each certificate/key pair (1 for CA, 2 for Server, 3 for
Client).

• Files created automatically by the server are owned by the account that runs the server. Files
created using mysql_ssl_rsa_setup are owned by the user who invoked that program. This can
be changed on systems that support the chown() system call if the program is invoked by root and
the --uid option is given to specify the user who should own the files.

• On Unix and Unix-like systems, the file access mode is 644 for certificate files (that is, world
readable) and 600 for key files (that is, accessible only by the account that runs the server).

To see the contents of an SSL certificate (for example, to check the range of dates over which it is
valid), invoke openssl directly:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

It is also possible to check SSL certificate expiration information using this SQL statement:

mysql> SHOW STATUS LIKE 'Ssl_server_not%';
+-----------------------+--------------------------+
| Variable_name | Value |
+-----------------------+--------------------------+
| Ssl_server_not_after | Apr 28 14:16:39 2027 GMT |
| Ssl_server_not_before | May 1 14:16:39 2017 GMT |
+-----------------------+--------------------------+

5.3.2 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files
for use by MySQL servers and clients. The first example shows a simplified procedure such as you
might use from the command line. The second shows a script that contains more detail. The first two
examples are intended for use on Unix and both use the openssl command that is part of OpenSSL.
The third example describes how to set up SSL files on Windows.

Note

There are easier alternatives to generating the files required for SSL than
the procedure described here: Let the server autogenerate them or use
the mysql_ssl_rsa_setup program (deprecated as of 8.0.34). See
Section 5.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ
from the Common Name value used for the CA certificate. Otherwise, the
certificate and key files do not work for servers compiled using OpenSSL. A
typical error in this case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the extendedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (clientAuth). If the SSL certificate
is only specified for server authentication (serverAuth) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no extendedKeyUsage extension in
SSL certificates created using the openssl command following the instructions

153

https://dev.mysql.com/doc/refman/8.0/en/mysql-ssl-rsa-setup.html#option_mysql_ssl_rsa_setup_uid

Creating SSL Certificates and Keys Using openssl

in this topic. If you use your own client certificate created in another way, ensure
any extendedKeyUsage extension includes client authentication.

• Example 1: Creating SSL Files from the Command Line on Unix

• Example 2: Creating SSL Files Using a Script on Unix

• Example 3: Creating SSL Files on Windows

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and
key files. You must respond to several prompts by the openssl commands. To generate test files,
you can press Enter to all prompts. To generate files for production use, you should provide nonempty
responses.

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts
Create CA certificate
openssl genrsa 2048 > ca-key.pem
openssl req -new -x509 -nodes -days 3600 \
 -key ca-key.pem -out ca.pem
Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout server-key.pem -out server-req.pem
openssl rsa -in server-key.pem -out server-key.pem
openssl x509 -req -in server-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem
Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout client-key.pem -out client-req.pem
openssl rsa -in client-key.pem -out client-key.pem
openssl x509 -req -in client-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

openssl verify -CAfile ca.pem server-cert.pem client-cert.pem

You should see a response like this:

server-cert.pem: OK
client-cert.pem: OK

To see the contents of a certificate (for example, to check the range of dates over which a certificate is
valid), invoke openssl like this:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

Now you have a set of files that can be used as follows:

• ca.pem: Use this to set the ssl_ca system variable on the server side and the --ssl-ca option on
the client side. (The CA certificate, if used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these to set the ssl_cert and ssl_key system
variables on the server side.

• client-cert.pem, client-key.pem: Use these as the arguments to the --ssl-cert and --
ssl-key options on the client side.

For additional usage instructions, see Section 5.1, “Configuring MySQL to Use Encrypted
Connections”.

154

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key

Creating SSL Certificates and Keys Using openssl

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 5.1, “Configuring MySQL
to Use Encrypted Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private
mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf
Create necessary files: $database, $serial and $new_certs_dir
directory (optional)
touch $DIR/index.txt
echo "01" > $DIR/serial
#
Generation of Certificate Authority(CA)
#
openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca.pem \
 -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/jones/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information to be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:
#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
 $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/jones/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:

155

Creating SSL Certificates and Keys Using openssl

Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove the passphrase from the key
#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem
#
Sign server cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/server-req.pem
Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
 $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf
Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/jones/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
#
Remove the passphrase from the key
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

156

Creating SSL Certificates and Keys Using openssl

#
Sign client cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/client-req.pem
Sample output:
Using configuration from /home/jones/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
#
Create a my.cnf file that you can use to test the certificates
#
cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl_ca=$DIR/ca.pem
ssl_cert=$DIR/server-cert.pem
ssl_key=$DIR/server-key.pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available
packages can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture
(32-bit or 64-bit). The default installation location is C:\OpenSSL-Win32 or C:\OpenSSL-Win64,
depending on which package you downloaded. The following instructions assume a default location of
C:\OpenSSL-Win32. Modify this as necessary if you are using the 64-bit package.

If a message occurs during setup indicating '...critical component is missing:
Microsoft Visual C++ 2019 Redistributables', cancel the setup and download one of the
following packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the
default option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path
variable of your server (depending on your version of Windows, the following path-setting instructions
might differ slightly):

157

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

Creating RSA Keys Using openssl

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable
dialogue should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.
C:\Windows\system32>cd \
C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.
C:\>

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in
this section), with the following changes:

• Change the following Unix commands:

Create clean environment
rm -rf newcerts
mkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environment
md c:\newcerts
cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed
and the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 5.1,
“Configuring MySQL to Use Encrypted Connections”.

5.3.3 Creating RSA Keys Using openssl

This section describes how to use the openssl command to set up the RSA key files that enable
MySQL to support secure password exchange over unencrypted connections for accounts
authenticated by the sha256_password and caching_sha2_password plugins.

Note

There are easier alternatives to generating the files required for RSA than
the procedure described here: Let the server autogenerate them or use the
mysql_ssl_rsa_setup program (deprecated as of MySQL 8.0.34). See
Section 5.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”.

To create the RSA private and public key-pair files, run these commands while logged into the system
account used to run the MySQL server so that the files are owned by that account:

openssl genrsa -out private_key.pem 2048
openssl rsa -in private_key.pem -pubout -out public_key.pem

Those commands create 2,048-bit keys. To create stronger keys, use a larger value.

158

Connecting to MySQL Remotely from Windows with SSH

Then set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chmod 400 private_key.pem
chmod 444 public_key.pem

5.4 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get an encrypted connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of_SSH_clients.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the
user name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything, otherwise you must redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally
do, except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

5.5 Reusing SSL Sessions

As of MySQL 8.0.29, MySQL client programs may elect to resume a prior SSL session, provided that
the server has the session in its runtime cache. This section describes the conditions that are favorable
for SSL session reuse, the server variables used for managing and monitoring the session cache, and
the client command-line options for storing and reusing session data.

• Server-Side Runtime Configuration and Monitoring for SSL Session Reuse

• Client-Side Configuration for SSL Session Reuse

Each full TLS exchange can be costly both in terms of computation and network overhead, less costly
if TLSv1.3 is used. By extracting a session ticket from an established session and then submitting
that ticket while establishing the next connection, the overall cost is reduced if the session can be
reused. For example, consider the benefit of having web pages that can open multiple connections and
generate faster.

In general, the following conditions must be satisfied before SSL sessions can be reused:

• The server must keep its session cache in memory.

• The server-side session cache timeout must not have expired.

• Each client has to maintain a cache of active sessions and keep it secure.

C applications can use the C API capabilities to enable session reuse for encrypted connections (see
SSL Session Reuse).

159

http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
https://dev.mysql.com/doc/c-api/8.0/en/c-api-ssl-session-reuse.html

Server-Side Runtime Configuration and Monitoring for SSL Session Reuse

Server-Side Runtime Configuration and Monitoring for SSL Session Reuse

To create the initial TLS context, the server uses the values that the context-related system variables
have at startup. To expose the context values, the server also initializes a set of corresponding status
variables. The following table shows the system variables that define the server's runtime session
cache and the corresponding status variables that expose the currently active session-cache values.

Table 5.4 System and Status Variables for Session Reuse

System Variable Name Corresponding Status Variable Name

ssl_session_cache_mode Ssl_session_cache_mode

ssl_session_cache_timeout Ssl_session_cache_timeout

Note

When the value of the ssl_session_cache_mode server variable is ON,
which is the default mode, the value of the Ssl_session_cache_mode status
variable is SERVER.

SSL session cache variables apply to both the mysql_main and mysql_admin TLS channels. Their
values are also exposed as properties in the Performance Schema tls_channel_status table,
along with the properties for any other active TLS contexts.

To reconfigure the SSL session cache at runtime, use this procedure:

1. Set each cache-related system variable that should be changed to its new value. For example,
change the cache timeout value from the default (300 seconds) to 600 seconds:

mysql> SET GLOBAL ssl_session_cache_timeout = 600;

The members of each pair of system and status variables may have different values temporarily
due to the way the reconfiguration procedure works.

mysql> SHOW VARIABLES LIKE 'ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| ssl_session_cache_timeout | 600 |
+---------------------------+-------+
1 row in set (0.00 sec)
mysql> SHOW STATUS LIKE 'Ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Ssl_session_cache_timeout | 300 |
+---------------------------+-------+
1 row in set (0.00 sec)

For additional information about setting variable values, see System Variable Assignment.

2. Execute ALTER INSTANCE RELOAD TLS. This statement reconfigures the active TLS context
from the current values of the cache-related system variables. It also sets the cache-related status
variables to reflect the new active cache values. The statement requires the CONNECTION_ADMIN
privilege.

mysql> ALTER INSTANCE RELOAD TLS;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW VARIABLES LIKE 'ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| ssl_session_cache_timeout | 600 |
+---------------------------+-------+

160

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_session_cache_mode
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_session_cache_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_session_cache_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_session_cache_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_session_cache_mode
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Ssl_session_cache_mode
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tls-channel-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html#set-variable-system-variables
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls

Client-Side Configuration for SSL Session Reuse

1 row in set (0.00 sec)
mysql> SHOW STATUS LIKE 'Ssl_session_cache_timeout';
+---------------------------+-------+
| Variable_name | Value |
+---------------------------+-------+
| Ssl_session_cache_timeout | 600 |
+---------------------------+-------+
1 row in set (0.00 sec)

New connections established after execution of ALTER INSTANCE RELOAD TLS use the new TLS
context. Existing connections remain unaffected.

Client-Side Configuration for SSL Session Reuse

All MySQL client programs are capable of reusing a prior session for new encrypted connections made
to the same server, provided that you stored the session data while the original connection was still
active. Session data are stored to a file and you specify this file when you invoke the client again.

To store and reuse SSL session data, use this procedure:

1. Invoke mysql to establish an encrypted connection to a server running MySQL 8.0.29 or higher.

2. Use the ssl_session_data_print command to specify the path to a file where you can store
the currently active session data securely. For example:

mysql> ssl_session_data_print ~/private-dir/session.txt

Session data are obtained in the form of a null-terminated, PEM encoded ANSI string. If you omit
the path and file name, the string prints to standard output.

3. From the prompt of your command interpreter, invoke any MySQL client program to establish a
new encrypted connection to the same server. To reuse the session data, specify the --ssl-
session-data command-line option and the file argument.

For example, establish a new connection using mysql:

mysql -u admin -p --ssl-session-data=~/private-dir/session.txt

and then mysqlshow client:

mysqlshow -u admin -p --ssl-session-data=~/private-dir/session.txt
Enter password: *****
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
| world |
+--------------------+

In each example, the client attempts to resume the original session while it establishes a new
connection to the same server.

To confirm whether mysql reused a session, see the output from the status command. If the
currently active mysql connection did resume the session, the status information includes SSL
session reused: true.

In addition to mysql and mysqlshow, SSL session reuse applies to mysqladmin, mysqlbinlog,
mysqlcheck, mysqldump, mysqlimport, mysqlpump, mysqlslap, mysqltest,
mysql_migrate_keyring, mysql_secure_installation, and mysql_upgrade.

Several conditions may prevent the successful retrieval of session data. For instance, if the session is
not fully connected, it is not an SSL session, the server has not yet sent the session data, or the SSL

161

https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-tls
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-session-data
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-session-data

Client-Side Configuration for SSL Session Reuse

session is simply not reusable. Even with properly stored session data, the server's session cache can
time out. Regardless of the cause, an error is returned by default if you specify --ssl-session-data
but the session cannot be reused. For example:

mysqlshow -u admin -p --ssl-session-data=~/private-dir/session.txt
Enter password: *****
ERROR:
--ssl-session-data specified but the session was not reused.

To suppress the error message, and to establish the connection by silently creating a new session
instead, specify --ssl-session-data-continue-on-failed-reuse on the command line,
along with --ssl-session-data . If the server's cache timeout has expired, you can store the
session data again to the same file. The default server cache timeout can be extended (see Server-
Side Runtime Configuration and Monitoring for SSL Session Reuse).

162

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-session-data
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-session-data-continue-on-failed-reuse
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-session-data

Chapter 6 Security Components and Plugins

Table of Contents
6.1 Authentication Plugins ... 164

6.1.1 Native Pluggable Authentication .. 165
6.1.2 Caching SHA-2 Pluggable Authentication .. 165
6.1.3 SHA-256 Pluggable Authentication .. 171
6.1.4 Client-Side Cleartext Pluggable Authentication ... 175
6.1.5 PAM Pluggable Authentication .. 175
6.1.6 Windows Pluggable Authentication .. 186
6.1.7 LDAP Pluggable Authentication ... 191
6.1.8 Kerberos Pluggable Authentication .. 210
6.1.9 No-Login Pluggable Authentication .. 222
6.1.10 Socket Peer-Credential Pluggable Authentication ... 225
6.1.11 FIDO Pluggable Authentication .. 227
6.1.12 Test Pluggable Authentication ... 233
6.1.13 Pluggable Authentication System Variables .. 235

6.2 The Connection-Control Plugins ... 253
6.2.1 Connection-Control Plugin Installation .. 254
6.2.2 Connection-Control System and Status Variables ... 258

6.3 The Password Validation Component ... 259
6.3.1 Password Validation Component Installation and Uninstallation 261
6.3.2 Password Validation Options and Variables ... 262
6.3.3 Transitioning to the Password Validation Component ... 270

6.4 The MySQL Keyring .. 271
6.4.1 Keyring Components Versus Keyring Plugins .. 273
6.4.2 Keyring Component Installation ... 274
6.4.3 Keyring Plugin Installation ... 277
6.4.4 Using the component_keyring_file File-Based Keyring Component 279
6.4.5 Using the component_keyring_encrypted_file Encrypted File-Based Keyring
Component ... 281
6.4.6 Using the keyring_file File-Based Keyring Plugin .. 283
6.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin 284
6.4.8 Using the keyring_okv KMIP Plugin ... 285
6.4.9 Using the keyring_aws Amazon Web Services Keyring Plugin 291
6.4.10 Using the HashiCorp Vault Keyring Plugin ... 294
6.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Component 301
6.4.12 Using the Oracle Cloud Infrastructure Vault Keyring Plugin 305
6.4.13 Supported Keyring Key Types and Lengths ... 307
6.4.14 Migrating Keys Between Keyring Keystores ... 309
6.4.15 General-Purpose Keyring Key-Management Functions ... 315
6.4.16 Plugin-Specific Keyring Key-Management Functions ... 322
6.4.17 Keyring Metadata ... 323
6.4.18 Keyring Command Options ... 324
6.4.19 Keyring System Variables ... 326

6.5 MySQL Enterprise Audit .. 343
6.5.1 Elements of MySQL Enterprise Audit ... 344
6.5.2 Installing or Uninstalling MySQL Enterprise Audit ... 344
6.5.3 MySQL Enterprise Audit Security Considerations ... 347
6.5.4 Audit Log File Formats ... 347
6.5.5 Configuring Audit Logging Characteristics .. 368
6.5.6 Reading Audit Log Files ... 378
6.5.7 Audit Log Filtering .. 382
6.5.8 Writing Audit Log Filter Definitions ... 386
6.5.9 Disabling Audit Logging .. 404

163

Authentication Plugins

6.5.10 Legacy Mode Audit Log Filtering ... 404
6.5.11 Audit Log Reference ... 406
6.5.12 Audit Log Restrictions ... 429

6.6 The Audit Message Component ... 429
6.7 MySQL Enterprise Firewall .. 432

6.7.1 Elements of MySQL Enterprise Firewall ... 433
6.7.2 Installing or Uninstalling MySQL Enterprise Firewall ... 434
6.7.3 Using MySQL Enterprise Firewall .. 436
6.7.4 MySQL Enterprise Firewall Reference ... 450

MySQL includes several components and plugins that implement security features:

• Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available
for several authentication protocols. For general discussion of the authentication process, see
Section 4.17, “Pluggable Authentication”. For characteristics of specific authentication plugins, see
Section 6.1, “Authentication Plugins”.

• A password-validation component for implementing password strength policies and assessing the
strength of potential passwords. See Section 6.3, “The Password Validation Component”.

• Keyring plugins that provide secure storage for sensitive information. See Section 6.4, “The MySQL
Keyring”.

• (MySQL Enterprise Edition only) MySQL Enterprise Audit, implemented using a server plugin, uses
the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection
and query activity executed on specific MySQL servers. Designed to meet the Oracle audit
specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance
solution for applications that are governed by both internal and external regulatory guidelines. See
Section 6.5, “MySQL Enterprise Audit”.

• A function enables applications to add their own message events to the audit log. See Section 6.6,
“The Audit Message Component”.

• (MySQL Enterprise Edition only) MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against
lists of accepted statement patterns. This helps harden MySQL Server against attacks such as SQL
injection or attempts to exploit applications by using them outside of their legitimate query workload
characteristics. See Section 6.7, “MySQL Enterprise Firewall”.

• (MySQL Enterprise Edition only) MySQL Enterprise Data Masking and De-Identification,
implemented as a plugin library containing a plugin and a set of functions. Data masking hides
sensitive information by replacing real values with substitutes. MySQL Enterprise Data Masking and
De-Identification functions enable masking existing data using several methods such as obfuscation
(removing identifying characteristics), generation of formatted random data, and data replacement or
substitution. See MySQL Enterprise Data Masking and De-Identification.

6.1 Authentication Plugins

Note

If you are looking for information about the authentication_oci plugin, it is
MySQL HeatWave Service only. See authentication_oci plugin, in the MySQL
HeatWave Service manual.

The following sections describe pluggable authentication methods available in MySQL and the plugins
that implement these methods. For general discussion of the authentication process, see Section 4.17,
“Pluggable Authentication”.

The default authentication plugin is determined as described in The Default Authentication Plugin.

164

https://dev.mysql.com/doc/refman/8.0/en/data-masking.html
https://docs.oracle.com/en-us/iaas/mysql-database/doc/connecting-db-system.html#MYAAS-GUID-232CA959-1FDD-4AA8-A77D-0A551C881C09

Native Pluggable Authentication

6.1.1 Native Pluggable Authentication

MySQL includes a mysql_native_password plugin that implements native authentication; that is,
authentication based on the password hashing method in use from before the introduction of pluggable
authentication.

Note

As of MySQL 8.0.34, the mysql_native_password authentication plugin is
deprecated and subject to removal in a future version of MySQL.

The following table shows the plugin names on the server and client sides.

Table 6.1 Plugin and Library Names for Native Password Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_native_password

Client-side plugin mysql_native_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to native pluggable
authentication:

• Installing Native Pluggable Authentication

• Using Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Installing Native Pluggable Authentication

The mysql_native_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using Native Pluggable Authentication

MySQL client programs use mysql_native_password by default. The --default-auth option can
be used as a hint about which client-side plugin the program can expect to use:

$> mysql --default-auth=mysql_native_password ...

6.1.2 Caching SHA-2 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account
passwords:

• sha256_password: Implements basic SHA-256 authentication.

• caching_sha2_password: Implements SHA-256 authentication (like sha256_password),
but uses caching on the server side for better performance and has additional features for wider
applicability.

This section describes the caching SHA-2 authentication plugin. For information about the original
basic (noncaching) plugin, see Section 6.1.3, “SHA-256 Pluggable Authentication”.

165

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_default-auth

Caching SHA-2 Pluggable Authentication

Important

In MySQL 8.0, caching_sha2_password is the default authentication plugin
rather than mysql_native_password. For information about the implications
of this change for server operation and compatibility of the server with clients
and connectors, see caching_sha2_password as the Preferred Authentication
Plugin.

Important

To connect to the server using an account that authenticates with the
caching_sha2_password plugin, you must use either a secure connection
or an unencrypted connection that supports password exchange using
an RSA key pair, as described later in this section. Either way, the
caching_sha2_password plugin uses MySQL's encryption capabilities. See
Chapter 5, Using Encrypted Connections.

Note

In the name sha256_password, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name caching_sha2_password, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-
bit encryption is one instance. The latter name choice leaves room for future
expansion of possible digest lengths without changing the plugin name.

The caching_sha2_password plugin has these advantages, compared to sha256_password:

• On the server side, an in-memory cache enables faster reauthentication of users who have
connected previously when they connect again.

• RSA-based password exchange is available regardless of the SSL library against which MySQL is
linked.

• Support is provided for client connections that use the Unix socket-file and shared-memory protocols.

The following table shows the plugin names on the server and client sides.

Table 6.2 Plugin and Library Names for SHA-2 Authentication

Plugin or File Plugin or File Name

Server-side plugin caching_sha2_password

Client-side plugin caching_sha2_password

Library file None (plugins are built in)

The following sections provide installation and usage information specific to caching SHA-2 pluggable
authentication:

• Installing SHA-2 Pluggable Authentication

• Using SHA-2 Pluggable Authentication

• Cache Operation for SHA-2 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Installing SHA-2 Pluggable Authentication

The caching_sha2_password plugin exists in server and client forms:

166

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

Caching SHA-2 Pluggable Authentication

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

The server-side plugin uses the sha2_cache_cleaner audit plugin as a helper to perform password
cache management. sha2_cache_cleaner, like caching_sha2_password, is built in and need not
be installed.

Using SHA-2 Pluggable Authentication

To set up an account that uses the caching_sha2_password plugin for SHA-256 password hashing,
use the following statement, where password is the desired account password:

CREATE USER 'sha2user'@'localhost'
IDENTIFIED WITH caching_sha2_password BY 'password';

The server assigns the caching_sha2_password plugin to the account and uses it to encrypt
the password using SHA-256, storing those values in the plugin and authentication_string
columns of the mysql.user system table.

The preceding instructions do not assume that caching_sha2_password is the default
authentication plugin. If caching_sha2_password is the default authentication plugin, a simpler
CREATE USER syntax can be used.

To start the server with the default authentication plugin set to caching_sha2_password, put these
lines in the server option file:

[mysqld]
default_authentication_plugin=caching_sha2_password

That causes the caching_sha2_password plugin to be used by default for new accounts. As a
result, it is possible to create the account and set its password without naming the plugin explicitly:

CREATE USER 'sha2user'@'localhost' IDENTIFIED BY 'password';

Another consequence of setting default_authentication_plugin to
caching_sha2_password is that, to use some other plugin for account creation, you must specify
that plugin explicitly. For example, to use the mysql_native_password plugin, use this statement:

CREATE USER 'nativeuser'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'password';

caching_sha2_password supports connections over secure transport. If you follow the RSA
configuration procedure given later in this section, it also supports encrypted password exchange using
RSA over unencrypted connections. RSA support has these characteristics:

• On the server side, two system variables name the RSA private and public
key-pair files: caching_sha2_password_private_key_path and
caching_sha2_password_public_key_path. The database administrator must set these
variables at server startup if the key files to use have names that differ from the system variable
default values.

• The server uses the caching_sha2_password_auto_generate_rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

• The Caching_sha2_password_rsa_public_key status variable displays the RSA public key
value used by the caching_sha2_password authentication plugin.

• Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

167

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key

Caching SHA-2 Pluggable Authentication

• For connections by accounts that authenticate with caching_sha2_password and RSA key pair-
based password exchange, the server does not send the RSA public key to clients by default. Clients
can use a client-side copy of the required public key, or request the public key from the server.

Use of a trusted local copy of the public key enables the client to avoid a round trip in the client/
server protocol, and is more secure than requesting the public key from the server. On the other
hand, requesting the public key from the server is more convenient (it requires no management of a
client-side file) and may be acceptable in secure network environments.

• For command-line clients, use the --server-public-key-path option to specify the RSA
public key file. Use the --get-server-public-key option to request the public key from
the server. The following programs support the two options: mysql, mysqlsh, mysqladmin,
mysqlbinlog, mysqlcheck, mysqldump, mysqlimport, mysqlpump, mysqlshow,
mysqlslap, mysqltest, mysql_upgrade.

• For programs that use the C API, call mysql_options() to specify the RSA public key file by
passing the MYSQL_SERVER_PUBLIC_KEY option and the name of the file, or request the public
key from the server by passing the MYSQL_OPT_GET_SERVER_PUBLIC_KEY option.

• For replicas, use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23) with the SOURCE_PUBLIC_KEY_PATH
| MASTER_PUBLIC_KEY_PATH option to specify the RSA public key file, or the
GET_SOURCE_PUBLIC_KEY | GET_MASTER_PUBLIC_KEY option to request the public key from
the source. For Group Replication, the group_replication_recovery_public_key_path
and group_replication_recovery_get_public_key system variables serve the same
purpose.

In all cases, if the option is given to specify a valid public key file, it takes precedence over the option
to request the public key from the server.

For clients that use the caching_sha2_password plugin, passwords are never exposed as cleartext
when connecting to the server. How password transmission occurs depends on whether a secure
connection or RSA encryption is used:

• If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to TCP
connections encrypted using TLS, as well as Unix socket-file and shared-memory connections. The
password is sent as cleartext but cannot be snooped because the connection is secure.

• If the connection is not secure, an RSA key pair is used. This applies to TCP connections not
encrypted using TLS and named-pipe connections. RSA is used only for password exchange
between client and server, to prevent password snooping. When the server receives the encrypted
password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

To enable use of an RSA key pair for password exchange during the client connection process, use the
following procedure:

1. Create the RSA private and public key-pair files using the instructions in Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and
are named private_key.pem and public_key.pem (the default
values of the caching_sha2_password_private_key_path and
caching_sha2_password_public_key_path system variables), the server uses them
automatically at startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the
server option file. If the files are located in the server data directory, you need not specify their full
path names:

[mysqld]
caching_sha2_password_private_key_path=myprivkey.pem

168

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_get_public_key
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path

Caching SHA-2 Pluggable Authentication

caching_sha2_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]
caching_sha2_password_private_key_path=/usr/local/mysql/myprivkey.pem
caching_sha2_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. If you want to change the number of hash rounds used by caching_sha2_password during
password generation, set the caching_sha2_password_digest_rounds system variable. For
example:

[mysqld]
caching_sha2_password_digest_rounds=10000

4. Restart the server, then connect to it and check the
Caching_sha2_password_rsa_public_key status variable value. The value actually displayed
differs from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Caching_sha2_password_rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Caching_sha2_password_rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
caching_sha2_password plugin have the option of using those key files to connect to the server.
As mentioned previously, such accounts can use either a secure connection (in which case RSA is not
used) or an unencrypted connection that performs password exchange using RSA. Suppose that an
unencrypted connection is used. For example:

$> mysql --ssl-mode=DISABLED -u sha2user -p
Enter password: password

For this connection attempt by sha2user, the server determines that caching_sha2_password is
the appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. However, the server does not send the public key to the client, and
the client provided no public key, so it cannot encrypt the password and the connection fails:

ERROR 2061 (HY000): Authentication plugin 'caching_sha2_password'
reported error: Authentication requires secure connection.

To request the RSA public key from the server, specify the --get-server-public-key option:

$> mysql --ssl-mode=DISABLED -u sha2user -p --get-server-public-key
Enter password: password

In this case, the server sends the RSA public key to the client, which uses it to encrypt the password
and returns the result to the server. The plugin uses the RSA private key on the server side to decrypt
the password and accepts or rejects the connection based on whether the password is correct.

Alternatively, if the client has a file containing a local copy of the RSA public key required by the server,
it can specify the file using the --server-public-key-path option:

$> mysql --ssl-mode=DISABLED -u sha2user -p --server-public-key-path=file_name
Enter password: password

169

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_digest_rounds
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path

Caching SHA-2 Pluggable Authentication

In this case, the client uses the public key to encrypt the password and returns the result to the server.
The plugin uses the RSA private key on the server side to decrypt the password and accepts or rejects
the connection based on whether the password is correct.

The public key value in the file named by the --server-public-key-path
option should be the same as the key value in the server-side file named by the
caching_sha2_password_public_key_path system variable. If the key file contains a valid public
key value but the value is incorrect, an access-denied error occurs. If the key file does not contain a
valid public key, the client program cannot use it.

Client users can obtain the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Caching_sha2_password_rsa_public_key' statement and save the returned key value in a
file.

Cache Operation for SHA-2 Pluggable Authentication

On the server side, the caching_sha2_password plugin uses an in-memory cache for faster
authentication of clients who have connected previously. Entries consist of account-name/password-
hash pairs. The cache works like this:

1. When a client connects, caching_sha2_password checks whether the client and password
match some cache entry. If so, authentication succeeds.

2. If there is no matching cache entry, the plugin attempts to verify the client against the credentials in
the mysql.user system table. If this succeeds, caching_sha2_password adds an entry for the
client to the hash. Otherwise, authentication fails and the connection is rejected.

In this way, when a client first connects, authentication against the mysql.user system table occurs.
When the client connects subsequently, faster authentication against the cache occurs.

Password cache operations other than adding entries are handled by the sha2_cache_cleaner audit
plugin, which performs these actions on behalf of caching_sha2_password:

• It clears the cache entry for any account that is renamed or dropped, or any account for which the
credentials or authentication plugin are changed.

• It empties the cache when the FLUSH PRIVILEGES statement is executed.

• It empties the cache at server shutdown. (This means the cache is not persistent across server
restarts.)

Cache clearing operations affect the authentication requirements for subsequent client connections.
For each user account, the first client connection for the user after any of the following operations
must use a secure connection (made using TCP using TLS credentials, a Unix socket file, or shared
memory) or RSA key pair-based password exchange:

• After account creation.

• After a password change for the account.

• After RENAME USER for the account.

• After FLUSH PRIVILEGES.

FLUSH PRIVILEGES clears the entire cache and affects all accounts that use the
caching_sha2_password plugin. The other operations clear specific cache entries and affect only
accounts that are part of the operation.

170

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

SHA-256 Pluggable Authentication

Once the user authenticates successfully, the account is entered into the cache and subsequent
connections do not require a secure connection or the RSA key pair, until another cache clearing
event occurs that affects the account. (When the cache can be used, the server uses a challenge-
response mechanism that does not use cleartext password transmission and does not require a secure
connection.)

6.1.3 SHA-256 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account
passwords:

• sha256_password: Implements basic SHA-256 authentication.

• caching_sha2_password: Implements SHA-256 authentication (like sha256_password),
but uses caching on the server side for better performance and has additional features for wider
applicability.

This section describes the original noncaching SHA-2 authentication plugin. For information about the
caching plugin, see Section 6.1.2, “Caching SHA-2 Pluggable Authentication”.

Important

In MySQL 8.0, caching_sha2_password is the default authentication plugin
rather than mysql_native_password. For information about the implications
of this change for server operation and compatibility of the server with clients
and connectors, see caching_sha2_password as the Preferred Authentication
Plugin.

Because caching_sha2_password is the default authentication
plugin in MySQL 8.0 and provides a superset of the capabilities of the
sha256_password authentication plugin, sha256_password is deprecated;
expect it to be removed in a future version of MySQL. MySQL accounts
that authenticate using sha256_password should be migrated to use
caching_sha2_password instead.

Important

To connect to the server using an account that authenticates with the
sha256_password plugin, you must use either a TLS connection or an
unencrypted connection that supports password exchange using an RSA key
pair, as described later in this section. Either way, the sha256_password
plugin uses MySQL's encryption capabilities. See Chapter 5, Using Encrypted
Connections.

Note

In the name sha256_password, “sha256” refers to the 256-bit digest length
the plugin uses for encryption. In the name caching_sha2_password, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-
bit encryption is one instance. The latter name choice leaves room for future
expansion of possible digest lengths without changing the plugin name.

The following table shows the plugin names on the server and client sides.

Table 6.3 Plugin and Library Names for SHA-256 Authentication

Plugin or File Plugin or File Name

Server-side plugin sha256_password

Client-side plugin sha256_password

Library file None (plugins are built in)

171

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

SHA-256 Pluggable Authentication

The following sections provide installation and usage information specific to SHA-256 pluggable
authentication:

• Installing SHA-256 Pluggable Authentication

• Using SHA-256 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Installing SHA-256 Pluggable Authentication

The sha256_password plugin exists in server and client forms:

• The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled
by unloading it.

• The client-side plugin is built into the libmysqlclient client library and is available to any program
linked against libmysqlclient.

Using SHA-256 Pluggable Authentication

To set up an account that uses the sha256_password plugin for SHA-256 password hashing, use the
following statement, where password is the desired account password:

CREATE USER 'sha256user'@'localhost'
IDENTIFIED WITH sha256_password BY 'password';

The server assigns the sha256_password plugin to the account and uses it to encrypt the password
using SHA-256, storing those values in the plugin and authentication_string columns of the
mysql.user system table.

The preceding instructions do not assume that sha256_password is the default authentication plugin.
If sha256_password is the default authentication plugin, a simpler CREATE USER syntax can be
used.

To start the server with the default authentication plugin set to sha256_password, put these lines in
the server option file:

[mysqld]
default_authentication_plugin=sha256_password

That causes the sha256_password plugin to be used by default for new accounts. As a result, it is
possible to create the account and set its password without naming the plugin explicitly:

CREATE USER 'sha256user'@'localhost' IDENTIFIED BY 'password';

Another consequence of setting default_authentication_plugin to sha256_password is that,
to use some other plugin for account creation, you must specify that plugin explicitly. For example, to
use the mysql_native_password plugin, use this statement:

CREATE USER 'nativeuser'@'localhost'
IDENTIFIED WITH mysql_native_password BY 'password';

sha256_password supports connections over secure transport. sha256_password also supports
encrypted password exchange using RSA over unencrypted connections if MySQL is compiled using
OpenSSL, and the MySQL server to which you wish to connect is configured to support RSA (using the
RSA configuration procedure given later in this section).

RSA support has these characteristics:

• On the server side, two system variables name the RSA private and public key-pair files:
sha256_password_private_key_path and sha256_password_public_key_path. The
database administrator must set these variables at server startup if the key files to use have names
that differ from the system variable default values.

172

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path

SHA-256 Pluggable Authentication

• The server uses the sha256_password_auto_generate_rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

• The Rsa_public_key status variable displays the RSA public key value used by the
sha256_password authentication plugin.

• Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

• For connections by accounts that authenticate with sha256_password and RSA public key pair-
based password exchange, the server sends the RSA public key to the client as needed. However, if
a copy of the public key is available on the client host, the client can use it to save a round trip in the
client/server protocol:

• For these command-line clients, use the --server-public-key-path option to specify
the RSA public key file: mysql, mysqladmin, mysqlbinlog, mysqlcheck, mysqldump,
mysqlimport, mysqlpump, mysqlshow, mysqlslap, mysqltest, mysql_upgrade.

• For programs that use the C API, call mysql_options() to specify the RSA public key file by
passing the MYSQL_SERVER_PUBLIC_KEY option and the name of the file.

• For replicas, use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23) with the SOURCE_PUBLIC_KEY_PATH |
MASTER_PUBLIC_KEY_PATH option to specify the RSA public key file. For Group Replication, the
group_replication_recovery_get_public_key system variable serves the same purpose.

For clients that use the sha256_password plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether a secure connection
or RSA encryption is used:

• If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to
connections encrypted using TLS. The password is sent as cleartext but cannot be snooped because
the connection is secure.

Note

Unlike caching_sha2_password, the sha256_password plugin does not
treat shared-memory connections as secure, even though share-memory
transport is secure by default.

• If the connection is not secure, and an RSA key pair is available, the connection remains
unencrypted. This applies to connections not encrypted using TLS. RSA is used only for password
exchange between client and server, to prevent password snooping. When the server receives the
encrypted password, it decrypts it. A scramble is used in the encryption to prevent repeat attacks.

• If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

Note

To use RSA password encryption with sha256_password, the client and
server both must be compiled using OpenSSL, not just one of them.

Assuming that MySQL has been compiled using OpenSSL, use the following procedure to enable use
of an RSA key pair for password exchange during the client connection process:

1. Create the RSA private and public key-pair files using the instructions in Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are
named private_key.pem and public_key.pem (the default values of the

173

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rsa_public_key
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_recovery_get_public_key

SHA-256 Pluggable Authentication

sha256_password_private_key_path and sha256_password_public_key_path system
variables), the server uses them automatically at startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the
server option file. If the files are located in the server data directory, you need not specify their full
path names:

[mysqld]
sha256_password_private_key_path=myprivkey.pem
sha256_password_public_key_path=mypubkey.pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysqld]
sha256_password_private_key_path=/usr/local/mysql/myprivkey.pem
sha256_password_public_key_path=/usr/local/mysql/mypubkey.pem

3. Restart the server, then connect to it and check the Rsa_public_key status variable value. The
value actually displayed differs from that shown here, but should be nonempty:

mysql> SHOW STATUS LIKE 'Rsa_public_key'\G
*************************** 1. row ***************************
Variable_name: Rsa_public_key
 Value: -----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDO9nRUDd+KvSZgY7cNBZMNpwX6
MvE1PbJFXO7u18nJ9lwc99Du/E7lw6CVXw7VKrXPeHbVQUzGyUNkf45Nz/ckaaJa
aLgJOBCIDmNVnyU54OT/1lcs2xiyfaDMe8fCJ64ZwTnKbY2gkt1IMjUAB5Ogd5kJ
g8aV7EtKwyhHb0c30QIDAQAB
-----END PUBLIC KEY-----

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
sha256_password plugin have the option of using those key files to connect to the server. As
mentioned previously, such accounts can use either a secure connection (in which case RSA is not
used) or an unencrypted connection that performs password exchange using RSA. Suppose that an
unencrypted connection is used. For example:

$> mysql --ssl-mode=DISABLED -u sha256user -p
Enter password: password

For this connection attempt by sha256user, the server determines that sha256_password is the
appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to
be transmitted using RSA encryption. In this case, the plugin sends the RSA public key to the client,
which uses it to encrypt the password and returns the result to the server. The plugin uses the RSA
private key on the server side to decrypt the password and accepts or rejects the connection based on
whether the password is correct.

The server sends the RSA public key to the client as needed. However, if the client has a file
containing a local copy of the RSA public key required by the server, it can specify the file using the --
server-public-key-path option:

$> mysql --ssl-mode=DISABLED -u sha256user -p --server-public-key-path=file_name
Enter password: password

The public key value in the file named by the --server-public-key-path option should be the
same as the key value in the server-side file named by the sha256_password_public_key_path
system variable. If the key file contains a valid public key value but the value is incorrect, an access-
denied error occurs. If the key file does not contain a valid public key, the client program cannot use
it. In this case, the sha256_password plugin sends the public key to the client as if no --server-
public-key-path option had been specified.

174

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rsa_public_key
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path

Client-Side Cleartext Pluggable Authentication

Client users can obtain the RSA public key two ways:

• The database administrator can provide a copy of the public key file.

• A client user who can connect to the server some other way can use a SHOW STATUS LIKE
'Rsa_public_key' statement and save the returned key value in a file.

6.1.4 Client-Side Cleartext Pluggable Authentication

A client-side authentication plugin is available that enables clients to send passwords to the server as
cleartext, without hashing or encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.4 Plugin and Library Names for Cleartext Authentication

Plugin or File Plugin or File Name

Server-side plugin None, see discussion

Client-side plugin mysql_clear_password

Library file None (plugin is built in)

Many client-side authentication plugins perform hashing or encryption of a password before the client
sends it to the server. This enables clients to avoid sending passwords as cleartext.

Hashing or encryption cannot be done for authentication schemes that require the server to receive
the password as entered on the client side. In such cases, the client-side mysql_clear_password
plugin is used, which enables the client to send the password to the server as cleartext. There is
no corresponding server-side plugin. Rather, mysql_clear_password can be used on the client
side in concert with any server-side plugin that needs a cleartext password. (Examples are the PAM
and simple LDAP authentication plugins; see Section 6.1.5, “PAM Pluggable Authentication”, and
Section 6.1.7, “LDAP Pluggable Authentication”.)

The following discussion provides usage information specific to cleartext pluggable authentication.
For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Note

Sending passwords as cleartext may be a security problem in some
configurations. To avoid problems if there is any possibility that the password
would be intercepted, clients should connect to MySQL Server using a method
that protects the password. Possibilities include SSL (see Chapter 5, Using
Encrypted Connections), IPsec, or a private network.

To make inadvertent use of the mysql_clear_password plugin less likely, MySQL clients must
explicitly enable it. This can be done in several ways:

• Set the LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN environment variable to a value that begins with
1, Y, or y. This enables the plugin for all client connections.

• The mysql, mysqladmin, mysqlcheck, mysqldump, mysqlshow, and mysqlslap client
programs support an --enable-cleartext-plugin option that enables the plugin on a per-
invocation basis.

• The mysql_options() C API function supports a MYSQL_ENABLE_CLEARTEXT_PLUGIN option
that enables the plugin on a per-connection basis. Also, any program that uses libmysqlclient
and reads option files can enable the plugin by including an enable-cleartext-plugin option in
an option group read by the client library.

6.1.5 PAM Pluggable Authentication

175

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

PAM Pluggable Authentication

Note

PAM pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use
PAM (Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to
use a standard interface to access various kinds of authentication methods, such as traditional Unix
passwords or an LDAP directory.

PAM pluggable authentication provides these capabilities:

• External authentication: PAM authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables and that authenticate using methods supported by
PAM.

• Proxy user support: PAM authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the PAM groups the external user is a member
of and the authentication string provided. This means that the plugin can return the MySQL user that
defines the privileges the external PAM-authenticated user should have. For example, an operating
system user named joe can connect and have the privileges of a MySQL user named developer.

PAM pluggable authentication has been tested on Linux and macOS; note that Windows does not
support PAM.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Installing PAM Pluggable Authentication.

Table 6.5 Plugin and Library Names for PAM Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_pam

Client-side plugin mysql_clear_password

Library file authentication_pam.so

The client-side mysql_clear_password cleartext plugin that communicates with the server-side
PAM plugin is built into the libmysqlclient client library and is included in all distributions, including
community distributions. Inclusion of the client-side cleartext plugin in all MySQL distributions enables
clients from any distribution to connect to a server that has the server-side PAM plugin loaded.

The following sections provide installation and usage information specific to PAM pluggable
authentication:

• How PAM Authentication of MySQL Users Works

• Installing PAM Pluggable Authentication

• Uninstalling PAM Pluggable Authentication

• Using PAM Pluggable Authentication

• PAM Unix Password Authentication without Proxy Users

• PAM LDAP Authentication without Proxy Users

• PAM Unix Password Authentication with Proxy Users and Group Mapping

• PAM Authentication Access to Unix Password Store

• PAM Authentication Debugging

176

https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

PAM Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 6.1.4, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 4.19, “Proxy Users”.

How PAM Authentication of MySQL Users Works

This section provides an overview of how MySQL and PAM work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use specific PAM services, see Using
PAM Pluggable Authentication.

1. The client program and the server communicate, with the client sending to the server the client user
name (the operating system user name by default) and password:

• The client user name is the external user name.

• For accounts that use the PAM server-side authentication plugin, the corresponding client-side
plugin is mysql_clear_password. This client-side plugin performs no password hashing, with
the result that the client sends the password to the server as cleartext.

2. The server finds a matching MySQL account based on the external user name and the host from
which the client connects. The PAM plugin uses the information passed to it by MySQL Server
(such as user name, host name, password, and authentication string). When you define a MySQL
account that authenticates using PAM, the authentication string contains:

• A PAM service name, which is a name that the system administrator can use to refer to an
authentication method for a particular application. There can be multiple applications associated
with a single database server instance, so the choice of service name is left to the SQL
application developer.

• Optionally, if proxying is to be used, a mapping from PAM groups to MySQL user names.

3. The plugin uses the PAM service named in the authentication string to check the user
credentials and returns 'Authentication succeeded, Username is user_name' or
'Authentication failed'. The password must be appropriate for the password store used by
the PAM service. Examples:

• For traditional Unix passwords, the service looks up passwords stored in the /etc/shadow file.

• For LDAP, the service looks up passwords stored in an LDAP directory.

If the credentials check fails, the server refuses the connection.

4. Otherwise, the authentication string indicates whether proxying occurs. If the string contains no
PAM group mapping, proxying does not occur. In this case, the MySQL user name is the same as
the external user name.

5. Otherwise, proxying is indicated based on the PAM group mapping, with the MySQL user name
determined based on the first matching group in the mapping list. The meaning of “PAM group”
depends on the PAM service. Examples:

• For traditional Unix passwords, groups are Unix groups defined in the /etc/group file, possibly
supplemented with additional PAM information in a file such as /etc/security/group.conf.

• For LDAP, groups are LDAP groups defined in an LDAP directory.

If the proxy user (the external user) has the PROXY privilege for the proxied MySQL user name,
proxying occurs, with the proxy user assuming the privileges of the proxied user.

Installing PAM Pluggable Authentication

This section describes how to install the server-side PAM authentication plugin. For general information
about installing plugins, see Installing and Uninstalling Plugins.

177

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html

PAM Pluggable Authentication

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is authentication_pam, and is typically compiled with the .so
suffix.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=authentication_pam.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix as necessary:

INSTALL PLUGIN authentication_pam SONAME 'authentication_pam.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%pam%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| authentication_pam | ACTIVE |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the PAM plugin, see Using PAM Pluggable Authentication.

Uninstalling PAM Pluggable Authentication

The method used to uninstall the PAM authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_pam;

Using PAM Pluggable Authentication

This section describes in general terms how to use the PAM authentication plugin to connect from
MySQL client programs to the server. The following sections provide instructions for using PAM
authentication in specific ways. It is assumed that the server is running with the server-side PAM plugin
enabled, as described in Installing PAM Pluggable Authentication.

To refer to the PAM authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name authentication_pam. For example:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'auth_string';

The authentication string specifies the following types of information:

178

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

PAM Pluggable Authentication

• The PAM service name (see How PAM Authentication of MySQL Users Works). Examples in the
following discussion use a service name of mysql-unix for authentication using traditional Unix
passwords, and mysql-ldap for authentication using LDAP.

• For proxy support, PAM provides a way for a PAM module to return to the server a MySQL user
name other than the external user name passed by the client program when it connects to the
server. Use the authentication string to control the mapping from external user names to MySQL
user names. If you want to take advantage of proxy user capabilities, the authentication string must
include this kind of mapping.

For example, if an account uses the mysql-unix PAM service name and should map operating
system users in the root and users PAM groups to the developer and data_entry MySQL users,
respectively, use a statement like this:

CREATE USER user
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Authentication string syntax for the PAM authentication plugin follows these rules:

• The string consists of a PAM service name, optionally followed by a PAM group mapping list
consisting of one or more keyword/value pairs each specifying a PAM group name and a MySQL
user name:

pam_service_name[,pam_group_name=mysql_user_name]...

The plugin parses the authentication string for each connection attempt that uses the account. To
minimize overhead, keep the string as short as possible.

• Each pam_group_name=mysql_user_name pair must be preceded by a comma.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted pam_service_name, pam_group_name, and mysql_user_name values can contain
anything except equal sign, comma, or space.

• If a pam_service_name, pam_group_name, or mysql_user_name value is quoted with double
quotation marks, everything between the quotation marks is part of the value. This is necessary, for
example, if the value contains space characters. All characters are legal except double quotation
mark and backslash (\). To include either character, escape it with a backslash.

If the plugin successfully authenticates the external user name (the name passed by the client), it looks
for a PAM group mapping list in the authentication string and, if present, uses it to return a different
MySQL user name to the MySQL server based on which PAM groups the external user is a member of:

• If the authentication string contains no PAM group mapping list, the plugin returns the external name.

• If the authentication string does contain a PAM group mapping list, the plugin examines each
pam_group_name=mysql_user_name pair in the list from left to right and tries to find a match for
the pam_group_name value in a non-MySQL directory of the groups assigned to the authenticated
user and returns mysql_user_name for the first match it finds. If the plugin finds no match for
any PAM group, it returns the external name. If the plugin is not capable of looking up a group in a
directory, it ignores the PAM group mapping list and returns the external name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

• No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined
to use PAM authentication. (For a MySQL account of 'user_name'@'host_name' to match
the external user, user_name must be the external user name and host_name must match the
host from which the client connects.) Authentication can be performed by various PAM-supported

179

PAM Pluggable Authentication

methods. Later discussion shows how to authenticate client credentials using traditional Unix
passwords, and passwords in LDAP.

PAM authentication, when not done through proxy users or PAM groups, requires the MySQL
user name to be same as the operating system user name. MySQL user names are limited to 32
characters (see Section 4.3, “Grant Tables”), which limits PAM nonproxy authentication to Unix
accounts with names of at most 32 characters.

• Proxy users only, with PAM group mapping. For this scenario, create one or more MySQL accounts
that define different sets of privileges. (Ideally, nobody should connect using those accounts directly.)
Then define a default user authenticating through PAM that uses some mapping scheme (usually
based on the external PAM groups the users are members of) to map all the external user names
to the few MySQL accounts holding the privilege sets. Any client who connects and specifies an
external user name as the client user name is mapped to one of the MySQL accounts and uses its
privileges. The discussion shows how to set this up using traditional Unix passwords, but other PAM
methods such as LDAP could be used instead.

Variations on these scenarios are possible:

• You can permit some users to log in directly (without proxying) but require others to connect through
proxy accounts.

• You can use one PAM authentication method for some users, and another method for other users,
by using differing PAM service names among your PAM-authenticated accounts. For example, you
can use the mysql-unix PAM service for some users, and mysql-ldap for others.

The examples make the following assumptions. You might need to make some adjustments if your
system is set up differently.

• The login name and password are antonio and antonio_password, respectively. Change these
to correspond to the user you want to authenticate.

• The PAM configuration directory is /etc/pam.d.

• The PAM service name corresponds to the authentication method (mysql-unix or mysql-ldap
in this discussion). To use a given PAM service, you must set up a PAM file with the same name
in the PAM configuration directory (creating the file if it does not exist). In addition, you must name
the PAM service in the authentication string of the CREATE USER statement for any account that
authenticates using that PAM service.

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set in the server's startup environment. If so, the plugin enables logging of
diagnostic messages to the standard output. Depending on how your server is started, the message
might appear on the console or in the error log. These messages can be helpful for debugging PAM-
related issues that occur when the plugin performs authentication. For more information, see PAM
Authentication Debugging.

PAM Unix Password Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and Unix passwords, without proxying. Every such external user permitted to connect to
MySQL Server should have a matching MySQL account that is defined to use PAM authentication
through traditional Unix password store.

Note

Traditional Unix passwords are checked using the /etc/shadow file.
For information regarding possible issues related to this file, see PAM
Authentication Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio
and password antonio_password.

180

https://dev.mysql.com/doc/refman/8.0/en/create-user.html

PAM Pluggable Authentication

2. Set up PAM to authenticate MySQL connections using traditional Unix passwords by creating a
mysql-unix PAM service file named /etc/pam.d/mysql-unix. The file contents are system
dependent, so check existing login-related files in the /etc/pam.d directory to see what they look
like. On Linux, the mysql-unix file might look like this:

#%PAM-1.0
auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:

@include common-auth
@include common-account
@include common-session-noninteractive

3. Create a MySQL account with the same user name as the operating system user name and define
it to authenticate using the PAM plugin and the mysql-unix PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-unix, which
authenticates Unix passwords.

4. Use the mysql command-line client to connect to the MySQL server as antonio. For example:

$> mysql --user=antonio --password --enable-cleartext-plugin
Enter password: antonio_password

The server should permit the connection and the following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+-------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+-------------------+--------------+
| antonio@localhost | antonio@localhost | NULL |
+-------------------+-------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the antonio MySQL user, and that no proxying has occurred.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to PAM. A cleartext
password is necessary to use the server-side PAM library, but may be a
security problem in some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 6.1.4, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use
Encrypted Connections”.

181

PAM Pluggable Authentication

PAM LDAP Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system
user names and LDAP passwords, without proxying. Every such external user permitted to connect
to MySQL Server should have a matching MySQL account that is defined to use PAM authentication
through LDAP.

To use PAM LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:

• An LDAP server must be available for the PAM LDAP service to communicate with.

• Each LDAP user to be authenticated by MySQL must be present in the directory managed by the
LDAP server.

Note

Another way to use LDAP for MySQL user authentication is to use the
LDAP-specific authentication plugins. See Section 6.1.7, “LDAP Pluggable
Authentication”.

Configure MySQL for PAM LDAP authentication as follows:

1. Verify that Unix authentication permits logins to the operating system with the user name antonio
and password antonio_password.

2. Set up PAM to authenticate MySQL connections using LDAP by creating a mysql-ldap PAM
service file named /etc/pam.d/mysql-ldap. The file contents are system dependent, so check
existing login-related files in the /etc/pam.d directory to see what they look like. On Linux, the
mysql-ldap file might look like this:

#%PAM-1.0
auth required pam_ldap.so
account required pam_ldap.so

If PAM object files have a suffix different from .so on your system, substitute the correct suffix.

The PAM file format might differ on some systems.

3. Create a MySQL account with the same user name as the operating system user name and define
it to authenticate using the PAM plugin and the mysql-ldap PAM service:

CREATE USER 'antonio'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-ldap';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'antonio'@'localhost';

Here, the authentication string contains only the PAM service name, mysql-ldap, which
authenticates using LDAP.

4. Connecting to the server is the same as described in PAM Unix Password Authentication without
Proxy Users.

PAM Unix Password Authentication with Proxy Users and Group Mapping

The authentication scheme described here uses proxying and PAM group mapping to map connecting
MySQL users who authenticate using PAM onto other MySQL accounts that define different sets of
privileges. Users do not connect directly through the accounts that define the privileges. Instead, they
connect through a default proxy account authenticated using PAM, such that all the external users
are mapped to the MySQL accounts that hold the privileges. Any user who connects using the proxy
account is mapped to one of those MySQL accounts, the privileges for which determine the database
operations permitted to the external user.

182

PAM Pluggable Authentication

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early
steps of PAM LDAP Authentication without Proxy Users.

Note

Traditional Unix passwords are checked using the /etc/shadow file.
For information regarding possible issues related to this file, see PAM
Authentication Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name antonio
and password antonio_password.

2. Verify that antonio is a member of the root or users PAM group.

3. Set up PAM to authenticate the mysql-unix PAM service through operating system users by
creating a file named /etc/pam.d/mysql-unix. The file contents are system dependent, so
check existing login-related files in the /etc/pam.d directory to see what they look like. On Linux,
the mysql-unix file might look like this:

#%PAM-1.0
auth include password-auth
account include password-auth

For macOS, use login rather than password-auth.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-
based systems, use these file contents instead:

@include common-auth
@include common-account
@include common-session-noninteractive

4. Create a default proxy user (''@'') that maps external PAM users to the proxied accounts:

CREATE USER ''@''
 IDENTIFIED WITH authentication_pam
 AS 'mysql-unix, root=developer, users=data_entry';

Here, the authentication string contains the PAM service name, mysql-unix, which authenticates
Unix passwords. The authentication string also maps external users in the root and users PAM
groups to the developer and data_entry MySQL user names, respectively.

The PAM group mapping list following the PAM service name is required when you set up proxy
users. Otherwise, the plugin cannot tell how to perform mapping from external user names to the
proper proxied MySQL user names.

Note

If your MySQL installation has anonymous users, they might conflict with
the default proxy user. For more information about this issue, and ways of
dealing with it, see Default Proxy User and Anonymous User Conflicts.

5. Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER 'developer'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'data_entry'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL PRIVILEGES
 ON mydevdb.*
 TO 'developer'@'localhost';
GRANT ALL PRIVILEGES
 ON mydb.*
 TO 'data_entry'@'localhost';

183

PAM Pluggable Authentication

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, users who authenticate using PAM
are expected to use the developer or data_entry account by proxy based on their PAM group.
(This assumes that the plugin is installed. For instructions, see Section 6.1.9, “No-Login Pluggable
Authentication”.) For alternative methods of protecting proxied accounts against direct use, see
Preventing Direct Login to Proxied Accounts.

6. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
 ON 'developer'@'localhost'
 TO ''@'';
GRANT PROXY
 ON 'data_entry'@'localhost'
 TO ''@'';

7. Use the mysql command-line client to connect to the MySQL server as antonio.

$> mysql --user=antonio --password --enable-cleartext-plugin
Enter password: antonio_password

The server authenticates the connection using the default ''@'' proxy account. The resulting
privileges for antonio depend on which PAM groups antonio is a member of. If antonio is
a member of the root PAM group, the PAM plugin maps root to the developer MySQL user
name and returns that name to the server. The server verifies that ''@'' has the PROXY privilege
for developer and permits the connection. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+---------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+---------------------+--------------+
| antonio@localhost | developer@localhost | ''@'' |
+-------------------+---------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
granted to the developer MySQL user, and that proxying occurs through the default proxy
account.

If antonio is not a member of the root PAM group but is a member of the users PAM group,
a similar process occurs, but the plugin maps user PAM group membership to the data_entry
MySQL user name and returns that name to the server:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-------------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-------------------+----------------------+--------------+
| antonio@localhost | data_entry@localhost | ''@'' |
+-------------------+----------------------+--------------+

This demonstrates that the antonio operating system user is authenticated to have the privileges
of the data_entry MySQL user, and that proxying occurs through the default proxy account.

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to PAM. A cleartext
password is necessary to use the server-side PAM library, but may be a
security problem in some configurations. These measures minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-

184

PAM Pluggable Authentication

cleartext-plugin option). See Section 6.1.4, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use
Encrypted Connections”.

PAM Authentication Access to Unix Password Store

On some systems, Unix authentication uses a password store such as /etc/shadow, a file that
typically has restricted access permissions. This can cause MySQL PAM-based authentication to
fail. Unfortunately, the PAM implementation does not permit distinguishing “password could not be
checked” (due, for example, to inability to read /etc/shadow) from “password does not match.” If you
are using Unix password store for PAM authentication, you may be able to enable access to it from
MySQL using one of the following methods:

• Assuming that the MySQL server is run from the mysql operating system account, put that account
in the shadow group that has /etc/shadow access:

1. Create a shadow group in /etc/group.

2. Add the mysql operating system user to the shadow group in /etc/group.

3. Assign /etc/group to the shadow group and enable the group read permission:

chgrp shadow /etc/shadow
chmod g+r /etc/shadow

4. Restart the MySQL server.

• If you are using the pam_unix module and the unix_chkpwd utility, enable password store access
as follows:

chmod u-s /usr/sbin/unix_chkpwd
setcap cap_dac_read_search+ep /usr/sbin/unix_chkpwd

Adjust the path to unix_chkpwd as necessary for your platform.

PAM Authentication Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTICATION_PAM_LOG
environment value is set. In MySQL 8.0.35 and earlier, the value does not matter. If so, the plugin
enables logging of diagnostic messages to the standard output. These messages may be helpful for
debugging PAM-related issues that occur when the plugin performs authentication. You should be
aware that, in these versions, passwords are included in these messages.

Beginning with MySQL 8.0.36, setting AUTHENTICATION_PAM_LOG=1 (or some other arbitrary value)
produces the same diagnostic messages, but does not include any passwords. If you wish to include
passwords in these messages, set AUTHENTICATION_PAM_LOG=PAM_LOG_WITH_SECRET_INFO.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

Another technique for debugging connection failures and determining what is happening during
connection attempts is to configure PAM authentication to permit all connections, then check the
system log files. This technique should be used only on a temporary basis, and not on a production
server.

Configure a PAM service file named /etc/pam.d/mysql-any-password with these contents (the
format may differ on some systems):

185

Windows Pluggable Authentication

#%PAM-1.0
auth required pam_permit.so
account required pam_permit.so

Create an account that uses the PAM plugin and names the mysql-any-password PAM service:

CREATE USER 'testuser'@'localhost'
 IDENTIFIED WITH authentication_pam
 AS 'mysql-any-password';

The mysql-any-password service file causes any authentication attempt to return true, even for
incorrect passwords. If an authentication attempt fails, that tells you the configuration problem is on
the MySQL side. Otherwise, the problem is on the operating system/PAM side. To see what might be
happening, check system log files such as /var/log/secure, /var/log/audit.log, /var/log/
syslog, or /var/log/messages.

After determining what the problem is, remove the mysql-any-password PAM service file to disable
any-password access.

6.1.6 Windows Pluggable Authentication

Note

Windows pluggable authentication is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

MySQL Enterprise Edition for Windows supports an authentication method that performs external
authentication on Windows, enabling MySQL Server to use native Windows services to authenticate
client connections. Users who have logged in to Windows can connect from MySQL client programs to
the server based on the information in their environment without specifying an additional password.

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. Windows pluggable authentication
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

Windows pluggable authentication provides these capabilities:

• External authentication: Windows authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have logged in to Windows.

• Proxy user support: Windows authentication can return to MySQL a user name different from
the external user name passed by the client program. This means that the plugin can return the
MySQL user that defines the privileges the external Windows-authenticated user should have. For
example, a Windows user named joe can connect and have the privileges of a MySQL user named
developer.

The following table shows the plugin and library file names. The file must be located in the directory
named by the plugin_dir system variable.

Table 6.6 Plugin and Library Names for Windows Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_windows

Client-side plugin authentication_windows_client

Library file authentication_windows.dll

186

https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Windows Pluggable Authentication

The library file includes only the server-side plugin. The client-side plugin is built into the
libmysqlclient client library.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is
not included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions. This enables clients from any distribution to connect to a server that
has the server-side plugin loaded.

The following sections provide installation and usage information specific to Windows pluggable
authentication:

• Installing Windows Pluggable Authentication

• Uninstalling Windows Pluggable Authentication

• Using Windows Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”. For proxy user information, see Section 4.19, “Proxy Users”.

Installing Windows Pluggable Authentication

This section describes how to install the server-side Windows authentication plugin. For general
information about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=authentication_windows.dll

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN authentication_windows SONAME 'authentication_windows.dll';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%windows%';
+------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+------------------------+---------------+
| authentication_windows | ACTIVE |
+------------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Windows authentication plugin,
see Using Windows Pluggable Authentication. Additional plugin control is

187

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

Windows Pluggable Authentication

provided by the authentication_windows_use_principal_name and
authentication_windows_log_level system variables. See Server System Variables.

Uninstalling Windows Pluggable Authentication

The method used to uninstall the Windows authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_windows;

In addition, remove any startup options that set Windows plugin-related system variables.

Using Windows Pluggable Authentication

The Windows authentication plugin supports the use of MySQL accounts such that users who have
logged in to Windows can connect to the MySQL server without having to specify an additional
password. It is assumed that the server is running with the server-side plugin enabled, as described in
Installing Windows Pluggable Authentication. Once the DBA has enabled the server-side plugin and set
up accounts to use it, clients can connect using those accounts with no other setup required on their
part.

To refer to the Windows authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name authentication_windows. Suppose that the Windows users Rafal
and Tasha should be permitted to connect to MySQL, as well as any users in the Administrators
or Power Users group. To set this up, create a MySQL account named sql_admin that uses the
Windows plugin for authentication:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';

The plugin name is authentication_windows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Rafal or Tasha are permitted
to authenticate to the server as the MySQL user sql_admin, as are any Windows users in the
Administrators or Power Users group. The latter group name contains a space, so it must be
quoted with double quote characters.

After you create the sql_admin account, a user who has logged in to Windows can attempt to connect
to the server using that account:

C:\> mysql --user=sql_admin

No password is required here. The authentication_windows plugin uses the Windows security
API to check which Windows user is connecting. If that user is named Rafal or Tasha, or is a
member of the Administrators or Power Users group, the server grants access and the client
is authenticated as sql_admin and has whatever privileges are granted to the sql_admin account.
Otherwise, the server denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:

• The string consists of one or more user mappings separated by commas.

• Each user mapping associates a Windows user or group name with a MySQL user name:

win_user_or_group_name=mysql_user_name
win_user_or_group_name

188

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_windows_use_principal_name
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_windows_log_level
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Windows Pluggable Authentication

For the latter syntax, with no mysql_user_name value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal, Tasha, Administrators, "Power Users"';
CREATE USER sql_admin
 IDENTIFIED WITH authentication_windows
 AS 'Rafal=sql_admin, Tasha=sql_admin, Administrators=sql_admin,
 "Power Users"=sql_admin';

• Each backslash character (\) in a value must be doubled because backslash is the escape character
in MySQL strings.

• Leading and trailing spaces not inside double quotation marks are ignored.

• Unquoted win_user_or_group_name and mysql_user_name values can contain anything
except equal sign, comma, or space.

• If a win_user_or_group_name and or mysql_user_name value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example,
if the name contains space characters. All characters within double quotes are legal except double
quotation mark and backslash. To include either character, escape it with a backslash.

• win_user_or_group_name values use conventional syntax for Windows principals, either local or
in a domain. Examples (note the doubling of backslashes):

domain\\user
.\\user
domain\\group
.\\group
BUILTIN\\WellKnownGroup

When invoked by the server to authenticate a client, the plugin scans the authentication string left
to right for a user or group match to the Windows user. If there is a match, the plugin returns the
corresponding mysql_user_name to the MySQL server. If there is no match, authentication fails.

A user name match takes preference over a group name match. Suppose that the Windows user
named win_user is a member of win_group and the authentication string looks like this:

'win_group = sql_user1, win_user = sql_user2'

When win_user connects to the MySQL server, there is a match both to win_group and to
win_user. The plugin authenticates the user as sql_user2 because the more-specific user match
takes precedence over the group match, even though the group is listed first in the authentication
string.

Windows authentication always works for connections from the same computer on which the server
is running. For cross-computer connections, both computers must be registered with Microsoft Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is
also possible to permit connections from a different domain, as in this example:

CREATE USER sql_accounting
 IDENTIFIED WITH authentication_windows
 AS 'SomeDomain\\Accounting';

Here SomeDomain is the name of the other domain. The backslash character is doubled because it is
the MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the
MySQL server using one account but while connected has the privileges of another account (see
Section 4.19, “Proxy Users”). Suppose that you want Windows users to connect using a single user
name but be mapped based on their Windows user and group names onto specific MySQL accounts
as follows:

189

https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Windows Pluggable Authentication

• The local_user and MyDomain\domain_user local and domain Windows users should map to
the local_wlad MySQL account.

• Users in the MyDomain\Developers domain group should map to the local_dev MySQL
account.

• Local machine administrators should map to the local_admin MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account
so that users and groups map to the appropriate MySQL accounts (local_wlad, local_dev,
local_admin). In addition, grant the MySQL accounts the privileges appropriate to the operations
they need to perform. The following instructions use win_proxy as the proxy account, and
local_wlad, local_dev, and local_admin as the proxied accounts.

1. Create the proxy MySQL account:

CREATE USER win_proxy
 IDENTIFIED WITH authentication_windows
 AS 'local_user = local_wlad,
 MyDomain\\domain_user = local_wlad,
 MyDomain\\Developers = local_dev,
 BUILTIN\\Administrators = local_admin';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER local_wlad
 IDENTIFIED WITH mysql_no_login;
CREATE USER local_dev
 IDENTIFIED WITH mysql_no_login;
CREATE USER local_admin
 IDENTIFIED WITH mysql_no_login;

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, users who authenticate using Windows
are expected to use the win_proxy proxy account. (This assumes that the plugin is installed. For
instructions, see Section 6.1.9, “No-Login Pluggable Authentication”.) For alternative methods of
protecting proxied accounts against direct use, see Preventing Direct Login to Proxied Accounts.

You should also execute GRANT statements (not shown) that grant each proxied account the
privileges required for MySQL access.

3. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY ON local_wlad TO win_proxy;
GRANT PROXY ON local_dev TO win_proxy;
GRANT PROXY ON local_admin TO win_proxy;

Now the Windows users local_user and MyDomain\domain_user can connect to the MySQL
server as win_proxy and when authenticated have the privileges of the account given in the
authentication string (in this case, local_wlad). A user in the MyDomain\Developers group
who connects as win_proxy has the privileges of the local_dev account. A user in the BUILTIN
\Administrators group has the privileges of the local_admin account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy account (''@'') for win_proxy in the preceding
instructions. For information about default proxy accounts, see Section 4.19, “Proxy Users”.

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

To use the Windows authentication plugin with Connector/NET connection strings in Connector/NET
8.0 and higher, see Connector/NET Authentication.

190

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/connector-net/en/connector-net-authentication.html

LDAP Pluggable Authentication

6.1.7 LDAP Pluggable Authentication

Note

LDAP pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use LDAP
(Lightweight Directory Access Protocol) to authenticate MySQL users by accessing directory services
such as X.500. MySQL uses LDAP to fetch user, credential, and group information.

LDAP pluggable authentication provides these capabilities:

• External authentication: LDAP authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables in LDAP directories.

• Proxy user support: LDAP authentication can return to MySQL a user name different from the
external user name passed by the client program, based on the LDAP groups the external user is a
member of. This means that an LDAP plugin can return the MySQL user that defines the privileges
the external LDAP-authenticated user should have. For example, an LDAP user named joe can
connect and have the privileges of a MySQL user named developer, if the LDAP group for joe is
developer.

• Security: Using TLS, connections to the LDAP server can be secure.

Server and client plugins are available for simple and SASL-based LDAP authentication. On Microsoft
Windows, the server plugin for SASL-based LDAP authentication is not supported, but the client plugin
is.

The following tables show the plugin and library file names for simple and SASL-based LDAP
authentication. The file name suffix might differ on your system. The files must be located in the
directory named by the plugin_dir system variable.

Table 6.7 Plugin and Library Names for Simple LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name authentication_ldap_simple

Client-side plugin name mysql_clear_password

Library file name authentication_ldap_simple.so

Table 6.8 Plugin and Library Names for SASL-Based LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name authentication_ldap_sasl

Client-side plugin name authentication_ldap_sasl_client

Library file names authentication_ldap_sasl.so,
authentication_ldap_sasl_client.so

The library files include only the authentication_ldap_XXX authentication plugins. The client-side
mysql_clear_password plugin is built into the libmysqlclient client library.

Each server-side LDAP plugin works with a specific client-side plugin:

• The server-side authentication_ldap_simple plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side

191

https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

LDAP Pluggable Authentication

mysql_clear_password plugin, which sends the password to the server as cleartext. No
password hashing or encryption is used, so a secure connection between the MySQL client and
server is recommended to prevent password exposure.

• The server-side authentication_ldap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-
side authentication_ldap_sasl_client plugin. The client-side and server-side SASL LDAP
plugins use SASL messages for secure transmission of credentials within the LDAP protocol, to
avoid sending the cleartext password between the MySQL client and server.

Note

On Microsoft Windows, the server plugin for SASL-based LDAP
authentication is not supported, but the client plugin is supported. On other
platforms, both the server and client plugins are supported.

The server-side LDAP authentication plugins are included only in MySQL Enterprise Edition. They
are not included in MySQL community distributions. The client-side SASL LDAP plugin is included
in all distributions, including community distributions, and, as mentioned previously, the client-side
mysql_clear_password plugin is built into the libmysqlclient client library, which also is
included in all distributions. This enables clients from any distribution to connect to a server that has the
appropriate server-side plugin loaded.

The following sections provide installation and usage information specific to LDAP pluggable
authentication:

• Prerequisites for LDAP Pluggable Authentication

• How LDAP Authentication of MySQL Users Works

• Installing LDAP Pluggable Authentication

• Uninstalling LDAP Pluggable Authentication

• LDAP Pluggable Authentication and ldap.conf

• Using LDAP Pluggable Authentication

• Simple LDAP Authentication

• SASL-Based LDAP Authentication

• LDAP Authentication with Proxying

• LDAP Authentication Group Preference and Mapping Specification

• LDAP Authentication User DN Suffixes

• LDAP Authentication Methods

• The GSSAPI/Kerberos Authentication Method

• LDAP Search Referral

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”. For information about the mysql_clear_password plugin, see Section 6.1.4, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 4.19, “Proxy Users”.

Note

If your system supports PAM and permits LDAP as a PAM authentication
method, another way to use LDAP for MySQL user authentication is to use the

192

LDAP Pluggable Authentication

server-side authentication_pam plugin. See Section 6.1.5, “PAM Pluggable
Authentication”.

Prerequisites for LDAP Pluggable Authentication

To use LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:

• An LDAP server must be available for the LDAP authentication plugins to communicate with.

• LDAP users to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

• An LDAP client library must be available on systems where the server-side
authentication_ldap_sasl or authentication_ldap_simple plugin is used. Currently,
supported libraries are the Windows native LDAP library, or the OpenLDAP library on non-Windows
systems.

• To use SASL-based LDAP authentication:

• The LDAP server must be configured to communicate with a SASL server.

• A SASL client library must be available on systems where the client-side
authentication_ldap_sasl_client plugin is used. Currently, the only supported library is
the Cyrus SASL library.

• To use a particular SASL authentication method, any other services required by that method must
be available. For example, to use GSSAPI/Kerberos, a GSSAPI library and Kerberos services
must be available.

How LDAP Authentication of MySQL Users Works

This section provides an overview of how MySQL and LDAP work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use specific LDAP authentication
plugins, see Using LDAP Pluggable Authentication. For information about authentication methods
available to the LDAP plugins, see LDAP Authentication Methods.

The client connects to the MySQL server, providing the MySQL client user name and a password:

• For simple LDAP authentication, the client-side and server-side plugins communicate the password
as cleartext. A secure connection between the MySQL client and server is recommended to prevent
password exposure.

• For SASL-based LDAP authentication, the client-side and server-side plugins avoid sending the
cleartext password between the MySQL client and server. For example, the plugins might use
SASL messages for secure transmission of credentials within the LDAP protocol. For the GSSAPI
authentication method, the client-side and server-side plugins communicate securely using Kerberos
without using LDAP messages directly.

If the client user name and host name match no MySQL account, the connection is rejected.

If there is a matching MySQL account, authentication against LDAP occurs. The LDAP server looks for
an entry matching the user and authenticates the entry against the LDAP password:

• If the MySQL account names an LDAP user distinguished name (DN), LDAP authentication uses that
value and the LDAP password provided by the client. (To associate an LDAP user DN with a MySQL
account, include a BY clause that specifies an authentication string in the CREATE USER statement
that creates the account.)

