Security in MySQL

Abstract
This is the MySQL Security Guide extract from the MySQL 5.7 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2025-07-02 (revision: 82696)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
ST U PP P PP PPPPTRRTPPPPIN 1
2 GeNEral SECUNLY ISSUESoouiiiiiii ettt ettt et et e et e et e nb e e enanns 3
2.1 SECUILY GUIARINES ...ttt ettt e et e e e e e e e 3

2.2 Keeping PaASSWOITUS SECUIEccuuuuieiiiii ettt e ettt e et e ettt e e e e et reeeeta e e eeneaeeeens 5
2.2.1 End-User Guidelines for Password SECUILYcccuuuieiiiiiieiiiiiieeiiie e 5

2.2.2 Administrator Guidelines for Password SECUILYccoeuuiieiiiiiiieeiiiieeee e 6

2.2.3 PasSWOrdS and LOGGINGcceuuueientneaeiiiieeteti ettt et eei e e e e e et e e e eei e e nni e enaan s 7

2.2.4 Password Hashing in MYSQL ..o 8

2.3 Making MySQL Secure Against AtACKEISuuiiiiiiiieiii e 13

2.4 Security-Related mysqgld Options and Variables ... 15

2.5 How to Run MySQL as @ NOIMAI USETiiiiiiiiiiiiiiieeeei ettt 16

2.6 Security Considerations for LOAD DATA LOCAL .. .cooiiiiiiii e 16

2.7 Client Programming Security GUIAEIINESuiiiiiiiieiiii e 19

3 Postinstallation Setup and TESHNG iieruiieiiit ettt e e e e 23
3.1 Initializing the Data DIir€CIOIYciiiiieiiii ettt et e e e e eaeas 23

3.2 SHAIMING T8 SEIVET ...ttt ettt e e e e s 29
3.2.1 Troubleshooting Problems Starting the MySQL Servercccooovviiiiiiiiiiiieiiiieeeeeenn 30

3.3 TESHNG T SEIVET . .oeiieiiii ettt ettt e et e e et e e e e e e eeees 32

3.4 Securing the Initial MYSQL ACCOUNEuiiiiiie it 34

3.5 Starting and Stopping MySQL AUtOMALICAIlYcoouuiiiiiiiieii e 36

4 Access Control and AcCOUNt MANAGEIMENTiiiiiiieeiii ettt et e e 39
4.1 Account User Names and PaSSWOITSuiiiiiuuiiiiiiiieeiiii e et e et e et eeen e e eene e eeens 40

4.2 Privileges Provided DY MYSOQL ...ttt ettt 42

4.3 Grant TaDIES ... e 49

4.4 SPecifying ACCOUNT NAIMES ...ttt ettt e e e e e e s 56

4.5 Access Control, Stage 1: Connection VerifiCationccouuuiiiiiiiiiieeiiiiee e 58

4.6 Access Control, Stage 2: Request VerifiCationc.ooveiiiiiiiiiiiiie e 61

4.7 Adding Accounts, Assigning Privileges, and Dropping ACCOUNESc..uiveiiiiiieiiiiiieeeiiieeens 63

4.8 RESEIVEA ACCOUNTSiiiiti ettt ettt ettt e e ettt et e et et e et et et e et et et e et r et e et e e e enneaeeennans 66

4.9 When Privilege Changes Take EffECtcco.uiiiiiiiiii e 66

4.10 ASSIgNING ACCOUNE PASSWOITUSuuiiiiiiieiiiiiie ettt ettt e et e e e e 67

4.11 PasSWOrd Man@QEMIENTceeiiiieeiii ettt et e et e e et et e et e e e eete e e e eeta e e eeatnaaeeens 68
4.12 Server Handling of EXPired PasSWOITSccouuuiiiiiiiiiiiii e 71

4.13 Pluggable AUTNENTICALIONiiieie e e e s 73
.14 PrOXY USEIS ...ttt e et ettt et e 76
4.15 ACCOUNT LOCKING ...eeeettieeeeit ettt ettt ettt e et e e e et e e e e e e e na s 84

4.16 Setting ACCOUNt RESOUICE LIMITScoovtiiiiiiiii et 84

4.17 Troubleshooting Problems Connecting t0 MYSQLcccuuuiiiiiiiiiiiiiiie e 87

4.18 SQL-Based Account ACLIVItY AUITINGuiiiiiiiiieiiii e e 91

5 UsSiNg ENCrypted CONNECHIONSuiiiiieieiiii ettt ettt et e et e et et a e et et e e e e eba s 93
5.1 Configuring MySQL to Use Encrypted CONNECHIONSoeeiiiiiiiiiiiiieeiiiie e 95

5.2 Encrypted Connection TLS Protocols and Cipherscoooiiiiiiiiiiic e 100

5.3 Creating SSL and RSA Certificates and KeYSiiiiiiiiiiiiiiiiiieiiii e 107
5.3.1 Creating SSL and RSA Certificates and Keys using MySQLccccooveiiiiiiiiiiiinnenens 107

5.3.2 Creating SSL Certificates and Keys USIiNg OPENSS|coovviviiiiiiiiiniiiiiieceii e 110

5.3.3 Creating RSA Keys USING OPENSSIiiiiiiiiiiiii e 115

5.4 SSL Library-Dependent Capabilitieso 116

5.5 Connecting to MySQL Remotely from Windows with SSHccccoooiiiiiiiiiiii, 117

B SECUNLY PIUGINS ...ttt ettt et e et e e e et eeeaa s 119
6.1 AUthentication PIUGINSoi i et et e e e e et e e et e e e e eanns 120

Security in MySQL

6.1.1 Native Pluggable AUthentiCationcocouiiiiiiiii e 120
6.1.2 Old Native Pluggable Authenticationccooiiiiiiiii i, 121
6.1.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin 122
6.1.4 Caching SHA-2 Pluggable Authenticationccooeviiiiiiiiiiii e, 126
6.1.5 SHA-256 Pluggable AUthentiCationccociuiiiiiieiii e 131
6.1.6 Client-Side Cleartext Pluggable Authenticationcccooeviiiiiiiiiiinie e, 135
6.1.7 PAM Pluggable AUthentiCatioNnciiiiiiiiii e 136
6.1.8 Windows Pluggable AUthentiCationccociuiiiiii i e 147
6.1.9 LDAP Pluggable AUthentiCationcoeiuiiiiiiiieii e e e 152
6.1.10 No-Login Pluggable AUthentiCationccoeiuieiiiiiiiii e e e 166
6.1.11 Socket Peer-Credential Pluggable Authenticationcccooeviiiiiiiiiii e, 169
6.1.12 Test Pluggable AUthentiCationcc.oeeiiiiiiiii e e 171
6.1.13 Pluggable Authentication System Variablescccooooiiiiiiiiiiie e 173
6.2 Connection CoNtrol PIUGINSciuuiiiiic e e e e e e e eeaaas 190
6.2.1 Connection Control Plugin Installationccooviiiiiiiii e 190
6.2.2 Connection Control Plugin System and Status Variablescc.cccoeveviiiiiiinevinennnn. 194
6.3 The Password Validation PIUGINoooiiiiiiii e e e e e e e e e e e 196
6.3.1 Password Validation Plugin Installationccooeiiiiiiiiiicii e, 198
6.3.2 Password Validation Plugin Options and Variablesccccccooviiiiiiiin i, 199
6.4 The MYSQL KEYIING .uuiiiiiiieiiee ettt e e e e e e e e e e et e e e e e et e e et e e aaeeenes 204
6.4.1 Keyring Plugin INStallationiiiiiiiii e e e 205
6.4.2 Using the keyring_file File-Based Keyring PIUgincoooiiiiiiiiiiinc e 207
6.4.3 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin 208
6.4.4 Using the keyring_ okv KMIP PIUGQINo.uoiiiiiiiii e e 209
6.4.5 Using the keyring_aws Amazon Web Services Keyring Plugincccocociiveinneennnn. 214
6.4.6 Supported Keyring Key Types and LeENGLhScooviiiiiiiiiii e 218
6.4.7 Migrating Keys Between Keyring KEYSIOreScovuuiiviiiiiiiiieii e ee e 219
6.4.8 General-Purpose Keyring Key-Management FUNCLONScccoveviiieiiiieiiiniecieeeenn, 222
6.4.9 Plugin-Specific Keyring Key-Management FUNCLIONScccocvviiviiiieiiiieiiiieceeeeenn, 230
L O =Y 1T Y11 = o = = S 231
6.4.11 Keyring Command OPLiONSuiiiuiieiiiieiiieeiiee e e e e e e e e e et e e eeaes 231
6.4.12 Keyring System Variablesooiiiiiiii e 233
6.5 MySQL ENterpriS@ AUtuuiiii i e e e e e e e e et e e e e e e eaans 240
6.5.1 Elements of MySQL Enterprise AUtcouuiiiiiiiiiiiiii e 241
6.5.2 Installing or Uninstalling MySQL Enterprise Auditcccoeeiiiieiiiiiiiii e 241
6.5.3 MySQL Enterprise Audit Security Considerationsccoveevieeiiiieriiieeiin e 244
6.5.4 Audit LOg File FOrMALSciiiiiiiiec e e 244
6.5.5 Configuring Audit Logging CharacteriStiCsoeeiuiiiiiiiiiii e 264
6.5.6 Reading Audit LOQ FilESoiiiiiiiii e e 270
6.5.7 Audit LOG FIltEriNGuiiii i e 274
6.5.8 Writing Audit Log Filter Definitionscciiiiiiiiiiii e 277
6.5.9 Disabling AUt LOGGING . cvuuiiiiiii e e e e e e e e e e e e eaen 291
6.5.10 Legacy Mode Audit LOg FIlLEING ...ccvuiiii e e e 291
6.5.11 Audit LOG REFEIENCEuuciiiici e 294
6.5.12 Audit LOG RESIICHONScovtiiii e e e e e e e 311
6.6 MySQL ENterprise FIr@Walliiiiiiiiiiii e e e e e e e 311
6.6.1 Elements of MySQL Enterprise Firewallcccooiiiiiiiiiiiiiiii e 312
6.6.2 Installing or Uninstalling MySQL Enterprise Firewallc.cocoiviiiiiiiiiiiineee, 313
6.6.3 Using MySQL Enterprise Firewallccooiiiiiiiiiii e 316
6.6.4 MySQL Enterprise Firewall REfEIENCEccoviiiiiiiii e 323

A MYSQL 5.7 FAQ: SECUMLY «..vvveveeeeeeeeeeeeeeeeeeeeee et et eee et et e e et et et s e e eee et e ee e eeee e er e eee e en e, 329

Preface and Legal Notices

This is the MySQL Security Guide extract from the MySQL 5.7 Reference Manual.

Licensing information—MySQL 5.7. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.7, see the MySQL 5.7 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release

of MySQL 5.7, see the MySQL 5.7 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Licensing information—MySQL NDB Cluster 7.5. This product may include third-party software, used
under license. If you are using a Commercial release of NDB Cluster 7.5, see the MySQL NDB Cluster

7.5 Commercial Release License Information User Manual for licensing information relating to third-party
software that may be included in this Commercial release. If you are using a Community release of NDB
Cluster 7.5, see the MySQL NDB Cluster 7.5 Community Release License Information User Manual for
licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 7.6. If you are using a Commercial release of MySQL
NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Commercial Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Commercial release. If you are using a Community release of MySQL NDB Cluster 7.6,
see the MySQL NDB Cluster 7.6 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and

https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-gpl-en.pdf

Documentation Accessibility

agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at

Vi

Access to Oracle Support for Accessibility

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=accé& d=t r s if you are hearing impaired.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

viii

Chapter 1 Security

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

General factors that affect security. These include choosing good passwords, not granting unnecessary
privileges to users, ensuring application security by preventing SQL injections and data corruption, and
others. See Chapter 2, General Security Issues.

Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized parties.
For more information, see Chapter 3, Postinstallation Setup and Testing.

Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For more
information, see Chapter 4, Access Control and Account Management.

The features offered by security-related plugins. See Chapter 6, Security Plugins.

Network security of MySQL and your system. The security is related to the grants for individual users,
but you may also wish to restrict MySQL so that it is available only locally on the MySQL server host, or
to a limited set of other hosts.

Ensure that you have adequate and appropriate backups of your database files, configuration and log
files. Also be sure that you have a recovery solution in place and test that you are able to successfully
recover the information from your backups. See Backup and Recovery.

Note

Several topics in this chapter are also addressed in the Secure Deployment Guide,
which provides procedures for deploying a generic binary distribution of MySQL
Enterprise Edition Server with features for managing the security of your MySQL
installation.

https://dev.mysql.com/doc/refman/5.7/en/backup-and-recovery.html
https://dev.mysql.com/doc/mysql-secure-deployment-guide/5.7/en/

Chapter 2 General Security Issues

Table of Contents

2.1 SECUINLY GUILRINES ...ttt et e et e et e e et et e e e e et e e e e eba s 3
2.2 Keeping PaSSWOITUS SECUIEccuuuiiiiit ettt ettt ettt ettt e et et et e et e e e eabareeeaaa e eennes 5
2.2.1 End-User Guidelines for PAsSWOrd SECUIILYc.uuieiiiiiieiiiieeieis et 5
2.2.2 Administrator Guidelines for PasSWord SECUIILYiieiiiiiiiiiiiiiieeiii e 6
2.2.3 PasSWOrdS and LOGGINGccuuuueiertiaiiiie ettt ettt e et e et e e et e et et e e e b e e e e 7
2.2.4 Password Hashing in MYSQL ..ot e 8
2.3 Making MySQL Secure AgainSt ATtACKEISiiiiiiiiii e 13
2.4 Security-Related mysqgld Options and Variablesccooiiiiiiii e 15
2.5 How to RUN MySQL @S @ NOIMMAI USEIiiiiiiiiiiiiiie ettt 16
2.6 Security Considerations for LOAD DATA LOCAL ..ottt 16
2.7 Client Programming Security GUIAEINESu i e 19

This section describes general security issues to be aware of and what you can do to make your MySQL
installation more secure against attack or misuse. For information specifically about the access control
system that MySQL uses for setting up user accounts and checking database access, see Chapter 3,
Postinstallation Setup and Testing.