• If the MySQL account names no LDAP user DN, LDAP authentication uses the user name and LDAP
password provided by the client. In this case, the authentication plugin first binds to the LDAP server
using the root DN and password as credentials to find the user DN based on the client user name,

193

https://dev.mysql.com/doc/refman/8.0/en/create-user.html

LDAP Pluggable Authentication

then authenticates that user DN against the LDAP password. This bind using the root credentials
fails if the root DN and password are set to incorrect values, or are empty (not set) and the LDAP
server does not permit anonymous connections.

If the LDAP server finds no match or multiple matches, authentication fails and the client connection is
rejected.

If the LDAP server finds a single match, LDAP authentication succeeds (assuming that the password is
correct), the LDAP server returns the LDAP entry, and the authentication plugin determines the name
of the authenticated user based on that entry:

• If the LDAP entry has a group attribute (by default, the cn attribute), the plugin returns its value as
the authenticated user name.

• If the LDAP entry has no group attribute, the authentication plugin returns the client user name as the
authenticated user name.

The MySQL server compares the client user name with the authenticated user name to determine
whether proxying occurs for the client session:

• If the names are the same, no proxying occurs: The MySQL account matching the client user name
is used for privilege checking.

• If the names differ, proxying occurs: MySQL looks for an account matching the authenticated user
name. That account becomes the proxied user, which is used for privilege checking. The MySQL
account that matched the client user name is treated as the external proxy user.

Installing LDAP Pluggable Authentication

This section describes how to install the server-side LDAP authentication plugins. For general
information about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library files must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The server-side plugin library file base names are authentication_ldap_simple and
authentication_ldap_sasl. The file name suffix differs per platform (for example, .so for Unix
and Unix-like systems, .dll for Windows).

Note

On Microsoft Windows, the server plugin for SASL-based LDAP authentication
is not supported, but the client plugin is supported. On other platforms, both the
server and client plugins are supported.

To load the plugins at server startup, use --plugin-load-add options to name the library files that
contain them. With this plugin-loading method, the options must be given each time the server starts.
Also, specify values for any plugin-provided system variables you wish to configure.

Each server-side LDAP plugin exposes a set of system variables that enable its operation to be
configured. Setting most of these is optional, but you must set the variables that specify the LDAP
server host (so the plugin knows where to connect) and base distinguished name for LDAP bind
operations (to limit the scope of searches and obtain faster searches). For details about all LDAP
system variables, see Section 6.1.13, “Pluggable Authentication System Variables”.

To load the plugins and set the LDAP server host and base distinguished name for LDAP bind
operations, put lines such as these in your my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=authentication_ldap_simple.so

194

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add

LDAP Pluggable Authentication

authentication_ldap_simple_server_host=127.0.0.1
authentication_ldap_simple_bind_base_dn="dc=example,dc=com"
plugin-load-add=authentication_ldap_sasl.so
authentication_ldap_sasl_server_host=127.0.0.1
authentication_ldap_sasl_bind_base_dn="dc=example,dc=com"

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the .so suffix for your
platform as necessary:

INSTALL PLUGIN authentication_ldap_simple
 SONAME 'authentication_ldap_simple.so';
INSTALL PLUGIN authentication_ldap_sasl
 SONAME 'authentication_ldap_sasl.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

After installing the plugins at runtime, the system variables that they expose become available and
you can add settings for them to your my.cnf file to configure the plugins for subsequent restarts. For
example:

[mysqld]
authentication_ldap_simple_server_host=127.0.0.1
authentication_ldap_simple_bind_base_dn="dc=example,dc=com"
authentication_ldap_sasl_server_host=127.0.0.1
authentication_ldap_sasl_bind_base_dn="dc=example,dc=com"

After modifying my.cnf, restart the server to cause the new settings to take effect.

To set and persist each value at runtime rather than at startup, use these statements:

SET PERSIST authentication_ldap_simple_server_host='127.0.0.1';
SET PERSIST authentication_ldap_simple_bind_base_dn='dc=example,dc=com';
SET PERSIST authentication_ldap_sasl_server_host='127.0.0.1';
SET PERSIST authentication_ldap_sasl_bind_base_dn='dc=example,dc=com';

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to carry
over to subsequent server restarts. To change a value for the running MySQL instance without having
it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See SET Syntax
for Variable Assignment.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%ldap%';
+----------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------------+---------------+
| authentication_ldap_sasl | ACTIVE |
| authentication_ldap_simple | ACTIVE |
+----------------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with an LDAP plugin, see Using LDAP Pluggable Authentication.

Additional Notes for SELinux

On systems running EL6 or EL that have SELinux enabled, changes to
the SELinux policy are required to enable the MySQL LDAP plugins to
communicate with the LDAP service:

195

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

LDAP Pluggable Authentication

1. Create a file mysqlldap.te with these contents:

module mysqlldap 1.0;
require {
 type ldap_port_t;
 type mysqld_t;
 class tcp_socket name_connect;
}
#============= mysqld_t ==============
allow mysqld_t ldap_port_t:tcp_socket name_connect;

2. Compile the security policy module into a binary representation:

checkmodule -M -m mysqlldap.te -o mysqlldap.mod

3. Create an SELinux policy module package:

semodule_package -m mysqlldap.mod -o mysqlldap.pp

4. Install the module package:

semodule -i mysqlldap.pp

5. When the SELinux policy changes have been made, restart the MySQL
server:

service mysqld restart

Uninstalling LDAP Pluggable Authentication

The method used to uninstall the LDAP authentication plugins depends on how you installed them:

• If you installed the plugins at server startup using --plugin-load-add options, restart the server
without those options.

• If you installed the plugins at runtime using INSTALL PLUGIN, they remain installed across server
restarts. To uninstall them, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN authentication_ldap_simple;
UNINSTALL PLUGIN authentication_ldap_sasl;

In addition, remove from your my.cnf file any startup options that set LDAP plugin-related system
variables. If you used SET PERSIST to persist LDAP system variables, use RESET PERSIST to
remove the settings.

LDAP Pluggable Authentication and ldap.conf

For installations that use OpenLDAP, the ldap.conf file provides global defaults for LDAP clients.
Options can be set in this file to affect LDAP clients, including the LDAP authentication plugins.
OpenLDAP uses configuration options in this order of precedence:

• Configuration specified by the LDAP client.

• Configuration specified in the ldap.conf file. To disable use of this file, set the LDAPNOINIT
environment variable.

• OpenLDAP library built-in defaults.

If the library defaults or ldap.conf values do not yield appropriate option values, an LDAP
authentication plugin may be able to set related variables to affect the LDAP configuration directly. For
example, LDAP plugins can override ldap.conf for parameters such as these:

• TLS configuration: System variables are available to enable TLS and control CA configuration, such
as authentication_ldap_simple_tls and authentication_ldap_simple_ca_path

196

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/reset-persist.html

LDAP Pluggable Authentication

for simple LDAP authentication, and authentication_ldap_sasl_tls and
authentication_ldap_sasl_ca_path for SASL LDAP authentication.

• LDAP referral. See LDAP Search Referral.

For more information about ldap.conf consult the ldap.conf(5) man page.

Using LDAP Pluggable Authentication

This section describes how to enable MySQL accounts to connect to the MySQL server using LDAP
pluggable authentication. It is assumed that the server is running with the appropriate server-side
plugins enabled, as described in Installing LDAP Pluggable Authentication, and that the appropriate
client-side plugins are available on the client host.

This section does not describe LDAP configuration or administration. You are assumed to be familiar
with those topics.

The two server-side LDAP plugins each work with a specific client-side plugin:

• The server-side authentication_ldap_simple plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
mysql_clear_password plugin, which sends the password to the server as cleartext. No
password hashing or encryption is used, so a secure connection between the MySQL client and
server is recommended to prevent password exposure.

• The server-side authentication_ldap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-
side authentication_ldap_sasl_client plugin. The client-side and server-side SASL LDAP
plugins use SASL messages for secure transmission of credentials within the LDAP protocol, to
avoid sending the cleartext password between the MySQL client and server.

Overall requirements for LDAP authentication of MySQL users:

• There must be an LDAP directory entry for each user to be authenticated.

• There must be a MySQL user account that specifies a server-side LDAP authentication plugin and
optionally names the associated LDAP user distinguished name (DN). (To associate an LDAP user
DN with a MySQL account, include a BY clause in the CREATE USER statement that creates the
account.) If an account names no LDAP string, LDAP authentication uses the user name specified by
the client to find the LDAP entry.

• Client programs connect using the connection method appropriate for the server-side
authentication plugin the MySQL account uses. For LDAP authentication, connections require
the MySQL user name and LDAP password. In addition, for accounts that use the server-side
authentication_ldap_simple plugin, invoke client programs with the --enable-cleartext-
plugin option to enable the client-side mysql_clear_password plugin.

The instructions here assume the following scenario:

• MySQL users betsy and boris authenticate to the LDAP entries for betsy_ldap and
boris_ldap, respectively. (It is not necessary that the MySQL and LDAP user names differ. The
use of different names in this discussion helps clarify whether an operation context is MySQL or
LDAP.)

• LDAP entries use the uid attribute to specify user names. This may vary depending on
LDAP server. Some LDAP servers use the cn attribute for user names rather than uid. To
change the attribute, modify the authentication_ldap_simple_user_search_attr or
authentication_ldap_sasl_user_search_attr system variable appropriately.

• These LDAP entries are available in the directory managed by the LDAP server, to provide
distinguished name values that uniquely identify each user:

197

https://dev.mysql.com/doc/refman/8.0/en/create-user.html

LDAP Pluggable Authentication

uid=betsy_ldap,ou=People,dc=example,dc=com
uid=boris_ldap,ou=People,dc=example,dc=com

• CREATE USER statements that create MySQL accounts name an LDAP user in the BY clause, to
indicate which LDAP entry the MySQL account authenticates against.

The instructions for setting up an account that uses LDAP authentication depend on which server-side
LDAP plugin is used. The following sections describe several usage scenarios.

Simple LDAP Authentication

To configure a MySQL account for simple LDAP authentication, the CREATE USER statement specifies
the authentication_ldap_simple plugin, and optionally names the LDAP user distinguished
name (DN):

CREATE USER user
 IDENTIFIED WITH authentication_ldap_simple
 [BY 'LDAP user DN'];

Suppose that MySQL user betsy has this entry in the LDAP directory:

uid=betsy_ldap,ou=People,dc=example,dc=com

Then the statement to create the MySQL account for betsy looks like this:

CREATE USER 'betsy'@'localhost'
 IDENTIFIED WITH authentication_ldap_simple
 AS 'uid=betsy_ldap,ou=People,dc=example,dc=com';

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password, and by
enabling the client-side mysql_clear_password plugin:

$> mysql --user=betsy --password --enable-cleartext-plugin
Enter password: betsy_password (betsy_ldap LDAP password)

Note

The client-side mysql_clear_password authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as
cleartext. This enables the password to be passed as is to the LDAP server.
A cleartext password is necessary to use the server-side LDAP library without
SASL, but may be a security problem in some configurations. These measures
minimize the risk:

• To make inadvertent use of the mysql_clear_password plugin less likely,
MySQL clients must explicitly enable it (for example, with the --enable-
cleartext-plugin option). See Section 6.1.4, “Client-Side Cleartext
Pluggable Authentication”.

• To avoid password exposure with the mysql_clear_password plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use
Encrypted Connections”.

The authentication process occurs as follows:

1. The client-side plugin sends betsy and betsy_password as the client user name and LDAP
password to the MySQL server.

198

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

LDAP Pluggable Authentication

2. The connection attempt matches the 'betsy'@'localhost' account. The
server-side LDAP plugin finds that this account has an authentication string of
'uid=betsy_ldap,ou=People,dc=example,dc=com' to name the LDAP user DN. The plugin
sends this string and the LDAP password to the LDAP server.

3. The LDAP server finds the LDAP entry for betsy_ldap and the password matches, so LDAP
authentication succeeds.

4. The LDAP entry has no group attribute, so the server-side plugin returns the client user name
(betsy) as the authenticated user. This is the same user name supplied by the client, so no
proxying occurs and the client session uses the 'betsy'@'localhost' account for privilege
checking.

Had the matching LDAP entry contained a group attribute, that attribute value would have been the
authenticated user name and, if the value differed from betsy, proxying would have occurred. For
examples that use the group attribute, see LDAP Authentication with Proxying.

Had the CREATE USER statement contained no BY clause to specify the betsy_ldap LDAP
distinguished name, authentication attempts would use the user name provided by the client (in this
case, betsy). In the absence of an LDAP entry for betsy, authentication would fail.

SASL-Based LDAP Authentication

To configure a MySQL account for SASL LDAP authentication, the CREATE USER statement specifies
the authentication_ldap_sasl plugin, and optionally names the LDAP user distinguished name
(DN):

CREATE USER user
 IDENTIFIED WITH authentication_ldap_sasl
 [BY 'LDAP user DN'];

Suppose that MySQL user boris has this entry in the LDAP directory:

uid=boris_ldap,ou=People,dc=example,dc=com

Then the statement to create the MySQL account for boris looks like this:

CREATE USER 'boris'@'localhost'
 IDENTIFIED WITH authentication_ldap_sasl
 AS 'uid=boris_ldap,ou=People,dc=example,dc=com';

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password:

$> mysql --user=boris --password
Enter password: boris_password (boris_ldap LDAP password)

For the server-side authentication_ldap_sasl plugin, clients use the client-side
authentication_ldap_sasl_client plugin. If a client program does not find the client-side
plugin, specify a --plugin-dir option that names the directory where the plugin library file is
installed.

The authentication process for boris is similar to that previously described for betsy with simple
LDAP authentication, except that the client-side and server-side SASL LDAP plugins use SASL
messages for secure transmission of credentials within the LDAP protocol, to avoid sending the
cleartext password between the MySQL client and server.

LDAP Authentication with Proxying

LDAP authentication plugins support proxying, enabling a user to connect to the MySQL server as
one user but assume the privileges of a different user. This section describes basic LDAP plugin proxy

199

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

LDAP Pluggable Authentication

support. The LDAP plugins also support specification of group preference and proxy user mapping; see
LDAP Authentication Group Preference and Mapping Specification.

The proxying implementation described here is based on use of LDAP group attribute values to
map connecting MySQL users who authenticate using LDAP onto other MySQL accounts that
define different sets of privileges. Users do not connect directly through the accounts that define the
privileges. Instead, they connect through a default proxy account authenticated with LDAP, such that
all external logins are mapped to the proxied MySQL accounts that hold the privileges. Any user who
connects using the proxy account is mapped to one of those proxied MySQL accounts, the privileges
for which determine the database operations permitted to the external user.

The instructions here assume the following scenario:

• LDAP entries use the uid and cn attributes to specify user name and group values, respectively. To
use different user and group attribute names, set the appropriate plugin-specific system variables:

• For the authentication_ldap_simple plugin: Set
authentication_ldap_simple_user_search_attr and
authentication_ldap_simple_group_search_attr.

• For the authentication_ldap_sasl plugin: Set
authentication_ldap_sasl_user_search_attr and
authentication_ldap_sasl_group_search_attr.

• These LDAP entries are available in the directory managed by the LDAP server, to provide
distinguished name values that uniquely identify each user:

uid=basha,ou=People,dc=example,dc=com,cn=accounting
uid=basil,ou=People,dc=example,dc=com,cn=front_office

At connect time, the group attribute values become the authenticated user names, so they name the
accounting and front_office proxied accounts.

• The examples assume use of SASL LDAP authentication. Make the appropriate adjustments for
simple LDAP authentication.

Create the default proxy MySQL account:

CREATE USER ''@'%'
 IDENTIFIED WITH authentication_ldap_sasl;

The proxy account definition has no AS 'auth_string' clause to name an LDAP user DN. Thus:

• When a client connects, the client user name becomes the LDAP user name to search for.

• The matching LDAP entry is expected to include a group attribute naming the proxied MySQL
account that defines the privileges the client should have.

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER 'accounting'@'localhost'
 IDENTIFIED WITH mysql_no_login;
CREATE USER 'front_office'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL PRIVILEGES
 ON accountingdb.*
 TO 'accounting'@'localhost';
GRANT ALL PRIVILEGES

200

LDAP Pluggable Authentication

 ON frontdb.*
 TO 'front_office'@'localhost';

The proxied accounts use the mysql_no_login authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, users who authenticate using LDAP are
expected to use the default ''@'%' proxy account. (This assumes that the mysql_no_login plugin
is installed. For instructions, see Section 6.1.9, “No-Login Pluggable Authentication”.) For alternative
methods of protecting proxied accounts against direct use, see Preventing Direct Login to Proxied
Accounts.

Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
 ON 'accounting'@'localhost'
 TO ''@'%';
GRANT PROXY
 ON 'front_office'@'localhost'
 TO ''@'%';

Use the mysql command-line client to connect to the MySQL server as basha.

$> mysql --user=basha --password
Enter password: basha_password (basha LDAP password)

Authentication occurs as follows:

1. The server authenticates the connection using the default ''@'%' proxy account, for client user
basha.

2. The matching LDAP entry is:

uid=basha,ou=People,dc=example,dc=com,cn=accounting

3. The matching LDAP entry has group attribute cn=accounting, so accounting becomes the
authenticated proxied user.

4. The authenticated user differs from the client user name basha, with the result that basha
is treated as a proxy for accounting, and basha assumes the privileges of the proxied
accounting account. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-----------------+----------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-----------------+----------------------+--------------+
| basha@localhost | accounting@localhost | ''@'%' |
+-----------------+----------------------+--------------+

This demonstrates that basha uses the privileges granted to the proxied accounting MySQL
account, and that proxying occurs through the default proxy user account.

Now connect as basil instead:

$> mysql --user=basil --password
Enter password: basil_password (basil LDAP password)

The authentication process for basil is similar to that previously described for basha:

1. The server authenticates the connection using the default ''@'%' proxy account, for client user
basil.

2. The matching LDAP entry is:

uid=basil,ou=People,dc=example,dc=com,cn=front_office

3. The matching LDAP entry has group attribute cn=front_office, so front_office becomes
the authenticated proxied user.

201

LDAP Pluggable Authentication

4. The authenticated user differs from the client user name basil, with the result that basil
is treated as a proxy for front_office, and basil assumes the privileges of the proxied
front_office account. The following query returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+-----------------+------------------------+--------------+
| USER() | CURRENT_USER() | @@proxy_user |
+-----------------+------------------------+--------------+
| basil@localhost | front_office@localhost | ''@'%' |
+-----------------+------------------------+--------------+

This demonstrates that basil uses the privileges granted to the proxied front_office MySQL
account, and that proxying occurs through the default proxy user account.

LDAP Authentication Group Preference and Mapping Specification

As described in LDAP Authentication with Proxying, basic LDAP authentication proxying works by the
principle that the plugin uses the first group name returned by the LDAP server as the MySQL proxied
user account name. This simple capability does not enable specifying any preference about which
group name to use if the LDAP server returns multiple group names, or specifying any name other than
the group name as the proxied user name.

As of MySQL 8.0.14, for MySQL accounts that use LDAP authentication, the authentication string can
specify the following information to enable greater proxying flexibility:

• A list of groups in preference order, such that the plugin uses the first group name in the list that
matches a group returned by the LDAP server.

• A mapping from group names to proxied user names, such that a group name when matched can
provide a specified name to use as the proxied user. This provides an alternative to using the group
name as the proxied user.

Consider the following MySQL proxy account definition:

CREATE USER ''@'%'
 IDENTIFIED WITH authentication_ldap_sasl
 AS '+ou=People,dc=example,dc=com#grp1=usera,grp2,grp3=userc';

The authentication string has a user DN suffix ou=People,dc=example,dc=com prefixed by the +
character. Thus, as described in LDAP Authentication User DN Suffixes, the full user DN is constructed
from the user DN suffix as specified, plus the client user name as the uid attribute.

The remaining part of the authentication string begins with #, which signifies the beginning of group
preference and mapping information. This part of the authentication string lists group names in the
order grp1, grp2, grp3. The LDAP plugin compares that list with the set of group names returned by
the LDAP server, looking in list order for a match against the returned names. The plugin uses the first
match, or if there is no match, authentication fails.

Suppose that the LDAP server returns groups grp3, grp2, and grp7. The LDAP plugin uses grp2
because it is the first group in the authentication string that matches, even though it is not the first
group returned by the LDAP server. If the LDAP server returns grp4, grp2, and grp1, the plugin uses
grp1 even though grp2 also matches. grp1 has a precedence higher than grp2 because it is listed
earlier in the authentication string.

Assuming that the plugin finds a group name match, it performs mapping from that group name to the
MySQL proxied user name, if there is one. For the example proxy account, mapping occurs as follows:

• If the matching group name is grp1 or grp3, those are associated in the authentication string with
user names usera and userc, respectively. The plugin uses the corresponding associated user
name as the proxied user name.

• If the matching group name is grp2, there is no associated user name in the authentication string.
The plugin uses grp2 as the proxied user name.

202

LDAP Pluggable Authentication

If the LDAP server returns a group in DN format, the LDAP plugin parses the group DN to extract the
group name from it.

To specify LDAP group preference and mapping information, these principles apply:

• Begin the group preference and mapping part of the authentication string with a # prefix character.

• The group preference and mapping specification is a list of one or more items, separated by
commas. Each item has the form group_name=user_name or group_name. Items should be listed
in group name preference order. For a group name selected by the plugin as a match from set of
group names returned by the LDAP server, the two syntaxes differ in effect as follows:

• For an item specified as group_name=user_name (with a user name), the group name maps to
the user name, which is used as the MySQL proxied user name.

• For an item specified as group_name (with no user name), the group name is used as the MySQL
proxied user name.

• To quote a group or user name that contains special characters such as space, surround it by double
quote (") characters. For example, if an item has group and user names of my group name and my
user name, it must be written in a group mapping using quotes:

"my group name"="my user name"

If an item has group and user names of my_group_name and my_user_name (which contain no
special characters), it may but need not be written using quotes. Any of the following are valid:

my_group_name=my_user_name
my_group_name="my_user_name"
"my_group_name"=my_user_name
"my_group_name"="my_user_name"

• To escape a character, precede it by a backslash (\). This is useful particularly to include a literal
double quote or backslash, which are otherwise not included literally.

• A user DN need not be present in the authentication string, but if present, it must precede the group
preference and mapping part. A user DN can be given as a full user DN, or as a user DN suffix with a
+ prefix character. (See LDAP Authentication User DN Suffixes.)

LDAP Authentication User DN Suffixes

LDAP authentication plugins permit the authentication string that provides user DN information to begin
with a + prefix character:

• In the absence of a + character, the authentication string value is treated as is without modification.

• If the authentication string begins with +, the plugin constructs the full user DN value from the
user name sent by the client, together with the DN specified in the authentication string (with
the + removed). In the constructed DN, the client user name becomes the value of the attribute
that specifies LDAP user names. This is uid by default; to change the attribute, modify the
appropriate system variable (authentication_ldap_simple_user_search_attr or
authentication_ldap_sasl_user_search_attr). The authentication string is stored as given
in the mysql.user system table, with the full user DN constructed on the fly before authentication.

This account authentication string does not have + at the beginning, so it is taken as the full user DN:

CREATE USER 'baldwin'
 IDENTIFIED WITH authentication_ldap_simple
 AS 'uid=admin,ou=People,dc=example,dc=com';

The client connects with the user name specified in the account (baldwin). In this case, that name is
not used because the authentication string has no prefix and thus fully specifies the user DN.

203

LDAP Pluggable Authentication

This account authentication string does have + at the beginning, so it is taken as just part of the user
DN:

CREATE USER 'accounting'
 IDENTIFIED WITH authentication_ldap_simple
 AS '+ou=People,dc=example,dc=com';

The client connects with the user name specified in the account (accounting), which in this
case is used as the uid attribute together with the authentication string to construct the user DN:
uid=accounting,ou=People,dc=example,dc=com

The accounts in the preceding examples have a nonempty user name, so the client always connects
to the MySQL server using the same name as specified in the account definition. If an account has
an empty user name, such as the default anonymous ''@'%' proxy account described in LDAP
Authentication with Proxying, clients might connect to the MySQL server with varying user names. But
the principle is the same: If the authentication string begins with +, the plugin uses the user name sent
by the client together with the authentication string to construct the user DN.

LDAP Authentication Methods

The LDAP authentication plugins use a configurable authentication method. The appropriate system
variable and available method choices are plugin-specific:

• For the authentication_ldap_simple plugin: Set the
authentication_ldap_simple_auth_method_name system variable to configure the method.
The permitted choices are SIMPLE and AD-FOREST.

• For the authentication_ldap_sasl plugin: Set the
authentication_ldap_sasl_auth_method_name system variable to configure the method.
The permitted choices are SCRAM-SHA-1, SCRAM-SHA-256, and GSSAPI. (To determine
which SASL LDAP methods are actually available on the host system, check the value of the
Authentication_ldap_sasl_supported_methods status variable.)

See the system variable descriptions for information about each permitted method. Also, depending on
the method, additional configuration may be needed, as described in the following sections.

The GSSAPI/Kerberos Authentication Method

Generic Security Service Application Program Interface (GSSAPI) is a security abstraction interface.
Kerberos is an instance of a specific security protocol that can be used through that abstract interface.
Using GSSAPI, applications authenticate to Kerberos to obtain service credentials, then use those
credentials in turn to enable secure access to other services.

One such service is LDAP, which is used by the client-side and server-side SASL LDAP authentication
plugins. When the authentication_ldap_sasl_auth_method_name system variable is set to
GSSAPI, these plugins use the GSSAPI/Kerberos authentication method. In this case, the plugins
communicate securely using Kerberos without using LDAP messages directly. The server-side plugin
then communicates with the LDAP server to interpret LDAP authentication messages and retrieve
LDAP groups.

GSSAPI/Kerberos is supported as an LDAP authentication method for MySQL servers and clients on
Linux. It is useful in Linux environments where applications have access to LDAP through Microsoft
Active Directory, which has Kerberos enabled by default.

The following discussion provides information about the configuration requirements for using the
GSSAPI method. Familiarity is assumed with Kerberos concepts and operation. The following list
briefly defines several common Kerberos terms. You may also find the Glossary section of RFC 4120
helpful.

• Principal: A named entity, such as a user or server.

204

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Authentication_ldap_sasl_supported_methods
https://tools.ietf.org/html/rfc4120
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_principal

LDAP Pluggable Authentication

• KDC: The key distribution center, comprising the AS and TGS:

• AS: The authentication server; provides the initial ticket-granting ticket needed to obtain additional
tickets.

• TGS: The ticket-granting server; provides additional tickets to Kerberos clients that possess a valid
TGT.

• TGT: The ticket-granting ticket; presented to the TGS to obtain service tickets for service access.

LDAP authentication using Kerberos requires both a KDC server and an LDAP server. This
requirement can be satisfied in different ways:

• Active Directory includes both servers, with Kerberos authentication enabled by default in the Active
Directory LDAP server.

• OpenLDAP provides an LDAP server, but a separate KDC server may be needed, with additional
Kerberos setup required.

Kerberos must also be available on the client host. A client contacts the AS using a password to obtain
a TGT. The client then uses the TGT to obtain access from the TGS to other services, such as LDAP.

The following sections discuss the configuration steps to use GSSAPI/Kerberos for SASL LDAP
authentication in MySQL:

• Verify Kerberos and LDAP Availability

• Configure the Server-Side SASL LDAP Authentication Plugin for GSSAPI/Kerberos

• Create a MySQL Account That Uses GSSAPI/Kerberos for LDAP Authentication

• Use the MySQL Account to Connect to the MySQL Server

• Client Configuration Parameters for LDAP Authentication

Verify Kerberos and LDAP Availability

The following example shows how to test availability of Kerberos in Active Directory. The example
makes these assumptions:

• Active Directory is running on the host named ldap_auth.example.com with IP address
198.51.100.10.

• MySQL-related Kerberos authentication and LDAP lookups use the MYSQL.LOCAL domain.

• A principal named bredon@MYSQL.LOCAL is registered with the KDC. (In later discussion, this
principal name is also associated with the MySQL account that authenticates to the MySQL server
using GSSAPI/Kerberos.)

With those assumptions satisfied, follow this procedure:

1. Verify that the Kerberos library is installed and configured correctly in the operating system. For
example, to configure a MYSQL.LOCAL domain for use during MySQL authentication, the /etc/
krb5.conf Kerberos configuration file should contain something like this:

[realms]
 MYSQL.LOCAL = {
 kdc = ldap_auth.example.com
 admin_server = ldap_auth.example.com
 default_domain = MYSQL.LOCAL
 }

2. You may need to add an entry to /etc/hosts for the server host:

205

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_key_distribution_center
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_authentication_server
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ticket_granting_server
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ticket_granting_ticket

LDAP Pluggable Authentication

198.51.100.10 ldap_auth ldap_auth.example.com

3. Check whether Kerberos authentication works correctly:

a. Use kinit to authenticate to Kerberos:

$> kinit bredon@MYSQL.LOCAL
Password for bredon@MYSQL.LOCAL: (enter password here)

The command authenticates for the Kerberos principal named bredon@MYSQL.LOCAL. Enter
the principal's password when the command prompts for it. The KDC returns a TGT that is
cached on the client side for use by other Kerberos-aware applications.

b. Use klist to check whether the TGT was obtained correctly. The output should be similar to
this:

$> klist
Ticket cache: FILE:/tmp/krb5cc_244306
Default principal: bredon@MYSQL.LOCAL
Valid starting Expires Service principal
03/23/2021 08:18:33 03/23/2021 18:18:33 krbtgt/MYSQL.LOCAL@MYSQL.LOCAL

4. Check whether ldapsearch works with the Kerberos TGT using this command, which searches
for users in the MYSQL.LOCAL domain:

ldapsearch -h 198.51.100.10 -Y GSSAPI -b "dc=MYSQL,dc=LOCAL"

Configure the Server-Side SASL LDAP Authentication Plugin for GSSAPI/Kerberos

Assuming that the LDAP server is accessible through Kerberos as just described, configure the server-
side SASL LDAP authentication plugin to use the GSSAPI/Kerberos authentication method. (For
general LDAP plugin installation information, see Installing LDAP Pluggable Authentication.) Here is an
example of plugin-related settings the server my.cnf file might contain:

[mysqld]
plugin-load-add=authentication_ldap_sasl.so
authentication_ldap_sasl_auth_method_name="GSSAPI"
authentication_ldap_sasl_server_host=198.51.100.10
authentication_ldap_sasl_server_port=389
authentication_ldap_sasl_bind_root_dn="cn=admin,cn=users,dc=MYSQL,dc=LOCAL"
authentication_ldap_sasl_bind_root_pwd="password"
authentication_ldap_sasl_bind_base_dn="cn=users,dc=MYSQL,dc=LOCAL"
authentication_ldap_sasl_user_search_attr="sAMAccountName"

Those option file settings configure the SASL LDAP plugin as follows:

• The --plugin-load-add option loads the plugin (adjust the .so suffix for your platform as
necessary). If you loaded the plugin previously using an INSTALL PLUGIN statement, this option is
unnecessary.

• authentication_ldap_sasl_auth_method_name must be set to GSSAPI to use GSSAPI/
Kerberos as the SASL LDAP authentication method.

• authentication_ldap_sasl_server_host and
authentication_ldap_sasl_server_port indicate the IP address and port number of the
Active Directory server host for authentication.

• authentication_ldap_sasl_bind_root_dn and
authentication_ldap_sasl_bind_root_pwd configure the root DN and password for group
search capability. This capability is required, but users may not have privileges to search. In such
cases, it is necessary to provide root DN information:

• In the DN option value, admin should be the name of an administrative LDAP account that has
privileges to perform user searches.

206

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html

LDAP Pluggable Authentication

• In the password option value, password should be the admin account password.

• authentication_ldap_sasl_bind_base_dn indicates the user DN base path, so that searches
look for users in the MYSQL.LOCAL domain.

• authentication_ldap_sasl_user_search_attr specifies a standard Active Directory search
attribute, sAMAccountName. This attribute is used in searches to match logon names; attribute
values are not the same as the user DN values.

Create a MySQL Account That Uses GSSAPI/Kerberos for LDAP Authentication

MySQL authentication using the SASL LDAP authentication plugin with the GSSAPI/Kerberos method
is based on a user that is a Kerberos principal. The following discussion uses a principal named
bredon@MYSQL.LOCAL as this user, which must be registered in several places:

• The Kerberos administrator should register the user name as a Kerberos principal. This name should
include a domain name. Clients use the principal name and password to authenticate with Kerberos
and obtain a TGT.

• The LDAP administrator should register the user name in an LDAP entry. For example:

uid=bredon,dc=MYSQL,dc=LOCAL

Note

In Active Directory (which uses Kerberos as the default authentication
method), creating a user creates both the Kerberos principal and the LDAP
entry.

• The MySQL DBA should create an account that has the Kerberos principal name as the user name
and that authenticates using the SASL LDAP plugin.

Assume that the Kerberos principal and LDAP entry have been registered by the appropriate service
administrators, and that, as previously described in Installing LDAP Pluggable Authentication, and
Configure the Server-Side SASL LDAP Authentication Plugin for GSSAPI/Kerberos, the MySQL
server has been started with appropriate configuration settings for the server-side SASL LDAP plugin.
The MySQL DBA then creates a MySQL account that corresponds to the Kerberos principal name,
including the domain name.

Note

The SASL LDAP plugin uses a constant user DN for Kerberos authentication
and ignores any user DN configured from MySQL. This has certain implications:

• For any MySQL account that uses GSSAPI/Kerberos authentication, the
authentication string in CREATE USER or ALTER USER statements should
contain no user DN because it has no effect.

• Because the authentication string contains no user DN, it should contain
group mapping information, to enable the user to be handled as a proxy user
that is mapped onto the desired proxied user. For information about proxying
with the LDAP authentication plugin, see LDAP Authentication with Proxying.

The following statements create a proxy user named bredon@MYSQL.LOCAL that assumes the
privileges of the proxied user named proxied_krb_usr. Other GSSAPI/Kerberos users that should
have the same privileges can similarly be created as proxy users for the same proxied user.

-- create proxy account
CREATE USER 'bredon@MYSQL.LOCAL'
 IDENTIFIED WITH authentication_ldap_sasl
 BY '#krb_grp=proxied_krb_user';

207

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

LDAP Pluggable Authentication

-- create proxied account and grant its privileges;
-- use mysql_no_login plugin to prevent direct login
CREATE USER 'proxied_krb_user'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL
 ON krb_user_db.*
 TO 'proxied_krb_user';
-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
 ON 'proxied_krb_user'
 TO 'bredon@MYSQL.LOCAL';

Observe closely the quoting for the proxy account name in the first CREATE USER statement and the
GRANT PROXY statement:

• For most MySQL accounts, the user and host are separate parts of the account name, and thus are
quoted separately as 'user_name'@'host_name'.

• For LDAP Kerberos authentication, the user part of the account name includes the principal domain,
so 'bredon@MYSQL.LOCAL' is quoted as a single value. Because no host part is given, the full
MySQL account name uses the default of '%' as the host part: 'bredon@MYSQL.LOCAL'@'%'

Note

When creating an account that authenticates using the
authentication_ldap_sasl SASL LDAP authentication plugin with the
GSSAPI/Kerberos authentication method, the CREATE USER statement
includes the realm as part of the user name. This differs from creating accounts
that use the authentication_kerberos Kerberos plugin. For such
accounts, the CREATE USER statement does not include the realm as part of
the user name. Instead, specify the realm as the authentication string in the BY
clause. See Create a MySQL Account That Uses Kerberos Authentication.

The proxied account uses the mysql_no_login authentication plugin to prevent clients from using the
account to log in directly to the MySQL server. Instead, it is expected that users who authenticate using
LDAP use the bredon@MYSQL.LOCAL proxy account. (This assumes that the mysql_no_login
plugin is installed. For instructions, see Section 6.1.9, “No-Login Pluggable Authentication”.) For
alternative methods of protecting proxied accounts against direct use, see Preventing Direct Login to
Proxied Accounts.

Use the MySQL Account to Connect to the MySQL Server

After a MySQL account that authenticates using GSSAPI/Kerberos has been set up, clients can use it
to connect to the MySQL server. Kerberos authentication can take place either prior to or at the time of
MySQL client program invocation:

• Prior to invoking the MySQL client program, the client user can obtain a TGT from the KDC
independently of MySQL. For example, the client user can use kinit to authenticate to Kerberos by
providing a Kerberos principal name and the principal password:

$> kinit bredon@MYSQL.LOCAL
Password for bredon@MYSQL.LOCAL: (enter password here)

The resulting TGT is cached and becomes available for use by other Kerberos-aware applications,
such as programs that use the client-side SASL LDAP authentication plugin. In this case, the MySQL
client program authenticates to the MySQL server using the TGT, so invoke the client without
specifying a user name or password:

mysql --default-auth=authentication_ldap_sasl_client

As just described, when the TGT is cached, user-name and password options are not needed in the
client command. If the command includes them anyway, they are handled as follows:

208

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

LDAP Pluggable Authentication

• If the command includes a user name, authentication fails if that name does not match the
principal name in the TGT.

• If the command includes a password, the client-side plugin ignores it. Because authentication is
based on the TGT, it can succeed even if the user-provided password is incorrect. For this reason,
the plugin produces a warning if a valid TGT is found that causes a password to be ignored.

• If the Kerberos cache contains no TGT, the client-side SASL LDAP authentication plugin itself can
obtain the TGT from the KDC. Invoke the client with options for the name and password of the
Kerberos principal associated with the MySQL account (enter the command on a single line, then
enter the principal password when prompted):

mysql --default-auth=authentication_ldap_sasl_client
 --user=bredon@MYSQL.LOCAL
 --password

• If the Kerberos cache contains no TGT and the client command specifies no principal name as the
user name, authentication fails.

If you are uncertain whether a TGT exists, you can use klist to check.

Authentication occurs as follows:

1. The client uses the TGT to authenticate using Kerberos.

2. The server finds the LDAP entry for the principal and uses it to authenticate the connection for the
bredon@MYSQL.LOCAL MySQL proxy account.

3. The group mapping information in the proxy account authentication string
('#krb_grp=proxied_krb_user') indicates that the authenticated proxied user should be
proxied_krb_user.

4. bredon@MYSQL.LOCAL is treated as a proxy for proxied_krb_user, and the following query
returns output as shown:

mysql> SELECT USER(), CURRENT_USER(), @@proxy_user;
+------------------------------+--------------------+--------------------------+
| USER() | CURRENT_USER() | @@proxy_user |
+------------------------------+--------------------+--------------------------+
| bredon@MYSQL.LOCAL@localhost | proxied_krb_user@% | 'bredon@MYSQL.LOCAL'@'%' |
+------------------------------+--------------------+--------------------------+

The USER() value indicates the user name used for the client command (bredon@MYSQL.LOCAL)
and the host from which the client connected (localhost).

The CURRENT_USER() value is the full name of the proxied user account, which consists of the
proxied_krb_user user part and the % host part.

The @@proxy_user value indicates the full name of the account used to make the connection to
the MySQL server, which consists of the bredon@MYSQL.LOCAL user part and the % host part.

This demonstrates that proxying occurs through the bredon@MYSQL.LOCAL proxy user account,
and that bredon@MYSQL.LOCAL assumes the privileges granted to the proxied_krb_user
proxied user account.

A TGT once obtained is cached on the client side and can be used until it expires without specifying the
password again. However the TGT is obtained, the client-side plugin uses it to acquire service tickets
and communicate with the server-side plugin.

Note

When the client-side authentication plugin itself obtains the TGT, the client
user may not want the TGT to be reused. As described in Client Configuration

209

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_proxy_user

Kerberos Pluggable Authentication

Parameters for LDAP Authentication, the local /etc/krb5.conf file can be
used to cause the client-side plugin to destroy the TGT when done with it.

The server-side plugin has no access to the TGT itself or the Kerberos password used to obtain it.

The LDAP authentication plugins have no control over the caching mechanism (storage in a local file,
in memory, and so forth), but Kerberos utilities such as kswitch may be available for this purpose.

Client Configuration Parameters for LDAP Authentication

The authentication_ldap_sasl_client client-side SASL LDAP plugin reads the local /
etc/krb5.conf file. If this file is missing or inaccessible, an error occurs. Assuming that the file is
accessible, it can include an optional [appdefaults] section to provide information used by the
plugin. Place the information within the mysql part of the section. For example:

[appdefaults]
 mysql = {
 ldap_server_host = "ldap_host.example.com"
 ldap_destroy_tgt = true
 }

The client-side plugin recognizes these parameters in the mysql section:

• The ldap_server_host value specifies the LDAP server host and can be useful when that host
differs from the KDC server host specified in the [realms] section. By default, the plugin uses the
KDC server host as the LDAP server host.

• The ldap_destroy_tgt value indicates whether the client-side plugin destroys the TGT after
obtaining and using it. By default, ldap_destroy_tgt is false, but can be set to true to avoid
TGT reuse. (This setting applies only to TGTs created by the client-side plugin, not TGTs created by
other plugins or externally to MySQL.)

LDAP Search Referral

An LDAP server can be configured to delegate LDAP searches to another LDAP server, a functionality
known as LDAP referral. Suppose that the server a.example.com holds a "dc=example,dc=com"
root DN and wishes to delegate searches to another server b.example.com. To enable this,
a.example.com would be configured with a named referral object having these attributes:

dn: dc=subtree,dc=example,dc=com
objectClass: referral
objectClass: extensibleObject
dc: subtree
ref: ldap://b.example.com/dc=subtree,dc=example,dc=com

An issue with enabling LDAP referral is that searches can fail with LDAP operation errors when
the search base DN is the root DN, and referral objects are not set. A MySQL DBA might wish
to avoid such referral errors for the LDAP authentication plugins, even though LDAP referral
might be set globally in the ldap.conf configuration file. To configure on a plugin-specific basis
whether the LDAP server should use LDAP referral when communicating with each plugin, set the
authentication_ldap_simple_referral and authentication_ldap_sasl_referral
system variables. Setting either variable to ON or OFF causes the corresponding LDAP authentication
plugin to tell the LDAP server whether to use referral during MySQL authentication. Each variable has
a plugin-specific effect and does not affect other applications that communicate with the LDAP server.
Both variables are OFF by default.

6.1.8 Kerberos Pluggable Authentication

Note

Kerberos pluggable authentication is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

210

https://www.mysql.com/products/

Kerberos Pluggable Authentication

MySQL Enterprise Edition supports an authentication method that enables users to authenticate to
MySQL Server using Kerberos, provided that appropriate Kerberos tickets are available or can be
obtained.

This authentication method is available in MySQL 8.0.26 and higher, for MySQL servers and clients on
Linux. It is useful in Linux environments where applications have access to Microsoft Active Directory,
which has Kerberos enabled by default. As of MySQL 8.0.27 (MySQL 8.0.32 for MIT Kerberos), the
client-side plugin is supported on Windows as well. The server-side plugin is still supported only on
Linux.

Kerberos pluggable authentication provides these capabilities:

• External authentication: Kerberos authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have obtained the proper Kerberos tickets.

• Security: Kerberos uses tickets together with symmetric-key cryptography, enabling authentication
without sending passwords over the network. Kerberos authentication supports userless and
passwordless scenarios.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable. For
installation information, see Installing Kerberos Pluggable Authentication.

Table 6.9 Plugin and Library Names for Kerberos Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_kerberos

Client-side plugin authentication_kerberos_client

Library file authentication_kerberos.so,
authentication_kerberos_client.so

The server-side Kerberos authentication plugin is included only in MySQL Enterprise Edition. It is
not included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions. This enables clients from any distribution to connect to a server that
has the server-side plugin loaded.

The following sections provide installation and usage information specific to Kerberos pluggable
authentication:

• Prerequisites for Kerberos Pluggable Authentication

• How Kerberos Authentication of MySQL Users Works

• Installing Kerberos Pluggable Authentication

• Using Kerberos Pluggable Authentication

• Kerberos Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Prerequisites for Kerberos Pluggable Authentication

To use Kerberos pluggable authentication for MySQL, these prerequisites must be satisfied:

• A Kerberos service must be available for the Kerberos authentication plugins to communicate with.

• Each Kerberos user (principal) to be authenticated by MySQL must be present in the database
managed by the KDC server.

211

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Kerberos Pluggable Authentication

• A Kerberos client library must be available on systems where either the server-side or client-side
Kerberos authentication plugin is used. In addition, GSSAPI is used as the interface for accessing
Kerberos authentication, so a GSSAPI library must be available.

How Kerberos Authentication of MySQL Users Works

This section provides an overview of how MySQL and Kerberos work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use the Kerberos authentication
plugins, see Using Kerberos Pluggable Authentication.

Familiarity is assumed here with Kerberos concepts and operation. The following list briefly defines
several common Kerberos terms. You may also find the Glossary section of RFC 4120 helpful.

• Principal: A named entity, such as a user or server. In this discussion, certain principal-related terms
occur frequently:

• SPN: Service principal name; the name of a principal that represents a service.

• UPN: User principal name; the name of a principal that represents a user.

• KDC: The key distribution center, comprising the AS and TGS:

• AS: The authentication server; provides the initial ticket-granting ticket needed to obtain additional
tickets.

• TGS: The ticket-granting server; provides additional tickets to Kerberos clients that possess a valid
TGT.

• TGT: The ticket-granting ticket; presented to the TGS to obtain service tickets for service access.

• ST: A service ticket; provides access to a service such as that offered by a MySQL server.

Authentication using Kerberos requires a KDC server, for example, as provided by Microsoft Active
Directory.

Kerberos authentication in MySQL uses Generic Security Service Application Program Interface
(GSSAPI), which is a security abstraction interface. Kerberos is an instance of a specific security
protocol that can be used through that abstract interface. Using GSSAPI, applications authenticate to
Kerberos to obtain service credentials, then use those credentials in turn to enable secure access to
other services.

On Windows, the authentication_kerberos_client authentication plugin supports two modes,
which the client user can set at runtime or specify in an option file:

• SSPI mode: Security Support Provider Interface (SSPI) implements GSSAPI (see Commands for
Windows Clients in SSPI Mode). SSPI, while being compatible with GSSAPI at the wire level, only
supports the Windows single sign-on scenario and specifically refers to the logged-on user. SSPI is
the default mode on most Windows clients.

• GSSAPI mode: Supports GSSAPI through the MIT Kerberos library on Windows (see Commands for
Windows Clients in GSSAPI Mode).

With the Kerberos authentication plugins, applications and MySQL servers are able to use the
Kerberos authentication protocol to mutually authenticate users and MySQL services. This way both
the user and the server are able to verify each other's identity. No passwords are sent over the network
and Kerberos protocol messages are protected against eavesdropping and replay attacks.

Kerberos authentication follows these steps, where the server-side and client-side parts are performed
using the authentication_kerberos and authentication_kerberos_client authentication
plugins, respectively:

212

https://tools.ietf.org/html/rfc4120
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_principal
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_service_principal_name
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_user_principal_name
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_key_distribution_center
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_authentication_server
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ticket_granting_server
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ticket_granting_ticket
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_service_ticket

Kerberos Pluggable Authentication

1. The MySQL server sends to the client application its service principal name. This SPN
must be registered in the Kerberos system, and is configured on the server side using the
authentication_kerberos_service_principal system variable.

2. Using GSSAPI, the client application creates a Kerberos client-side authentication session and
exchanges Kerberos messages with the Kerberos KDC:

• The client obtains a ticket-granting ticket from the authentication server.

• Using the TGT, the client obtains a service ticket for MySQL from the ticket-granting service.

This step can be skipped or partially skipped if the TGT, ST, or both are already cached locally. The
client optionally may use a client keytab file to obtain a TGT and ST without supplying a password.

3. Using GSSAPI, the client application presents the MySQL ST to the MySQL server.

4. Using GSSAPI, the MySQL server creates a Kerberos server-side authentication session. The
server validates the user identity and the validity of the user request. It authenticates the ST using
the service key configured in its service keytab file to determine whether authentication succeeds or
fails, and returns the authentication result to the client.

Applications are able to authenticate using a provided user name and password, or using a locally
cached TGT or ST (for example, created using kinit or similar). This design therefore covers use
cases ranging from completely userless and passwordless connections, where Kerberos service
tickets are obtained from a locally stored Kerberos cache, to connections where both user name and
password are provided and used to obtain a valid Kerberos service ticket from a KDC, to send to the
MySQL server.

As indicated in the preceding description, MySQL Kerberos authentication uses two kinds of keytab
files:

• On the client host, a client keytab file may be used to obtain a TGT and ST without supplying a
password. See Client Configuration Parameters for Kerberos Authentication.

• On the MySQL server host, a server-side service keytab file is used to verify service tickets
received by the MySQL server from clients. The keytab file name is configured using the
authentication_kerberos_service_key_tab system variable.

For information about keytab files, see https://web.mit.edu/kerberos/krb5-latest/doc/basic/
keytab_def.html.

Installing Kerberos Pluggable Authentication

This section describes how to install the server-side Kerberos authentication plugin. For general
information about installing plugins, see Installing and Uninstalling Plugins.

Note

The server-side plugin is supported only on Linux systems. On Windows
systems, only the client-side plugin is supported (as of MySQL 8.0.27), which
can be used on a Windows system to connect to a Linux server that uses
Kerberos authentication.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The server-side plugin library file base name is authentication_kerberos. The file name suffix for
Unix and Unix-like systems is .so.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. Also,

213

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add

Kerberos Pluggable Authentication

specify values for any plugin-provided system variables you wish to configure. The plugin exposes
these system variables, enabling its operation to be configured:

• authentication_kerberos_service_principal: The MySQL service principal name (SPN).
This name is sent to clients that attempt to authenticate using Kerberos. The SPN must be present in
the database managed by the KDC server. The default is mysql/host_name@realm_name.

• authentication_kerberos_service_key_tab: The keytab file for authenticating tickets
received from clients. This file must exist and contain a valid key for the SPN or authentication of
clients will fail. The default is mysql.keytab in the data directory.

For details about all Kerberos authentication system variables, see Section 6.1.13, “Pluggable
Authentication System Variables”.

To load the plugin and configure it, put lines such as these in your my.cnf file, using values for the
system variables that are appropriate for your installation:

[mysqld]
plugin-load-add=authentication_kerberos.so
authentication_kerberos_service_principal=mysql/krbauth.example.com@MYSQL.LOCAL
authentication_kerberos_service_key_tab=/var/mysql/data/mysql.keytab

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

INSTALL PLUGIN authentication_kerberos
 SONAME 'authentication_kerberos.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

When you install the plugin at runtime without configuring its system variables in the my.cnf file, the
system variable authentication_kerberos_service_key_tab is set to the default value of
mysql.keytab in the data directory. The value of this system variable cannot be changed at runtime,
so if you need to specify a different file, you need to add the setting to your my.cnf file then restart the
MySQL server. For example:

[mysqld]
authentication_kerberos_service_key_tab=/var/mysql/data/mysql.keytab

If the keytab file is not in the correct place or does not contain a valid SPN key, the MySQL server does
not validate this, but clients return authentication errors until you fix the issue.

The authentication_kerberos_service_principal system variable can be set and persisted
at runtime without restarting the server, by using a SET PERSIST statement:

SET PERSIST authentication_kerberos_service_principal='mysql/krbauth.example.com@MYSQL.LOCAL';

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to carry
over to subsequent server restarts. To change a value for the running MySQL instance without having
it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See SET Syntax
for Variable Assignment.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME = 'authentication_kerberos';
+-------------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------------------+---------------+

214

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

Kerberos Pluggable Authentication

| authentication_kerberos | ACTIVE |
+-------------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Kerberos plugin, see Using Kerberos Pluggable Authentication.

Using Kerberos Pluggable Authentication

This section describes how to enable MySQL accounts to connect to the MySQL server using Kerberos
pluggable authentication. It is assumed that the server is running with the server-side plugin enabled,
as described in Installing Kerberos Pluggable Authentication, and that the client-side plugin is available
on the client host.

• Verify Kerberos Availability

• Create a MySQL Account That Uses Kerberos Authentication

• Use the MySQL Account to Connect to the MySQL Server

• Client Configuration Parameters for Kerberos Authentication

Verify Kerberos Availability

The following example shows how to test availability of Kerberos in Active Directory. The example
makes these assumptions:

• Active Directory is running on the host named krbauth.example.com with IP address
198.51.100.11.

• MySQL-related Kerberos authentication uses the MYSQL.LOCAL domain, and also uses
MYSQL.LOCAL as the realm name.

• A principal named karl@MYSQL.LOCAL is registered with the KDC. (In later discussion, this
principal name is associated with the MySQL account that authenticates to the MySQL server using
Kerberos.)

With those assumptions satisfied, follow this procedure:

1. Verify that the Kerberos library is installed and configured correctly in the operating system. For
example, to configure a MYSQL.LOCAL domain and realm for use during MySQL authentication, the
/etc/krb5.conf Kerberos configuration file should contain something like this:

[realms]
 MYSQL.LOCAL = {
 kdc = krbauth.example.com
 admin_server = krbauth.example.com
 default_domain = MYSQL.LOCAL
 }

2. You may need to add an entry to /etc/hosts for the server host:

198.51.100.11 krbauth krbauth.example.com

3. Check whether Kerberos authentication works correctly:

a. Use kinit to authenticate to Kerberos:

$> kinit karl@MYSQL.LOCAL
Password for karl@MYSQL.LOCAL: (enter password here)

The command authenticates for the Kerberos principal named karl@MYSQL.LOCAL. Enter the
principal's password when the command prompts for it. The KDC returns a TGT that is cached
on the client side for use by other Kerberos-aware applications.

215

Kerberos Pluggable Authentication

b. Use klist to check whether the TGT was obtained correctly. The output should be similar to
this:

$> klist
Ticket cache: FILE:/tmp/krb5cc_244306
Default principal: karl@MYSQL.LOCAL
Valid starting Expires Service principal
03/23/2021 08:18:33 03/23/2021 18:18:33 krbtgt/MYSQL.LOCAL@MYSQL.LOCAL

Create a MySQL Account That Uses Kerberos Authentication

MySQL authentication using the authentication_kerberos authentication plugin is based on a
Kerberos user principal name (UPN). The instructions here assume that a MySQL user named karl
authenticates to MySQL using Kerberos, that the Kerberos realm is named MYSQL.LOCAL, and that
the user principal name is karl@MYSQL.LOCAL. This UPN must be registered in several places:

• The Kerberos administrator should register the user name as a Kerberos principal. This name
includes a realm name. Clients use the principal name and password to authenticate with Kerberos
and obtain a ticket-granting ticket (TGT).

• The MySQL DBA should create an account that corresponds to the Kerberos principal name and that
authenticates using the Kerberos plugin.

Assume that the Kerberos user principal name has been registered by the appropriate service
administrator, and that, as previously described in Installing Kerberos Pluggable Authentication, the
MySQL server has been started with appropriate configuration settings for the server-side Kerberos
plugin. To create a MySQL account that corresponds to a Kerberos UPN of user@realm_name, the
MySQL DBA uses a statement like this:

CREATE USER user
 IDENTIFIED WITH authentication_kerberos
 BY 'realm_name';

The account named by user can include or omit the host name part. If the host name is omitted, it
defaults to % as usual. The realm_name is stored as the authentication_string value for the
account in the mysql.user system table.

To create a MySQL account that corresponds to the UPN karl@MYSQL.LOCAL, use this statement:

CREATE USER 'karl'
 IDENTIFIED WITH authentication_kerberos
 BY 'MYSQL.LOCAL';

If MySQL must construct the UPN for this account, for example, to obtain or validate tickets (TGTs
or STs), it does so by combining the account name (ignoring any host name part) and the realm
name. For example, the full account name resulting from the preceding CREATE USER statement is
'karl'@'%'. MySQL constructs the UPN from the user name part karl (ignoring the host name part)
and the realm name MYSQL.LOCAL to produce karl@MYSQL.LOCAL.

Note

Observe that when creating an account that authenticates using
authentication_kerberos, the CREATE USER statement does not
include the UPN realm as part of the user name. Instead, specify the realm
(MYSQL.LOCAL in this case) as the authentication string in the BY clause. This
differs from creating accounts that use the authentication_ldap_sasl
SASL LDAP authentication plugin with the GSSAPI/Kerberos authentication
method. For such accounts, the CREATE USER statement does include the
UPN realm as part of the user name. See Create a MySQL Account That Uses
GSSAPI/Kerberos for LDAP Authentication.

With the account set up, clients can use it to connect to the MySQL server. The procedure depends on
whether the client host runs Linux or Windows, as indicated in the following discussion.

216

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Kerberos Pluggable Authentication

Use of authentication_kerberos is subject to the restriction that UPNs with the same user part
but a different realm part are not supported. For example, you cannot create MySQL accounts that
correspond to both these UPNs:

kate@MYSQL.LOCAL
kate@EXAMPLE.COM

Both UPNs have a user part of kate but differ in the realm part (MYSQL.LOCAL versus
EXAMPLE.COM). This is disallowed.

Use the MySQL Account to Connect to the MySQL Server

After a MySQL account that authenticates using Kerberos has been set up, clients can use it to
connect to the MySQL server as follows:

1. Authenticate to Kerberos with the user principal name (UPN) and its password to obtain a ticket-
granting ticket (TGT).

2. Use the TGT to obtain a service ticket (ST) for MySQL.

3. Authenticate to the MySQL server by presenting the MySQL ST.

The first step (authenticating to Kerberos) can be performed various ways:

• Prior to connecting to MySQL:

• On Linux or on Windows in GSSAPI mode, invoke kinit to obtain the TGT and save it in the
Kerberos credentials cache.

• On Windows in SSPI mode, authentication may already have been done at login time, which
saves the TGT for the logged-in user in the Windows in-memory cache. kinit is not used and
there is no Kerberos cache.

• When connecting to MySQL, the client program itself can obtain the TGT, if it can determine the
required Kerberos UPN and password:

• That information can come from sources such as command options or the operating system.

• On Linux, clients also can use a keytab file or the /etc/krb5.conf configuration file. Windows
clients in GSSAPI mode use a configuration file. Windows clients in SSPI mode use neither.

Details of the client commands for connecting to the MySQL server differ for Linux and Windows, so
each host type is discussed separately, but these command properties apply regardless of host type:

• Each command shown includes the following options, but each one may be omitted under certain
conditions:

• The --default-auth option specifies the name of the client-side authentication plugin
(authentication_kerberos_client). This option may be omitted when the --user option is
specified because in that case MySQL can determine the plugin from the user account information
sent by MySQL server.

• The --plugin-dir option indicates to the client program the location of the
authentication_kerberos_client plugin. This option may be omitted if the plugin is
installed in the default (compiled-in) location.

• Commands should also include any other options such as --host or --port that are required to
specify which MySQL server to connect to.

• Enter each command on a single line. If the command includes a --password option to solicit
a password, enter the password of the Kerberos UPN associated with the MySQL user when
prompted.

Connection Commands for Linux Clients

217

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_default-auth
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_user
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_host
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_port
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password

Kerberos Pluggable Authentication

On Linux, the appropriate client command for connecting to the MySQL server varies depending on
whether the command authenticates using a TGT from the Kerberos cache, or based on command
options for the MySQL user name and the UPN password:

• Prior to invoking the MySQL client program, the client user can obtain a TGT from the KDC
independently of MySQL. For example, the client user can use kinit to authenticate to Kerberos by
providing a Kerberos user principal name and the principal password:

$> kinit karl@MYSQL.LOCAL
Password for karl@MYSQL.LOCAL: (enter password here)

The resulting TGT for the UPN is cached and becomes available for use by other Kerberos-aware
applications, such as programs that use the client-side Kerberos authentication plugin. In this case,
invoke the client without specifying a user-name or password option:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory

The client-side plugin finds the TGT in the cache, uses it to obtain a MySQL ST, and uses the ST to
authenticate to the MySQL server.

As just described, when the TGT for the UPN is cached, user-name and password options are not
needed in the client command. If the command includes them anyway, they are handled as follows:

• This command includes a user-name option:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl

In this case, authentication fails if the user name specified by the option does not match the user
name part of the UPN in the TGT.

• This command includes a password option, which you enter when prompted:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --password

In this case, the client-side plugin ignores the password. Because authentication is based on the
TGT, it can succeed even if the user-provided password is incorrect. For this reason, the plugin
produces a warning if a valid TGT is found that causes a password to be ignored.

• If the Kerberos cache contains no TGT, the client-side Kerberos authentication plugin itself can
obtain the TGT from the KDC. Invoke the client with options for the MySQL user name and the
password, then enter the UPN password when prompted:

mysql --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl
 --password

The client-side Kerberos authentication plugin combines the user name (karl) and the realm
specified in the user account (MYSQL.LOCAL) to construct the UPN (karl@MYSQL.LOCAL). The
client-side plugin uses the UPN and password to obtain a TGT, uses the TGT to obtain a MySQL ST,
and uses the ST to authenticate to the MySQL server.

Or, suppose that the Kerberos cache contains no TGT and the command specifies a password
option but no user-name option:

mysql --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory

218

Kerberos Pluggable Authentication

 --password

The client-side Kerberos authentication plugin uses the operating system login name as the MySQL
user name. It combines that user name and the realm in the user's MySQL account to construct the
UPN. The client-side plugin uses the UPN and the password to obtain a TGT, uses the TGT to obtain
a MySQL ST, and uses the ST to authenticate to the MySQL server.

If you are uncertain whether a TGT exists, you can use klist to check.

Note

When the client-side Kerberos authentication plugin itself obtains the TGT,
the client user may not want the TGT to be reused. As described in Client
Configuration Parameters for Kerberos Authentication, the local /etc/
krb5.conf file can be used to cause the client-side plugin to destroy the TGT
when done with it.

Connection Commands for Windows Clients in SSPI Mode

On Windows, using the default client-side plugin option (SSPI), the appropriate client command for
connecting to the MySQL server varies depending on whether the command authenticates based
on command options for the MySQL user name and the UPN password, or instead uses a TGT from
the Windows in-memory cache. For details about GSSAPI mode on Windows, see Commands for
Windows Clients in GSSAPI Mode.

A command can explicitly specify options for the MySQL user name and the UPN password, or the
command can omit those options:

• This command includes options for the MySQL user name and UPN password:

mysql --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl
 --password

The client-side Kerberos authentication plugin combines the user name (karl) and the realm
specified in the user account (MYSQL.LOCAL) to construct the UPN (karl@MYSQL.LOCAL). The
client-side plugin uses the UPN and password to obtain a TGT, uses the TGT to obtain a MySQL ST,
and uses the ST to authenticate to the MySQL server.

Any information in the Windows in-memory cache is ignored; the user-name and password option
values take precedence.

• This command includes an option for the UPN password but not for the MySQL user name:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --password

The client-side Kerberos authentication plugin uses the logged-in user name as the MySQL user
name and combines that user name and the realm in the user's MySQL account to construct the
UPN. The client-side plugin uses the UPN and the password to obtain a TGT, uses the TGT to obtain
a MySQL ST, and uses the ST to authenticate to the MySQL server.

• This command includes no options for the MySQL user name or UPN password:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory

The client-side plugin obtains the TGT from the Windows in-memory cache, uses the TGT to obtain a
MySQL ST, and uses the ST to authenticate to the MySQL server.

219

Kerberos Pluggable Authentication

This approach requires the client host to be part of the Windows Server Active Directory (AD)
domain. If that is not the case, help the MySQL client discover the IP address for the AD domain by
manually entering the AD server and realm as the DNS server and prefix:

1. Start console.exe and select Network and Sharing Center.

2. From the sidebar of the Network and Sharing Center window, select Change adapter settings.

3. In the Network Connections window, right-click the network or VPN connection to configure and
select Properties.

4. From the Network tab, locate and click Internet Protocol Version 4 (TCP/IPv4), and then click
Properties.

5. Click Advanced in the Internet Protocol Version 4 (TCP/IPv4) Properties dialog. The Advanced
TCP/IP Settings dialog opens.

6. From the DNS tab, add the Active Directory server and realm as a DNS server and prefix.

• This command includes an option for the MySQL user name but not for the UPN password:

mysql
 --default-auth=authentication_kerberos_client
 --plugin-dir=path/to/plugin/directory
 --user=karl

The client-side Kerberos authentication plugin compares the name specified by the user-name option
against the logged-in user name. If the names are the same, the plugin uses the logged-in user TGT
for authentication. If the names differ, authentication fails.

Connection Commands for Windows Clients in GSSAPI Mode

On Windows, the client user must specify GSSAPI mode explicitly using the
plugin_authentication_kerberos_client_mode plugin option to enable support through the
MIT Kerberos library. The default mode is SSPI (see Commands for Windows Clients in SSPI Mode).

It is possible to specify GSSAPI mode:

• Prior to invoking the MySQL client program in an option file. The plugin variable name is valid using
either underscores or dashes:

[mysql]
plugin_authentication_kerberos_client_mode=GSSAPI

Or:

[mysql]
plugin-authentication-kerberos-client-mode=GSSAPI

• At runtime from the command line using the mysql or mysqldump client programs. For example, the
following commands (with underscores or dashes) causes mysql to connect to the server through
the MIT Kerberos library on Windows.

mysql [connection-options] --plugin_authentication_kerberos_client_mode=GSSAPI

Or:

mysql [connection-options] --plugin-authentication-kerberos-client-mode=GSSAPI

• Client users can select GSSAPI mode from MySQL Workbench and some MySQL connectors. On
client hosts running Windows, you can override the default location of:

• The Kerberos configuration file by setting the KRB5_CONFIG environment variable.

220

Kerberos Pluggable Authentication

• The default credential cache name with the KRB5CCNAME environment variable (for example,
KRB5CCNAME=DIR:/mydir/).

For specific client-side plugin information, see the documentation at https://dev.mysql.com/doc/.

The appropriate client command for connecting to the MySQL server varies depending on whether the
command authenticates using a TGT from the MIT Kerberos cache, or based on command options for
the MySQL user name and the UPN password. GSSAPI support through the MIT library on Windows is
similar to GSSAPI on Linux (see Commands for Linux Clients), with the following exceptions:

• Tickets are always retrieved from or placed into the MIT Kerberos cache on hosts running Windows.

• kinit runs with Functional Accounts on Windows that have narrow permissions and specific roles.
The client user does not know the kinit password. For an overview, see https://docs.oracle.com/
en/java/javase/11/tools/kinit.html.

• If the client user supplies a password, the MIT Kerberos library on Windows decides whether to use
it or rely on the existing ticket.

• The destroy_tickets parameter, described in Client Configuration Parameters for Kerberos
Authentication, is not supported because the MIT Kerberos library on Windows does not support the
required API member (get_profile_boolean) to read its value from configuration file.

Client Configuration Parameters for Kerberos Authentication

This section applies only for client hosts running Linux, not client hosts running Windows.

Note

A client host running Windows with the authentication_kerberos_client
client-side Kerberos plugin set to GSSAPI mode does support client
configuration parameters, in general, but the MIT Kerberos library on Windows
does not support the destroy_tickets parameter described in this section.

If no valid ticket-granting ticket (TGT) exists at the time of MySQL client application invocation, the
application itself may obtain and cache the TGT. If during the Kerberos authentication process the
client application causes a TGT to be cached, any such TGT that was added can be destroyed after it
is no longer needed, by setting the appropriate configuration parameter.

The authentication_kerberos_client client-side Kerberos plugin reads the local /etc/
krb5.conf file. If this file is missing or inaccessible, an error occurs. Assuming that the file is
accessible, it can include an optional [appdefaults] section to provide information used by the
plugin. Place the information within the mysql part of the section. For example:

[appdefaults]
 mysql = {
 destroy_tickets = true
 }

The client-side plugin recognizes these parameters in the mysql section:

• The destroy_tickets value indicates whether the client-side plugin destroys the TGT after
obtaining and using it. By default, destroy_tickets is false, but can be set to true to avoid
TGT reuse. (This setting applies only to TGTs created by the client-side plugin, not TGTs created by
other plugins or externally to MySQL.)

On the client host, a client keytab file may be used to obtain a TGT and TS without supplying a
password. For information about keytab files, see https://web.mit.edu/kerberos/krb5-latest/doc/basic/
keytab_def.html.

221

https://dev.mysql.com/doc/
https://docs.oracle.com/en/java/javase/11/tools/kinit.html
https://docs.oracle.com/en/java/javase/11/tools/kinit.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html

No-Login Pluggable Authentication

Kerberos Authentication Debugging

The AUTHENTICATION_KERBEROS_CLIENT_LOG environment variable enables or disables debug
output for Kerberos authentication.

Note

Despite CLIENT in the name AUTHENTICATION_KERBEROS_CLIENT_LOG,
the same environment variable applies to the server-side plugin as well as the
client-side plugin.

On the server side, the permitted values are 0 (off) and 1 (on). Log messages are written to the server
error log, subject to the server error-logging verbosity level. For example, if you are using priority-based
log filtering, the log_error_verbosity system variable controls verbosity, as described in Priority-
Based Error Log Filtering (log_filter_internal).

On the client side, the permitted values are from 1 to 5 and are written to the standard error output. The
following table shows the meaning of each log-level value.

Log Level Meaning

1 or not set No logging

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Error, warning, information, and debug messages

6.1.9 No-Login Pluggable Authentication

The mysql_no_login server-side authentication plugin prevents all client connections to any account
that uses it. Use cases for this plugin include:

• Accounts that must be able to execute stored programs and views with elevated privileges without
exposing those privileges to ordinary users.

• Proxied accounts that should never permit direct login but are intended to be accessed only through
proxy accounts.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable.

Table 6.10 Plugin and Library Names for No-Login Authentication

Plugin or File Plugin or File Name

Server-side plugin mysql_no_login

Client-side plugin None

Library file mysql_no_login.so

The following sections provide installation and usage information specific to no-login pluggable
authentication:

• Installing No-Login Pluggable Authentication

• Uninstalling No-Login Pluggable Authentication

• Using No-Login Pluggable Authentication

222

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity
https://dev.mysql.com/doc/refman/8.0/en/error-log-priority-based-filtering.html
https://dev.mysql.com/doc/refman/8.0/en/error-log-priority-based-filtering.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

No-Login Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”. For proxy user information, see Section 4.19, “Proxy Users”.

Installing No-Login Pluggable Authentication

This section describes how to install the no-login authentication plugin. For general information about
installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is mysql_no_login. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file
that contains it. With this plugin-loading method, the option must be given each time the server starts.
For example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=mysql_no_login.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN mysql_no_login SONAME 'mysql_no_login.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%login%';
+----------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------+---------------+
| mysql_no_login | ACTIVE |
+----------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the no-login plugin, see Using No-Login Pluggable Authentication.

Uninstalling No-Login Pluggable Authentication

The method used to uninstall the no-login authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN mysql_no_login;

223

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html

No-Login Pluggable Authentication

Using No-Login Pluggable Authentication

This section describes how to use the no-login authentication plugin to prevent accounts from being
used for connecting from MySQL client programs to the server. It is assumed that the server is running
with the no-login plugin enabled, as described in Installing No-Login Pluggable Authentication.

To refer to the no-login authentication plugin in the IDENTIFIED WITH clause of a CREATE USER
statement, use the name mysql_no_login.

An account that authenticates using mysql_no_login may be used as the DEFINER for stored
program and view objects. If such an object definition also includes SQL SECURITY DEFINER, it
executes with that account's privileges. DBAs can use this behavior to provide access to confidential or
sensitive data that is exposed only through well-controlled interfaces.

The following example illustrates these principles. It defines an account that does not permit client
connections, and associates with it a view that exposes only certain columns of the mysql.user
system table:

CREATE DATABASE nologindb;
CREATE USER 'nologin'@'localhost'
 IDENTIFIED WITH mysql_no_login;
GRANT ALL ON nologindb.*
 TO 'nologin'@'localhost';
GRANT SELECT ON mysql.user
 TO 'nologin'@'localhost';
CREATE DEFINER = 'nologin'@'localhost'
 SQL SECURITY DEFINER
 VIEW nologindb.myview
 AS SELECT User, Host FROM mysql.user;

To provide protected access to the view to an ordinary user, do this:

GRANT SELECT ON nologindb.myview
 TO 'ordinaryuser'@'localhost';

Now the ordinary user can use the view to access the limited information it presents:

SELECT * FROM nologindb.myview;

Attempts by the user to access columns other than those exposed by the view result in an error, as do
attempts to select from the view by users not granted access to it.

Note

Because the nologin account cannot be used directly, the operations required
to set up objects that it uses must be performed by root or similar account that
has the privileges required to create the objects and set DEFINER values.

The mysql_no_login plugin is also useful in proxying scenarios. (For a discussion of concepts
involved in proxying, see Section 4.19, “Proxy Users”.) An account that authenticates using
mysql_no_login may be used as a proxied user for proxy accounts:

-- create proxied account
CREATE USER 'proxied_user'@'localhost'
 IDENTIFIED WITH mysql_no_login;
-- grant privileges to proxied account
GRANT ...
 ON ...
 TO 'proxied_user'@'localhost';
-- permit proxy_user to be a proxy account for proxied account
GRANT PROXY
 ON 'proxied_user'@'localhost'
 TO 'proxy_user'@'localhost';

This enables clients to access MySQL through the proxy account (proxy_user) but not to bypass the
proxy mechanism by connecting directly as the proxied user (proxied_user). A client who connects

224

https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Socket Peer-Credential Pluggable Authentication

using the proxy_user account has the privileges of the proxied_user account, but proxied_user
itself cannot be used to connect.

For alternative methods of protecting proxied accounts against direct use, see Preventing Direct Login
to Proxied Accounts.

6.1.10 Socket Peer-Credential Pluggable Authentication

The server-side auth_socket authentication plugin authenticates clients that connect from the
local host through the Unix socket file. The plugin uses the SO_PEERCRED socket option to obtain
information about the user running the client program. Thus, the plugin can be used only on systems
that support the SO_PEERCRED option, such as Linux.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file must be located in the directory
named by the plugin_dir system variable.

Table 6.11 Plugin and Library Names for Socket Peer-Credential Authentication

Plugin or File Plugin or File Name

Server-side plugin auth_socket

Client-side plugin None, see discussion

Library file auth_socket.so

The following sections provide installation and usage information specific to socket pluggable
authentication:

• Installing Socket Pluggable Authentication

• Uninstalling Socket Pluggable Authentication

• Using Socket Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Installing Socket Pluggable Authentication

This section describes how to install the socket authentication plugin. For general information about
installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=auth_socket.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

225

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add

Socket Peer-Credential Pluggable Authentication

INSTALL PLUGIN auth_socket SONAME 'auth_socket.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%socket%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| auth_socket | ACTIVE |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the socket plugin, see Using Socket Pluggable Authentication.

Uninstalling Socket Pluggable Authentication

The method used to uninstall the socket authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN auth_socket;

Using Socket Pluggable Authentication

The socket plugin checks whether the socket user name (the operating system user name)
matches the MySQL user name specified by the client program to the server. If the names do
not match, the plugin checks whether the socket user name matches the name specified in the
authentication_string column of the mysql.user system table row. If a match is found, the
plugin permits the connection. The authentication_string value can be specified using an
IDENTIFIED ...AS clause with CREATE USER or ALTER USER.

Suppose that a MySQL account is created for an operating system user named valerie who is to be
authenticated by the auth_socket plugin for connections from the local host through the socket file:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;

If a user on the local host with a login name of stefanie invokes mysql with the option --
user=valerie to connect through the socket file, the server uses auth_socket to authenticate the
client. The plugin determines that the --user option value (valerie) differs from the client user's
name (stephanie) and refuses the connection. If a user named valerie tries the same thing,
the plugin finds that the user name and the MySQL user name are both valerie and permits the
connection. However, the plugin refuses the connection even for valerie if the connection is made
using a different protocol, such as TCP/IP.

To permit both the valerie and stephanie operating system users to access MySQL through
socket file connections that use the account, this can be done two ways:

• Name both users at account-creation time, one following CREATE USER, and the other in the
authentication string:

226

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

FIDO Pluggable Authentication

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket AS 'stephanie';

• If you have already used CREATE USER to create the account for a single user, use ALTER USER to
add the second user:

CREATE USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket;
ALTER USER 'valerie'@'localhost' IDENTIFIED WITH auth_socket AS 'stephanie';

To access the account, both valerie and stephanie specify --user=valerie at connect time.

6.1.11 FIDO Pluggable Authentication

Note

FIDO pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables users to authenticate to
MySQL Server using FIDO authentication. This authentication method is deprecated as of MySQL
8.0.35 and is subject to removal in a future MySQL release. For similar capabilities, consider
upgrading to MySQL 8.2 (or higher) where users can authenticate to MySQL Server using WebAuthn
authentication. You need to understand the release model for MySQL innovation and long-term support
(LTS) versions before you proceed with an upgrade. For more information, see Upgrade Paths.

FIDO stands for Fast Identity Online, which provides standards for authentication that does not require
use of passwords.

FIDO pluggable authentication provides these capabilities:

• FIDO enables authentication to MySQL Server using devices such as smart cards, security keys,
and biometric readers.

• Because authentication can occur other than by providing a password, FIDO enables passwordless
authentication.

• On the other hand, device authentication is often used in conjunction with password authentication,
so FIDO authentication can be used to good effect for MySQL accounts that use multifactor
authentication; see Section 4.18, “Multifactor Authentication”.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. Common suffixes are .so for Unix and Unix-like systems, and .dll for Windows. The
file must be located in the directory named by the plugin_dir system variable. For installation
information, see Installing FIDO Pluggable Authentication.

Table 6.12 Plugin and Library Names for FIDO Authentication

Plugin or File Plugin or File Name

Server-side plugin authentication_fido

Client-side plugin authentication_fido_client

Library file authentication_fido.so,
authentication_fido_client.so

Note

A libfido2 library must be available on systems where either the server-side
or client-side FIDO authentication plugin is used. If a host machine has more
than one FIDO device, the libfido2 library decides which device to use for

227

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.2/en/webauthn-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-paths.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

FIDO Pluggable Authentication

registration and authentication. The libfido2 library does not provide a facility
for device selection.

The server-side FIDO authentication plugin is included only in MySQL Enterprise Edition. It is not
included in MySQL community distributions. The client-side plugin is included in all distributions,
including community distributions, which enables clients from any distribution to connect to a server
that has the server-side plugin loaded.

The following sections provide installation and usage information specific to FIDO pluggable
authentication:

• Installing FIDO Pluggable Authentication

• Using FIDO Authentication

• FIDO Passwordless Authentication

• FIDO Device Unregistration

• How FIDO Authentication of MySQL Users Works

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Installing FIDO Pluggable Authentication

This section describes how to install the server-side FIDO authentication plugin. For general
information about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The server-side plugin library file base name is authentication_fido. The file name suffix differs
per platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin at server startup, use the --plugin-load-add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts.

To load the plugin, put a line such as this in your my.cnf file, adjusting the .so suffix for your platform
as necessary:

[mysqld]
plugin-load-add=authentication_fido.so

After modifying my.cnf, restart the server to cause the new setting to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN authentication_fido
 SONAME 'authentication_fido.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS

228

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

FIDO Pluggable Authentication

 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME = 'authentication_fido';
+---------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+---------------------+---------------+
| authentication_fido | ACTIVE |
+---------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the FIDO authentication plugin, see Using FIDO Authentication.

Using FIDO Authentication

FIDO authentication typically is used in the context of multifactor authentication (see Section 4.18,
“Multifactor Authentication”). This section shows how to incorporate FIDO device-based authentication
into a multifactor account, using the authentication_fido plugin.

It is assumed in the following discussion that the server is running with the server-side FIDO
authentication plugin enabled, as described in Installing FIDO Pluggable Authentication, and that the
client-side FIDO plugin is available in the plugin directory on the client host.

Note

On Windows, FIDO authentication only functions if the client process runs as a
user with administrator privileges.

It is also assumed that FIDO authentication is used in conjunction with non-FIDO authentication
(which implies a 2FA or 3FA account). FIDO can also be used by itself to create 1FA accounts
that authenticate in a passwordless manner. In this case, the setup process differs somewhat. For
instructions, see FIDO Passwordless Authentication.

An account that is configured to use the authentication_fido plugin is associated with a FIDO
device. Because of this, a one-time device registration step is required before FIDO authentication can
occur. The device registration process has these characteristics:

• Any FIDO device associated with an account must be registered before the account can be used.

• Registration requires that a FIDO device be available on the client host, or registration fails.

• The user is expected to perform the appropriate FIDO device action when prompted during
registration (for example, touching the device or performing a biometric scan).

• To perform device registration, the client user must invoke the mysql client program or MySQL
Shell and specify the --fido-register-factor option to specify the factor or factors for
which a device is being registered. For example, if the account is set to use FIDO as the second
authentication factor, the user invokes mysql with the --fido-register-factor=2 option.

• If the user account is configured with the authentication_fido plugin set as the second or third
factor, authentication for all preceding factors must succeed before the registration step can proceed.

• The server knows from the information in the user account whether the FIDO device requires
registration or has already been registered. When the client program connects, the server places
the client session in sandbox mode if the device must be registered, so that registration must occur
before anything else can be done. Sandbox mode used for FIDO device registration is similar to that
used for handling of expired passwords. See Section 4.16, “Server Handling of Expired Passwords”.

• In sandbox mode, no statements other than ALTER USER are permitted. Registration is performed
using forms of this statement. When invoked with the --fido-register-factor option,
the mysql client generates the ALTER USER statements required to perform registration. After
registration has been accomplished, the server switches the session out of sandbox mode, and the

229

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_fido-register-factor
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_fido-register-factor
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_fido-register-factor
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html

FIDO Pluggable Authentication

client can proceed normally. For information about the generated ALTER USER statements, refer to
the --fido-register-factor description.

• When device registration has been performed for the account, the server updates the mysql.user
system table row for that account to update the device registration status and to store the public key
and credential ID.

• The registration step can be performed only by the user named by the account. If one user attempts
to perform registration for another user, an error occurs.

• The user should use the same FIDO device during registration and authentication. If, after registering
a FIDO device on the client host, the device is reset or a different device is inserted, authentication
fails. In this case, the device associated with the account must be unregistered and registration must
be done again.

Suppose that you want an account to authenticate first using the caching_sha2_password plugin,
then using the authentication_fido plugin. Create a multifactor account using a statement like
this:

CREATE USER 'u2'@'localhost'
 IDENTIFIED WITH caching_sha2_password
 BY 'sha2_password'
 AND IDENTIFIED WITH authentication_fido;

To connect, supply the factor 1 password to satisfy authentication for that factor, and to initiate
registration of the FIDO device, set the --fido-register-factor to factor 2.

$> mysql --user=u2 --password1 --fido-register-factor=2
Enter password: (enter factor 1 password)

Once the factor 1 password is accepted, the client session enters sandbox mode so that device
registration can be performed for factor 2. During registration, you are prompted to perform the
appropriate FIDO device action, such as touching the device or performing a biometric scan.

When the registration process is complete, the connection to the server is permitted.

Note

The connection to the server is permitted following registration regardless of
additional authentication factors in the account's authentication chain. For
example, if the account in the preceding example was defined with a third
authentication factor (using non-FIDO authentication), the connection would be
permitted after a successful registration without authenticating the third factor.
However, subsequent connections would require authenticating all three factors.

FIDO Passwordless Authentication

This section describes how FIDO can be used by itself to create 1FA accounts that authenticate in
a passwordless manner. In this context, “passwordless” means that authentication occurs but uses
a method other than a password, such as a security key or biometric scan. It does not refer to an
account that uses a password-based authentication plugin for which the password is empty. That kind
of “passwordless” is completely insecure and is not recommended.

The following prerequisites apply when using the authentication_fido plugin to achieve
passwordless authentication:

• The user that creates a passwordless-authentication account requires the
PASSWORDLESS_USER_ADMIN privilege in addition to the CREATE USER privilege.

• The first element of the authentication_policy value must be an asterisk (*) and not a plugin
name. For example, the default authentication_policy value supports enabling passwordless
authentication because the first element is an asterisk:

230

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_fido-register-factor
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_fido-register-factor
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy

FIDO Pluggable Authentication

authentication_policy='*,,'

For information about configuring the authentication_policy value, see Configuring the
Multifactor Authentication Policy.

To use authentication_fido as a passwordless authentication method, the account must be
created with authentication_fido as the first factor authentication method. The INITIAL
AUTHENTICATION IDENTIFIED BY clause must also be specified for the first factor (it is not
supported with 2nd or 3rd factors). This clause specifies whether a randomly generated or user-
specified password will be used for FIDO device registration. After device registration, the server
deletes the password and modifies the account to make authentication_fido the sole
authentication method (the 1FA method).

The required CREATE USER syntax is as follows:

CREATE USER user
 IDENTIFIED WITH authentication_fido
 INITIAL AUTHENTICATION IDENTIFIED BY {RANDOM PASSWORD | 'auth_string'};

The following example uses the RANDOM PASSWORD syntax:

mysql> CREATE USER 'u1'@'localhost'
 IDENTIFIED WITH authentication_fido
 INITIAL AUTHENTICATION IDENTIFIED BY RANDOM PASSWORD;
+------+-----------+----------------------+-------------+
| user | host | generated password | auth_factor |
+------+-----------+----------------------+-------------+
| u1 | localhost | 9XHK]M{l2rnD;VXyHzeF | 1 |
+------+-----------+----------------------+-------------+

To perform registration, the user must authenticate to the server with the password associated with the
INITIAL AUTHENTICATION IDENTIFIED BY clause, either the randomly generated password, or
the 'auth_string' value. If the account was created as just shown, the user executes this command
and pastes in the preceding randomly generated password (9XHK]M{l2rnD;VXyHzeF) at the prompt:

$> mysql --user=u1 --password --fido-register-factor=2
Enter password:

The option --fido-register-factor=2 is used because the INITIAL AUTHENTICATION
IDENTIFIED BY clause is currently acting as the first factor authentication method. The user must
therefore provide the temporary password by using the second factor. On a successful registration,
the server removes the temporary password and revises the account entry in the mysql.user system
table to list authentication_fido as the sole (1FA) authentication method.

When creating a passwordless-authentication account, it is important to include the INITIAL
AUTHENTICATION IDENTIFIED BY clause in the CREATE USER statement. The server will accept a
statement without the clause, but the resulting account is unusable because there is no way to connect
to the server to register the device. Suppose that you execute a statement like this:

CREATE USER 'u2'@'localhost'
 IDENTIFIED WITH authentication_fido;

Subsequent attempts to use the account to connect fail like this:

$> mysql --user=u2 --skip-password
Failed to open FIDO device.
ERROR 1 (HY000): Unknown MySQL error

Note

Passwordless authentication is achieved using the Universal 2nd Factor (U2F)
protocol, which does not support additional security measures such as setting a

231

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

FIDO Pluggable Authentication

PIN on the device to be registered. It is therefore the responsibility of the device
holder to ensure the device is handled in a secure manner.

FIDO Device Unregistration

It is possible to unregister FIDO devices associated with a MySQL account. This might be desirable or
necessary under multiple circumstances:

• A FIDO device is to be replaced with a different device. The previous device must be unregistered
and the new device registered.

In this case, the account owner or any user who has the CREATE USER privilege can unregister the
device. The account owner can register the new device.

• A FIDO device is reset or lost. Authentication attempts will fail until the current device is unregistered
and a new registration is performed.

In this case, the account owner, being unable to authenticate, cannot unregister the current device
and must contact the DBA (or any user who has the CREATE USER privilege) to do so. Then the
account owner can reregister the reset device or register a new device.

Unregistering a FIDO device can be done by the account owner or by any user who has the CREATE
USER privilege. Use this syntax:

ALTER USER user {2 | 3} FACTOR UNREGISTER;

To re-register a device or perform a new registration, refer to the instructions in Using FIDO
Authentication.

How FIDO Authentication of MySQL Users Works

This section provides an overview of how MySQL and FIDO work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use the FIDO authentication plugins,
see Using FIDO Authentication.

An account that uses FIDO authentication must perform an initial device registration step before it can
connect to the server. After the device has been registered, authentication can proceed. FIDO device
registration process is as follows:

1. The server sends a random challenge, user ID, and relying party ID (which uniquely identifies a
server) to the client. The relying party ID is defined by the authentication_fido_rp_id system
variable. The default value is MySQL.

2. The client receives that information and sends it to the client-side FIDO authentication plugin, which
in turn provides it to the FIDO device.

3. After the user has performed the appropriate device action (for example, touching the device or
performing a biometric scan) the FIDO device generates a public/private key pair, a key handle, an
X.509 certificate, and a signature, which is returned to the server.

4. The server-side FIDO authentication plugin verifies the signature. Upon successful verification, the
server stores the credential ID and public key in the mysql.user system table.

After registration has been performed successfully, FIDO authentication follows this process:

1. The server sends a random challenge, user ID, relying party ID and credentials to the client.

2. The client sends the same information to the FIDO device.

3. The FIDO device prompts the user to perform the appropriate device action, based on the selection
made during registration.

232

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html

Test Pluggable Authentication

4. This action unlocks the private key and the challenge is signed.

5. This signed challenge is returned to the server.

6. The server-side FIDO authentication plugin verifies the signature with the public key and responds
to indicate authentication success or failure.

6.1.12 Test Pluggable Authentication

MySQL includes a test plugin that checks account credentials and logs success or failure to the server
error log. This is a loadable plugin (not built in) and must be installed prior to use.

The test plugin source code is separate from the server source, unlike the built-in native plugin, so it
can be examined as a relatively simple example demonstrating how to write a loadable authentication
plugin.

Note

This plugin is intended for testing and development purposes, and is not for use
in production environments or on servers that are exposed to public networks.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the plugin_dir system variable.

Table 6.13 Plugin and Library Names for Test Authentication

Plugin or File Plugin or File Name

Server-side plugin test_plugin_server

Client-side plugin auth_test_plugin

Library file auth_test_plugin.so

The following sections provide installation and usage information specific to test pluggable
authentication:

• Installing Test Pluggable Authentication

• Uninstalling Test Pluggable Authentication

• Using Test Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.17, “Pluggable
Authentication”.

Installing Test Pluggable Authentication

This section describes how to install the server-side test authentication plugin. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To load the plugin at server startup, use the --plugin-load-add option to name the library file
that contains it. With this plugin-loading method, the option must be given each time the server starts.
For example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=auth_test_plugin.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

233

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add

Test Pluggable Authentication

Alternatively, to load the plugin at runtime, use this statement, adjusting the .so suffix for your platform
as necessary:

INSTALL PLUGIN test_plugin_server SONAME 'auth_test_plugin.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%test_plugin%';
+--------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------------+---------------+
| test_plugin_server | ACTIVE |
+--------------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the test plugin, see Using Test Pluggable Authentication.

Uninstalling Test Pluggable Authentication

The method used to uninstall the test authentication plugin depends on how you installed it:

• If you installed the plugin at server startup using a --plugin-load-add option, restart the server
without the option.

• If you installed the plugin at runtime using an INSTALL PLUGIN statement, it remains installed
across server restarts. To uninstall it, use UNINSTALL PLUGIN:

UNINSTALL PLUGIN test_plugin_server;

Using Test Pluggable Authentication

To use the test authentication plugin, create an account and name that plugin in the IDENTIFIED
WITH clause:

CREATE USER 'testuser'@'localhost'
IDENTIFIED WITH test_plugin_server
BY 'testpassword';

The test authentication plugin also requires creating a proxy user as follows:

CREATE USER testpassword@localhost;
GRANT PROXY ON testpassword@localhost TO testuser@localhost;

Then provide the --user and --password options for that account when you connect to the server.
For example:

$> mysql --user=testuser --password
Enter password: testpassword

The plugin fetches the password as received from the client and compares it with the value stored in
the authentication_string column of the account row in the mysql.user system table. If the two
values match, the plugin returns the authentication_string value as the new effective user ID.

You can look in the server error log for a message indicating whether authentication succeeded (notice
that the password is reported as the “user”):

[Note] Plugin test_plugin_server reported:

234

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_user
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_password

Pluggable Authentication System Variables

'successfully authenticated user testpassword'

6.1.13 Pluggable Authentication System Variables

These variables are unavailable unless the appropriate server-side plugin is installed:

• authentication_ldap_sasl for system variables with names of the form
authentication_ldap_sasl_xxx

• authentication_ldap_simple for system variables with names of the form
authentication_ldap_simple_xxx

Table 6.14 Authentication Plugin System Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_fido_rp_idYes Yes Yes Global Yes

authentication_kerberos_service_key_tabYes Yes Yes Global No

authentication_kerberos_service_principalYes Yes Yes Global Yes

authentication_ldap_sasl_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_sasl_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_sasl_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_sasl_ca_pathYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_attrYes Yes Yes Global Yes

authentication_ldap_sasl_group_search_filterYes Yes Yes Global Yes

authentication_ldap_sasl_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_log_statusYes Yes Yes Global Yes

authentication_ldap_sasl_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_sasl_referralYes Yes Yes Global Yes

authentication_ldap_sasl_server_hostYes Yes Yes Global Yes

authentication_ldap_sasl_server_portYes Yes Yes Global Yes

authentication_ldap_sasl_tlsYes Yes Yes Global Yes

authentication_ldap_sasl_user_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_auth_method_nameYes Yes Yes Global Yes

authentication_ldap_simple_bind_base_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_dnYes Yes Yes Global Yes

authentication_ldap_simple_bind_root_pwdYes Yes Yes Global Yes

authentication_ldap_simple_ca_pathYes Yes Yes Global Yes

authentication_ldap_simple_group_search_attrYes Yes Yes Global Yes

authentication_ldap_simple_group_search_filterYes Yes Yes Global Yes

authentication_ldap_simple_init_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_log_statusYes Yes Yes Global Yes

authentication_ldap_simple_max_pool_sizeYes Yes Yes Global Yes

authentication_ldap_simple_referralYes Yes Yes Global Yes

authentication_ldap_simple_server_hostYes Yes Yes Global Yes

authentication_ldap_simple_server_portYes Yes Yes Global Yes

authentication_ldap_simple_tlsYes Yes Yes Global Yes

235

Pluggable Authentication System Variables

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

authentication_ldap_simple_user_search_attrYes Yes Yes Global Yes

authentication_policyYes Yes Yes Global Yes

authentication_windows_log_levelYes Yes Yes Global No

authentication_windows_use_principal_nameYes Yes Yes Global No

• authentication_fido_rp_id

Command-Line Format --authentication-fido-rp-id=value

Introduced 8.0.27

Deprecated 8.0.35

System Variable authentication_fido_rp_id

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value MySQL

This variable specifies the relying party ID used for FIDO device registration and FIDO
authentication. If FIDO authentication is attempted and this value is not the one expected by the
FIDO device, the device assumes that it is not talking to the correct server and an error occurs. The
maximum value length is 255 characters.

Note

As of MySQL 8.0.35, this plugin variable is deprecated and subject to removal
in a future MySQL release.

• authentication_kerberos_service_key_tab

Command-Line Format --authentication-kerberos-service-
key-tab=file_name

Introduced 8.0.26

System Variable authentication_kerberos_service_key_tab

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value datadir/mysql.keytab

The name of the server-side key-table (“keytab”) file containing Kerberos service keys to
authenticate MySQL service tickets received from clients. The file name should be given as an
absolute path name. If this variable is not set, the default is mysql.keytab in the data directory.

The file must exist and contain a valid key for the service principal name (SPN) or authentication of
clients will fail. (The SPN and same key also must be created in the Kerberos server.) The file may
contain multiple service principal names and their respective key combinations.

The file must be generated by the Kerberos server administrator and be copied to a location
accessible by the MySQL server. The file can be validated to make sure that it is correct and was
copied properly using this command:

236

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_windows_log_level
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_windows_use_principal_name
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

klist -k file_name

For information about keytab files, see https://web.mit.edu/kerberos/krb5-latest/doc/basic/
keytab_def.html.

• authentication_kerberos_service_principal

Command-Line Format --authentication-kerberos-service-
principal=name

Introduced 8.0.26

System Variable authentication_kerberos_service_principal

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value mysql/host_name@realm_name

The Kerberos service principal name (SPN) that the MySQL server sends to clients.

The value is composed from the service name (mysql), a host name, and a realm name. The
default value is mysql/host_name@realm_name. The realm in the service principal name enables
retrieving the exact service key.

To use a nondefault value, set the value using the same format. For example,
to use a host name of krbauth.example.com and a realm of MYSQL.LOCAL,
set authentication_kerberos_service_principal to mysql/
krbauth.example.com@MYSQL.LOCAL.

The service principal name and service key must already be present in the database managed by
the KDC server.

There can be service principal names that differ only by realm name.

• authentication_ldap_sasl_auth_method_name

Command-Line Format --authentication-ldap-sasl-auth-
method-name=value

System Variable authentication_ldap_sasl_auth_method_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value SCRAM-SHA-1

Valid Values (≥ 8.0.23) SCRAM-SHA-1

SCRAM-SHA-256

GSSAPI

Valid Values (≥ 8.0.20, ≤ 8.0.22) SCRAM-SHA-1

GSSAPI

237

https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://web.mit.edu/kerberos/krb5-latest/doc/basic/keytab_def.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Valid Values (≤ 8.0.19) SCRAM-SHA-1

For SASL LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method to ensure
password security.

These authentication method values are permitted:

• SCRAM-SHA-1: Use a SASL challenge-response mechanism.

The client-side authentication_ldap_sasl_client plugin communicates with the SASL
server, using the password to create a challenge and obtain a SASL request buffer, then passes
this buffer to the server-side authentication_ldap_sasl plugin. The client-side and server-
side SASL LDAP plugins use SASL messages for secure transmission of credentials within the
LDAP protocol, to avoid sending the cleartext password between the MySQL client and server.

• SCRAM-SHA-256: Use a SASL challenge-response mechanism.

This method is similar to SCRAM-SHA-1, but is more secure. It is available in MySQL 8.0.23 and
higher. It requires an OpenLDAP server built using Cyrus SASL 2.1.27 or higher.

• GSSAPI: Use Kerberos, a passwordless and ticket-based protocol.

GSSAPI/Kerberos is supported as an authentication method for MySQL clients and servers only
on Linux. It is useful in Linux environments where applications access LDAP using Microsoft Active
Directory, which has Kerberos enabled by default.

The client-side authentication_ldap_sasl_client plugin obtains a service ticket using the
ticket-granting ticket (TGT) from Kerberos, but does not use LDAP services directly. The server-
side authentication_ldap_sasl plugin routes Kerberos messages between the client-side
plugin and the LDAP server. Using the credentials thus obtained, the server-side plugin then
communicates with the LDAP server to interpret LDAP authentication messages and retrieve
LDAP groups.

• authentication_ldap_sasl_bind_base_dn

Command-Line Format --authentication-ldap-sasl-bind-
base-dn=value

System Variable authentication_ldap_sasl_bind_base_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

238

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Default Value NULL

For SASL LDAP authentication, the base distinguished name (DN). This variable can be used to limit
the scope of searches by anchoring them at a certain location (the “base”) within the search tree.

Suppose that members of one set of LDAP user entries each have this form:

uid=user_name,ou=People,dc=example,dc=com

And that members of another set of LDAP user entries each have this form:

uid=user_name,ou=Admin,dc=example,dc=com

Then searches work like this for different base DN values:

• If the base DN is ou=People,dc=example,dc=com: Searches find user entries only in the first
set.

• If the base DN is ou=Admin,dc=example,dc=com: Searches find user entries only in the
second set.

• If the base DN is ou=dc=example,dc=com: Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search
scope more.

• authentication_ldap_sasl_bind_root_dn

Command-Line Format --authentication-ldap-sasl-bind-
root-dn=value

System Variable authentication_ldap_sasl_bind_root_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For SASL LDAP authentication, the root distinguished name (DN). This variable is used in
conjunction with authentication_ldap_sasl_bind_root_pwd as the credentials for
authenticating to the LDAP server for the purpose of performing searches. Authentication uses either
one or two LDAP bind operations, depending on whether the MySQL account names an LDAP user
DN:

• If the account does not name a user DN: authentication_ldap_sasl performs
an initial LDAP binding using authentication_ldap_sasl_bind_root_dn and
authentication_ldap_sasl_bind_root_pwd. (These are both empty by default, so
if they are not set, the LDAP server must permit anonymous connections.) The resulting
bind LDAP handle is used to search for the user DN, based on the client user name.
authentication_ldap_sasl performs a second bind using the user DN and client-supplied
password.

• If the account does name a user DN: The first bind operation is unnecessary in this case.
authentication_ldap_sasl performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

239

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

• authentication_ldap_sasl_bind_root_pwd

Command-Line Format --authentication-ldap-sasl-bind-
root-pwd=value

System Variable authentication_ldap_sasl_bind_root_pwd

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For SASL LDAP authentication, the password for the root distinguished name. This variable is used
in conjunction with authentication_ldap_sasl_bind_root_dn. See the description of that
variable.

• authentication_ldap_sasl_ca_path

Command-Line Format --authentication-ldap-sasl-ca-
path=value

System Variable authentication_ldap_sasl_ca_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For SASL LDAP authentication, the absolute path of the certificate authority file. Specify this file if it
is desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the authentication_ldap_sasl_ca_path variable
to the file name, you must add the appropriate certificate authority certificates
to the file and enable the authentication_ldap_sasl_tls system
variable. These variables can be set to override the default OpenLDAP TLS
configuration; see LDAP Pluggable Authentication and ldap.conf

• authentication_ldap_sasl_group_search_attr

Command-Line Format --authentication-ldap-sasl-group-
search-attr=value

System Variable authentication_ldap_sasl_group_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value cn

For SASL LDAP authentication, the name of the attribute that specifies group names in LDAP
directory entries. If authentication_ldap_sasl_group_search_attr has its default value of
cn, searches return the cn value as the group name. For example, if an LDAP entry with a uid value
of user1 has a cn attribute of mygroup, searches for user1 return mygroup as the group name.

240

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

This variable should be the empty string if you want no group or proxy authentication.

If the group search attribute is isMemberOf, LDAP authentication directly retrieves the user
attribute isMemberOf value and assigns it as group information. If the group search attribute is not
isMemberOf, LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two
ways: 1) A group entry can have an attribute named memberUid or member with a value that is a
user name; 2) A user entry can have an attribute named isMemberOf with values that are group
names.

• authentication_ldap_sasl_group_search_filter

Command-Line Format --authentication-ldap-sasl-group-
search-filter=value

System Variable authentication_ldap_sasl_group_search_filter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (|(&(objectClass=posixGroup)
(memberUid=%s))(&(objectClass=group)
(member=%s)))

For SASL LDAP authentication, the custom group search filter.

The search filter value can contain {UA} and {UD} notation to represent the user name and the
full user DN. For example, {UA} is replaced with a user name such as "admin", whereas {UD}
is replaced with a use full DN such as "uid=admin,ou=People,dc=example,dc=com". The
following value is the default, which supports both OpenLDAP and Active Directory:

(|(&(objectClass=posixGroup)(memberUid={UA}))
 (&(objectClass=group)(member={UD})))

In some cases for the user scenario, memberOf is a simple user attribute that holds no group
information. For additional flexibility, an optional {GA} prefix can be used with the group search
attribute. Any group attribute with a {GA} prefix is treated as a user attribute having group names. For
example, with a value of {GA}MemberOf, if the group value is the DN, the first attribute value from
the group DN is returned as the group name.

• authentication_ldap_sasl_init_pool_size

Command-Line Format --authentication-ldap-sasl-init-
pool-size=#

System Variable authentication_ldap_sasl_init_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 32767

241

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Unit connections

For SASL LDAP authentication, the initial size of the pool of connections to the LDAP server. Choose
the value for this variable based on the average number of concurrent authentication requests to the
LDAP server.

The plugin uses authentication_ldap_sasl_init_pool_size and
authentication_ldap_sasl_max_pool_size together for connection-pool management:

• When the authentication plugin initializes, it creates
authentication_ldap_sasl_init_pool_size connections, unless
authentication_ldap_sasl_max_pool_size=0 to disable pooling.

• If the plugin receives an authentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by authentication_ldap_sasl_max_pool_size.

• If the plugin receives a request when the pool size is already at its maximum and there are no free
connections, authentication fails.

• When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the
pool. For example, modifying the LDAP server host, port, or TLS settings does not affect existing
connections. However, if the original variable values were invalid and the connection pool could not
be initialized, the plugin attempts to reinitialize the pool for the next LDAP request. In this case, the
new system variable values are used for the reinitialization attempt.

If authentication_ldap_sasl_max_pool_size=0 to disable pooling, each LDAP connection
opened by the plugin uses the values the system variables have at that time.

• authentication_ldap_sasl_log_status

Command-Line Format --authentication-ldap-sasl-log-
status=#

System Variable authentication_ldap_sasl_log_status

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value (≥ 8.0.18) 6

Maximum Value (≤ 8.0.17) 5

For SASL LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 6.15 Log Levels for authentication_ldap_sasl_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages242

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Option Value Types of Messages Logged

4 Error, warning, and information messages

5 Same as previous level plus debugging
messages from MySQL

6 Same as previous level plus debugging
messages from LDAP library

Log level 6 is available as of MySQL 8.0.18.

On the client side, messages can be logged to the standard output by setting the
AUTHENTICATION_LDAP_CLIENT_LOG environment variable. The permitted and default values are
the same as for authentication_ldap_sasl_log_status.

The AUTHENTICATION_LDAP_CLIENT_LOG environment variable applies only to SASL LDAP
authentication. It has no effect for simple LDAP authentication because the client plugin in that case
is mysql_clear_password, which knows nothing about LDAP operations.

• authentication_ldap_sasl_max_pool_size

Command-Line Format --authentication-ldap-sasl-max-pool-
size=#

System Variable authentication_ldap_sasl_max_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 32767

Unit connections

For SASL LDAP authentication, the maximum size of the pool of connections to the LDAP server. To
disable connection pooling, set this variable to 0.

This variable is used in conjunction with authentication_ldap_sasl_init_pool_size. See
the description of that variable.

• authentication_ldap_sasl_referral

Command-Line Format --authentication-ldap-sasl-
referral[={OFF|ON}]

Introduced 8.0.20

System Variable authentication_ldap_sasl_referral

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

243

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Default Value OFF

For SASL LDAP authentication, whether to enable LDAP search referral. See LDAP Search Referral.

This variable can be set to override the default OpenLDAP referral configuration; see LDAP
Pluggable Authentication and ldap.conf

• authentication_ldap_sasl_server_host

Command-Line Format --authentication-ldap-sasl-server-
host=host_name

System Variable authentication_ldap_sasl_server_host

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

For SASL LDAP authentication, the LDAP server host. The permitted values for this variable depend
on the authentication method:

• For authentication_ldap_sasl_auth_method_name=SCRAM-SHA-1: The LDAP server
host can be a host name or IP address.

• For authentication_ldap_sasl_auth_method_name=SCRAM-SHA-256: The LDAP server
host can be a host name or IP address.

• authentication_ldap_sasl_server_port

Command-Line Format --authentication-ldap-sasl-server-
port=port_num

System Variable authentication_ldap_sasl_server_port

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 389

Minimum Value 1

Maximum Value 32376

For SASL LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 8.0.14, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from startTLS.)

• authentication_ldap_sasl_tls

Command-Line Format --authentication-ldap-sasl-
tls[={OFF|ON}]

System Variable authentication_ldap_sasl_tls

Scope Global

Dynamic Yes

SET_VAR Hint Applies No244

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Type Boolean

Default Value OFF

For SASL LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and ldap.conf If you enable this variable, you may also wish to set the
authentication_ldap_sasl_ca_path variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 8.0.14, LDAPS can be used by setting the
authentication_ldap_sasl_server_port system variable.

• authentication_ldap_sasl_user_search_attr

Command-Line Format --authentication-ldap-sasl-user-
search-attr=value

System Variable authentication_ldap_sasl_user_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value uid

For SASL LDAP authentication, the name of the attribute that specifies user
names in LDAP directory entries. If a user distinguished name is not provided, the
authentication plugin searches for the name using this attribute. For example, if the
authentication_ldap_sasl_user_search_attr value is uid, a search for the user name
user1 finds entries with a uid value of user1.

• authentication_ldap_simple_auth_method_name

Command-Line Format --authentication-ldap-simple-auth-
method-name=value

System Variable authentication_ldap_simple_auth_method_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value SIMPLE

Valid Values SIMPLE

AD-FOREST

For simple LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method.

Note

For all simple LDAP authentication methods, it is recommended to also set
TLS parameters to require that communication with the LDAP server take
place over secure connections.

245

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

These authentication method values are permitted:

• SIMPLE: Use simple LDAP authentication. This method uses either one or two LDAP bind
operations, depending on whether the MySQL account names an LDAP user distinguished name.
See the description of authentication_ldap_simple_bind_root_dn.

• AD-FOREST: A variation on SIMPLE, such that authentication searches all domains in the Active
Directory forest, performing an LDAP bind to each Active Directory domain until the user is found
in some domain.

• authentication_ldap_simple_bind_base_dn

Command-Line Format --authentication-ldap-simple-bind-
base-dn=value

System Variable authentication_ldap_simple_bind_base_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For simple LDAP authentication, the base distinguished name (DN). This variable can be used to
limit the scope of searches by anchoring them at a certain location (the “base”) within the search
tree.

Suppose that members of one set of LDAP user entries each have this form:

uid=user_name,ou=People,dc=example,dc=com

And that members of another set of LDAP user entries each have this form:

uid=user_name,ou=Admin,dc=example,dc=com

Then searches work like this for different base DN values:

• If the base DN is ou=People,dc=example,dc=com: Searches find user entries only in the first
set.

• If the base DN is ou=Admin,dc=example,dc=com: Searches find user entries only in the
second set.

• If the base DN is ou=dc=example,dc=com: Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search
scope more.

• authentication_ldap_simple_bind_root_dn

Command-Line Format --authentication-ldap-simple-bind-
root-dn=value

System Variable authentication_ldap_simple_bind_root_dn

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

246

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Default Value NULL

For simple LDAP authentication, the root distinguished name (DN). This variable is used in
conjunction with authentication_ldap_simple_bind_root_pwd as the credentials for
authenticating to the LDAP server for the purpose of performing searches. Authentication uses either
one or two LDAP bind operations, depending on whether the MySQL account names an LDAP user
DN:

• If the account does not name a user DN: authentication_ldap_simple performs
an initial LDAP binding using authentication_ldap_simple_bind_root_dn and
authentication_ldap_simple_bind_root_pwd. (These are both empty by default,
so if they are not set, the LDAP server must permit anonymous connections.) The resulting
bind LDAP handle is used to search for the user DN, based on the client user name.
authentication_ldap_simple performs a second bind using the user DN and client-supplied
password.

• If the account does name a user DN: The first bind operation is unnecessary in this case.
authentication_ldap_simple performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

• authentication_ldap_simple_bind_root_pwd

Command-Line Format --authentication-ldap-simple-bind-
root-pwd=value

System Variable authentication_ldap_simple_bind_root_pwd

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For simple LDAP authentication, the password for the root distinguished name. This variable is used
in conjunction with authentication_ldap_simple_bind_root_dn. See the description of that
variable.

• authentication_ldap_simple_ca_path

Command-Line Format --authentication-ldap-simple-ca-
path=value

System Variable authentication_ldap_simple_ca_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

For simple LDAP authentication, the absolute path of the certificate authority file. Specify this file if it
is desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the authentication_ldap_simple_ca_path
variable to the file name, you must add the appropriate certificate authority
certificates to the file and enable the authentication_ldap_simple_tls

247

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

system variable. These variables can be set to override the default
OpenLDAP TLS configuration; see LDAP Pluggable Authentication and
ldap.conf

• authentication_ldap_simple_group_search_attr

Command-Line Format --authentication-ldap-simple-group-
search-attr=value

System Variable authentication_ldap_simple_group_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value cn

For simple LDAP authentication, the name of the attribute that specifies group names in LDAP
directory entries. If authentication_ldap_simple_group_search_attr has its default value
of cn, searches return the cn value as the group name. For example, if an LDAP entry with a uid
value of user1 has a cn attribute of mygroup, searches for user1 return mygroup as the group
name.

If the group search attribute is isMemberOf, LDAP authentication directly retrieves the user
attribute isMemberOf value and assigns it as group information. If the group search attribute is not
isMemberOf, LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two
ways: 1) A group entry can have an attribute named memberUid or member with a value that is a
user name; 2) A user entry can have an attribute named isMemberOf with values that are group
names.

• authentication_ldap_simple_group_search_filter

Command-Line Format --authentication-ldap-simple-group-
search-filter=value

System Variable authentication_ldap_simple_group_search_filter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value (|(&(objectClass=posixGroup)
(memberUid=%s))(&(objectClass=group)
(member=%s)))

For simple LDAP authentication, the custom group search filter.

The search filter value can contain {UA} and {UD} notation to represent the user name and the
full user DN. For example, {UA} is replaced with a user name such as "admin", whereas {UD}
is replaced with a use full DN such as "uid=admin,ou=People,dc=example,dc=com". The
following value is the default, which supports both OpenLDAP and Active Directory:

(|(&(objectClass=posixGroup)(memberUid={UA}))
 (&(objectClass=group)(member={UD})))

In some cases for the user scenario, memberOf is a simple user attribute that holds no group
information. For additional flexibility, an optional {GA} prefix can be used with the group search
attribute. Any group attribute with a {GA} prefix is treated as a user attribute having group names. For

248

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

example, with a value of {GA}MemberOf, if the group value is the DN, the first attribute value from
the group DN is returned as the group name.

• authentication_ldap_simple_init_pool_size

Command-Line Format --authentication-ldap-simple-init-
pool-size=#

System Variable authentication_ldap_simple_init_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 32767

Unit connections

For simple LDAP authentication, the initial size of the pool of connections to the LDAP server.
Choose the value for this variable based on the average number of concurrent authentication
requests to the LDAP server.

The plugin uses authentication_ldap_simple_init_pool_size and
authentication_ldap_simple_max_pool_size together for connection-pool management:

• When the authentication plugin initializes, it creates
authentication_ldap_simple_init_pool_size connections, unless
authentication_ldap_simple_max_pool_size=0 to disable pooling.

• If the plugin receives an authentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by authentication_ldap_simple_max_pool_size.

• If the plugin receives a request when the pool size is already at its maximum and there are no free
connections, authentication fails.

• When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the
pool. For example, modifying the LDAP server host, port, or TLS settings does not affect existing
connections. However, if the original variable values were invalid and the connection pool could not
be initialized, the plugin attempts to reinitialize the pool for the next LDAP request. In this case, the
new system variable values are used for the reinitialization attempt.

If authentication_ldap_simple_max_pool_size=0 to disable pooling, each LDAP
connection opened by the plugin uses the values the system variables have at that time.

• authentication_ldap_simple_log_status

Command-Line Format --authentication-ldap-simple-log-
status=#

System Variable authentication_ldap_simple_log_status

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

249

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Type Integer

Default Value 1

Minimum Value 1

Maximum Value (≥ 8.0.18) 6

Maximum Value (≤ 8.0.17) 5

For simple LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 6.16 Log Levels for authentication_ldap_simple_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Same as previous level plus debugging
messages from MySQL

6 Same as previous level plus debugging
messages from LDAP library

Log level 6 is available as of MySQL 8.0.18.

• authentication_ldap_simple_max_pool_size

Command-Line Format --authentication-ldap-simple-max-
pool-size=#

System Variable authentication_ldap_simple_max_pool_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 32767

Unit connections

For simple LDAP authentication, the maximum size of the pool of connections to the LDAP server.
To disable connection pooling, set this variable to 0.

This variable is used in conjunction with authentication_ldap_simple_init_pool_size.
See the description of that variable.

• authentication_ldap_simple_referral

Command-Line Format --authentication-ldap-simple-
referral[={OFF|ON}]

Introduced 8.0.20

System Variable authentication_ldap_simple_referral250

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

For simple LDAP authentication, whether to enable LDAP search referral. See LDAP Search
Referral.

• authentication_ldap_simple_server_host

Command-Line Format --authentication-ldap-simple-server-
host=host_name

System Variable authentication_ldap_simple_server_host

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

For simple LDAP authentication, the LDAP server host. The permitted values for this variable depend
on the authentication method:

• For authentication_ldap_simple_auth_method_name=SIMPLE: The LDAP server host
can be a host name or IP address.

• For authentication_ldap_simple_auth_method_name=AD-FOREST. The LDAP server
host can be an Active Directory domain name. For example, for an LDAP server URL of ldap://
example.mem.local:389, the domain name can be mem.local.

An Active Directory forest setup can have multiple domains (LDAP server IPs), which can be
discovered using DNS. On Unix and Unix-like systems, some additional setup may be required to

251

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Pluggable Authentication System Variables

configure your DNS server with SRV records that specify the LDAP servers for the Active Directory
domain. For information about DNS SRV, see RFC 2782.

Suppose that your configuration has these properties:

• The name server that provides information about Active Directory domains has IP address
10.172.166.100.

• The LDAP servers have names ldap1.mem.local through ldap3.mem.local and IP
addresses 10.172.166.101 through 10.172.166.103.

You want the LDAP servers to be discoverable using SRV searches. For example, at the
command line, a command like this should list the LDAP servers:

host -t SRV _ldap._tcp.mem.local

Perform the DNS configuration as follows:

1. Add a line to /etc/resolv.conf to specify the name server that provides information about
Active Directory domains:

nameserver 10.172.166.100

2. Configure the appropriate zone file for the name server with SRV records for the LDAP
servers:

_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap1.mem.local.
_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap2.mem.local.
_ldap._tcp.mem.local. 86400 IN SRV 0 100 389 ldap3.mem.local.

3. It may also be necessary to specify the IP address for the LDAP servers in /etc/hosts if the
server host cannot be resolved. For example, add lines like this to the file:

10.172.166.101 ldap1.mem.local
10.172.166.102 ldap2.mem.local
10.172.166.103 ldap3.mem.local

With the DNS configured as just described, the server-side LDAP plugin can discover the LDAP
servers and tries to authenticate in all domains until authentication succeeds or there are no more
servers.

Windows needs no such settings as just described. Given the LDAP server host in the
authentication_ldap_simple_server_host value, the Windows LDAP library searches all
domains and attempts to authenticate.

• authentication_ldap_simple_server_port

Command-Line Format --authentication-ldap-simple-server-
port=port_num

System Variable authentication_ldap_simple_server_port

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 389

Minimum Value 1

252

https://tools.ietf.org/html/rfc2782
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

The Connection-Control Plugins

Maximum Value 32376

For simple LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 8.0.14, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from startTLS.)

• authentication_ldap_simple_tls

Command-Line Format --authentication-ldap-simple-
tls[={OFF|ON}]

System Variable authentication_ldap_simple_tls

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

For simple LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and ldap.conf If you enable this variable, you may also wish to set the
authentication_ldap_simple_ca_path variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 8.0.14, LDAPS can be used by setting the
authentication_ldap_simple_server_port system variable.

• authentication_ldap_simple_user_search_attr

Command-Line Format --authentication-ldap-simple-user-
search-attr=value

System Variable authentication_ldap_simple_user_search_attr

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value uid

For simple LDAP authentication, the name of the attribute that specifies user
names in LDAP directory entries. If a user distinguished name is not provided, the
authentication plugin searches for the name using this attribute. For example, if the
authentication_ldap_simple_user_search_attr value is uid, a search for the user name
user1 finds entries with a uid value of user1.

6.2 The Connection-Control Plugins

MySQL Server includes a plugin library that enables administrators to introduce an increasing delay
in server response to connection attempts after a configurable number of consecutive failed attempts.
This capability provides a deterrent that slows down brute force attacks against MySQL user accounts.
The plugin library contains two plugins:

253

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Connection-Control Plugin Installation

• CONNECTION_CONTROL checks incoming connection attempts and adds a delay to server responses
as necessary. This plugin also exposes system variables that enable its operation to be configured
and a status variable that provides rudimentary monitoring information.

The CONNECTION_CONTROL plugin uses the audit plugin interface (see Writing Audit Plugins).
To collect information, it subscribes to the MYSQL_AUDIT_CONNECTION_CLASSMASK
event class, and processes MYSQL_AUDIT_CONNECTION_CONNECT and
MYSQL_AUDIT_CONNECTION_CHANGE_USER subevents to check whether the server should
introduce a delay before responding to connection attempts.

• CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS implements an INFORMATION_SCHEMA table
that exposes more detailed monitoring information for failed connection attempts.

The following sections provide information about connection-control plugin installation and
configuration. For information about the CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table,
see The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table.

6.2.1 Connection-Control Plugin Installation

This section describes how to install the connection-control plugins, CONNECTION_CONTROL and
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS. For general information about installing plugins,
see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is connection_control. The file name suffix differs per platform
(for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugins at server startup, use the --plugin-load-add option to name the library file that
contains them. With this plugin-loading method, the option must be given each time the server starts.
For example, put these lines in the server my.cnf file, adjusting the .so suffix for your platform as
necessary:

[mysqld]
plugin-load-add=connection_control.so

After modifying my.cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the .so suffix for your
platform as necessary:

INSTALL PLUGIN CONNECTION_CONTROL
 SONAME 'connection_control.so';
INSTALL PLUGIN CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
 SONAME 'connection_control.so';

INSTALL PLUGIN loads the plugin immediately, and also registers it in the mysql.plugins system
table to cause the server to load it for each subsequent normal startup without the need for --
plugin-load-add.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'connection%';
+--+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--+---------------+
| CONNECTION_CONTROL | ACTIVE |
| CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS | ACTIVE |
+--+---------------+

254

https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-audit-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

Connection-Control Plugin Installation

If a plugin fails to initialize, check the server error log for diagnostic messages.

If the plugins have been previously registered with INSTALL PLUGIN or are loaded with --plugin-
load-add, you can use the --connection-control and --connection-control-failed-
login-attempts options at server startup to control plugin activation. For example, to load the
plugins at startup and prevent them from being removed at runtime, use these options:

[mysqld]
plugin-load-add=connection_control.so
connection-control=FORCE_PLUS_PERMANENT
connection-control-failed-login-attempts=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without a given connection-control plugin, use an
option value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not
initialize successfully.

Note

It is possible to install one plugin without the other, but both must be
installed for full connection-control capability. In particular, installing only the
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin is of little use
because, without the CONNECTION_CONTROL plugin to provide the data that
populates the CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table, the
table is always empty.

• Connection Delay Configuration

• Connection Failure Assessment

• Connection Failure Monitoring

Connection Delay Configuration

To enable configuring its operation, the CONNECTION_CONTROL plugin exposes these system
variables:

• connection_control_failed_connections_threshold: The number of
consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts. To disable failed-connection counting, set
connection_control_failed_connections_threshold to zero.

• connection_control_min_connection_delay: The minimum delay in milliseconds for
connection failures above the threshold.

• connection_control_max_connection_delay: The maximum delay in milliseconds for
connection failures above the threshold.

If connection_control_failed_connections_threshold is nonzero, failed-connection
counting is enabled and has these properties:

• The delay is zero up through connection_control_failed_connections_threshold
consecutive failed connection attempts.

• Thereafter, the server adds an increasing delay for subsequent consecutive attempts, until a
successful connection occurs. The initial unadjusted delays begin at 1000 milliseconds (1 second)
and increase by 1000 milliseconds per attempt. That is, once delay has been activated for an
account, the unadjusted delays for subsequent failed attempts are 1000 milliseconds, 2000
milliseconds, 3000 milliseconds, and so forth.

• The actual delay experienced by a client is the unadjusted delay, adjusted to lie
within the values of the connection_control_min_connection_delay and
connection_control_max_connection_delay system variables, inclusive.

255

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html

Connection-Control Plugin Installation

• Once delay has been activated for an account, the first successful connection thereafter by the
account also experiences a delay, but failure counting is reset for subsequent connections.

For example, with the default connection_control_failed_connections_threshold
value of 3, there is no delay for the first three consecutive failed connection attempts by an
account. The actual adjusted delays experienced by the account for the fourth and subsequent
failed connections depend on the connection_control_min_connection_delay and
connection_control_max_connection_delay values:

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1000 and 20000, the adjusted delays
are the same as the unadjusted delays, up to a maximum of 20000 milliseconds. The fourth
and subsequent failed connections are delayed by 1000 milliseconds, 2000 milliseconds, 3000
milliseconds, and so forth.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 1500 and 20000, the adjusted delays
for the fourth and subsequent failed connections are 1500 milliseconds, 2000 milliseconds, 3000
milliseconds, and so forth, up to a maximum of 20000 milliseconds.

• If connection_control_min_connection_delay and
connection_control_max_connection_delay are 2000 and 3000, the adjusted delays for
the fourth and subsequent failed connections are 2000 milliseconds, 2000 milliseconds, and 3000
milliseconds, with all subsequent failed connections also delayed by 3000 milliseconds.

You can set the CONNECTION_CONTROL system variables at server startup or runtime. Suppose that
you want to permit four consecutive failed connection attempts before the server starts delaying its
responses, with a minimum delay of 2000 milliseconds. To set the relevant variables at server startup,
put these lines in the server my.cnf file:

[mysqld]
plugin-load-add=connection_control.so
connection_control_failed_connections_threshold=4
connection_control_min_connection_delay=2000

To set and persist the variables at runtime, use these statements:

SET PERSIST connection_control_failed_connections_threshold = 4;
SET PERSIST connection_control_min_connection_delay = 2000;

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to carry
over to subsequent server restarts. To change a value for the running MySQL instance without having
it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See SET Syntax
for Variable Assignment.

The connection_control_min_connection_delay and
connection_control_max_connection_delay system variables both have minimum and
maximum values of 1000 and 2147483647. In addition, the permitted range of values of each variable
also depends on the current value of the other:

• connection_control_min_connection_delay cannot be set greater than the current value of
connection_control_max_connection_delay.

• connection_control_max_connection_delay cannot be set less than the current value of
connection_control_min_connection_delay.

Thus, to make the changes required for some configurations, you might need to set the
variables in a specific order. Suppose that the current minimum and maximum delays
are 1000 and 2000, and that you want to set them to 3000 and 5000. You cannot first
set connection_control_min_connection_delay to 3000 because that is greater
than the current connection_control_max_connection_delay value of 2000.
Instead, set connection_control_max_connection_delay to 5000, then set
connection_control_min_connection_delay to 3000.

256

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Connection-Control Plugin Installation

Connection Failure Assessment

When the CONNECTION_CONTROL plugin is installed, it checks connection attempts and tracks whether
they fail or succeed. For this purpose, a failed connection attempt is one for which the client user and
host match a known MySQL account but the provided credentials are incorrect, or do not match any
known account.

Failed-connection counting is based on the user/host combination for each connection attempt.
Determination of the applicable user name and host name takes proxying into account and occurs as
follows:

• If the client user proxies another user, the account for failed-connection counting is the
proxying user, not the proxied user. For example, if external_user@example.com
proxies proxy_user@example.com, connection counting uses the proxying user,
external_user@example.com, rather than the proxied user, proxy_user@example.com.
Both external_user@example.com and proxy_user@example.com must have valid entries
in the mysql.user system table and a proxy relationship between them must be defined in the
mysql.proxies_priv system table (see Section 4.19, “Proxy Users”).

• If the client user does not proxy another user, but does match a mysql.user entry, counting uses
the CURRENT_USER() value corresponding to that entry. For example, if a user user1 connecting
from a host host1.example.com matches a user1@host1.example.com entry, counting uses
user1@host1.example.com. If the user matches a user1@%.example.com, user1@%.com,
or user1@% entry instead, counting uses user1@%.example.com, user1@%.com, or user1@%,
respectively.

For the cases just described, the connection attempt matches some mysql.user entry, and whether
the request succeeds or fails depends on whether the client provides the correct authentication
credentials. For example, if the client presents an incorrect password, the connection attempt fails.

If the connection attempt matches no mysql.user entry, the attempt fails. In this case, no
CURRENT_USER() value is available and connection-failure counting uses the user name provided
by the client and the client host as determined by the server. For example, if a client attempts to
connect as user user2 from host host2.example.com, the user name part is available in the client
request and the server determines the host information. The user/host combination used for counting is
user2@host2.example.com.

Note

The server maintains information about which client hosts can possibly connect
to the server (essentially the union of host values for mysql.user entries). If a
client attempts to connect from any other host, the server rejects the attempt at
an early stage of connection setup:

ERROR 1130 (HY000): Host 'host_name' is not
allowed to connect to this MySQL server

Because this type of rejection occurs so early, CONNECTION_CONTROL does
not see it, and does not count it.

Connection Failure Monitoring

To monitor failed connections, use these information sources:

• The Connection_control_delay_generated status variable indicates the number
of times the server added a delay to its response to a failed connection attempt. This
does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

• The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table provides
information about the current number of consecutive failed connection attempts per account (user/
host combination). This counts all failed attempts, regardless of whether they were delayed.

257

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html

Connection-Control System and Status Variables

Assigning a value to connection_control_failed_connections_threshold at runtime has
these effects:

• All accumulated failed-connection counters are reset to zero.

• The Connection_control_delay_generated status variable is reset to zero.

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table becomes empty.

6.2.2 Connection-Control System and Status Variables

This section describes the system and status variables that the CONNECTION_CONTROL plugin
provides to enable its operation to be configured and monitored.

• Connection-Control System Variables

• Connection-Control Status Variables

Connection-Control System Variables

If the CONNECTION_CONTROL plugin is installed, it exposes these system variables:

• connection_control_failed_connections_threshold

Command-Line Format --connection-control-failed-
connections-threshold=#

System Variable connection_control_failed_connections_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 2147483647

The number of consecutive failed connection attempts permitted to accounts before the server adds
a delay for subsequent connection attempts:

• If the variable has a nonzero value N, the server adds a delay beginning with consecutive failed
attempt N+1. If an account has reached the point where connection responses are delayed, a
delay also occurs for the next subsequent successful connection.

• Setting this variable to zero disables failed-connection counting. In this case, the server never
adds delays.

For information about how connection_control_failed_connections_threshold interacts
with other connection-control system and status variables, see Section 6.2.1, “Connection-Control
Plugin Installation”.

• connection_control_max_connection_delay

Command-Line Format --connection-control-max-connection-
delay=#

System Variable connection_control_max_connection_delay

Scope Global

Dynamic Yes

258

https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

The Password Validation Component

SET_VAR Hint Applies No

Type Integer

Default Value 2147483647

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The maximum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

For information about how connection_control_max_connection_delay interacts with other
connection-control system and status variables, see Section 6.2.1, “Connection-Control Plugin
Installation”.

• connection_control_min_connection_delay

Command-Line Format --connection-control-min-connection-
delay=#

System Variable connection_control_min_connection_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1000

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The minimum delay in milliseconds for server response to failed connection attempts, if
connection_control_failed_connections_threshold is greater than zero.

For information about how connection_control_min_connection_delay interacts with other
connection-control system and status variables, see Section 6.2.1, “Connection-Control Plugin
Installation”.

Connection-Control Status Variables

If the CONNECTION_CONTROL plugin is installed, it exposes this status variable:

• Connection_control_delay_generated

The number of times the server added a delay to its response to a failed connection attempt.
This does not count attempts that occur before reaching the threshold defined by the
connection_control_failed_connections_threshold system variable.

This variable provides a simple counter. For more detailed connection-control monitoring information,
examine the INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS table;
see The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Table.

Assigning a value to connection_control_failed_connections_threshold at runtime
resets Connection_control_delay_generated to zero.

6.3 The Password Validation Component

259

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-connection-control-failed-login-attempts-table.html

The Password Validation Component

The validate_password component serves to improve security by requiring account passwords
and enabling strength testing of potential passwords. This component exposes system variables that
enable you to configure password policy, and status variables for component monitoring.

Note

In MySQL 8.0, the validate_password plugin was reimplemented as the
validate_password component. (For general information about components,
see MySQL Components.) The following instructions describe how to use
the component, not the plugin. For instructions on using the plugin form of
validate_password, see The Password Validation Plugin, in MySQL 5.7
Reference Manual.

The plugin form of validate_password is still available but is deprecated;
expect it to be removed in a future version of MySQL. MySQL installations that
use the plugin should make the transition to using the component instead. See
Section 6.3.3, “Transitioning to the Password Validation Component”.

The validate_password component implements these capabilities:

• For SQL statements that assign a password supplied as a cleartext value, validate_password
checks the password against the current password policy and rejects the password if it is weak (the
statement returns an ER_NOT_VALID_PASSWORD error). This applies to the ALTER USER, CREATE
USER, and SET PASSWORD statements.

• For CREATE USER statements, validate_password requires that a password be given, and that
it satisfies the password policy. This is true even if an account is locked initially because otherwise
unlocking the account later would cause it to become accessible without a password that satisfies
the policy.

• validate_password implements a VALIDATE_PASSWORD_STRENGTH() SQL function that
assesses the strength of potential passwords. This function takes a password argument and returns
an integer from 0 (weak) to 100 (strong).

Note

For statements that assign or modify account passwords (ALTER USER,
CREATE USER, and SET PASSWORD), the validate_password capabilities
described here apply only to accounts that use an authentication plugin that
stores credentials internally to MySQL. For accounts that use plugins that
perform authentication against a credentials system external to MySQL,
password management must be handled externally against that system as
well. For more information about internal credentials storage, see Section 4.15,
“Password Management”.

The preceding restriction does not apply to use of the
VALIDATE_PASSWORD_STRENGTH() function because it does not affect
accounts directly.

Examples:

• validate_password checks the cleartext password in the following statement. Under the default
password policy, which requires passwords to be at least 8 characters long, the password is weak
and the statement produces an error:

mysql> ALTER USER USER() IDENTIFIED BY 'abc';
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements

• Passwords specified as hashed values are not checked because the original password value is not
available for checking:

mysql> ALTER USER 'jeffrey'@'localhost'

260

https://dev.mysql.com/doc/refman/8.0/en/components.html
https://dev.mysql.com/doc/refman/5.7/en/validate-password.html
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/refman/5.7/en/
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_valid_password
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength

Password Validation Component Installation and Uninstallation

 IDENTIFIED WITH mysql_native_password
 AS '*0D3CED9BEC10A777AEC23CCC353A8C08A633045E';
Query OK, 0 rows affected (0.01 sec)

• This account-creation statement fails, even though the account is locked initially, because it does not
include a password that satisfies the current password policy:

mysql> CREATE USER 'juanita'@'localhost' ACCOUNT LOCK;
ERROR 1819 (HY000): Your password does not satisfy the current
policy requirements

• To check a password, use the VALIDATE_PASSWORD_STRENGTH() function:

mysql> SELECT VALIDATE_PASSWORD_STRENGTH('weak');
+------------------------------------+
| VALIDATE_PASSWORD_STRENGTH('weak') |
+------------------------------------+
| 25 |
+------------------------------------+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('lessweak$_@123');
+--+
| VALIDATE_PASSWORD_STRENGTH('lessweak$_@123') |
+--+
| 50 |
+--+
mysql> SELECT VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!');
+--+
| VALIDATE_PASSWORD_STRENGTH('N0Tweak$_@123!') |
+--+
| 100 |
+--+

To configure password checking, modify the system variables having names of the form
validate_password.xxx; these are the parameters that control password policy. See Section 6.3.2,
“Password Validation Options and Variables”.

If validate_password is not installed, the validate_password.xxx system variables are not
available, passwords in statements are not checked, and the VALIDATE_PASSWORD_STRENGTH()
function always returns 0. For example, without the plugin installed, accounts can be assigned
passwords shorter than 8 characters, or no password at all.

Assuming that validate_password is installed, it implements three levels of password
checking: LOW, MEDIUM, and STRONG. The default is MEDIUM; to change this, modify the value of
validate_password.policy. The policies implement increasingly strict password tests. The
following descriptions refer to default parameter values, which can be modified by changing the
appropriate system variables.

• LOW policy tests password length only. Passwords must be at least 8 characters long. To change this
length, modify validate_password.length.

• MEDIUM policy adds the conditions that passwords must contain at least
1 numeric character, 1 lowercase character, 1 uppercase character, and
1 special (nonalphanumeric) character. To change these values, modify
validate_password.number_count, validate_password.mixed_case_count, and
validate_password.special_char_count.

• STRONG policy adds the condition that password substrings of length 4 or longer must not match
words in the dictionary file, if one has been specified. To specify the dictionary file, modify
validate_password.dictionary_file.

In addition, validate_password supports the capability of rejecting passwords that match
the user name part of the effective user account for the current session, either forward
or in reverse. To provide control over this capability, validate_password exposes a
validate_password.check_user_name system variable, which is enabled by default.

6.3.1 Password Validation Component Installation and Uninstallation

261

https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength

Password Validation Options and Variables

This section describes how to install and uninstall the validate_password password-validation
component. For general information about installing and uninstalling components, see MySQL
Components.

Note

If you install MySQL 8.0 using the MySQL Yum repository, MySQL SLES
Repository, or RPM packages provided by Oracle, the validate_password
component is enabled by default after you start your MySQL Server for the first
time.

Upgrades to MySQL 8.0 from 5.7 using Yum or RPM packages leave the
validate_password plugin in place. To make the transition from the
validate_password plugin to the validate_password component, see
Section 6.3.3, “Transitioning to the Password Validation Component”.

To be usable by the server, the component library file must be located in the MySQL plugin directory
(the directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To install the validate_password component, use this statement:

INSTALL COMPONENT 'file://component_validate_password';

Component installation is a one-time operation that need not be done per server startup. INSTALL
COMPONENT loads the component, and also registers it in the mysql.component system table to
cause it to be loaded during subsequent server startups.

To uninstall the validate_password component, use this statement:

UNINSTALL COMPONENT 'file://component_validate_password';

UNINSTALL COMPONENT unloads the component, and unregisters it from the mysql.component
system table to cause it not to be loaded during subsequent server startups.

6.3.2 Password Validation Options and Variables

This section describes the system and status variables that validate_password provides to enable
its operation to be configured and monitored.

• Password Validation Component System Variables

• Password Validation Component Status Variables

• Password Validation Plugin Options

• Password Validation Plugin System Variables

• Password Validation Plugin Status Variables

Password Validation Component System Variables

If the validate_password component is enabled, it exposes several system variables that enable
configuration of password checking:

mysql> SHOW VARIABLES LIKE 'validate_password.%';
+---+--------+
| Variable_name | Value |
+---+--------+
validate_password.changed_characters_percentage	0
validate_password.check_user_name	ON
validate_password.dictionary_file	
validate_password.length	8
validate_password.mixed_case_count	1
validate_password.number_count	1
validate_password.policy	MEDIUM

262

https://dev.mysql.com/doc/refman/8.0/en/components.html
https://dev.mysql.com/doc/refman/8.0/en/components.html
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-component.html

Password Validation Options and Variables

| validate_password.special_char_count | 1 |
+---+--------+

To change how passwords are checked, you can set these system variables at server startup or at
runtime. The following list describes the meaning of each variable.

• validate_password.changed_characters_percentage

Command-Line Format --validate-password.changed-
characters-percentage[=value]

Introduced 8.0.34

System Variable validate_password.changed_characters_percentage

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100

Indicates the minimum number of characters, as a percentage of all characters, in a password that
a user must change before validate_password accepts a new password for the user's own
account. This applies only when changing an existing password, and has no effect when setting a
user account's initial password.

This variable is not available unless validate_password is installed.

By default, validate_password.changed_characters_percentage permits all of the
characters from the current password to be reused in the new password. The range of valid
percentages is 0 to 100. If set to 100 percent, all of the characters from the current password
are rejected, regardless of the casing. Characters 'abc' and 'ABC' are considered to be the same
characters. If validate_password rejects the new password, it reports an error indicating the
minimum number of characters that must differ.

If the ALTER USER statement does not provide the existing password in a REPLACE clause, this
variable is not enforced. Whether the REPLACE clause is required is subject to the password
verification policy as it applies to a given account. For an overview of the policy, see Password
Verification-Required Policy.

• validate_password.check_user_name

Command-Line Format --validate-password.check-user-
name[={OFF|ON}]

System Variable validate_password.check_user_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether validate_password compares passwords to the user name part of the effective user
account for the current session and rejects them if they match. This variable is unavailable unless
validate_password is installed.

263

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/replace.html
https://dev.mysql.com/doc/refman/8.0/en/replace.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Password Validation Options and Variables

By default, validate_password.check_user_name is enabled. This variable controls user name
matching independent of the value of validate_password.policy.

When validate_password.check_user_name is enabled, it has these effects:

• Checking occurs in all contexts for which validate_password is invoked, which includes use of
statements such as ALTER USER or SET PASSWORD to change the current user's password, and
invocation of functions such as VALIDATE_PASSWORD_STRENGTH().

• The user names used for comparison are taken from the values of the USER() and
CURRENT_USER() functions for the current session. An implication is that a user who has
sufficient privileges to set another user's password can set the password to that user's name, and
cannot set that user's password to the name of the user executing the statement. For example,
'root'@'localhost' can set the password for 'jeffrey'@'localhost' to 'jeffrey', but
cannot set the password to 'root.

• Only the user name part of the USER() and CURRENT_USER() function values is used, not the
host name part. If a user name is empty, no comparison occurs.

• If a password is the same as the user name or its reverse, a match occurs and the password is
rejected.

• User-name matching is case-sensitive. The password and user name values are compared as
binary strings on a byte-by-byte basis.

• If a password matches the user name, VALIDATE_PASSWORD_STRENGTH() returns 0 regardless
of how other validate_password system variables are set.

• validate_password.dictionary_file

Command-Line Format --validate-password.dictionary-
file=file_name

System Variable validate_password.dictionary_file

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

The path name of the dictionary file that validate_password uses for checking passwords. This
variable is unavailable unless validate_password is installed.

By default, this variable has an empty value and dictionary checks are not performed. For dictionary
checks to occur, the variable value must be nonempty. If the file is named as a relative path, it is
interpreted relative to the server data directory. File contents should be lowercase, one word per line.
Contents are treated as having a character set of utf8mb3. The maximum permitted file size is 1MB.

For the dictionary file to be used during password checking, the password policy must be set to 2
(STRONG); see the description of the validate_password.policy system variable. Assuming
that is true, each substring of the password of length 4 up to 100 is compared to the words in the
dictionary file. Any match causes the password to be rejected. Comparisons are not case-sensitive.

For VALIDATE_PASSWORD_STRENGTH(), the password is checked against all policies,
including STRONG, so the strength assessment includes the dictionary check regardless of the
validate_password.policy value.

validate_password.dictionary_file can be set at runtime and assigning a value causes the
named file to be read without a server restart.

264

https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength

Password Validation Options and Variables

• validate_password.length

Command-Line Format --validate-password.length=#

System Variable validate_password.length

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 0

The minimum number of characters that validate_password requires passwords to have. This
variable is unavailable unless validate_password is installed.

The validate_password.length minimum value is a function of several other related system
variables. The value cannot be set less than the value of this expression:

validate_password.number_count
+ validate_password.special_char_count
+ (2 * validate_password.mixed_case_count)

If validate_password adjusts the value of validate_password.length due to the preceding
constraint, it writes a message to the error log.

• validate_password.mixed_case_count

Command-Line Format --validate-password.mixed-case-
count=#

System Variable validate_password.mixed_case_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

The minimum number of lowercase and uppercase characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

For a given validate_password.mixed_case_count value, the password must have that many
lowercase characters, and that many uppercase characters.

• validate_password.number_count

Command-Line Format --validate-password.number-count=#

System Variable validate_password.number_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

265

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Password Validation Options and Variables

Minimum Value 0

The minimum number of numeric (digit) characters that validate_password requires passwords
to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

• validate_password.policy

Command-Line Format --validate-password.policy=value

System Variable validate_password.policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value 1

Valid Values 0

1

2

The password policy enforced by validate_password. This variable is unavailable unless
validate_password is installed.

validate_password.policy affects how validate_password uses its other policy-
setting system variables, except for checking passwords against user names, which is controlled
independently by validate_password.check_user_name.

The validate_password.policy value can be specified using numeric values 0, 1, 2,
or the corresponding symbolic values LOW, MEDIUM, STRONG. The following table describes
the tests performed for each policy. For the length test, the required length is the value of the
validate_password.length system variable. Similarly, the required values for the other tests
are given by other validate_password.xxx variables.

Policy Tests Performed

0 or LOW Length

1 or MEDIUM Length; numeric, lowercase/uppercase, and
special characters

2 or STRONG Length; numeric, lowercase/uppercase, and
special characters; dictionary file

• validate_password.special_char_count

Command-Line Format --validate-password.special-char-
count=#

System Variable validate_password.special_char_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

266

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Password Validation Options and Variables

Minimum Value 0

The minimum number of nonalphanumeric characters that validate_password requires
passwords to have if the password policy is MEDIUM or stronger. This variable is unavailable unless
validate_password is installed.

Password Validation Component Status Variables

If the validate_password component is enabled, it exposes status variables that provide
operational information:

mysql> SHOW STATUS LIKE 'validate_password.%';
+---+---------------------+
| Variable_name | Value |
+---+---------------------+
| validate_password.dictionary_file_last_parsed | 2019-10-03 08:33:49 |
| validate_password.dictionary_file_words_count | 1902 |
+---+---------------------+

The following list describes the meaning of each status variable.

• validate_password.dictionary_file_last_parsed

When the dictionary file was last parsed. This variable is unavailable unless validate_password
is installed.

• validate_password.dictionary_file_words_count

The number of words read from the dictionary file. This variable is unavailable unless
validate_password is installed.

Password Validation Plugin Options

Note

In MySQL 8.0, the validate_password plugin was reimplemented
as the validate_password component. The validate_password
plugin is deprecated; expect it to be removed in a future version of MySQL.
Consequently, its options are also deprecated, and you should expect them to
be removed as well. MySQL installations that use the plugin should make the
transition to using the component instead. See Section 6.3.3, “Transitioning to
the Password Validation Component”.

To control activation of the validate_password plugin, use this option:

• --validate-password[=value]

Command-Line Format --validate-password[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the deprecated validate_password plugin at startup.
The value should be one of those available for plugin-loading options, as described in Installing and
Uninstalling Plugins. For example, --validate-password=FORCE_PLUS_PERMANENT tells the
server to load the plugin at startup and prevents it from being removed while the server is running.

267

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html

Password Validation Options and Variables

This option is available only if the validate_password plugin has been previously registered
with INSTALL PLUGIN or is loaded with --plugin-load-add. See Section 6.3.1, “Password
Validation Component Installation and Uninstallation”.

Password Validation Plugin System Variables

Note

In MySQL 8.0, the validate_password plugin was reimplemented
as the validate_password component. The validate_password
plugin is deprecated; expect it to be removed in a future version of MySQL.
Consequently, its system variables are also deprecated and you should
expect them to be removed as well. Use the corresponding system variables
of the validate_password component instead; see Password Validation
Component System Variables. MySQL installations that use the plugin should
make the transition to using the component instead. See Section 6.3.3,
“Transitioning to the Password Validation Component”.

• validate_password_check_user_name

Command-Line Format --validate-password-check-user-
name[={OFF|ON}]

System Variable validate_password_check_user_name

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.check_user_name system
variable of the validate_password component instead.

• validate_password_dictionary_file

Command-Line Format --validate-password-dictionary-
file=file_name

System Variable validate_password_dictionary_file

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.dictionary_file system
variable of the validate_password component instead.

• validate_password_length

Command-Line Format --validate-password-length=#

System Variable validate_password_length

Scope Global

Dynamic Yes

268

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Password Validation Options and Variables

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.length system variable of the
validate_password component instead.

• validate_password_mixed_case_count

Command-Line Format --validate-password-mixed-case-
count=#

System Variable validate_password_mixed_case_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.mixed_case_count system
variable of the validate_password component instead.

• validate_password_number_count

Command-Line Format --validate-password-number-count=#

System Variable validate_password_number_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.number_count system variable
of the validate_password component instead.

• validate_password_policy

Command-Line Format --validate-password-policy=value

System Variable validate_password_policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value 1
269

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Transitioning to the Password Validation Component

Valid Values 0

1

2

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.policy system variable of the
validate_password component instead.

• validate_password_special_char_count

Command-Line Format --validate-password-special-char-
count=#

System Variable validate_password_special_char_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

This validate_password plugin system variable is deprecated; expect it to be removed in a future
version of MySQL. Use the corresponding validate_password.special_char_count system
variable of the validate_password component instead.

Password Validation Plugin Status Variables

Note

In MySQL 8.0, the validate_password plugin was reimplemented
as the validate_password component. The validate_password
plugin is deprecated; expect it to be removed in a future version of MySQL.
Consequently, its status variables are also deprecated; expect it to be
removed. Use the corresponding status variables of the validate_password
component; see Password Validation Component Status Variables. MySQL
installations that use the plugin should make the transition to using the
component instead. See Section 6.3.3, “Transitioning to the Password
Validation Component”.