For answers to some questions that are often asked about MySQL Server security issues, see Appendix A,
MySQL 5.7 FAQ: Security.

2.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most
common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the MySQL
server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of service. We
do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL at
all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

« Do not ever give anyone (except MySQL r oot accounts) access to the user table in the nysq|l
system database! This is critical.

» Learn how the MySQL access privilege system works (see Chapter 4, Access Control and Account
Management). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant more
privileges than necessary. Never grant privileges to all hosts.

Checklist:

e« Trynmysql -u root. If you are able to connect successfully to the server without being asked for a
password, anyone can connect to your MySQL server as the MySQL r oot user with full privileges!

https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html

Security Guidelines

Review the MySQL installation instructions, paying particular attention to the information about setting
ar oot password. See Section 3.4, “Securing the Initial MySQL Account”.

* Use the SHON GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

Do not store cleartext passwords in your database. If your computer becomes compromised, the intruder
can take the full list of passwords and use them. Instead, use SHA2() or some other one-way hashing
function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

Assume that all passwords will be subject to automated cracking attempts using lists of known
passwords, and also to targeted guessing using publicly available information about you, such as social
media posts. Do not choose passwords that consist of easily cracked or guessed items such as a
dictionary word, proper name, sports team name, acronym, or commonly known phrase, particularly if
they are relevant to you. The use of upper case letters, number substitutions and additions, and special
characters does not help if these are used in predictable ways. Also do not choose any password you
have seen used as an example anywhere, or a variation on it, even if it was presented as an example of
a strong password.

Instead, choose passwords that are as long and as unpredictable as possible. That does not mean

the combination needs to be a random string of characters that is difficult to remember and reproduce,
although this is a good approach if you have, for example, password manager software that can
generate and fill such passwords and store them securely. A passphrase containing multiple words

is easy to create, remember, and reproduce, and is much more secure than a typical user-selected
password consisting of a single modified word or a predictable sequence of characters. To create a
secure passphrase, ensure that the words and other items in it are not a known phrase or quotation, do
not occur in a predictable order, and preferably have no previous relationship to each other at all.

Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

e Try to scan your ports from the Internet using a tool such as nnap. MySQL uses port 3306 by default.
This port should not be accessible from untrusted hosts. As a simple way to check whether your
MySQL port is open, try the following command from some remote machine, where ser ver _host is
the host name or IP address of the host on which your MySQL server runs:

$> tel net server_host 3306

If t el net hangs or the connection is refused, the port is blocked, which is how you want it to be. If
you get a connection and some garbage characters, the port is open, and should be closed on your
firewall or router, unless you really have a good reason to keep it open.

Applications that access MySQL should not trust any data entered by users, and should be written using
proper defensive programming techniques. See Section 2.7, “Client Programming Security Guidelines”.

Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an encrypted
protocol such as SSL or SSH. MySQL supports internal SSL connections. Another technique is to use
SSH port-forwarding to create an encrypted (and compressed) tunnel for the communication.

Learn to use the t cpdunp and st ri ngs utilities. In most cases, you can check whether MySQL data
streams are unencrypted by issuing a command like the following:

https://dev.mysql.com/doc/refman/5.7/en/show-grants.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_sha2

Keeping Passwords Secure

$> tcpdunp -1 -i ethO -w - src or dst port 3306 | strings
This works under Linux and should work with small modifications under other systems.
Warning

If you do not see cleartext data, this does not always mean that the information
actually is encrypted. If you need high security, consult with a security expert.

2.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that enable
end users and administrators to keep these passwords secure and avoid exposing them. There is also a
discussion of how MySQL uses password hashing internally and of a plugin that you can use to enforce
stricter passwords.

2.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your password
in a way that exposes it to discovery by other users. The methods you can use to specify your password
when you run client programs are listed here, along with an assessment of the risks of each method.

In short, the safest methods are to have the client program prompt for the password or to specify the
password in a properly protected option file.

e Usethe nysql config_editor utility, which enables you to store authentication credentials in an
encrypted login path file named . nyl ogi n. cnf . The file can be read later by MySQL client programs to
obtain authentication credentials for connecting to MySQL Server. See mysql_config_editor — MySQL
Configuration Utility.

* Usea--password=password or - ppasswor d option on the command line. For example:

$> nysql -u francis -pfrank db_nane
Warning

This is convenient but insecure. On some systems, your password becomes
visible to system status programs such as ps that may be invoked by other users
to display command lines. MySQL clients typically overwrite the command-line
password argument with zeros during their initialization sequence. However,
there is still a brief interval during which the value is visible. Also, on some
systems this overwriting strategy is ineffective and the password remains visible
to ps. (SystemV Unix systems and perhaps others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your terminal
window, the password remains visible as long as the command is running, even if the command has
scrolled out of view in the window content area.

» Use the - - passwor d or - p option on the command line with no password value specified. In this case,
the client program solicits the password interactively:

$> nysql -u francis -p db_nane
Ent er password: *******x

The * characters indicate where you enter your password. The password is not displayed as you enter it.

https://dev.mysql.com/doc/refman/5.7/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password

Administrator Guidelines for Password Security

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs that
you run interactively. If you want to invoke a client from a script that runs noninteractively, there is no
opportunity to enter the password from the keyboard. On some systems, you may even find that the first
line of your script is read and interpreted (incorrectly) as your password.

 Store your password in an option file. For example, on Unix, you can list your password in the [cl i ent]
section of the . my. cnf file in your home directory:

[client]
passwor d=passwor d

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this, set
the file access mode to 400 or 600. For example:

$> chnod 600 . my. cnf

To name from the command line a specific option file containing the password, use the - - def aul t s-
file=file_name option, where fi | e_nane is the full path name to the file. For example:

$> nysql --defaults-file=/hone/francis/nysql-opts
Using Option Files, discusses option files in more detail.

» Store your password in the MYSQL_PWD environment variable. See Environment Variables.

This method of specifying your MySQL password must be considered extremely insecure and should

not be used. Some versions of ps include an option to display the environment of running processes.

On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs ps.
Even on systems without such a version of ps, it is unwise to assume that there are no other methods by
which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see mysql Client
Logging). By default, this file is named . mysql _hi st ory and is created in your home directory.
Passwords can be written as plain text in SQL statements such as CREATE USER and ALTER USER, so if
you use these statements, they are logged in the history file. To keep this file safe, use a restrictive access
mode, the same way as described earlier for the . my. cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands are saved

contains MySQL passwords entered on the command line. For example, bash uses ~/ . bash_hi st ory.
Any such file should have a restrictive access mode.

2.2.2 Administrator Guidelines for Password Security
Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the nysql . user system table. Access to this table should
never be granted to any nonadministrative accounts.

Account passwords can be expired so that users must reset them. See Section 4.11, “Password
Management”, and Section 4.12, “Server Handling of Expired Passwords”.

The val i dat e_passwor d plugin can be used to enforce a policy on acceptable password. See
Section 6.3, “The Password Validation Plugin”.

https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/environment-variables.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-logging.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-logging.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html

Passwords and Logging

A user who has access to modify the plugin directory (the value of the pl ugi n_di r system variable) or
the my. cnf file that specifies the plugin directory location can replace plugins and modify the capabilities
provided by plugins, including authentication plugins.

Files such as log files to which passwords might be written should be protected. See Section 2.2.3,
“Passwords and Logging”.

2.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, SET
PASSWORD, and statements that invoke the PASSWORD() function. If such statements are logged by the
MySQL server as written, passwords in them become visible to anyone with access to the logs.

Statement logging avoids writing passwords as cleartext for the following statements:

CREATE USER ... |DENTIFIED BY ...
ALTER USER ... |DENTIFIED BY ...

GRANT ... |DENTIFIED BY ...

SET PASSWORD . ..

SLAVE START ... PASSWORD = ...

CREATE SERVER ... OPTIONS(... PASSWORD ...)
ALTER SERVER ... OPTIONS(... PASSWORD ...)

Passwords in those statements are rewritten to not appear literally in statement text written to the general
query log, slow query log, and binary log. Rewriting does not apply to other statements. In particular,

| NSERT or UPDATE statements for the nysql . user system table that refer to literal passwords are logged
as is, so you should avoid such statements. (Direct modification of grant tables is discouraged, anyway.)

For the general query log, password rewriting can be suppressed by starting the server with the - - | og-
r aw option. For security reasons, this option is not recommended for production use. For diagnostic
purposes, it may be useful to see the exact text of statements as received by the server.

Contents of the audit log file produced by the audit log plugin are not encrypted. For security reasons, this
file should be written to a directory accessible only to the MySQL server and users with a legitimate reason
to view the log. See Section 6.5.3, “MySQL Enterprise Audit Security Considerations”.

Statements received by the server may be rewritten if a query rewrite plugin is installed (see Query Rewrite
Plugins). In this case, the - - | og- r aw option affects statement logging as follows:

e Without - - | og- r aw, the server logs the statement returned by the query rewrite plugin. This may differ
from the statement as received.

* With - - | og- r aw, the server logs the original statement as received.

An implication of password rewriting is that statements that cannot be parsed (due, for example, to syntax
errors) are not written to the general query log because they cannot be known to be password free. Use
cases that require logging of all statements including those with errors should use the - - | og- r aw option,
bearing in mind that this also bypasses password rewriting.

Password rewriting occurs only when plain text passwords are expected. For statements with syntax that
expect a password hash value, no rewriting occurs. If a plain text password is supplied erroneously for
such syntax, the password is logged as given, without rewriting. For example, the following statement is
logged as shown because a password hash value is expected:

CREATE USER 'userl' @I ocal host' | DENTI FI ED BY PASSWORD ' not - so-secret "' ;

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator. If the server logs to tables in the mysql database, grant access to
those tables only to the database administrator.

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/extending-mysql/5.7/en/plugin-types.html#query-rewrite-plugin-type
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_log-raw

Password Hashing in MySQL

Replicas store the password for the replication source in the source info repository, which can be either a
file or a table (see Relay Log and Replication Metadata Repositories). Ensure that the repository can be
accessed only by the database administrator. An alternative to storing the password in a file is to use the
START SLAVE statement to specify credentials for connecting to the source.

Use a restricted access mode to protect database backups that include log tables or log files containing
passwords.

2.2.4 Password Hashing in MySQL
Note

The information in this section applies fully only before MySQL 5.7.5, and only for
accounts that use the nysql nati ve_password ornysql _ol d_password
authentication plugins. Support for pre-4.1 password hashes was removed in
MySQL 5.7.5. This includes removal of the nysql _ol d_passwor d authentication
plugin and the OLD_PASSWORD() function. Also, secur e_aut h cannot be
disabled, and ol d_passwor ds cannot be set to 1.

As of MySQL 5.7.5, only the information about 4.1 password hashes and the
nysqgl _native_ passwor d authentication plugin remains relevant.

MySQL lists user accounts in the user table of the nysql database. Each MySQL account can be
assigned a password, although the user table does not store the cleartext version of the password, but a
hash value computed from it.

MySQL uses passwords in two phases of client/server communication:

* When a client attempts to connect to the server, there is an initial authentication step in which the client
must present a password that has a hash value matching the hash value stored in the user table for the
account the client wants to use.

 After the client connects, it can (if it has sufficient privileges) set or change the password hash for
accounts listed in the user table. The client can do this by using the PASSWORD() function to generate
a password hash, or by using a password-generating statement (CREATE USER, GRANT, or SET
PASSVORD).

In other words, the server checks hash values during authentication when a client first attempts to connect.
The server generates hash values if a connected client invokes the PASSWORD() function or uses a
password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are illustrated
by changes in the result from the PASSWORD() function that computes password hash values and in the
structure of the user table where passwords are stored.

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

nysql > SELECT PASSWORD(' nypass');

Fom e mmeeeeaaaoa +
| PASSWORD(' nypass') |
Fom e mmeeeeaaaoa +
| 6f8cl114b58f 2ce9e |
Fom e mmeeeeaaaoa +

To store account passwords, the Passwor d column of the user table was at this point 16 bytes long.

https://dev.mysql.com/doc/refman/5.7/en/replica-logs.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password

Password Hashing in MySQL

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provided better security and reduced the risk of passwords
being intercepted. There were several aspects to this change:

Different format of password values produced by the PASSWORD() function
Widening of the Passwor d column
Control over the default hashing method

Control over the permitted hashing methods for clients attempting to connect to the server

The changes in MySQL 4.1 took place in two stages:

MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. This method was short lived and the
following discussion says nothing more about it.