• validate_password_dictionary_file_last_parsed

This validate_password plugin status variable is deprecated; expect
it to be removed in a future version of MySQL. Use the corresponding
validate_password.dictionary_file_last_parsed status variable of the
validate_password component instead.

• validate_password_dictionary_file_words_count

This validate_password plugin status variable is deprecated; expect
it to be removed in a future version of MySQL. Use the corresponding
validate_password.dictionary_file_words_count status variable of the
validate_password component instead.

6.3.3 Transitioning to the Password Validation Component

270

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

The MySQL Keyring

Note

In MySQL 8.0, the validate_password plugin was reimplemented as the
validate_password component. The validate_password plugin is
deprecated; expect it to be removed in a future version of MySQL.

MySQL installations that currently use the validate_password plugin should make the transition
to using the validate_password component instead. To do so, use the following procedure. The
procedure installs the component before uninstalling the plugin, to avoid having a time window during
which no password validation occurs. (The component and plugin can be installed simultaneously.
In this case, the server attempts to use the component, falling back to the plugin if the component is
unavailable.)

1. Install the validate_password component:

INSTALL COMPONENT 'file://component_validate_password';

2. Test the validate_password component to ensure that it works as expected. If you need to set
any validate_password.xxx system variables, you can do so at runtime using SET GLOBAL.
(Any option file changes that must be made are performed in the next step.)

3. Adjust any references to the plugin system and status variables to refer to the corresponding
component system and status variables. Suppose that previously you had configured the plugin at
startup using an option file like this:

[mysqld]
validate-password=FORCE_PLUS_PERMANENT
validate_password_dictionary_file=/usr/share/dict/words
validate_password_length=10
validate_password_number_count=2

Those settings are appropriate for the plugin, but must be modified to apply to the component. To
adjust the option file, omit the --validate-password option (it applies only to the plugin, not
the component), and modify the system variable references from no-dot names appropriate for the
plugin to dotted names appropriate for the component:

[mysqld]
validate_password.dictionary_file=/usr/share/dict/words
validate_password.length=10
validate_password.number_count=2

Similar adjustments are needed for applications that refer at runtime to validate_password
plugin system and status variables. Change the no-dot plugin variable names to the corresponding
dotted component variable names.

4. Uninstall the validate_password plugin:

UNINSTALL PLUGIN validate_password;

If the validate_password plugin is loaded at server startup using a --plugin-load or --
plugin-load-add option, omit that option from the server startup procedure. For example, if the
option is listed in a server option file, remove it from the file.

5. Restart the server.

6.4 The MySQL Keyring
MySQL Server supports a keyring that enables internal server components and plugins to securely
store sensitive information for later retrieval. The implementation comprises these elements:

• Keyring components and plugins that manage a backing store or communicate with a storage back
end. Keyring use involves installing one from among the available components and plugins. Keyring
components and plugins both manage keyring data but are configured differently and may have
operational differences (see Section 6.4.1, “Keyring Components Versus Keyring Plugins”).

271

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add

The MySQL Keyring

These keyring components are available:

• component_keyring_file: Stores keyring data in a file local to the server host. Available in
MySQL Community Edition and MySQL Enterprise Edition distributions as of MySQL 8.0.24. See
Section 6.4.4, “Using the component_keyring_file File-Based Keyring Component”.

• component_keyring_encrypted_file: Stores keyring data in an encrypted, password-
protected file local to the server host. Available in MySQL Enterprise Edition distributions as of
MySQL 8.0.24. See Section 6.4.5, “Using the component_keyring_encrypted_file Encrypted File-
Based Keyring Component”.

• component_keyring_oci: Stores keyring data in the Oracle Cloud Infrastructure Vault.
Available in MySQL Enterprise Edition distributions as of MySQL 8.0.31. See Section 6.4.11,
“Using the Oracle Cloud Infrastructure Vault Keyring Component”.

These keyring plugins are available:

• keyring_file (deprecated as of MySQL 8.0.34): Stores keyring data in a file local to the server
host. Available in MySQL Community Edition and MySQL Enterprise Edition distributions. See
Section 6.4.6, “Using the keyring_file File-Based Keyring Plugin”.

• keyring_encrypted_file (deprecated as of MySQL 8.0.34): Stores keyring data in an
encrypted, password-protected file local to the server host. Available in MySQL Enterprise Edition
distributions. See Section 6.4.7, “Using the keyring_encrypted_file Encrypted File-Based Keyring
Plugin”.

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage
products such as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in
MySQL Enterprise Edition distributions. See Section 6.4.8, “Using the keyring_okv KMIP Plugin”.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service for
key generation and uses a local file for key storage. Available in MySQL Enterprise Edition
distributions. See Section 6.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”.

• keyring_hashicorp: Communicates with HashiCorp Vault for back end storage. Available
in MySQL Enterprise Edition distributions as of MySQL 8.0.18. See Section 6.4.10, “Using the
HashiCorp Vault Keyring Plugin”.

• keyring_oci (deprecated as of MySQL 8.0.31): Communicates with Oracle Cloud Infrastructure
Vault for back end storage. Available in MySQL Enterprise Edition distributions as of MySQL
8.0.22. See Section 6.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”.

• A keyring service interface for keyring key management. This service is accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-
Purpose Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring
Service.

• Key metadata access:

• The Performance Schema keyring_keys table exposes metadata for keys in the keyring. Key
metadata includes key IDs, key owners, and backend key IDs. The keyring_keys table does not
expose any sensitive keyring data such as key contents. Available as of MySQL 8.0.16. See The
keyring_keys table.

• The Performance Schema keyring_component_status table provides status information
about the keyring component in use, if one is installed. Available as of MySQL 8.0.24. See The
keyring_component_status Table.

272

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-component-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-component-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-component-status-table.html

Keyring Components Versus Keyring Plugins

• A key migration capability. MySQL supports migration of keys between keystores, enabling DBAs
to switch a MySQL installation from one keystore to another. See Section 6.4.14, “Migrating Keys
Between Keyring Keystores”.

• The implementation of keyring plugins is revised as of MySQL 8.0.24 to use the component
infrastructure. This is facilitated using the built-in plugin named daemon_keyring_proxy_plugin
that acts as a bridge between the plugin and component service APIs. See The Keyring Proxy Bridge
Plugin.

Warning

For encryption key management, the component_keyring_file
and component_keyring_encrypted_file components, and the
keyring_file and keyring_encrypted_file plugins are not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

Within MySQL, keyring service consumers include:

• The InnoDB storage engine uses the keyring to store its key for tablespace encryption. See InnoDB
Data-at-Rest Encryption.

• MySQL Enterprise Audit uses the keyring to store the audit log file encryption password. See
Encrypting Audit Log Files.

• Binary log and relay log management supports keyring-based encryption of log files. With log file
encryption activated, the keyring stores the keys used to encrypt passwords for the binary log files
and relay log files. See Encrypting Binary Log Files and Relay Log Files.

• The master key to decrypt the file key that decrypts the persisted values of sensitive system
variables is stored in the keyring. A keyring component must be enabled on the MySQL Server
instance to support secure storage for persisted system variable values, rather than a keyring plugin,
which do not support the function. See Persisting Sensitive System Variables.

For general keyring installation instructions, see Section 6.4.2, “Keyring Component Installation”, and
Section 6.4.3, “Keyring Plugin Installation”. For installation and configuration information specific to a
given keyring component or plugin, see the section describing it.

For information about using the keyring functions, see Section 6.4.15, “General-Purpose Keyring Key-
Management Functions”.

Keyring components, plugins, and functions access a keyring service that provides the interface to
the keyring. For information about accessing this service and writing keyring plugins, see The Keyring
Service, and Writing Keyring Plugins.

6.4.1 Keyring Components Versus Keyring Plugins

The MySQL Keyring originally implemented keystore capabilities using server plugins, but began
transitioning to use the component infrastructure in MySQL 8.0.24. This section briefly compares
keyring components and plugins to provide an overview of their differences. It may assist you in making
the transition from plugins to components, or, if you are just beginning to use the keyring, assist you in
choosing whether to use a component versus using a plugin.

• Keyring plugin loading uses the --early-plugin-load option. Keyring component loading uses a
manifest.

• Keyring plugin configuration is based on plugin-specific system variables. For keyring components,
no system variables are used. Instead, each component has its own configuration file.

• Keyring components have fewer restrictions than keyring plugins with respect to key types and
lengths. See Section 6.4.13, “Supported Keyring Key Types and Lengths”.

273

https://dev.mysql.com/doc/refman/8.0/en/daemon-keyring-proxy-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/daemon-keyring-proxy-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive
https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/writing-keyring-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Keyring Component Installation

Note

component_keyring_oci (like the keyring_oci plugin) can only
generate keys of type AES with a size of 16, 24, or 32 bytes.

• Keyring components support secure storage for persisted system variable values, whereas keyring
plugins do not support the function.

A keyring component must be enabled on the MySQL server instance to support secure storage for
persisted system variable values. The sensitive data that can be protected in this way includes items
such as private keys and passwords that appear in the values of system variables. In the operating
system file where persisted system variables are stored, the names and values of sensitive system
variables are stored in an encrypted format, along with a generated file key to decrypt them. The
generated file key is in turn encrypted using a master key that is stored in a keyring. See Persisting
Sensitive System Variables.

6.4.2 Keyring Component Installation

Keyring service consumers require that a keyring component or plugin be installed:

• To use a keyring component, begin with the instructions here.

• To use a keyring plugin instead, begin with Section 6.4.3, “Keyring Plugin Installation”.

• If you intend to use keyring functions in conjunction with the chosen keyring component or plugin,
install the functions after installing that component or plugin, using the instructions in Section 6.4.15,
“General-Purpose Keyring Key-Management Functions”.

Note

Only one keyring component or plugin should be enabled at a time. Enabling
multiple keyring components or plugins is unsupported and results may not be
as anticipated.

MySQL provides these keyring component choices:

• component_keyring_file: Stores keyring data in a file local to the server host. Available in
MySQL Community Edition and MySQL Enterprise Edition distributions.

• component_keyring_encrypted_file: Stores keyring data in an encrypted, password-
protected file local to the server host. Available in MySQL Enterprise Edition distributions.

• component_keyring_oci: Stores keyring data in the Oracle Cloud Infrastructure Vault. Available
in MySQL Enterprise Edition distributions.

To be usable by the server, the component library file must be located in the MySQL plugin directory
(the directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

A keyring component or plugin must be loaded early during the server startup sequence so that other
components can access it as necessary during their own initialization. For example, the InnoDB
storage engine uses the keyring for tablespace encryption, so a keyring component or plugin must be
loaded and available prior to InnoDB initialization.

Note

A keyring component must be enabled on the MySQL server instance if you
need to support secure storage for persisted system variable values. The
keyring plugin does not support the function. See Persisting Sensitive System
Variables.

274

https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive
https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive
https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive

Keyring Component Installation

Unlike keyring plugins, keyring components are not loaded using the --early-plugin-load server
option or configured using system variables. Instead, the server determines which keyring component
to load during startup using a manifest, and the loaded component consults its own configuration file
when it initializes. Therefore, to install a keyring component, you must:

1. Write a manifest that tells the server which keyring component to load.

2. Write a configuration file for that keyring component.

The first step in installing a keyring component is writing a manifest that indicates which component to
load. During startup, the server reads either a global manifest file, or a global manifest file paired with a
local manifest file:

• The server attempts to read its global manifest file from the directory where the server is installed.

• If the global manifest file indicates use of a local manifest file, the server attempts to read its local
manifest file from the data directory.

• Although global and local manifest files are located in different directories, the file name is
mysqld.my in both locations.

• It is not an error for a manifest file not to exist. In this case, the server attempts no component
loading associated with the file.

Local manifest files permit setting up component loading for multiple instances of the server, such
that loading instructions for each server instance are specific to a given data directory instance. This
enables different MySQL instances to use different keyring components.

Server manifest files have these properties:

• A manifest file must be in valid JSON format.

• A manifest file permits these items:

• "read_local_manifest": This item is permitted only in the global manifest file. If the item is
not present, the server uses only the global manifest file. If the item is present, its value is true
or false, indicating whether the server should read component-loading information from the local
manifest file.

If the "read_local_manifest" item is present in the global manifest file along with other items,
the server checks the "read_local_manifest" item value first:

• If the value is false, the server processes the other items in the global manifest file and ignores
the local manifest file.

• If the value is true, the server ignores the other items in the global manifest file and attempts to
read the local manifest file.

• "components": This item indicates which component to load. The item value is a string
that specifies a valid component URN, such as "file://component_keyring_file". A
component URN begins with file:// and indicates the base name of the library file located in
the MySQL plugin directory that implements the component.

• Server access to a manifest file should be read only. For example, a mysqld.my server manifest file
may be owned by root and be read/write to root, but should be read only to the account used to
run the MySQL server. If the manifest file is found during startup to be read/write to that account, the
server writes a warning to the error log suggesting that the file be made read only.

• The database administrator has the responsibility for creating any manifest files to be used, and for
ensuring that their access mode and contents are correct. If an error occurs, server startup fails and
the administrator must correct any issues indicated by diagnostics in the server error log.

275

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Keyring Component Installation

Given the preceding manifest file properties, to configure the server to load
component_keyring_file, create a global manifest file named mysqld.my in the mysqld
installation directory, and optionally create a local manifest file, also named mysqld.my, in the data
directory. The following instructions describe how to load component_keyring_file. To load a
different keyring component, substitute its name for component_keyring_file.

• To use a global manifest file only, the file contents look like this:

{
 "components": "file://component_keyring_file"
}

Create this file in the directory where mysqld is installed.

• Alternatively, to use a global and local manifest file pair, the global file looks like this:

{
 "read_local_manifest": true
}

Create this file in the directory where mysqld is installed.

The local file looks like this:

{
 "components": "file://component_keyring_file"
}

Create this file in the data directory.

With the manifest in place, proceed to configuring the keyring component. To do this, check the notes
for your chosen keyring component for configuration instructions specific to that component:

• component_keyring_file: Section 6.4.4, “Using the component_keyring_file File-Based Keyring
Component”.

• component_keyring_encrypted_file: Section 6.4.5, “Using the
component_keyring_encrypted_file Encrypted File-Based Keyring Component”.

• component_keyring_oci: Section 6.4.11, “Using the Oracle Cloud Infrastructure Vault Keyring
Component”.

After performing any component-specific configuration, start the server. Verify component installation
by examining the Performance Schema keyring_component_status table:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+---+
| STATUS_KEY | STATUS_VALUE |
+---------------------+---+
Component_name	component_keyring_file
Author	Oracle Corporation
License	GPL
Implementation_name	component_keyring_file
Version	1.0
Component_status	Active
Data_file	/usr/local/mysql/keyring/component_keyring_file
Read_only	No
+---------------------+---+

A Component_status value of Active indicates that the component initialized successfully.

If the component cannot be loaded, server startup fails. Check the server error log for diagnostic
messages. If the component loads but fails to initialize due to configuration problems, the server starts
but the Component_status value is Disabled. Check the server error log, correct the configuration
issues, and use the ALTER INSTANCE RELOAD KEYRING statement to reload the configuration.

276

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-component-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-keyring

Keyring Plugin Installation

Keyring components should be loaded only by using a manifest file, not by using the INSTALL
COMPONENT statement. Keyring components loaded using that statement may be available too late in
the server startup sequence for certain components that use the keyring, such as InnoDB, because
they are registered in the mysql.component system table and loaded automatically for subsequent
server restarts. But mysql.component is an InnoDB table, so any components named in it can be
loaded during startup only after InnoDB initialization.

If no keyring component or plugin is available when a component tries to access the keyring service,
the service cannot be used by that component. As a result, the component may fail to initialize or may
initialize with limited functionality. For example, if InnoDB finds that there are encrypted tablespaces
when it initializes, it attempts to access the keyring. If the keyring is unavailable, InnoDB can access
only unencrypted tablespaces.

6.4.3 Keyring Plugin Installation

Keyring service consumers require that a keyring component or plugin be installed:

• To use a keyring plugin, begin with the instructions here. (Also, for general information about
installing plugins, see Installing and Uninstalling Plugins.)

• To use a keyring component instead, begin with Section 6.4.2, “Keyring Component Installation”.

• If you intend to use keyring functions in conjunction with the chosen keyring component or plugin,
install the functions after installing that component or plugin, using the instructions in Section 6.4.15,
“General-Purpose Keyring Key-Management Functions”.

Note

Only one keyring component or plugin should be enabled at a time. Enabling
multiple keyring components or plugins is unsupported and results may not be
as anticipated.

A keyring component must be enabled on the MySQL Server instance if you
need to support secure storage for persisted system variable values, rather than
a keyring plugin, which do not support the function. See Persisting Sensitive
System Variables.

MySQL provides these keyring plugin choices:

• keyring_file (deprecated as of MySQL 8.0.34): Stores keyring data in a file local to the server
host. Available in MySQL Community Edition and MySQL Enterprise Edition distributions. For
instructions about installing the component that replaces this plugin, see Section 6.4.2, “Keyring
Component Installation”.

• keyring_encrypted_file (deprecated as of MySQL 8.0.34): Stores keyring data in an
encrypted, password-protected file local to the server host. Available in MySQL Enterprise
Edition distributions. For instructions about installing the component that replaces this plugin, see
Section 6.4.2, “Keyring Component Installation”.

• keyring_okv: A KMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products
such as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in MySQL
Enterprise Edition distributions.

• keyring_aws: Communicates with the Amazon Web Services Key Management Service as a back
end for key generation and uses a local file for key storage. Available in MySQL Enterprise Edition
distributions.

• keyring_hashicorp: Communicates with HashiCorp Vault for back end storage. Available in
MySQL Enterprise Edition distributions.

277

https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive
https://dev.mysql.com/doc/refman/8.0/en/persisted-system-variables.html#persisted-system-variables-sensitive

Keyring Plugin Installation

• keyring_oci(deprecated as of MySQL 8.0.31): Communicates with Oracle Cloud Infrastructure
Vault for back end storage. See Section 6.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring
Plugin”.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

A keyring component or plugin must be loaded early during the server startup sequence so that other
components can access it as necessary during their own initialization. For example, the InnoDB
storage engine uses the keyring for tablespace encryption, so a keyring component or plugin must be
loaded and available prior to InnoDB initialization.

Installation for each keyring plugin is similar. The following instructions describe how to install
keyring_file. To use a different keyring plugin, substitute its name for keyring_file.

The keyring_file plugin library file base name is keyring_file. The file name suffix differs per
platform (for example, .so for Unix and Unix-like systems, .dll for Windows).

To load the plugin, use the --early-plugin-load option to name the plugin library file that contains
it. For example, on platforms where the plugin library file suffix is .so, use these lines in the server
my.cnf file, adjusting the .so suffix for your platform as necessary:

[mysqld]
early-plugin-load=keyring_file.so

Before starting the server, check the notes for your chosen keyring plugin for configuration instructions
specific to that plugin:

• keyring_file: Section 6.4.6, “Using the keyring_file File-Based Keyring Plugin”.

• keyring_encrypted_file: Section 6.4.7, “Using the keyring_encrypted_file Encrypted File-
Based Keyring Plugin”.

• keyring_okv: Section 6.4.8, “Using the keyring_okv KMIP Plugin”.

• keyring_aws: Section 6.4.9, “Using the keyring_aws Amazon Web Services Keyring Plugin”

• keyring_hashicorp: Section 6.4.10, “Using the HashiCorp Vault Keyring Plugin”

• keyring_oci: Section 6.4.12, “Using the Oracle Cloud Infrastructure Vault Keyring Plugin”

After performing any plugin-specific configuration, start the server. Verify plugin installation by
examining the Information Schema PLUGINS table or use the SHOW PLUGINS statement (see
Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'keyring%';
+--------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------+---------------+
| keyring_file | ACTIVE |
+--------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

Plugins can be loaded by methods other than --early-plugin-load, such as the --plugin-load
or --plugin-load-add option or the INSTALL PLUGIN statement. However, keyring plugins loaded
using those methods may be available too late in the server startup sequence for certain components
that use the keyring, such as InnoDB:

• Plugin loading using --plugin-load or --plugin-load-add occurs after InnoDB initialization.

278

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add

Using the component_keyring_file File-Based Keyring Component

• Plugins installed using INSTALL PLUGIN are registered in the mysql.plugin system table and
loaded automatically for subsequent server restarts. However, because mysql.plugin is an
InnoDB table, any plugins named in it can be loaded during startup only after InnoDB initialization.

If no keyring component or plugin is available when a component tries to access the keyring service,
the service cannot be used by that component. As a result, the component may fail to initialize or may
initialize with limited functionality. For example, if InnoDB finds that there are encrypted tablespaces
when it initializes, it attempts to access the keyring. If the keyring is unavailable, InnoDB can access
only unencrypted tablespaces. To ensure that InnoDB can access encrypted tablespaces as well, use
--early-plugin-load to load the keyring plugin.

6.4.4 Using the component_keyring_file File-Based Keyring Component

The component_keyring_file keyring component stores keyring data in a file local to the server
host.

Warning

For encryption key management, the component_keyring_file
and component_keyring_encrypted_file components, and the
keyring_file and keyring_encrypted_file plugins are not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

To use component_keyring_file for keystore management, you must:

1. Write a manifest that tells the server to load component_keyring_file, as described in
Section 6.4.2, “Keyring Component Installation”.

2. Write a configuration file for component_keyring_file, as described here.

When it initializes, component_keyring_file reads either a global configuration file, or a global
configuration file paired with a local configuration file:

• The component attempts to read its global configuration file from the directory where the component
library file is installed (that is, the server plugin directory).

• If the global configuration file indicates use of a local configuration file, the component attempts to
read its local configuration file from the data directory.

• Although global and local configuration files are located in different directories, the file name is
component_keyring_file.cnf in both locations.

• It is an error for no configuration file to exist. component_keyring_file cannot initialize without a
valid configuration.

Local configuration files permit setting up multiple server instances to use
component_keyring_file, such that component configuration for each server instance is specific
to a given data directory instance. This enables the same keyring component to be used with a distinct
data file for each instance.

component_keyring_file configuration files have these properties:

• A configuration file must be in valid JSON format.

• A configuration file permits these configuration items:

• "read_local_config": This item is permitted only in the global configuration file. If the item is
not present, the component uses only the global configuration file. If the item is present, its value is
true or false, indicating whether the component should read configuration information from the
local configuration file.

279

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Using the component_keyring_file File-Based Keyring Component

If the "read_local_config" item is present in the global configuration file along with other
items, the component checks the "read_local_config" item value first:

• If the value is false, the component processes the other items in the global configuration file
and ignores the local configuration file.

• If the value is true, the component ignores the other items in the global configuration file and
attempts to read the local configuration file.

• "path": The item value is a string that names the file to use for storing keyring data. The file
should be named using an absolute path, not a relative path. This item is mandatory in the
configuration. If not specified, component_keyring_file initialization fails.

• "read_only": The item value indicates whether the keyring data file is read only. The item
value is true (read only) or false (read/write). This item is mandatory in the configuration. If not
specified, component_keyring_file initialization fails.

• The database administrator has the responsibility for creating any configuration files to be used,
and for ensuring that their contents are correct. If an error occurs, server startup fails and the
administrator must correct any issues indicated by diagnostics in the server error log.

Given the preceding configuration file properties, to configure component_keyring_file, create
a global configuration file named component_keyring_file.cnf in the directory where the
component_keyring_file library file is installed, and optionally create a local configuration file, also
named component_keyring_file.cnf, in the data directory. The following instructions assume
that a keyring data file named /usr/local/mysql/keyring/component_keyring_file is to be
used in read/write fashion.

• To use a global configuration file only, the file contents look like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_file",
 "read_only": false
}

Create this file in the directory where the component_keyring_file library file is installed.

• Alternatively, to use a global and local configuration file pair, the global file looks like this:

{
 "read_local_config": true
}

Create this file in the directory where the component_keyring_file library file is installed.

The local file looks like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_file",
 "read_only": false
}

Create this file in the data directory.

Keyring operations are transactional: component_keyring_file uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has the
same name as the data file with a suffix of .backup.

component_keyring_file supports the functions that comprise the standard MySQL Keyring
service interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

280

Using the component_keyring_encrypted_file Encrypted File-Based Keyring Component

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by component_keyring_file, see
Section 6.4.13, “Supported Keyring Key Types and Lengths”.

6.4.5 Using the component_keyring_encrypted_file Encrypted File-Based
Keyring Component

Note

component_keyring_encrypted_file is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

The component_keyring_encrypted_file keyring component stores keyring data in an
encrypted, password-protected file local to the server host.

Warning

For encryption key management, the component_keyring_file
and component_keyring_encrypted_file components, and the
keyring_file and keyring_encrypted_file plugins are not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

To use component_keyring_encrypted_file for keystore management, you must:

1. Write a manifest that tells the server to load component_keyring_encrypted_file, as
described in Section 6.4.2, “Keyring Component Installation”.

2. Write a configuration file for component_keyring_encrypted_file, as described here.

When it initializes, component_keyring_encrypted_file reads either a global configuration file,
or a global configuration file paired with a local configuration file:

• The component attempts to read its global configuration file from the directory where the component
library file is installed (that is, the server plugin directory).

• If the global configuration file indicates use of a local configuration file, the component attempts to
read its local configuration file from the data directory.

• Although global and local configuration files are located in different directories, the file name is
component_keyring_encrypted_file.cnf in both locations.

• It is an error for no Preconfiguration file to exist. component_keyring_encrypted_file cannot
initialize without a valid configuration.

Local configuration files permit setting up multiple server instances to use
component_keyring_encrypted_file, such that component configuration for each server
instance is specific to a given data directory instance. This enables the same keyring component to be
used with a distinct data file for each instance.

component_keyring_encrypted_file configuration files have these properties:

• A configuration file must be in valid JSON format.

281

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://www.mysql.com/products/

Using the component_keyring_encrypted_file Encrypted File-Based Keyring Component

• A configuration file permits these configuration items:

• "read_local_config": This item is permitted only in the global configuration file. If the item is
not present, the component uses only the global configuration file. If the item is present, its value is
true or false, indicating whether the component should read configuration information from the
local configuration file.

If the "read_local_config" item is present in the global configuration file along with other
items, the component checks the "read_local_config" item value first:

• If the value is false, the component processes the other items in the global configuration file
and ignores the local configuration file.

• If the value is true, the component ignores the other items in the global configuration file and
attempts to read the local configuration file.

• "path": The item value is a string that names the file to use for storing keyring data. The file
should be named using an absolute path, not a relative path. This item is mandatory in the
configuration. If not specified, component_keyring_encrypted_file initialization fails.

• "password": The item value is a string that specifies the password for accessing
the data file. This item is mandatory in the configuration. If not specified,
component_keyring_encrypted_file initialization fails.

• "read_only": The item value indicates whether the keyring data file is read only. The item
value is true (read only) or false (read/write). This item is mandatory in the configuration. If not
specified, component_keyring_encrypted_file initialization fails.

• The database administrator has the responsibility for creating any configuration files to be used,
and for ensuring that their contents are correct. If an error occurs, server startup fails and the
administrator must correct any issues indicated by diagnostics in the server error log.

• Any configuration file that stores a password should have a restrictive mode and be accessible only
to the account used to run the MySQL server.

Given the preceding configuration file properties, to configure
component_keyring_encrypted_file, create a global configuration file
named component_keyring_encrypted_file.cnf in the directory where the
component_keyring_encrypted_file library file is installed, and optionally create a local
configuration file, also named component_keyring_encrypted_file.cnf, in the data directory.
The following instructions assume that a keyring data file named /usr/local/mysql/keyring/
component_keyring_encrypted_file is to be used in read/write fashion. You must also choose a
password.

• To use a global configuration file only, the file contents look like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_encrypted_file",
 "password": "password",
 "read_only": false
}

Create this file in the directory where the component_keyring_encrypted_file library file is
installed.

• Alternatively, to use a global and local configuration file pair, the global file looks like this:

{
 "read_local_config": true
}

Create this file in the directory where the component_keyring_encrypted_file library file is
installed.

282

Using the keyring_file File-Based Keyring Plugin

The local file looks like this:

{
 "path": "/usr/local/mysql/keyring/component_keyring_encrypted_file",
 "password": "password",
 "read_only": false
}

Create this file in the data directory.

Keyring operations are transactional: component_keyring_encrypted_file uses a backup file
during write operations to ensure that it can roll back to the original file if an operation fails. The backup
file has the same name as the data file with a suffix of .backup.

component_keyring_encrypted_file supports the functions that comprise the standard MySQL
Keyring service interface. Keyring operations performed by those functions are accessible at two
levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by
component_keyring_encrypted_file, see Section 6.4.13, “Supported Keyring Key Types and
Lengths”.

6.4.6 Using the keyring_file File-Based Keyring Plugin

The keyring_file keyring plugin stores keyring data in a file local to the server host.

As of MySQL 8.0.34, this plugin is deprecated and subject to removal in a future release of MySQL.
Instead, consider using the component_keyring_file component for storing keyring data (see
Section 6.4.4, “Using the component_keyring_file File-Based Keyring Component”).

Warning

For encryption key management, the keyring_file plugin is not intended as
a regulatory compliance solution. Security standards such as PCI, FIPS, and
others require use of key management systems to secure, manage, and protect
encryption keys in key vaults or hardware security modules (HSMs).

To install keyring_file, use the general instructions found in Section 6.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_file found here.

To be usable during the server startup process, keyring_file must be loaded using the --early-
plugin-load option. The keyring_file_data system variable optionally configures the location of
the file used by the keyring_file plugin for data storage. The default value is platform specific. To
configure the file location explicitly, set the variable value at startup. For example, use these lines in the
server my.cnf file, adjusting the .so suffix and file location for your platform as necessary:

[mysqld]
early-plugin-load=keyring_file.so
keyring_file_data=/usr/local/mysql/mysql-keyring/keyring

Keyring operations are transactional: The keyring_file plugin uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has the
same name as the value of the keyring_file_data system variable with a suffix of .backup.

283

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin

For additional information about keyring_file_data, see Section 6.4.19, “Keyring System
Variables”.

To ensure that keys are flushed only when the correct keyring storage file exists, keyring_file
stores a SHA-256 checksum of the keyring in the file. Before updating the file, the plugin verifies that it
contains the expected checksum.

The keyring_file plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_file, see
Section 6.4.13, “Supported Keyring Key Types and Lengths”.

6.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin

Note

The keyring_encrypted_file plugin is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

The keyring_encrypted_file keyring plugin stores keyring data in an encrypted, password-
protected file local to the server host.

As of MySQL 8.0.34, this plugin is deprecated and subject to removal in a future release of MySQL.
Instead, consider using the component_encrypted_keyring_file component for storing keyring
data (see Section 6.4.5, “Using the component_keyring_encrypted_file Encrypted File-Based Keyring
Component”).

Warning

For encryption key management, the keyring_encrypted_file plugin is not
intended as a regulatory compliance solution. Security standards such as PCI,
FIPS, and others require use of key management systems to secure, manage,
and protect encryption keys in key vaults or hardware security modules (HSMs).

To install keyring_encrypted_file, use the general instructions found in Section 6.4.3, “Keyring
Plugin Installation”, together with the configuration information specific to keyring_encrypted_file
found here.

To be usable during the server startup process, keyring_encrypted_file must be loaded
using the --early-plugin-load option. To specify the password for encrypting the keyring
data file, set the keyring_encrypted_file_password system variable. (The password is
mandatory; if not specified at server startup, keyring_encrypted_file initialization fails.) The
keyring_encrypted_file_data system variable optionally configures the location of the file used
by the keyring_encrypted_file plugin for data storage. The default value is platform specific. To
configure the file location explicitly, set the variable value at startup. For example, use these lines in
the server my.cnf file, adjusting the .so suffix and file location for your platform as necessary and
substituting your chosen password:

[mysqld]
early-plugin-load=keyring_encrypted_file.so

284

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Using the keyring_okv KMIP Plugin

keyring_encrypted_file_data=/usr/local/mysql/mysql-keyring/keyring-encrypted
keyring_encrypted_file_password=password

Because the my.cnf file stores a password when written as shown, it should have a restrictive mode
and be accessible only to the account used to run the MySQL server.

Keyring operations are transactional: The keyring_encrypted_file plugin uses a backup file
during write operations to ensure that it can roll back to the original file if an operation fails. The backup
file has the same name as the value of the keyring_encrypted_file_data system variable with a
suffix of .backup.

For additional information about the system variables used to configure the
keyring_encrypted_file plugin, see Section 6.4.19, “Keyring System Variables”.

To ensure that keys are flushed only when the correct keyring storage file exists,
keyring_encrypted_file stores a SHA-256 checksum of the keyring in the file. Before
updating the file, the plugin verifies that it contains the expected checksum. In addition,
keyring_encrypted_file encrypts file contents using AES before writing the file, and decrypts file
contents after reading the file.

The keyring_encrypted_file plugin supports the functions that comprise the standard MySQL
Keyring service interface. Keyring operations performed by those functions are accessible at two
levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_encrypted_file, see
Section 6.4.13, “Supported Keyring Key Types and Lengths”.

6.4.8 Using the keyring_okv KMIP Plugin

Note

The keyring_okv plugin is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

The Key Management Interoperability Protocol (KMIP) enables communication of cryptographic keys
between a key management server and its clients. The keyring_okv keyring plugin uses the KMIP
1.1 protocol to communicate securely as a client of a KMIP back end. Keyring material is generated
exclusively by the back end, not by keyring_okv. The plugin works with these KMIP-compatible
products:

• Oracle Key Vault

• Gemalto SafeNet KeySecure Appliance

• Townsend Alliance Key Manager

• Entrust KeyControl

Each MySQL Server instance must be registered separately as a client for KMIP. If two or more
MySQL Server instances use the same set of credentials, they can interfere with each other’s
functioning.

285

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://www.mysql.com/products/

Using the keyring_okv KMIP Plugin

The keyring_okv plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_okv, Section 6.4.13,
“Supported Keyring Key Types and Lengths”.

To install keyring_okv, use the general instructions found in Section 6.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_okv found here.

• General keyring_okv Configuration

• Configuring keyring_okv for Oracle Key Vault

• Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance

• Configuring keyring_okv for Townsend Alliance Key Manager

• Configuring keyring_okv for Entrust KeyControl

• Password-Protecting the keyring_okv Key File

General keyring_okv Configuration

Regardless of which KMIP back end the keyring_okv plugin uses for keyring storage, the
keyring_okv_conf_dir system variable configures the location of the directory used by
keyring_okv for its support files. The default value is empty, so you must set the variable to name
a properly configured directory before the plugin can communicate with the KMIP back end. Unless
you do so, keyring_okv writes a message to the error log during server startup that it cannot
communicate:

[Warning] Plugin keyring_okv reported: 'For keyring_okv to be
initialized, please point the keyring_okv_conf_dir variable to a directory
containing Oracle Key Vault configuration file and ssl materials'

The keyring_okv_conf_dir variable must name a directory that contains the following items:

• okvclient.ora: A file that contains details of the KMIP back end with which keyring_okv
communicates.

• ssl: A directory that contains the certificate and key files required to establish a secure connection
with the KMIP back end: CA.pem, cert.pem, and key.pem. If the key file is password-protected,
the ssl directory can contain a single-line text file named password.txt containing the password
needed to decrypt the key file.

Both the okvclient.ora file and ssl directory with the certificate and key files are required for
keyring_okv to work properly. The procedure used to populate the configuration directory with these
files depends on the KMIP back end used with keyring_okv, as described elsewhere.

The configuration directory used by keyring_okv as the location for its support files should have a
restrictive mode and be accessible only to the account used to run the MySQL server. For example,
on Unix and Unix-like systems, to use the /usr/local/mysql/mysql-keyring-okv directory, the
following commands (executed as root) create the directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring-okv

286

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html

Using the keyring_okv KMIP Plugin

chmod 750 mysql-keyring-okv
chown mysql mysql-keyring-okv
chgrp mysql mysql-keyring-okv

To be usable during the server startup process, keyring_okv must be loaded using the --early-
plugin-load option. Also, set the keyring_okv_conf_dir system variable to tell keyring_okv
where to find its configuration directory. For example, use these lines in the server my.cnf file,
adjusting the .so suffix and directory location for your platform as necessary:

[mysqld]
early-plugin-load=keyring_okv.so
keyring_okv_conf_dir=/usr/local/mysql/mysql-keyring-okv

For additional information about keyring_okv_conf_dir, see Section 6.4.19, “Keyring System
Variables”.

Configuring keyring_okv for Oracle Key Vault

The discussion here assumes that you are familiar with Oracle Key Vault. Some pertinent information
sources:

• Oracle Key Vault site

• Oracle Key Vault documentation

In Oracle Key Vault terminology, clients that use Oracle Key Vault to store and retrieve security objects
are called endpoints. To communicate with Oracle Key Vault, it is necessary to register as an endpoint
and enroll by downloading and installing endpoint support files. Note that you must register a separate
endpoint for each MySQL Server instance. If two or more MySQL Server instances use the same
endpoint, they can interfere with each other’s functioning.

The following procedure briefly summarizes the process of setting up keyring_okv for use with
Oracle Key Vault:

1. Create the configuration directory for the keyring_okv plugin to use.

2. Register an endpoint with Oracle Key Vault to obtain an enrollment token.

3. Use the enrollment token to obtain the okvclient.jar client software download.

4. Install the client software to populate the keyring_okv configuration directory that contains the
Oracle Key Vault support files.

Use the following procedure to configure keyring_okv and Oracle Key Vault to work together. This
description only summarizes how to interact with Oracle Key Vault. For details, visit the Oracle Key
Vault site and consult the Oracle Key Vault Administrator's Guide.

1. Create the configuration directory that contains the Oracle Key Vault support files, and make sure
that the keyring_okv_conf_dir system variable is set to name that directory (for details, see
General keyring_okv Configuration).

2. Log in to the Oracle Key Vault management console as a user who has the System Administrator
role.

3. Select the Endpoints tab to arrive at the Endpoints page. On the Endpoints page, click Add.

4. Provide the required endpoint information and click Register. The endpoint type should be Other.
Successful registration results in an enrollment token.

5. Log out from the Oracle Key Vault server.

6. Connect again to the Oracle Key Vault server, this time without logging in. Use the endpoint
enrollment token to enroll and request the okvclient.jar software download. Save this file to
your system.

287

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
http://www.oracle.com/technetwork/database/options/key-management/overview/index.html
http://www.oracle.com/technetwork/database/options/key-management/documentation/index.html
http://www.oracle.com/technetwork/database/options/key-management/overview/index.html
http://www.oracle.com/technetwork/database/options/key-management/overview/index.html

Using the keyring_okv KMIP Plugin

7. Install the okvclient.jar file using the following command (you must have JDK 1.4 or higher):

java -jar okvclient.jar -d dir_name [-v]

The directory name following the -d option is the location in which to install extracted files. The -v
option, if given, causes log information to be produced that may be useful if the command fails.

When the command asks for an Oracle Key Vault endpoint password, do not provide one. Instead,
press Enter. (The result is that no password is required when the endpoint connects to Oracle Key
Vault.)

The preceding command produces an okvclient.ora file, which should be in this location under
the directory named by the -d option in the preceding java -jar command:

install_dir/conf/okvclient.ora

The expected file contents include lines that look like this:

SERVER=host_ip:port_num
STANDBY_SERVER=host_ip:port_num

The SERVER variable is mandatory, and the STANDBY_SERVER variable is optional. The
keyring_okv plugin attempts to communicate with the server running on the host named by the
SERVER variable and falls back to STANDBY_SERVER if that fails.

Note

If the existing file is not in this format, then create a new file with the
lines shown in the previous example. Also, consider backing up the
okvclient.ora file before you run the okvutil command. Restore the
file as needed.

From MySQL 8.0.29, you can specify more than one standby server (up to a maximum of 64). If
you do, the keyring_okv plugin iterates over them until it can establish a connection, and fails if
it cannot. To add extra standby servers, edit the okvclient.ora file to specify the IP addresses
and port numbers of the servers as a comma-separated list in the value of the STANDBY_SERVER
variable. For example:

STANDBY_SERVER=host_ip:port_num,host_ip:port_num,host_ip:port_num,host_ip:port_num

Ensure that the list of standby servers is kept short, accurate, and up to date, and servers that
are no longer valid are removed. There is a 20-second wait for each connection attempt, so
the presence of a long list of invalid servers can significantly affect the keyring_okv plugin’s
connection time and therefore the server startup time.

8. Go to the Oracle Key Vault installer directory and test the setup by running this command:

okvutil/bin/okvutil list

The output should look something like this:

Unique ID Type Identifier
255AB8DE-C97F-482C-E053-0100007F28B9 Symmetric Key -
264BF6E0-A20E-7C42-E053-0100007FB29C Symmetric Key -

For a fresh Oracle Key Vault server (a server without any key in it), the output looks like this
instead, to indicate that there are no keys in the vault:

no objects found

9. Use this command to extract the ssl directory containing SSL materials from the okvclient.jar
file:

jar xf okvclient.jar ssl

288

Using the keyring_okv KMIP Plugin

10. Copy the Oracle Key Vault support files (the okvclient.ora file and the ssl directory) into the
configuration directory.

11. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting
the keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyring_okv plugin
and keyring_okv uses the files in its configuration directory to communicate with Oracle Key Vault.

Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance

Gemalto SafeNet KeySecure Appliance uses the KMIP protocol (version 1.1 or 1.2). The
keyring_okv keyring plugin (which supports KMIP 1.1) can use KeySecure as its KMIP back end for
keyring storage.

Use the following procedure to configure keyring_okv and KeySecure to work together. The
description only summarizes how to interact with KeySecure. For details, consult the section named
Add a KMIP Server in the KeySecure User Guide.

1. Create the configuration directory that contains the KeySecure support files, and make sure that the
keyring_okv_conf_dir system variable is set to name that directory (for details, see General
keyring_okv Configuration).

2. In the configuration directory, create a subdirectory named ssl to use for storing the required SSL
certificate and key files.

3. In the configuration directory, create a file named okvclient.ora. It should have following format:

SERVER=host_ip:port_num
STANDBY_SERVER=host_ip:port_num

For example, if KeySecure is running on host 198.51.100.20 and listening on port 9002, and also
running on alternative host 203.0.113.125 and listening on port 8041, the okvclient.ora file
looks like this:

SERVER=198.51.100.20:9002
STANDBY_SERVER=203.0.113.125:8041

From MySQL 8.0.29, you can specify more than one standby server (up to a maximum of 64). If
you do, the keyring_okv plugin iterates over them until it can establish a connection, and fails if
it cannot. To add extra standby servers, edit the okvclient.ora file to specify the IP addresses
and port numbers of the servers as a comma-separated list in the value of the STANDBY_SERVER
variable. For example:

STANDBY_SERVER=host_ip:port_num,host_ip:port_num,host_ip:port_num,host_ip:port_num

Ensure that the list of standby servers is kept short, accurate, and up to date, and servers that
are no longer valid are removed. There is a 20-second wait for each connection attempt, so
the presence of a long list of invalid servers can significantly affect the keyring_okv plugin’s
connection time and therefore the server startup time.

4. Connect to the KeySecure Management Console as an administrator with credentials for Certificate
Authorities access.

5. Navigate to Security >> Local CAs and create a local certificate authority (CA).

6. Go to Trusted CA Lists. Select Default and click on Properties. Then select Edit for Trusted
Certificate Authority List and add the CA just created.

7. Download the CA and save it in the ssl directory as a file named CA.pem.

8. Navigate to Security >> Certificate Requests and create a certificate. Then you can download a
compressed tar file containing certificate PEM files.

289

https://www2.gemalto.com/aws-marketplace/usage/vks/uploadedFiles/Support_and_Downloads/AWS/007-012362-001-keysecure-appliance-user-guide-v7.1.0.pdf

Using the keyring_okv KMIP Plugin

9. Extract the PEM files from in the downloaded file. For example, if the file name is
csr_w_pk_pkcs8.gz, decompress and unpack it using this command:

tar zxvf csr_w_pk_pkcs8.gz

Two files result from the extraction operation: certificate_request.pem and
private_key_pkcs8.pem.

10. Use this openssl command to decrypt the private key and create a file named key.pem:

openssl pkcs8 -in private_key_pkcs8.pem -out key.pem

11. Copy the key.pem file into the ssl directory.

12. Copy the certificate request in certificate_request.pem into the clipboard.

13. Navigate to Security >> Local CAs. Select the same CA that you created earlier (the one you
downloaded to create the CA.pem file), and click Sign Request. Paste the Certificate Request from
the clipboard, choose a certificate purpose of Client (the keyring is a client of KeySecure), and click
Sign Request. The result is a certificate signed with the selected CA in a new page.

14. Copy the signed certificate to the clipboard, then save the clipboard contents as a file named
cert.pem in the ssl directory.

15. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting
the keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyring_okv plugin
and keyring_okv uses the files in its configuration directory to communicate with KeySecure.

Configuring keyring_okv for Townsend Alliance Key Manager

Townsend Alliance Key Manager uses the KMIP protocol. The keyring_okv keyring plugin can
use Alliance Key Manager as its KMIP back end for keyring storage. For additional information, see
Alliance Key Manager for MySQL.

Configuring keyring_okv for Entrust KeyControl

Entrust KeyControl uses the KMIP protocol. The keyring_okv keyring plugin can use Entrust
KeyControl as its KMIP back end for keyring storage. For additional information, see the Oracle MySQL
and Entrust KeyControl with nShield HSM Integration Guide.

Password-Protecting the keyring_okv Key File

You can optionally protect the key file with a password and supply a file containing the password to
enable the key file to be decrypted. To so do, change location to the ssl directory and perform these
steps:

1. Encrypt the key.pem key file. For example, use a command like this, and enter the encryption
password at the prompts:

$> openssl rsa -des3 -in key.pem -out key.pem.new
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

2. Save the encryption password in a single-line text file named password.txt in the ssl directory.

3. Verify that the encrypted key file can be decrypted using the following command. The decrypted file
should display on the console:

$> openssl rsa -in key.pem.new -passin file:password.txt

4. Remove the original key.pem file and rename key.pem.new to key.pem.

290

https://www.townsendsecurity.com/product/encryption-key-management-mysql
https://www.entrust.com/-/media/documentation/integration-guides/oracle-mysql-enterprise-keycontrol-nshield-ig.pdf
https://www.entrust.com/-/media/documentation/integration-guides/oracle-mysql-enterprise-keycontrol-nshield-ig.pdf

Using the keyring_aws Amazon Web Services Keyring Plugin

5. Change the ownership and access mode of new key.pem file and password.txt file as
necessary to ensure that they have the same restrictions as other files in the ssl directory.

6.4.9 Using the keyring_aws Amazon Web Services Keyring Plugin

Note

The keyring_aws plugin is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

The keyring_aws keyring plugin communicates with the Amazon Web Services Key Management
Service (AWS KMS) as a back end for key generation and uses a local file for key storage. All keyring
material is generated exclusively by the AWS server, not by keyring_aws.

MySQL Enterprise Edition can work with keyring_aws on Red Hat Enterprise Linux, SUSE Linux
Enterprise Server, Debian, Ubuntu, macOS, and Windows. MySQL Enterprise Edition does not support
the use of keyring_aws on these platforms:

• EL6

• Generic Linux (glibc2.12)

• SLES 12 (with versions after MySQL Server 5.7)

• Solaris

The discussion here assumes that you are familiar with AWS in general and KMS in particular. Some
pertinent information sources:

• AWS site

• KMS documentation

The following sections provide configuration and usage information for the keyring_aws keyring
plugin:

• keyring_aws Configuration

• keyring_aws Operation

• keyring_aws Credential Changes

keyring_aws Configuration

To install keyring_aws, use the general instructions found in Section 6.4.3, “Keyring Plugin
Installation”, together with the plugin-specific configuration information found here.

The plugin library file contains the keyring_aws plugin and two loadable functions,
keyring_aws_rotate_cmk() and keyring_aws_rotate_keys().

To configure keyring_aws, you must obtain a secret access key that provides credentials for
communicating with AWS KMS and write it to a configuration file:

1. Create an AWS KMS account.

2. Use AWS KMS to create a secret access key ID and secret access key. The access key serves to
verify your identity and that of your applications.

3. Use the AWS KMS account to create a KMS key ID. At MySQL startup, set the
keyring_aws_cmk_id system variable to the CMK ID value. This variable is mandatory and there
is no default. (Its value can be changed at runtime if desired using SET GLOBAL.)

291

https://www.mysql.com/products/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Using the keyring_aws Amazon Web Services Keyring Plugin

4. If necessary, create the directory in which the configuration file should be located. The directory
should have a restrictive mode and be accessible only to the account used to run the MySQL
server. For example, on Unix and Unix-like systems, to use /usr/local/mysql/mysql-
keyring/keyring_aws_conf as the file name, the following commands (executed as root)
create its parent directory and set the directory mode and ownership:

$> cd /usr/local/mysql
$> mkdir mysql-keyring
$> chmod 750 mysql-keyring
$> chown mysql mysql-keyring
$> chgrp mysql mysql-keyring

At MySQL startup, set the keyring_aws_conf_file system variable to /usr/local/mysql/
mysql-keyring/keyring_aws_conf to indicate the configuration file location to the server.

5. Prepare the keyring_aws configuration file, which should contain two lines:

• Line 1: The secret access key ID

• Line 2: The secret access key

For example, if the key ID is wwwwwwwwwwwwwEXAMPLE and the key is xxxxxxxxxxxxx/
yyyyyyy/zzzzzzzzEXAMPLEKEY, the configuration file looks like this:

wwwwwwwwwwwwwEXAMPLE
xxxxxxxxxxxxx/yyyyyyy/zzzzzzzzEXAMPLEKEY

To be usable during the server startup process, keyring_aws must be loaded using the --
early-plugin-load option. The keyring_aws_cmk_id system variable is mandatory and
configures the KMS key ID obtained from the AWS KMS server. The keyring_aws_conf_file and
keyring_aws_data_file system variables optionally configure the locations of the files used by the
keyring_aws plugin for configuration information and data storage. The file location variable default
values are platform specific. To configure the locations explicitly, set the variable values at startup. For
example, use these lines in the server my.cnf file, adjusting the .so suffix and file locations for your
platform as necessary:

[mysqld]
early-plugin-load=keyring_aws.so
keyring_aws_cmk_id='arn:aws:kms:us-west-2:111122223333:key/abcd1234-ef56-ab12-cd34-ef56abcd1234'
keyring_aws_conf_file=/usr/local/mysql/mysql-keyring/keyring_aws_conf
keyring_aws_data_file=/usr/local/mysql/mysql-keyring/keyring_aws_data

For the keyring_aws plugin to start successfully, the configuration file must exist and contain valid
secret access key information, initialized as described previously. The storage file need not exist. If it
does not, keyring_aws attempts to create it (as well as its parent directory, if necessary).

For additional information about the system variables used to configure the keyring_aws plugin, see
Section 6.4.19, “Keyring System Variables”.

Start the MySQL server and install the functions associated with the keyring_aws plugin. This is a
one-time operation, performed by executing the following statements, adjusting the .so suffix for your
platform as necessary:

CREATE FUNCTION keyring_aws_rotate_cmk RETURNS INTEGER
 SONAME 'keyring_aws.so';
CREATE FUNCTION keyring_aws_rotate_keys RETURNS INTEGER
 SONAME 'keyring_aws.so';

For additional information about the keyring_aws functions, see Section 6.4.16, “Plugin-Specific
Keyring Key-Management Functions”.

keyring_aws Operation

At plugin startup, the keyring_aws plugin reads the AWS secret access key ID and key from its
configuration file. It also reads any encrypted keys contained in its storage file into its in-memory cache.

292

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Using the keyring_aws Amazon Web Services Keyring Plugin

During operation, keyring_aws maintains encrypted keys in the in-memory cache and uses the
storage file as local persistent storage. Each keyring operation is transactional: keyring_aws either
successfully changes both the in-memory key cache and the keyring storage file, or the operation fails
and the keyring state remains unchanged.

To ensure that keys are flushed only when the correct keyring storage file exists, keyring_aws
stores a SHA-256 checksum of the keyring in the file. Before updating the file, the plugin verifies that it
contains the expected checksum.

The keyring_aws plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by these functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

In addition, the keyring_aws_rotate_cmk() and keyring_aws_rotate_keys() functions
“extend” the keyring plugin interface to provide AWS-related capabilities not covered by the standard
keyring service interface. These capabilities are accessible only by calling these functions using SQL.
There are no corresponding C-language key service functions.

For information about the characteristics of key values permitted by keyring_aws, see
Section 6.4.13, “Supported Keyring Key Types and Lengths”.

keyring_aws Credential Changes

Assuming that the keyring_aws plugin has initialized properly at server startup, it is possible to
change the credentials used for communicating with AWS KMS:

1. Use AWS KMS to create a new secret access key ID and secret access key.

2. Store the new credentials in the configuration file (the file named by the
keyring_aws_conf_file system variable). The file format is as described previously.

3. Reinitialize the keyring_aws plugin so that it re-reads the configuration file. Assuming that the
new credentials are valid, the plugin should initialize successfully.

There are two ways to reinitialize the plugin:

• Restart the server. This is simpler and has no side effects, but is not suitable for installations that
require minimal server downtime with as few restarts as possible.

• Reinitialize the plugin without restarting the server by executing the following statements,
adjusting the .so suffix for your platform as necessary:

UNINSTALL PLUGIN keyring_aws;
INSTALL PLUGIN keyring_aws SONAME 'keyring_aws.so';

Note

In addition to loading a plugin at runtime, INSTALL PLUGIN has the
side effect of registering the plugin it in the mysql.plugin system
table. Because of this, if you decide to stop using keyring_aws, it is not
sufficient to remove the --early-plugin-load option from the set of
options used to start the server. That stops the plugin from loading early,
but the server still attempts to load it when it gets to the point in the startup
sequence where it loads the plugins registered in mysql.plugin.

293

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Using the HashiCorp Vault Keyring Plugin

Consequently, if you execute the UNINSTALL PLUGIN plus INSTALL
PLUGIN sequence just described to change the AWS KMS credentials,
then to stop using keyring_aws, it is necessary to execute UNINSTALL
PLUGIN again to unregister the plugin in addition to removing the --
early-plugin-load option.

6.4.10 Using the HashiCorp Vault Keyring Plugin

Note

The keyring_hashicorp plugin is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

The keyring_hashicorp keyring plugin communicates with HashiCorp Vault for back end storage.
The plugin supports HashiCorp Vault AppRole authentication. No key information is permanently
stored in MySQL server local storage. (An optional in-memory key cache may be used as intermediate
storage.) Random key generation is performed on the MySQL server side, with the keys subsequently
stored to Hashicorp Vault.

The keyring_hashicorp plugin supports the functions that comprise the standard MySQL Keyring
service interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_hashicorp, see
Section 6.4.13, “Supported Keyring Key Types and Lengths”.

To install keyring_hashicorp, use the general instructions found in Section 6.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_hashicorp found here.
Plugin-specific configuration includes preparation of the certificate and key files needed for connecting
to HashiCorp Vault, as well as configuring HashiCorp Vault itself. The following sections provide the
necessary instructions.

• Certificate and Key Preparation

• HashiCorp Vault Setup

• keyring_hashicorp Configuration

Certificate and Key Preparation

The keyring_hashicorp plugin requires a secure connection to the HashiCorp Vault server,
employing the HTTPS protocol. A typical setup includes a set of certificate and key files:

• company.crt: A custom CA certificate belonging to the organization. This file is used both by
HashiCorp Vault server and the keyring_hashicorp plugin.

• vault.key: The private key of the HashiCorp Vault server instance. This file is used by HashiCorp
Vault server.

• vault.crt: The certificate of the HashiCorp Vault server instance. This file must be signed by the
organization CA certificate.

294

https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html

Using the HashiCorp Vault Keyring Plugin

The following instructions describe how to create the certificate and key files using OpenSSL. (If you
already have those files, proceed to HashiCorp Vault Setup.) The instructions as shown apply to Linux
platforms and may require adjustment for other platforms.

Important

Certificates generated by these instructions are self-signed, which may not
be very secure. After you gain experience using such files, consider obtaining
certificate/key material from a registered certificate authority.

1. Prepare the company and HashiCorp Vault server keys.

Use the following commands to generate the key files:

openssl genrsa -aes256 -out company.key 4096
openssl genrsa -aes256 -out vault.key 2048

The commands produce files holding the company private key (company.key) and the Vault
server private key (vault.key). The keys are randomly generated RSA keys of 4,096 and 2,048
bits, respectively.

Each command prompts for a password. For testing purposes, the password is not required. To
disable it, omit the -aes256 argument.

The key files hold sensitive information and should be stored in a secure location. The password
(also sensitive) is required later, so write it down and store it in a secure location.

(Optional) To check key file content and validity, use the following commands:

openssl rsa -in company.key -check
openssl rsa -in vault.key -check

2. Create the company CA certificate.

Use the following command to create a company CA certificate file named company.crt that is
valid for 365 days (enter the command on a single line):

openssl req -x509 -new -nodes -key company.key
 -sha256 -days 365 -out company.crt

If you used the -aes256 argument to perform key encryption during key generation, you are
prompted for the company key password during CA certificate creation. You are also prompted for
information about the certificate holder (that is, you or your company), as shown here:

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:
Email Address []:

Answer the prompts with appropriate values.

3. Create a certificate signing request.

To create a HashiCorp Vault server certificate, a Certificate Signing Request (CSR) must be
prepared for the newly created server key. Create a configuration file named request.conf
containing the following lines. If the HashiCorp Vault server does not run on the local host,
substitute appropriate CN and IP values, and make any other changes required.

[req]
distinguished_name = vault
x509_entensions = v3_req
prompt = no

295

Using the HashiCorp Vault Keyring Plugin

[vault]
C = US
ST = CA
L = RWC
O = Company
CN = 127.0.0.1
[v3_req]
subjectAltName = @alternatives
authorityKeyIdentifier = keyid,issuer
basicConstraints = CA:TRUE
[alternatives]
IP = 127.0.0.1

Use this command to create the signing request:

openssl req -new -key vault.key -config request.conf -out request.csr

The output file (request.csr) is an intermediate file that serves as input for creation of the server
certificate.

4. Create the HashiCorp Vault server certificate.

Sign the combined information from the HashiCorp Vault server key (vault.key) and the CSR
(request.csr) with the company certificate (company.crt) to create the HashiCorp Vault server
certificate (vault.crt). Use the following command to do this (enter the command on a single
line):

openssl x509 -req -in request.csr
 -CA company.crt -CAkey company.key -CAcreateserial
 -out vault.crt -days 365 -sha256

To make the vault.crt server certificate useful, append the contents of the company.crt
company certificate to it. This is required so that the company certificate is delivered along with the
server certificate in requests.

cat company.crt >> vault.crt

If you display the contents of the vault.crt file, it should look like this:

-----BEGIN CERTIFICATE-----
... content of HashiCorp Vault server certificate ...
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
... content of company certificate ...
-----END CERTIFICATE-----

HashiCorp Vault Setup

The following instructions describe how to create a HashiCorp Vault setup that facilitates testing the
keyring_hashicorp plugin.

Important

A test setup is similar to a production setup, but production use of HashiCorp
Vault entails additional security considerations such as use of non-self-signed
certificates and storing the company certificate in the system trust store. You
must implement whatever additional security steps are needed to satisfy your
operational requirements.

These instructions assume availability of the certificate and key files created in Certificate and Key
Preparation. See that section if you do not have those files.

1. Fetch the HashiCorp Vault binary.

Download the HashiCorp Vault binary appropriate for your platform from https://www.vaultproject.io/
downloads.html.

296

https://www.vaultproject.io/downloads.html
https://www.vaultproject.io/downloads.html

Using the HashiCorp Vault Keyring Plugin

Extract the content of the archive to produce the executable vault command, which is used to
perform HashiCorp Vault operations. If necessary, add the directory where you install the command
to the system path.

(Optional) HashiCorp Vault supports autocomplete options that make it easier to use. For more
information, see https://learn.hashicorp.com/vault/getting-started/install#command-completion.

2. Create the HashiCorp Vault server configuration file.

Prepare a configuration file named config.hcl with the following content. For the
tls_cert_file, tls_key_file, and path values, substitute path names appropriate for your
system.

listener "tcp" {
 address="127.0.0.1:8200"
 tls_cert_file="/home/username/certificates/vault.crt"
 tls_key_file="/home/username/certificates/vault.key"
}
storage "file" {
 path = "/home/username/vaultstorage/storage"
}
ui = true

3. Start the HashiCorp Vault server.

To start the Vault server, use the following command, where the -config option specifies the path
to the configuration file just created:

vault server -config=config.hcl

During this step, you may be prompted for a password for the Vault server private key stored in the
vault.key file.

The server should start, displaying some information on the console (IP, port, and so forth).

So that you can enter the remaining commands, put the vault server command in the
background or open another terminal before continuing.

4. Initialize the HashiCorp Vault server.

Note

The operations described in this step are required only when starting Vault
the first time, to obtain the unseal key and root token. Subsequent Vault
instance restarts require only unsealing using the unseal key.

Issue the following commands (assuming Bourne shell syntax):

export VAULT_SKIP_VERIFY=1
vault operator init -n 1 -t 1

The first command enables the vault command to temporarily ignore the fact that no company
certificate has been added to the system trust store. It compensates for the fact that our self-signed
CA is not added to that store. (For production use, such a certificate should be added.)

The second command creates a single unseal key with a requirement for a single unseal key to be
present for unsealing. (For production use, an instance would have multiple unseal keys with up
to that many keys required to be entered to unseal it. The unseal keys should be delivered to key
custodians within the company. Use of a single key might be considered a security issue because
that permits the vault to be unsealed by a single key custodian.)

Vault should reply with information about the unseal key and root token, plus some additional text
(the actual unseal key and root token values differ from those shown here):

297

https://learn.hashicorp.com/vault/getting-started/install#command-completion

Using the HashiCorp Vault Keyring Plugin

...
Unseal Key 1: I2xwcFQc892O0Nt2pBiRNlnkHzTUrWS+JybL39BjcOE=
Initial Root Token: s.vTvXeo3tPEYehfcd9WH7oUKz
...

Store the unseal key and root token in a secure location.

5. Unseal the HashiCorp Vault server.

Use this command to unseal the Vault server:

vault operator unseal

When prompted to enter the unseal key, use the key obtained previously during Vault initialization.

Vault should produce output indicating that setup is complete and the vault is unsealed.

6. Log in to the HashiCorp Vault server and verify its status.

Prepare the environment variables required for logging in as root:

vault login s.vTvXeo3tPEYehfcd9WH7oUKz

For the token value in that command, substitute the content of the root token obtained previously
during Vault initialization.

Verify the Vault server status:

vault status

The output should contain these lines (among others):

...
Initialized true
Sealed false
...

7. Set up HashiCorp Vault authentication and storage.

Note

The operations described in this step are needed only the first time the Vault
instance is run. They need not be repeated afterward.

Enable the AppRole authentication method and verify that it is in the authentication method list:

vault auth enable approle
vault auth list

Enable the Vault KeyValue storage engine:

vault secrets enable -version=1 kv

Create and set up a role for use with the keyring_hashicorp plugin (enter the command on a
single line):

vault write auth/approle/role/mysql token_num_uses=0
 token_ttl=20m token_max_ttl=30m secret_id_num_uses=0

8. Add an AppRole security policy.

Note

The operations described in this step are needed only the first time the Vault
instance is run. They need not be repeated afterward.

298

Using the HashiCorp Vault Keyring Plugin

Prepare a policy that to permit the previously created role to access appropriate secrets. Create a
new file named mysql.hcl with the following content:

path "kv/mysql/*" {
 capabilities = ["create", "read", "update", "delete", "list"]
}

Note

kv/mysql/ in this example may need adjustment per your local installation
policies and security requirements. If so, make the same adjustment
wherever else kv/mysql/ appears in these instructions.

Import the policy file to the Vault server to create a policy named mysql-policy, then assign the
policy to the new role:

vault policy write mysql-policy mysql.hcl
vault write auth/approle/role/mysql policies=mysql-policy

Obtain the ID of the newly created role and store it in a secure location:

vault read auth/approle/role/mysql/role-id

Generate a secret ID for the role and store it in a secure location:

vault write -f auth/approle/role/mysql/secret-id

After these AppRole role ID and secret ID credentials are generated, they are expected to remain
valid indefinitely. They need not be generated again and the keyring_hashicorp plugin can
be configured with them for use on an ongoing basis. For more information about AuthRole
authentication, visit https://www.vaultproject.io/docs/auth/approle.html.

keyring_hashicorp Configuration

The plugin library file contains the keyring_hashicorp plugin and a loadable function,
keyring_hashicorp_update_config(). When the plugin initializes and terminates, it
automatically loads and unloads the function. There is no need to load and unload the function
manually.

The keyring_hashicorp plugin supports the configuration parameters shown in the following table.
To specify these parameters, assign values to the corresponding system variables.

Configuration Parameter System Variable Mandatory

HashiCorp Server URL keyring_hashicorp_server_urlNo

AppRole role ID keyring_hashicorp_role_id Yes

AppRole secret ID keyring_hashicorp_secret_idYes

Store path keyring_hashicorp_store_pathYes

Authorization Path keyring_hashicorp_auth_pathNo

CA certificate file path keyring_hashicorp_ca_path No

Cache control keyring_hashicorp_caching No

To be usable during the server startup process, keyring_hashicorp must be loaded using the --
early-plugin-load option. As indicated by the preceding table, several plugin-related system
variables are mandatory and must also be set. For example, use these lines in the server my.cnf file,
adjusting the .so suffix and file locations for your platform as necessary:

[mysqld]
early-plugin-load=keyring_hashicorp.so
keyring_hashicorp_role_id='ee3b495c-d0c9-11e9-8881-8444c71c32aa'
keyring_hashicorp_secret_id='0512af29-d0ca-11e9-95ee-0010e00dd718'

299

https://www.vaultproject.io/docs/auth/approle.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Using the HashiCorp Vault Keyring Plugin

keyring_hashicorp_store_path='/v1/kv/mysql'
keyring_hashicorp_auth_path='/v1/auth/approle/login'

Note

Per the HashiCorp documentation, all API routes are prefixed with a protocol
version (which you can see in the preceding example as /v1/ in the
keyring_hashicorp_store_path and keyring_hashicorp_auth_path
values). If HashiCorp develops new protocol versions, it may be necessary to
change /v1/ to something else in your configuration.

MySQL Server authenticates against HashiCorp Vault using AppRole authentication. Successful
authentication requires that two secrets be provided to Vault, a role ID and a secret ID, which
are similar in concept to user name and password. The role ID and secret ID values to use
are those obtained during the HashiCorp Vault setup procedure performed previously. To
specify the two IDs, assign their respective values to the keyring_hashicorp_role_id and
keyring_hashicorp_secret_id system variables. The setup procedure also results in a store path
of /v1/kv/mysql, which is the value to assign to keyring_hashicorp_commit_store_path.

At plugin initialization time, keyring_hashicorp attempts to connect to the HashiCorp Vault
server using the configuration values. If the connection is successful, the plugin stores the
values in corresponding system variables that have _commit_ in their name. For example,
upon successful connection, the plugin stores the values of keyring_hashicorp_role_id
and keyring_hashicorp_store_path in keyring_hashicorp_commit_role_id and
keyring_hashicorp_commit_store_path.

Reconfiguration at runtime can be performed with the assistance of the
keyring_hashicorp_update_config() function:

1. Use SET statements to assign the desired new values to the configuration system variables
shown in the preceding table. These assignments in themselves have no effect on ongoing plugin
operation.

2. Invoke keyring_hashicorp_update_config() to cause the plugin to reconfigure and
reconnect to the HashiCorp Vault server using the new variable values.

3. If the connection is successful, the plugin stores the updated configuration values in corresponding
system variables that have _commit_ in their name.

For example, if you have reconfigured HashiCorp Vault to listen on port 8201 rather than the default
8200, reconfigure keyring_hashicorp like this:

mysql> SET GLOBAL keyring_hashicorp_server_url = 'https://127.0.0.1:8201';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT keyring_hashicorp_update_config();
+--------------------------------------+
| keyring_hashicorp_update_config() |
+--------------------------------------+
| Configuration update was successful. |
+--------------------------------------+
1 row in set (0.03 sec)

If the plugin is not able to connect to HashiCorp Vault during initialization or reconfiguration and there
was no existing connection, the _commit_ system variables are set to 'Not committed' for string-
valued variables, and OFF for Boolean-valued variables. If the plugin is not able to connect but there
was an existing connection, that connection remains active and the _commit_ variables reflect the
values used for it.

Note

If you do not set the mandatory system variables at server startup, or if some
other plugin initialization error occurs, initialization fails. In this case, you
can use the runtime reconfiguration procedure to initialize the plugin without
restarting the server.

300

https://www.vaultproject.io/api-docs
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Using the Oracle Cloud Infrastructure Vault Keyring Component

For additional information about the keyring_hashicorp plugin-specific system variables and
function, see Section 6.4.19, “Keyring System Variables”, and Section 6.4.16, “Plugin-Specific Keyring
Key-Management Functions”.

6.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Component

Note

The Oracle Cloud Infrastructure Vault keyring component is included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysql.com/products/.

component_keyring_oci is part of the component infrastructure that communicates with Oracle
Cloud Infrastructure Vault for back end storage. No key information is permanently stored in MySQL
server local storage. All keys are stored in Oracle Cloud Infrastructure Vault, making this component
well suited for Oracle Cloud Infrastructure MySQL customers for management of their MySQL
Enterprise Edition keys.

In MySQL 8.0.24, MySQL Keyring began transitioning from plugins to use the component
infrastructure. The introduction of component_keyring_oci in MySQL 8.0.31 is a continuation of
that effort. For more information, see Keyring Components Versus Keyring Plugins.

Note

Only one keyring component or plugin should be enabled at a time. Enabling
multiple keyring components or plugins is unsupported and results may not be
as anticipated.

To use component_keyring_oci for keystore management, you must:

1. Write a manifest that tells the server to load component_keyring_oci, as described in
Section 6.4.2, “Keyring Component Installation”.

2. Write a configuration file for component_keyring_oci, as described here.

After writing a manifest and configuration file, you should be able to access keys that were created
using the keyring_oci plugin, provided that you specify the same set of configuration options to
initialize the keyring component. The built-in backward compatibility of component_keyring_oci
simplifies migrating from the keyring plugin to the component.

• Configuration Notes

• Verify the Component Installation

• Vault Keyring Component Usage

Configuration Notes

When it initializes, component_keyring_oci reads either a global configuration file, or a global
configuration file paired with a local configuration file:

• The component attempts to read its global configuration file from the directory where the component
library file is installed (that is, the server plugin directory).

• If the global configuration file indicates use of a local configuration file, the component attempts to
read its local configuration file from the data directory.

• Although global and local configuration files are located in different directories, the file name is
component_keyring_oci.cnf in both locations.

• It is an error for no configuration file to exist. component_keyring_oci cannot initialize without a
valid configuration.

301

https://www.mysql.com/products/

Using the Oracle Cloud Infrastructure Vault Keyring Component

Local configuration files permit setting up multiple server instances to use component_keyring_oci,
such that component configuration for each server instance is specific to a given data directory
instance. This enables the same keyring component to be used with a distinct Oracle Cloud
Infrastructure Vault for each instance.

You are assumed to be familiar with Oracle Cloud Infrastructure concepts, but the following
documentation may be helpful when setting up resources to be used by component_keyring_oci:

• Overview of Vault

• Required Keys and OCIDs

• Managing Keys

• Managing Compartments

• Managing Vaults

• Managing Secrets

component_keyring_oci configuration files have these properties:

• A configuration file must be in valid JSON format.

• A configuration file permits these configuration items:

• "read_local_config": This item is permitted only in the global configuration file. If the item is
not present, the component uses only the global configuration file. If the item is present, its value is
true or false, indicating whether the component should read configuration information from the
local configuration file.

If the "read_local_config" item is present in the global configuration file along with other
items, the component checks the "read_local_config" item value first:

• If the value is false, the component processes the other items in the global configuration file
and ignores the local configuration file.

• If the value is true, the component ignores the other items in the global configuration file and
attempts to read the local configuration file.

• “user”: The OCID of the Oracle Cloud Infrastructure user that component_keyring_oci uses
for connections. Prior to using component_keyring_oci, the user account must exist and be
granted access to use the configured Oracle Cloud Infrastructure tenancy, compartment, and vault
resources. To obtain the user OCID from the Console, use the instructions at Required Keys and
OCIDs.

This value is mandatory.

• “tenancy”: The OCID of the Oracle Cloud Infrastructure tenancy that
component_keyring_oci uses as the location of the MySQL compartment. Prior to using
component_keyring_oci, you must create a tenancy if it does not exist. To obtain the tenancy
OCID from the Console, use the instructions at Required Keys and OCIDs.

This value is mandatory.

• “compartment”: The OCID of the tenancy compartment that component_keyring_oci uses
as the location of the MySQL keys. Prior to using component_keyring_oci, you must create
a MySQL compartment or subcompartment if it does not exist. This compartment should contain
no vault keys or vault secrets. It should not be used by systems other than MySQL Keyring. For
information about managing compartments and obtaining the OCID, see Managing Compartments.

This value is mandatory.

302

https://docs.cloud.oracle.com/iaas/Content/KeyManagement/Concepts/keyoverview.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingsecrets.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm

Using the Oracle Cloud Infrastructure Vault Keyring Component

• “virtual_vault”: The OCID of the Oracle Cloud Infrastructure Vault that
component_keyring_oci uses for encryption operations. Prior to using
component_keyring_oci, you must create a new vault in the MySQL compartment if it does
not exist. (Alternatively, you can reuse an existing vault that is in a parent compartment of the
MySQL compartment.) Compartment users can see and use only the keys in their respective
compartments. For information about creating a vault and obtaining the vault OCID, see Managing
Vaults.

This value is mandatory.

• “encryption_endpoint”: The endpoint of the Oracle Cloud Infrastructure encryption
server that component_keyring_oci uses for generating encrypted or encoded information
(ciphertext) for new keys. The encryption endpoint is vault specific and Oracle Cloud Infrastructure
assigns it at vault-creation time. To obtain the endpoint OCID, view the configuration details for
your keyring_oci vault, using the instructions at Managing Vaults.

This value is mandatory.

• "management_endpoint": The endpoint of the Oracle Cloud Infrastructure key management
server that component_keyring_oci uses for listing existing keys. The key management
endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation time. To
obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using the
instructions at Managing Vaults.