In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:

nysql > SELECT PASSWORD(' nypass');

ey pappp +
| PASSWORD(' nypass') |
ey pappp +
| *6C8989366EAF75BB670ADBEA7A7FCL176A95CEF4 |
ey pappp +

The longer password hash format has better cryptographic properties, and client authentication based on
long hashes is more secure than that based on the older short hashes.

To accommodate longer password hashes, the Passwor d column in the user table was changed at this
point to be 41 bytes, its current length.

A widened Passwor d column can store password hashes in both the pre-4.1 and 4.1 formats. The
format of any given hash value can be determined two ways:

e The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.

* Password hashes in the 4.1 format always begin with a * character, whereas passwords in the pre-4.1
format never do.

To permit explicit generation of pre-4.1 password hashes, two additional changes were made:
e The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.

» For compatibility purposes, the ol d_passwor ds system variable was added, to enable DBAs and
applications control over the hashing method. The default ol d_passwor ds value of O causes hashing
to use the 4.1 method (41-byte hash values), but setting ol d_passwor ds=1 causes hashing to
use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is equivalent to
OLD_PASSWORD()

To permit DBAs control over how clients are permitted to connect, the secur e_aut h system variable
was added. Starting the server with this variable disabled or enabled permits or prohibits clients to
connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5, secure_aut his
disabled by default. As of 5.6.5, secur e_aut h is enabled by default to promote a more secure default
configuration DBAs can disable it at their discretion, but this is not recommended, and pre-4.1 password
hashes are deprecated and should be avoided. (For account upgrade instructions, see Section 6.1.3,
“Migrating Away from Pre-4.1 Password Hashing and the mysqgl_old_password Plugin”.)

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth

Password Hashing in MySQL

In addition, the nysql client supports a - - secur e- aut h option that is analogous to secur e_aut h,
but from the client side. It can be used to prevent connections to less secure accounts that use pre-4.1
password hashing. This option is disabled by default before MySQL 5.6.7, enabled thereafter.

Compatibility Issues Related to Hashing Methods

The widening of the Passwor d column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or
upgrade operations as follows:

* If you perform a new installation of MySQL, the Passwor d column is made 41 bytes long automatically.

» Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in
regard to the Passwor d column because both versions use the same column length and password
hashing method.

» For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after upgrading.
(See mysql_upgrade — Check and Upgrade MySQL Tables.)

The 4.1 hashing method is understood only by MySQL 4.1 (and higher) servers and clients, which can
result in some compatibility problems. A 4.1 or higher client can connect to a pre-4.1 server, because the
client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client that
attempts to connect to a 4.1 or higher server may run into difficulties. For example, a 4.0 nysql client may
fail with the following error message:

$> nysqgl -h local host -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQ client

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods, and
what you should do if you upgrade your server but need to maintain backward compatibility with pre-4.1
clients. (However, permitting connections by old clients is not recommended and should be avoided if
possible.) This information is of particular importance to PHP programmers migrating MySQL databases
from versions older than 4.1 to 4.1 or higher.

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Passwor d column:

« If the column is short, only short-hash authentication is used.
* If the column is long, it can hold either short or long hashes, and the server can use either format:

¢ Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they can
authenticate only using accounts that have short hashes.

« 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

e Pre-4.1 client authenticating with short password hash
» 4.1 or later client authenticating with short password hash

» 4.1 or later client authenticating with long password hash

10

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_secure-auth
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth
https://dev.mysql.com/doc/refman/5.7/en/mysql-upgrade.html

Password Hashing in MySQL

The way in which the server generates password hashes for connected clients is affected by the width of
the Passwor d column and by the ol d_passwor ds system variable. A 4.1 or later server generates long
hashes only if certain conditions are met; The Passwor d column must be wide enough to hold long values
and ol d_passwor ds must not be set to 1.

Those conditions apply as follows:

» The Passwor d column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit
into it and generates only short hashes when a client performs password-changing operations using
the PASSWORD() function or a password-generating statement. This is the behavior that occurs if
you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet run the
nysql _upgr ade program to widen the Passwor d column.

* If the Passwor d column is wide, it can store either short or long password hashes. In this case, the
PASSWORD() function and password-generating statements generate long hashes unless the server was
started with the ol d_passwor ds system variable set to 1 to force the server to generate short password
hashes instead.

The purpose of the ol d_passwor ds system variable is to permit backward compatibility with pre-4.1
clients under circumstances where the server would otherwise generate long password hashes. The option
does not affect authentication (4.1 and later clients can still use accounts that have long password hashes),
but it does prevent creation of a long password hash in the user table as the result of a password-
changing operation. Were that permitted to occur, the account could no longer be used by pre-4.1 clients.
With ol d_passwor ds disabled, the following undesirable scenario is possible:

« An old pre-4.1 client connects to an account that has a short password hash.

» The client changes its own password. With ol d_passwor ds disabled, this results in the account having
a long password hash.

» The next time the old client attempts to connect to the account, it cannot, because the account has a
long password hash that requires the 4.1 hashing method during authentication. (Once an account has
a long password hash in the user table, only 4.1 and later clients can authenticate for it because pre-4.1
clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1

or higher server without ol d_passwor ds set to 1. By running the server with ol d_passwor ds=1,
password-changing operations do not generate long password hashes and thus do not cause accounts to
become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by changing
their password and ending up with a long password hash.)

The downside of ol d_passwor ds=1 is that any passwords created or changed use short hashes, even
for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes. To create
an account that has a long hash (for example, for use by 4.1 clients) or to change an existing account to
use a long password hash, an administrator can set the session value of ol d_passwor ds set to 0 while
leaving the global value set to 1:

nmysql > SET @O@BESSI ON. ol d_passwords = O;

Query OK, O rows affected (0.00 sec)

nmysql > SELECT @@BESSI ON. ol d_passwor ds, @a=LOBAL. ol d_passwor ds;
S P e S S +

| @BBESSI ON. ol d_passwords | @aBELOBAL. ol d_passwords |

1 rowin set (0.00 sec)
nmysql > CREATE USER ' newuser' @I ocal host' | DENTI FI ED BY ' newpass' ;

11

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords

Password Hashing in MySQL

Query OK, O rows affected (0.03 sec)
mysql > SET PASSWORD FOR ' exi stinguser' @Il ocal host' = PASSWORD(' exi sti ngpass');
Query OK, O rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Passwor d column
is short or long, and, if long, whether the server is started with ol d_passwor ds enabled or disabled.

Scenario 1: Short Passwor d column in user table:
» Only short hashes can be stored in the Passwor d column.
* The server uses only short hashes during client authentication.

» For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

» The value of ol d_passwor ds is irrelevant because with a short Passwor d column, the server
generates only short password hashes anyway.

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but
nysgl _upgr ade has not been run to upgrade the system tables in the mysql database. (This is not a
recommended configuration because it does not permit use of more secure 4.1 password hashing.)

Scenario 2: Long Passwor d column; server started with ol d_passwor ds=1:

» Short or long hashes can be stored in the Passwor d column.

* 4.1 and later clients can authenticate for accounts that have short or long hashes.
» Pre-4.1 clients can authenticate only for accounts that have short hashes.

» For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

In this scenario, newly created accounts have short password hashes because ol d_passwor ds=1
prevents generation of long hashes. Also, if you create an account with a long hash before setting

ol d_passwor ds to 1, changing the account's password while ol d_passwor ds=1 results in the account
being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing
account to use a long hash, first set the session value of ol d_passwor ds set to 0 while leaving the global
value set to 1, as described previously.

In this scenario, the server has an up to date Passwor d column, but is running with the default password
hashing method set to generate pre-4.1 hash values. This is not a recommended configuration but

may be useful during a transitional period in which pre-4.1 clients and passwords are upgraded to

4.1 or later. When that has been done, it is preferable to run the server with ol d_passwor ds=0 and
secure_aut h=1.

Scenario 3: Long Passwor d column; server started with ol d_passwor ds=0:
» Short or long hashes can be stored in the Passwor d column.
* 4.1 and later clients can authenticate using accounts that have short or long hashes.

» Pre-4.1 clients can authenticate only using accounts that have short hashes.

12

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords

Making MySQL Secure Against Attackers

» For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use long hashes exclusively. A change to an account's password
results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password
hash to become inaccessible to pre-4.1 clients. A change to such an account's password made using

the PASSWORD() function or a password-generating statement results in the account being given a long
password hash. From that point on, no pre-4.1 client can connect to the server using that account. The
client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET
PASSWORD as follows to change an account password:

SET PASSWORD FOR ' sone_user' @sone_host' = PASSWORD(' password');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR ' sone_user' @sone_host' = OLD _PASSWORD(' password');

OLD PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, ol d_passwor ds=1 prevents accounts with short hashes from becoming inaccessible, but
password-changing operations cause accounts with long hashes to revert to short hashes unless you take
care to change the session value of ol d_passwor ds to O first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD PASSWORD() .

The best way to avoid compatibility problems related to short password hashes is to not use them:
» Upgrade all client programs to MySQL 4.1 or later.

* Run the server with ol d_passwor ds=0.

» Reset the password for any account with a short password hash to use a long password hash.

» For additional security, run the server with secur e_aut h=1.

2.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted as
cleartext over the connection. Password handling during the client connection sequence was upgraded in
MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption algorithm is
not as strong as the newer algorithm. With some effort, a clever attacker who can sniff the traffic between
the client and the server can crack the password. (See Section 2.2.4, “Password Hashing in MySQL", for a
discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the connection.
If the connection between the client and the server goes through an untrusted network, and you are
concerned about this, you can use the compressed protocol to make traffic much more difficult to
decipher. You can also use MySQL's internal SSL support to make the connection even more secure.

See Chapter 5, Using Encrypted Connections. Alternatively, use SSH to get an encrypted TCP/IP
connection between a MySQL server and a MySQL client. You can find an Open Source SSH client at

13

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth

Making MySQL Secure Against Attackers

http://www.openssh.org/, and a comparison of both Open Source and Commercial SSH clients at http://
en.wikipedia.org/wiki/Comparison_of SSH_clients.

To make a MySQL system secure, you should strongly consider the following suggestions:

* Require all MySQL accounts to have a password. A client program does not necessarily know the
identity of the person running it. It is common for client/server applications that the user can specify
any user name to the client program. For example, anyone can use the nysql program to connect as
any other person simply by invoking it as mnysql -u ot her _user db_nane if ot her _user has no
password. If all accounts have a password, connecting using another user's account becomes much
more difficult.

For a discussion of methods for setting passwords, see Section 4.10, “Assigning Account Passwords”.

» Make sure that the only Unix user account with read or write privileges in the database directories is the
account that is used for running nysql d.

» Never run the MySQL server as the Unix r oot user. This is extremely dangerous, because any
user with the FI LE privilege is able to cause the server to create files as r oot (for example,
~r oot/ . bashr c). To prevent this, nysql d refuses to run as r oot unless that is specified explicitly
using the - - user =r oot option.

nysql d can (and should) be run as an ordinary, unprivileged user instead. You can create a separate
Unix account named nysql to make everything even more secure. Use this account only for
administering MySQL. To start nysqgl d as a different Unix user, add a user option that specifies the
user name in the [nysql d] group of the my. cnf option file where you specify server options. For
example:

[nysql d]
user =nysql

This causes the server to start as the designated user whether you start it manually or by using
nysql d_saf e or nysql . server . For more details, see Section 2.5, “How to Run MySQL as a Normal
User”.

Running nysql d as a Unix user other than r oot does not mean that you need to change the r oot user
name in the user table. User names for MySQL accounts have nothing to do with user names for Unix
accounts.

» Do not grant the FI LE privilege to nonadministrative users. Any user that has this privilege can write
a file anywhere in the file system with the privileges of the mysql d daemon. This includes the server's
data directory containing the files that implement the privilege tables. To make FI LE-privilege operations
a bit safer, files generated with SELECT ... | NTO OUTFI LE do not overwrite existing files and are
writable by everyone.

The FI LE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This could
be abused, for example, by using LOAD DATAto load / et ¢/ passwd into a table, which then can be
displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv systemtoa
specific directory. See Server System Variables.

* Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of mysqgl adni n
processli st and SHOW PROCESSLI ST shows the text of any statements currently being executed, so
any user who is permitted to see the server process list might be able to see statements issued by other
users such as UPDATE user SET passwor d=PASSWORD(' not _secure').

14

http://www.openssh.org/
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html

Security-Related mysqgld Options and Variables

nysql d reserves an extra connection for users who have the SUPER privilege, so that a MySQL r oot
user can log in and check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by changing
the value of system variables, and control replication servers.

* Do not permit the use of symlinks to tables. (This capability can be disabled with the - - ski p-
synbol i c- | i nks option.) This is especially important if you run mysql d as r oot , because anyone
that has write access to the server's data directory then could delete any file in the system! See Using
Symbolic Links for MyI[SAM Tables on Unix.

» Stored programs and views should be written using the security guidelines discussed in Stored Object
Access Control.

« If you do not trust your DNS, you should use IP addresses rather than host names in the grant tables.
In any case, you should be very careful about creating grant table entries using host name values that
contain wildcards.

« If you want to restrict the number of connections permitted to a single account, you can do so by setting
the max_user _connect i ons variable in nysql d. The CREATE USER and ALTER USER statements
also support resource control options for limiting the extent of server use permitted to an account. See
CREATE USER Statement, and ALTER USER Statement.

« If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... | NTO DUMPFI LE. This can be prevented by making
pl ugi n_di r read only to the server or by setting secure_fil e_pri v to a directory where SELECT
writes can be made safely.

2.4 Security-Related mysqld Options and Variables

The following table shows nmysql d options and system variables that affect security. For descriptions of
each of these, see Server Command Options, and Server System Variables.

Table 2.1 Security Option and Variable Summary

Name Cmd-Line Option File |System Var |Status Var Var Scope Dynamic
allow- Yes Yes

suspicious-

udfs

automatic_sp_priedleges Yes Yes Global Yes
chroot Yes Yes

des-key-file |Yes Yes

local_infile Yes Yes Yes Global Yes
old_passwordsYes Yes Yes Both Yes
safe-user- Yes Yes

create

secure_auth |Yes Yes Yes Global Yes
secure_file_priwves Yes Yes Global No
skip-grant- Yes Yes

tables

skip_name_res¥lee Yes Yes Global No

15

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_symbolic-links
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_symbolic-links
https://dev.mysql.com/doc/refman/5.7/en/symbolic-links-to-tables.html
https://dev.mysql.com/doc/refman/5.7/en/symbolic-links-to-tables.html
https://dev.mysql.com/doc/refman/5.7/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/5.7/en/stored-objects-security.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_automatic_sp_privileges
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_chroot
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_des-key-file
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_safe-user-create
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_safe-user-create
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_name_resolve

How to Run MySQL as a Normal User

Name Cmd-Line Option File |System Var |Status Var Var Scope Dynamic
skip_networkinges Yes Yes Global No
skip_show_datafesse Yes Yes Global No

2.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a hormal user account.

On Linux, for installations performed using a MySQL repository, RPM packages, or Debian packages, the
MySQL server nysqgl d should be started by the local mysql operating system user. Starting by another
operating system user is not supported by the init scripts that are included as part of the installation.

On Unix (or Linux for installations performed using t ar ort ar . gz packages) , the MySQL server nysqgl d
can be started and run by any user. However, you should avoid running the server as the Unix r oot user
for security reasons. To change nysql d to run as a normal unprivileged Unix user user _narmne, you must
do the following:

1. Stop the server if it is running (use nysql adnm n shut down).

2. Change the database directories and files so that user _nane has privileges to read and write files in
them (you might need to do this as the Unix r oot user):

$> chown -R user_nane /path/to/ nmysql/datadir
If you do not do this, the server is unable to access databases or tables when it runs as user _nane.

If directories or files within the MySQL data directory are symbolic links, chown - R might not follow
symbolic links for you. If it does not, you must also follow those links and change the directories and
files they point to.

3. Start the server as user user _nane. Another alternative is to start nysql d as the Unix r oot user and
use the - - user =user _nane option. nysql d starts, then switches to run as the Unix user user _name
before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name by
adding a user option to the [mysql d] group of the / et ¢/ ny. cnf option file or the my. cnf option file
in the server's data directory. For example:

[nysql d]
user =user _name

If your Unix machine itself is not secured, you should assign passwords to the MySQL r oot account in the
grant tables. Otherwise, any user with a login account on that machine can run the nysql client with a - -
user =r oot option and perform any operation. (It is a good idea to assign passwords to MySQL accounts
in any case, but especially so when other login accounts exist on the server host.) See Section 3.4,
“Securing the Initial MySQL Account”.

2.6 Security Considerations for LOAD DATA LOCAL

The LOAD DATA statement loads a data file into a table. The statement can load a file located on the
server host, or, if the LOCAL keyword is specified, on the client host.

The LOCAL version of LOAD DATA has two potential security issues:

» Because LOAD DATA LOCAL is an SQL statement, parsing occurs on the server side, and transfer of
the file from the client host to the server host is initiated by the MySQL server, which tells the client the

16

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-show-database
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

Security Considerations for LOAD DATA LOCAL

file named in the statement. In theory, a patched server could tell the client program to transfer a file of
the server's choosing rather than the file named in the statement. Such a server could access any file
on the client host to which the client user has read access. (A patched server could in fact reply with a
file-transfer request to any statement, not just LOAD DATA LOCAL, so a more fundamental issue is that
clients should not connect to untrusted servers.)

» In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any statement against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not a remote program being run by users who connect to the
Web server.

To avoid connecting to untrusted servers, clients can establish a secure connection and verify the server
identity by connecting using the - - ssl - node=VERI FY_| DENTI TY option and the appropriate CA
certificate. To implement this level of verification, you must first ensure that the CA certificate for the
server is reliably available to the replica, otherwise availability issues will result. For more information, see
Command Options for Encrypted Connections.

To avoid LOAD DATA issues, clients should avoid using LOCAL.

Adminstrators and applications can configure whether to permit local data loading as follows:
* On the server side:

e Thel ocal _i nfil e system variable controls server-side LOCAL capability. Depending on the
I ocal _infil e setting, the server refuses or permits local data loading by clients that request local
data loading.

e By default,| ocal i nfil eisenabled. To cause the server to refuse or permit LOAD DATA LOCAL
statements explicitly (regardless of how client programs and libraries are configured at build time or
runtime), start nysql d with | ocal _i nfi | e disabled or enabled. | ocal _i nfil e can also be set at
runtime.

* On the client side:

e The ENABLED LOCAL_| NFI LE CMvake option controls the compiled-in default LOCAL capability
for the MySQL client library (see MySQL Source-Configuration Options). Clients that make no
explicit arrangements therefore have LOCAL capability disabled or enabled according to the
ENABLED LOCAL_| NFI LE setting specified at MySQL build time.

« By default, the client library in MySQL binary distributions is compiled with ENABLED LOCAL | NFI LE
enabled. If you compile MySQL from source, configure it with ENABLED LOCAL | NFI LE disabled or
enabled based on whether clients that make no explicit arrangements should have LOCAL capability
disabled or enabled.

< For client programs that use the C API, local data loading capability is determined by the
default compiled into the MySQL client library. To enable or disable it explicitly, invoke the
mysqgl _options() C API function to disable or enable the MYSQL_OPT_LOCAL | NFI LE option. See
mysql_options().

« For the nysqgl client, local data loading capability is determined by the default compiled into the
MySQL client library. To disable or enable it explicitly, use the - -1 ocal -infil e=0 or--1 ocal -
i nfile[=1] option.

e Forthe nysqgl i nport client, local data loading is not used by default. To disable or enable it
explicitly, use the - - | ocal =0 or - - | ocal [=1] option.

17

https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_local-infile
https://dev.mysql.com/doc/refman/5.7/en/mysqlimport.html#option_mysqlimport_local
https://dev.mysql.com/doc/refman/5.7/en/mysqlimport.html#option_mysqlimport_local

MySQL Shell and Local Data Loading

e If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [cl i ent] group from
option files, you can add a | ocal -i nfi | e option setting to that group. To prevent problems for
programs that do not understand this option, specify it using the | cose- prefix:

[client]
| oose-1ocal -infil e=0

or:

[client]
| oose-1local -infile=1

« In all cases, successful use of a LOCAL load operation by a client also requires that the server permits
local loading.

If LOCAL capability is disabled, on either the server or client side, a client that attempts to issue a LOAD
DATA LOCAL statement receives the following error message:

ERROR 1148: The used conmand is not allowed with this M/SQ. version

MySQL Shell and Local Data Loading

MySQL Shell provides a number of utilities to dump tables, schemas, or server instances and load

them into other instances. When you use these utilities to handle the data, MySQL Shell provides
additional functions such as input preprocessing, multithreaded parallel loading, file compression and
decompression, and handling access to Oracle Cloud Infrastructure Object Storage buckets. To get the
best functionality, always use the most recent version available of MySQL Shell's dump and dump loading
utilities.

MySQL Shell's data upload utilities use LOAD DATA LOCAL | NFI LE statements to upload data, so the

[ocal i nfil e system variable must be set to ON on the target server instance. You can do this before
uploading the data, and remove it again afterwards. The utilities handle the file transfer requests safely to
deal with the security considerations discussed in this topic.

MySQL Shell includes these dump and dump loading utilities:

Table export utility Exports a MySQL relational table into a data file, which can be uploaded

util.exportTabl e() to a MySQL server instance using MySQL Shell's parallel table import
utility, imported to a different application, or used as a logical backup.
The utility has preset options and customization options to produce
different output formats.

Parallel table import utility Inports a data file to a MySQL relational table. The data file can be

util.inportTabl e() the output from MySQL Shell's table export utility or another format
supported by the utility's preset and customization options. The utility
can carry out input preprocessing before adding the data to the table. It
can accept multiple data files to merge into a single relational table, and
automatically decompresses compressed files.

Instance dump utility Export an instance, schema, or table to a set of dump files, which can
util.dunpl nstance(), then be uploaded to a MySQL instance using MySQL Shell's dump
schema dump utility loading utility. The utilities provide Oracle Cloud Infrastructure Object
util.dunpSchemas(), Storage streaming, MySQL HeatWave Service compatibility checks
and table dump utility and modifications, and the ability to carry out a dry run to identify issues
util.dunpTabl es() before proceeding with the dump.

18

https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/option-modifiers.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_local_infile

Client Programming Security Guidelines

Dump loading utility Import dump files created using MySQL Shell's instance, schema, or

util.loadbDunp() table dump utility into a MySQL HeatWave Service DB System or a
MySQL Server instance. The utility manages the upload process and
provides data streaming from remote storage, parallel loading of tables
or table chunks, progress state tracking, resume and reset capability,
and the option of concurrent loading while the dump is still taking place.
MySQL Shell's parallel table import utility can be used in combination
with the dump loading utility to modify data before uploading it to the
target MySQL instance.

For details of the utilities, see MySQL Shell Utilities.

2.7 Client Programming Security Guidelines

Client applications that access MySQL should use the following guidelines to avoid interpreting external
data incorrectly or exposing sensitive information.

» Handle External Data Properly

» Handle MySQL Error Messages Properly

Handle External Data Properly

Applications that access MySQL should not trust any data entered by users, who can try to trick your code
by entering special or escaped character sequences in Web forms, URLS, or whatever application you
have built. Be sure that your application remains secure if a user tries to perform SQL injection by entering
something like ; DROP DATABASE nysql ; into a form. This is an extreme example, but large security
leaks and data loss might occur as a result of hackers using similar techniques, if you do not prepare for
them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM t abl e WHERE | D=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the query
SELECT * FROM tabl e WHERE | D=234 OR 1=1. As a result, the server retrieves every row in the
table. This exposes every row and causes excessive server load. The simplest way to protect from

this type of attack is to use single quotation marks around the numeric constants: SELECT * FROM

tabl e WHERE | D="' 234" . If the user enters extra information, it all becomes part of the string. In a
numeric context, MySQL automatically converts this string to a number and strips any trailing nonnumeric
characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be protected.
This is incorrect. Even if it is permissible to display any row in the database, you should still protect against
denial of service attacks (for example, those that are based on the technique in the preceding paragraph
that causes the server to waste resources). Otherwise, your server becomes unresponsive to legitimate
users.

Checklist:

» Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Server SQL Modes.

» Try to enter single and double quotation marks (' and ") in all of your Web forms. If you get any kind of
MySQL error, investigate the problem right away.

e Try to modify dynamic URLs by adding %22 ("), %23 (#), and %27 (') to them.

19

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html

Handle MySQL Error Messages Properly

» Try to modify data types in dynamic URLs from numeric to character types using the characters shown in
the previous examples. Your application should be safe against these and similar attacks.

» Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

» Check the size of data before passing it to MySQL.

» Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data values.
Properly used, this prevents application users from entering values that cause the application to generate
statements that have a different effect than you intend:

* MySQL SQL statements: Use SQL prepared statements and accept data values only by means of
placeholders; see Prepared Statements.

* MySQL C API: Use the nysql _real _escape_string_quote() API call. Alternatively, use the C
API prepared statement interface and accept data values only by means of placeholders; see C API
Prepared Statement Interface.

* MySQL++: Use the escape and quot e modifiers for query streams.

» PHP: Use either the mysql i or pdo_mysql extensions, and not the older ext / mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also MySQL and PHP.

If the older ext / nysql extension must be used, then for escaping use the

nysql real escape_string quote() function and not nysql escape_string() or

addsl ashes() because only nysql real escape_string_quote() ischaracter set-aware; the
other functions can be “bypassed” when using (invalid) multibyte character sets.

» Perl DBI: Use placeholders or the quot e() method.
» Java JDBC: Use a Pr epar edSt at enent object and placeholders.

Other programming interfaces might have similar capabilities.

Handle MySQL Error Messages Properly

It is the application's responsibility to intercept errors that occur as a result of executing SQL statements
with the MySQL database server and handle them appropriately.

The information returned in a MySQL error is not gratuitous because that information is key in debugging
MySQL using applications. It would be nearly impossible, for example, to debug a common 10-way join
SELECT statement without providing information regarding which databases, tables, and other objects are
involved with problems. Thus, MySQL errors must sometimes necessarily contain references to the names
of those objects.

A simple but insecure approach for an application when it receives such an error from MySQL is to
intercept it and display it verbatim to the client. However, revealing error information is a known application
vulnerability type (CWE-209) and the application developer must ensure the application does not have this
vulnerability.