This value is mandatory.

• “vaults_endpoint”: The endpoint of the Oracle Cloud Infrastructure vaults server that
component_keyring_oci uses for obtaining the value of secrets. The vaults endpoint is vault
specific and Oracle Cloud Infrastructure assigns it at vault-creation time. To obtain the endpoint
OCID, view the configuration details for your keyring_oci vault, using the instructions at Managing
Vaults.

This value is mandatory.

• “secrets_endpoint”: The endpoint of the Oracle Cloud Infrastructure secrets server that
component_keyring_oci uses for listing, creating, and retiring secrets. The secrets endpoint
is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation time. To obtain the
endpoint OCID, view the configuration details for your keyring_oci vault, using the instructions at
Managing Vaults.

This value is mandatory.

• “master_key”: The OCID of the Oracle Cloud Infrastructure master encryption
key that component_keyring_oci uses for encryption of secrets. Prior to using
component_keyring_oci, you must create a cryptographic key for the Oracle Cloud
Infrastructure compartment if it does not exist. Provide a MySQL-specific name for the generated
key and do not use it for other purposes. For information about key creation, see Managing Keys.

This value is mandatory.

• “key_file”: The path name of the file containing the RSA private key that
component_keyring_oci uses for Oracle Cloud Infrastructure authentication. You must also
upload the corresponding RSA public key using the Console. The Console displays the key

303

https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm

Using the Oracle Cloud Infrastructure Vault Keyring Component

fingerprint value, which you can use to set the "key_fingerprint" value. For information about
generating and uploading API keys, see Required Keys and OCIDs.

This value is mandatory.

• “key_fingerprint”: The fingerprint of the RSA private key that component_keyring_oci
uses for Oracle Cloud Infrastructure authentication. To obtain the key fingerprint while creating the
API keys, execute this command:

openssl rsa -pubout -outform DER -in ~/.oci/oci_api_key.pem | openssl md5 -c

Alternatively, obtain the fingerprint from the Console, which automatically displays the fingerprint
when you upload the RSA public key. For information about obtaining key fingerprints, see
Required Keys and OCIDs.

This value is mandatory.

• “ca_certificate”: The path name of the CA certificate bundle file that
component_keyring_oci component uses for Oracle Cloud Infrastructure certificate
verification. The file contains one or more certificates for peer verification. If no file is specified, the
default CA bundle installed on the system is used. If the value is set to disabled (case-sensitive),
component_keyring_oci performs no certificate verification.

Given the preceding configuration file properties, to configure component_keyring_oci, create
a global configuration file named component_keyring_oci.cnf in the directory where the
component_keyring_oci library file is installed, and optionally create a local configuration file, also
named component_keyring_oci.cnf, in the data directory.

Verify the Component Installation

After performing any component-specific configuration, start the server. Verify component installation
by examining the Performance Schema keyring_component_status table:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+--+
| STATUS_KEY | STATUS_VALUE |
+---------------------+--+
Component_name	component_keyring_oci
Author	Oracle Corporation
License	PROPRIETARY
Implementation_name	component_keyring_oci
Version	1.0
Component_status	Active
user	ocid1.user.oc1..aaaaaaaasqly<...>
tenancy	ocid1.tenancy.oc1..aaaaaaaai<...>
compartment	ocid1.compartment.oc1..aaaaaaaah2swh<...>
virtual_vault	ocid1.vault.oc1.iad.bbo5xyzkaaeuk.abuwcljtmvxp4r<...>
master_key	ocid1.key.oc1.iad.bbo5xyzkaaeuk.abuwcljrbsrewgap<...>
encryption_endpoint	bbo5xyzkaaeuk-crypto.kms.us-<...>
management_endpoint	bbo5xyzkaaeuk-management.kms.us-<...>
vaults_endpoint	vaults.us-<...>
secrets_endpoint	secrets.vaults.us-<...>
key_file	~/.oci/oci_api_key.pem
key_fingerprint	ca:7c:e1:fa:86:b6:40:af:39:d6<...>
ca_certificate	disabled
+---------------------+--+

A Component_status value of Active indicates that the component initialized successfully.

If the component cannot be loaded, server startup fails. Check the server error log for diagnostic
messages. If the component loads but fails to initialize due to configuration problems, the server starts
but the Component_status value is Disabled. Check the server error log, correct the configuration
issues, and use the ALTER INSTANCE RELOAD KEYRING statement to reload the configuration.

It is possible to query MySQL server for the list of existing keys. To see which keys exist, examine the
Performance Schema keyring_keys table.

304

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-component-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-instance.html#alter-instance-reload-keyring
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html

Using the Oracle Cloud Infrastructure Vault Keyring Plugin

mysql> SELECT * FROM performance_schema.keyring_keys;
+-----------------------------+--------------+----------------+
| KEY_ID | KEY_OWNER | BACKEND_KEY_ID |
+-----------------------------+--------------+----------------+
audit_log-20210322T130749-1		
MyKey	me@localhost	
YourKey	me@localhost	
+-----------------------------+--------------+----------------+

Vault Keyring Component Usage

component_keyring_oci supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by component_keyring_oci, see
Section 6.4.13, “Supported Keyring Key Types and Lengths”.

6.4.12 Using the Oracle Cloud Infrastructure Vault Keyring Plugin

Note

The keyring_oci plugin is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

The keyring_oci plugin is a keyring plugin that communicates with Oracle Cloud Infrastructure Vault
for back end storage. No key information is permanently stored in MySQL server local storage. All
keys are stored in Oracle Cloud Infrastructure Vault, making this plugin well suited for Oracle Cloud
Infrastructure MySQL customers for management of their MySQL Enterprise Edition keys.

As of MySQL 8.0.31, this plugin is deprecated and subject to removal in a future release of MySQL.
Instead, consider using the component_keyring_oci component for storing keyring data (see
Section 6.4.11, “Using the Oracle Cloud Infrastructure Vault Keyring Component”).

The keyring_oci plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

• SQL interface: In SQL statements, call the functions described in Section 6.4.15, “General-Purpose
Keyring Key-Management Functions”.

• C interface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate('MyKey', 'AES', 32);
SELECT keyring_key_remove('MyKey');

For information about the characteristics of key values permitted by keyring_oci, see
Section 6.4.13, “Supported Keyring Key Types and Lengths”.

To install keyring_oci, use the general instructions found in Section 6.4.3, “Keyring Plugin
Installation”, together with the configuration information specific to keyring_oci found here. Plugin-

305

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html

Using the Oracle Cloud Infrastructure Vault Keyring Plugin

specific configuration involves setting a number of system variables to indicate the names or values of
Oracle Cloud Infrastructure resources.

You are assumed to be familiar with Oracle Cloud Infrastructure concepts, but the following
documentation may be helpful when setting up resources to be used by the keyring_oci plugin:

• Overview of Vault

• Resource Identifiers

• Required Keys and OCIDs

• Managing Keys

• Managing Compartments

• Managing Vaults

• Managing Secrets

The keyring_oci plugin supports the configuration parameters shown in the following table. To
specify these parameters, assign values to the corresponding system variables.

Configuration Parameter System Variable Mandatory

User OCID keyring_oci_user Yes

Tenancy OCID keyring_oci_tenancy Yes

Compartment OCID keyring_oci_compartment Yes

Vault OCID keyring_oci_virtual_vault Yes

Master key OCID keyring_oci_master_key Yes

Encryption server endpoint keyring_oci_encryption_endpointYes

Key management server
endpoint

keyring_oci_management_endpointYes

Vaults server endpoint keyring_oci_vaults_endpointYes

Secrets server endpoint keyring_oci_secrets_endpointYes

RSA private key file keyring_oci_key_file Yes

RSA private key fingerprint keyring_oci_key_fingerprintYes

CA certificate bundle file keyring_oci_ca_certificateNo

To be usable during the server startup process, keyring_oci must be loaded using the --early-
plugin-load option. As indicated by the preceding table, several plugin-related system variables are
mandatory and must also be set:

• Oracle Cloud Infrastructure uses Oracle Cloud IDs (OCIDs) extensively to designate resources, and
several keyring_oci parameters specify OCID values of the resources to use. Consequently, prior
to using the keyring_oci plugin, these prerequisites must be satisfied:

• A user for connecting to Oracle Cloud Infrastructure must exist. Create the user if necessary and
assign the user OCID to the keyring_oci_user system variable.

• The Oracle Cloud Infrastructure tenancy to be used must exist, as well as the MySQL
compartment within the tenancy, and the vault within the compartment. Create these resources
if necessary and make sure the user is enabled to use them. Assign the OCIDs for the tenancy,
compartment and vault to the keyring_oci_tenancy, keyring_oci_compartment, and
keyring_oci_virtual_vault system variables.

• A master key for encryption must exist. Create it if necessary and assign its OCID to the
keyring_oci_master_key system variable.

306

https://docs.cloud.oracle.com/iaas/Content/KeyManagement/Concepts/keyoverview.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/identifiers.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingsecrets.htm
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Supported Keyring Key Types and Lengths

• Several server endpoints must be specified. These endpoints are vault specific and
Oracle Cloud Infrastructure assigns them at vault-creation time. Obtain their values from
the vault details page and assign them to the keyring_oci_encryption_endpoint,
keyring_oci_management_endpoint, keyring_oci_vaults_endpoint, and
keyring_oci_secrets_endpoint system variables.

• The Oracle Cloud Infrastructure API uses an RSA private/public key pair for authentication. To
create this key pair and obtain the key fingerprint, use the instructions at Required Keys and
OCIDs. Assign the private key file name and key fingerprint to the keyring_oci_key_file and
keyring_oci_key_fingerprint system variables.

In addition to the mandatory system variables, keyring_oci_ca_certificate optionally may be
set to specify a certificate authority (CA) certificate bundle file for peer authentication.

Important

If you copy a parameter from the Oracle Cloud Infrastructure Console, the
copied value may include an initial https:// part. Omit that part when setting
the corresponding keyring_oci system variable.

For example, to load and configure keyring_oci, use these lines in the server my.cnf file (adjust the
.so suffix and file location for your platform as necessary):

[mysqld]
early-plugin-load=keyring_oci.so
keyring_oci_user=ocid1.user.oc1..longAlphaNumericString
keyring_oci_tenancy=ocid1.tenancy.oc1..longAlphaNumericString
keyring_oci_compartment=ocid1.compartment.oc1..longAlphaNumericString
keyring_oci_virtual_vault=ocid1.vault.oc1.iad.shortAlphaNumericString.longAlphaNumericString
keyring_oci_master_key=ocid1.key.oc1.iad.shortAlphaNumericString.longAlphaNumericString
keyring_oci_encryption_endpoint=shortAlphaNumericString-crypto.kms.us-ashburn-1.oraclecloud.com
keyring_oci_management_endpoint=shortAlphaNumericString-management.kms.us-ashburn-1.oraclecloud.com
keyring_oci_vaults_endpoint=vaults.us-ashburn-1.oci.oraclecloud.com
keyring_oci_secrets_endpoint=secrets.vaults.us-ashburn-1.oci.oraclecloud.com
keyring_oci_key_file=file_name
keyring_oci_key_fingerprint=12:34:56:78:90:ab:cd:ef:12:34:56:78:90:ab:cd:ef

For additional information about the keyring_oci plugin-specific system variables, see
Section 6.4.19, “Keyring System Variables”.

The keyring_oci plugin does not support runtime reconfiguration and none of its system variables
can be modified at runtime. To change configuration parameters, do this:

• Modify parameter settings in the my.cnf file, or use SET PERSIST_ONLY for parameters that are
persisted to mysqld-auto.conf.

• Restart the server.

6.4.13 Supported Keyring Key Types and Lengths

MySQL Keyring supports keys of different types (encryption algorithms) and lengths:

• The available key types depend on which keyring plugin is installed.

• The permitted key lengths are subject to multiple factors:

• General keyring loadable-function interface limits (for keys managed using one of the keyring
functions described in Section 6.4.15, “General-Purpose Keyring Key-Management Functions”), or
limits from back end implementations. These length limits can vary by key operation type.

• In addition to the general limits, individual keyring plugins may impose restrictions on key lengths
per key type.

307

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Supported Keyring Key Types and Lengths

Table 6.17, “General Keyring Key Length Limits” shows the general key-length limits. (The lower limits
for keyring_aws are imposed by the AWS KMS interface, not the keyring functions.) For keyring
plugins, Table 6.18, “Keyring Plugin Key Types and Lengths” shows the key types each keyring plugin
permits, as well as any plugin-specific key-length restrictions. For most keyring components, the
general key-length limits apply and there are no key-type restrictions.

Note

component_keyring_oci (like the keyring_oci plugin) can only generate
keys of type AES with a size of 16, 24, or 32 bytes.

Table 6.17 General Keyring Key Length Limits

Key Operation Maximum Key Length

Generate key 16,384 bytes (2,048 prior to MySQL 8.0.18); 1,024
for keyring_aws

Store key 16,384 bytes (2,048 prior to MySQL 8.0.18); 4,096
for keyring_aws

Fetch key 16,384 bytes (2,048 prior to MySQL 8.0.18); 4,096
for keyring_aws

Table 6.18 Keyring Plugin Key Types and Lengths

Plugin Name Permitted Key Type Plugin-Specific Length
Restrictions

keyring_aws AES

SECRET

16, 24, or 32 bytes

None

keyring_encrypted_file AES

DSA

RSA

SECRET

None

None

None

None

keyring_file AES

DSA

RSA

SECRET

None

None

None

None

keyring_hashicorp AES

DSA

RSA

SECRET

None

None

None

None

keyring_oci AES 16, 24, or 32 bytes

keyring_okv AES

SECRET

16, 24, or 32 bytes

None

The SECRET key type, available as of MySQL 8.0.19, is intended for general-purpose storage of
sensitive data using the MySQL keyring, and is supported by most keyring components and keyring
plugins. The keyring encrypts and decrypts SECRET data as a byte stream upon storage and retrieval.

308

Migrating Keys Between Keyring Keystores

Example keyring operations involving the SECRET key type:

SELECT keyring_key_generate('MySecret1', 'SECRET', 20);
SELECT keyring_key_remove('MySecret1');
SELECT keyring_key_store('MySecret2', 'SECRET', 'MySecretData');
SELECT keyring_key_fetch('MySecret2');
SELECT keyring_key_length_fetch('MySecret2');
SELECT keyring_key_type_fetch('MySecret2');
SELECT keyring_key_remove('MySecret2');

6.4.14 Migrating Keys Between Keyring Keystores

A keyring migration copies keys from one keystore to another, enabling a DBA to switch a MySQL
installation to a different keystore. A successful migration operation has this result:

• The destination keystore contains the keys it had prior to the migration, plus the keys from the source
keystore.

• The source keystore remains the same before and after the migration (because keys are copied, not
moved).

If a key to be copied already exists in the destination keystore, an error occurs and the destination
keystore is restored to its premigration state.

The keyring manages keystores using keyring components and keyring plugins. This pertains to
migration strategy because the way in which the source and destination keystores are managed
determines whether a particular type of key migration is possible and the procedure for performing it:

• Migration from one keyring plugin to another: The MySQL server has an operational mode that
provides this capability.

• Migration from a keyring plugin to a keyring component: The MySQL server has an operational mode
that provides this capability as of MySQL 8.0.24.

• Migration from one keyring component to another: The mysql_migrate_keyring utility provides
this capability. mysql_migrate_keyring is available as of MySQL 8.0.24.

• Migration from a keyring component to a keyring plugin: There is no provision for this capability.

The following sections discuss the characteristics of offline and online migrations and describe how to
perform migrations.

• Offline and Online Key Migrations

• Key Migration Using a Migration Server

• Key Migration Using the mysql_migrate_keyring Utility

• Key Migration Involving Multiple Running Servers

Offline and Online Key Migrations

A key migration is either offline or online:

• Offline migration: For use when you are sure that no running server on the local host is using the
source or destination keystore. In this case, the migration operation can copy keys from the source
keystore to the destination without the possibility of a running server modifying keystore content
during the operation.

• Online migration: For use when a running server on the local host is using the source keystore. In
this case, care must be taken to prevent that server from updating keystores during the migration.
This involves connecting to the running server and instructing it to pause keyring operations so

309

Migrating Keys Between Keyring Keystores

that keys can be copied safely from the source keystore to the destination. When key copying is
complete, the running server is permitted to resume keyring operations.

When you plan a key migration, use these points to decide whether it should be offline or online:

• Do not perform offline migration involving a keystore that is in use by a running server.

• Pausing keyring operations during an online migration is accomplished by connecting to the running
server and setting its global keyring_operations system variable to OFF before key copying and
ON after key copying. This has several implications:

• keyring_operations was introduced in MySQL 5.7.21, so online migration is possible only if
the running server is from MySQL 5.7.21 or higher. If the running server is older, you must stop
it, perform an offline migration, and restart it. All migration instructions elsewhere that refer to
keyring_operations are subject to this condition.

• The account used to connect to the running server must have the privileges required to modify
keyring_operations. These privileges are ENCRYPTION_KEY_ADMIN in addition to either
SYSTEM_VARIABLES_ADMIN or the deprecated SUPER privilege.

• If an online migration operation exits abnormally (for example, if it is forcibly terminated), it is
possible for keyring_operations to remain disabled on the running server, leaving it unable to
perform keyring operations. In this case, it may be necessary to connect to the running server and
enable keyring_operations manually using this statement:

SET GLOBAL keyring_operations = ON;

• Online key migration provides for pausing keyring operations on a single running server. To perform
a migration if multiple running servers are using the keystores involved, use the procedure described
at Key Migration Involving Multiple Running Servers.

Key Migration Using a Migration Server

Note

Online key migration using a migration server is only supported if the running
server allows socket connections or TCP/IP connections using TLS; it is not
supported when, for example, the server is running on a Windows platform and
only allows shared memory connections.

A MySQL server becomes a migration server if invoked in a special operational mode that supports key
migration. A migration server does not accept client connections. Instead, it runs only long enough to
migrate keys, then exits. A migration server reports errors to the console (the standard error output).

A migration server supports these migration types:

• Migration from one keyring plugin to another.

• Migration from a keyring plugin to a keyring component. This capability is available as of MySQL
8.0.24. Older servers support only migration from one keyring plugin to another, in which case the
parts of these instructions that refer to keyring components do not apply.

A migration server does not support migration from one keyring component to another. For that type of
migration, see Key Migration Using the mysql_migrate_keyring Utility.

To perform a key migration operation using a migration server, determine the key migration options
required to specify which keyring plugins or components are involved, and whether the migration is
offline or online:

• To indicate the source keyring plugin and the destination keyring plugin or component, specify these
options:

310

Migrating Keys Between Keyring Keystores

• --keyring-migration-source: The source keyring plugin that manages the keys to be
migrated.

• --keyring-migration-destination: The destination keyring plugin or component to which
the migrated keys are to be copied.

• --keyring-migration-to-component: This option is required if the destination is a keyring
component rather than a keyring plugin.

The --keyring-migration-source and --keyring-migration-destination options
signify to the server that it should run in key migration mode. For key migration operations, both
options are mandatory. Each plugin or component is specified using the name of its library file,
including any platform-specific extension such as .so or .dll. The source and destination must
differ, and the migration server must support them both.

• For an offline migration, no additional key migration options are needed.

• For an online migration, some running server currently is using the source or destination keystore. To
invoke the migration server, specify additional key migration options that indicate how to connect to
the running server. This is necessary so that the migration server can connect to the running server
and tell it to pause keyring use during the migration operation.

Use of any of the following options signifies an online migration:

• --keyring-migration-host: The host where the running server is located. This is always the
local host because the migration server can migrate keys only between keystores managed by
local plugins and components.

• --keyring-migration-user, --keyring-migration-password: The account credentials
to use to connect to the running server.

• --keyring-migration-port: For TCP/IP connections, the port number to connect to on the
running server.

• --keyring-migration-socket: For Unix socket file or Windows named pipe connections, the
socket file or named pipe to connect to on the running server.

For additional details about the key migration options, see Section 6.4.18, “Keyring Command
Options”.

Start the migration server with key migration options indicating the source and destination keystores
and whether the migration is offline or online, possibly with other options. Keep the following
considerations in mind:

• Other server options might be required, such as configuration parameters for the two keyring plugins.
For example, if keyring_file is the source or destination, you must set the keyring_file_data
system variable if the keyring data file location is not the default location. Other non-keyring options
may be required as well. One way to specify these options is by using --defaults-file to name
an option file that contains the required options.

• The migration server expects path name option values to be full paths. Relative path names may not
be resolved as you expect.

• The user who invokes a server in key-migration mode must not be the root operating system user,
unless the --user option is specified with a non-root user name to run the server as that user.

• The user a server in key-migration mode runs as must have permission to read and write any local
keyring files, such as the data file for a file-based plugin.

If you invoke the migration server from a system account different from that normally used to run
MySQL, it might create keyring directories or files that are inaccessible to the server during normal

311

https://dev.mysql.com/doc/refman/8.0/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user

Migrating Keys Between Keyring Keystores

operation. Suppose that mysqld normally runs as the mysql operating system user, but you invoke
the migration server while logged in as isabel. Any new directories or files created by the migration
server are owned by isabel. Subsequent startup fails when a server run as the mysql operating
system user attempts to access file system objects owned by isabel.

To avoid this issue, start the migration server as the root operating system user and provide a --
user=user_name option, where user_name is the system account normally used to run MySQL.
Alternatively, after the migration, examine the keyring-related file system objects and change their
ownership and permissions if necessary using chown, chmod, or similar commands, so that the
objects are accessible to the running server.

Example command line for offline migration between two keyring plugins (enter the command on a
single line):

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=keyring_encrypted_file.so
 --keyring_encrypted_file_password=password

Example command line for online migration between two keyring plugins:

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=keyring_encrypted_file.so
 --keyring_encrypted_file_password=password
 --keyring-migration-host=127.0.0.1
 --keyring-migration-user=root
 --keyring-migration-password=root_password

To perform a migration when the destination is a keyring component rather than a keyring plugin,
specify the --keyring-migration-to-component option, and name the component as the value
of the --keyring-migration-destination option.

Example command line for offline migration from a keyring plugin to a keyring component:

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-to-component
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=component_keyring_encrypted_file.so

Notice that in this case, no keyring_encrypted_file_password value is specified. The password
for the component data file is listed in the component configuration file.

Example command line for online migration from a keyring plugin to a keyring component:

mysqld --defaults-file=/usr/local/mysql/etc/my.cnf
 --keyring-migration-to-component
 --keyring-migration-source=keyring_file.so
 --keyring-migration-destination=component_keyring_encrypted_file.so
 --keyring-migration-host=127.0.0.1
 --keyring-migration-user=root
 --keyring-migration-password=root_password

The key migration server performs a migration operation as follows:

1. (Online migration only) Connect to the running server using the connection options.

2. (Online migration only) Disable keyring_operations on the running server.

3. Load the keyring plugin/component libraries for the source and destination keystores.

4. Copy keys from the source keystore to the destination.

5. Unload the keyring plugin/component libraries for the source and destination keystores.

6. (Online migration only) Enable keyring_operations on the running server.

312

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user

Migrating Keys Between Keyring Keystores

7. (Online migration only) Disconnect from the running server.

If an error occurs during key migration, the destination keystore is restored to its premigration state.

After a successful online key migration operation, the running server might need to be restarted:

• If the running server was using the source keystore before the migration and should continue to use
it after the migration, it need not be restarted after the migration.

• If the running server was using the destination keystore before the migration and should continue to
use it after the migration, it should be restarted after the migration to load all keys migrated into the
destination keystore.

• If the running server was using the source keystore before the migration but should use the
destination keystore after the migration, it must be reconfigured to use the destination keystore
and restarted. In this case, be aware that although the running server is paused from modifying
the source keystore during the migration itself, it is not paused during the interval between the
migration and the subsequent restart. Care should be taken that the server does not modify the
source keystore during this interval because any such changes will not be reflected in the destination
keystore.

Key Migration Using the mysql_migrate_keyring Utility

The mysql_migrate_keyring utility migrates keys from one keyring component to another. It
does not support migrations involving keyring plugins. For that type of migration, use a MySQL server
operating in key migration mode; see Key Migration Using a Migration Server.

To perform a key migration operation using mysql_migrate_keyring, determine the key migration
options required to specify which keyring components are involved, and whether the migration is offline
or online:

• To indicate the source and destination keyring components and their location, specify these options:

• --source-keyring: The source keyring component that manages the keys to be migrated.

• --destination-keyring: The destination keyring component to which the migrated keys are to
be copied.

• --component-dir: The directory containing keyring component library files. This is typically the
value of the plugin_dir system variable for the local MySQL server.

All three options are mandatory. Each keyring component name is a component library file name
specified without any platform-specific extension such as .so or .dll. For example, to use the
component for which the library file is component_keyring_file.so, specify the option as --
source-keyring=component_keyring_file. The source and destination must differ, and
mysql_migrate_keyring must support them both.

• For an offline migration, no additional options are needed.

• For an online migration, some running server currently is using the source or destination
keystore. In this case, specify the --online-migration option to signify an online migration.
In addition, specify connection options indicating how to connect to the running server, so that
mysql_migrate_keyring can connect to it and tell it to pause keyring use during the migration
operation.

The --online-migration option is commonly used in conjunction with connection options such
as these:

• --host: The host where the running server is located. This is always the local host because
mysql_migrate_keyring can migrate keys only between keystores managed by local
components.

313

https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_source-keyring
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_destination-keyring
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_source-keyring
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_source-keyring
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_host

Migrating Keys Between Keyring Keystores

• --user, --password: The account credentials to use to connect to the running server.

• --port: For TCP/IP connections, the port number to connect to on the running server.

• --socket: For Unix socket file or Windows named pipe connections, the socket file or named
pipe to connect to on the running server.

For descriptions of all available options, see mysql_migrate_keyring — Keyring Key Migration Utility.

Start mysql_migrate_keyring with options indicating the source and destination keystores and
whether the migration is offline or online, possibly with other options. Keep the following considerations
in mind:

• The user who invokes mysql_migrate_keyring must not be the root operating system user.

• The user who invokes mysql_migrate_keyring must have permission to read and write any local
keyring files, such as the data file for a file-based plugin.

If you invoke mysql_migrate_keyring from a system account different from that normally used
to run MySQL, it might create keyring directories or files that are inaccessible to the server during
normal operation. Suppose that mysqld normally runs as the mysql operating system user, but you
invoke mysql_migrate_keyring while logged in as isabel. Any new directories or files created
by mysql_migrate_keyring are owned by isabel. Subsequent startup fails when a server run
as the mysql operating system user attempts to access file system objects owned by isabel.

To avoid this issue, invoke mysql_migrate_keyring as the mysql operating system user.
Alternatively, after the migration, examine the keyring-related file system objects and change their
ownership and permissions if necessary using chown, chmod, or similar commands, so that the
objects are accessible to the running server.

Suppose that you want to migrate keys from component_keyring_file to
component_keyring_encrypted_file, and that the local server stores its keyring component
library files in /usr/local/mysql/lib/plugin.

If no running server is using the keyring, an offline migration is permitted. Invoke
mysql_migrate_keyring like this (enter the command on a single line):

mysql_migrate_keyring
 --component-dir=/usr/local/mysql/lib/plugin
 --source-keyring=component_keyring_file
 --destination-keyring=component_keyring_encrypted_file

If a running server is using the keyring, you must perform an online migration instead. In this case, the
--online-migration option must be given, along with any connection options required to specify
which server to connect to and the MySQL account to use.

The following command performs an online migration. It connects to the local server using a TCP/IP
connection and the admin account. The command prompts for a password, which you should enter
when prompted:

mysql_migrate_keyring
 --component-dir=/usr/local/mysql/lib/plugin
 --source-keyring=component_keyring_file
 --destination-keyring=component_keyring_encrypted_file
 --online-migration --host=127.0.0.1 --user=admin --password

mysql_migrate_keyring performs a migration operation as follows:

1. (Online migration only) Connect to the running server using the connection options.

2. (Online migration only) Disable keyring_operations on the running server.

314

https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_user
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_port
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html#option_mysql_migrate_keyring_socket
https://dev.mysql.com/doc/refman/8.0/en/mysql-migrate-keyring.html

General-Purpose Keyring Key-Management Functions

3. Load the keyring component libraries for the source and destination keystores.

4. Copy keys from the source keystore to the destination.

5. Unload the keyring component libraries for the source and destination keystores.

6. (Online migration only) Enable keyring_operations on the running server.

7. (Online migration only) Disconnect from the running server.

If an error occurs during key migration, the destination keystore is restored to its premigration state.

After a successful online key migration operation, the running server might need to be restarted:

• If the running server was using the source keystore before the migration and should continue to use
it after the migration, it need not be restarted after the migration.

• If the running server was using the destination keystore before the migration and should continue to
use it after the migration, it should be restarted after the migration to load all keys migrated into the
destination keystore.

• If the running server was using the source keystore before the migration but should use the
destination keystore after the migration, it must be reconfigured to use the destination keystore
and restarted. In this case, be aware that although the running server is paused from modifying
the source keystore during the migration itself, it is not paused during the interval between the
migration and the subsequent restart. Care should be taken that the server does not modify the
source keystore during this interval because any such changes will not be reflected in the destination
keystore.

Key Migration Involving Multiple Running Servers

Online key migration provides for pausing keyring operations on a single running server. To perform a
migration if multiple running servers are using the keystores involved, use this procedure:

1. Connect to each running server manually and set keyring_operations=OFF. This ensures that
no running server is using the source or destination keystore and satisfies the required condition for
offline migration.

2. Use a migration server or mysql_migrate_keyring to perform an offline key migration for each
paused server.

3. Connect to each running server manually and set keyring_operations=ON.

All running servers must support the keyring_operations system variable. Any server that does not
must be stopped before the migration and restarted after.

6.4.15 General-Purpose Keyring Key-Management Functions

MySQL Server supports a keyring service that enables internal components and plugins to securely
store sensitive information for later retrieval.

MySQL Server also includes an SQL interface for keyring key management, implemented as a set of
general-purpose functions that access the capabilities provided by the internal keyring service. The
keyring functions are contained in a plugin library file, which also contains a keyring_udf plugin that
must be enabled prior to function invocation. For these functions to be used, a keyring plugin such as
keyring_file or keyring_okv must be enabled.

The functions described here are general purpose and intended for use with any keyring plugin. A
given keyring plugin might have functions of its own that are intended for use only with that plugin; see
Section 6.4.16, “Plugin-Specific Keyring Key-Management Functions”.

315

General-Purpose Keyring Key-Management Functions

The following sections provide installation instructions for the keyring functions and demonstrate how
to use them. For information about the keyring service functions invoked by these functions, see The
Keyring Service. For general keyring information, see Section 6.4, “The MySQL Keyring”.

• Installing or Uninstalling General-Purpose Keyring Functions

• Using General-Purpose Keyring Functions

• General-Purpose Keyring Function Reference

Installing or Uninstalling General-Purpose Keyring Functions

This section describes how to install or uninstall the keyring functions, which are implemented in a
plugin library file that also contains a keyring_udf plugin. For general information about installing or
uninstalling plugins and loadable functions, see Installing and Uninstalling Plugins, and Installing and
Uninstalling Loadable Functions.

The keyring functions enable keyring key management operations, but the keyring_udf plugin must
also be installed because the functions do not work correctly without it. Attempts to use the functions
without the keyring_udf plugin result in an error.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

The plugin library file base name is keyring_udf. The file name suffix differs per platform (for
example, .so for Unix and Unix-like systems, .dll for Windows).

To install the keyring_udf plugin and the keyring functions, use the INSTALL PLUGIN and CREATE
FUNCTION statements, adjusting the .so suffix for your platform as necessary:

INSTALL PLUGIN keyring_udf SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_generate RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_length_fetch RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_type_fetch RETURNS STRING
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_store RETURNS INTEGER
 SONAME 'keyring_udf.so';
CREATE FUNCTION keyring_key_remove RETURNS INTEGER
 SONAME 'keyring_udf.so';

If the plugin and functions are used on a source replication server, install them on all replicas as well to
avoid replication issues.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNINSTALL PLUGIN and DROP FUNCTION statements:

UNINSTALL PLUGIN keyring_udf;
DROP FUNCTION keyring_key_generate;
DROP FUNCTION keyring_key_fetch;
DROP FUNCTION keyring_key_length_fetch;
DROP FUNCTION keyring_key_type_fetch;
DROP FUNCTION keyring_key_store;
DROP FUNCTION keyring_key_remove;

Using General-Purpose Keyring Functions

Before using the keyring general-purpose functions, install them according to the instructions provided
in Installing or Uninstalling General-Purpose Keyring Functions.

The keyring functions are subject to these constraints:

316

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/function-loading.html
https://dev.mysql.com/doc/refman/8.0/en/function-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/drop-function.html

General-Purpose Keyring Key-Management Functions

• To use any keyring function, the keyring_udf plugin must be enabled. Otherwise, an error occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring_key_generate';
This function requires keyring_udf plugin which is not installed.
Please install

To install the keyring_udf plugin, see Installing or Uninstalling General-Purpose Keyring
Functions.

• The keyring functions invoke keyring service functions (see The Keyring Service). The service
functions in turn use whatever keyring plugin is installed (for example, keyring_file or
keyring_okv). Therefore, to use any keyring function, some underlying keyring plugin must be
enabled. Otherwise, an error occurs:

ERROR 3188 (HY000): Function 'keyring_key_generate' failed because
underlying keyring service returned an error. Please check if a
keyring plugin is installed and that provided arguments are valid
for the keyring you are using.

To install a keyring plugin, see Section 6.4.3, “Keyring Plugin Installation”.

• A user must possess the global EXECUTE privilege to use any keyring function. Otherwise, an error
occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring_key_generate';
The user is not privileged to execute this function. User needs to
have EXECUTE

To grant the global EXECUTE privilege to a user, use this statement:

GRANT EXECUTE ON *.* TO user;

Alternatively, should you prefer to avoid granting the global EXECUTE privilege while still permitting
users to access specific key-management operations, “wrapper” stored programs can be defined (a
technique described later in this section).

• A key stored in the keyring by a given user can be manipulated later only by the same user. That
is, the value of the CURRENT_USER() function at the time of key manipulation must have the same
value as when the key was stored in the keyring. (This constraint rules out the use of the keyring
functions for manipulation of instance-wide keys, such as those created by InnoDB to support
tablespace encryption.)

To enable multiple users to perform operations on the same key, “wrapper” stored programs can be
defined (a technique described later in this section).

• Keyring functions support the key types and lengths supported by the underlying keyring plugin. For
information about keys specific to a particular keyring plugin, see Section 6.4.13, “Supported Keyring
Key Types and Lengths”.

To create a new random key and store it in the keyring, call keyring_key_generate(), passing to it
an ID for the key, along with the key type (encryption method) and its length in bytes. The following call
creates a 2,048-bit DSA-encrypted key named MyKey:

mysql> SELECT keyring_key_generate('MyKey', 'DSA', 256);
+---+
| keyring_key_generate('MyKey', 'DSA', 256) |
+---+
| 1 |
+---+

A return value of 1 indicates success. If the key cannot be created, the return value is NULL and an
error occurs. One reason this might be is that the underlying keyring plugin does not support the
specified combination of key type and key length; see Section 6.4.13, “Supported Keyring Key Types
and Lengths”.

317

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

General-Purpose Keyring Key-Management Functions

To be able to check the return type regardless of whether an error occurs, use SELECT ... INTO
@var_name and test the variable value:

mysql> SELECT keyring_key_generate('', '', -1) INTO @x;
ERROR 3188 (HY000): Function 'keyring_key_generate' failed because
underlying keyring service returned an error. Please check if a
keyring plugin is installed and that provided arguments are valid
for the keyring you are using.
mysql> SELECT @x;
+------+
| @x |
+------+
| NULL |
+------+
mysql> SELECT keyring_key_generate('x', 'AES', 16) INTO @x;
mysql> SELECT @x;
+------+
| @x |
+------+
| 1 |
+------+

This technique also applies to other keyring functions that for failure return a value and an error.

The ID passed to keyring_key_generate() provides a means by which to refer to the key in
subsequent functions calls. For example, use the key ID to retrieve its type as a string or its length in
bytes as an integer:

mysql> SELECT keyring_key_type_fetch('MyKey');
+---------------------------------+
| keyring_key_type_fetch('MyKey') |
+---------------------------------+
| DSA |
+---------------------------------+
mysql> SELECT keyring_key_length_fetch('MyKey');
+-----------------------------------+
| keyring_key_length_fetch('MyKey') |
+-----------------------------------+
| 256 |
+-----------------------------------+

To retrieve a key value, pass the key ID to keyring_key_fetch(). The following example uses
HEX() to display the key value because it may contain nonprintable characters. The example also
uses a short key for brevity, but be aware that longer keys provide better security:

mysql> SELECT keyring_key_generate('MyShortKey', 'DSA', 8);
+--+
| keyring_key_generate('MyShortKey', 'DSA', 8) |
+--+
| 1 |
+--+
mysql> SELECT HEX(keyring_key_fetch('MyShortKey'));
+--------------------------------------+
| HEX(keyring_key_fetch('MyShortKey')) |
+--------------------------------------+
| 1DB3B0FC3328A24C |
+--------------------------------------+

Keyring functions treat key IDs, types, and values as binary strings, so comparisons are case-sensitive.
For example, IDs of MyKey and mykey refer to different keys.

To remove a key, pass the key ID to keyring_key_remove():

mysql> SELECT keyring_key_remove('MyKey');
+-----------------------------+
| keyring_key_remove('MyKey') |
+-----------------------------+
| 1 |
+-----------------------------+

318

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_hex

General-Purpose Keyring Key-Management Functions

To obfuscate and store a key that you provide, pass the key ID, type, and value to
keyring_key_store():

mysql> SELECT keyring_key_store('AES_key', 'AES', 'Secret string');
+--+
| keyring_key_store('AES_key', 'AES', 'Secret string') |
+--+
| 1 |
+--+

As indicated previously, a user must have the global EXECUTE privilege to call keyring functions, and
the user who stores a key in the keyring initially must be the same user who performs subsequent
operations on the key later, as determined from the CURRENT_USER() value in effect for each function
call. To permit key operations to users who do not have the global EXECUTE privilege or who may not
be the key “owner,” use this technique:

1. Define “wrapper” stored programs that encapsulate the required key operations and have a
DEFINER value equal to the key owner.

2. Grant the EXECUTE privilege for specific stored programs to the individual users who should be able
to invoke them.

3. If the operations implemented by the wrapper stored programs do not include key creation, create
any necessary keys in advance, using the account named as the DEFINER in the stored program
definitions.

This technique enables keys to be shared among users and provides to DBAs more fine-grained
control over who can do what with keys, without having to grant global privileges.

The following example shows how to set up a shared key named SharedKey that is owned by the
DBA, and a get_shared_key() stored function that provides access to the current key value. The
value can be retrieved by any user with the EXECUTE privilege for that function, which is created in the
key_schema schema.

From a MySQL administrative account ('root'@'localhost' in this example), create the
administrative schema and the stored function to access the key:

mysql> CREATE SCHEMA key_schema;
mysql> CREATE DEFINER = 'root'@'localhost'
 FUNCTION key_schema.get_shared_key()
 RETURNS BLOB READS SQL DATA
 RETURN keyring_key_fetch('SharedKey');

From the administrative account, ensure that the shared key exists:

mysql> SELECT keyring_key_generate('SharedKey', 'DSA', 8);
+---+
| keyring_key_generate('SharedKey', 'DSA', 8) |
+---+
| 1 |
+---+

From the administrative account, create an ordinary user account to which key access is to be granted:

mysql> CREATE USER 'key_user'@'localhost'
 IDENTIFIED BY 'key_user_pwd';

From the key_user account, verify that, without the proper EXECUTE privilege, the new account
cannot access the shared key:

mysql> SELECT HEX(key_schema.get_shared_key());
ERROR 1370 (42000): execute command denied to user 'key_user'@'localhost'
for routine 'key_schema.get_shared_key'

From the administrative account, grant EXECUTE to key_user for the stored function:

319

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

General-Purpose Keyring Key-Management Functions

mysql> GRANT EXECUTE ON FUNCTION key_schema.get_shared_key
 TO 'key_user'@'localhost';

From the key_user account, verify that the key is now accessible:

mysql> SELECT HEX(key_schema.get_shared_key());
+----------------------------------+
| HEX(key_schema.get_shared_key()) |
+----------------------------------+
| 9BAFB9E75CEEB013 |
+----------------------------------+

General-Purpose Keyring Function Reference

For each general-purpose keyring function, this section describes its purpose, calling sequence, and
return value. For information about the conditions under which these functions can be invoked, see
Using General-Purpose Keyring Functions.

• keyring_key_fetch(key_id)

Given a key ID, deobfuscates and returns the key value.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key value as a string for success, NULL if the key does not exist, or NULL and an error
for failure.

Note

Key values retrieved using keyring_key_fetch() are subject to the
general keyring function limits described in Section 6.4.13, “Supported
Keyring Key Types and Lengths”. A key value longer than that length can
be stored using a keyring service function (see The Keyring Service), but if
retrieved using keyring_key_fetch() is truncated to the general keyring
function limit.

Example:

mysql> SELECT keyring_key_generate('RSA_key', 'RSA', 16);
+--+
| keyring_key_generate('RSA_key', 'RSA', 16) |
+--+
| 1 |
+--+
mysql> SELECT HEX(keyring_key_fetch('RSA_key'));
+-----------------------------------+
| HEX(keyring_key_fetch('RSA_key')) |
+-----------------------------------+
| 91C2253B696064D3556984B6630F891A |
+-----------------------------------+
mysql> SELECT keyring_key_type_fetch('RSA_key');
+-----------------------------------+
| keyring_key_type_fetch('RSA_key') |
+-----------------------------------+
| RSA |
+-----------------------------------+
mysql> SELECT keyring_key_length_fetch('RSA_key');
+-------------------------------------+
| keyring_key_length_fetch('RSA_key') |
+-------------------------------------+
| 16 |
+-------------------------------------+

320

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html

General-Purpose Keyring Key-Management Functions

The example uses HEX() to display the key value because it may contain nonprintable characters.
The example also uses a short key for brevity, but be aware that longer keys provide better security.

• keyring_key_generate(key_id, key_type, key_length)

Generates a new random key with a given ID, type, and length, and stores it in the keyring. The type
and length values must be consistent with the values supported by the underlying keyring plugin.
See Section 6.4.13, “Supported Keyring Key Types and Lengths”.

Arguments:

• key_id: A string that specifies the key ID.

• key_type: A string that specifies the key type.

• key_length: An integer that specifies the key length in bytes.

Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

mysql> SELECT keyring_key_generate('RSA_key', 'RSA', 384);
+---+
| keyring_key_generate('RSA_key', 'RSA', 384) |
+---+
| 1 |
+---+

• keyring_key_length_fetch(key_id)

Given a key ID, returns the key length.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key length in bytes as an integer for success, NULL if the key does not exist, or NULL
and an error for failure.

Example:

See the description of keyring_key_fetch().

• keyring_key_remove(key_id)

Removes the key with a given ID from the keyring.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns 1 for success, or NULL for failure.

Example:

mysql> SELECT keyring_key_remove('AES_key');
+-------------------------------+
| keyring_key_remove('AES_key') |

321

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_hex

Plugin-Specific Keyring Key-Management Functions

+-------------------------------+
| 1 |
+-------------------------------+

• keyring_key_store(key_id, key_type, key)

Obfuscates and stores a key in the keyring.

Arguments:

• key_id: A string that specifies the key ID.

• key_type: A string that specifies the key type.

• key: A string that specifies the key value.

Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

mysql> SELECT keyring_key_store('new key', 'DSA', 'My key value');
+---+
| keyring_key_store('new key', 'DSA', 'My key value') |
+---+
| 1 |
+---+

• keyring_key_type_fetch(key_id)

Given a key ID, returns the key type.

Arguments:

• key_id: A string that specifies the key ID.

Return value:

Returns the key type as a string for success, NULL if the key does not exist, or NULL and an error for
failure.

Example:

See the description of keyring_key_fetch().

6.4.16 Plugin-Specific Keyring Key-Management Functions

For each keyring plugin-specific function, this section describes its purpose, calling sequence, and
return value. For information about general-purpose keyring functions, see Section 6.4.15, “General-
Purpose Keyring Key-Management Functions”.

• keyring_aws_rotate_cmk()

Associated keyring plugin: keyring_aws

keyring_aws_rotate_cmk() rotates the AWS KMS key. Rotation changes only the key that
AWS KMS uses for subsequent data key-encryption operations. AWS KMS maintains previous CMK
versions, so keys generated using previous CMKs remain decryptable after rotation.

Rotation changes the CMK value used inside AWS KMS but does not change the ID used to
refer to it, so there is no need to change the keyring_aws_cmk_id system variable after calling
keyring_aws_rotate_cmk().

322

Keyring Metadata

This function requires the SUPER privilege.

Arguments:

None.

Return value:

Returns 1 for success, or NULL and an error for failure.

• keyring_aws_rotate_keys()

Associated keyring plugin: keyring_aws

keyring_aws_rotate_keys() rotates keys stored in the keyring_aws storage file named by
the keyring_aws_data_file system variable. Rotation sends each key stored in the file to AWS
KMS for re-encryption using the value of the keyring_aws_cmk_id system variable as the CMK
value, and stores the new encrypted keys in the file.

keyring_aws_rotate_keys() is useful for key re-encryption under these circumstances:

• After rotating the CMK; that is, after invoking the keyring_aws_rotate_cmk() function.

• After changing the keyring_aws_cmk_id system variable to a different key value.

This function requires the SUPER privilege.

Arguments:

None.

Return value:

Returns 1 for success, or NULL and an error for failure.

• keyring_hashicorp_update_config()

Associated keyring plugin: keyring_hashicorp

When invoked, the keyring_hashicorp_update_config() function causes
keyring_hashicorp to perform a runtime reconfiguration, as described in keyring_hashicorp
Configuration.

This function requires the SYSTEM_VARIABLES_ADMIN privilege because it modifies global system
variables.

Arguments:

None.

Return value:

Returns the string 'Configuration update was successful.' for success, or
'Configuration update failed.' for failure.

6.4.17 Keyring Metadata

This section describes sources of information about keyring use.

To see whether a keyring plugin is loaded, check the Information Schema PLUGINS table or use the
SHOW PLUGINS statement (see Obtaining Server Plugin Information). For example:

323

https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

Keyring Command Options

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'keyring%';
+--------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+--------------+---------------+
| keyring_file | ACTIVE |
+--------------+---------------+

To see which keys exist, check the Performance Schema keyring_keys table:

mysql> SELECT * FROM performance_schema.keyring_keys;
+-----------------------------+--------------+----------------+
| KEY_ID | KEY_OWNER | BACKEND_KEY_ID |
+-----------------------------+--------------+----------------+
audit_log-20210322T130749-1		
MyKey	me@localhost	
YourKey	me@localhost	
+-----------------------------+--------------+----------------+

To see whether a keyring component is loaded, check the Performance Schema
keyring_component_status table. For example:

mysql> SELECT * FROM performance_schema.keyring_component_status;
+---------------------+---+
| STATUS_KEY | STATUS_VALUE |
+---------------------+---+
Component_name	component_keyring_file
Author	Oracle Corporation
License	GPL
Implementation_name	component_keyring_file
Version	1.0
Component_status	Active
Data_file	/usr/local/mysql/keyring/component_keyring_file
Read_only	No
+---------------------+---+

A Component_status value of Active indicates that the component initialized successfully. If the
component loaded but failed to initialize, the value is Disabled.

6.4.18 Keyring Command Options

MySQL supports the following keyring-related command-line options:

• --keyring-migration-destination=plugin

Command-Line Format --keyring-migration-
destination=plugin_name

Type String

The destination keyring plugin for key migration. See Section 6.4.14, “Migrating Keys Between
Keyring Keystores”. The option value interpretation depends on whether --keyring-migration-
to-component is specified:

• If no, the option value is a keyring plugin, interpreted the same way as for --keyring-
migration-source.

•
If yes, the option value is a keyring component, specified as the component library name in the
plugin directory, including any platform-specific extension such as .so or .dll.

Note

--keyring-migration-source and --keyring-migration-
destination are mandatory for all keyring migration operations. The source

324

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-component-status-table.html

Keyring Command Options

and destination plugins must differ, and the migration server must support
both plugins.

• --keyring-migration-host=host_name

Command-Line Format --keyring-migration-host=host_name

Type String

Default Value localhost

The host location of the running server that is currently using one of the key migration keystores. See
Section 6.4.14, “Migrating Keys Between Keyring Keystores”. Migration always occurs on the local
host, so the option always specifies a value for connecting to a local server, such as localhost,
127.0.0.1, ::1, or the local host IP address or host name.

• --keyring-migration-password[=password]

Command-Line Format --keyring-migration-
password[=password]

Type String

The password of the MySQL account used for connecting to the running server that is currently
using one of the key migration keystores. See Section 6.4.14, “Migrating Keys Between Keyring
Keystores”.

The password value is optional. If not given, the server prompts for one. If given, there must be no
space between --keyring-migration-password= and the password following it. If no password
option is specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. See Section 2.2.1,
“End-User Guidelines for Password Security”. You can use an option file to avoid giving the
password on the command line. In this case, the file should have a restrictive mode and be
accessible only to the account used to run the migration server.

• --keyring-migration-port=port_num

Command-Line Format --keyring-migration-port=port_num

Type Numeric

Default Value 3306

For TCP/IP connections, the port number for connecting to the running server that is currently
using one of the key migration keystores. See Section 6.4.14, “Migrating Keys Between Keyring
Keystores”.

• --keyring-migration-socket=path

Command-Line Format --keyring-migration-
socket={file_name|pipe_name}

Type String

For Unix socket file or Windows named pipe connections, the socket file or named pipe for
connecting to the running server that is currently using one of the key migration keystores. See
Section 6.4.14, “Migrating Keys Between Keyring Keystores”.

• --keyring-migration-source=plugin

Command-Line Format --keyring-migration-
source=plugin_name

325

Keyring System Variables

Type String

The source keyring plugin for key migration. See Section 6.4.14, “Migrating Keys Between Keyring
Keystores”.

The option value is similar to that for --plugin-load, except that only one plugin library can
be specified. The value is given as plugin_library or name=plugin_library, where
plugin_library is the name of a library file that contains plugin code, and name is the name of
a plugin to load. If a plugin library is named without any preceding plugin name, the server loads all
plugins in the library. With a preceding plugin name, the server loads only the named plugin from the
library. The server looks for plugin library files in the directory named by the plugin_dir system
variable.

Note

--keyring-migration-source and --keyring-migration-
destination are mandatory for all keyring migration operations. The source
and destination plugins must differ, and the migration server must support
both plugins.

• --keyring-migration-to-component

Command-Line Format --keyring-migration-to-
component[={OFF|ON}]

Introduced 8.0.24

Type Boolean

Default Value OFF

Indicates that a key migration is from a keyring plugin to a keyring component. This option makes
it possible to migrate keys from any keyring plugin to any keyring component, which facilitates
transitioning a MySQL installation from keyring plugins to keyring components.

For key migration from one keyring component to another, use the mysql_migrate_keyring
utility. Migration from a keyring component to a keyring plugin is not supported. See Section 6.4.14,
“Migrating Keys Between Keyring Keystores”.

• --keyring-migration-user=user_name

Command-Line Format --keyring-migration-user=user_name

Type String

The user name of the MySQL account used for connecting to the running server that is currently
using one of the key migration keystores. See Section 6.4.14, “Migrating Keys Between Keyring
Keystores”.

6.4.19 Keyring System Variables

MySQL Keyring plugins support the following system variables. Use them to configure keyring plugin
operation. These variables are unavailable unless the appropriate keyring plugin is installed (see
Section 6.4.3, “Keyring Plugin Installation”).

• keyring_aws_cmk_id

Command-Line Format --keyring-aws-cmk-id=value

System Variable keyring_aws_cmk_id

Scope Global326

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Keyring System Variables

Dynamic Yes

SET_VAR Hint Applies No

Type String

The KMS key ID obtained from the AWS KMS server and used by the keyring_aws plugin. This
variable is unavailable unless that plugin is installed.

This variable is mandatory. If not specified, keyring_aws initialization fails.

• keyring_aws_conf_file

Command-Line Format --keyring-aws-conf-file=file_name

System Variable keyring_aws_conf_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value platform specific

The location of the configuration file for the keyring_aws plugin. This variable is unavailable unless
that plugin is installed.

At plugin startup, keyring_aws reads the AWS secret access key ID and key from the configuration
file. For the keyring_aws plugin to start successfully, the configuration file must exist and contain
valid secret access key information, initialized as described in Section 6.4.9, “Using the keyring_aws
Amazon Web Services Keyring Plugin”.

The default file name is keyring_aws_conf, located in the default keyring file directory. The
location of this default directory is the same as for the keyring_file_data system variable. See
the description of that variable for details, as well as for considerations to take into account if you
create the directory manually.

• keyring_aws_data_file

Command-Line Format --keyring-aws-data-file

System Variable keyring_aws_data_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value platform specific

The location of the storage file for the keyring_aws plugin. This variable is unavailable unless that
plugin is installed.

At plugin startup, if the value assigned to keyring_aws_data_file specifies a file that does not
exist, the keyring_aws plugin attempts to create it (as well as its parent directory, if necessary). If
the file does exist, keyring_aws reads any encrypted keys contained in the file into its in-memory
cache. keyring_aws does not cache unencrypted keys in memory.

The default file name is keyring_aws_data, located in the default keyring file directory. The
location of this default directory is the same as for the keyring_file_data system variable. See
the description of that variable for details, as well as for considerations to take into account if you
create the directory manually.

327

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

• keyring_aws_region

Command-Line Format --keyring-aws-region=value

System Variable keyring_aws_region

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value us-east-1

Valid Values (≥ 8.0.30) af-south-1

ap-east-1

ap-northeast-1

ap-northeast-2

ap-northeast-3

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

cn-north-1

cn-northwest-1

eu-central-1

eu-north-1

eu-south-1

eu-west-1

eu-west-2

eu-west-3

me-south-1

sa-east-1

us-east-1

us-east-2

us-gov-east-1

us-iso-east-1

us-iso-west-1

us-isob-east-1

328

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

us-west-1

us-west-2

Valid Values (≥ 8.0.17, ≤ 8.0.29) ap-northeast-1

ap-northeast-2

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

cn-north-1

cn-northwest-1

eu-central-1

eu-west-1

eu-west-2

eu-west-3

sa-east-1

us-east-1

us-east-2

us-west-1

us-west-2

Valid Values (≤ 8.0.16) ap-northeast-1

ap-northeast-2

ap-south-1

ap-southeast-1

ap-southeast-2

eu-central-1

eu-west-1

sa-east-1

us-east-1

us-west-1

us-west-2

The AWS region for the keyring_aws plugin. This variable is unavailable unless that plugin is
installed.

329

Keyring System Variables

• keyring_encrypted_file_data

Command-Line Format --keyring-encrypted-file-
data=file_name

Deprecated 8.0.34

System Variable keyring_encrypted_file_data

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value platform specific

Note

As of MySQL 8.0.34, the keyring_encrypted_file plugin is
deprecated and subject to removal in a future version of MySQL.
Consider using component_keyring_encrypted_file instead; the
component_keyring_encrypted_file component supersedes the
keyring_encrypted_file plugin.

The path name of the data file used for secure data storage by the keyring_encrypted_file
plugin. This variable is unavailable unless that plugin is installed. The file location should be in a
directory considered for use only by keyring plugins. For example, do not locate the file under the
data directory.

Keyring operations are transactional: The keyring_encrypted_file plugin uses a backup file
during write operations to ensure that it can roll back to the original file if an operation fails. The
backup file has the same name as the value of the keyring_encrypted_file_data system
variable with a suffix of .backup.

Do not use the same keyring_encrypted_file data file for multiple MySQL instances. Each
instance should have its own unique data file.

The default file name is keyring_encrypted, located in a directory that is platform specific
and depends on the value of the INSTALL_LAYOUT CMake option, as shown in the following
table. To specify the default directory for the file explicitly if you are building from source, use the
INSTALL_MYSQLKEYRINGDIR CMake option.

INSTALL_LAYOUT Value Default keyring_encrypted_file_data
Value

DEB, RPM, SVR4 /var/lib/mysql-keyring/
keyring_encrypted

Otherwise keyring/keyring_encrypted under the
CMAKE_INSTALL_PREFIX value

At plugin startup, if the value assigned to keyring_encrypted_file_data specifies a file that
does not exist, the keyring_encrypted_file plugin attempts to create it (as well as its parent
directory, if necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the
/usr/local/mysql/mysql-keyring directory, the following commands (executed as root)
create the directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring330

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_install_layout
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_install_mysqlkeyringdir
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_cmake_install_prefix

Keyring System Variables

chmod 750 mysql-keyring
chown mysql mysql-keyring
chgrp mysql mysql-keyring

If the keyring_encrypted_file plugin cannot create or access its data file, it writes an error
message to the error log. If an attempted runtime assignment to keyring_encrypted_file_data
results in an error, the variable value remains unchanged.

Important

Once the keyring_encrypted_file plugin has created its data file
and started to use it, it is important not to remove the file. Loss of the
file causes data encrypted using its keys to become inaccessible. (It is
permissible to rename or move the file, as long as you change the value of
keyring_encrypted_file_data to match.)

• keyring_encrypted_file_password

Command-Line Format --keyring-encrypted-file-
password=password

Deprecated 8.0.34

System Variable keyring_encrypted_file_password

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Note

As of MySQL 8.0.34, the keyring_encrypted_file plugin is
deprecated and subject to removal in a future version of MySQL.
Consider using component_keyring_encrypted_file instead; the
component_keyring_encrypted_file component supersedes the
keyring_encrypted_file plugin.

The password used by the keyring_encrypted_file plugin. This variable is unavailable unless
that plugin is installed.

This variable is mandatory. If not specified, keyring_encrypted_file initialization fails.

If this variable is specified in an option file, the file should have a restrictive mode and be accessible
only to the account used to run the MySQL server.

Important

Once the keyring_encrypted_file_password value has been
set, changing it does not rotate the keyring password and could make
the server inaccessible. If an incorrect password is provided, the
keyring_encrypted_file plugin cannot load keys from the encrypted
keyring file.

The password value cannot be displayed at runtime with SHOW VARIABLES or the Performance
Schema global_variables table because the display value is obfuscated.

• keyring_file_data

Command-Line Format --keyring-file-data=file_name

Deprecated 8.0.34

331

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-system-variable-tables.html

Keyring System Variables

System Variable keyring_file_data

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value platform specific

Note

As of MySQL 8.0.34, the keyring_file plugin is deprecated and
subject to removal in a future version of MySQL. Consider using
component_keyring_file instead; the component_keyring_file
component supersedes the keyring_file plugin.

The path name of the data file used for secure data storage by the keyring_file plugin. This
variable is unavailable unless that plugin is installed. The file location should be in a directory
considered for use only by keyring plugins. For example, do not locate the file under the data
directory.

Keyring operations are transactional: The keyring_file plugin uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has
the same name as the value of the keyring_file_data system variable with a suffix of .backup.

Do not use the same keyring_file data file for multiple MySQL instances. Each instance should
have its own unique data file.

The default file name is keyring, located in a directory that is platform specific and depends on the
value of the INSTALL_LAYOUT CMake option, as shown in the following table. To specify the default
directory for the file explicitly if you are building from source, use the INSTALL_MYSQLKEYRINGDIR
CMake option.

INSTALL_LAYOUT Value Default keyring_file_data Value

DEB, RPM, SVR4 /var/lib/mysql-keyring/keyring

Otherwise keyring/keyring under the
CMAKE_INSTALL_PREFIX value

At plugin startup, if the value assigned to keyring_file_data specifies a file that does not exist,
the keyring_file plugin attempts to create it (as well as its parent directory, if necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the
/usr/local/mysql/mysql-keyring directory, the following commands (executed as root)
create the directory and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring
chmod 750 mysql-keyring
chown mysql mysql-keyring

332

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_install_layout
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_install_mysqlkeyringdir
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_cmake_install_prefix

Keyring System Variables

chgrp mysql mysql-keyring

If the keyring_file plugin cannot create or access its data file, it writes an error message to
the error log. If an attempted runtime assignment to keyring_file_data results in an error, the
variable value remains unchanged.

Important

Once the keyring_file plugin has created its data file and started to
use it, it is important not to remove the file. For example, InnoDB uses
the file to store the master key used to decrypt the data in tables that use
InnoDB tablespace encryption; see InnoDB Data-at-Rest Encryption.
Loss of the file causes data in such tables to become inaccessible. (It is
permissible to rename or move the file, as long as you change the value
of keyring_file_data to match.) It is recommended that you create a
separate backup of the keyring data file immediately after you create the first
encrypted table and before and after master key rotation.

• keyring_hashicorp_auth_path

Command-Line Format --keyring-hashicorp-auth-path=value

Introduced 8.0.18

System Variable keyring_hashicorp_auth_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value /v1/auth/approle/login

The authentication path where AppRole authentication is enabled within the HashiCorp Vault server,
for use by the keyring_hashicorp plugin. This variable is unavailable unless that plugin is
installed.

• keyring_hashicorp_ca_path

Command-Line Format --keyring-hashicorp-ca-
path=file_name

Introduced 8.0.18

System Variable keyring_hashicorp_ca_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type File name

Default Value empty string

The absolute path name of a local file accessible to the MySQL server that contains a properly
formatted TLS certificate authority for use by the keyring_hashicorp plugin. This variable is
unavailable unless that plugin is installed.

If this variable is not set, the keyring_hashicorp plugin opens an HTTPS connection without
using server certificate verification, and trusts any certificate delivered by the HashiCorp Vault server.
For this to be safe, it must be assumed that the Vault server is not malicious and that no man-in-the-
middle attack is possible. If those assumptions are invalid, set keyring_hashicorp_ca_path

333

https://dev.mysql.com/doc/refman/8.0/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

to the path of a trusted CA certificate. (For example, for the instructions in Certificate and Key
Preparation, this is the company.crt file.)

• keyring_hashicorp_caching

Command-Line Format --keyring-hashicorp-caching[={OFF|
ON}]

Introduced 8.0.18

System Variable keyring_hashicorp_caching

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether to enable the optional in-memory key cache used by the keyring_hashicorp plugin
to cache keys from the HashiCorp Vault server. This variable is unavailable unless that plugin is
installed. If the cache is enabled, the plugin populates it during initialization. Otherwise, the plugin
populates only the key list during initialization.

Enabling the cache is a compromise: It improves performance, but maintains a copy of sensitive key
information in memory, which may be undesirable for security purposes.

• keyring_hashicorp_commit_auth_path

Introduced 8.0.18

System Variable keyring_hashicorp_commit_auth_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_auth_path, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_ca_path

Introduced 8.0.18

System Variable keyring_hashicorp_commit_ca_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_ca_path, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

334

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

• keyring_hashicorp_commit_caching

Introduced 8.0.18

System Variable keyring_hashicorp_commit_caching

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_caching, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_role_id

Introduced 8.0.18

System Variable keyring_hashicorp_commit_role_id

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_role_id, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_server_url

Introduced 8.0.18

System Variable keyring_hashicorp_commit_server_url

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

This variable is associated with keyring_hashicorp_server_url, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_commit_store_path

Introduced 8.0.18

System Variable keyring_hashicorp_commit_store_path

Scope Global

Dynamic No

SET_VAR Hint Applies No

335

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

Type String

This variable is associated with keyring_hashicorp_store_path, from which it takes its value
during keyring_hashicorp plugin initialization. This variable is unavailable unless that plugin is
installed. It reflects the “committed” value actually used for plugin operation if initialization succeeds.
For additional information, see keyring_hashicorp Configuration.

• keyring_hashicorp_role_id

Command-Line Format --keyring-hashicorp-role-id=value

Introduced 8.0.18

System Variable keyring_hashicorp_role_id

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value empty string

The HashiCorp Vault AppRole authentication role ID, for use by the keyring_hashicorp plugin.
This variable is unavailable unless that plugin is installed. The value must be in UUID format.

This variable is mandatory. If not specified, keyring_hashicorp initialization fails.

• keyring_hashicorp_secret_id

Command-Line Format --keyring-hashicorp-secret-id=value

Introduced 8.0.18

System Variable keyring_hashicorp_secret_id

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value empty string

The HashiCorp Vault AppRole authentication secret ID, for use by the keyring_hashicorp plugin.
This variable is unavailable unless that plugin is installed. The value must be in UUID format.

This variable is mandatory. If not specified, keyring_hashicorp initialization fails.

The value of this variable is sensitive, so its value is masked by * characters when displayed.

• keyring_hashicorp_server_url

Command-Line Format --keyring-hashicorp-server-url=value

Introduced 8.0.18

System Variable keyring_hashicorp_server_url

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value https://127.0.0.1:8200

336

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

The HashiCorp Vault server URL, for use by the keyring_hashicorp plugin. This variable is
unavailable unless that plugin is installed. The value must begin with https://.

• keyring_hashicorp_store_path

Command-Line Format --keyring-hashicorp-store-path=value

Introduced 8.0.18

System Variable keyring_hashicorp_store_path

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value empty string

A store path within the HashiCorp Vault server that is writeable when appropriate AppRole
credentials are provided by the keyring_hashicorp plugin. This variable is unavailable unless
that plugin is installed. To specify the credentials, set the keyring_hashicorp_role_id and
keyring_hashicorp_secret_id system variables (for example, as shown in keyring_hashicorp
Configuration).

This variable is mandatory. If not specified, keyring_hashicorp initialization fails.

• keyring_oci_ca_certificate

Command-Line Format --keyring-oci-ca-
certificate=file_name

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_ca_certificate

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value empty string

The path name of the CA certificate bundle file that the keyring_oci plugin uses for Oracle Cloud
Infrastructure certificate verification. This variable is unavailable unless that plugin is installed.

The file contains one or more certificates for peer verification. If no file is specified, the default CA
bundle installed on the system is used. If the value is disabled (case-sensitive), keyring_oci
performs no certificate verification.

• keyring_oci_compartment

Command-Line Format --keyring-oci-compartment=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_compartment

Scope Global

Dynamic No

337

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

SET_VAR Hint Applies No

Type String

The OCID of the tenancy compartment that the keyring_oci plugin uses as the location of the
MySQL keys. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a MySQL compartment or subcompartment if it does
not exist. This compartment should contain no vault keys or vault secrets. It should not be used by
systems other than MySQL Keyring.

For information about managing compartments and obtaining the OCID, see Managing
Compartments.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_encryption_endpoint

Command-Line Format --keyring-oci-encryption-
endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_encryption_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The endpoint of the Oracle Cloud Infrastructure encryption server that the keyring_oci plugin uses
for generating ciphertext for new keys. This variable is unavailable unless that plugin is installed.

The encryption endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation
time. To obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using
the instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_key_file

Command-Line Format --keyring-oci-key-file=file_name

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_key_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

338

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

Type String

The path name of the file containing the RSA private key that the keyring_oci plugin uses for
Oracle Cloud Infrastructure authentication. This variable is unavailable unless that plugin is installed.

You must also upload the corresponding RSA public key using the Console. The Console displays
the key fingerprint value, which you can use to set the keyring_oci_key_fingerprint system
variable.

For information about generating and uploading API keys, see Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_key_fingerprint

Command-Line Format --keyring-oci-key-fingerprint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_key_fingerprint

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The fingerprint of the RSA private key that the keyring_oci plugin uses for Oracle Cloud
Infrastructure authentication. This variable is unavailable unless that plugin is installed.

To obtain the key fingerprint while creating the API keys, execute this command:

openssl rsa -pubout -outform DER -in ~/.oci/oci_api_key.pem | openssl md5 -c

Alternatively, obtain the fingerprint from the Console, which automatically displays the fingerprint
when you upload the RSA public key.

For information about obtaining key fingerprints, see Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_management_endpoint

Command-Line Format --keyring-oci-management-
endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_management_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

339

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

Type String

The endpoint of the Oracle Cloud Infrastructure key management server that the keyring_oci
plugin uses for listing existing keys. This variable is unavailable unless that plugin is installed.

The key management endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-
creation time. To obtain the endpoint OCID, view the configuration details for your keyring_oci
vault, using the instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_master_key

Command-Line Format --keyring-oci-master-key=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_master_key

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The OCID of the Oracle Cloud Infrastructure master encryption key that the keyring_oci plugin
uses for encryption of secrets. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a cryptographic key for the Oracle Cloud
Infrastructure compartment if it does not exist. Provide a MySQL-specific name for the generated
key, and do not use it for other purposes.

For information about key creation, see Managing Keys.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_secrets_endpoint

Command-Line Format --keyring-oci-secrets-endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_secrets_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The endpoint of the Oracle Cloud Infrastructure secrets server that the keyring_oci plugin uses
for listing, creating, and retiring secrets. This variable is unavailable unless that plugin is installed.

The secrets endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation
time. To obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using
the instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

340

https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingkeys.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm

Keyring System Variables

• keyring_oci_tenancy

Command-Line Format --keyring-oci-tenancy=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_tenancy

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The OCID of the Oracle Cloud Infrastructure tenancy that the keyring_oci plugin uses as the
location of the MySQL compartment. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a tenancy if it does not exist. To obtain the tenancy
OCID from the Console, use the instructions at Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_user

Command-Line Format --keyring-oci-user=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_user

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The OCID of the Oracle Cloud Infrastructure user that the keyring_oci plugin uses for cloud
connections. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, this user must exist and be granted access to use the configured
Oracle Cloud Infrastructure tenancy, compartment, and vault resources.

To obtain the user OCID from the Console, use the instructions at Required Keys and OCIDs.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_vaults_endpoint

Command-Line Format --keyring-oci-vaults-endpoint=value

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_vaults_endpoint

Scope Global

Dynamic No

SET_VAR Hint Applies No

341

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Keyring System Variables

Type String

The endpoint of the Oracle Cloud Infrastructure vaults server that the keyring_oci plugin uses for
obtaining the value of secrets. This variable is unavailable unless that plugin is installed.

The vaults endpoint is vault specific and Oracle Cloud Infrastructure assigns it at vault-creation time.
To obtain the endpoint OCID, view the configuration details for your keyring_oci vault, using the
instructions at Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_oci_virtual_vault

Command-Line Format --keyring-oci-virtual-vault=ocid

Introduced 8.0.22

Deprecated 8.0.31

System Variable keyring_oci_virtual_vault

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The OCID of the Oracle Cloud Infrastructure Vault that the keyring_oci plugin uses for encryption
operations. This variable is unavailable unless that plugin is installed.

Prior to using keyring_oci, you must create a new vault in the MySQL compartment if it does not
exist. (Alternatively, you can reuse an existing vault that is in a parent compartment of the MySQL
compartment.) Compartment users can see and use only the keys in their respective compartments.

For information about creating a vault and obtaining the vault OCID, see Managing Vaults.

This variable is mandatory. If not specified, keyring_oci initialization fails.

• keyring_okv_conf_dir

Command-Line Format --keyring-okv-conf-dir=dir_name

System Variable keyring_okv_conf_dir

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Directory name

Default Value empty string

The path name of the directory that stores configuration information used by the keyring_okv
plugin. This variable is unavailable unless that plugin is installed. The location should be a directory
considered for use only by the keyring_okv plugin. For example, do not locate the directory under
the data directory.

The default keyring_okv_conf_dir value is empty. For the keyring_okv plugin to be able
to access Oracle Key Vault, the value must be set to a directory that contains Oracle Key Vault

342

https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://docs.cloud.oracle.com/en-us/iaas/Content/KeyManagement/Tasks/managingvaults.htm
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Enterprise Audit

configuration and SSL materials. For instructions on setting up this directory, see Section 6.4.8,
“Using the keyring_okv KMIP Plugin”.

The directory should have a restrictive mode and be accessible only to the account used to run
the MySQL server. For example, on Unix and Unix-like systems, to use the /usr/local/mysql/
mysql-keyring-okv directory, the following commands (executed as root) create the directory
and set its mode and ownership:

cd /usr/local/mysql
mkdir mysql-keyring-okv
chmod 750 mysql-keyring-okv
chown mysql mysql-keyring-okv
chgrp mysql mysql-keyring-okv

If the value assigned to keyring_okv_conf_dir specifies a directory that does not exist, or
that does not contain configuration information that enables a connection to Oracle Key Vault to
be established, keyring_okv writes an error message to the error log. If an attempted runtime
assignment to keyring_okv_conf_dir results in an error, the variable value and keyring
operation remain unchanged.

• keyring_operations

System Variable keyring_operations

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether keyring operations are enabled. This variable is used during key migration operations. See
Section 6.4.14, “Migrating Keys Between Keyring Keystores”. The privileges required to modify this
variable are ENCRYPTION_KEY_ADMIN in addition to either SYSTEM_VARIABLES_ADMIN or the
deprecated SUPER privilege.

6.5 MySQL Enterprise Audit

Note

MySQL Enterprise Audit is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin named
audit_log. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-
based monitoring, logging, and blocking of connection and query activity executed on specific MySQL
servers. Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of
box, easy to use auditing and compliance solution for applications that are governed by both internal
and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access. From MySQL 8.0.30, you
can add statistics for the time and size of each query to detect outliers.

By default, MySQL Enterprise Audit uses tables in the mysql system database for persistent storage
of filter and user account data. To use a different database, set the audit_log_database system
variable at server startup (from MySQL 8.0.33).

343

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://www.mysql.com/products/
https://www.mysql.com/products/

Elements of MySQL Enterprise Audit

After you install the audit plugin (see Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”),
it writes an audit log file. By default, the file is named audit.log in the server data directory. To
change the name of the file, set the audit_log_file system variable at server startup.

By default, audit log file contents are written in new-style XML format, without compression or
encryption. To select the file format, set the audit_log_format system variable at server startup.
For details on file format and contents, see Section 6.5.4, “Audit Log File Formats”.

For more information about controlling how logging occurs, including audit log file naming and format
selection, see Section 6.5.5, “Configuring Audit Logging Characteristics”. To perform filtering of audited
events, see Section 6.5.7, “Audit Log Filtering”. For descriptions of the parameters used to configure
the audit log plugin, see Audit Log Options and Variables.

If the audit log plugin is enabled, the Performance Schema (see MySQL Performance Schema) has
instrumentation for it. To identify the relevant instruments, use this query:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE '%/alog/%';

6.5.1 Elements of MySQL Enterprise Audit

MySQL Enterprise Audit is based on the audit log plugin and related elements:

• A server-side plugin named audit_log examines auditable events and determines whether to write
them to the audit log.

• A set of functions enables manipulation of filtering definitions that control logging behavior, the
encryption password, and log file reading.

• Tables in the mysql system database provide persistent storage of filter and user account data,
unless you set the audit_log_database system variable at server startup to specify a different
database.

• System variables enable audit log configuration and status variables provide runtime operational
information.

• The AUDIT_ADMIN privilege enable users to administer the audit log, and (from MySQL 8.0.28) the
AUDIT_ABORT_EXEMPT privilege enables system users to execute queries that would otherwise be
blocked by an “abort” item in the audit log filter.

6.5.2 Installing or Uninstalling MySQL Enterprise Audit

This section describes how to install or uninstall MySQL Enterprise Audit, which is implemented using
the audit log plugin and related elements described in Section 6.5.1, “Elements of MySQL Enterprise
Audit”. For general information about installing plugins, see Installing and Uninstalling Plugins.

Plugin upgrades are not automatic when you upgrade a MySQL installation and some plugin loadable
functions must be loaded manually (see Installing Loadable Functions). Alternatively, you can reinstall
the plugin after upgrading MySQL to load new functions.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, the audit_log plugin involves some minimal overhead even when
disabled. To avoid this overhead, do not install MySQL Enterprise Audit unless
you plan to use it.

344

https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/function-loading.html#loadable-function-installing

Installing or Uninstalling MySQL Enterprise Audit

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To install MySQL Enterprise Audit, look in the share directory of your MySQL installation and choose
the script that is appropriate for your platform. The available scripts differ in the file name used to refer
to the script:

• audit_log_filter_win_install.sql

• audit_log_filter_linux_install.sql

Run the script as follows. The example here uses the Linux installation script. Make the appropriate
substitution for your system.

Prior to MySQL 8.0.34:

$> mysql -u root -p < audit_log_filter_linux_install.sql
Enter password: (enter root password here)

MySQL 8.0.34 and higher:

$> mysql -u root -p -D mysql < audit_log_filter_linux_install.sql
Enter password: (enter root password here)

Starting in MySQL 8.0.34, it is possible to select a database for storing JSON filter tables when you
run the installation script. Create the database first; its name should not exceed 64 characters. For
example:

mysql> CREATE DATABASE IF NOT EXISTS database-name;

Next, run the script using the alternative database name.

$> mysql -u root -p -D database-name < audit_log_filter_linux_install.sql
Enter password: (enter root password here)

Note

Some MySQL versions have introduced changes to the structure of the MySQL
Enterprise Audit tables. To ensure that your tables are up to date for upgrades
from earlier versions of MySQL 8.0, perform the MySQL upgrade procedure,
making sure to use the option that forces an update (see Upgrading MySQL).
If you prefer to run the update statements only for the MySQL Enterprise Audit
tables, see the following discussion.

As of MySQL 8.0.12, for new MySQL installations, the USER and HOST
columns in the audit_log_user table used by MySQL Enterprise Audit
have definitions that better correspond to the definitions of the User and Host
columns in the mysql.user system table. For upgrades to an installation for
which MySQL Enterprise Audit is already installed, it is recommended that you
alter the table definitions as follows:

ALTER TABLE mysql.audit_log_user
 DROP FOREIGN KEY audit_log_user_ibfk_1;
ALTER TABLE mysql.audit_log_filter
 CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_as_ci;
ALTER TABLE mysql.audit_log_user
 CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_as_ci;
ALTER TABLE mysql.audit_log_user
 MODIFY COLUMN USER VARCHAR(32);
ALTER TABLE mysql.audit_log_user
 ADD FOREIGN KEY (FILTERNAME) REFERENCES mysql.audit_log_filter(NAME);

345

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Installing or Uninstalling MySQL Enterprise Audit

Note

To use MySQL Enterprise Audit in the context of source/replica replication,
Group Replication, or InnoDB Cluster, you must prepare the replica nodes prior
to running the installation script on the source node. This is necessary because
the INSTALL PLUGIN statement in the script is not replicated.

1. On each replica node, extract the INSTALL PLUGIN statement from the
installation script and execute it manually.

2. On the source node, run the installation script as described previously.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW
PLUGINS statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE 'audit%';
+-------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+-------------+---------------+
| audit_log | ACTIVE |
+-------------+---------------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

After MySQL Enterprise Audit is installed, you can use the --audit-log option for subsequent
server startups to control audit_log plugin activation. For example, to prevent the plugin from being
removed at runtime, use this option:

[mysqld]
audit-log=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without the audit plugin, use --audit-log with
a value of FORCE or FORCE_PLUS_PERMANENT to force server startup to fail if the plugin does not
initialize successfully.

Important

By default, rule-based audit log filtering logs no auditable events for any users.
This differs from legacy audit log behavior, which logs all auditable events for all
users (see Section 6.5.10, “Legacy Mode Audit Log Filtering”). Should you wish
to produce log-everything behavior with rule-based filtering, create a simple filter
to enable logging and assign it to the default account:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('%', 'log_all');

The filter assigned to % is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

When installed as just described, MySQL Enterprise Audit remains installed until uninstalled. To
remove it in MySQL 8.0.35 and later, run the uninstall script located in the share directory of your
MySQL installation. The example here specifies the default system database, mysql. Make the
appropriate substitution for your system.

$> mysql -u root -p -D mysql < audit_log_filter_uninstall.sql
Enter password: (enter root password here)

If the script is not available, execute the following statements to remove the tables, plugin, and
functions manually.

DROP TABLE IF EXISTS mysql.audit_log_user;
DROP TABLE IF EXISTS mysql.audit_log_filter;
UNINSTALL PLUGIN audit_log;
DROP FUNCTION audit_log_filter_set_filter;

346

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

MySQL Enterprise Audit Security Considerations

DROP FUNCTION audit_log_filter_remove_filter;
DROP FUNCTION audit_log_filter_set_user;
DROP FUNCTION audit_log_filter_remove_user;
DROP FUNCTION audit_log_filter_flush;
DROP FUNCTION audit_log_encryption_password_get;
DROP FUNCTION audit_log_encryption_password_set;
DROP FUNCTION audit_log_read;
DROP FUNCTION audit_log_read_bookmark;
DROP FUNCTION audit_log_rotate;

6.5.3 MySQL Enterprise Audit Security Considerations

By default, contents of audit log files produced by the audit log plugin are not encrypted and may
contain sensitive information, such as the text of SQL statements. For security reasons, audit log files
should be written to a directory accessible only to the MySQL server and to users with a legitimate
reason to view the log. The default file name is audit.log in the data directory. This can be changed
by setting the audit_log_file system variable at server startup. Other audit log files may exist due
to log rotation.

For additional security, enable audit log file encryption. See Encrypting Audit Log Files.

6.5.4 Audit Log File Formats

The MySQL server calls the audit log plugin to write an audit record to its log file whenever an auditable
event occurs. Typically the first audit record written after plugin startup contains the server description
and startup options. Elements following that one represent events such as client connect and
disconnect events, executed SQL statements, and so forth. Only top-level statements are logged, not
statements within stored programs such as triggers or stored procedures. Contents of files referenced
by statements such as LOAD DATA are not logged.

To select the log format that the audit log plugin uses to write its log file, set the audit_log_format
system variable at server startup. These formats are available:

• New-style XML format (audit_log_format=NEW): An XML format that has better compatibility with
Oracle Audit Vault than old-style XML format. MySQL 8.0 uses new-style XML format by default.

• Old-style XML format (audit_log_format=OLD): The original audit log format used by default in
older MySQL series.

• JSON format (audit_log_format=JSON): Writes the audit log as a JSON array. Only this format
supports the optional query time and size statistics, which are available from MySQL 8.0.30.

By default, audit log file contents are written in new-style XML format, without compression or
encryption.

If you change audit_log_format, it is recommended that you also change audit_log_file. For
example, if you set audit_log_format to JSON, set audit_log_file to audit.json. Otherwise,
newer log files will have a different format than older files, but they will all have the same base name
with nothing to indicate when the format changed.

• New-Style XML Audit Log File Format

• Old-Style XML Audit Log File Format

• JSON Audit Log File Format

New-Style XML Audit Log File Format

Here is a sample log file in new-style XML format (audit_log_format=NEW), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:06:33 UTC</TIMESTAMP>

347

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Audit Log File Formats

 <RECORD_ID>1_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Audit</NAME>
 <SERVER_ID>1</SERVER_ID>
 <VERSION>1</VERSION>
 <STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --socket=/usr/local/mysql/mysql.sock
 --port=3306</STARTUP_OPTIONS>
 <OS_VERSION>i686-Linux</OS_VERSION>
 <MYSQL_VERSION>5.7.21-log</MYSQL_VERSION>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>2_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Connect</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 <CONNECTION_ATTRIBUTES>
 <ATTRIBUTE>
 <NAME>_pid</NAME>
 <VALUE>42794</VALUE>
 </ATTRIBUTE>
 ...
 <ATTRIBUTE>
 <NAME>program_name</NAME>
 <VALUE>mysqladmin</VALUE>
 </ATTRIBUTE>
 </CONNECTION_ATTRIBUTES>
 <PRIV_USER>root</PRIV_USER>
 <PROXY_USER/>
 <DB>test</DB>
 </AUDIT_RECORD>
...
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:38 UTC</TIMESTAMP>
 <RECORD_ID>6_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Query</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root[root] @ localhost [127.0.0.1]</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>drop_table</COMMAND_CLASS>
 <SQLTEXT>DROP TABLE IF EXISTS t</SQLTEXT>
 </AUDIT_RECORD>
...
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:39 UTC</TIMESTAMP>
 <RECORD_ID>8_2019-10-03T14:06:33</RECORD_ID>
 <NAME>Quit</NAME>
 <CONNECTION_ID>5</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 </AUDIT_RECORD>
...
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:43 UTC</TIMESTAMP>
 <RECORD_ID>11_2019-10-03T14:06:33</RECORD_ID>

348

Audit Log File Formats

 <NAME>Quit</NAME>
 <CONNECTION_ID>6</CONNECTION_ID>
 <STATUS>0</STATUS>
 <STATUS_CODE>0</STATUS_CODE>
 <USER>root</USER>
 <OS_LOGIN/>
 <HOST>localhost</HOST>
 <IP>127.0.0.1</IP>
 <COMMAND_CLASS>connect</COMMAND_CLASS>
 <CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>
 </AUDIT_RECORD>
 <AUDIT_RECORD>
 <TIMESTAMP>2019-10-03T14:09:45 UTC</TIMESTAMP>
 <RECORD_ID>12_2019-10-03T14:06:33</RECORD_ID>
 <NAME>NoAudit</NAME>
 <SERVER_ID>1</SERVER_ID>
 </AUDIT_RECORD>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the
closing </AUDIT> root element tag. The closing tag is not present while the file is open.

Elements within <AUDIT_RECORD> elements have these characteristics:

• Some elements appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

• Order of elements within an <AUDIT_RECORD> element is not guaranteed.

• Element values are not fixed length. Long values may be truncated as indicated in the element
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following elements are mandatory in every <AUDIT_RECORD> element:

• <NAME>

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example:

<NAME>Query</NAME>

Some common <NAME> values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects
NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field

349

Audit Log File Formats

List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics,
Table Dump, TableDelete, TableInsert, TableRead, TableUpdate, Time.

Many of these values correspond to the COM_xxx command values listed in the my_command.h
header file. For example, Create DB and Change user correspond to COM_CREATE_DB and
COM_CHANGE_USER, respectively.

Events having <NAME> values of TableXXX accompany Query events. For example, the following
statement generates one Query event, two TableRead events, and a TableInsert events:

INSERT INTO t3 SELECT t1.* FROM t1 JOIN t2;

Each TableXXX event contains <TABLE> and <DB> elements to identify the table to which the event
refers and the database that contains the table.

• <RECORD_ID>

A unique identifier for the audit record. The value is composed from a sequence number and
timestamp, in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it
initializes the sequence number to the size of the audit log file, then increments the sequence by 1
for each record logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating
the date and time when the audit log plugin opened the file.

Example:

<RECORD_ID>12_2019-10-03T14:06:33</RECORD_ID>

• <TIMESTAMP>

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and
time when the audit event was generated. For example, the event corresponding to execution of
an SQL statement received from a client has a <TIMESTAMP> value occurring after the statement
finishes, not when it was received.

Example:

<TIMESTAMP>2019-10-03T14:09:45 UTC</TIMESTAMP>

The following elements are optional in <AUDIT_RECORD> elements. Many of them occur only with
specific <NAME> element values.

• <COMMAND_CLASS>

A string that indicates the type of action performed.

Example:

<COMMAND_CLASS>drop_table</COMMAND_CLASS>

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• <CONNECTION_ATTRIBUTES>

As of MySQL 8.0.19, events with a <COMMAND_CLASS> value of connect may include a
<CONNECTION_ATTRIBUTES> element to display the connection attributes passed by the client

350

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Audit Log File Formats

at connect time. (For information about these attributes, which are also exposed in Performance
Schema tables, see Performance Schema Connection Attribute Tables.)

The <CONNECTION_ATTRIBUTES> element contains one <ATTRIBUTE> element per attribute,
each of which contains <NAME> and <VALUE> elements to indicate the attribute name and value,
respectively.

Example:

<CONNECTION_ATTRIBUTES>
 <ATTRIBUTE>
 <NAME>_pid</NAME>
 <VALUE>42794</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_os</NAME>
 <VALUE>macos0.14</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_platform</NAME>
 <VALUE>x86_64</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_client_version</NAME>
 <VALUE>8.0.19</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>_client_name</NAME>
 <VALUE>libmysql</VALUE>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <NAME>program_name</NAME>
 <VALUE>mysqladmin</VALUE>
 </ATTRIBUTE>
</CONNECTION_ATTRIBUTES>

If no connection attributes are present in the event, none are logged and no
<CONNECTION_ATTRIBUTES> element appears. This can occur if the connection attempt is
unsuccessful, the client passes no attributes, or the connection occurs internally such as during
server startup or when initiated by a plugin.

• <CONNECTION_ID>

An unsigned integer representing the client connection identifier. This is the same as the value
returned by the CONNECTION_ID() function within the session.

Example:

<CONNECTION_ID>127</CONNECTION_ID>

• <CONNECTION_TYPE>

The security state of the connection to the server. Permitted values are TCP/IP (TCP/IP connection
established without encryption), SSL/TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Named Pipe (Windows named pipe connection), and Shared
Memory (Windows shared memory connection).

Example:

<CONNECTION_TYPE>SSL/TLS</CONNECTION_TYPE>

351

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id

Audit Log File Formats

• <DB>

A string representing a database name.

Example:

<DB>test</DB>

For connect events, this element indicates the default database; the element is empty if there is
no default database. For table-access events, the element indicates the database to which the
accessed table belongs.

• <HOST>

A string representing the client host name.

Example:

<HOST>localhost</HOST>

• <IP>

A string representing the client IP address.

Example:

<IP>127.0.0.1</IP>

• <MYSQL_VERSION>

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example:

<MYSQL_VERSION>5.7.21-log</MYSQL_VERSION>

• <OS_LOGIN>

A string representing the external user name used during the authentication process, as set by the
plugin used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin
does not set the value, this element is empty. The value is the same as that of the external_user
system variable (see Section 4.19, “Proxy Users”).

Example:

<OS_LOGIN>jeffrey</OS_LOGIN>

• <OS_VERSION>

A string representing the operating system on which the server was built or is running.

Example:

<OS_VERSION>x86_64-Linux</OS_VERSION>

• <PRIV_USER>

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and may differ from the <USER> value.

Example:

<PRIV_USER>jeffrey</PRIV_USER>352

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user

Audit Log File Formats

• <PROXY_USER>

A string representing the proxy user (see Section 4.19, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:

<PROXY_USER>developer</PROXY_USER>

• <SERVER_ID>

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable.

Example:

<SERVER_ID>1</SERVER_ID>

• <SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character),
so the value may be the result of conversion. For example, the original statement might have been
received from the client as an SJIS string.

Example:

<SQLTEXT>DELETE FROM t1</SQLTEXT>

• <STARTUP_OPTIONS>

A string representing the options that were given on the command line or in option files when the
MySQL server was started. The first option is the path to the server executable.

Example:

<STARTUP_OPTIONS>/usr/local/mysql/bin/mysqld
 --port=3306 --log_output=FILE</STARTUP_OPTIONS>

• <STATUS>

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function. See the description for
<STATUS_CODE> for information about how it differs from <STATUS>.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

<STATUS>1051</STATUS>

• <STATUS_CODE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of
the mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not
necessarily 1 for error.

Example:

353

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html

Audit Log File Formats

<STATUS_CODE>0</STATUS_CODE>

• <TABLE>

A string representing a table name.

Example:

<TABLE>t3</TABLE>

• <USER>

A string representing the user name sent by the client. This may differ from the <PRIV_USER> value.

Example:

<USER>root[root] @ localhost [127.0.0.1]</USER>

• <VERSION>

An unsigned integer representing the version of the audit log file format.

Example:

<VERSION>1</VERSION>

Old-Style XML Audit Log File Format

Here is a sample log file in old-style XML format (audit_log_format=OLD), reformatted slightly for
readability:

<?xml version="1.0" encoding="utf-8"?>
<AUDIT>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:00 UTC"
 RECORD_ID="1_2019-10-03T14:25:00"
 NAME="Audit"
 SERVER_ID="1"
 VERSION="1"
 STARTUP_OPTIONS="--port=3306"
 OS_VERSION="i686-Linux"
 MYSQL_VERSION="5.7.21-log"/>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="2_2019-10-03T14:25:00"
 NAME="Connect"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 CONNECTION_TYPE="SSL/TLS"
 PRIV_USER="root"
 PROXY_USER=""
 DB="test"/>
...
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="6_2019-10-03T14:25:00"
 NAME="Query"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root[root] @ localhost [127.0.0.1]"
 OS_LOGIN=""

354

Audit Log File Formats

 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="drop_table"
 SQLTEXT="DROP TABLE IF EXISTS t"/>
...
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:24 UTC"
 RECORD_ID="8_2019-10-03T14:25:00"
 NAME="Quit"
 CONNECTION_ID="4"
 STATUS="0"
 STATUS_CODE="0"
 USER="root"
 OS_LOGIN=""
 HOST="localhost"
 IP="127.0.0.1"
 COMMAND_CLASS="connect"
 CONNECTION_TYPE="SSL/TLS"/>
 <AUDIT_RECORD
 TIMESTAMP="2019-10-03T14:25:32 UTC"
 RECORD_ID="12_2019-10-03T14:25:00"
 NAME="NoAudit"
 SERVER_ID="1"/>
</AUDIT>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is
<AUDIT>. The root element contains <AUDIT_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDIT> root element tag. When the plugin closes a log file, it writes the
closing </AUDIT> root element tag. The closing tag is not present while the file is open.

Attributes of <AUDIT_RECORD> elements have these characteristics:

• Some attributes appear in every <AUDIT_RECORD> element. Others are optional and may appear
depending on the audit record type.

• Order of attributes within an <AUDIT_RECORD> element is not guaranteed.

• Attribute values are not fixed length. Long values may be truncated as indicated in the attribute
descriptions given later.

• The <, >, ", and & characters are encoded as <, >, ", and &, respectively. NUL
bytes (U+00) are encoded as the ? character.

• Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

The following attributes are mandatory in every <AUDIT_RECORD> element:

• NAME

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example: NAME="Query"

Some common NAME values:

Audit When auditing starts, which may be server startup time
Connect When a client connects, also known as logging in
Query An SQL statement (executed directly)
Prepare Preparation of an SQL statement; usually followed by Execute
Execute Execution of an SQL statement; usually follows Prepare
Shutdown Server shutdown
Quit When a client disconnects

355

Audit Log File Formats

NoAudit Auditing has been turned off

The possible values are Audit, Binlog Dump, Change user, Close stmt, Connect Out,
Connect, Create DB, Daemon, Debug, Delayed insert, Drop DB, Execute, Fetch, Field
List, Init DB, Kill, Long Data, NoAudit, Ping, Prepare, Processlist, Query, Quit,
Refresh, Register Slave, Reset stmt, Set option, Shutdown, Sleep, Statistics,
Table Dump, TableDelete, TableInsert, TableRead, TableUpdate, Time.

Many of these values correspond to the COM_xxx command values listed in the my_command.h
header file. For example, "Create DB" and "Change user" correspond to COM_CREATE_DB and
COM_CHANGE_USER, respectively.

Events having NAME values of TableXXX accompany Query events. For example, the following
statement generates one Query event, two TableRead events, and a TableInsert events:

INSERT INTO t3 SELECT t1.* FROM t1 JOIN t2;

Each TableXXX event has TABLE and DB attributes to identify the table to which the event refers
and the database that contains the table.

Connect events for old-style XML audit log format do not include connection attributes.

• RECORD_ID

A unique identifier for the audit record. The value is composed from a sequence number and
timestamp, in the format SEQ_TIMESTAMP. When the audit log plugin opens the audit log file, it
initializes the sequence number to the size of the audit log file, then increments the sequence by 1
for each record logged. The timestamp is a UTC value in YYYY-MM-DDThh:mm:ss format indicating
the date and time when the audit log plugin opened the file.

Example: RECORD_ID="12_2019-10-03T14:25:00"

• TIMESTAMP

A string representing a UTC value in YYYY-MM-DDThh:mm:ss UTC format indicating the date and
time when the audit event was generated. For example, the event corresponding to execution of an
SQL statement received from a client has a TIMESTAMP value occurring after the statement finishes,
not when it was received.

Example: TIMESTAMP="2019-10-03T14:25:32 UTC"

The following attributes are optional in <AUDIT_RECORD> elements. Many of them occur only for
elements with specific values of the NAME attribute.

• COMMAND_CLASS

A string that indicates the type of action performed.

Example: COMMAND_CLASS="drop_table"

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• CONNECTION_ID

An unsigned integer representing the client connection identifier. This is the same as the value
returned by the CONNECTION_ID() function within the session.

356

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id

Audit Log File Formats

Example: CONNECTION_ID="127"

• CONNECTION_TYPE

The security state of the connection to the server. Permitted values are TCP/IP (TCP/IP connection
established without encryption), SSL/TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Named Pipe (Windows named pipe connection), and Shared
Memory (Windows shared memory connection).

Example: CONNECTION_TYPE="SSL/TLS"

• DB

A string representing a database name.

Example: DB="test"

For connect events, this attribute indicates the default database; the attribute is empty if there is
no default database. For table-access events, the attribute indicates the database to which the
accessed table belongs.

• HOST

A string representing the client host name.

Example: HOST="localhost"

• IP

A string representing the client IP address.

Example: IP="127.0.0.1"

• MYSQL_VERSION

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example: MYSQL_VERSION="5.7.21-log"

• OS_LOGIN

A string representing the external user name used during the authentication process, as set by the
plugin used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin
does not set the value, this attribute is empty. The value is the same as that of the external_user
system variable (see Section 4.19, “Proxy Users”).

Example: OS_LOGIN="jeffrey"

• OS_VERSION

A string representing the operating system on which the server was built or is running.

Example: OS_VERSION="x86_64-Linux"

• PRIV_USER

A string representing the user that the server authenticated the client as. This is the user name that
the server uses for privilege checking, and it may differ from the USER value.

Example: PRIV_USER="jeffrey"

• PROXY_USER

357

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user

Audit Log File Formats

A string representing the proxy user (see Section 4.19, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example: PROXY_USER="developer"

• SERVER_ID

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable.

Example: SERVER_ID="1"

• SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character),
so the value may be the result of conversion. For example, the original statement might have been
received from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t1"

• STARTUP_OPTIONS

A string representing the options that were given on the command line or in option files when the
MySQL server was started.

Example: STARTUP_OPTIONS="--port=3306 --log_output=FILE"

• STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function. See the description for
STATUS_CODE for information about how it differs from STATUS.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example: STATUS="1051"

• STATUS_CODE

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS_CODE value differs from the STATUS value: STATUS_CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of
the mysql_errno() C API function. This is 0 for success and nonzero for error, and thus is not
necessarily 1 for error.

Example: STATUS_CODE="0"

• TABLE

A string representing a table name.

Example: TABLE="t3"

• USER

A string representing the user name sent by the client. This may differ from the PRIV_USER value.

358

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html

Audit Log File Formats

• VERSION

An unsigned integer representing the version of the audit log file format.

Example: VERSION="1"

JSON Audit Log File Format

For JSON-format audit logging (audit_log_format=JSON), the log file contents form a JSON array
with each array element representing an audited event as a JSON hash of key-value pairs. Examples of
complete event records appear later in this section. The following is an excerpt of partial events:

[
 {
 "timestamp": "2019-10-03 13:50:01",
 "id": 0,
 "class": "audit",
 "event": "startup",
 ...
 },
 {
 "timestamp": "2019-10-03 15:02:32",
 "id": 0,
 "class": "connection",
 "event": "connect",
 ...
 },
 ...
 {
 "timestamp": "2019-10-03 17:37:26",
 "id": 0,
 "class": "table_access",
 "event": "insert",
 ...
 }
 ...
]

The audit log file is written using UTF-8 (up to 4 bytes per character). When the audit log plugin begins
writing a new log file, it writes the opening [array marker. When the plugin closes a log file, it writes
the closing] array marker. The closing marker is not present while the file is open.

Items within audit records have these characteristics:

• Some items appear in every audit record. Others are optional and may appear depending on the
audit record type.

• Order of items within an audit record is not guaranteed.

• Item values are not fixed length. Long values may be truncated as indicated in the item descriptions
given later.

• The " and \ characters are encoded as \" and \\, respectively.

JSON format is the only audit log file format that supports the optional query time and size statistics,
which are available from MySQL 8.0.30. This data is available in the slow query log for qualifying
queries, and in the context of the audit log it similarly helps to detect outliers for activity analysis.

To add the query statistics to the log file, you must set them up as a filter using the
audit_log_filter_set_filter() audit log function as the service element of the JSON
filtering syntax. For instructions to do this, see Adding Query Statistics for Outlier Detection. For the
bytes_sent and bytes_received fields to be populated, the system variable log_slow_extra
must be set to ON.

The following examples show the JSON object formats for different event types (as indicated by the
class and event items), reformatted slightly for readability:

359

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_slow_extra

Audit Log File Formats

Auditing startup event:

{ "timestamp": "2019-10-03 14:21:56",
 "id": 0,
 "class": "audit",
 "event": "startup",
 "connection_id": 0,
 "startup_data": { "server_id": 1,
 "os_version": "i686-Linux",
 "mysql_version": "5.7.21-log",
 "args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"] } }

When the audit log plugin starts as a result of server startup (as opposed to being enabled at runtime),
connection_id is set to 0, and account and login are not present.

Auditing shutdown event:

{ "timestamp": "2019-10-03 14:28:20",
 "id": 3,
 "class": "audit",
 "event": "shutdown",
 "connection_id": 0,
 "shutdown_data": { "server_id": 1 } }

When the audit log plugin is uninstalled as a result of server shutdown (as opposed to being disabled at
runtime), connection_id is set to 0, and account and login are not present.

Connect or change-user event:

{ "timestamp": "2019-10-03 14:23:18",
 "id": 1,
 "class": "connection",
 "event": "connect",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "connection_data": { "connection_type": "ssl",
 "status": 0,
 "db": "test",
 "connection_attributes": {
 "_pid": "43236",
 ...
 "program_name": "mysqladmin"
 } }
}

Disconnect event:

{ "timestamp": "2019-10-03 14:24:45",
 "id": 3,
 "class": "connection",
 "event": "disconnect",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "connection_data": { "connection_type": "ssl" } }

Query event:

{ "timestamp": "2019-10-03 14:23:35",
 "id": 2,
 "class": "general",
 "event": "status",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
 "general_data": { "command": "Query",

360

Audit Log File Formats

 "sql_command": "show_variables",
 "query": "SHOW VARIABLES",
 "status": 0 } }

Query event with optional query statistics for outlier detection:

{ "timestamp": "2022-01-28 13:09:30",
 "id": 0,
 "class": "general",
 "event": "status",
 "connection_id": 46,
 "account": { "user": "user", "host": "localhost" },
 "login": { "user": "user", “os": "", “ip": "127.0.0.1", “proxy": "" },
 "general_data": { "command": "Query",
 "sql_command": "insert",
 "query": "INSERT INTO audit_table VALUES(4)",
 "status": 1146 }
 "query_statistics": { "query_time": 0.116250,
 "bytes_sent": 18384,
 "bytes_received": 78858,
 "rows_sent": 3,
 "rows_examined": 20878 } }

Table access event (read, delete, insert, update):

{ "timestamp": "2019-10-03 14:23:41",
 "id": 0,
 "class": "table_access",
 "event": "insert",
 "connection_id": 5,
 "account": { "user": "root", "host": "localhost" },
 "login": { "user": "root", "os": "", "ip": "127.0.0.1", "proxy": "" },
 "table_access_data": { "db": "test",
 "table": "t1",
 "query": "INSERT INTO t1 (i) VALUES(1),(2),(3)",
 "sql_command": "insert" } }

The items in the following list appear at the top level of JSON-format audit records: Each item value
is either a scalar or a JSON hash. For items that have a hash value, the description lists only the item
names within that hash. For more complete descriptions of second-level hash items, see later in this
section.

• account

The MySQL account associated with the event. The value is a hash containing these items
equivalent to the value of the CURRENT_USER() function within the section: user, host.

Example:

"account": { "user": "root", "host": "localhost" }

• class

A string representing the event class. The class defines the type of event, when taken together with
the event item that specifies the event subclass.

Example:

"class": "connection"

The following table shows the permitted combinations of class and event values.

Table 6.19 Audit Log Class and Event Combinations

Class Value Permitted Event Values

audit startup, shutdown

connection connect, change_user, disconnect

361

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Audit Log File Formats

Class Value Permitted Event Values

general status

table_access_data read, delete, insert, update

• connection_data

Information about a client connection. The value is a hash containing these items:
connection_type, status, db, and possibly connection_attributes. This item occurs only
for audit records with a class value of connection.

Example:

"connection_data": { "connection_type": "ssl",
 "status": 0,
 "db": "test" }

As of MySQL 8.0.19, events with a class value of connection and event value of connect may
include a connection_attributes item to display the connection attributes passed by the client
at connect time. (For information about these attributes, which are also exposed in Performance
Schema tables, see Performance Schema Connection Attribute Tables.)

The connection_attributes value is a hash that represents each attribute by its name and
value.

Example:

"connection_attributes": {
 "_pid": "43236",
 "_os": "macos0.14",
 "_platform": "x86_64",
 "_client_version": "8.0.19",
 "_client_name": "libmysql",
 "program_name": "mysqladmin"
}

If no connection attributes are present in the event, none are logged and no
connection_attributes item appears. This can occur if the connection attempt is unsuccessful,
the client passes no attributes, or the connection occurs internally such as during server startup or
when initiated by a plugin.

• connection_id

An unsigned integer representing the client connection identifier. This is the same as the value
returned by the CONNECTION_ID() function within the session.

Example:

"connection_id": 5

• event

A string representing the subclass of the event class. The subclass defines the type of event, when
taken together with the class item that specifies the event class. For more information, see the
class item description.

Example:

"event": "connect"

362

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id

Audit Log File Formats

• general_data

Information about an executed statement or command. The value is a hash containing these items:
command, sql_command, query, status. This item occurs only for audit records with a class
value of general.

Example:

"general_data": { "command": "Query",
 "sql_command": "show_variables",
 "query": "SHOW VARIABLES",
 "status": 0 }

• id

An unsigned integer representing an event ID.

Example:

"id": 2

For audit records that have the same timestamp value, their id values distinguish them and form
a sequence. Within the audit log, timestamp/id pairs are unique. These pairs are bookmarks that
identify event locations within the log.

• login

Information indicating how a client connected to the server. The value is a hash containing these
items: user, os, ip, proxy.

Example:

"login": { "user": "root", "os": "", "ip": "::1", "proxy": "" }

• query_statistics

Optional query statistics for outlier detection. The value is a hash containing these items:
query_time, rows_sent, rows_examined, bytes_received, bytes_sent. For instructions to
set up the query statistics, see Adding Query Statistics for Outlier Detection.

Example:

"query_statistics": { "query_time": 0.116250,
 "bytes_sent": 18384,
 "bytes_received": 78858,
 "rows_sent": 3,
 "rows_examined": 20878 }

• shutdown_data

Information pertaining to audit log plugin termination. The value is a hash containing these items:
server_id This item occurs only for audit records with class and event values of audit and
shutdown, respectively.

Example:

"shutdown_data": { "server_id": 1 }

• startup_data

Information pertaining to audit log plugin initialization. The value is a hash containing these items:
server_id, os_version, mysql_version, args. This item occurs only for audit records with
class and event values of audit and startup, respectively.

Example:

363

Audit Log File Formats

"startup_data": { "server_id": 1,
 "os_version": "i686-Linux",
 "mysql_version": "5.7.21-log",
 "args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"] }

• table_access_data

Information about an access to a table. The value is a hash containing these items: db,
table, query, sql_command, This item occurs only for audit records with a class value of
table_access.

Example:

"table_access_data": { "db": "test",
 "table": "t1",
 "query": "INSERT INTO t1 (i) VALUES(1),(2),(3)",
 "sql_command": "insert" }

• time

This field is similar to that in the timestamp field, but the value is an integer and represents the
UNIX timestamp value indicating the date and time when the audit event was generated.

Example:

"time" : 1618498687

The time field occurs in JSON-format log files only if the audit_log_format_unix_timestamp
system variable is enabled.

• timestamp

A string representing a UTC value in YYYY-MM-DD hh:mm:ss format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a timestamp value occurring after the statement finishes, not
when it was received.

Example:

"timestamp": "2019-10-03 13:50:01"

For audit records that have the same timestamp value, their id values distinguish them and form
a sequence. Within the audit log, timestamp/id pairs are unique. These pairs are bookmarks that
identify event locations within the log.

These items appear within hash values associated with top-level items of JSON-format audit records:

• args

An array of options that were given on the command line or in option files when the MySQL server
was started. The first option is the path to the server executable.

Example:

"args": ["/usr/local/mysql/bin/mysqld",
 "--loose-audit-log-format=JSON",
 "--log-error=log.err",
 "--pid-file=mysqld.pid",
 "--port=3306"]

• bytes_received

364

Audit Log File Formats

The number of bytes received from the client. This item is part of the optional query statistics. For
this field to be populated, the system variable log_slow_extra must be set to ON.

Example:

"bytes_received": 78858

• bytes_sent

The number of bytes sent to the client. This item is part of the optional query statistics. For this field
to be populated, the system variable log_slow_extra must be set to ON.

Example:

"bytes_sent": 18384

• command

A string representing the type of instruction that generated the audit event, such as a command that
the server received from a client.

Example:

"command": "Query"

• connection_type

The security state of the connection to the server. Permitted values are tcp/ip (TCP/IP connection
established without encryption), ssl (TCP/IP connection established with encryption), socket (Unix
socket file connection), named_pipe (Windows named pipe connection), and shared_memory
(Windows shared memory connection).

Example:

"connection_type": "tcp/tcp"

• db

A string representing a database name. For connection_data, it is the default database. For
table_access_data, it is the table database.

Example:

"db": "test"

• host

A string representing the client host name.

Example:

"host": "localhost"

• ip

A string representing the client IP address.

Example:

"ip": "::1"

365

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_slow_extra
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_slow_extra

Audit Log File Formats

• mysql_version

A string representing the MySQL server version. This is the same as the value of the VERSION()
function or version system variable.

Example:

"mysql_version": "5.7.21-log"

• os

A string representing the external user name used during the authentication process, as set by the
plugin used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin
does not set the value, this attribute is empty. The value is the same as that of the external_user
system variable. See Section 4.19, “Proxy Users”.

Example:

"os": "jeffrey"

• os_version

A string representing the operating system on which the server was built or is running.

Example:

"os_version": "i686-Linux"

• proxy

A string representing the proxy user (see Section 4.19, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:

"proxy": "developer"

• query

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character),
so the value may be the result of conversion. For example, the original statement might have been
received from the client as an SJIS string.

Example:

"query": "DELETE FROM t1"

• query_time

The query execution time in microseconds (if the longlong data type is selected) or seconds (if the
double data type is selected). This item is part of the optional query statistics.

Example:

"query_time": 0.116250

• rows_examined

The number of rows accessed during the query. This item is part of the optional query statistics.

Example:

"rows_examined": 20878366

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_version
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user

Audit Log File Formats

• rows_sent

The number of rows sent to the client as a result. This item is part of the optional query statistics.

Example:

"rows_sent": 3

• server_id

An unsigned integer representing the server ID. This is the same as the value of the server_id
system variable.

Example:

"server_id": 1

• sql_command

A string that indicates the SQL statement type.

Example:

"sql_command": "insert"

The values correspond to the statement/sql/xxx command counters. For example, xxx is
drop_table and select for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statement/sql/', '') AS name
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%'
ORDER BY name;

• status

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the mysql_errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations
between error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

"status": 1051

• table

A string representing a table name.

Example:

"table": "t1"

• user

A string representing a user name. The meaning differs depending on the item within which user
occurs:

• Within account items, user is a string representing the user that the server authenticated the
client as. This is the user name that the server uses for privilege checking.

• Within login items, user is a string representing the user name sent by the client.

367

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html

Configuring Audit Logging Characteristics

Example:

"user": "root"

6.5.5 Configuring Audit Logging Characteristics

This section describes how to configure audit logging characteristics, such as the file to which the
audit log plugin writes events, the format of written events, whether to enable log file compression and
encryption, and space management.

• Naming Conventions for Audit Log Files

• Selecting Audit Log File Format

• Enabling the Audit Log Flush Task

• Adding Query Statistics for Outlier Detection

• Compressing Audit Log Files

• Encrypting Audit Log Files

• Manually Uncompressing and Decrypting Audit Log Files

• Audit Log File Encryption Prior to MySQL 8.0.17

• Space Management of Audit Log Files

• Write Strategies for Audit Logging

Note

Encryption capabilities described here apply as of MySQL 8.0.17, with the
exception of the section that compares current encryption capabilities to the
previous more-limited capabilities; see Audit Log File Encryption Prior to MySQL
8.0.17.

For additional information about the functions and system variables that affect audit logging, see Audit
Log Functions, and Audit Log Options and Variables.

The audit log plugin can also control which audited events are written to the audit log file, based on
event content or the account from which events originate. See Section 6.5.7, “Audit Log Filtering”.

Naming Conventions for Audit Log Files

To configure the audit log file name, set the audit_log_file system variable at server startup. The
default name is audit.log in the server data directory. For best security, write the audit log to a
directory accessible only to the MySQL server and to users with a legitimate reason to view the log.

The plugin interprets the audit_log_file value as composed of an optional leading directory name,
a base name, and an optional suffix. If compression or encryption are enabled, the effective file name
(the name actually used to create the log file) differs from the configured file name because it has
additional suffixes:

• If compression is enabled, the plugin adds a suffix of .gz.

• If encryption is enabled, the plugin adds a suffix of .pwd_id.enc, where pwd_id indicates which
encryption password to use for log file operations. The audit log plugin stores encryption passwords
in the keyring; see Encrypting Audit Log Files.

The effective audit log file name is the name resulting from the addition of applicable compression and
encryption suffixes to the configured file name. For example, if the configured audit_log_file value
is audit.log, the effective file name is one of the values shown in the following table.

368

Configuring Audit Logging Characteristics

Enabled Features Effective File Name

No compression or encryption audit.log

Compression audit.log.gz

Encryption audit.log.pwd_id.enc

Compression, encryption audit.log.gz.pwd_id.enc

pwd_id indicates the ID of the password used to encrypt or decrypt a file. pwd_id format is
pwd_timestamp-seq, where:

• pwd_timestamp is a UTC value in YYYYMMDDThhmmss format indicating when the password was
created.

• seq is a sequence number. Sequence numbers start at 1 and increase for passwords that have the
same pwd_timestamp value.

Here are some example pwd_id password ID values:

20190403T142359-1
20190403T142400-1
20190403T142400-2

To construct the corresponding keyring IDs for storing passwords in the keyring, the audit log plugin
adds a prefix of audit_log- to the pwd_id values. For the example password IDs just shown, the
corresponding keyring IDs are:

audit_log-20190403T142359-1
audit_log-20190403T142400-1
audit_log-20190403T142400-2

The ID of the password currently used for encryption by the audit log plugin is the one having the
largest pwd_timestamp value. If multiple passwords have that pwd_timestamp value, the current
password ID is the one with the largest sequence number. For example, in the preceding set of
password IDs, two of them have the largest timestamp, 20190403T142400, so the current password
ID is the one with the largest sequence number (2).

The audit log plugin performs certain actions during initialization and termination based on the effective
audit log file name:

• During initialization, the plugin checks whether a file with the audit log file name already exists
and renames it if so. (In this case, the plugin assumes that the previous server invocation exited
unexpectedly with the audit log plugin running.) The plugin then writes to a new empty audit log file.

• During termination, the plugin renames the audit log file.

• File renaming (whether during plugin initialization or termination) occurs according to the usual rules
for automatic size-based log file rotation; see Manual Audit Log File Rotation (Before MySQL 8.0.31).

Selecting Audit Log File Format

To configure the audit log file format, set the audit_log_format system variable at server startup.
These formats are available:

• NEW: New-style XML format. This is the default.

• OLD: Old-style XML format.

• JSON: JSON format. Writes the audit log as a JSON array. Only this format supports the optional
query time and size statistics, which are available from MySQL 8.0.30.

For details about each format, see Section 6.5.4, “Audit Log File Formats”.

369

Configuring Audit Logging Characteristics

Enabling the Audit Log Flush Task

Starting in MySQL 8.0.34, MySQL Enterprise Audit provides the capability of setting a refresh
interval to dispose of the in-memory cache automatically. A flush task configured using the
audit_log_flush_interval_seconds system variable has a value of zero by default, which
means the task is not scheduled to run.

When the task is configured to run (the value is non-zero), MySQL Enterprise Audit attempts to call the
scheduler component at its initialization and configure a regular, recurring flush of its memory cache:

• If the audit log cannot find an implementation of the scheduler registration service, it does not
schedule the flush and continue loading.

• Audit log implements the dynamic_loader_services_loaded_notification service and
listens for new registrations of mysql_scheduler so that audit log can register its scheduled task
into the newly loaded scheduler.

• Audit log only registers itself into the first scheduler implementation loaded.

Similarly, MySQL Enterprise Audit calls the scheduler component at its deinitialization and
unconfigures the recurring flush that it has scheduled. It keeps an active reference to the scheduler
registration service until the scheduled task is unregistered, ensuring that the scheduler component
cannot be unloaded while there are active scheduled jobs. All of the results from executing the
scheduler and its tasks are written to the server error log.

To schedule an audit log flush task:

1. Confirm that the scheduler component is loaded and enabled. The component is enabled (ON) by
default (see component_scheduler.enabled).

SELECT * FROM mysql.components;
+--------------+--------------------+----------------------------+
| component_id | component_group_id | component_urn |
+--------------+--------------------+----------------------------+
| 1 | 1 | file://component_scheduler |
+--------------+--------------------+----------------------------+

2. Install the audit_log plugin, if it is not installed already (see Section 6.5.2, “Installing or
Uninstalling MySQL Enterprise Audit”).

3. Start the server using audit_log_flush_interval_seconds and set the value to a number
greater than 59. The upper limit of the value varies by platform. For example, to configure the flush
task to recur every two minutes:

$> mysqld --audit_log_flush_interval_seconds=120

For more information, see the audit_log_flush_interval_seconds system variable.

Adding Query Statistics for Outlier Detection

In MySQL 8.0.30 and later, you can extend log files in JSON format with optional data fields to show
the query time, the number of bytes sent and received, the number of rows returned to the client, and
the number of rows examined. This data is available in the slow query log for qualifying queries, and in
the context of the audit log it similarly helps to detect outliers for activity analysis. The extended data
fields can be added only when the audit log is in JSON format (audit_log_format=JSON), which is
not the default setting.

The query statistics are delivered to the audit log through component
services that you set up as an audit log filtering function. The services are
named mysql_audit_print_service_longlong_data_source and
mysql_audit_print_service_double_data_source. You can choose either data type for each

370

https://dev.mysql.com/doc/refman/8.0/en/scheduler-component.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_component_scheduler.enabled

Configuring Audit Logging Characteristics

output item. For the query time, longlong outputs the value in microseconds, and double outputs the
value in seconds.

You add the query statistics using the audit_log_filter_set_filter() audit log function, as the
service element of the JSON filtering syntax, as follows:

SELECT audit_log_filter_set_filter('QueryStatistics',
 '{ "filter": { "class": { "name": "general", "event": { "name": "status", "print" : '
 '{ "service": { "implementation": "mysql_server", "tag": "query_statistics", "element": ['
 '{ "name": "query_time", "type": "double" }, '
 '{ "name": "bytes_sent", "type": "longlong" }, '
 '{ "name": "bytes_received", "type": "longlong" }, '
 '{ "name": "rows_sent", "type": "longlong" }, '
 '{ "name": "rows_examined", "type": "longlong" }] } } } } } }');

For the bytes_sent and bytes_received fields to be populated, the system variable
log_slow_extra must be set to ON. If the system variable is value is OFF, a null value is written to
the log file for these fields.

If you want to stop collecting the query statistics, use the audit_log_filter_set_filter() audit
log function to remove the filter, for example:

SELECT audit_log_filter_remove_filter('QueryStatistics');

Compressing Audit Log Files

Audit log file compression can be enabled for any logging format.

To configure audit log file compression, set the audit_log_compression system variable at server
startup. Permitted values are NONE (no compression; the default) and GZIP (GNU Zip compression).

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

Encrypting Audit Log Files

Audit log file encryption can be enabled for any logging format. Encryption is based on user-defined
passwords (with the exception of the initial password that the audit log plugin generates). To use this
feature, the MySQL keyring must be enabled because audit logging uses it for password storage. Any
keyring component or plugin can be used; for instructions, see Section 6.4, “The MySQL Keyring”.

To configure audit log file encryption, set the audit_log_encryption system variable at server
startup. Permitted values are NONE (no encryption; the default) and AES (AES-256-CBC cipher
encryption).

To set or get an encryption password at runtime, use these audit log functions:

• To set the current encryption password, invoke audit_log_encryption_password_set().
This function stores the new password in the keyring. If encryption is enabled, it also performs a
log file rotation operation that renames the current log file, and begins a new log file encrypted with
the password. File renaming occurs according to the usual rules for automatic size-based log file
rotation; see Manual Audit Log File Rotation (Before MySQL 8.0.31).

If the audit_log_password_history_keep_days system variable is nonzero, invoking
audit_log_encryption_password_set() also causes expiration of old archived audit log
encryption passwords. For information about audit log password history, including password
archiving and expiration, see the description of that variable.

• To get the current encryption password, invoke audit_log_encryption_password_get() with
no argument. To get a password by ID, pass an argument that specifies the keyring ID of the current
password or an archived password.

371

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_slow_extra

Configuring Audit Logging Characteristics

To determine which audit log keyring IDs exist, query the Performance Schema keyring_keys
table:

mysql> SELECT KEY_ID FROM performance_schema.keyring_keys
 WHERE KEY_ID LIKE 'audit_log%'
 ORDER BY KEY_ID;
+-----------------------------+
| KEY_ID |
+-----------------------------+
| audit_log-20190415T152248-1 |
| audit_log-20190415T153507-1 |
| audit_log-20190416T125122-1 |
| audit_log-20190416T141608-1 |
+-----------------------------+

For additional information about audit log encryption functions, see Audit Log Functions.

When the audit log plugin initializes, if it finds that log file encryption is enabled, it checks whether
the keyring contains an audit log encryption password. If not, the plugin automatically generates a
random initial encryption password and stores it in the keyring. To discover this password, invoke
audit_log_encryption_password_get().

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

Manually Uncompressing and Decrypting Audit Log Files

Audit log files can be uncompressed and decrypted using standard tools. This should be done only for
log files that have been closed (archived) and are no longer in use, not for the log file that the audit log
plugin is currently writing. You can recognize archived log files because they have been renamed by
the audit log plugin to include a timestamp in the file name just after the base name.

For this discussion, assume that audit_log_file is set to audit.log. In that case, an archived
audit log file has one of the names shown in the following table.

Enabled Features Archived File Name

No compression or encryption audit.timestamp.log

Compression audit.timestamp.log.gz

Encryption audit.timestamp.log.pwd_id.enc

Compression, encryption audit.timestamp.log.gz.pwd_id.enc

As discussed in Naming Conventions for Audit Log Files, pwd_id format is pwd_timestamp-seq.
Thus, the names of archived encrypted log files actually contain two timestamps. The first indicates file
rotation time, and the second indicates when the encryption password was created.

Consider the following set of archived encrypted log file names:

audit.20190410T205827.log.20190403T185337-1.enc
audit.20190410T210243.log.20190403T185337-1.enc
audit.20190415T145309.log.20190414T223342-1.enc
audit.20190415T151322.log.20190414T223342-2.enc

Each file name has a unique rotation-time timestamp. By contrast, the password timestamps are not
unique:

• The first two files have the same password ID and sequence number (20190403T185337-1). They
have the same encryption password.

• The second two files have the same password ID (20190414T223342) but different sequence
numbers (1, 2). These files have different encryption passwords.

372

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html

Configuring Audit Logging Characteristics

To uncompress a compressed log file manually, use gunzip, gzip -d, or equivalent command. For
example:

gunzip -c audit.timestamp.log.gz > audit.timestamp.log

To decrypt an encrypted log file manually, use the openssl command. For example:

openssl enc -d -aes-256-cbc -pass pass:password -md sha256
 -in audit.timestamp.log.pwd_id.enc
 -out audit.timestamp.log

To execute that command, you must obtain password, the encryption password. To do
this, use audit_log_encryption_password_get(). For example, if the audit log file
name is audit.20190415T151322.log.20190414T223342-2.enc, the password ID is
20190414T223342-2 and the keyring ID is audit-log-20190414T223342-2. Retrieve the keyring
password like this:

SELECT audit_log_encryption_password_get('audit-log-20190414T223342-2');

If both compression and encryption are enabled for audit logging, compression occurs before
encryption. In this case, the file name has .gz and .pwd_id.enc suffixes added, corresponding to the
order in which those operations occur. To recover the original file manually, perform the operations in
reverse. That is, first decrypt the file, then uncompress it:

openssl enc -d -aes-256-cbc -pass pass:password -md sha256
 -in audit.timestamp.log.gz.pwd_id.enc
 -out audit.timestamp.log.gz
gunzip -c audit.timestamp.log.gz > audit.timestamp.log

Audit Log File Encryption Prior to MySQL 8.0.17

This section covers the differences in audit log file encryption capabilities prior to and as of MySQL
8.0.17, which is when password history was implemented (which includes password archiving and
expiration). It also indicates how the audit log plugin handles upgrades to MySQL 8.0.17 or higher from
versions lower than 8.0.17.

Feature Prior to MySQL 8.0.17 As of MySQL 8.0.17

Number of passwords Single password only Multiple passwords permitted

Encrypted log file names .enc suffix .pwd_id.enc suffix

Password keyring ID audit_log audit_log-pwd_id

Password history No Yes

Prior to MySQL 8.0.17, there is no password history, so setting a new password makes the old
password inaccessible, rendering MySQL Enterprise Audit unable to read log files encrypted with the
old password. Should you anticipate a need to decrypt those files manually, you must maintain a record
of previous passwords.

If audit log file encryption is enabled when you upgrade to MySQL 8.0.17 or higher from a lower
version, the audit log plugin performs these upgrade actions:

• During plugin initialization, the plugin checks for an encryption password with a keyring
ID of audit_log. If it finds one, the plugin duplicates the password using a keyring ID in
audit_log-pwd_id format and uses it as the current encryption password. (For details about
pwd_id syntax, see Naming Conventions for Audit Log Files.)

• Existing encrypted log files have a suffix of .enc. The plugin does not rename these to have a suffix
of .pwd_id.enc, but can read them as long as the key with the ID of audit_log remains in the
keyring.

373

Configuring Audit Logging Characteristics

• When password cleanup occurs, if the plugin expires any password with a keyring ID in
audit_log-pwd_id format, it also expires the password with a keyring ID of audit_log, if
it exists. (At this point, encrypted log files that have a suffix of .enc rather than .pwd_id.enc
become unreadable by the plugin, so it is assumed that you no longer need them.)

Space Management of Audit Log Files

The audit log file has the potential to grow quite large and consume a great deal of disk space. If you
are collecting the optional query time and size statistics, which are available from MySQL 8.0.30, this
increases the space requirements. The query statistics are only supported with JSON format.

To manage the space used, employ these methods:

• Log file rotation. This involves rotating the current log file by renaming it, then opening a new
current log file using the original name. Rotation can be performed manually, or configured to occur
automatically.

• Pruning of rotated JSON-format log files, if automatic rotation is enabled. Pruning can be performed
based on log file age (as of MySQL 8.0.24), or combined log file size (as of MySQL 8.0.26).

To configure audit log file space management, use the following system variables:

• If audit_log_rotate_on_size is 0 (the default), automatic log file rotation is disabled.

• No rotation occurs unless performed manually.

• To rotate the current file, use one of the following methods:

• Before MySQL 8.0.31, manually rename the file, then enable audit_log_flush to close
it and open a new current log file using the original name. This file rotation method and the
audit_log_flush variable are deprecated in MySQL 8.0.31.

With this file rotation method, pruning of rotated JSON-format log files does not occur;
audit_log_max_size and audit_log_prune_seconds have no effect.

• From MySQL 8.0.31, run SELECT audit_log_rotate(); to rename the file and open a new
audit log file using the original name.

With this file rotation method, pruning of rotated JSON-format log files occurs if
audit_log_max_size or audit_log_prune_seconds has a value greater than 0.

See Manual Audit Log File Rotation (Before MySQL 8.0.31).

• If audit_log_rotate_on_size is greater than 0, automatic audit log file rotation is enabled:

• Automatic rotation occurs when a write to the current log file causes its size to exceed the
audit_log_rotate_on_size value, as well as under certain other conditions; see Automatic
Audit Log File Rotation. When automatic rotation occurs, the audit log plugin renames the current
log file and opens a new current log file using the original name.

• Pruning of rotated JSON-format log files occurs if audit_log_max_size or
audit_log_prune_seconds has a value greater than 0.

• audit_log_flush has no effect.

Note

For JSON-format log files, rotation also occurs when the value of the
audit_log_format_unix_timestamp system variable is changed at
runtime. However, this does not occur for space-management purposes, but
rather so that, for a given JSON-format log file, all records in the file either do or
do not include the time field.

374

Configuring Audit Logging Characteristics

Note

Rotated (renamed) log files are not removed automatically. For example,
with size-based log file rotation, renamed log files have unique names and
accumulate indefinitely. They do not rotate off the end of the name sequence.
To avoid excessive use of space:

• As of MySQL 8.0.24 (for JSON-format log files): Enable log file pruning as
described in Audit Log File Pruning.

• Otherwise (for non-JSON files, or prior to MySQL 8.0.24 for all log formats):
Remove old files periodically, backing them up first as necessary. If backed-
up log files are encrypted, also back up the corresponding encryption
passwords to a safe place, should you need to decrypt the files later.

The following sections describe log file rotation and pruning in greater detail.

• Manual Audit Log File Rotation (Before MySQL 8.0.31)

• Manual Audit Log File Rotation (From MySQL 8.0.31)

• Automatic Audit Log File Rotation

• Audit Log File Pruning

Manual Audit Log File Rotation (Before MySQL 8.0.31)

Note

From MySQL 8.0.31, the audit_log_flush variable and this method of
audit log file rotation are deprecated; expect support to be removed in a future
version of MySQL.

If audit_log_rotate_on_size is 0 (the default), no log rotation occurs unless performed manually.
In this case, the audit log plugin closes and reopens the log file when the audit_log_flush value
changes from disabled to enabled. Log file renaming must be done externally to the server. Suppose
that the log file name is audit.log and you want to maintain the three most recent log files, cycling
through the names audit.log.1 through audit.log.3. On Unix, perform rotation manually like this:

1. From the command line, rename the current log files:

mv audit.log.2 audit.log.3
mv audit.log.1 audit.log.2
mv audit.log audit.log.1

This strategy overwrites the current audit.log.3 contents, placing a bound on the number of
archived log files and the space they use.

2. At this point, the plugin is still writing to the current log file, which has been renamed to
audit.log.1. Connect to the server and flush the log file so the plugin closes it and reopens a
new audit.log file:

SET GLOBAL audit_log_flush = ON;

audit_log_flush is special in that its value remains OFF so that you need not disable it explicitly
before enabling it again to perform another flush.

Note

If compression or encryption are enabled, log file names include suffixes that
signify the enabled features, as well as a password ID if encryption is enabled.
If file names include a password ID, be sure to retain the ID in the name of any
files you rename manually so that the password to use for decryption operations
can be determined.

375

Configuring Audit Logging Characteristics

Note

For JSON-format logging, renaming audit log files manually makes them
unavailable to the log-reading functions because the audit log plugin can no
longer determine that they are part of the log file sequence (see Section 6.5.6,
“Reading Audit Log Files”). Consider setting audit_log_rotate_on_size
greater than 0 to use size-based rotation instead.

Manual Audit Log File Rotation (From MySQL 8.0.31)

If audit_log_rotate_on_size is 0 (the default), no log rotation occurs unless performed manually.

To rotate the audit log file manually, run SELECT audit_log_rotate(); to rename the current
audit log file and open a new audit log file. Files are renamed according to the conventions described in
Naming Conventions for Audit Log Files.

The AUDIT_ADMIN privilege is required to use the audit_log_rotate() function.

Managing the number of archived log files (the files that have been renamed) and the space they use
is a manual task that involves removing archived audit log files that are no longer needed from your file
system.

The content of audit log files that are renamed using the audit_log_rotate() function can be read
by audit_log_read() function.

Automatic Audit Log File Rotation

If audit_log_rotate_on_size is greater than 0, setting audit_log_flush has no effect. Instead,
whenever a write to the current log file causes its size to exceed the audit_log_rotate_on_size
value, the audit log plugin automatically renames the current log file and opens a new current log file
using the original name.

Automatic size-based rotation also occurs under these conditions:

• During plugin initialization, if a file with the audit log file name already exists (see Naming
Conventions for Audit Log Files).

• During plugin termination.

• When the audit_log_encryption_password_set() function is called to set the encryption
password, if encryption is enabled. (Rotation does not occur if encryption is disabled.)

The plugin renames the original file by inserting a timestamp just after its base name.
For example, if the file name is audit.log, the plugin renames it to a value such as
audit.20210115T140633.log. The timestamp is a UTC value in YYYYMMDDThhmmss format. For
XML logging, the timestamp indicates rotation time. For JSON logging, the timestamp is that of the last
event written to the file.

If log files are encrypted, the original file name already contains a timestamp indicating
the encryption password creation time (see Naming Conventions for Audit Log Files). In
this case, the file name after rotation contains two timestamps. For example, an encrypted
log file named audit.log.20210110T130749-1.enc is renamed to a value such as
audit.20210115T140633.log.20210110T130749-1.enc.

Audit Log File Pruning

The audit log plugin supports pruning of rotated JSON-format audit log files, if automatic log file rotation
is enabled. To use this capability:

• Set audit_log_format to JSON. (In addition, consider also changing audit_log_file; see
Selecting Audit Log File Format.)

376

Configuring Audit Logging Characteristics

• Set audit_log_rotate_on_size greater than 0 to specify the size in bytes at which automatic
log file rotation occurs.

• By default, no pruning of automatically rotated JSON-format log files occurs. To enable pruning, set
one of these system variables to a value greater than 0:

• Set audit_log_max_size greater than 0 to specify the limit in bytes on the combined size
of rotated log files above which the files become subject to pruning. audit_log_max_size is
available as of MySQL 8.0.26.

• Set audit_log_prune_seconds greater than 0 to specify the number of seconds after which
rotated log files become subject to pruning. audit_log_prune_seconds is available as of
MySQL 8.0.24.

Nonzero values of audit_log_max_size take precedence over nonzero values of
audit_log_prune_seconds. If both are set greater than 0 at plugin initialization, a warning is
written to the server error log. If a client sets both greater than 0 at runtime, a warning is returned to
the client.

Note

Warnings to the error log are written as Notes, which are information
messages. To ensure that such messages appear in the error log and are
not discarded, make sure that error-logging verbosity is sufficient to include
information messages. For example, if you are using priority-based log
filtering, as described in Priority-Based Error Log Filtering (log_filter_internal),
set the log_error_verbosity system variable to a value of 3.

Pruning of JSON-format log files, if enabled, occurs as follows:

• When automatic rotation takes place; for the conditions under which this happens, see Automatic
Audit Log File Rotation.

• When the global audit_log_max_size or audit_log_prune_seconds system variable is set at
runtime.

For pruning based on combined rotated log file size, if the combined size is greater than the limit
specified by audit_log_max_size, the audit log plugin removes the oldest files until their combined
size does not exceed the limit.

For pruning based on rotated log file age, the pruning point is the current time minus the value of
audit_log_prune_seconds. In rotated JSON-format log files, the timestamp part of each file
name indicates the timestamp of the last event written to the file. The audit log plugin uses file name
timestamps to determine which files contain only events older than the pruning point, and removes
them.

Write Strategies for Audit Logging

The audit log plugin can use any of several strategies for log writes. Regardless of strategy, logging
occurs on a best-effort basis, with no guarantee of consistency.

To specify a write strategy, set the audit_log_strategy system variable at server startup. By
default, the strategy value is ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting
if the buffer is full. It's possible to tell the plugin not to wait (PERFORMANCE) or to log synchronously,
either using file system caching (SEMISYNCHRONOUS) or forcing output with a sync() call after each
write request (SYNCHRONOUS).

For asynchronous write strategy, the audit_log_buffer_size system variable is the buffer size
in bytes. Set this variable at server startup to change the buffer size. The plugin uses a single buffer,
which it allocates when it initializes and removes when it terminates. The plugin does not allocate this
buffer for nonasynchronous write strategies.

377

https://dev.mysql.com/doc/refman/8.0/en/error-log-priority-based-filtering.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity

Reading Audit Log Files

Asynchronous logging strategy has these characteristics:

• Minimal impact on server performance and scalability.

• Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate
the buffer plus time to copy the event to the buffer.

• Output goes to the buffer. A separate thread handles writes from the buffer to the log file.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs during
a write to the file or if the plugin does not shut down cleanly (for example, in the event that the server
host exits unexpectedly). To reduce this risk, set audit_log_strategy to use synchronous logging.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, the audit log may have events missing.

6.5.6 Reading Audit Log Files

The audit log plugin supports functions that provide an SQL interface for reading JSON-format audit log
files. (This capability does not apply to log files written in other formats.)

When the audit log plugin initializes and is configured for JSON logging, it uses the directory containing
the current audit log file as the location to search for readable audit log files. The plugin determines
the file location, base name, and suffix from the value of the audit_log_file system variable, then
looks for files with names that match the following pattern, where [...] indicates optional file name
parts:

basename[.timestamp].suffix[.gz][[.pwd_id].enc]

If a file name ends with .enc, the file is encrypted and reading its unencrypted contents requires a
decryption password obtained from the keyring. The audit log plugin determines the keyring ID of the
decryption password as follows:

• If .enc is preceded by pwd_id, the keyring ID is audit_log-pwd_id.

• If .enc is not preceded by pwd_id, the file has an old name from before audit log encryption
password history was implemented. The keyring ID is audit_log.

For more information about encrypted audit log files, see Encrypting Audit Log Files.

The plugin ignores files that have been renamed manually and do not match the pattern, and files that
were encrypted with a password no longer available in the keyring. The plugin opens each remaining
candidate file, verifies that the file actually contains JSON audit events, and sorts the files using the
timestamps from the first event of each file. The result is a sequence of files that are subject to access
using the log-reading functions:

• audit_log_read() reads events from the audit log or closes the reading process.

• audit_log_read_bookmark() returns a bookmark for the most recently written audit log event.
This bookmark is suitable for passing to audit_log_read() to indicate where to begin reading.

audit_log_read() takes an optional JSON string argument, and the result returned from a
successful call to either function is a JSON string.

To use the functions to read the audit log, follow these principles:

• Call audit_log_read() to read events beginning from a given position or the current position, or
to close reading:

• To initialize an audit log read sequence, pass an argument that indicates the position at which to
begin. One way to do so is to pass the bookmark returned by audit_log_read_bookmark():

SELECT audit_log_read(audit_log_read_bookmark());

378

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

Reading Audit Log Files

• To continue reading from the current position in the sequence, call audit_log_read() with no
position specified:

SELECT audit_log_read();

• To explicitly close the read sequence, pass a JSON null argument:

SELECT audit_log_read('null');

It is unnecessary to close reading explicitly. Reading is closed implicitly when the session ends or
a new read sequence is initialized by calling audit_log_read() with an argument that indicates
the position at which to begin.

• A successful call to audit_log_read() to read events returns a JSON string containing an array of
audit events:

• If the final value of the returned array is not a JSON null value, there are more events following
those just read and audit_log_read() can be called again to read more of them.

• If the final value of the returned array is a JSON null value, there are no more events left to be
read in the current read sequence.

Each non-null array element is an event represented as a JSON hash. For example:

[
 {
 "timestamp": "2020-05-18 13:39:33", "id": 0,
 "class": "connection", "event": "connect",
 ...
 },
 {
 "timestamp": "2020-05-18 13:39:33", "id": 1,
 "class": "general", "event": "status",
 ...
 },
 {
 "timestamp": "2020-05-18 13:39:33", "id": 2,
 "class": "connection", "event": "disconnect",
 ...
 },
 null
]

For more information about the content of JSON-format audit events, see JSON Audit Log File
Format.

• An audit_log_read() call to read events that does not specify a position produces an error under
any of these conditions:

• A read sequence has not yet been initialized by passing a position to audit_log_read().

• There are no more events left to be read in the current read sequence; that is,
audit_log_read() previously returned an array ending with a JSON null value.

• The most recent read sequence has been closed by passing a JSON null value to
audit_log_read().

To read events under those conditions, it is necessary to first initialize a read sequence by calling
audit_log_read() with an argument that specifies a position.

To specify a position to audit_log_read(), include an argument that indicates where to begin
reading. For example, pass a bookmark, which is a JSON hash containing timestamp and id
elements that uniquely identify a particular event. Here is an example bookmark, obtained by calling
the audit_log_read_bookmark() function:

379

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

Reading Audit Log Files

mysql> SELECT audit_log_read_bookmark();
+---+
| audit_log_read_bookmark() |
+---+
| { "timestamp": "2020-05-18 21:03:44", "id": 0 } |
+---+

Passing the current bookmark to audit_log_read() initializes event reading beginning at the
bookmark position:

mysql> SELECT audit_log_read(audit_log_read_bookmark());
+---+
| audit_log_read(audit_log_read_bookmark()) |
+---+
| [{"timestamp":"2020-05-18 22:41:24","id":0,"class":"connection", ... |
+---+

The argument to audit_log_read() is optional. If present, it can be a JSON null value to close the
read sequence, or a JSON hash.

Within a hash argument to audit_log_read(), items are optional and control aspects of the read
operation such as the position at which to begin reading or how many events to read. The following
items are significant (other items are ignored):

• start: The position within the audit log of the first event to read. The position is given as a
timestamp and the read starts from the first event that occurs on or after the timestamp value. The
start item has this format, where value is a literal timestamp value:

"start": { "timestamp": "value" }

The start item is permitted as of MySQL 8.0.22.

• timestamp, id: The position within the audit log of the first event to read. The timestamp
and id items together comprise a bookmark that uniquely identify a particular event. If an
audit_log_read() argument includes either item, it must include both to completely specify a
position or an error occurs.

• max_array_length: The maximum number of events to read from the log. If this item is omitted,
the default is to read to the end of the log or until the read buffer is full, whichever comes first.

To specify a starting position to audit_log_read(), pass a hash argument that includes either a
start item or a bookmark consisting of timestamp and id items. If a hash argument includes both a
start item and a bookmark, an error occurs.

If a hash argument specifies no starting position, reading continues from the current position.

If a timestamp value includes no time part, a time part of 00:00:00 is assumed.

Example arguments accepted by audit_log_read():

• Read events starting with the first event that occurs on or after the given timestamp:

audit_log_read('{ "start": { "timestamp": "2020-05-24 12:30:00" } }')

• Like the previous example, but read at most 3 events:

audit_log_read('{ "start": { "timestamp": "2020-05-24 12:30:00" }, "max_array_length": 3 }')

• Read events starting with the first event that occurs on or after 2020-05-24 00:00:00 (the
timestamp includes no time part, so 00:00:00 is assumed):

audit_log_read('{ "start": { "timestamp": "2020-05-24" } }')

• Read events starting with the event that has the exact timestamp and event ID:

audit_log_read('{ "timestamp": "2020-05-24 12:30:00", "id": 0 }')

380

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

Reading Audit Log Files

• Like the previous example, but read at most 3 events:

audit_log_read('{ "timestamp": "2020-05-24 12:30:00", "id": 0, "max_array_length": 3 }')

• Read events from the current position in the read sequence:

audit_log_read()

• Read at most 5 events beginning at the current position in the read sequence:

audit_log_read('{ "max_array_length": 5 }')

• Close the current read sequence:

audit_log_read('null')

A JSON string returned from either log-reading function can be manipulated as necessary. Suppose
that a call to obtain a bookmark produces this value:

mysql> SET @mark := audit_log_read_bookmark();
mysql> SELECT @mark;
+---+
| @mark |
+---+
| { "timestamp": "2020-05-18 16:10:28", "id": 2 } |
+---+

Calling audit_log_read() with that argument can return multiple events. To limit
audit_log_read() to reading at most N events, add to the string a max_array_length item with
that value. For example, to read a single event, modify the string as follows:

mysql> SET @mark := JSON_SET(@mark, '$.max_array_length', 1);
mysql> SELECT @mark;
+--+
| @mark |
+--+
| {"id": 2, "timestamp": "2020-05-18 16:10:28", "max_array_length": 1} |
+--+

The modified string, when passed to audit_log_read(), produces a result containing at most one
event, no matter how many are available.

Prior to MySQL 8.0.19, string return values from audit log functions are binary strings. To use a binary
string with functions that require a nonbinary string (such as functions that manipulate JSON values),
convert it to a nonbinary string. For example, before passing a bookmark to JSON_SET(), convert it to
utf8mb4 as follows:

SET @mark = CONVERT(@mark USING utf8mb4);

That statement can be used even for MySQL 8.0.19 and higher; for those versions, it is essentially a
no-op and is harmless.

If an audit log function is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information about
that option, see mysql — The MySQL Command-Line Client.

To set a limit on the number of bytes that audit_log_read() reads, set the
audit_log_read_buffer_size system variable. As of MySQL 8.0.12, this variable has
a default of 32KB and can be set at runtime. Each client should set its session value of
audit_log_read_buffer_size appropriately for its use of audit_log_read().

Each call to audit_log_read() returns as many available events as fit within the buffer size. Events
that do not fit within the buffer size are skipped and generate warnings. Given this behavior, consider
these factors when assessing the proper buffer size for an application:

381

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json-modification-functions.html#function_json-set
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_binary-as-hex
https://dev.mysql.com/doc/refman/8.0/en/mysql.html

Audit Log Filtering

• There is a tradeoff between number of calls to audit_log_read() and events returned per call:

• With a smaller buffer size, calls return fewer events, so more calls are needed.

• With a larger buffer size, calls return more events, so fewer calls are needed.

• With a smaller buffer size, such as the default size of 32KB, there is a greater chance for events to
exceed the buffer size and thus to be skipped.

Prior to MySQL 8.0.12, audit_log_read_buffer_size has a default of 1MB, affects all clients, and
can be changed only at server startup.

For additional information about audit log-reading functions, see Audit Log Functions.

6.5.7 Audit Log Filtering

Note

For audit log filtering to work as described here, the audit log plugin and the
accompanying audit tables and functions must be installed. If the plugin is
installed without the accompanying audit tables and functions needed for
rule-based filtering, the plugin operates in legacy filtering mode, described in
Section 6.5.10, “Legacy Mode Audit Log Filtering”. Legacy mode (deprecated
in MySQL 8.0.34) is filtering behavior as it was prior to MySQL 5.7.13; that is,
before the introduction of rule-based filtering.

• Properties of Audit Log Filtering

• Constraints on Audit Log Filtering Functions

• Using Audit Log Filtering Functions

Properties of Audit Log Filtering

The audit log plugin has the capability of controlling logging of audited events by filtering them:

• Audited events can be filtered using these characteristics:

• User account

• Audit event class

• Audit event subclass

• Audit event fields such as those that indicate operation status or SQL statement executed

• Audit filtering is rule based:

• A filter definition creates a set of auditing rules. Definitions can be configured to include or exclude
events for logging based on the characteristics just described.

• Filter rules have the capability of blocking (aborting) execution of qualifying events, in addition to
existing capabilities for event logging.

• Multiple filters can be defined, and any given filter can be assigned to any number of user
accounts.

• It is possible to define a default filter to use with any user account that has no explicitly assigned
filter.

Audit log filtering is used to implement component services from MySQL 8.0.30. To get the optional
query statistics available from that release, you set them up as a filter using the service component,

382

Audit Log Filtering

which implements the services that write the statistics to the audit log. For instructions to set this filter
up, see Adding Query Statistics for Outlier Detection.

For information about writing filtering rules, see Section 6.5.8, “Writing Audit Log Filter Definitions”.

• Audit filters can be defined and modified using an SQL interface based on function calls. To display
audit filters, query the mysql.audit_log_filter table.

• Audit filter definitions are stored in the tables in the mysql system database.

• Within a given session, the value of the read-only audit_log_filter_id system variable
indicates whether a filter is assigned to the session.

Note

By default, rule-based audit log filtering logs no auditable events for any users.
To log all auditable events for all users, use the following statements, which
create a simple filter to enable logging and assign it to the default account:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('%', 'log_all');

The filter assigned to % is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

As previously mentioned, the SQL interface for audit filtering control is function based. The following list
briefly summarizes these functions:

• audit_log_filter_set_filter(): Define a filter.

• audit_log_filter_remove_filter(): Remove a filter.

• audit_log_filter_set_user(): Start filtering a user account.