For example, an application that displays a message such as this exposes both a database name and a
table name to clients, which is information a client might attempt to exploit:

20

https://dev.mysql.com/doc/refman/5.7/en/sql-prepared-statements.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-prepared-statement-interface.html
https://dev.mysql.com/doc/apis-php/en/
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-escape-string.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-escape-string-quote.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
http://cwe.mitre.org/data/definitions/209.html

Handle MySQL Error Messages Properly

ERROR 1146 (42S02): Tabl e 'nydb. nytabl e’ does not exi st

Instead, the proper behavior for an application when it receives such an error from MySQL is to log
appropriate information, including the error information, to a secure audit location only accessible to trusted
personnel. The application can return something more generic such as “Internal Error” to the user.

21

22

Chapter 3 Postinstallation Setup and Testing

Table of Contents

3.1 Initializing the Data DIFECIOIY .. .c.uuiiii ettt e e e e e e e e e et e e et e e et e e e et e e aaeeeens 23
3.2 StArtiNg the SEIVET ... et e e e e e e et e e et e e et e e e aaaaes 29

3.2.1 Troubleshooting Problems Starting the MySQL SEervercooovvieiiiiiiiiii e 30
TR I =S 11T 1 LTS Y=Y V=T PN 32
3.4 Securing the Initial MySQL ACCOUNLiuuiiii e e e e e e e e e e e e e e e e e e eateeeaneaeanaes 34
3.5 Starting and Stopping MySQL AutomatiCallycoouiiiiiiiiiiii e 36

This section discusses tasks that you should perform after installing MySQL.:

* If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

* Windows installation operations performed by MySQL Installer.

Installation on Linux using a server RPM or Debian distribution from Oracle.

Installation using the native packaging system on many platforms, including Debian Linux, Ubuntu
Linux, Gentoo Linux, and others.

Installation on macOS using a DMG distribution.

For other platforms and installation types, you must initialize the data directory manually. These include
installation from generic binary and source distributions on Unix and Unix-like system, and installation
from a ZIP Archive package on Windows. For instructions, see Section 3.1, “Initializing the Data
Directory”.

» Start the server and make sure that it can be accessed. For instructions, see Section 3.2, “Starting the
Server”, and Section 3.3, “Testing the Server”.

» Assign passwords to the initial r oot account in the grant tables, if that was not already done during data
directory initialization. Passwords prevent unauthorized access to the MySQL server. For instructions,
see Section 3.4, “Securing the Initial MySQL Account”.

» Optionally, arrange for the server to start and stop automatically when your system starts and stops. For
instructions, see Section 3.5, “Starting and Stopping MySQL Automatically”.

» Optionally, populate time zone tables to enable recognition of named time zones. For instructions, see
MySQL Server Time Zone Support.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Chapter 4, Access Control and Account Management.

3.1 Initializing the Data Directory

After MySQL is installed, the data directory must be initialized, including the tables in the nysql system
database:

» For some MySQL installation methods, data directory initialization is automatic, as described in
Chapter 3, Postinstallation Setup and Testing.

23

https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html

Data Directory Initialization Overview

 For other installation methods, you must initialize the data directory manually. These include installation
from generic binary and source distributions on Unix and Unix-like systems, and installation from a ZIP
Archive package on Windows.

This section describes how to initialize the data directory manually for MySQL installation methods for
which data directory initialization is not automatic. For some suggested commands that enable testing
whether the server is accessible and working properly, see Section 3.3, “Testing the Server”.

» Data Directory Initialization Overview
» Data Directory Initialization Procedure
» Server Actions During Data Directory Initialization

 Post-Initialization root Password Assignment

Data Directory Initialization Overview

In the examples shown here, the server is intended to run under the user ID of the nysql login account.
Either create the account if it does not exist (see Create a mysgl User and Group), or substitute the name
of a different existing login account that you plan to use for running the server.

1. Change location to the top-level directory of your MySQL installation, which is typically / usr/ | ocal /
nysql (adjust the path name for your system as necessary):

cd /usr/local / mysq

Within this directory are several files and subdirectories, including the bi n subdirectory that contains
the server as well as client and utility programs.

2. Thesecure_file_priv system variable limits import and export operations to a specific directory.
Create a directory whose location can be specified as the value of that variable:

nkdi r nysql-files

Grant directory user and group ownership to the mysqgl user and mysql group, and set the directory
permissions appropriately:

chown nysql : nmysqgl nysql-files
chnod 750 nysql -files

3. Use the server to initialize the data directory, including the nysql database containing the initial
MySQL grant tables that determine how users are permitted to connect to the server. For example:

bin/nysqgld --initialize --user=nysq

For important information about the command, especially regarding command options you might use,
see Data Directory Initialization Procedure. For details about how the server performs initialization, see
Server Actions During Data Directory Initialization.

Typically, data directory initialization need be done only after you first install MySQL. (For upgrades to
an existing installation, perform the upgrade procedure instead; see Upgrading MySQL.) However, the
command that initializes the data directory does not overwrite any existing nysql database tables, so it
is safe to run in any circumstances.

Note

Initialization of the data directory might fail if required system libraries are
missing. For example, you might see an error like this:

24

https://dev.mysql.com/doc/refman/5.7/en/binary-installation.html#binary-installation-createsysuser
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/5.7/en/upgrading.html

Data Directory Initialization Procedure

bi n/ nysqgl d: error while |oading shared |ibraries:
|'i bnuma. so. 1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your
system's package manager. Then retry the data directory initialization
command.

4. If you want to deploy the server with automatic support for secure connections, use the
nysqgl _ssl _rsa_set up utility to create default SSL and RSA files:

bi n/ nysql _ssl _rsa_set up
For more information, see mysql_ssl_rsa_setup — Create SSL/RSA Files.

5. In the absence of any option files, the server starts with its default settings. (See Server Configuration
Defaults.) To explicitly specify options that the MySQL server should use at startup, put them in an
option file such as/ et c/ ny. cnf or/etc/ nysql / my. cnf . (See Using Option Files.) For example,
you can use an option file to set the secure_fil e priv system variable.

6. To arrange for MySQL to start without manual intervention at system boot time, see Section 3.5,
“Starting and Stopping MySQL Automatically”.

7. Data directory initialization creates time zone tables in the nysql database but does not populate
them. To do so, use the instructions in MySQL Server Time Zone Support.

Data Directory Initialization Procedure

Change location to the top-level directory of your MySQL installation, which is typically / usr /| ocal /
nysql (adjust the path name for your system as necessary):

cd /usr/local / nmysql

To initialize the data directory, invoke nysql d withthe--initializeor--initialize-insecure
option, depending on whether you want the server to generate a random initial password for the
"root' @I ocal host' account, or to create that account with no password:

* Use--initialize for“secure by default” installation (that is, including generation of a random initial
r oot password). In this case, the password is marked as expired and you must choose a new one.

« With--initialize-insecure,noroot password is generated. This is insecure; it is assumed that
you assign a password to the account in timely fashion before putting the server into production use.

For instructions on assigning anew ' r oot ' @ | ocal host"' password, see Post-Initialization root
Password Assignment.

Note

The server writes any messages (including any initial password) to its standard
error output. This may be redirected to the error log, so look there if you do not see
the messages on your screen. For information about the error log, including where it
is located, see The Error Log.

On Windows, use the - - consol e option to direct messages to the console.

On Unix and Unix-like systems, it is important for the database directories and files to be owned by the
nysql login account so that the server has read and write access to them when you run it later. To ensure
this, start nysql d from the system r oot account and include the - - user option as shown here:

25

https://dev.mysql.com/doc/refman/5.7/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/5.7/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/5.7/en/server-configuration-defaults.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/error-log.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user

Data Directory Initialization Procedure

bin/nysqgld --initialize --user=nysql
bin/nysgld --initialize-insecure --user=nysql

Alternatively, execute nysql d while logged in as nysql , in which case you can omit the - - user option
from the command.

On Windows, use one of these commands:

bin\nysqgld --initialize --consol e
bin\nysqgld --initialize-insecure --console
Note

Data directory initialization might fail if required system libraries are missing. For
example, you might see an error like this:

bi n/nysqgl d: error while |oading shared |libraries:
I'i bnuma. so. 1: cannot open shared object file:
No such file or directory

If this happens, you must install the missing libraries manually or with your system's
package manager. Then retry the data directory initialization command.

It might be necessary to specify other options such as - - basedi r or - - dat adi r if mysql d cannot
identify the correct locations for the installation directory or data directory. For example (enter the
command on a single line):

bin/nysqld --initialize --user=nysql
--basedi r=/opt/ mysql / mysql
--datadi r=/opt/ nysql / nysql / dat a

Alternatively, put the relevant option settings in an option file and pass the name of that file to nmysql d. For
Unix and Unix-like systems, suppose that the option file name is / opt / nysql / mysql / et ¢/ ny. cnf . Put
these lines in the file:

[nysql d]
basedi r =/ opt / nysql / nysql
dat adi r=/ opt/ nmysql / mysqgl / dat a

Then invoke nysql d as follows (enter the command on a single line, with the - - def aul t s- f i | e option
first):

bin/nysqgl d --defaul ts-file=/opt/nysql/nysql/etc/ ny.cnf
--initialize --user=nysql

On Windows, suppose that C: \ my. i ni contains these lines:

[nysql d]
basedi r=C:\\ Program Fi | es\\ MySQL\\ MySQL Server 5.7
dat adi r=D: \\ M\ySQLdat a

Then invoke nysql d as follows (again, you should enter the command on a single line, with the - -
def aul t s-fi | e option first):

bi n\nysqgl d --defaults-file=C\ny.ini
--initialize --console

Important

When initializing the data directory, you should not specify any options other than
those used for setting directory locations such as - - basedi r or - - dat adi r, and
the - - user option if needed. Options to be employed by the MySQL server during

26

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user

Server Actions During Data Directory Initialization

normal use can be set when restarting it following initialization. See the description
ofthe --initiali ze option for further information.

Server Actions During Data Directory Initialization
Note

The data directory initialization sequence performed by the server does not
substitute for the actions performed by nysql secure_instal |l ati on and
mysql _ssl _rsa_set up. See mysgl_secure_installation — Improve MySQL
Installation Security, and mysqgl_ssl_rsa_setup — Create SSL/RSA Files.

When invoked withthe --initializeor--initialize-insecure option, nysql d performs the
following actions during the data directory initialization sequence:

1. The server checks for the existence of the data directory as follows:
 If no data directory exists, the server creates it.

« If the data directory exists but is not empty (that is, it contains files or subdirectories), the server exits
after producing an error message:

[ERROR] --initialize specified but the data directory exists. Aborting.
In this case, remove or rename the data directory and try again.

As of MySQL 5.7.11, an existing data directory is permitted to be nonempty if every entry either has a
name that begins with a period (.) or is named using an - - i gnor e- db- di r option.

Note

Avoid the use of the - - i gnor e- db- di r option, which has been deprecated
since MySQL 5.7.16.

2. Within the data directory, the server creates the nysql system database and its tables, including the
grant tables, time zone tables, and server-side help tables. See The mysql System Database.

3. The server initializes the system tablespace and related data structures needed to manage | nnoDB
tables.

Note

After mysqgl d sets up the | nnoDB system tablespace, certain changes

to tablespace characteristics require setting up a whole new instance.

Qualifying changes include the file name of the first file in the system

tablespace and the number of undo logs. If you do not want to use the default
values, make sure that the settings for the i nnodb_data fil e pathand

i nnodb_| og fil e_size configuration parameters are in place in the

MySQL configuration file before running nmysql d. Also make sure to specify

as necessary other parameters that affect the creation and location of | nnoDB
files, such as i nnodb_data_hone_dir andi nnodb | og group hone _dir.

If those options are in your configuration file but that file is not in a location
that MySQL reads by default, specify the file location using the - - def aul t s-
extra-fil e option when you run nysqgl d.

27

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_ignore-db-dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_ignore-db-dir
https://dev.mysql.com/doc/refman/5.7/en/system-schema.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_instance
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_configuration_file
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_data_home_dir
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_log_group_home_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_defaults-extra-file

Post-Initialization root Password Assignment

4. The server createsa' root' @I ocal host' superuser account and other reserved accounts (see

Section 4.8, “Reserved Accounts”). Some reserved accounts are locked and cannot be used by clients,
but' root' @I ocal host' is intended for administrative use and you should assign it a password.

Server actions with respect to a password forthe ' root' @ | ocal host' account depend on how you
invoke it:

e With--initializebutnot--initialize-insecure, the server generates a random password,
marks it as expired, and writes a message displaying the password:

[Warni ng] A tenporary password is generated for root @ ocal host:
i Tag* Af r H5ej

e With--initialize-insecure, (either with or without--initialize because--initialize-
i nsecur e implies--initialize),the server does not generate a password or mark it expired,
and writes a warning message:

[War ni ng] root @ocal host is created with an enpty password ! Pl ease
consider switching off the --initialize-insecure option.

For instructions on assigninganew ' root' @ | ocal host' password, see Post-Initialization root
Password Assignment.

The server populates the server-side help tables used for the HELP statement (see HELP Statement).
The server does not populate the time zone tables. To do so manually, see MySQL Server Time Zone
Support.

Iftheinit _fil e system variable was given to name a file of SQL statements, the server executes the
statements in the file. This option enables you to perform custom bootstrapping sequences.

When the server operates in bootstrap mode, some functionality is unavailable that limits the
statements permitted in the file. These include statements that relate to account management (such as
CREATE USER or GRANT), replication, and global transaction identifiers.