• audit_log_filter_remove_user(): Stop filtering a user account.

• audit_log_filter_flush(): Flush manual changes to the filter tables to affect ongoing filtering.

For usage examples and complete details about the filtering functions, see Using Audit Log Filtering
Functions, and Audit Log Functions.

Constraints on Audit Log Filtering Functions

Audit log filtering functions are subject to these constraints:

• To use any filtering function, the audit_log plugin must be enabled or an error occurs. In addition,
the audit tables must exist or an error occurs. To install the audit_log plugin and its accompanying
functions and tables, see Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

• To use any filtering function, a user must possess the AUDIT_ADMIN SUPER privilege or an error
occurs. To grant one of these privileges to a user account, use this statement:

GRANT privilege ON *.* TO user;

Alternatively, should you prefer to avoid granting the AUDIT_ADMIN or SUPER privilege while still
permitting users to access specific filtering functions, “wrapper” stored programs can be defined.
This technique is described in the context of keyring functions in Using General-Purpose Keyring
Functions; it can be adapted for use with filtering functions.

• The audit_log plugin operates in legacy mode if it is installed but the accompanying audit tables
and functions are not created. The plugin writes these messages to the error log at server startup:

[Warning] Plugin audit_log reported: 'Failed to open the audit log filter tables.'

383

Audit Log Filtering

[Warning] Plugin audit_log reported: 'Audit Log plugin supports a filtering,
which has not been installed yet. Audit Log plugin will run in the legacy
mode, which will be disabled in the next release.'

In legacy mode, which is deprecated as of MySQL 8.0.34, filtering can be done based only on event
account or status. For details, see Section 6.5.10, “Legacy Mode Audit Log Filtering”.

• It is theoretically possible for a user with sufficient permissions to mistakenly create an “abort” item
in the audit log filter that prevents themselves and other administrators from accessing the system.
From MySQL 8.0.28, the AUDIT_ABORT_EXEMPT privilege is available to permit a user account’s
queries to always be executed even if an “abort” item would block them. Accounts with this privilege
can therefore be used to regain access to a system following an audit misconfiguration. The query is
still logged in the audit log, but instead of being rejected, it is permitted due to the privilege.

Accounts created in MySQL 8.0.28 or later with the SYSTEM_USER privilege have the
AUDIT_ABORT_EXEMPT privilege assigned automatically when they are created. The
AUDIT_ABORT_EXEMPT privilege is also assigned to existing accounts with the SYSTEM_USER
privilege when you carry out an upgrade procedure with MySQL 8.0.28 or later, if no existing
accounts have that privilege assigned.

Using Audit Log Filtering Functions

Before using the audit log functions, install them according to the instructions provided in Section 6.5.2,
“Installing or Uninstalling MySQL Enterprise Audit”. The AUDIT_ADMIN or SUPER privilege is required
to use any of these functions.

The audit log filtering functions enable filtering control by providing an interface to create, modify, and
remove filter definitions and assign filters to user accounts.

Filter definitions are JSON values. For information about using JSON data in MySQL, see The JSON
Data Type. This section shows some simple filter definitions. For more information about filter
definitions, see Section 6.5.8, “Writing Audit Log Filter Definitions”.

When a connection arrives, the audit log plugin determines which filter to use for the new session by
searching for the user account name in the current filter assignments:

• If a filter is assigned to the user, the audit log uses that filter.

• Otherwise, if no user-specific filter assignment exists, but there is a filter assigned to the default
account (%), the audit log uses the default filter.

• Otherwise, the audit log selects no audit events from the session for processing.

If a change-user operation occurs during a session (see mysql_change_user()), filter assignment for
the session is updated using the same rules but for the new user.

By default, no accounts have a filter assigned, so no processing of auditable events occurs for any
account.

Suppose that you want to change the default to be to log only connection-related activity (for example,
to see connect, change-user, and disconnect events, but not the SQL statements users execute
while connected). To achieve this, define a filter (shown here named log_conn_events) that
enables logging only of events in the connection class, and assign that filter to the default account,
represented by the % account name:

SET @f = '{ "filter": { "class": { "name": "connection" } } }';
SELECT audit_log_filter_set_filter('log_conn_events', @f);
SELECT audit_log_filter_set_user('%', 'log_conn_events');

Now the audit log uses this default account filter for connections from any account that has no explicitly
defined filter.

384

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-change-user.html

Audit Log Filtering

To assign a filter explicitly to a particular user account or accounts, define the filter, then assign it to the
relevant accounts:

SELECT audit_log_filter_set_filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('user1@localhost', 'log_all');
SELECT audit_log_filter_set_user('user2@localhost', 'log_all');

Now full logging is enabled for user1@localhost and user2@localhost. Connections from other
accounts continue to be filtered using the default account filter.

To disassociate a user account from its current filter, either unassign the filter or assign a different filter:

• To unassign the filter from the user account:

SELECT audit_log_filter_remove_user('user1@localhost');

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the default account filter if there is one, and are not logged otherwise.

• To assign a different filter to the user account:

SELECT audit_log_filter_set_filter('log_nothing', '{ "filter": { "log": false } }');
SELECT audit_log_filter_set_user('user1@localhost', 'log_nothing');

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the new filter. For the filter shown here, that means no logging for new
connections from user1@localhost.

For audit log filtering, user name and host name comparisons are case-sensitive. This differs from
comparisons for privilege checking, for which host name comparisons are not case-sensitive.

To remove a filter, do this:

SELECT audit_log_filter_remove_filter('log_nothing');

Removing a filter also unassigns it from any users to whom it is assigned, including any current
sessions for those users.

The filtering functions just described affect audit filtering immediately and update the audit log tables
in the mysql system database that store filters and user accounts (see Audit Log Tables). It is also
possible to modify the audit log tables directly using statements such as INSERT, UPDATE, and
DELETE, but such changes do not affect filtering immediately. To flush your changes and make them
operational, call audit_log_filter_flush():

SELECT audit_log_filter_flush();

Warning

audit_log_filter_flush() should be used only after modifying the audit
tables directly, to force reloading all filters. Otherwise, this function should
be avoided. It is, in effect, a simplified version of unloading and reloading the
audit_log plugin with UNINSTALL PLUGIN plus INSTALL PLUGIN.

audit_log_filter_flush() affects all current sessions and detaches them
from their previous filters. Current sessions are no longer logged unless they
disconnect and reconnect, or execute a change-user operation.

To determine whether a filter is assigned to the current session, check the session value of the read-
only audit_log_filter_id system variable. If the value is 0, no filter is assigned. A nonzero value
indicates the internally maintained ID of the assigned filter:

mysql> SELECT @@audit_log_filter_id;
+-----------------------+
| @@audit_log_filter_id |

385

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html

Writing Audit Log Filter Definitions

+-----------------------+
| 2 |
+-----------------------+

6.5.8 Writing Audit Log Filter Definitions

Filter definitions are JSON values. For information about using JSON data in MySQL, see The JSON
Data Type.

Filter definitions have this form, where actions indicates how filtering takes place:

{ "filter": actions }

The following discussion describes permitted constructs in filter definitions.

• Logging All Events

• Logging Specific Event Classes

• Logging Specific Event Subclasses

• Inclusive and Exclusive Logging

• Testing Event Field Values

• Blocking Execution of Specific Events

• Logical Operators

• Referencing Predefined Variables

• Referencing Predefined Functions

• Replacement of Event Field Values

• Replacing a User Filter

Logging All Events

To explicitly enable or disable logging of all events, use a log item in the filter:

{
 "filter": { "log": true }
}

The log value can be either true or false.

The preceding filter enables logging of all events. It is equivalent to:

{
 "filter": { }
}

Logging behavior depends on the log value and whether class or event items are specified:

• With log specified, its given value is used.

• Without log specified, logging is true if no class or event item is specified, and false otherwise
(in which case, class or event can include their own log item).

Logging Specific Event Classes

To log events of a specific class, use a class item in the filter, with its name field denoting the name of
the class to log:

386

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

Writing Audit Log Filter Definitions

{
 "filter": {
 "class": { "name": "connection" }
 }
}

The name value can be connection, general, or table_access to log connection, general, or
table-access events, respectively.

The preceding filter enables logging of events in the connection class. It is equivalent to the following
filter with log items made explicit:

{
 "filter": {
 "log": false,
 "class": { "log": true,
 "name": "connection" }
 }
}

To enable logging of multiple classes, define the class value as a JSON array element that names the
classes:

{
 "filter": {
 "class": [
 { "name": "connection" },
 { "name": "general" },
 { "name": "table_access" }
]
 }
}

Note

When multiple instances of a given item appear at the same level within a filter
definition, the item values can be combined into a single instance of that item
within an array value. The preceding definition can be written like this:

{
 "filter": {
 "class": [
 { "name": ["connection", "general", "table_access"] }
]
 }
}

Logging Specific Event Subclasses

To select specific event subclasses, use an event item containing a name item that names the
subclasses. The default action for events selected by an event item is to log them. For example, this
filter enables logging for the named event subclasses:

{
 "filter": {
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect" },
 { "name": "disconnect" }
]
 },
 { "name": "general" },
 {
 "name": "table_access",
 "event": [
 { "name": "insert" },

387

https://dev.mysql.com/doc/refman/8.0/en/json.html

Writing Audit Log Filter Definitions

 { "name": "delete" },
 { "name": "update" }
]
 }
]
 }
}

The event item can also contain explicit log items to indicate whether to log qualifying events. This
event item selects multiple events and explicitly indicates logging behavior for them:

"event": [
 { "name": "read", "log": false },
 { "name": "insert", "log": true },
 { "name": "delete", "log": true },
 { "name": "update", "log": true }
]

The event item can also indicate whether to block qualifying events, if it contains an abort item. For
details, see Blocking Execution of Specific Events.

Table 6.20, “Event Class and Subclass Combinations” describes the permitted subclass values for
each event class.

Table 6.20 Event Class and Subclass Combinations

Event Class Event Subclass Description

connection connect Connection initiation (successful
or unsuccessful)

connection change_user User re-authentication with
different user/password during
session

connection disconnect Connection termination

general status General operation information

message internal Internally generated message

message user Message generated by
audit_api_message_emit_udf()

table_access read Table read statements, such as
SELECT or INSERT INTO ...
SELECT

table_access delete Table delete statements, such as
DELETE or TRUNCATE TABLE

table_access insert Table insert statements, such as
INSERT or REPLACE

table_access update Table update statements, such
as UPDATE

Table 6.21, “Log and Abort Characteristics Per Event Class and Subclass Combination” describes for
each event subclass whether it can be logged or aborted.

Table 6.21 Log and Abort Characteristics Per Event Class and Subclass Combination

Event Class Event Subclass Can be Logged Can be Aborted

connection connect Yes No

connection change_user Yes No

connection disconnect Yes No

388

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/replace.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Writing Audit Log Filter Definitions

Event Class Event Subclass Can be Logged Can be Aborted

general status Yes No

message internal Yes Yes

message user Yes Yes

table_access read Yes Yes

table_access delete Yes Yes

table_access insert Yes Yes

table_access update Yes Yes

Inclusive and Exclusive Logging

A filter can be defined in inclusive or exclusive mode:

• Inclusive mode logs only explicitly specified items.

• Exclusive mode logs everything but explicitly specified items.

To perform inclusive logging, disable logging globally and enable logging for specific classes. This filter
logs connect and disconnect events in the connection class, and events in the general class:

{
 "filter": {
 "log": false,
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect", "log": true },
 { "name": "disconnect", "log": true }
]
 },
 { "name": "general", "log": true }
]
 }
}

To perform exclusive logging, enable logging globally and disable logging for specific classes. This filter
logs everything except events in the general class:

{
 "filter": {
 "log": true,
 "class":
 { "name": "general", "log": false }
 }
}

This filter logs change_user events in the connection class, message events, and table_access
events, by virtue of not logging everything else:

{
 "filter": {
 "log": true,
 "class": [
 {
 "name": "connection",
 "event": [
 { "name": "connect", "log": false },
 { "name": "disconnect", "log": false }
]
 },
 { "name": "general", "log": false }
]

389

Writing Audit Log Filter Definitions

 }
}

Testing Event Field Values

To enable logging based on specific event field values, specify a field item within the log item that
indicates the field name and its expected value:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "field": { "name": "general_command.str", "value": "Query" }
 }
 }
 }
 }
}

Each event contains event class-specific fields that can be accessed from within a filter to perform
custom filtering.

An event in the connection class indicates when a connection-related activity occurs during a
session, such as a user connecting to or disconnecting from the server. Table 6.22, “Connection Event
Fields” indicates the permitted fields for connection events.

Table 6.22 Connection Event Fields

Field Name Field Type Description

status integer Event status:

0: OK

Otherwise: Failed

connection_id unsigned integer Connection ID

user.str string User name specified during
authentication

user.length unsigned integer User name length

priv_user.str string Authenticated user name
(account user name)

priv_user.length unsigned integer Authenticated user name length

external_user.str string External user name (provided by
third-party authentication plugin)

external_user.length unsigned integer External user name length

proxy_user.str string Proxy user name

proxy_user.length unsigned integer Proxy user name length

host.str string Connected user host

host.length unsigned integer Connected user host length

ip.str string Connected user IP address

ip.length unsigned integer Connected user IP address
length

database.str string Database name specified at
connect time

390

Writing Audit Log Filter Definitions

Field Name Field Type Description

database.length unsigned integer Database name length

connection_type integer Connection type:

0 or "::undefined":
Undefined

1 or "::tcp/ip": TCP/IP

2 or "::socket": Socket

3 or "::named_pipe": Named
pipe

4 or "::ssl": TCP/IP with
encryption

5 or "::shared_memory":
Shared memory

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

An event in the general class indicates the status code of an operation and its details. Table 6.23,
“General Event Fields” indicates the permitted fields for general events.

Table 6.23 General Event Fields

Field Name Field Type Description

general_error_code integer Event status:

0: OK

Otherwise: Failed

general_thread_id unsigned integer Connection/thread ID

general_user.str string User name specified during
authentication

general_user.length unsigned integer User name length

general_command.str string Command name

general_command.length unsigned integer Command name length

general_query.str string SQL statement text

general_query.length unsigned integer SQL statement text length

general_host.str string Host name

general_host.length unsigned integer Host name length

general_sql_command.str string SQL command type name

general_sql_command.lengthunsigned integer SQL command type name length

general_external_user.str string External user name (provided by
third-party authentication plugin)

general_external_user.lengthunsigned integer External user name length

general_ip.str string Connected user IP address

general_ip.length unsigned integer Connection user IP address
length

391

Writing Audit Log Filter Definitions

general_command.str indicates a command name: Query, Execute, Quit, or Change user.

A general event with the general_command.str field set to Query or Execute contains
general_sql_command.str set to a value that specifies the type of SQL command: alter_db,
alter_db_upgrade, admin_commands, and so forth. The available general_sql_command.str
values can be seen as the last components of the Performance Schema instruments displayed by this
statement:

mysql> SELECT NAME FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/sql/%' ORDER BY NAME;
+---------------------------------------+
| NAME |
+---------------------------------------+
| statement/sql/alter_db |
| statement/sql/alter_db_upgrade |
| statement/sql/alter_event |
| statement/sql/alter_function |
| statement/sql/alter_instance |
| statement/sql/alter_procedure |
| statement/sql/alter_server |
...

An event in the table_access class provides information about a specific type of access to a table.
Table 6.24, “Table-Access Event Fields” indicates the permitted fields for table_access events.

Table 6.24 Table-Access Event Fields

Field Name Field Type Description

connection_id unsigned integer Event connection ID

sql_command_id integer SQL command ID

query.str string SQL statement text

query.length unsigned integer SQL statement text length

table_database.str string Database name associated with
event

table_database.length unsigned integer Database name length

table_name.str string Table name associated with
event

table_name.length unsigned integer Table name length

The following list shows which statements produce which table-access events:

• read event:

• SELECT

• INSERT ... SELECT (for tables referenced in SELECT clause)

• REPLACE ... SELECT (for tables referenced in SELECT clause)

• UPDATE ... WHERE (for tables referenced in WHERE clause)

• HANDLER ... READ

• delete event:

• DELETE

• TRUNCATE TABLE

• insert event:

392

Writing Audit Log Filter Definitions

• INSERT

• INSERT ... SELECT (for table referenced in INSERT clause)

• REPLACE

• REPLACE ... SELECT (for table referenced in REPLACE clause

• LOAD DATA

• LOAD XML

• update event:

• UPDATE

• UPDATE ... WHERE (for tables referenced in UPDATE clause)

Blocking Execution of Specific Events

event items can include an abort item that indicates whether to prevent qualifying events from
executing. abort enables rules to be written that block execution of specific SQL statements.

Important

It is theoretically possible for a user with sufficient permissions to mistakenly
create an abort item in the audit log filter that prevents themselves and
other administrators from accessing the system. From MySQL 8.0.28, the
AUDIT_ABORT_EXEMPT privilege is available to permit a user account’s queries
to always be executed even if an abort item would block them. Accounts with
this privilege can therefore be used to regain access to a system following an
audit misconfiguration. The query is still logged in the audit log, but instead of
being rejected, it is permitted due to the privilege.

Accounts created in MySQL 8.0.28 or later with the SYSTEM_USER privilege
have the AUDIT_ABORT_EXEMPT privilege assigned automatically when they
are created. The AUDIT_ABORT_EXEMPT privilege is also assigned to existing
accounts with the SYSTEM_USER privilege when you carry out an upgrade
procedure with MySQL 8.0.28 or later, if no existing accounts have that privilege
assigned.

The abort item must appear within an event item. For example:

"event": {
 "name": qualifying event subclass names
 "abort": condition
}

For event subclasses selected by the name item, the abort action is true or false, depending on
condition evaluation. If the condition evaluates to true, the event is blocked. Otherwise, the event
continues executing.

The condition specification can be as simple as true or false, or it can be more complex such
that evaluation depends on event characteristics.

This filter blocks INSERT, UPDATE, and DELETE statements:

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {

393

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Writing Audit Log Filter Definitions

 "name": ["insert", "update", "delete"],
 "abort": true
 }
 }
 }
}

This more complex filter blocks the same statements, but only for a specific table
(finances.bank_account):

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {
 "name": ["insert", "update", "delete"],
 "abort": {
 "and": [
 { "field": { "name": "table_database.str", "value": "finances" } },
 { "field": { "name": "table_name.str", "value": "bank_account" } }
]
 }
 }
 }
 }
}

Statements matched and blocked by the filter return an error to the client:

ERROR 1045 (28000): Statement was aborted by an audit log filter

Not all events can be blocked (see Table 6.21, “Log and Abort Characteristics Per Event Class and
Subclass Combination”). For an event that cannot be blocked, the audit log writes a warning to the
error log rather than blocking it.

For attempts to define a filter in which the abort item appears elsewhere than in an event item, an
error occurs.

Logical Operators

Logical operators (and, or, not) permit construction of complex conditions, enabling more advanced
filtering configurations to be written. The following log item logs only general events with
general_command fields having a specific value and length:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "or": [
 {
 "and": [
 { "field": { "name": "general_command.str", "value": "Query" } },
 { "field": { "name": "general_command.length", "value": 5 } }
]
 },
 {
 "and": [
 { "field": { "name": "general_command.str", "value": "Execute" } },
 { "field": { "name": "general_command.length", "value": 7 } }
]
 }
]
 }
 }
 }
 }

394

Writing Audit Log Filter Definitions

}

Referencing Predefined Variables

To refer to a predefined variable in a log condition, use a variable item, which takes name and
value items and tests equality of the named variable against a given value:

"variable": {
 "name": "variable_name",
 "value": comparison_value
}

This is true if variable_name has the value comparison_value, false otherwise.

Example:

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "variable": {
 "name": "audit_log_connection_policy_value",
 "value": "::none"
 }
 }
 }
 }
 }
}

Each predefined variable corresponds to a system variable. By writing a filter that tests a
predefined variable, you can modify filter operation by setting the corresponding system variable,
without having to redefine the filter. For example, by writing a filter that tests the value of the
audit_log_connection_policy_value predefined variable, you can modify filter operation by
changing the value of the audit_log_connection_policy system variable.

The audit_log_xxx_policy system variables are used for the deprecated legacy mode audit
log (see Section 6.5.10, “Legacy Mode Audit Log Filtering”). With rule-based audit log filtering, those
variables remain visible (for example, using SHOW VARIABLES), but changes to them have no effect
unless you write filters containing constructs that refer to them.

The following list describes the permitted predefined variables for variable items:

• audit_log_connection_policy_value

This variable corresponds to the value of the audit_log_connection_policy system variable.
The value is an unsigned integer. Table 6.25, “audit_log_connection_policy_value Values” shows the
permitted values and the corresponding audit_log_connection_policy values.

Table 6.25 audit_log_connection_policy_value Values

Value Corresponding audit_log_connection_policy
Value

0 or "::none" NONE

1 or "::errors" ERRORS

2 or "::all" ALL

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

• audit_log_policy_value

395

https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Writing Audit Log Filter Definitions

This variable corresponds to the value of the audit_log_policy system variable. The value is an
unsigned integer. Table 6.26, “audit_log_policy_value Values” shows the permitted values and the
corresponding audit_log_policy values.

Table 6.26 audit_log_policy_value Values

Value Corresponding audit_log_policy Value

0 or "::none" NONE

1 or "::logins" LOGINS

2 or "::all" ALL

3 or "::queries" QUERIES

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

• audit_log_statement_policy_value

This variable corresponds to the value of the audit_log_statement_policy system variable.
The value is an unsigned integer. Table 6.27, “audit_log_statement_policy_value Values” shows the
permitted values and the corresponding audit_log_statement_policy values.

Table 6.27 audit_log_statement_policy_value Values

Value Corresponding audit_log_statement_policy
Value

0 or "::none" NONE

1 or "::errors" ERRORS

2 or "::all" ALL

The "::xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

Referencing Predefined Functions

To refer to a predefined function in a log condition, use a function item, which takes name and
args items to specify the function name and its arguments, respectively:

"function": {
 "name": "function_name",
 "args": arguments
}

The name item should specify the function name only, without parentheses or the argument list.

The args item must satisfy these conditions:

• If the function takes no arguments, no args item should be given.

• If the function does take arguments, an args item is needed, and the arguments must be given in
the order listed in the function description. Arguments can refer to predefined variables, event fields,
or string or numeric constants.

If the number of arguments is incorrect or the arguments are not of the correct data types required by
the function an error occurs.

Example:

{

396

Writing Audit Log Filter Definitions

 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "log": {
 "function": {
 "name": "find_in_include_list",
 "args": [{ "string": [{ "field": "user.str" },
 { "string": "@"},
 { "field": "host.str" }] }]
 }
 }
 }
 }
 }
}

The preceding filter determines whether to log general class status events depending on whether
the current user is found in the audit_log_include_accounts system variable. That user is
constructed using fields in the event.

The following list describes the permitted predefined functions for function items:

• audit_log_exclude_accounts_is_null()

Checks whether the audit_log_exclude_accounts system variable is NULL. This function can
be helpful when defining filters that correspond to the legacy audit log implementation.

Arguments:

None.

• audit_log_include_accounts_is_null()

Checks whether the audit_log_include_accounts system variable is NULL. This function can
be helpful when defining filters that correspond to the legacy audit log implementation.

Arguments:

None.

• debug_sleep(millisec)

Sleeps for the given number of milliseconds. This function is used during performance measurement.

debug_sleep() is available for debug builds only.

Arguments:

• millisec: An unsigned integer that specifies the number of milliseconds to sleep.

• find_in_exclude_list(account)

Checks whether an account string exists in the audit log exclude list (the value of the
audit_log_exclude_accounts system variable).

Arguments:

• account: A string that specifies the user account name.

• find_in_include_list(account)

Checks whether an account string exists in the audit log include list (the value of the
audit_log_include_accounts system variable).

397

Writing Audit Log Filter Definitions

Arguments:

• account: A string that specifies the user account name.

• query_digest([str])

This function has differing behavior depending on whether an argument is given:

• With no argument, query_digest returns the statement digest value corresponding to the
statement literal text in the current event.

• With an argument, query_digest returns a Boolean indicating whether the argument is equal to
the current statement digest.

Arguments:

• str: This argument is optional. If given, it specifies a statement digest to be compared against the
digest for the statement in the current event.

Examples:

This function item includes no argument, so query_digest returns the current statement digest
as a string:

"function": {
 "name": "query_digest"
}

This function item includes an argument, so query_digest returns a Boolean indicating whether
the argument equals the current statement digest:

"function": {
 "name": "query_digest",
 "args": "SELECT ?"
}

This function was added in MySQL 8.0.26.

• string_find(text, substr)

Checks whether the substr value is contained in the text value. This search is case-sensitive.

Arguments:

• text: The text string to search.

• substr: The substring to search for in text.

Replacement of Event Field Values

As of MySQL 8.0.26, audit filter definitions support replacement of certain audit event fields, so that
logged events contain the replacement value rather than the original value. This capability enables
logged audit records to include statement digests rather than literal statements, which can be useful for
MySQL deployments for which statements may expose sensitive values.

Field replacement in audit events works like this:

• Field replacements are specified in audit filter definitions, so audit log filtering must be enabled as
described in Section 6.5.7, “Audit Log Filtering”.

• Not all fields can be replaced. Table 6.28, “Event Fields Subject to Replacement” shows which fields
are replaceable in which event classes.

398

Writing Audit Log Filter Definitions

Table 6.28 Event Fields Subject to Replacement

Event Class Field Name

general general_query.str

table_access query.str

• Replacement is conditional. Each replacement specification in a filter definition includes a condition,
enabling a replaceable field to be changed, or left unchanged, depending on the condition result.

• If replacement occurs, the replacement specification indicates the replacement value using a function
that is permitted for that purpose.

As Table 6.28, “Event Fields Subject to Replacement” shows, currently the only replaceable
fields are those that contain statement text (which occurs in events of the general and
table_access classes). In addition, the only function permitted for specifying the replacement value
is query_digest. This means that the only permitted replacement operation is to replace statement
literal text by its corresponding digest.

Because field replacement occurs at an early auditing stage (during filtering), the choice of whether to
write statement literal text or digest values applies regardless of log format written later (that is, whether
the audit log plugin produces XML or JSON output).

Field replacement can take place at differing levels of event granularity:

• To perform field replacement for all events in a class, filter events at the class level.

• To perform replacement on a more fine-grained basis, include additional event-selection items. For
example, you can perform field replacement only for specific subclasses of a given event class, or
only in events for which fields have certain characteristics.

Within a filter definition, specify field replacement by including a print item, which has this syntax:

"print": {
 "field": {
 "name": "field_name",
 "print": condition,
 "replace": replacement_value
 }
}

Within the print item, its field item takes these three items to indicate how whether and how
replacement occurs:

• name: The field for which replacement (potentially) occurs. field_name must be one of those
shown in Table 6.28, “Event Fields Subject to Replacement”.

• print: The condition that determines whether to retain the original field value or replace it:

• If condition evaluates to true, the field remains unchanged.

• If condition evaluates to false, replacement occurs, using the value of the replace item.

To unconditionally replace a field, specify the condition like this:

"print": false

• replace: The replacement value to use when the print condition evaluates to false. Specify
replacement_value using a function item.

For example, this filter definition applies to all events in the general class, replacing the statement
literal text with its digest:

{

399

Writing Audit Log Filter Definitions

 "filter": {
 "class": {
 "name": "general",
 "print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 }
 }
}

The preceding filter uses this print item to unconditionally replace the statement literal text contained
in general_query.str by its digest value:

"print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
}

print items can be written different ways to implement different replacement strategies. The replace
item just shown specifies the replacement text using this function construct to return a string
representing the current statement digest:

"function": {
 "name": "query_digest"
}

The query_digest function can also be used in another way, as a comparator that returns a
Boolean, which enables its use in the print condition. To do this, provide an argument that specifies a
comparison statement digest:

"function": {
 "name": "query_digest",
 "args": "digest"
}

In this case, query_digest returns true or false depending on whether the current statement
digest is the same as the comparison digest. Using query_digest this way enables filter definitions
to detect statements that match particular digests. The condition in the following construct is true only
for statements that have a digest equal to SELECT ?, thus effecting replacement only for statements
that do not match the digest:

"print": {
 "field": {
 "name": "general_query.str",
 "print": {
 "function": {
 "name": "query_digest",
 "args": "SELECT ?"
 }
 },
 "replace": {
 "function": {
 "name": "query_digest"
 }

400

Writing Audit Log Filter Definitions

 }
 }
}

To perform replacement only for statements that do match the digest, use not to invert the condition:

"print": {
 "field": {
 "name": "general_query.str",
 "print": {
 "not": {
 "function": {
 "name": "query_digest",
 "args": "SELECT ?"
 }
 }
 },
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
}

Suppose that you want the audit log to contain only statement digests and not literal statements. To
achieve this, you must perform replacement on all events that contain statement text; that is, events in
the general and table_access classes. An earlier filter definition showed how to unconditionally
replace statement text for general events. To do the same for table_access events, use a filter
that is similar but changes the class from general to table_access and the field name from
general_query.str to query.str:

{
 "filter": {
 "class": {
 "name": "table_access",
 "print": {
 "field": {
 "name": "query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 }
 }
}

Combining the general and table_access filters results in a single filter that performs replacement
for all statement text-containing events:

{
 "filter": {
 "class": [
 {
 "name": "general",
 "print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }

401

Writing Audit Log Filter Definitions

 },
 {
 "name": "table_access",
 "print": {
 "field": {
 "name": "query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 }
]
 }
}

To perform replacement on only some events within a class, add items to the filter that indicate more
specifically when replacement occurs. The following filter applies to events in the table_access
class, but performs replacement only for insert and update events (leaving read and delete
events unchanged):

{
 "filter": {
 "class": {
 "name": "table_access",
 "event": {
 "name": [
 "insert",
 "update"
],
 "print": {
 "field": {
 "name": "query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 }
 }
 }
 }
}

This filter performs replacement for general class events corresponding to the listed account-
management statements (the effect being to hide credential and data values in the statements):

{
 "filter": {
 "class": {
 "name": "general",
 "event": {
 "name": "status",
 "print": {
 "field": {
 "name": "general_query.str",
 "print": false,
 "replace": {
 "function": {
 "name": "query_digest"
 }
 }
 }
 },
 "log": {
 "or": [

402

Writing Audit Log Filter Definitions

 {
 "field": {
 "name": "general_sql_command.str",
 "value": "alter_user"
 }
 },
 {
 "field": {
 "name": "general_sql_command.str",
 "value": "alter_user_default_role"
 }
 },
 {
 "field": {
 "name": "general_sql_command.str",
 "value": "create_role"
 }
 },
 {
 "field": {
 "name": "general_sql_command.str",
 "value": "create_user"
 }
 }
]
 }
 }
 }
 }
}

For information about the possible general_sql_command.str values, see Testing Event Field
Values.

Replacing a User Filter

In some cases, the filter definition can be changed dynamically. To do this, define a filter
configuration within an existing filter. For example:

{
 "filter": {
 "id": "main",
 "class": {
 "name": "table_access",
 "event": {
 "name": ["update", "delete"],
 "log": false,
 "filter": {
 "class": {
 "name": "general",
 "event" : { "name": "status",
 "filter": { "ref": "main" } }
 },
 "activate": {
 "or": [
 { "field": { "name": "table_name.str", "value": "temp_1" } },
 { "field": { "name": "table_name.str", "value": "temp_2" } }
]
 }
 }
 }
 }
 }
}

A new filter is activated when the activate item within a subfilter evaluates to true. Using
activate in a top-level filter is not permitted.

A new filter can be replaced with the original one by using a ref item inside the subfilter to refer to the
original filter id.

403

Disabling Audit Logging

The filter shown operates like this:

• The main filter waits for table_access events, either update or delete.

• If the update or delete table_access event occurs on the temp_1 or temp_2 table, the filter is
replaced with the internal one (without an id, since there is no need to refer to it explicitly).

• If the end of the command is signalled (general / status event), an entry is written to the audit log
file and the filter is replaced with the main filter.

The filter is useful to log statements that update or delete anything from the temp_1 or temp_2 tables,
such as this one:

UPDATE temp_1, temp_3 SET temp_1.a=21, temp_3.a=23;

The statement generates multiple table_access events, but the audit log file contains only general
/ status entries.

Note

Any id values used in the definition are evaluated with respect
only to that definition. They have nothing to do with the value of the
audit_log_filter_id system variable.

6.5.9 Disabling Audit Logging

The audit_log_disable variable, introduced in MySQL 8.0.28, permits disabling audit logging for
all connecting and connected sessions. The audit_log_disable variable can be set in a MySQL
Server option file, in a command-line startup string, or at runtime using a SET statement; for example:

SET GLOBAL audit_log_disable = true;

Setting audit_log_disable to true disables the audit log plugin. The plugin is re-enabled when
audit_log_disable is set back to false, which is the default setting.

Starting the audit log plugin with audit_log_disable = true generates a warning
(ER_WARN_AUDIT_LOG_DISABLED) with the following message: Audit Log is disabled.
Enable it with audit_log_disable = false. Setting audit_log_disable to false also
generates warning. When audit_log_disable is set to true, audit log function calls and variable
changes generate a session warning.

Setting the runtime value of audit_log_disable requires the AUDIT_ADMIN privilege, in addition to
the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER privilege) normally required to set
a global system variable runtime value.

6.5.10 Legacy Mode Audit Log Filtering

Note

This section describes legacy audit log filtering, which applies if the audit_log
plugin is installed without the accompanying audit tables and functions needed
for rule-based filtering.

Legacy Mode Audit Log Filtering is deprecated as of MySQL 8.0.34.

The audit log plugin can filter audited events. This enables you to control whether audited events are
written to the audit log file based on the account from which events originate or event status. Status
filtering occurs separately for connection events and statement events.

• Legacy Event Filtering by Account

• Legacy Event Filtering by Status

404

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Legacy Mode Audit Log Filtering

Legacy Event Filtering by Account

To filter audited events based on the originating account, set one (not both) of the following system
variables at server startup or runtime. These deprecated variables apply only for legacy audit log
filtering.

• audit_log_include_accounts: The accounts to include in audit logging. If this variable is set,
only these accounts are audited.

• audit_log_exclude_accounts: The accounts to exclude from audit logging. If this variable is
set, all but these accounts are audited.

The value for either variable can be NULL or a string containing one or more comma-separated account
names, each in user_name@host_name format. By default, both variables are NULL, in which case,
no account filtering is done and auditing occurs for all accounts.

Modifications to audit_log_include_accounts or audit_log_exclude_accounts affect only
connections created subsequent to the modification, not existing connections.

Example: To enable audit logging only for the user1 and user2 local host accounts, set the
audit_log_include_accounts system variable like this:

SET GLOBAL audit_log_include_accounts = 'user1@localhost,user2@localhost';

Only one of audit_log_include_accounts or audit_log_exclude_accounts can be
non-NULL at a time:

• If you set audit_log_include_accounts, the server sets audit_log_exclude_accounts to
NULL.

• If you attempt to set audit_log_exclude_accounts, an error occurs unless
audit_log_include_accounts is NULL. In this case, you must first clear
audit_log_include_accounts by setting it to NULL.

-- This sets audit_log_exclude_accounts to NULL
SET GLOBAL audit_log_include_accounts = value;
-- This fails because audit_log_include_accounts is not NULL
SET GLOBAL audit_log_exclude_accounts = value;
-- To set audit_log_exclude_accounts, first set
-- audit_log_include_accounts to NULL
SET GLOBAL audit_log_include_accounts = NULL;
SET GLOBAL audit_log_exclude_accounts = value;

If you inspect the value of either variable, be aware that SHOW VARIABLES displays NULL as an empty
string. To display NULL as NULL, use SELECT instead:

mysql> SHOW VARIABLES LIKE 'audit_log_include_accounts';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
| audit_log_include_accounts | |
+----------------------------+-------+
mysql> SELECT @@audit_log_include_accounts;
+------------------------------+
| @@audit_log_include_accounts |
+------------------------------+
| NULL |
+------------------------------+

If a user name or host name requires quoting because it contains a comma, space, or other special
character, quote it using single quotes. If the variable value itself is quoted with single quotes, double
each inner single quote or escape it with a backslash. The following statements each enable audit
logging for the local root account and are equivalent, even though the quoting styles differ:

SET GLOBAL audit_log_include_accounts = 'root@localhost';

405

https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Audit Log Reference

SET GLOBAL audit_log_include_accounts = '''root''@''localhost''';
SET GLOBAL audit_log_include_accounts = '\'root\'@\'localhost\'';
SET GLOBAL audit_log_include_accounts = "'root'@'localhost'";

The last statement does not work if the ANSI_QUOTES SQL mode is enabled because in that mode
double quotes signify identifier quoting, not string quoting.

Legacy Event Filtering by Status

To filter audited events based on status, set the following system variables at server startup or runtime.
These deprecated variables apply only for legacy audit log filtering. For JSON audit log filtering,
different status variables apply; see Audit Log Options and Variables.

• audit_log_connection_policy: Logging policy for connection events

• audit_log_statement_policy: Logging policy for statement events

Each variable takes a value of ALL (log all associated events; this is the default), ERRORS (log only
failed events), or NONE (do not log events). For example, to log all statement events but only failed
connection events, use these settings:

SET GLOBAL audit_log_statement_policy = ALL;
SET GLOBAL audit_log_connection_policy = ERRORS;

Another policy system variable, audit_log_policy, is available but does not afford as much control
as audit_log_connection_policy and audit_log_statement_policy. It can be set only at
server startup.

Note

The audit_log_policy legacy-mode system variable is deprecated as of
MySQL 8.0.34.

At runtime, it is a read-only variable. It takes a value of ALL (log all events; this is the default), LOGINS
(log connection events), QUERIES (log statement events), or NONE (do not log events). For any of
those values, the audit log plugin logs all selected events without distinction as to success or failure.
Use of audit_log_policy at startup works as follows:

• If you do not set audit_log_policy or set it to its default of ALL, any explicit settings for
audit_log_connection_policy or audit_log_statement_policy apply as specified. If not
specified, they default to ALL.

• If you set audit_log_policy to a non-ALL value, that value takes precedence over and is used to
set audit_log_connection_policy and audit_log_statement_policy, as indicated in the
following table. If you also set either of those variables to a value other than their default of ALL, the
server writes a message to the error log to indicate that their values are being overridden.

Startup audit_log_policy
Value

Resulting
audit_log_connection_policy
Value

Resulting
audit_log_statement_policy
Value

LOGINS ALL NONE

QUERIES NONE ALL

NONE NONE NONE

6.5.11 Audit Log Reference

The following sections provide a reference to MySQL Enterprise Audit elements:

• Audit Log Tables

406

Audit Log Reference

• Audit Log Functions

• Audit Log Option and Variable Reference

• Audit Log Options and Variables

• Audit Log Status Variables

To install the audit log tables and functions, use the instructions provided in Section 6.5.2, “Installing
or Uninstalling MySQL Enterprise Audit”. Unless those objects are installed, the audit_log plugin
operates in legacy mode (deprecated in MySQL 8.0.34). See Section 6.5.10, “Legacy Mode Audit Log
Filtering”.

Audit Log Tables

MySQL Enterprise Audit uses tables in the mysql system database for persistent storage of filter and
user account data. The tables can be accessed only by users who have privileges for that database. To
use a different database, set the audit_log_database system variable at server startup. The tables
use the InnoDB storage engine.

If these tables are missing, the audit_log plugin operates in (deprecated) legacy mode. See
Section 6.5.10, “Legacy Mode Audit Log Filtering”.

The audit_log_filter table stores filter definitions. The table has these columns:

• NAME

The filter name.

• FILTER

The filter definition associated with the filter name. Definitions are stored as JSON values.

The audit_log_user table stores user account information. The table has these columns:

• USER

The user name part of an account. For an account user1@localhost, the USER part is user1.

• HOST

The host name part of an account. For an account user1@localhost, the HOST part is
localhost.

• FILTERNAME

The name of the filter assigned to the account. The filter name associates the account with a filter
defined in the audit_log_filter table.

Audit Log Functions

This section describes, for each audit log function, its purpose, calling sequence, and return value. For
information about the conditions under which these functions can be invoked, see Section 6.5.7, “Audit
Log Filtering”.

Each audit log function returns a string that indicates whether the operation succeeded. OK indicates
success. ERROR: message indicates failure.

As of MySQL 8.0.19, audit log functions convert string arguments to utf8mb4 and string return values
are utf8mb4 strings. Prior to MySQL 8.0.19, audit log functions treat string arguments as binary
strings (which means they do not distinguish lettercase), and string return values are binary strings.

407

https://dev.mysql.com/doc/refman/8.0/en/json.html

Audit Log Reference

If an audit log function is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the --binary-as-hex. For more information about
that option, see mysql — The MySQL Command-Line Client.

These audit log functions are available:

• audit_log_encryption_password_get([keyring_id])

This function fetches an audit log encryption password from the MySQL keyring, which must be
enabled or an error occurs. Any keyring component or plugin can be used; for instructions, see
Section 6.4, “The MySQL Keyring”.

With no argument, the function retrieves the current encryption password as a binary string. An
argument may be given to specify which audit log encryption password to retrieve. The argument
must be the keyring ID of the current password or an archived password.

For additional information about audit log encryption, see Encrypting Audit Log Files.

Arguments:

keyring_id: As of MySQL 8.0.17, this optional argument indicates the keyring ID of the password
to retrieve. The maximum permitted length is 766 bytes. If omitted, the function retrieves the current
password.

Prior to MySQL 8.0.17, no argument is permitted. The function always retrieves the current
password.

Return value:

The password string for success (up to 766 bytes), or NULL and an error for failure.

Example:

Retrieve the current password:

mysql> SELECT audit_log_encryption_password_get();
+-------------------------------------+
| audit_log_encryption_password_get() |
+-------------------------------------+
| secret |
+-------------------------------------+

To retrieve a password by ID, you can determine which audit log keyring IDs exist by querying the
Performance Schema keyring_keys table:

mysql> SELECT KEY_ID FROM performance_schema.keyring_keys
 WHERE KEY_ID LIKE 'audit_log%'
 ORDER BY KEY_ID;
+-----------------------------+
| KEY_ID |
+-----------------------------+
| audit_log-20190415T152248-1 |
| audit_log-20190415T153507-1 |
| audit_log-20190416T125122-1 |
| audit_log-20190416T141608-1 |
+-----------------------------+
mysql> SELECT audit_log_encryption_password_get('audit_log-20190416T125122-1');
+--+
| audit_log_encryption_password_get('audit_log-20190416T125122-1') |
+--+
| segreto |
+--+

• audit_log_encryption_password_set(password)

408

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_binary-as-hex
https://dev.mysql.com/doc/refman/8.0/en/mysql.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-keyring-keys-table.html

Audit Log Reference

Sets the current audit log encryption password to the argument and stores the password in the
MySQL keyring. As of MySQL 8.0.19, the password is stored as a utf8mb4 string. Prior to MySQL
8.0.19, the password is stored in binary form.

If encryption is enabled, this function performs a log file rotation operation that renames the current
log file, and begins a new log file encrypted with the password. The keyring must be enabled or an
error occurs. Any keyring component or plugin can be used; for instructions, see Section 6.4, “The
MySQL Keyring”.

For additional information about audit log encryption, see Encrypting Audit Log Files.

Arguments:

password: The password string. The maximum permitted length is 766 bytes.

Return value:

1 for success, 0 for failure.

Example:

mysql> SELECT audit_log_encryption_password_set(password);
+---+
| audit_log_encryption_password_set(password) |
+---+
| 1 |
+---+

• audit_log_filter_flush()

Calling any of the other filtering functions affects operational audit log filtering immediately and
updates the audit log tables. If instead you modify the contents of those tables directly using
statements such as INSERT, UPDATE, and DELETE, the changes do not affect filtering immediately.
To flush your changes and make them operational, call audit_log_filter_flush().

Warning

audit_log_filter_flush() should be used only after modifying the
audit tables directly, to force reloading all filters. Otherwise, this function
should be avoided. It is, in effect, a simplified version of unloading and
reloading the audit_log plugin with UNINSTALL PLUGIN plus INSTALL
PLUGIN.

audit_log_filter_flush() affects all current sessions and detaches
them from their previous filters. Current sessions are no longer logged unless
they disconnect and reconnect, or execute a change-user operation.

If this function fails, an error message is returned and the audit log is disabled until the next
successful call to audit_log_filter_flush().

Arguments:

None.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_flush();
409

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html

Audit Log Reference

+--------------------------+
| audit_log_filter_flush() |
+--------------------------+
| OK |
+--------------------------+

• audit_log_filter_remove_filter(filter_name)

Given a filter name, removes the filter from the current set of filters. It is not an error for the filter not
to exist.

If a removed filter is assigned to any user accounts, those users stop being filtered (they are
removed from the audit_log_user table). Termination of filtering includes any current sessions for
those users: They are detached from the filter and no longer logged.

Arguments:

• filter_name: A string that specifies the filter name.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_remove_filter('SomeFilter');
+--+
| audit_log_filter_remove_filter('SomeFilter') |
+--+
| OK |
+--+

• audit_log_filter_remove_user(user_name)

Given a user account name, cause the user to be no longer assigned to a filter. It is not an error if
the user has no filter assigned. Filtering of current sessions for the user remains unaffected. New
connections for the user are filtered using the default account filter if there is one, and are not logged
otherwise.

If the name is %, the function removes the default account filter that is used for any user account that
has no explicitly assigned filter.

Arguments:

• user_name: The user account name as a string in user_name@host_name format, or % to
represent the default account.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_remove_user('user1@localhost');
+---+
| audit_log_filter_remove_user('user1@localhost') |
+---+
| OK |
+---+

410

Audit Log Reference

• audit_log_filter_set_filter(filter_name, definition)

Given a filter name and definition, adds the filter to the current set of filters. If the filter already exists
and is used by any current sessions, those sessions are detached from the filter and are no longer
logged. This occurs because the new filter definition has a new filter ID that differs from its previous
ID.

Arguments:

• filter_name: A string that specifies the filter name.

• definition: A JSON value that specifies the filter definition.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SET @f = '{ "filter": { "log": false } }';
mysql> SELECT audit_log_filter_set_filter('SomeFilter', @f);
+---+
| audit_log_filter_set_filter('SomeFilter', @f) |
+---+
| OK |
+---+

• audit_log_filter_set_user(user_name, filter_name)

Given a user account name and a filter name, assigns the filter to the user. A user can be assigned
only one filter, so if the user was already assigned a filter, the assignment is replaced. Filtering of
current sessions for the user remains unaffected. New connections are filtered using the new filter.

As a special case, the name % represents the default account. The filter is used for connections from
any user account that has no explicitly assigned filter.

Arguments:

• user_name: The user account name as a string in user_name@host_name format, or % to
represent the default account.

• filter_name: A string that specifies the filter name.

Return value:

A string that indicates whether the operation succeeded. OK indicates success. ERROR: message
indicates failure.

Example:

mysql> SELECT audit_log_filter_set_user('user1@localhost', 'SomeFilter');
+--+
| audit_log_filter_set_user('user1@localhost', 'SomeFilter') |
+--+
| OK |
+--+

411

https://dev.mysql.com/doc/refman/8.0/en/json.html

Audit Log Reference

• audit_log_read([arg])

Reads the audit log and returns a JSON string result. If the audit log format is not JSON, an error
occurs.

With no argument or a JSON hash argument, audit_log_read() reads events from the audit log
and returns a JSON string containing an array of audit events. Items in the hash argument influence
how reading occurs, as described later. Each element in the returned array is an event represented
as a JSON hash, with the exception that the last element may be a JSON null value to indicate no
following events are available to read.

With an argument consisting of a JSON null value, audit_log_read() closes the current read
sequence.

For additional details about the audit log-reading process, see Section 6.5.6, “Reading Audit Log
Files”.

Arguments:

To obtain a bookmark for the most recently written event, call audit_log_read_bookmark().

arg: The argument is optional. If omitted, the function reads events from the current position. If
present, the argument can be a JSON null value to close the read sequence, or a JSON hash.
Within a hash argument, items are optional and control aspects of the read operation such as the
position at which to begin reading or how many events to read. The following items are significant
(other items are ignored):

• start: The position within the audit log of the first event to read. The position is given as a
timestamp and the read starts from the first event that occurs on or after the timestamp value. The
start item has this format, where value is a literal timestamp value:

"start": { "timestamp": "value" }

The start item is permitted as of MySQL 8.0.22.

• timestamp, id: The position within the audit log of the first event to read. The timestamp
and id items together comprise a bookmark that uniquely identify a particular event. If an
audit_log_read() argument includes either item, it must include both to completely specify a
position or an error occurs.

• max_array_length: The maximum number of events to read from the log. If this item is omitted,
the default is to read to the end of the log or until the read buffer is full, whichever comes first.

To specify a starting position to audit_log_read(), pass a hash argument that includes either a
start item or a bookmark consisting of timestamp and id items. If a hash argument includes both
a start item and a bookmark, an error occurs.

If a hash argument specifies no starting position, reading continues from the current position.

If a timestamp value includes no time part, a time part of 00:00:00 is assumed.

Return value:

If the call succeeds, the return value is a JSON string containing an array of audit events, or a JSON
null value if that was passed as the argument to close the read sequence. If the call fails, the return
value is NULL and an error occurs.

Example:

mysql> SELECT audit_log_read(audit_log_read_bookmark());
+---+
| audit_log_read(audit_log_read_bookmark()) |

412

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

Audit Log Reference

+---+
| [{"timestamp":"2020-05-18 22:41:24","id":0,"class":"connection", ... |
+---+
mysql> SELECT audit_log_read('null');
+------------------------+
| audit_log_read('null') |
+------------------------+
| null |
+------------------------+

Notes:

Prior to MySQL 8.0.19, string return values are binary JSON strings. For information about converting
such values to nonbinary strings, see Section 6.5.6, “Reading Audit Log Files”.

• audit_log_read_bookmark()

Returns a JSON string representing a bookmark for the most recently written audit log event. If the
audit log format is not JSON, an error occurs.

The bookmark is a JSON hash with timestamp and id items that uniquely identify the position of an
event within the audit log. It is suitable for passing to audit_log_read() to indicate to that function
the position at which to begin reading.

For additional details about the audit log-reading process, see Section 6.5.6, “Reading Audit Log
Files”.

Arguments:

None.

Return value:

A JSON string containing a bookmark for success, or NULL and an error for failure.

Example:

mysql> SELECT audit_log_read_bookmark();
+---+
| audit_log_read_bookmark() |
+---+
| { "timestamp": "2019-10-03 21:03:44", "id": 0 } |
+---+

Notes:

Prior to MySQL 8.0.19, string return values are binary JSON strings. For information about converting
such values to nonbinary strings, see Section 6.5.6, “Reading Audit Log Files”.

• audit_log_rotate()

Arguments:

None.

Return value:

The renamed file name.

Example:

mysql> SELECT audit_log_rotate();

Using audit_log_rotate() requires the AUDIT_ADMIN privilege.
413

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

Audit Log Reference

Audit Log Option and Variable Reference

Table 6.29 Audit Log Option and Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

audit-log Yes Yes

audit_log_buffer_sizeYes Yes Yes Global No

audit_log_compressionYes Yes Yes Global No

audit_log_connection_policyYes Yes Yes Global Yes

audit_log_current_session Yes Both No

Audit_log_current_size Yes Global No

audit_log_databaseYes Yes Yes Global No

audit_log_disableYes Yes Yes Global Yes

audit_log_encryptionYes Yes Yes Global No

Audit_log_event_max_drop_size Yes Global No

Audit_log_events Yes Global No

Audit_log_events_filtered Yes Global No

Audit_log_events_lost Yes Global No

Audit_log_events_written Yes Global No

audit_log_exclude_accountsYes Yes Yes Global Yes

audit_log_file Yes Yes Yes Global No

audit_log_filter_id Yes Both No

audit_log_flush Yes Global Yes

audit_log_flush_interval_secondsYes Yes Global No

audit_log_formatYes Yes Yes Global No

audit_log_include_accountsYes Yes Yes Global Yes

audit_log_max_sizeYes Yes Yes Global Yes

audit_log_password_history_keep_daysYes Yes Yes Global Yes

audit_log_policyYes Yes Yes Global No

audit_log_prune_secondsYes Yes Yes Global Yes

audit_log_read_buffer_sizeYes Yes Yes Varies Varies

audit_log_rotate_on_sizeYes Yes Yes Global Yes

audit_log_statement_policyYes Yes Yes Global Yes

audit_log_strategyYes Yes Yes Global No

Audit_log_total_size Yes Global No

Audit_log_write_waits Yes Global No

Audit Log Options and Variables

This section describes the command options and system variables that configure operation of MySQL
Enterprise Audit. If values specified at startup time are incorrect, the audit_log plugin may fail
to initialize properly and the server does not load it. In this case, the server may also produce error
messages for other audit log settings because it does not recognize them.

To configure activation of the audit log plugin, use this option:

• --audit-log[=value]

414

Audit Log Reference

Command-Line Format --audit-log[=value]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

FORCE_PLUS_PERMANENT

This option controls how the server loads the audit_log plugin at startup. It is available only if the
plugin has been previously registered with INSTALL PLUGIN or is loaded with --plugin-load or
--plugin-load-add. See Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

The option value should be one of those available for plugin-loading options, as described in
Installing and Uninstalling Plugins. For example, --audit-log=FORCE_PLUS_PERMANENT tells the
server to load the plugin and prevent it from being removed while the server is running.

If the audit log plugin is enabled, it exposes several system variables that permit control over logging:

mysql> SHOW VARIABLES LIKE 'audit_log%';
+--------------------------------------+--------------+
| Variable_name | Value |
+--------------------------------------+--------------+
audit_log_buffer_size	1048576
audit_log_compression	NONE
audit_log_connection_policy	ALL
audit_log_current_session	OFF
audit_log_database	mysql
audit_log_disable	OFF
audit_log_encryption	NONE
audit_log_exclude_accounts	
audit_log_file	audit.log
audit_log_filter_id	0
audit_log_flush	OFF
audit_log_flush_interval_seconds	0
audit_log_format	NEW
audit_log_format_unix_timestamp	OFF
audit_log_include_accounts	
audit_log_max_size	0
audit_log_password_history_keep_days	0
audit_log_policy	ALL
audit_log_prune_seconds	0
audit_log_read_buffer_size	32768
audit_log_rotate_on_size	0
audit_log_statement_policy	ALL
audit_log_strategy	ASYNCHRONOUS
+--------------------------------------+--------------+

You can set any of these variables at server startup, and some of them at runtime. Those that are
available only for legacy mode audit log filtering are so noted.

• audit_log_buffer_size

Command-Line Format --audit-log-buffer-size=#

System Variable audit_log_buffer_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

415

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

Default Value 1048576

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server
adjusts the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when
it initializes and removes when it terminates. The plugin allocates this buffer only if logging is
asynchronous.

• audit_log_compression

Command-Line Format --audit-log-compression=value

System Variable audit_log_compression

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

GZIP

The type of compression for the audit log file. Permitted values are NONE (no compression; the
default) and GZIP (GNU Zip compression). For more information, see Compressing Audit Log Files.

• audit_log_connection_policy

Command-Line Format --audit-log-connection-policy=value

Deprecated 8.0.34

System Variable audit_log_connection_policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

416

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

NONE

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 6.5.10, “Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes connection events to its log file. The following
table shows the permitted values.

Value Description

ALL Log all connection events

ERRORS Log only failed connection events

NONE Do not log connection events

Note

At server startup, any explicit value given for
audit_log_connection_policy may be overridden if
audit_log_policy is also specified, as described in Section 6.5.5,
“Configuring Audit Logging Characteristics”.

• audit_log_current_session

System Variable audit_log_current_session

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value depends on filtering policy

Whether audit logging is enabled for the current session. The session value of this variable is read
only. It is set when the session begins based on the values of the audit_log_include_accounts
and audit_log_exclude_accounts system variables. The audit log plugin uses the session
value to determine whether to audit events for the session. (There is a global value, but the plugin
does not use it.)

• audit_log_database

Command-Line Format --audit-log-database=value

Introduced 8.0.33

System Variable audit_log_database

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value mysql

Specifies which database the audit_log plugin uses to find its tables. This variable is read only.
For more information, see Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”).

417

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

• audit_log_disable

Command-Line Format --audit-log-disable[={OFF|ON}]

Introduced 8.0.28

System Variable audit_log_disable

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Permits disabling audit logging for all connecting and connected sessions. In addition to the
SYSTEM_VARIABLES_ADMIN privilege, disabling audit logging requires the AUDIT_ADMIN privilege.
See Section 6.5.9, “Disabling Audit Logging”.

• audit_log_encryption

Command-Line Format --audit-log-encryption=value

System Variable audit_log_encryption

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

AES

The type of encryption for the audit log file. Permitted values are NONE (no encryption; the default)
and AES (AES-256-CBC cipher encryption). For more information, see Encrypting Audit Log Files.

• audit_log_exclude_accounts

Command-Line Format --audit-log-exclude-accounts=value

Deprecated 8.0.34

System Variable audit_log_exclude_accounts

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

418

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

Default Value NULL

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 6.5.10, “Legacy Mode Audit Log Filtering”).

The accounts for which events should not be logged. The value should be NULL or a string
containing a list of one or more comma-separated account names. For more information, see
Section 6.5.7, “Audit Log Filtering”.

Modifications to audit_log_exclude_accounts affect only connections created subsequent to
the modification, not existing connections.

• audit_log_file

Command-Line Format --audit-log-file=file_name

System Variable audit_log_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value audit.log

The base name and suffix of the file to which the audit log plugin writes events. The default value is
audit.log, regardless of logging format. To have the name suffix correspond to the format, set the
name explicitly, choosing a different suffix (for example, audit.xml for XML format, audit.json
for JSON format).

If the value of audit_log_file is a relative path name, the plugin interprets it relative to the data
directory. If the value is a full path name, the plugin uses the value as is. A full path name may
be useful if it is desirable to locate audit files on a separate file system or directory. For security
reasons, write the audit log file to a directory accessible only to the MySQL server and to users with
a legitimate reason to view the log.

For details about how the audit log plugin interprets the audit_log_file value and the rules for
file renaming that occurs at plugin initialization and termination, see Naming Conventions for Audit
Log Files.

The audit log plugin uses the directory containing the audit log file (determined from the
audit_log_file value) as the location to search for readable audit log files. From these log files
and the current file, the plugin constructs a list of the ones that are subject to use with the audit log
bookmarking and reading functions. See Section 6.5.6, “Reading Audit Log Files”.

• audit_log_filter_id

System Variable audit_log_filter_id

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

419

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

Maximum Value 4294967295

The session value of this variable indicates the internally maintained ID of the audit filter for the
current session. A value of 0 means that the session has no filter assigned.

• audit_log_flush

System Variable audit_log_flush

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Note

The audit_log_flush variable is deprecated as of MySQL 8.0.31; expect
support for it to be removed in a future version of MySQL. It is superseded by
the audit_log_rotate() function.

If audit_log_rotate_on_size is 0, automatic audit log file rotation is disabled and rotation
occurs only when performed manually. In that case, enabling audit_log_flush by setting it to 1 or
ON causes the audit log plugin to close and reopen its log file to flush it. (The variable value remains
OFF so that you need not disable it explicitly before enabling it again to perform another flush.) For
more information, see Section 6.5.5, “Configuring Audit Logging Characteristics”.

• audit_log_flush_interval_seconds

Command-Line Format --audit-log-flush-interval-
seconds[=value]

Introduced 8.0.34

System Variable audit_log_flush_interval_seconds

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Unsigned Long

Default Value 0

Maximum Value (Windows) 4294967295

Maximum Value (Other) 18446744073709551615

Unit seconds

This system variable depends on the scheduler component, which must be installed and enabled
(see Scheduler Component). To check the status of the component:

SHOW VARIABLES LIKE 'component_scheduler%';
+-----------------------------+-------+
| Variable_name | Value |
+-----------------------------+-------|
| component_scheduler.enabled | On |

420

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/scheduler-component.html

Audit Log Reference

+-----------------------------+-------+

When audit_log_flush_interval_seconds has a value of zero (the default), no automatic
refresh of the privileges occurs, even if the scheduler component is enabled (ON).

Values of 1 and 59 are not permitted; instead, these values adjusts to 60 automatically and the
server emits a warning. Values greater than 60 define the number of seconds the scheduler
component waits from startup, or from the beginning of the previous execution, until it attempts to
schedule another execution.

To persist this global system variable to the mysqld-auto.cnf file without setting the global
variable runtime value, precede the variable name by the PERSIST_ONLY keyword or the
@@PERSIST_ONLY. qualifier.

• audit_log_format

Command-Line Format --audit-log-format=value

System Variable audit_log_format

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value NEW

Valid Values OLD

NEW

JSON

The audit log file format. Permitted values are OLD (old-style XML), NEW (new-style XML; the default),
and JSON. For details about each format, see Section 6.5.4, “Audit Log File Formats”.

• audit_log_format_unix_timestamp

Command-Line Format --audit-log-format-unix-
timestamp[={OFF|ON}]

Introduced 8.0.26

System Variable audit_log_format_unix_timestamp

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable applies only for JSON-format audit log output. When that is true, enabling this variable
causes each log file record to include a time field. The field value is an integer that represents the
UNIX timestamp value indicating the date and time when the audit event was generated.

Changing the value of this variable at runtime causes log file rotation so that, for a given JSON-
format log file, all records in the file either do or do not include the time field.

Setting the runtime value of audit_log_format_unix_timestamp requires the AUDIT_ADMIN
privilege, in addition to the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated SUPER
privilege) normally required to set a global system variable runtime value.

421

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

• audit_log_include_accounts

Command-Line Format --audit-log-include-accounts=value

Deprecated 8.0.34

System Variable audit_log_include_accounts

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value NULL

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 6.5.10, “Legacy Mode Audit Log Filtering”).

The accounts for which events should be logged. The value should be NULL or a string containing a
list of one or more comma-separated account names. For more information, see Section 6.5.7, “Audit
Log Filtering”.

Modifications to audit_log_include_accounts affect only connections created subsequent to
the modification, not existing connections.

• audit_log_max_size

Command-Line Format --audit-log-max-size=#

Introduced 8.0.26

System Variable audit_log_max_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (Windows) 4294967295

Maximum Value (Other) 18446744073709551615

Unit bytes

Block Size 4096

audit_log_max_size pertains to audit log file pruning, which is supported for JSON-format log
files only. It controls pruning based on combined log file size:

• A value of 0 (the default) disables size-based pruning. No size limit is enforced.

422

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size

Audit Log Reference

• A value greater than 0 enables size-based pruning. The value is the combined size above which
audit log files become subject to pruning.

If you set audit_log_max_size to a value that is not a multiple of 4096, it is truncated to the
nearest multiple. In particular, setting it to a value less than 4096 sets it to 0 and no size-based
pruning occurs.

If both audit_log_max_size and audit_log_rotate_on_size are greater than 0,
audit_log_max_size should be more than 7 times the value of audit_log_rotate_on_size.
Otherwise, a warning is written to the server error log because in this case the “granularity” of size-
based pruning may be insufficient to prevent removal of all or most rotated log files each time it
occurs.

Note

Setting audit_log_max_size by itself is not sufficient to cause
log file pruning to occur because the pruning algorithm uses
audit_log_rotate_on_size, audit_log_max_size, and
audit_log_prune_seconds in conjunction. For details, see Space
Management of Audit Log Files.

• audit_log_password_history_keep_days

Command-Line Format --audit-log-password-history-keep-
days=#

Introduced 8.0.17

System Variable audit_log_password_history_keep_days

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit days

The audit log plugin implements log file encryption using encryption passwords stored in the MySQL
keyring (see Encrypting Audit Log Files). The plugin also implements password history, which
includes password archiving and expiration (removal).

When the audit log plugin creates a new encryption password, it archives the previous password,
if one exists, for later use. The audit_log_password_history_keep_days variable controls
automatic removal of expired archived passwords. Its value indicates the number of days after which
archived audit log encryption passwords are removed. The default of 0 disables password expiration:
the password retention period is forever.

New audit log encryption passwords are created under these circumstances:

• During plugin initialization, if the plugin finds that log file encryption is enabled, it checks whether
the keyring contains an audit log encryption password. If not, the plugin automatically generates a
random initial encryption password.

423

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

• When the audit_log_encryption_password_set() function is called to set a specific
password.

In each case, the plugin stores the new password in the key ring and uses it to encrypt new log files.

Removal of expired audit log encryption passwords occurs under these circumstances:

• During plugin initialization.

• When the audit_log_encryption_password_set() function is called.

• When the runtime value of audit_log_password_history_keep_days is changed from its
current value to a value greater than 0. Runtime value changes occur for SET statements that use
the GLOBAL or PERSIST keyword, but not the PERSIST_ONLY keyword. PERSIST_ONLY writes
the variable setting to mysqld-auto.cnf, but has no effect on the runtime value.

When password removal occurs, the current value of
audit_log_password_history_keep_days determines which passwords to remove:

• If the value is 0, the plugin removes no passwords.

• If the value is N > 0, the plugin removes passwords more than N days old.

Note

Take care not to expire old passwords that are still needed to read archived
encrypted log files.

If you normally leave password expiration disabled (that is,
audit_log_password_history_keep_days has a value of 0), it is possible to perform an on-
demand cleanup operation by temporarily assigning the variable a value greater than zero. For
example, to expire passwords older than 365 days, do this:

SET GLOBAL audit_log_password_history_keep_days = 365;
SET GLOBAL audit_log_password_history_keep_days = 0;

Setting the runtime value of audit_log_password_history_keep_days requires the
AUDIT_ADMIN privilege, in addition to the SYSTEM_VARIABLES_ADMIN privilege (or the deprecated
SUPER privilege) normally required to set a global system variable runtime value.

• audit_log_policy

Command-Line Format --audit-log-policy=value

Deprecated 8.0.34

System Variable audit_log_policy

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value ALL

Valid Values ALL

LOGINS

QUERIES

424

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

NONE

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 6.5.10, “Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes events to its log file. The following table shows
the permitted values.

Value Description

ALL Log all events

LOGINS Log only login events

QUERIES Log only query events

NONE Log nothing (disable the audit stream)

audit_log_policy can be set only at server startup. At runtime, it is a read-only
variable. Two other system variables, audit_log_connection_policy and
audit_log_statement_policy, provide finer control over logging policy and can be set either at
startup or at runtime. If you use audit_log_policy at startup instead of the other two variables,
the server uses its value to set those variables. For more information about the policy variables and
their interaction, see Section 6.5.5, “Configuring Audit Logging Characteristics”.

• audit_log_prune_seconds

Command-Line Format --audit-log-prune-seconds=#

Introduced 8.0.24

System Variable audit_log_prune_seconds

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (Windows) 4294967295

Maximum Value (Other) 18446744073709551615

Unit bytes

audit_log_prune_seconds pertains to audit log file pruning, which is supported for JSON-format
log files only. It controls pruning based on log file age:

• A value of 0 (the default) disables age-based pruning. No age limit is enforced.

• A value greater than 0 enables age-based pruning. The value is the number of seconds after
which audit log files become subject to pruning.

Note

Setting audit_log_prune_seconds by itself is not sufficient to
cause log file pruning to occur because the pruning algorithm uses
audit_log_rotate_on_size, audit_log_max_size, and

425

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

audit_log_prune_seconds in conjunction. For details, see Space
Management of Audit Log Files.

• audit_log_read_buffer_size

Command-Line Format --audit-log-read-buffer-size=#

System Variable audit_log_read_buffer_size

Scope (≥ 8.0.12) Global, Session

Scope (8.0.11) Global

Dynamic (≥ 8.0.12) Yes

Dynamic (8.0.11) No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.12) 32768

Default Value (8.0.11) 1048576

Minimum Value (≥ 8.0.12) 32768

Minimum Value (8.0.11) 1024

Maximum Value 4194304

Unit bytes

The buffer size for reading from the audit log file, in bytes. The audit_log_read() function reads
no more than this many bytes. Log file reading is supported only for JSON log format. For more
information, see Section 6.5.6, “Reading Audit Log Files”.

As of MySQL 8.0.12, this variable has a default of 32KB and can be set at runtime. Each client
should set its session value of audit_log_read_buffer_size appropriately for its use of
audit_log_read(). Prior to MySQL 8.0.12, audit_log_read_buffer_size has a default of
1MB, affects all clients, and can be changed only at server startup.

• audit_log_rotate_on_size

Command-Line Format --audit-log-rotate-on-size=#

System Variable audit_log_rotate_on_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

Block Size 4096

If audit_log_rotate_on_size is 0, the audit log plugin does not perform automatic size-based
log file rotation. If rotation is to occur, you must perform it manually; see Manual Audit Log File
Rotation (Before MySQL 8.0.31).

If audit_log_rotate_on_size is greater than 0, automatic size-based log file rotation occurs.
Whenever a write to the log file causes its size to exceed the audit_log_rotate_on_size value,

426

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size

Audit Log Reference

the audit log plugin renames the current log file and opens a new current log file using the original
name.

If you set audit_log_rotate_on_size to a value that is not a multiple of 4096, it is truncated
to the nearest multiple. In particular, setting it to a value less than 4096 sets it to 0 and no rotation
occurs, except manually.

Note

audit_log_rotate_on_size controls whether audit log file rotation
occurs. It can also be used in conjunction with audit_log_max_size and
audit_log_prune_seconds to configure pruning of rotated JSON-format
log files. For details, see Space Management of Audit Log Files.

• audit_log_statement_policy

Command-Line Format --audit-log-statement-policy=value

Deprecated 8.0.34

System Variable audit_log_statement_policy

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ALL

Valid Values ALL

ERRORS

NONE

Note

This deprecated variable applies only to legacy mode audit log filtering (see
Section 6.5.10, “Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes statement events to its log file. The following
table shows the permitted values.

Value Description

ALL Log all statement events

ERRORS Log only failed statement events

NONE Do not log statement events

Note

At server startup, any explicit value given for
audit_log_statement_policy may be overridden if
audit_log_policy is also specified, as described in Section 6.5.5,
“Configuring Audit Logging Characteristics”.

• audit_log_strategy

Command-Line Format --audit-log-strategy=value

System Variable audit_log_strategy 427

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Reference

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Enumeration

Default Value ASYNCHRONOUS

Valid Values ASYNCHRONOUS

PERFORMANCE

SEMISYNCHRONOUS

SYNCHRONOUS

The logging method used by the audit log plugin. These strategy values are permitted:

• ASYNCHRONOUS: Log asynchronously. Wait for space in the output buffer.

• PERFORMANCE: Log asynchronously. Drop requests for which there is insufficient space in the
output buffer.

• SEMISYNCHRONOUS: Log synchronously. Permit caching by the operating system.

• SYNCHRONOUS: Log synchronously. Call sync() after each request.

Audit Log Status Variables

If the audit log plugin is enabled, it exposes several status variables that provide operational
information. These variables are available for legacy mode audit filtering (deprecated in MySQL 8.0.34)
and JSON mode audit filtering.

• Audit_log_current_size

The size of the current audit log file. The value increases when an event is written to the log and is
reset to 0 when the log is rotated.

• Audit_log_event_max_drop_size

The size of the largest dropped event in performance logging mode. For a description of logging
modes, see Section 6.5.5, “Configuring Audit Logging Characteristics”.

• Audit_log_events

The number of events handled by the audit log plugin, whether or not they were written to the log
based on filtering policy (see Section 6.5.5, “Configuring Audit Logging Characteristics”).

• Audit_log_events_filtered

The number of events handled by the audit log plugin that were filtered (not written to the log) based
on filtering policy (see Section 6.5.5, “Configuring Audit Logging Characteristics”).

• Audit_log_events_lost

The number of events lost in performance logging mode because an event was larger than
the available audit log buffer space. This value may be useful for assessing how to set
audit_log_buffer_size to size the buffer for performance mode. For a description of logging
modes, see Section 6.5.5, “Configuring Audit Logging Characteristics”.

• Audit_log_events_written

The number of events written to the audit log.

428

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Audit Log Restrictions

• Audit_log_total_size

The total size of events written to all audit log files. Unlike Audit_log_current_size, the value of
Audit_log_total_size increases even when the log is rotated.

• Audit_log_write_waits

The number of times an event had to wait for space in the audit log buffer in asynchronous
logging mode. For a description of logging modes, see Section 6.5.5, “Configuring Audit Logging
Characteristics”.

6.5.12 Audit Log Restrictions

MySQL Enterprise Audit is subject to these general restrictions:

• Only SQL statements are logged. Changes made by no-SQL APIs, such as memcached, Node.JS,
and the NDB API, are not logged.

• Only top-level statements are logged, not statements within stored programs such as triggers or
stored procedures.

• Contents of files referenced by statements such as LOAD DATA are not logged.

NDB Cluster. It is possible to use MySQL Enterprise Audit with MySQL NDB Cluster, subject to the
following conditions:

• All changes to be logged must be done using the SQL interface. Changes using no-SQL interfaces,
such as those provided by the NDB API, memcached, or ClusterJ, are not logged.

• The plugin must be installed on each MySQL server that is used to execute SQL on the cluster.

• Audit plugin data must be aggregated amongst all MySQL servers used with the cluster. This
aggregation is the responsibility of the application or user.

6.6 The Audit Message Component
As of MySQL 8.0.14, the audit_api_message_emit component enables applications to add their
own message events to the audit log, using the audit_api_message_emit_udf() function.

The audit_api_message_emit component cooperates with all plugins of audit type. For
concreteness, examples use the audit_log plugin described in Section 6.5, “MySQL Enterprise
Audit”.

• Installing or Uninstalling the Audit Message Component

• Audit Message Function

Installing or Uninstalling the Audit Message Component

To be usable by the server, the component library file must be located in the MySQL plugin directory
(the directory named by the plugin_dir system variable). If necessary, configure the plugin directory
location by setting the value of plugin_dir at server startup.

To install the audit_api_message_emit component, use this statement:

INSTALL COMPONENT "file://component_audit_api_message_emit";

Component installation is a one-time operation that need not be done per server startup. INSTALL
COMPONENT loads the component, and also registers it in the mysql.component system table to
cause it to be loaded during subsequent server startups.

To uninstall the audit_api_message_emit component, use this statement:

UNINSTALL COMPONENT "file://component_audit_api_message_emit";

429

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/install-component.html
https://dev.mysql.com/doc/refman/8.0/en/install-component.html

Audit Message Function

UNINSTALL COMPONENT unloads the component, and unregisters it from the mysql.component
system table to cause it not to be loaded during subsequent server startups.