7. The server exits.

Post-Initialization root Password Assignment

After you initialize the data directory by starting the serverwith--initializeor--initialize-
i nsecur e, start the server normally (that is, without either of those options) and assign the
"root' @I ocal host' account a new password:

1. Start the server. For instructions, see Section 3.2, “Starting the Server”.

2. Connect to the server:

e Ifyouused--initializebutnot--initialize-insecure toinitialize the data directory,
connect to the server as r oot :

nmysql -u root -p

Then, at the password prompt, enter the random password that the server generated during the
initialization sequence:

Ent er password: (enter the random root password here)

Look in the server error log if you do not know this password.

28

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/help.html
https://dev.mysql.com/doc/refman/5.7/en/help.html
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://dev.mysql.com/doc/refman/5.7/en/time-zone-support.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure

Starting the Server

e Ifyouused--initialize-insecure toinitialize the data directory, connect to the server as r oot
without a password:

nysqgl -u root --skip-password

3. After connecting, use an ALTER USER statement to assign a hew r oot password:

ALTER USER 'root' @I ocal host' | DENTI FI ED BY ' root - password' ;
See also Section 3.4, “Securing the Initial MySQL Account”.
Note

Attempts to connect to the host 127. 0. 0. 1 normally resolve to the | ocal host
account. However, this fails if the server is run with ski p_nane_r esol ve
enabled. If you plan to do that, make sure that an account exists that can
accept a connection. For example, to be able to connect as r oot using - -

host =127. 0. 0. 1 or - - host =: : 1, create these accounts:

CREATE USER 'root' @127.0.0.1" |DENTIFIED BY 'root-password';
CREATE USER 'root' @:: 1" | DENTIFIED BY 'root-password';

It is possible to put those statements in a file to be executed usingtheinit _file
system variable, as discussed in Server Actions During Data Directory Initialization.

3.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see Starting the
Server for the First Time.) For some suggested commands that you can use to test whether the server is
accessible and working properly, see Section 3.3, “Testing the Server”.

Start the MySQL server like this if your installation includes nysql d_saf e:
$> bin/nysql d_safe --user=nysql &
Note

For Linux systems on which MySQL is installed using RPM packages, server
startup and shutdown is managed using systemd rather than nysql d_saf e, and
nysqgl d_saf e is not installed. See Managing MySQL Server with systemd.

Start the server like this if your installation includes systemd support:
$> systenct!| start nysqld
Substitute the appropriate service name if it differs from mysql d (for example, mysqgl on SLES systems).

It is important that the MySQL server be run using an unprivileged (non-r oot) login account. To ensure
this, run mysql d_saf e as r oot and include the - - user option as shown. Otherwise, you should execute
the program while logged in as nysql , in which case you can omit the - - user option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 2.5, “How to Run MySQL
as a Normal User”.

If the command fails immediately and prints nysql d ended, look for information in the error log (which by
default is the host _nane. err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the nysql database,
it writes a message to its error log. Such problems can occur if you neglected to create the grant tables by

29

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/5.7/en/windows-server-first-start.html
https://dev.mysql.com/doc/refman/5.7/en/windows-server-first-start.html
https://dev.mysql.com/doc/refman/5.7/en/using-systemd.html
https://dev.mysql.com/doc/refman/5.7/en/mysqld-safe.html#option_mysqld_safe_user
https://dev.mysql.com/doc/refman/5.7/en/mysqld-safe.html#option_mysqld_safe_user

Troubleshooting Problems Starting the MySQL Server

initializing the data directory before proceeding to this step, or if you ran the command that initializes the
data directory without the - - user option. Remove the dat a directory and run the command with the - -
user option.

If you have other problems starting the server, see Section 3.2.1, “Troubleshooting Problems Starting the
MySQL Server”. For more information about nysql d_saf e, see mysgld_safe — MySQL Server Startup
Script. For more information about systemd support, see Managing MySQL Server with systemd.

3.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Troubleshooting a Microsoft Windows MySQL Server Installation.

If you have problems starting the server, here are some things to try:

» Check the error log to see why the server does not start. Log files are located in the data directory
(typically C: \ Program Fi | es\ MySQL\ MySQL Server 5. 7\ dat a on Windows, / usr/| ocal /
nysql / dat a for a Unix/Linux binary distribution, and / usr /| ocal / var for a Unix/Linux source
distribution). Look in the data directory for files with names of the form host _nane. err and
host nane. | og, where host _nane is the name of your server host. Then examine the last few lines
of these files. Use t ai | to display them:

$> tail host_nane.err
$> tail host_nane.| og

» Specify any special options needed by the storage engines you are using. You can create a imy. cnf file
and specify startup options for the engines that you plan to use. If you are going to use storage engines
that support transactional tables (I nnoDB, NDB), be sure that you have them configured the way you
want before starting the server. If you are using | nnoDB tables, see InnoDB Configuration for guidelines
and InnoDB Startup Options and System Variables for option syntax.

Although storage engines use default values for options that you omit, Oracle recommends that
you review the available options and specify explicit values for any options whose defaults are not
appropriate for your installation.

» Make sure that the server knows where to find the data directory. The nysql d server uses this directory
as its current directory. This is where it expects to find databases and where it expects to write log files.
The server also writes the pid (process ID) file in the data directory.

The default data directory location is hardcoded when the server is compiled. To determine what

the default path settings are, invoke nysql d with the - - ver bose and - - hel p options. If the data
directory is located somewhere else on your system, specify that location with the - - dat adi r option to
nysql d or nysql d_saf e, on the command line or in an option file. Otherwise, the server does not work
properly. As an alternative to the - - dat adi r option, you can specify nysql d the location of the base
directory under which MySQL is installed with the - - basedi r, and mysql d looks for the dat a directory
there.

To check the effect of specifying path options, invoke nysql d with those options followed by the - -
ver bose and - - hel p options. For example, if you change location to the directory where nysql d
is installed and then run the following command, it shows the effect of starting the server with a base
directory of / usr/ | ocal :

$> ./nysqld --basedir=/usr/local --verbose --help

You can specify other options such as - - dat adi r as well, but - - ver bose and - - hel p must be the
last options.

30

https://dev.mysql.com/doc/refman/5.7/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/5.7/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/5.7/en/using-systemd.html
https://dev.mysql.com/doc/refman/5.7/en/windows-troubleshooting.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_error_log
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_data_directory
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_data_directory
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_help

Troubleshooting Problems Starting the MySQL Server

Once you determine the path settings you want, start the server without - - ver bose and - - hel p.

If mysql d is currently running, you can find out what path settings it is using by executing this command:

$> nysql adni n vari abl es

Or:

$> nysqgl admi n -h host _nane vari abl es

host nane is the name of the MySQL server host.

Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must allow the server to read and modify them.

If you get Er r code 13 (which means Per m ssi on deni ed) when starting mysqgl d, this means that
the privileges of the data directory or its contents do not permit server access. In this case, you change
the permissions for the involved files and directories so that the server has the right to use them. You
can also start the server as r oot , but this raises security issues and should be avoided.

Change location to the data directory and check the ownership of the data directory and its contents to
make sure the server has access. For example, if the data directory is / usr /| ocal / nysql / var, use
this command:

$> Is -la /usr/local/nysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for
running the server, change their ownership to that account. If the account is named nysql , use these
commands:

$> chown -R nysqgl /usr/local/nmysql/var
$> chgrp -R nysqgl /usr/local/nysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running on
your system that manages application access to various parts of the file system. In this case, reconfigure
that software to enable mysql d to access the directories it uses during normal operation.

Verify that the network interfaces the server wants to use are available.

If either of the following errors occur, it means that some other program (perhaps another nmysql d
server) is using the TCP/IP port or Unix socket file that nysql d is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another nmysql d server running. If so, shut down the server
before starting mysql d again. (If another server is running, and you really want to run multiple servers,
you can find information about how to do so in Running Multiple MySQL Instances on One Machine.)

If no other server is running, execute the command t el net your host nane

tcp_i p_port_nunber. (The default MySQL port number is 3306.) Then press Enter a couple of
times. If you do not get an error message liket el net: Unable to connect to renpte host:
Connection refused, some other program is using the TCP/IP port that nysql d is trying to use.
Track down what program this is and disable it, or tell mysql d to listen to a different port with the - -

31

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_help
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_data_directory
https://dev.mysql.com/doc/refman/5.7/en/multiple-servers.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_port

Testing the Server

port option. In this case, specify the same non-default port number for client programs when connecting
to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections
to it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, make sure that you have an entry in / et ¢/ host s that
looks like this:

127.0.0.1 | ocal host

« If you cannot get nysql d to start, try to make a trace file to find the problem by using the - - debug
option. See The DBUG Package.

3.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to make
sure that it works satisfactorily. This section assumes that your current location is the MySQL installation
directory and that it has a bi n subdirectory containing the MySQL programs used here. If that is not true,
adjust the command path names accordingly.

Alternatively, add the bi n directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only its
name, not its path name. See Setting Environment Variables.

Use nysql admi n to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

$> bi n/ nysql admi n versi on
$> bi n/ nysql admi n vari abl es

If you cannot connect to the server, specify a- u r oot option to connect as r oot . If you have assigned a
password for the r oot account already, you'll also need to specify - p on the command line and enter the
password when prompted. For example:

$> bin/nysqladmin -u root -p version
Enter password: (enter root password here)

The output from nysql adm n ver si on varies slightly depending on your platform and version of MySQL,
but should be similar to that shown here:

$> bi n/ nysql adm n version
nysqgl admin Ver 14.12 Distrib 5.7.44, for pc-linux-gnu on i 686

Server version 5.7.44

Prot ocol version 10

Connecti on Local host via UN X socket
UNI X socket /var/lib/nmysql/nysql . sock
Upt i ne: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0O

Qpens: 0 Flush tables: 1 Open tables: 19

Queri es per second avg: 0.000

To see what else you can do with nysql admi n, invoke it with the - - hel p option.

Verify that you can shut down the server (include a - p option if the r oot account has a password already):

$> bin/nysqgl adm n -u root shutdown

Verify that you can start the server again. Do this by using nysql d_saf e or by invoking nysql d directly.
For example:

32

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_port
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/5.7/en/dbug-package.html
https://dev.mysql.com/doc/refman/5.7/en/setting-environment-variables.html
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html#option_mysqladmin_help

Testing the Server

$> bin/nysql d_safe --user=nysql &
If nysql d_saf e fails, see Section 3.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use nysql showto see what databases exist:

$> bi n/ nmysql show

| informati on_schenma
| nysql I
| performance_schenma
| sys I

The list of installed databases may vary, but always includes at least mysqgl and i nf or mati on_schena.

If you specify a database name, nysql showdisplays a list of the tables within the database:

$> bi n/ nysqgl show nysq
Dat abase: mnysq

fmoccccosocccoococcooocoooso +
| Tabl es |
fmoccccosocccoococcooocoooso +

col ums_pri v

db

engi ne_cost

event

func

general _| og
gtid_execut ed

hel p_cat egory

hel p_keywor d

hel p_rel ation

hel p_t opi c

i nnodb_i ndex_stats
innodb_t abl e_stats
ndb_bi nl og_i ndex

pl ugin

proc

procs_priv
proxies_priv

server _cost

servers

sl ave_mast er _i nfo
slave_relay_l og_info
sl ave_wor ker _i nfo

sl ow_| og

tables_priv

ti me_zone

ti me_zone_| eap_second
ti me_zone_nane
time_zone_transition
time_zone_transition_type
user

Use the nysql program to select information from a table in the mysql database:

$> bin/nysql -e "SELECT User, Host, plugin FROM nysqgl.user" nysq

33

Securing the Initial MySQL Account

T F ST P S +
| User | Host | plugin |
oioioio- S S e S P +
| root | localhost | nysql _native_password |
oioioio- S S e S P +

At this point, your server is running and you can access it. To tighten security if you have not yet assigned
a password to the initial account, follow the instructions in Section 3.4, “Securing the Initial MySQL
Account”.

For more information about mysql , mysqgl adm n, and nysql show, see mysgl — The MySQL Command-
Line Client, mysgladmin — A MySQL Server Administration Program, and mysglshow — Display
Database, Table, and Column Information.

3.4 Securing the Initial MySQL Account

The MySQL installation process involves initializing the data directory, including the grant tables in the
nysql system database that define MySQL accounts. For details, see Section 3.1, “Initializing the Data
Directory”.

This section describes how to assign a password to the initial r oot account created during the MySQL
installation procedure, if you have not already done so.

Note
Alternative means for performing the process described in this section:

¢ On Windows, you can perform the process during installation with MySQL
Installer (see MySQL Installer for Windows).

¢ On all platforms, the MySQL distribution includes
mysqgl secure_installation,acommand-line utility that automates much of
the process of securing a MySQL installation.

¢ On all platforms, MySQL Workbench is available and offers the ability to manage
user accounts (see MySQL Workbench).

A password may already be assigned to the initial account under these circumstances:
» On Windows, installations performed using MySQL Installer give you the option of assigning a password.

* Installation using the macOS installer generates an initial random password, which the installer displays
to the user in a dialog box.

« Installation using RPM packages generates an initial random password, which is written to the server
error log.

« Installations using Debian packages give you the option of assigning a password.

» For data directory initialization performed manually using nysql d --initialize, nysql d generates
an initial random password, marks it expired, and writes it to the server error log. See Section 3.1,
“Initializing the Data Directory”.

The nysql . user grant table defines the initial MySQL user account and its access privileges. Installation
of MySQL createsonlya' root' @ | ocal host"' superuser account that has all privileges and can do
anything. If the r oot account has an empty password, your MySQL installation is unprotected: Anyone can
connect to the MySQL server as r oot without a password and be granted all privileges.