Because installing and uninstalling the audit_api_message_emit component installs and uninstalls
the audit_api_message_emit_udf() function that the component implements, it is not necessary
to use CREATE FUNCTION or DROP FUNCTION to do so.

Audit Message Function

This section describes the audit_api_message_emit_udf() function implemented by the
audit_api_message_emit component.

Before using the audit message function, install the audit message component according to the
instructions provided at Installing or Uninstalling the Audit Message Component.

• audit_api_message_emit_udf(component, producer, message[, key, value] ...)

Adds a message event to the audit log. Message events include component, producer, and message
strings of the caller's choosing, and optionally a set of key-value pairs.

An event posted by this function is sent to all enabled plugins of audit type, each of which handles
the event according to its own rules. If no plugin of audit type is enabled, posting the event has no
effect.

Arguments:

• component: A string that specifies a component name.

• producer: A string that specifies a producer name.

• message: A string that specifies the event message.

• key, value: Events may include 0 or more key-value pairs that specify an arbitrary application-
provided data map. Each key argument is a string that specifies a name for its immediately
following value argument. Each value argument specifies a value for its immediately following
key argument. Each value can be a string or numeric value, or NULL.

Return value:

The string OK to indicate success. An error occurs if the function fails.

Example:

mysql> SELECT audit_api_message_emit_udf('component_text',
 'producer_text',
 'message_text',
 'key1', 'value1',
 'key2', 123,
 'key3', NULL) AS 'Message';
+---------+
| Message |
+---------+
| OK |
+---------+

Additional information:

Each audit plugin that receives an event posted by audit_api_message_emit_udf() logs the
event in plugin-specific format. For example, the audit_log plugin (see Section 6.5, “MySQL
Enterprise Audit”) logs message values as follows, depending on the log format configured by the
audit_log_format system variable:

• JSON format (audit_log_format=JSON):

430

https://dev.mysql.com/doc/refman/8.0/en/uninstall-component.html

Audit Message Function

{
 ...
 "class": "message",
 "event": "user",
 ...
 "message_data": {
 "component": "component_text",
 "producer": "producer_text",
 "message": "message_text",
 "map": {
 "key1": "value1",
 "key2": 123,
 "key3": null
 }
 }
}

• New-style XML format (audit_log_format=NEW):

<AUDIT_RECORD>
 ...
 <NAME>Message</NAME>
 ...
 <COMMAND_CLASS>user</COMMAND_CLASS>
 <COMPONENT>component_text</COMPONENT>
 <PRODUCER>producer_text</PRODUCER>
 <MESSAGE>message_text</MESSAGE>
 <MAP>
 <ELEMENT>
 <KEY>key1</KEY>
 <VALUE>value1</VALUE>
 </ELEMENT>
 <ELEMENT>
 <KEY>key2</KEY>
 <VALUE>123</VALUE>
 </ELEMENT>
 <ELEMENT>
 <KEY>key3</KEY>
 <VALUE/>
 </ELEMENT>
 </MAP>
</AUDIT_RECORD>

• Old-style XML format (audit_log_format=OLD):

<AUDIT_RECORD
 ...
 NAME="Message"
 ...
 COMMAND_CLASS="user"
 COMPONENT="component_text"
 PRODUCER="producer_text"
 MESSAGE="message_text"/>

Note

Message events logged in old-style XML format do not include the key-
value map due to representational constraints imposed by this format.

Messages posted by audit_api_message_emit_udf() have an event class of
MYSQL_AUDIT_MESSAGE_CLASS and a subclass of MYSQL_AUDIT_MESSAGE_USER.
(Internally generated audit messages have the same class and a subclass of
MYSQL_AUDIT_MESSAGE_INTERNAL; this subclass currently is unused.) To refer to such events in
audit_log filtering rules, use a class element with a name value of message. For example:

{
 "filter": {
 "class": {

431

MySQL Enterprise Firewall

 "name": "message"
 }
 }
}

Should it be necessary to distinguish user-generated and internally generated message events, test
the subclass value against user or internal.

Filtering based on the contents of the key-value map is not supported.

For information about writing filtering rules, see Section 6.5.7, “Audit Log Filtering”.

6.7 MySQL Enterprise Firewall

Note

MySQL Enterprise Firewall is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that
enables database administrators to permit or deny SQL statement execution based on matching
against lists of accepted statement patterns. This helps harden MySQL Server against attacks such
as SQL injection or attempts to exploit applications by using them outside of their legitimate query
workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection
to be tailored per account. For a given account, the firewall can operate in recording, protecting, or
detecting mode, for training in the accepted statement patterns, active protection against unacceptable
statements, or passive detection of unacceptable statements. The diagram illustrates how the firewall
processes incoming statements in each mode.

432

https://www.mysql.com/products/

Elements of MySQL Enterprise Firewall

Figure 6.1 MySQL Enterprise Firewall Operation

The following sections describe the elements of MySQL Enterprise Firewall, discuss how to install and
use it, and provide reference information for its elements.

6.7.1 Elements of MySQL Enterprise Firewall

MySQL Enterprise Firewall is based on a plugin library that includes these elements:

• A server-side plugin named MYSQL_FIREWALL examines SQL statements before they execute
and, based on the registered firewall profiles, renders a decision whether to execute or reject each
statement.

• The MYSQL_FIREWALL plugin, along with server-side plugins named MYSQL_FIREWALL_USERS
and MYSQL_FIREWALL_WHITELIST implement Performance Schema and INFORMATION_SCHEMA
tables that provide views into the registered profiles.

• Profiles are cached in memory for better performance. Tables in the mysql system database provide
backing storage of firewall data for persistence of profiles across server restarts.

• Stored procedures perform tasks such as registering firewall profiles, establishing their operational
mode, and managing transfer of firewall data between the cache and persistent storage.

433

Installing or Uninstalling MySQL Enterprise Firewall

• Administrative functions provide an API for lower-level tasks such as synchronizing the cache with
persistent storage.

• System variables enable firewall configuration and status variables provide runtime operational
information.

• The FIREWALL_ADMIN and FIREWALL_USER privileges enable users to administer firewall rules for
any user, and their own firewall rules, respectively.

• The FIREWALL_EXEMPT privilege (available as of MySQL 8.0.27) exempts a user from firewall
restrictions. This is useful, for example, for any database administrator who configures the firewall, to
avoid the possibility of a misconfiguration causing even the administrator to be locked out and unable
to execute statements.

6.7.2 Installing or Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall installation is a one-time operation that installs the elements described
in Section 6.7.1, “Elements of MySQL Enterprise Firewall”. Installation can be performed using a
graphical interface or manually:

• On Windows, MySQL Installer includes an option to enable MySQL Enterprise Firewall for you.

• MySQL Workbench 6.3.4 or higher can install MySQL Enterprise Firewall, enable or disable an
installed firewall, or uninstall the firewall.

• Manual MySQL Enterprise Firewall installation involves running a script located in the share
directory of your MySQL installation.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, MySQL Enterprise Firewall involves some minimal overhead even
when disabled. To avoid this overhead, do not install the firewall unless you
plan to use it.

For usage instructions, see Section 6.7.3, “Using MySQL Enterprise Firewall”. For reference
information, see Section 6.7.4, “MySQL Enterprise Firewall Reference”.

• Installing MySQL Enterprise Firewall

• Uninstalling MySQL Enterprise Firewall

Installing MySQL Enterprise Firewall

If MySQL Enterprise Firewall is already installed from an older version of MySQL, uninstall it using the
instructions given later in this section and then restart your server before installing the current version.
In this case, it is also necessary to register your configuration again.

On Windows, you can use MySQL Installer to install MySQL Enterprise Firewall, as shown in
Figure 6.2, “MySQL Enterprise Firewall Installation on Windows”. Check the Enable MySQL
Enterprise Firewall check box. (Open Firewall port for network access has a different purpose. It
refers to Windows Firewall and controls whether Windows blocks the TCP/IP port on which the MySQL
server listens for client connections.)

Important

There is an issue for MySQL 8.0.19 installed using MySQL Installer that
prevents the server from starting if MySQL Enterprise Firewall is selected

434

Installing or Uninstalling MySQL Enterprise Firewall

during the server configuration steps. If the server startup operation fails, click
Cancel to end the configuration process and return to the dashboard. You must
uninstall the server.

The workaround is to run MySQL Installer without MySQL Enterprise Firewall
selected. (That is, do not select the Enable MySQL Enterprise Firewall check
box.) Then install MySQL Enterprise Firewall afterward using the instructions
for manual installation later in this section. This problem is corrected in MySQL
8.0.20.

Figure 6.2 MySQL Enterprise Firewall Installation on Windows

To install MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface.

To install MySQL Enterprise Firewall manually, look in the share directory of your MySQL installation
and choose the script that is appropriate for your platform. The available scripts differ in the file name
used to refer to the script:

• win_install_firewall.sql

• linux_install_firewall.sql

The installation script creates stored procedures in the default database, mysql. Run the script as
follows on the command line. The example here uses the Linux installation script. Make the appropriate
substitutions for your system.

$> mysql -u root -p < linux_install_firewall.sql
Enter password: (enter root password here)

435

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

Using MySQL Enterprise Firewall

Note

To use MySQL Enterprise Firewall in the context of source/replica replication,
Group Replication, or InnoDB Cluster, you must prepare the replica nodes prior
to running the installation script on the source node. This is necessary because
the INSTALL PLUGIN statements in the script are not replicated.

1. On each replica node, extract the INSTALL PLUGIN statements from the
installation script and execute them manually.

2. On the source node, run the installation script as described previously.

Installing MySQL Enterprise Firewall either using a graphical interface or manually should enable the
firewall. To verify that, connect to the server and execute this statement:

mysql> SHOW GLOBAL VARIABLES LIKE 'mysql_firewall_mode';
+---------------------+-------+
| Variable_name | Value |
+---------------------+-------+
| mysql_firewall_mode | ON |
+---------------------+-------+

If the plugin fails to initialize, check the server error log for diagnostic messages.

Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall can be uninstalled using MySQL Workbench or manually.

To uninstall MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL
Enterprise Firewall Interface, in MySQL Workbench.

To uninstall MySQL Enterprise Firewall manually, execute the following statements. Statements use IF
EXISTS because, depending on the previously installed firewall version, some objects might not exist
or might be dropped implicitly by uninstalling the plugin that installed them.

DROP TABLE IF EXISTS mysql.firewall_group_allowlist;
DROP TABLE IF EXISTS mysql.firewall_groups;
DROP TABLE IF EXISTS mysql.firewall_membership;
DROP TABLE IF EXISTS mysql.firewall_users;
DROP TABLE IF EXISTS mysql.firewall_whitelist;
UNINSTALL PLUGIN MYSQL_FIREWALL;
UNINSTALL PLUGIN MYSQL_FIREWALL_USERS;
UNINSTALL PLUGIN MYSQL_FIREWALL_WHITELIST;
DROP FUNCTION IF EXISTS firewall_group_delist;
DROP FUNCTION IF EXISTS firewall_group_enlist;
DROP FUNCTION IF EXISTS mysql_firewall_flush_status;
DROP FUNCTION IF EXISTS normalize_statement;
DROP FUNCTION IF EXISTS read_firewall_group_allowlist;
DROP FUNCTION IF EXISTS read_firewall_groups;
DROP FUNCTION IF EXISTS read_firewall_users;
DROP FUNCTION IF EXISTS read_firewall_whitelist;
DROP FUNCTION IF EXISTS set_firewall_group_mode;
DROP FUNCTION IF EXISTS set_firewall_mode;
DROP PROCEDURE IF EXISTS mysql.sp_firewall_group_delist;
DROP PROCEDURE IF EXISTS mysql.sp_firewall_group_enlist;
DROP PROCEDURE IF EXISTS mysql.sp_reload_firewall_group_rules;
DROP PROCEDURE IF EXISTS mysql.sp_reload_firewall_rules;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_group_mode;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_group_mode_and_user;
DROP PROCEDURE IF EXISTS mysql.sp_set_firewall_mode;
DROP PROCEDURE IF EXISTS mysql.sp_migrate_firewall_user_to_group;

6.7.3 Using MySQL Enterprise Firewall

Before using MySQL Enterprise Firewall, install it according to the instructions provided in
Section 6.7.2, “Installing or Uninstalling MySQL Enterprise Firewall”.

436

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/refman/8.0/en/workbench.html

Using MySQL Enterprise Firewall

This section describes how to configure MySQL Enterprise Firewall using SQL statements.
Alternatively, MySQL Workbench 6.3.4 or higher provides a graphical interface for firewall control. See
MySQL Enterprise Firewall Interface.

• Enabling or Disabling the Firewall

• Assigning Firewall Privileges

• Firewall Concepts

• Registering Firewall Group Profiles

• Registering Firewall Account Profiles

• Monitoring the Firewall

• Migrating Account Profiles to Group Profiles

Enabling or Disabling the Firewall

To enable or disable the firewall, set the mysql_firewall_mode system variable. By default, this
variable is enabled when the firewall is installed. To control the initial firewall state explicitly, you can
set the variable at server startup. For example, to enable the firewall in an option file, use these lines:

[mysqld]
mysql_firewall_mode=ON

After modifying my.cnf, restart the server to cause the new setting to take effect.

Alternatively, to set and persist the firewall setting at runtime:

SET PERSIST mysql_firewall_mode = OFF;
SET PERSIST mysql_firewall_mode = ON;

SET PERSIST sets a value for the running MySQL instance. It also saves the value, causing it to carry
over to subsequent server restarts. To change a value for the running MySQL instance without having
it carry over to subsequent restarts, use the GLOBAL keyword rather than PERSIST. See SET Syntax
for Variable Assignment.

Assigning Firewall Privileges

With the firewall installed, grant the appropriate privileges to the MySQL account or accounts to be
used for administering it. The privileges depend on which firewall operations an account should be
permitted to perform:

• Grant the FIREWALL_EXEMPT privilege (available as of MySQL 8.0.27) to any account that should
be exempt from firewall restrictions. This is useful, for example, for a database administrator who
configures the firewall, to avoid the possibility of a misconfiguration causing even the administrator to
be locked out and unable to execute statements.

• Grant the FIREWALL_ADMIN privilege to any account that should have full administrative
firewall access. (Some administrative firewall functions can be invoked by accounts that have
FIREWALL_ADMIN or the deprecated SUPER privilege, as indicated in the individual function
descriptions.)

• Grant the FIREWALL_USER privilege to any account that should have administrative access only for
its own firewall rules.

• Grant the EXECUTE privilege for the firewall stored procedures in the mysql system database.
These may invoke administrative functions, so stored procedure access also requires the privileges
indicated earlier that are needed for those functions.

437

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Using MySQL Enterprise Firewall

Note

The FIREWALL_EXEMPT, FIREWALL_ADMIN, and FIREWALL_USER
privileges can be granted only while the firewall is installed because the
MYSQL_FIREWALL plugin defines those privileges.

Firewall Concepts

The MySQL server permits clients to connect and receives from them SQL statements to be executed.
If the firewall is enabled, the server passes to it each incoming statement that does not immediately
fail with a syntax error. Based on whether the firewall accepts the statement, the server executes it or
returns an error to the client. This section describes how the firewall accomplishes the task of accepting
or rejecting statements.

• Firewall Profiles

• Firewall Statement Matching

• Profile Operational Modes

• Firewall Statement Handling When Multiple Profiles Apply

Firewall Profiles

The firewall uses a registry of profiles that determine whether to permit statement execution. Profiles
have these attributes:

• An allowlist. The allowlist is the set of rules that defines which statements are acceptable to the
profile.

• A current operational mode. The mode enables the profile to be used in different ways. For example:
the profile can be placed in training mode to establish the allowlist; the allowlist can be used for
restricting statement execution or intrusion detection; the profile can be disabled entirely.

• A scope of applicability. The scope indicates which client connections the profile applies to:

• The firewall supports account-based profiles such that each profile matches a particular client
account (client user name and host name combination). For example, you can register one
account profile for which the allowlist applies to connections originating from admin@localhost
and another account profile for which the allowlist applies to connections originating from
myapp@apphost.example.com.

• As of MySQL 8.0.23, the firewall supports group profiles that can have multiple accounts as
members, with the profile allowlist applying equally to all members. Group profiles enable easier
administration and greater flexibility for deployments that require applying a given set of allowlist
rules to multiple accounts.

Initially, no profiles exist, so by default, the firewall accepts all statements and has no effect on which
statements MySQL accounts can execute. To apply firewall protective capabilities, explicit action is
required:

• Register one or more profiles with the firewall.

• Train the firewall by establishing the allowlist for each profile; that is, the types of statements the
profile permits clients to execute.

• Place the trained profiles in protecting mode to harden MySQL against unauthorized statement
execution:

• MySQL associates each client session with a specific user name and host name combination. This
combination is the session account.

438

Using MySQL Enterprise Firewall

• For each client connection, the firewall uses the session account to determine which profiles apply
to handling incoming statements from the client.

The firewall accepts only statements permitted by the applicable profile allowlists.

Most firewall principles apply identically to group profiles and account profiles. The two types of profiles
differ in these respects:

• An account profile allowlist applies only to a single account. A group profile allowlist applies when the
session account matches any account that is a member of the group.

• To apply an allowlist to multiple accounts using account profiles, it is necessary to register one profile
per account and duplicate the allowlist across each profile. This entails training each account profile
individually because each one must be trained using the single account to which it applies.

A group profile allowlist applies to multiple accounts, with no need to duplicate it for each account. A
group profile can be trained using any or all of the group member accounts, or training can be limited
to any single member. Either way, the allowlist applies to all members.

• Account profile names are based on specific user name and host name combinations that depend
on which clients connect to the MySQL server. Group profile names are chosen by the firewall
administrator with no constraints other than that their length must be from 1 to 288 characters.

Note

Due to the advantages of group profiles over account profiles, and because a
group profile with a single member account is logically equivalent to an account
profile for that account, it is recommended that all new firewall profiles be
created as group profiles. Account profiles are deprecated as of MySQL 8.0.26
and subject to removal in a future MySQL version. For assistance converting
existing account profiles, see Migrating Account Profiles to Group Profiles.

The profile-based protection afforded by the firewall enables implementation of strategies such as
these:

• If an application has unique protection requirements, configure it to use an account not used for any
other purpose and set up a group profile or account profile for that account.

• If related applications share protection requirements, associate each application with its own
account, then add these application accounts as members of the same group profile. Alternatively,
configure all the applications to use the same account and associate them with an account profile for
that account.

Firewall Statement Matching

Statement matching performed by the firewall does not use SQL statements as received from clients.
Instead, the server converts incoming statements to normalized digest form and firewall operation
uses these digests. The benefit of statement normalization is that it enables similar statements to be
grouped and recognized using a single pattern. For example, these statements are distinct from each
other:

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
select first_name, last_name from customer where customer_id = 99;
SELECT first_name, last_name FROM customer WHERE customer_id = 143;

But all of them have the same normalized digest form:

SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ?

By using normalization, firewall allowlists can store digests that each match many different statements
received from clients. For more information about normalization and digests, see Performance Schema
Statement Digests and Sampling.

439

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-statement-digests.html

Using MySQL Enterprise Firewall

Warning

Setting the max_digest_length system variable to zero disables digest
production, which also disables server functionality that requires digests, such
as MySQL Enterprise Firewall.

Profile Operational Modes

Each profile registered with the firewall has its own operational mode, chosen from these values:

• OFF: This mode disables the profile. The firewall considers it inactive and ignores it.

• RECORDING: This is the firewall training mode. Incoming statements received from a client that
matches the profile are considered acceptable for the profile and become part of its “fingerprint.”
The firewall records the normalized digest form of each statement to learn the acceptable statement
patterns for the profile. Each pattern is a rule, and the union of the rules is the profile allowlist.

A difference between group and account profiles is that statement recording for a group profile can
be limited to statements received from a single group member (the training member).

• PROTECTING: In this mode, the profile allows or prevents statement execution. The firewall
matches incoming statements against the profile allowlist, accepting only statements that match and
rejecting those that do not. After training a profile in RECORDING mode, switch it to PROTECTING
mode to harden MySQL against access by statements that deviate from the allowlist. If the
mysql_firewall_trace system variable is enabled, the firewall also writes rejected statements to
the error log.

• DETECTING: This mode detects but not does not block intrusions (statements that are suspicious
because they match nothing in the profile allowlist). In DETECTING mode, the firewall writes
suspicious statements to the error log but accepts them without denying access.

When a profile is assigned any of the preceding mode values, the firewall stores the mode in the
profile. Firewall mode-setting operations also permit a mode value of RESET, but this value is not
stored: setting a profile to RESET mode causes the firewall to delete all rules for the profile and set its
mode to OFF.

Note

Messages written to the error log in DETECTING mode or because
mysql_firewall_trace is enabled are written as Notes, which are
information messages. To ensure that such messages appear in the error log
and are not discarded, make sure that error-logging verbosity is sufficient to
include information messages. For example, if you are using priority-based log
filtering, as described in Priority-Based Error Log Filtering (log_filter_internal),
set the log_error_verbosity system variable to a value of 3.

Firewall Statement Handling When Multiple Profiles Apply

For simplicity, later sections that describe how to set up profiles take the perspective that the firewall
matches incoming statements from a client against only a single profile, either a group profile or
account profile. But firewall operation can be more complex:

• A group profile can include multiple accounts as members.

• An account can be a member of multiple group profiles.

• Multiple profiles can match a given client.

The following description covers the general case of how the firewall operates, when potentially
multiple profiles apply to incoming statements.

440

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_digest_length
https://dev.mysql.com/doc/refman/8.0/en/error-log-priority-based-filtering.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_log_error_verbosity

Using MySQL Enterprise Firewall

As previously mentioned, MySQL associates each client session with a specific user name and host
name combination known as the session account. The firewall matches the session account against
registered profiles to determine which profiles apply to handling incoming statements from the session:

• The firewall ignores inactive profiles (profiles with a mode of OFF).

• The session account matches every active group profile that includes a member having the same
user and host. There can be more than one such group profile.

• The session account matches an active account profile having the same user and host, if there is
one. There is at most one such account profile.

In other words, the session account can match 0 or more active group profiles, and 0 or 1 active
account profiles. This means that 0, 1, or multiple firewall profiles are applicable to a given session, for
which the firewall handles each incoming statement as follows:

• If there is no applicable profile, the firewall imposes no restrictions and accepts the statement.

• If there are applicable profiles, their modes determine statement handling:

• The firewall records the statement in the allowlist of each applicable profile that is in RECORDING
mode.

• The firewall writes the statement to the error log for each applicable profile in DETECTING mode
for which the statement is suspicious (does not match the profile allowlist).

• The firewall accepts the statement if at least one applicable profile is in RECORDING or
DETECTING mode (those modes accept all statements), or if the statement matches the allowlist of
at least one applicable profile in PROTECTING mode. Otherwise, the firewall rejects the statement
(and writes it to the error log if the mysql_firewall_trace system variable is enabled).

With that description in mind, the next sections revert to the simplicity of the situations when a single
group profile or a single account profile apply, and cover how to set up each type of profile.

Registering Firewall Group Profiles

MySQL Enterprise Firewall supports registration of group profiles as of MySQL 8.0.23. A group profile
can have multiple accounts as its members. To use a firewall group profile to protect MySQL against
incoming statements from a given account, follow these steps:

1. Register the group profile and put it in RECORDING mode.

2. Add a member account to the group profile.

3. Connect to the MySQL server using the member account and execute statements to be learned.
This trains the group profile and establishes the rules that form the profile allowlist.

4. Add to the group profile any other accounts that are to be group members.

5. Switch the group profile to PROTECTING mode. When a client connects to the server using any
account that is a member of the group profile, the profile allowlist restricts statement execution.

6. Should additional training be necessary, switch the group profile to RECORDING mode again,
update its allowlist with new statement patterns, then switch it back to PROTECTING mode.

Observe these guidelines for firewall-related account references:

• Take note of the context in which account references occur. To name an account for firewall
operations, specify it as a single quoted string ('user_name@host_name'). This differs from the
usual MySQL convention for statements such as CREATE USER and GRANT, for which you quote the
user and host parts of an account name separately ('user_name'@'host_name').

The requirement for naming accounts as a single quoted string for firewall operations means that you
cannot use accounts that have embedded @ characters in the user name.

441

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Using MySQL Enterprise Firewall

• The firewall assesses statements against accounts represented by actual user and host names as
authenticated by the server. When registering accounts in profiles, do not use wildcard characters or
netmasks:

• Suppose that an account named me@%.example.org exists and a client uses it to connect to the
server from the host abc.example.org.

• The account name contains a % wildcard character, but the server authenticates the client as
having a user name of me and host name of abc.example.com, and that is what the firewall
sees.

• Consequently, the account name to use for firewall operations is me@abc.example.org rather
than me@%.example.org.

The following procedure shows how to register a group profile with the firewall, train the firewall to
know the acceptable statements for that profile (its allowlist), use the profile to protect MySQL against
execution of unacceptable statements, and add and remove group members. The example uses a
group profile name of fwgrp. The example profile is presumed for use by clients of an application that
accesses tables in the sakila database (available at https://dev.mysql.com/doc/index-other.html).

Use an administrative MySQL account to perform the steps in this procedure, except those steps
designated for execution by member accounts of the firewall group profile. For statements executed
by member accounts, the default database should be sakila. (You can use a different database by
adjusting the instructions accordingly.)

1. If necessary, create the accounts that are to be members of the fwgrp group profile and grant
them appropriate access privileges. Statements for one member are shown here (choose an
appropriate password):

CREATE USER 'member1'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON sakila.* TO 'member1'@'localhost';

2. Use the sp_set_firewall_group_mode() stored procedure to register the group profile with
the firewall and place the profile in RECORDING (training) mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'RECORDING');

3. Use the sp_firewall_group_enlist() stored procedure to add an initial member account for
use in training the group profile allowlist:

CALL mysql.sp_firewall_group_enlist('fwgrp', 'member1@localhost');

4. To train the group profile using the initial member account, connect to the server as member1 from
the server host so that the firewall sees a session account of member1@localhost. Then execute
some statements to be considered legitimate for the profile. For example:

SELECT title, release_year FROM film WHERE film_id = 1;
UPDATE actor SET last_update = NOW() WHERE actor_id = 1;
SELECT store_id, COUNT(*) FROM inventory GROUP BY store_id;

The firewall receives the statements from the member1@localhost account. Because that
account is a member of the fwgrp profile, which is in RECORDING mode, the firewall interprets the
statements as applicable to fwgrp and records the normalized digest form of the statements as
rules in the fwgrp allowlist. Those rules then apply to all accounts that are members of fwgrp.

Note

Until the fwgrp group profile receives statements in RECORDING mode, its
allowlist is empty, which is equivalent to “deny all.” No statement can match
an empty allowlist, which has these implications:

442

https://dev.mysql.com/doc/index-other.html

Using MySQL Enterprise Firewall

• The group profile cannot be switched to PROTECTING mode. It would
reject every statement, effectively prohibiting the accounts that are group
members from executing any statement.

• The group profile can be switched to DETECTING mode. In this case, the
profile accepts every statement but logs it as suspicious.

5. At this point, the group profile information is cached, including its name, membership, and allowlist.
To see this information, query the Performance Schema firewall tables:

mysql> SELECT MODE FROM performance_schema.firewall_groups
 WHERE NAME = 'fwgrp';
+-----------+
| MODE |
+-----------+
| RECORDING |
+-----------+
mysql> SELECT * FROM performance_schema.firewall_membership
 WHERE GROUP_ID = 'fwgrp' ORDER BY MEMBER_ID;
+----------+-------------------+
| GROUP_ID | MEMBER_ID |
+----------+-------------------+
| fwgrp | member1@localhost |
+----------+-------------------+
mysql> SELECT RULE FROM performance_schema.firewall_group_allowlist
 WHERE NAME = 'fwgrp';
+--+
| RULE |
+--+
| SELECT @@`version_comment` LIMIT ? |
| UPDATE `actor` SET `last_update` = NOW () WHERE `actor_id` = ? |
| SELECT `title` , `release_year` FROM `film` WHERE `film_id` = ? |
| SELECT `store_id` , COUNT (*) FROM `inventory` GROUP BY `store_id` |
+--+

Note

The @@version_comment rule comes from a statement sent automatically
by the mysql client when you connect to the server.

Important

Train the firewall under conditions matching application use. For example, to
determine server characteristics and capabilities, a given MySQL connector
might send statements to the server at the beginning of each session. If an
application normally is used through that connector, train the firewall using
the connector, too. That enables those initial statements to become part of
the allowlist for the group profile associated with the application.

6. Invoke sp_set_firewall_group_mode() again to switch the group profile to PROTECTING
mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'PROTECTING');

Important

Switching the group profile out of RECORDING mode synchronizes its
cached data to the mysql system database tables that provide persistent
underlying storage. If you do not switch the mode for a profile that is being
recorded, the cached data is not written to persistent storage and is lost
when the server is restarted.

7. Add to the group profile any other accounts that should be members:

CALL mysql.sp_firewall_group_enlist('fwgrp', 'member2@localhost');

443

Using MySQL Enterprise Firewall

CALL mysql.sp_firewall_group_enlist('fwgrp', 'member3@localhost');
CALL mysql.sp_firewall_group_enlist('fwgrp', 'member4@localhost');

The profile allowlist trained using the member1@localhost account now also applies to the
additional accounts.

8. To verify the updated group membership, query the firewall_membership table again:

mysql> SELECT * FROM performance_schema.firewall_membership
 WHERE GROUP_ID = 'fwgrp' ORDER BY MEMBER_ID;
+----------+-------------------+
| GROUP_ID | MEMBER_ID |
+----------+-------------------+
fwgrp	member1@localhost
fwgrp	member2@localhost
fwgrp	member3@localhost
fwgrp	member4@localhost
+----------+-------------------+

9. Test the group profile against the firewall by using any account in the group to execute some
acceptable and unacceptable statements. The firewall matches each statement from the account
against the profile allowlist and accepts or rejects it:

• This statement is not identical to a training statement but produces the same normalized
statement as one of them, so the firewall accepts it:

mysql> SELECT title, release_year FROM film WHERE film_id = 98;
+-------------------+--------------+
| title | release_year |
+-------------------+--------------+
| BRIGHT ENCOUNTERS | 2006 |
+-------------------+--------------+

• These statements match nothing in the allowlist, so the firewall rejects each with an error:

mysql> SELECT title, release_year FROM film WHERE film_id = 98 OR TRUE;
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> SHOW TABLES LIKE 'customer%';
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> TRUNCATE TABLE mysql.slow_log;
ERROR 1045 (28000): Statement was blocked by Firewall

• If the mysql_firewall_trace system variable is enabled, the firewall also writes rejected
statements to the error log. For example:

[Note] Plugin MYSQL_FIREWALL reported:
'ACCESS DENIED for 'member1@localhost'. Reason: No match in allowlist.
Statement: TRUNCATE TABLE `mysql` . `slow_log`'

These log messages may be helpful in identifying the source of attacks, should that be
necessary.

10. Should members need to be removed from the group profile, use
the sp_firewall_group_delist() stored procedure rather than
sp_firewall_group_enlist():

CALL mysql.sp_firewall_group_delist('fwgrp', 'member3@localhost');

The firewall group profile now is trained for member accounts. When clients connect using any account
in the group and attempt to execute statements, the profile protects MySQL against statements not
matched by the profile allowlist.

The procedure just shown added only one member to the group profile before training its allowlist.
Doing so provides better control over the training period by limiting which accounts can add new
acceptable statements to the allowlist. Should additional training be necessary, you can switch the
profile back to RECORDING mode:

444

Using MySQL Enterprise Firewall

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'RECORDING');

However, that enables any member of the group to execute statements and add
them to the allowlist. To limit the additional training to a single group member, call
sp_set_firewall_group_mode_and_user(), which is like sp_set_firewall_group_mode()
but takes one more argument specifying which account is permitted to train the profile in RECORDING
mode. For example, to enable training only by member4@localhost, do this:

CALL mysql.sp_set_firewall_group_mode_and_user('fwgrp', 'RECORDING', 'member4@localhost');

That enables additional training by the specified account without having to remove the other group
members. They can execute statements, but the statements are not added to the allowlist. (Remember,
however, that in RECORDING mode the other members can execute any statement.)

Note

To avoid unexpected behavior when a particular account is specified as the
training account for a group profile, always ensure that account is a member of
the group.

After the additional training, set the group profile back to PROTECTING mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'PROTECTING');

The training account established by sp_set_firewall_group_mode_and_user() is saved in
the group profile, so the firewall remembers it in case more training is needed later. Thus, if you call
sp_set_firewall_group_mode() (which takes no training account argument), the current profile
training account, member4@localhost, remains unchanged.

To clear the training account if it actually is desired to enable all group members to perform training in
RECORDING mode, call sp_set_firewall_group_mode_and_user() and pass a NULL value for
the account argument:

CALL mysql.sp_set_firewall_group_mode_and_user('fwgrp', 'RECORDING', NULL);

It is possible to detect intrusions by logging nonmatching statements as suspicious without denying
access. First, put the group profile in DETECTING mode:

CALL mysql.sp_set_firewall_group_mode('fwgrp', 'DETECTING');

Then, using a member account, execute a statement that does not match the group profile allowlist. In
DETECTING mode, the firewall permits the nonmatching statement to execute:

mysql> SHOW TABLES LIKE 'customer%';
+------------------------------+
| Tables_in_sakila (customer%) |
+------------------------------+
| customer |
| customer_list |
+------------------------------+

In addition, the firewall writes a message to the error log:

[Note] Plugin MYSQL_FIREWALL reported:
'SUSPICIOUS STATEMENT from 'member1@localhost'. Reason: No match in allowlist.
Statement: SHOW TABLES LIKE ?'

To disable a group profile, change its mode to OFF:

CALL mysql.sp_set_firewall_group_mode(group, 'OFF');

To forget all training for a profile and disable it, reset it:

CALL mysql.sp_set_firewall_group_mode(group, 'RESET');

The reset operation causes the firewall to delete all rules for the profile and set its mode to OFF.

445

Using MySQL Enterprise Firewall

Registering Firewall Account Profiles

MySQL Enterprise Firewall enables profiles to be registered that correspond to individual accounts.
To use a firewall account profile to protect MySQL against incoming statements from a given account,
follow these steps:

1. Register the account profile and put it in RECORDING mode.

2. Connect to the MySQL server using the account and execute statements to be learned. This trains
the account profile and establishes the rules that form the profile allowlist.

3. Switch the account profile to PROTECTING mode. When a client connects to the server using the
account, the account profile allowlist restricts statement execution.

4. Should additional training be necessary, switch the account profile to RECORDING mode again,
update its allowlist with new statement patterns, then switch it back to PROTECTING mode.

Observe these guidelines for firewall-related account references:

• Take note of the context in which account references occur. To name an account for firewall
operations, specify it as a single quoted string ('user_name@host_name'). This differs from the
usual MySQL convention for statements such as CREATE USER and GRANT, for which you quote the
user and host parts of an account name separately ('user_name'@'host_name').

The requirement for naming accounts as a single quoted string for firewall operations means that you
cannot use accounts that have embedded @ characters in the user name.

• The firewall assesses statements against accounts represented by actual user and host names as
authenticated by the server. When registering accounts in profiles, do not use wildcard characters or
netmasks:

• Suppose that an account named me@%.example.org exists and a client uses it to connect to the
server from the host abc.example.org.

• The account name contains a % wildcard character, but the server authenticates the client as
having a user name of me and host name of abc.example.com, and that is what the firewall
sees.

• Consequently, the account name to use for firewall operations is me@abc.example.org rather
than me@%.example.org.

The following procedure shows how to register an account profile with the firewall, train the firewall
to know the acceptable statements for that profile (its allowlist), and use the profile to protect
MySQL against execution of unacceptable statements by the account. The example account,
fwuser@localhost, is presumed for use by an application that accesses tables in the sakila
database (available at https://dev.mysql.com/doc/index-other.html).

Use an administrative MySQL account to perform the steps in this procedure, except those steps
designated for execution by the fwuser@localhost account that corresponds to the account profile
registered with the firewall. For statements executed using this account, the default database should be
sakila. (You can use a different database by adjusting the instructions accordingly.)

1. If necessary, create the account to use for executing statements (choose an appropriate password)
and grant it privileges for the sakila database:

CREATE USER 'fwuser'@'localhost' IDENTIFIED BY 'password';
GRANT ALL ON sakila.* TO 'fwuser'@'localhost';

2. Use the sp_set_firewall_mode() stored procedure to register the account profile with the
firewall and place the profile in RECORDING (training) mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'RECORDING');

446

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/index-other.html

Using MySQL Enterprise Firewall

3. To train the registered account profile, connect to the server as fwuser from the server host so
that the firewall sees a session account of fwuser@localhost. Then use the account to execute
some statements to be considered legitimate for the profile. For example:

SELECT first_name, last_name FROM customer WHERE customer_id = 1;
UPDATE rental SET return_date = NOW() WHERE rental_id = 1;
SELECT get_customer_balance(1, NOW());

Because the profile is in RECORDING mode, the firewall records the normalized digest form of the
statements as rules in the profile allowlist.

Note

Until the fwuser@localhost account profile receives statements in
RECORDING mode, its allowlist is empty, which is equivalent to “deny all.” No
statement can match an empty allowlist, which has these implications:

• The account profile cannot be switched to PROTECTING mode. It would
reject every statement, effectively prohibiting the account from executing
any statement.

• The account profile can be switched to DETECTING mode. In this case,
the profile accepts every statement but logs it as suspicious.

4. At this point, the account profile information is cached. To see this information, query the
INFORMATION_SCHEMA firewall tables:

mysql> SELECT MODE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS
 WHERE USERHOST = 'fwuser@localhost';
+-----------+
| MODE |
+-----------+
| RECORDING |
+-----------+
mysql> SELECT RULE FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_WHITELIST
 WHERE USERHOST = 'fwuser@localhost';
+--+
| RULE |
+--+
| SELECT `first_name` , `last_name` FROM `customer` WHERE `customer_id` = ? |
| SELECT `get_customer_balance` (? , NOW ()) |
| UPDATE `rental` SET `return_date` = NOW () WHERE `rental_id` = ? |
| SELECT @@`version_comment` LIMIT ? |
+--+

Note

The @@version_comment rule comes from a statement sent automatically
by the mysql client when you connect to the server.

Important

Train the firewall under conditions matching application use. For example, to
determine server characteristics and capabilities, a given MySQL connector
might send statements to the server at the beginning of each session. If an
application normally is used through that connector, train the firewall using
the connector, too. That enables those initial statements to become part of
the allowlist for the account profile associated with the application.

447

Using MySQL Enterprise Firewall

5. Invoke sp_set_firewall_mode() again, this time switching the account profile to PROTECTING
mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'PROTECTING');

Important

Switching the account profile out of RECORDING mode synchronizes its
cached data to the mysql system database tables that provide persistent
underlying storage. If you do not switch the mode for a profile that is being
recorded, the cached data is not written to persistent storage and is lost
when the server is restarted.

6. Test the account profile by using the account to execute some acceptable and unacceptable
statements. The firewall matches each statement from the account against the profile allowlist and
accepts or rejects it:

• This statement is not identical to a training statement but produces the same normalized
statement as one of them, so the firewall accepts it:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = '48';
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ANN | EVANS |
+------------+-----------+

• These statements match nothing in the allowlist, so the firewall rejects each with an error:

mysql> SELECT first_name, last_name FROM customer WHERE customer_id = 1 OR TRUE;
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> SHOW TABLES LIKE 'customer%';
ERROR 1045 (28000): Statement was blocked by Firewall
mysql> TRUNCATE TABLE mysql.slow_log;
ERROR 1045 (28000): Statement was blocked by Firewall

• If the mysql_firewall_trace system variable is enabled, the firewall also writes rejected
statements to the error log. For example:

[Note] Plugin MYSQL_FIREWALL reported:
'ACCESS DENIED for fwuser@localhost. Reason: No match in allowlist.
Statement: TRUNCATE TABLE `mysql` . `slow_log`'

These log messages may be helpful in identifying the source of attacks, should that be
necessary.

The firewall account profile now is trained for the fwuser@localhost account. When clients connect
using that account and attempt to execute statements, the profile protects MySQL against statements
not matched by the profile allowlist.

It is possible to detect intrusions by logging nonmatching statements as suspicious without denying
access. First, put the account profile in DETECTING mode:

CALL mysql.sp_set_firewall_mode('fwuser@localhost', 'DETECTING');

Then, using the account, execute a statement that does not match the account profile allowlist. In
DETECTING mode, the firewall permits the nonmatching statement to execute:

mysql> SHOW TABLES LIKE 'customer%';
+------------------------------+
| Tables_in_sakila (customer%) |
+------------------------------+
| customer |
| customer_list |
+------------------------------+

448

Using MySQL Enterprise Firewall

In addition, the firewall writes a message to the error log:

[Note] Plugin MYSQL_FIREWALL reported:
'SUSPICIOUS STATEMENT from 'fwuser@localhost'. Reason: No match in allowlist.
Statement: SHOW TABLES LIKE ?'

To disable an account profile, change its mode to OFF:

CALL mysql.sp_set_firewall_mode(user, 'OFF');

To forget all training for a profile and disable it, reset it:

CALL mysql.sp_set_firewall_mode(user, 'RESET');

The reset operation causes the firewall to delete all rules for the profile and set its mode to OFF.

Monitoring the Firewall

To assess firewall activity, examine its status variables. For example, after performing the procedure
shown earlier to train and protect the fwgrp group profile, the variables look like this:

mysql> SHOW GLOBAL STATUS LIKE 'Firewall%';
+----------------------------+-------+
| Variable_name | Value |
+----------------------------+-------+
Firewall_access_denied	3
Firewall_access_granted	4
Firewall_access_suspicious	1
Firewall_cached_entries	4
+----------------------------+-------+

The variables indicate the number of statements rejected, accepted, logged as suspicious, and
added to the cache, respectively. The Firewall_access_granted count is 4 because of the
@@version_comment statement sent by the mysql client each of the three times you connected
using the registered account, plus the SHOW TABLES statement that was not blocked in DETECTING
mode.

Migrating Account Profiles to Group Profiles

Prior to MySQL 8.0.23, MySQL Enterprise Firewall supports only account profiles that each apply to
a single account. As of MySQL 8.0.23, the firewall also supports group profiles that each can apply
to multiple accounts. A group profile enables easier administration when the same allowlist is to be
applied to multiple accounts: instead of creating one account profile per account and duplicating the
allowlist across all those profiles, create a single group profile and make the accounts members of it.
The group allowlist then applies to all the accounts.

A group profile with a single member account is logically equivalent to an account profile for that
account, so it is possible to administer the firewall using group profiles exclusively, rather than a mix
of account and group profiles. For new firewall installations, that is accomplished by uniformly creating
new profiles as group profiles and avoiding account profiles.

Due to the greater flexibility offered by group profiles, it is recommended that all new firewall profiles be
created as group profiles. Account profiles are deprecated as of MySQL 8.0.26 and subject to removal
in a future MySQL version. For upgrades from firewall installations that already contain account
profiles, MySQL Enterprise Firewall in MySQL 8.0.26 and higher includes a stored procedure named
sp_migrate_firewall_user_to_group() to help you convert account profiles to group profiles.
To use it, perform the following procedure as a user who has the FIREWALL_ADMIN privilege:

1. Run the firewall_profile_migration.sql script to install the
sp_migrate_firewall_user_to_group() stored procedure. The script is located in the
share directory of your MySQL installation.

$> mysql -u root -p < firewall_profile_migration.sql
Enter password: (enter root password here)

449

https://dev.mysql.com/doc/refman/8.0/en/show-tables.html

MySQL Enterprise Firewall Reference

2. Identify which account profiles exist by querying the Information Schema
MYSQL_FIREWALL_USERS table. For example:

mysql> SELECT USERHOST FROM INFORMATION_SCHEMA.MYSQL_FIREWALL_USERS;
+-------------------------------+
| USERHOST |
+-------------------------------+
| admin@localhost |
| local_client@localhost |
| remote_client@abc.example.com |
+-------------------------------+

3. For each account profile identified by the previous step, convert it to a group profile:

CALL mysql.sp_migrate_firewall_user_to_group('admin@localhost', 'admins');
CALL mysql.sp_migrate_firewall_user_to_group('local_client@localhost', 'local_clients');
CALL mysql.sp_migrate_firewall_user_to_group('remote_client@localhost', 'remote_clients');

In each case, the account profile must exist and must not currently be in RECORDING mode, and
the group profile must not already exist. The resulting group profile has the named account as
its single enlisted member, which is also set as the group training account. The group profile
operational mode is taken from the account profile operational mode.

4. (Optional) Remove sp_migrate_firewall_user_to_group():

DROP PROCEDURE IF EXISTS mysql.sp_migrate_firewall_user_to_group;

For additional details about sp_migrate_firewall_user_to_group(), see Firewall
Miscellaneous Stored Procedures.

6.7.4 MySQL Enterprise Firewall Reference

The following sections provide a reference to MySQL Enterprise Firewall elements:

• MySQL Enterprise Firewall Tables

• MySQL Enterprise Firewall Stored Procedures

• MySQL Enterprise Firewall Administrative Functions

• MySQL Enterprise Firewall System Variables

• MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall Tables

MySQL Enterprise Firewall maintains profile information on a per-group and per-account basis. It
uses tables in the mysql system database for persistent storage and INFORMATION_SCHEMA or
Performance Schema tables to provide views into in-memory cached data. When enabled, the firewall
bases operational decisions on the cached data.

• Firewall Group Profile Tables

• Firewall Account Profile Tables

Firewall Group Profile Tables

As of MySQL 8.0.23, MySQL Enterprise Firewall maintains group profile information using tables in the
mysql system database for persistent storage and Performance Schema tables to provide views into
in-memory cached data.

Each system and Performance Schema table is accessible only by accounts that have the SELECT
privilege for it.

450

https://dev.mysql.com/doc/refman/8.0/en/information-schema-mysql-firewall-users-table.html

MySQL Enterprise Firewall Reference

The mysql.firewall_groups table lists names and operational modes of registered firewall
group profiles. The table has the following columns (with the corresponding Performance Schema
firewall_groups table having similar but not necessarily identical columns):

• NAME

The group profile name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, and RECORDING. For details about their meanings, see Firewall Concepts.

• USERHOST

The training account for the group profile, to be used when the profile is in RECORDING mode. The
value is NULL, or a non-NULL account that has the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

The mysql.firewall_group_allowlist table lists allowlist rules of registered firewall group
profiles. The table has the following columns (with the corresponding Performance Schema
firewall_group_allowlist table having similar but not necessarily identical columns):

• NAME

The group profile name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

• ID

An integer column that is a primary key for the table.

The mysql.firewall_membership table lists the members (accounts) of registered firewall
group profiles. The table has the following columns (with the corresponding Performance Schema
firewall_membership table having similar but not necessarily identical columns):

• GROUP_ID

The group profile name.

• MEMBER_ID

The name of an account that is a member of the profile.

Firewall Account Profile Tables

MySQL Enterprise Firewall maintains account profile information using tables in the mysql system
database for persistent storage and INFORMATION_SCHEMA tables to provide views into in-memory
cached data.

Each mysql system database table is accessible only by accounts that have the SELECT privilege for
it. The INFORMATION_SCHEMA tables are accessible by anyone.

As of MySQL 8.0.26, these tables are deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

451

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-firewall-groups-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-firewall-group-allowlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-firewall-membership-table.html

MySQL Enterprise Firewall Reference

The mysql.firewall_users table lists names and operational modes of registered firewall account
profiles. The table has the following columns (with the corresponding MYSQL_FIREWALL_USERS table
having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

The mysql.firewall_whitelist table lists allowlist rules of registered firewall account profiles.
The table has the following columns (with the corresponding MYSQL_FIREWALL_WHITELIST table
having similar but not necessarily identical columns):

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

• ID

An integer column that is a primary key for the table. This column was added in MySQL 8.0.12.

MySQL Enterprise Firewall Stored Procedures

MySQL Enterprise Firewall stored procedures perform tasks such as registering profiles with the
firewall, establishing their operational mode, and managing transfer of firewall data between the cache
and persistent storage. These procedures invoke administrative functions that provide an API for lower-
level tasks.

Firewall stored procedures are created in the mysql system database. To invoke a firewall stored
procedure, either do so while mysql is the default database, or qualify the procedure name with the
database name. For example:

CALL mysql.sp_set_firewall_group_mode(group, mode);

• Firewall Group Profile Stored Procedures

• Firewall Account Profile Stored Procedures

• Firewall Miscellaneous Stored Procedures

Firewall Group Profile Stored Procedures

These stored procedures perform management operations on firewall group profiles:

• sp_firewall_group_delist(group, user)

This stored procedure removes an account from a firewall group profile.

If the call succeeds, the change in group membership is made to both the in-memory cache and
persistent storage.

Arguments:

452

https://dev.mysql.com/doc/refman/8.0/en/information-schema-mysql-firewall-users-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-mysql-firewall-whitelist-table.html

MySQL Enterprise Firewall Reference

• group: The name of the affected group profile.

• user: The account to remove, as a string in user_name@host_name format.

Example:

CALL sp_firewall_group_delist('g', 'fwuser@localhost');

This procedure was added in MySQL 8.0.23.

• sp_firewall_group_enlist(group, user)

This stored procedure adds an account to a firewall group profile. It is not necessary to register the
account itself with the firewall before adding the account to the group.

If the call succeeds, the change in group membership is made to both the in-memory cache and
persistent storage.

Arguments:

• group: The name of the affected group profile.

• user: The account to add, as a string in user_name@host_name format.

Example:

CALL sp_firewall_group_enlist('g', 'fwuser@localhost');

This procedure was added in MySQL 8.0.23.

• sp_reload_firewall_group_rules(group)

This stored procedure provides control over firewall operation for individual group profiles. The
procedure uses firewall administrative functions to reload the in-memory rules for a group profile from
the rules stored in the mysql.firewall_group_allowlist table.

Arguments:

• group: The name of the affected group profile.

Example:

CALL sp_reload_firewall_group_rules('myapp');

Warning

This procedure clears the group profile in-memory allowlist
rules before reloading them from persistent storage, and sets
the profile mode to OFF. If the profile mode was not OFF prior
to the sp_reload_firewall_group_rules() call, use
sp_set_firewall_group_mode() to restore its previous mode after
reloading the rules. For example, if the profile was in PROTECTING mode, that
is no longer true after calling sp_reload_firewall_group_rules() and
you must set it to PROTECTING again explicitly.

This procedure was added in MySQL 8.0.23.

• sp_set_firewall_group_mode(group, mode)

This stored procedure establishes the operational mode for a firewall group profile, after registering
the profile with the firewall if it was not already registered. The procedure also invokes firewall
administrative functions as necessary to transfer firewall data between the cache and persistent

453

MySQL Enterprise Firewall Reference

storage. This procedure may be called even if the mysql_firewall_mode system variable is OFF,
although setting the mode for a profile has no operational effect until the firewall is enabled.

If the profile previously existed, any recording limitation for it remains unchanged. To set or clear the
limitation, call sp_set_firewall_group_mode_and_user() instead.

Arguments:

• group: The name of the affected group profile.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF,
DETECTING, PROTECTING, and RECORDING. For details about their meanings, see Firewall
Concepts.

Example:

CALL sp_set_firewall_group_mode('myapp', 'PROTECTING');

This procedure was added in MySQL 8.0.23.

• sp_set_firewall_group_mode_and_user(group, mode, user)

This stored procedure registers a group with the firewall and establishes its operational mode, similar
to sp_set_firewall_group_mode(), but also specifies the training account to be used when the
group is in RECORDING mode.

Arguments:

• group: The name of the affected group profile.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF,
DETECTING, PROTECTING, and RECORDING. For details about their meanings, see Firewall
Concepts.

• user: The training account for the group profile, to be used when the profile is in RECORDING
mode. The value is NULL, or a non-NULL account that has the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

Example:

CALL sp_set_firewall_group_mode_and_user('myapp', 'RECORDING', 'myapp_user1@localhost');

This procedure was added in MySQL 8.0.23.

Firewall Account Profile Stored Procedures

These stored procedures perform management operations on firewall account profiles:

• sp_reload_firewall_rules(user)

This stored procedure provides control over firewall operation for individual account profiles. The
procedure uses firewall administrative functions to reload the in-memory rules for an account profile
from the rules stored in the mysql.firewall_whitelist table.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.
454

MySQL Enterprise Firewall Reference

Example:

CALL mysql.sp_reload_firewall_rules('fwuser@localhost');

Warning

This procedure clears the account profile in-memory allowlist rules before
reloading them from persistent storage, and sets the profile mode to OFF. If
the profile mode was not OFF prior to the sp_reload_firewall_rules()
call, use sp_set_firewall_mode() to restore its previous mode after
reloading the rules. For example, if the profile was in PROTECTING mode,
that is no longer true after calling sp_reload_firewall_rules() and you
must set it to PROTECTING again explicitly.

As of MySQL 8.0.26, this procedure is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

• sp_set_firewall_mode(user, mode)

This stored procedure establishes the operational mode for a firewall account profile, after registering
the profile with the firewall if it was not already registered. The procedure also invokes firewall
administrative functions as necessary to transfer firewall data between the cache and persistent
storage. This procedure may be called even if the mysql_firewall_mode system variable is OFF,
although setting the mode for a profile has no operational effect until the firewall is enabled.

Arguments:

• user: The name of the affected account profile, as a string in user_name@host_name format.

• mode: The operational mode for the profile, as a string. Permitted mode values are OFF,
DETECTING, PROTECTING, RECORDING, and RESET. For details about their meanings, see
Firewall Concepts.

Switching an account profile to any mode but RECORDING synchronizes its firewall cache data to
the mysql system database tables that provide persistent underlying storage. Switching the mode
from OFF to RECORDING reloads the allowlist from the mysql.firewall_whitelist table into the
cache.

If an account profile has an empty allowlist, its mode cannot be set to PROTECTING because the
profile would reject every statement, effectively prohibiting the account from executing statements.
In response to such a mode-setting attempt, the firewall produces a diagnostic message that is
returned as a result set rather than as an SQL error:

mysql> CALL mysql.sp_set_firewall_mode('a@b','PROTECTING');
+--+
| set_firewall_mode(arg_userhost, arg_mode) |
+--+
| ERROR: PROTECTING mode requested for a@b but the allowlist is empty. |
+--+

As of MySQL 8.0.26, this procedure is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

Firewall Miscellaneous Stored Procedures

These stored procedures perform miscellaneous firewall management operations.

• sp_migrate_firewall_user_to_group(user, group)

As of MySQL 8.0.26, account profiles are deprecated because group profiles can do anything
account profiles can do. The sp_migrate_firewall_user_to_group() stored procedure
converts a firewall account profile to a group profile with the account as its single enlisted member.

455

MySQL Enterprise Firewall Reference

Run the firewall_profile_migration.sql script to install it. The conversion procedure is
discussed in Migrating Account Profiles to Group Profiles.

This routine requires the FIREWALL_ADMIN privilege.

Arguments:

• user: The name of the account profile to convert to a group profile, as a string in
user_name@host_name format. The account profile must exist, and must not currently be in
RECORDING mode.

• group: The name of the new group profile, which must not already exist. The new group profile
has the named account as its single enlisted member, and that member is set as the group training
account. The group profile operational mode is taken from the account profile operational mode.

Example:

CALL sp_migrate_firewall_user_to_group('fwuser@localhost', 'mygroup);

This procedure was added in MySQL 8.0.26.

MySQL Enterprise Firewall Administrative Functions

MySQL Enterprise Firewall administrative functions provide an API for lower-level tasks such as
synchronizing the firewall cache with the underlying system tables.

Under normal operation, these functions are invoked by the firewall stored procedures, not directly by
users. For that reason, these function descriptions do not include details such as information about
their arguments and return types.

• Firewall Group Profile Functions

• Firewall Account Profile Functions

• Firewall Miscellaneous Functions

Firewall Group Profile Functions

These functions perform management operations on firewall group profiles:

• firewall_group_delist(group, user)

This function removes an account from a group profile. It requires the FIREWALL_ADMIN privilege.

Example:

SELECT firewall_group_delist('g', 'fwuser@localhost');

This function was added in MySQL 8.0.23.

• firewall_group_enlist(group, user)

This function adds an account to a group profile. It requires the FIREWALL_ADMIN privilege.

It is not necessary to register the account itself with the firewall before adding the account to the
group.

Example:

SELECT firewall_group_enlist('g', 'fwuser@localhost');

This function was added in MySQL 8.0.23.
456

MySQL Enterprise Firewall Reference

• read_firewall_group_allowlist(group, rule)

This aggregate function updates the recorded-statement cache for the named group profile
through a SELECT statement on the mysql.firewall_group_allowlist table. It requires the
FIREWALL_ADMIN privilege.

Example:

SELECT read_firewall_group_allowlist('my_fw_group', fgw.rule)
FROM mysql.firewall_group_allowlist AS fgw
WHERE NAME = 'my_fw_group';

This function was added in MySQL 8.0.23.

• read_firewall_groups(group, mode, user)

This aggregate function updates the firewall group profile cache through a SELECT statement on the
mysql.firewall_groups table. It requires the FIREWALL_ADMIN privilege.

Example:

SELECT read_firewall_groups('g', 'RECORDING', 'fwuser@localhost')
FROM mysql.firewall_groups;

This function was added in MySQL 8.0.23.

• set_firewall_group_mode(group, mode[, user])

This function manages the group profile cache, establishes the profile operational mode, and
optionally specifies the profile training account. It requires the FIREWALL_ADMIN privilege.

If the optional user argument is not given, any previous user setting for the profile remains
unchanged. To change the setting, call the function with a third argument.

If the optional user argument is given, it specifies the training account for the group profile, to be
used when the profile is in RECORDING mode. The value is NULL, or a non-NULL account that has
the format user_name@host_name:

• If the value is NULL, the firewall records allowlist rules for statements received from any account
that is a member of the group.

• If the value is non-NULL, the firewall records allowlist rules only for statements received from the
named account (which should be a member of the group).

Example:

SELECT set_firewall_group_mode('g', 'DETECTING');

This function was added in MySQL 8.0.23.

Firewall Account Profile Functions

These functions perform management operations on firewall account profiles:

• read_firewall_users(user, mode)

This aggregate function updates the firewall account profile cache through a SELECT statement on
the mysql.firewall_users table. It requires the FIREWALL_ADMIN privilege or the deprecated
SUPER privilege.

Example:

SELECT read_firewall_users('fwuser@localhost', 'RECORDING')
FROM mysql.firewall_users;

457

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

MySQL Enterprise Firewall Reference

As of MySQL 8.0.26, this function is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

• read_firewall_whitelist(user, rule)

This aggregate function updates the recorded-statement cache for the named account profile
through a SELECT statement on the mysql.firewall_whitelist table. It requires the
FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT read_firewall_whitelist('fwuser@localhost', fw.rule)
FROM mysql.firewall_whitelist AS fw
WHERE USERHOST = 'fwuser@localhost';

As of MySQL 8.0.26, this function is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

• set_firewall_mode(user, mode)

This function manages the account profile cache and establishes the profile operational mode. It
requires the FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT set_firewall_mode('fwuser@localhost', 'RECORDING');

As of MySQL 8.0.26, this function is deprecated and subject to removal in a future MySQL version.
See Migrating Account Profiles to Group Profiles.

Firewall Miscellaneous Functions

These functions perform miscellaneous firewall operations:

• mysql_firewall_flush_status()

This function resets several firewall status variables to 0:

• Firewall_access_denied

• Firewall_access_granted

• Firewall_access_suspicious

This function requires the FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT mysql_firewall_flush_status();

• normalize_statement(stmt)

This function normalizes an SQL statement into the digest form used for allowlist rules. It requires the
FIREWALL_ADMIN privilege or the deprecated SUPER privilege.

Example:

SELECT normalize_statement('SELECT * FROM t1 WHERE c1 > 2');

Note

The same digest functionality is available outside firewall context using the
STATEMENT_DIGEST_TEXT() SQL function.

458

https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_statement-digest-text

MySQL Enterprise Firewall Reference

MySQL Enterprise Firewall System Variables

MySQL Enterprise Firewall supports the following system variables. Use them to configure firewall
operation. These variables are unavailable unless the firewall is installed (see Section 6.7.2, “Installing
or Uninstalling MySQL Enterprise Firewall”).

• mysql_firewall_mode

Command-Line Format --mysql-firewall-mode[={OFF|ON}]

System Variable mysql_firewall_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether MySQL Enterprise Firewall is enabled (the default) or disabled.

• mysql_firewall_trace

Command-Line Format --mysql-firewall-trace[={OFF|ON}]

System Variable mysql_firewall_trace

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Whether the MySQL Enterprise Firewall trace is enabled or disabled (the default). When
mysql_firewall_trace is enabled, for PROTECTING mode, the firewall writes rejected
statements to the error log.

MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall supports the following status variables. Use them to obtain information
about firewall operational status. These variables are unavailable unless the firewall is installed (see
Section 6.7.2, “Installing or Uninstalling MySQL Enterprise Firewall”). Firewall status variables are set
to 0 whenever the MYSQL_FIREWALL plugin is installed or the server is started. Many of them are
reset to zero by the mysql_firewall_flush_status() function (see MySQL Enterprise Firewall
Administrative Functions).

• Firewall_access_denied

The number of statements rejected by MySQL Enterprise Firewall.

• Firewall_access_granted

The number of statements accepted by MySQL Enterprise Firewall.

• Firewall_access_suspicious

The number of statements logged by MySQL Enterprise Firewall as suspicious for users who are in
DETECTING mode.

• Firewall_cached_entries

459

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Enterprise Firewall Reference

The number of statements recorded by MySQL Enterprise Firewall, including duplicates.

460

Appendix A MySQL 8.0 FAQ: Security
Questions

• A.1: Where can I find documentation that addresses security issues for MySQL?

• A.2: What is the default authentication plugin in MySQL 8.0?

• A.3: Does MySQL 8.0 have native support for SSL?

• A.4: Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it?

• A.5: Does MySQL 8.0 have built-in authentication against LDAP directories?

• A.6: Does MySQL 8.0 include support for Roles Based Access Control (RBAC)?

• A.7: Does MySQL 8.0 support TLS 1.0 and 1.1?

Questions and Answers

A.1: Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 1, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific security
concerns include the following:

• Section 2.1, “Security Guidelines”.

• Section 2.3, “Making MySQL Secure Against Attackers”.

• How to Reset the Root Password.

• Section 2.5, “How to Run MySQL as a Normal User”.

• Section 2.4, “Security-Related mysqld Options and Variables”.

• Section 2.6, “Security Considerations for LOAD DATA LOCAL”.

• Chapter 3, Postinstallation Setup and Testing.

• Chapter 5, Using Encrypted Connections.

• Loadable Function Security Precautions.

There is also the Secure Deployment Guide, which provides procedures for deploying a generic binary
distribution of MySQL Enterprise Edition Server with features for managing the security of your MySQL
installation.

A.2: What is the default authentication plugin in MySQL 8.0?

The default authentication plugin in MySQL 8.0 is caching_sha2_password. For information about
this plugin, see Section 6.1.2, “Caching SHA-2 Pluggable Authentication”.

The caching_sha2_password plugin provides more secure password encryption than the
mysql_native_password plugin (the default plugin in previous MySQL series). For information
about the implications of this change of default plugin for server operation and compatibility of the
server with clients and connectors, see caching_sha2_password as the Preferred Authentication
Plugin.

For general information about pluggable authentication and other available authentication plugins, see
Section 4.17, “Pluggable Authentication”, and Section 6.1, “Authentication Plugins”.

461

https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/adding-loadable-function.html#loadable-function-security
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

A.3: Does MySQL 8.0 have native support for SSL?

Most 8.0 binaries have support for SSL connections between the client and server. See Chapter 5,
Using Encrypted Connections.

You can also tunnel a connection using SSH, if (for example) the client application does not support
SSL connections. For an example, see Section 5.4, “Connecting to MySQL Remotely from Windows
with SSH”.

A.4: Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable
it?

Most 8.0 binaries have SSL enabled for client/server connections that are secured, authenticated, or
both. See Chapter 5, Using Encrypted Connections.

A.5: Does MySQL 8.0 have built-in authentication against LDAP directories?

The Enterprise edition includes a PAM Authentication Plugin that supports authentication against an
LDAP directory.

A.6: Does MySQL 8.0 include support for Roles Based Access Control (RBAC)?

Not at this time.

A.7: Does MySQL 8.0 support TLS 1.0 and 1.1?

Support for the TLSv1 and TLSv1.1 connection protocols is removed as of MySQL 8.0.28. The
protocols were deprecated from MySQL 8.0.26. For the consequences of that removal, see Removal of
Support for the TLSv1 and TLSv1.1 Protocols.

Support for TLS versions 1.0 and 1.1 is removed because those protocol versions are old, released in
1996 and 2006, respectively. The algorithms used are weak and outdated.

Unless you are using very old versions of MySQL Server or connectors, you are unlikely to have
connections using TLS 1.0 or 1.1. MySQL connectors and clients select the highest TLS version
available by default.

When was support for TLS 1.2 added to MySQL Server? MySQL Community Server added TLS 1.2
support when the community server switched to OpenSSL for MySQL 5.6, 5.7, and 8.0 in 2019. For
MySQL Enterprise Edition, OpenSSL added TLS 1.2 support in 2015, in MySQL Server 5.7.10.

How can one view which TLS versions are in active use? For MySQL 5.7 or 8.0, review whether TLS
1.0 or 1.1 is in use by running this query:

SELECT
 `session_ssl_status`.`thread_id`, `session_ssl_status`.`ssl_version`,
 `session_ssl_status`.`ssl_cipher`, `session_ssl_status`.`ssl_sessions_reused`
FROM `sys`.`session_ssl_status`
WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2');

If a thread using TLSv1.0 or TLSv1.1 is listed, you can determine where this connection is coming from
by running this query:

SELECT thd_id,conn_id, user, db, current_statement, program_name
FROM sys.processlist
WHERE thd_id IN (
 SELECT `session_ssl_status`.`thread_id`
 FROM `sys`.`session_ssl_status`
 WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2')
);

Alternatively, you can run this query:

462

SELECT *
FROM sys.session
WHERE thd_id IN (
 SELECT `session_ssl_status`.`thread_id`
 FROM `sys`.`session_ssl_status`
 WHERE ssl_version NOT IN ('TLSv1.3','TLSv1.2')
);

These queries provide details needed to determine which application is not supporting TLS 1.2 or 1.3,
and target upgrades for those.

Are there other options for testing for TLS 1.0 or 1.1? Yes, you can disable those versions prior to
upgrading your server to a newer version. Explicitly specify which version to use, either in mysql.cnf
(or mysql.ini) or by using SET PERSIST, for example: --tls-version=TLSv12.

Do all MySQL Connectors (5.7 and 8.0) support TLS 1.2 and higher? What about C and C++
applications using libmysql? For C and C++ applications using the community libmysqlclient
library, use an OpenSSL-based library (that is, do not use YaSSL). Usage of OpenSSL was unified
in 2018 (in MySQL 8.0.4 and 5.7.28, respectively). The same applies for Connector/ODBC and
Connector/C++. To determine what library dependencies are used, run the following commands to see
if OpenSSL is listed. On Linux, use this command:

$> sudo ldd usr/local/mysql/lib/libmysqlclient.a | grep -i openssl

On MacOS, use this command:

$> sudo otool -l /usr/local/mysql/lib/libmysqlclient.a | grep -i openssl

What about Connector/J? Java 8 moved to TLS 1.2 as the default in January 2014; TLS 1.2 was
supported prior to that, so unless you are running a very old version of Connector/J, you have TLS 1.2
support.

What about Connector/NET? For .NET applications, Microsoft stopped support of TLS 1.0 and 1.1 at
the end of 2020. Support for TLS 1.2 was added in 2012. You would need to have a very old version of
Connector/NET not to have support for TLS 1.2.

What about Connector/Python? It depends on what version of Python you are running. The SSL
module in Python 2.6 supports TLS up to version 1.0 only. In that case, you will need to upgrade to
Python 2.7.9 or higher, or Python 3.x, both of which support newer versions of TLS. For details, see
Connector/Python Versions and https://www.calazan.com/how-to-check-if-your-python-app-supports-
tls-12/.

What about Connector/Node.js or Node MySQL2? TLS comes with nodejs, and all supported
versions of Node.js use OpenSSL v1.1.1 (as of April 2020), which again supports TLS 1.2 and higher.

What about PHP? These versions of PHP support TLS 1.2 and higher.

463

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/connector-python/en/connector-python-versions.html
https://www.calazan.com/how-to-check-if-your-python-app-supports-tls-12/
https://www.calazan.com/how-to-check-if-your-python-app-supports-tls-12/
https://www.php.net/supported-versions.php

464

	Security in MySQL
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Security
	Chapter 2 General Security Issues
	2.1 Security Guidelines
	2.2 Keeping Passwords Secure
	2.2.1 End-User Guidelines for Password Security
	2.2.2 Administrator Guidelines for Password Security
	2.2.3 Passwords and Logging

	2.3 Making MySQL Secure Against Attackers
	2.4 Security-Related mysqld Options and Variables
	2.5 How to Run MySQL as a Normal User
	2.6 Security Considerations for LOAD DATA LOCAL
	2.7 Client Programming Security Guidelines

	Chapter 3 Postinstallation Setup and Testing
	3.1 Initializing the Data Directory
	3.2 Starting the Server
	3.2.1 Troubleshooting Problems Starting the MySQL Server

	3.3 Testing the Server
	3.4 Securing the Initial MySQL Account
	3.5 Starting and Stopping MySQL Automatically

	Chapter 4 Access Control and Account Management
	4.1 Account User Names and Passwords
	4.2 Privileges Provided by MySQL
	4.3 Grant Tables
	4.4 Specifying Account Names
	4.5 Specifying Role Names
	4.6 Access Control, Stage 1: Connection Verification
	4.7 Access Control, Stage 2: Request Verification
	4.8 Adding Accounts, Assigning Privileges, and Dropping Accounts
	4.9 Reserved Accounts
	4.10 Using Roles
	4.11 Account Categories
	4.12 Privilege Restriction Using Partial Revokes
	4.13 When Privilege Changes Take Effect
	4.14 Assigning Account Passwords
	4.15 Password Management
	4.16 Server Handling of Expired Passwords
	4.17 Pluggable Authentication
	4.18 Multifactor Authentication
	4.19 Proxy Users
	4.20 Account Locking
	4.21 Setting Account Resource Limits
	4.22 Troubleshooting Problems Connecting to MySQL
	4.23 SQL-Based Account Activity Auditing

	Chapter 5 Using Encrypted Connections
	5.1 Configuring MySQL to Use Encrypted Connections
	5.2 Encrypted Connection TLS Protocols and Ciphers
	5.3 Creating SSL and RSA Certificates and Keys
	5.3.1 Creating SSL and RSA Certificates and Keys using MySQL
	5.3.2 Creating SSL Certificates and Keys Using openssl
	5.3.3 Creating RSA Keys Using openssl

	5.4 Connecting to MySQL Remotely from Windows with SSH
	5.5 Reusing SSL Sessions

	Chapter 6 Security Components and Plugins
	6.1 Authentication Plugins
	6.1.1 Native Pluggable Authentication
	6.1.2 Caching SHA-2 Pluggable Authentication
	6.1.3 SHA-256 Pluggable Authentication
	6.1.4 Client-Side Cleartext Pluggable Authentication
	6.1.5 PAM Pluggable Authentication
	6.1.6 Windows Pluggable Authentication
	6.1.7 LDAP Pluggable Authentication
	6.1.8 Kerberos Pluggable Authentication
	6.1.9 No-Login Pluggable Authentication
	6.1.10 Socket Peer-Credential Pluggable Authentication
	6.1.11 FIDO Pluggable Authentication
	6.1.12 Test Pluggable Authentication
	6.1.13 Pluggable Authentication System Variables

	6.2 The Connection-Control Plugins
	6.2.1 Connection-Control Plugin Installation
	6.2.2 Connection-Control System and Status Variables

	6.3 The Password Validation Component
	6.3.1 Password Validation Component Installation and Uninstallation
	6.3.2 Password Validation Options and Variables
	6.3.3 Transitioning to the Password Validation Component

	6.4 The MySQL Keyring
	6.4.1 Keyring Components Versus Keyring Plugins
	6.4.2 Keyring Component Installation
	6.4.3 Keyring Plugin Installation
	6.4.4 Using the component_keyring_file File-Based Keyring Component
	6.4.5 Using the component_keyring_encrypted_file Encrypted File-Based Keyring Component
	6.4.6 Using the keyring_file File-Based Keyring Plugin
	6.4.7 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin
	6.4.8 Using the keyring_okv KMIP Plugin
	6.4.9 Using the keyring_aws Amazon Web Services Keyring Plugin
	6.4.10 Using the HashiCorp Vault Keyring Plugin
	6.4.11 Using the Oracle Cloud Infrastructure Vault Keyring Component
	6.4.12 Using the Oracle Cloud Infrastructure Vault Keyring Plugin
	6.4.13 Supported Keyring Key Types and Lengths
	6.4.14 Migrating Keys Between Keyring Keystores
	6.4.15 General-Purpose Keyring Key-Management Functions
	6.4.16 Plugin-Specific Keyring Key-Management Functions
	6.4.17 Keyring Metadata
	6.4.18 Keyring Command Options
	6.4.19 Keyring System Variables

	6.5 MySQL Enterprise Audit
	6.5.1 Elements of MySQL Enterprise Audit
	6.5.2 Installing or Uninstalling MySQL Enterprise Audit
	6.5.3 MySQL Enterprise Audit Security Considerations
	6.5.4 Audit Log File Formats
	6.5.5 Configuring Audit Logging Characteristics
	6.5.6 Reading Audit Log Files
	6.5.7 Audit Log Filtering
	6.5.8 Writing Audit Log Filter Definitions
	6.5.9 Disabling Audit Logging
	6.5.10 Legacy Mode Audit Log Filtering
	6.5.11 Audit Log Reference
	6.5.12 Audit Log Restrictions

	6.6 The Audit Message Component
	6.7 MySQL Enterprise Firewall
	6.7.1 Elements of MySQL Enterprise Firewall
	6.7.2 Installing or Uninstalling MySQL Enterprise Firewall
	6.7.3 Using MySQL Enterprise Firewall
	6.7.4 MySQL Enterprise Firewall Reference

	Appendix A MySQL 8.0 FAQ: Security