34

https://dev.mysql.com/doc/refman/5.7/en/mysql.html
https://dev.mysql.com/doc/refman/5.7/en/mysql.html
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlshow.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlshow.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-installer.html
https://dev.mysql.com/doc/refman/5.7/en/workbench.html

Securing the Initial MySQL Account

The 'root' @I ocal host' account also has a row in the nysql . proxi es_pri v table that enables
granting the PROXY privilege for' ' @ ' , that is, for all users and all hosts. This enables r oot to set up
proxy users, as well as to delegate to other accounts the authority to set up proxy users. See Section 4.14,
“Proxy Users”.

To assign a password for the initial MySQL r oot account, use the following procedure. Replace r oot -
passwor d in the examples with the password that you want to use.

Start the server if it is not running. For instructions, see Section 3.2, “Starting the Server”.

The initial r oot account may or may not have a password. Choose whichever of the following procedures
applies:

 If the r oot account exists with an initial random password that has been expired, connect to the server
as r oot using that password, then choose a new password. This is the case if the data directory was
initialized using nysqgl d --initialize, either manually or using an installer that does not give you
the option of specifying a password during the install operation. Because the password exists, you must
use it to connect to the server. But because the password is expired, you cannot use the account for any
purpose other than to choose a new password, until you do choose one.

1. If you do not know the initial random password, look in the server error log.

2. Connect to the server as r oot using the password:

$> nysqgl -u root -p
Ent er password: (enter the random root password here)

3. Choose a new password to replace the random password:

nmysql > ALTER USER 'root' @1 ocal host' | DENTI FI ED BY ' r oot - password'

 If the r oot account exists but has no password, connect to the server as r oot using no password, then
assign a password. This is the case if you initialized the data directory using nysqgl d --initialize-
i nsecure.

1. Connect to the server as r oot using no password:
$> nysql -u root --skip-password
2. Assign a password:

nmysql > ALTER USER 'root' @1 ocal host' | DENTI FI ED BY ' r oot - passwor d'

After assigning the r oot account a password, you must supply that password whenever you connect
to the server using the account. For example, to connect to the server using the nysql client, use this
command:

$> nysql -u root -p
Ent er password: (enter root password here)

To shut down the server with nysqgl admi n, use this command:

$> nysqgladmin -u root -p shutdown
Enter password: (enter root password here)

Note

For additional information about setting passwords, see Section 4.10, “Assigning
Account Passwords”. If you forget your r oot password after setting it, see How to
Reset the Root Password.

35

https://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html

Starting and Stopping MySQL Automatically

To set up additional accounts, see Section 4.7, “Adding Accounts, Assigning
Privileges, and Dropping Accounts”.

3.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.
Generally, you start the mysql d server in one of these ways:
* Invoke nysql d directly. This works on any platform.

e On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Starting MySQL as a Windows Service.

» On Unix and Unix-like systems, you can invoke nysql d_saf e, which tries to determine the proper
options for mysqgl d and then runs it with those options. See mysqld_safe — MySQL Server Startup
Script.

» On Linux systems that support systemd, you can use it to control the server. See Managing MySQL
Server with systemd.

« On systems that use System V-style run directories (thatis, / et ¢/ i ni t . d and run-level specific
directories), invoke nysql . ser ver. This script is used primarily at system startup and shutdown. It
usually is installed under the name nysql . The nmysql . ser ver script starts the server by invoking
nysql d_saf e. See mysql.server — MySQL Server Startup Script.

* On macOS, install a launchd daemon to enable automatic MySQL startup at system startup. The
daemon starts the server by invoking nysql d_saf e. For details, see Installing a MySQL Launch
Daemon. A MySQL Preference Pane also provides control for starting and stopping MySQL through the
System Preferences. See Installing and Using the MySQL Preference Pane.

» On Solaris, use the service management framework (SMF) system to initiate and control MySQL startup.

systemd, the nysql d_saf e and nysql . server scripts, Solaris SMF, and the macOS Startup Item (or
MySQL Preference Pane) can be used to start the server manually, or automatically at system startup
time. systemd, nysql . server, and the Startup Item also can be used to stop the server.

The following table shows which option groups the server and startup scripts read from option files.

Table 3.1 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups
mysql d [mysqgl d],[server],
[mysqgl d- maj or _ver si on]
nmysqgl d_safe [mysqgl d],[server],[nmysql d_saf e]
mysql . server [mysql d], [nysql . server],[server]

[mysqgl d- maj or _ver si on] means that groups with names like [nysql d- 5. 6] and [nysql d- 5. 7]
are read by servers having versions 5.6.x, 5.7.x, and so forth. This feature can be used to specify options
that can be read only by servers within a given release series.

For backward compatibility, nysql . ser ver also reads the [mysql _server] group and nysql d_safe
also reads the [saf e_mnysql d] group. To be current, you should update your option files to use the
[mysqgl . server] and [nysql d_saf e] groups instead.

36

https://dev.mysql.com/doc/refman/5.7/en/windows-start-service.html
https://dev.mysql.com/doc/refman/5.7/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/5.7/en/mysqld-safe.html
https://dev.mysql.com/doc/refman/5.7/en/using-systemd.html
https://dev.mysql.com/doc/refman/5.7/en/using-systemd.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-server.html
https://dev.mysql.com/doc/refman/5.7/en/macos-installation-launchd.html
https://dev.mysql.com/doc/refman/5.7/en/macos-installation-launchd.html
https://dev.mysql.com/doc/refman/5.7/en/macos-installation-prefpane.html

Starting and Stopping MySQL Automatically

For more information on MySQL configuration files and their structure and contents, see Using Option
Files.

37

https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/option-files.html

38

Chapter 4 Access Control and Account Management

Table of Contents

4.1 Account User Names and PaSSWOITSuiiiiiiiiiiiiiiie et e et e e e e e et eeeaae e eeenens 40
4.2 Privileges Provided DY MYSQLooiuiiiiiii e 42
G €= 1) A 1= 1 1= PSP 49
4.4 SPecCifying ACCOUNE NGIMESuuiiiiiiii e e et et e e e e e et e e e e et e e et e e et e e et e e et e eaneeannaees 56
4.5 Access Control, Stage 1: Connection VErifiCationc.oveiiiiiiiiiii e 58
4.6 Access Control, Stage 2: Request VErifiCationccuiiiiiiiiiiiicii e e e e 61
4.7 Adding Accounts, Assigning Privileges, and Dropping ACCOUNEScc.uveiuiieiiiiieeieeeiieeiineeaneeaens 63
S =T Ao o ot o1 | PP 66
4.9 When Privilege Changes Take EffECtoiiuiiiiiiiii e 66
4,10 ASSIgNING ACCOUNE PASSWOITSuuiiiiiiiiieiie e e et e e e e r e e e e e e e et e e e e e et e e et e e e e eatee et e eeanaes 67
I = T Vo (o IV, = Vg F= Vo 1= 0 1= | P 68
4.12 Server Handling of EXPired PasSWOIAScccuuiiiiiiiiiiiiiie e e e e e e e e e e e e e eaans 71
4.13 Pluggable AUtNENTICALIONuiiii e e e e e e e e e e e e et e e e e aan s 73
N e 0)4 A U = = £ T PP 76
S Ao o018 [A I Yo 24 T 84
4.16 Setting ACCOUNt RESOUICE LIMILSuuuiiiiiiii e e e e e e e e e e e e et e e et e e e e e eaes 84
4.17 Troubleshooting Problems Connecting 10 MYSQLcoouiiiiiiiii e 87
4.18 SQL-Based Account ACHIVILY AUITINGciernieei e e e e e e e e e et e e e e eeas 91

MySQL enables the creation of accounts that permit client users to connect to the server and access
data managed by the server. The primary function of the MySQL privilege system is to authenticate a
user who connects from a given host and to associate that user with privileges on a database such as
SELECT, | NSERT, UPDATE, and DELETE. Additional functionality includes the ability to grant privileges for
administrative operations.

To control which users can connect, each account can be assigned authentication credentials such as a
password. The user interface to MySQL accounts consists of SQL statements such as CREATE USER,
GRANT, and REVOKE. See Account Management Statements.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which you
connect and the user name you specify. When you issue requests after connecting, the system grants
privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason

to assume that a given user name belongs to the same person on all hosts. For example, the user

j oe who connects from of fi ce. exanpl e. comneed not be the same person as the user j oe who
connects from hone. exanpl e. com MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by j oe from of fi ce. exanpl e. com and a different set of privileges for connections by j oe from

hone. exanpl e. com To see what privileges a given account has, use the SHOW GRANTS statement. For
example:

SHOW GRANTS FOR ' j oe' @of fi ce. exanpl e. con ;
SHOW GRANTS FOR ' j oe' @ hone. exanpl e. conl ;

Internally, the server stores privilege information in the grant tables of the nysql system database. The
MySQL server reads the contents of these tables into memory when it starts and bases access-control
decisions on the in-memory copies of the grant tables.

39

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/account-management-statements.html
https://dev.mysql.com/doc/refman/5.7/en/show-grants.html

Account User Names and Passwords

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1. The server accepts or rejects the connection based on your identity and whether you can verify
your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table in a
database or drop a table from the database, the server verifies that you have the SELECT privilege for the
table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 4.5, “Access Control,
Stage 1: Connection Verification”, and Section 4.6, “Access Control, Stage 2: Request Verification”. For
help in diagnosing privilege-related problems, see Section 4.17, “Troubleshooting Problems Connecting to
MySQL".

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details about
the conditions under which the server reloads the grant tables, see Section 4.9, “When Privilege Changes
Take Effect”.

There are some things that you cannot do with the MySQL privilege system:

* You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

» You cannot specify that a user has privileges to create or drop tables in a database but not to create or
drop the database itself.

» A password applies globally to an account. You cannot associate a password with a specific object such
as a database, table, or routine.

4.1 Account User Names and Passwords

MySQL stores accounts in the user table of the nysqgl system database. An account is defined in terms
of a user name and the client host or hosts from which the user can connect to the server. For information
about account representation in the user table, see Section 4.3, “Grant Tables”.

An account may also have authentication credentials such as a password. The credentials are handled
by the account authentication plugin. MySQL supports multiple authentication plugins. Some of them
use built-in authentication methods, whereas others enable authentication using external authentication
methods. See Section 4.13, “Pluggable Authentication”.

There are several distinctions between the way user names and passwords are used by MySQL and your
operating system:

» User names, as used by MySQL for authentication purposes, have nothing to do with user names (login
names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in using the
current Unix user name as the MySQL user name, but that is for convenience only. The default can
be overridden easily, because client programs permit any user name to be specified with a - u or - -
user option. This means that anyone can attempt to connect to the server using any user name, so you
cannot make a database secure in any way unless all MySQL accounts have passwords. Anyone who
specifies a user name for an account that has no password can connect successfully to the server.

» MySQL user names are up to 32 characters long. Operating system user names may have a different
maximum length.

40

Account User Names and Passwords

Warning

The MySQL user name length limit is hardcoded in MySQL servers and clients,
and trying to circumvent it by modifying the definitions of the tables in the nysql
database does not work.

You should never alter the structure of tables in the nysql database in any
manner whatsoever except by means of the procedure that is described in
Upgrading MySQL. Attempting to redefine the MySQL system tables in any other
fashion results in undefined and unsupported behavior. The server is free to
ignore rows that become malformed as a result of such modifications.

» To authenticate client connections for accounts that use built-in authentication methods, the server uses
passwords stored in the user table. These passwords are distinct from passwords for logging in to your
operating system. There is ho necessary connection between the “external” password you use to log in
to a Windows or Unix machine and the password you use to access the MySQL server on that machine.

If the server authenticates a client using some other plugin, the authentication method that the plugin
implements may or may not use a password stored in the user table. In this case, it is possible that an
external password is also used to authenticate to the MySQL server.

» Passwords stored in the user table are encrypted using plugin-specific algorithms. For information
about MySQL native password hashing, see Section 2.2.4, “Password Hashing in MySQL".

« If the user name and password contain only ASCII characters, it is possible to connect to the server
regardless of character set settings. To enable connections when the user name or password contain
non-ASCII characters, client applications should call the nysql _opti ons() C API function with the
MYSQL_SET CHARSET NANE option and appropriate character set name as arguments. This causes
authentication to take place using the specified character set. Otherwise, authentication fails unless the
server default character set is the same as the encoding in the authentication defaults.

Standard MySQL client programs support a - - def aul t - char act er - set option that causes

nysql _options() to be called as just described. In addition, character set autodetection is supported
as described in Connection Character Sets and Collations. For programs that use a connector that is not
based on the C API, the connector may provide an equivalent to nysql _opti ons() that can be used
instead. Check the connector documentation.

The preceding notes do not apply for ucs2, ut f 16, and ut f 32, which are not permitted as client
character sets.

The MySQL installation process populates the grant tables with an initial r oot account, as described in
Section 3.4, “Securing the Initial MySQL Account”, which also discusses how to assign a password to it.
Thereafter, you normally set up, modify, and remove MySQL accounts using statements such as CREATE
USER, DROP USER, GRANT, and REVCOKE. See Section 4.7, “Adding Accounts, Assigning Privileges, and
Dropping Accounts”, and Account Management Statements.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

$> nysql --user=finley --password db_nane
If you prefer short options, the command looks like this:
$> nysql -u finley -p db_nanme

If you omit the password value following the - - passwor d or - p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

41

https://dev.mysql.com/doc/refman/5.7/en/upgrading.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/refman/5.7/en/charset-connection.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/account-management-statements.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password

Privileges Provided by MySQL

$> nysql --user=finley --password=password db_nane
$> nysql -u finley -ppassword db_nane

If you use the - p option, there must be no space between - p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 2.2.1, “End-User
Guidelines for Password Security”. To avoid giving the password on the command line, use an option file
or a login path file. See Using Option Files, and mysqgl_config_editor — MySQL Configuration Utility.

For additional information about specifying user names, passwords, and other connection parameters, see
Connecting to the MySQL Server Using Command Options.

4.2 Privileges Provided by MySQL

The privileges granted to a MySQL account determine which operations the account can perform. MySQL
privileges differ in the contexts in which they apply and at different levels of operation:

« Administrative privileges enable users to manage operation of the MySQL server. These privileges are
global because they are not specific to a particular database.

» Database privileges apply to a database and to all objects within it. These privileges can be granted for
specific databases, or globally so that they apply to all databases.

* Privileges for database objects such as tables, indexes, views, and stored routines can be granted for
specific objects within a database, for all objects of a given type within a database (for example, all
tables in a database), or globally for all objects of a given type in all databases.

Information about account privileges is stored in the grant tables in the mysql system database. For a
description of the structure and contents of these tables, see Section 4.3, “Grant Tables”. The MySQL
server reads the contents of the grant tables into memory when it starts, and reloads them under the
circumstances indicated in Section 4.9, “When Privilege Changes Take Effect”. The server bases access-
control decisions on the in-memory copies of the grant tables.

Important

Some MySQL releases introduce changes to the grant tables to add new privileges
or features. To make sure that you can take advantage of any new capabilities,
update your grant tables to the current structure whenever you upgrade MySQL.
See Upgrading MySQL.

The following sections summarize the available privileges, provide more detailed descriptions of each
privilege, and offer usage guidelines.

» Summary of Available Privileges
 Privilege Descriptions

 Privilege-Granting Guidelines

Summary of Available Privileges

The following table shows the privilege names used in GRANT and REVCKE statements, along with the
column name associated with each privilege in the grant tables and the context in which the privilege
applies.

Table 4.1 Permissible Privileges for GRANT and REVOKE

Privilege Grant Table Column Context

ALL [PRI VI LEGES] Synonym for “all privileges” Server administration

42

https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/5.7/en/connecting.html
https://dev.mysql.com/doc/refman/5.7/en/upgrading.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html

Privilege Descriptions

Privilege Grant Table Column Context

ALTER Alter priv Tables

ALTER ROUTI NE Alter _routine priv Stored routines

CREATE Create priv Databases, tables, or indexes

CREATE ROUTI NE

Create_routine priv

Stored routines

CREATE TABLESPACE

Create_t abl espace_priv

Server administration

CREATE TEMPORARY TABLES

Create tnp_table priv

Tables

CREATE USER Create_user _priv Server administration

CREATE VI EW Create_view priv Views

DELETE Delete_priv Tables

DROP Drop_priv Databases, tables, or views

EVENT Event priv Databases

EXECUTE Execute_priv Stored routines

FI LE File priv File access on server host

GRANT OPTI ON Grant _priv Databases, tables, or stored
routines

| NDEX | ndex_priv Tables

| NSERT I nsert _priv Tables or columns

LOCK TABLES Lock _tables priv Databases

PROCESS Process _priv Server administration

PROXY See proxi es_pri v table Server administration

REFERENCES Ref erences_priv Databases or tables

RELOQAD Rel oad_priv Server administration

REPLI CATI ON CLI ENT

Repl _client_priv

Server administration

REPLI CATI ON SLAVE

Repl _slave_priv

Server administration

SELECT

Sel ect _priv

Tables or columns

SHOW DATABASES Show db_priv Server administration
SHOW VI EW Show_vi ew _priv Views

SHUTDOWN Shut down_pri v Server administration
SUPER Super _priv Server administration
TRI GGER Trigger_priv Tables

UPDATE Update priv Tables or columns
USAGE Synonym for “no privileges” Server administration

Privilege Descriptions

The following list provides general descriptions of each privilege available in MySQL. Particular SQL

statements might have more specific privilege requirements than indicated here. If so, the description for

the statement in question provides the details.

* ALL, ALL PRI VI LEGES

43

Privilege Descriptions

These privilege specifiers are shorthand for “all privileges available at a given privilege level” (except
GRANT OPTI ON). For example, granting ALL at the global or table level grants all global privileges or all
table-level privileges, respectively.

ALTER

Enables use of the ALTER TABLE statement to change the structure of tables. ALTER TABLE also
requires the CREATE and | NSERT privileges. Renaming a table requires ALTER and DROCP on the old
table, CREATE, and | NSERT on the new table.

ALTER ROUTI NE

Enables use of statements that alter or drop stored routines (stored procedures and functions).
CREATE

Enables use of statements that create new databases and tables.

CREATE ROUTI NE

Enables use of statements that create stored routines (stored procedures and functions).
CREATE TABLESPACE

Enables use of statements that create, alter, or drop tablespaces and log file groups.

CREATE TEMPORARY TABLES

Enables the creation of temporary tables using the CREATE TEMPORARY TABLE statement.

After a session has created a temporary table, the server performs no further privilege checks on the
table. The creating session can perform any operation on the table, such as DROP TABLE, | NSERT,
UPDATE, or SELECT. For more information, see CREATE TEMPORARY TABLE Statement.

CREATE USER

Enables use of the ALTER USER, CREATE USER, DROP USER, RENAMVE USER, and REVOKE ALL
PRI VI LEGES statements.

CREATE VI EW

Enables use of the CREATE VI EWstatement.
DELETE

Enables rows to be deleted from tables in a database.
DROP

Enables use of statements that drop (remove) existing databases, tables, and views. The DROP privilege
is required to use the ALTER TABLE ... DROP PARTI TI ON statement on a partitioned table. The
DROP privilege is also required for TRUNCATE TABLE.

EVENT
Enables use of statements that create, alter, drop, or display events for the Event Scheduler.

EXECUTE

44

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-temporary-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/create-temporary-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
https://dev.mysql.com/doc/refman/5.7/en/rename-user.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Privilege Descriptions

Enables use of statements that execute stored routines (stored procedures and functions).

FI LE

Affects the following operations and server behaviors:

« Enables reading and writing files on the server host using the LOAD DATA and SELECT ... [INTO
QUTFI LE statements and the LOAD _FI LE() function. A user who has the FI LE privilege can read
any file on the server host that is either world-readable or readable by the MySQL server. (This implies
the user can read any file in any database directory, because the server can access any of those
files.)

< Enables creating new files in any directory where the MySQL server has write access. This includes
the server's data directory containing the files that implement the privilege tables.

e As of MySQL 5.7.17, enables use of the DATA DI RECTORY or | NDEX DI RECTCRY table option for the
CREATE TABLE statement.

As a security measure, the server does not overwrite existing files.

To limit the location in which files can be read and written, set the secure _fil e pri v system variable
to a specific directory. See Server System Variables.

GRANT OPTI ON

Enables you to grant to or revoke from other users those privileges that you yourself possess.

I NDEX

Enables use of statements that create or drop (remove) indexes. | NDEX applies to existing tables. If
you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

| NSERT

Enables rows to be inserted into tables in a database. | NSERT is also required for the ANALYZE TABLE,
OPTI M ZE TABLE, and REPAI R TABLE table-maintenance statements.

LCOCK TABLES

Enables use of explicit LOCK TABLES statements to lock tables for which you have the SELECT
privilege. This includes use of write locks, which prevents other sessions from reading the locked table.

PROCESS

The PROCESS privilege controls access to information about threads executing within the server
(that is, information about statements being executed by sessions). Thread information available
using the SHOW PROCESSLI ST statement, the nysql adm n processli st command, the

45

https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_file_priv
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/analyze-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html

Privilege Descriptions

| NFORVATI ON_SCHENA. PROCESSLI ST table, and the Performance Schema pr ocessl i st table is
accessible as follows:

< With the PROCESS privilege, a user has access to information about all threads, even those belonging
to other users.

« Without the PROCESS privilege, nonanonymous users have access to information about their own
threads but not threads for other users, and anonymous users have no access to thread information.

Note

The Performance Schemat hr eads table also provides thread information, but
table access uses a different privilege model. See The threads Table.

The PROCESS privilege also enables use of the SHOWN ENG NE statement, access to the
| NFORVATI ON_SCHENMA | nnoDB tables (tables with names that begin with | NNCDB_), and (as of MySQL
5.7.31) access to the | NFORVATI ON_SCHENA FI LES table.

PROXY

Enables one user to impersonate or become known as another user. See Section 4.14, “Proxy Users”.

REFERENCES

Creation of a foreign key constraint requires the REFERENCES privilege for the parent table.

RELOAD

The RELOAD enables the following operations:
» Use of the FLUSH statement.

e Use of nysql adm n commands that are equivalent to FLUSH operations: f | ush- host s, f | ush-
| ogs, flush-privileges,flush-status,flush-tables,flush-threads,refresh,and
r el oad.

The r el oad command tells the server to reload the grant tables into memory. f | ush- pri vi | eges
is a synonym for r el oad. The r ef r esh command closes and reopens the log files and flushes all
tables. The other f | ush- xxx commands perform functions similar to r ef r esh, but are more specific
and may be preferable in some instances. For example, if you want to flush just the log files, f | ush-

| ogs is a better choice than r ef r esh.

¢ Use of nysql dunp options that perform various FLUSH operations: - - f | ush-1 ogs and - - mast er -
dat a.

* Use of the RESET statement.

REPLI CATI ON CLI ENT

Enables use of the SHON MASTER STATUS, SHOW SLAVE STATUS, and SHOW Bl NARY LOGS
statements.

REPLI CATI ON SLAVE

Enables the account to request updates that have been made to databases on the source server, using
the SHOW SLAVE HOSTS, SHOW RELAYLOG EVENTS, and SHOW Bl NLOG EVENTS statements. This
privilege is also required to use the nmysql bi nl og options - - r ead- f r om r enot e- server (- R) and

46

https://dev.mysql.com/doc/refman/5.7/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-engine.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_flush-logs
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/5.7/en/reset.html
https://dev.mysql.com/doc/refman/5.7/en/show-master-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/5.7/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-server

Privilege Descriptions

--read-fromrenot e- mast er . Grant this privilege to accounts that are used by replica servers to
connect to the current server as their source.

SELECT

Enables rows to be selected from tables in a database. SELECT statements require the SELECT privilege
only if they actually access tables. Some SELECT statements do not access tables and can be executed
without permission for any database. For example, you can use SELECT as a simple calculator to
evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI () *2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col _nane=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

The SELECT privilege is needed for tables or views used with EXPLAI N, including any underlying tables
in view definitions.

SHOW DATABASES

Enables the account to see database names by issuing the SHOW DATABASE statement. Accounts that
do not have this privilege see only databases for which they have some privileges, and cannot use the
statement at all if the server was started with the - - ski p- show dat abase option.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHON DATABASES or by
examining the | NFORVATI ON_SCHEMA SCHENATA table.

SHOW VI EW

Enables use of the SHON CREATE VI EWstatement. This privilege is also needed for views used with
EXPLAI N.

SHUTDOWN

Enables use of the SHUTDOWN statement, the nysql adm n shut down command, and the
nysqgl _shut down() C API function.

SUPER

Affects the following operations and server behaviors:

« Enables server configuration changes by modifying global system variables. For some system
variables, setting the session value also requires the SUPER privilege. If a system variable is restricted
and requires a special privilege to set the session value, the variable description indicates that

47

https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-master
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/explain.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-show-database
https://dev.mysql.com/doc/refman/5.7/en/show-databases.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-schemata-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-create-view.html
https://dev.mysql.com/doc/refman/5.7/en/explain.html
https://dev.mysql.com/doc/refman/5.7/en/shutdown.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-shutdown.html

Privilege Descriptions

restriction. Examples include bi nl og_format, sql _| og_bi n,and sql | og_of f. See also System
Variable Privileges.

< Enables changes to global transaction characteristics (see SET TRANSACTION Statement).
< Enables the account to start and stop replication, including Group Replication.

* Enables use of the CHANGE MASTER TOand CHANGE REPLI CATI ON FI LTER statements.
« Enables binary log control by means of the PURGE Bl NARY LOGS and Bl NLOG statements.

» Enables setting the effective authorization ID when executing a view or stored program. A user with
this privilege can specify any account in the DEFI NER attribute of a view or stored program.

« Enables use of the CREATE SERVER, ALTER SERVER, and DROP SERVER statements.
« Enables use of the nysql adn n debug command.

« Enables | nnoDB encryption key rotation.

« Enables reading the DES key file by the DES_ENCRYPT() function.

» Enables execution of Version Tokens functions.

< Enables control over client connections not permitted to non-SUPER accounts:

« Enables use of the KI LL statement or nysql adnmi n ki | | command to kill threads belonging to
other accounts. (An account can always kill its own threads.)

« The server does not execute i ni t _connect system variable content when SUPER clients connect.

» The server accepts one connection from a SUPER client even if the connection limit configured by
the max_connect i ons system variable is reached.

» A server in offline mode (of f | i ne_node enabled) does not terminate SUPER client connections at
the next client request, and accepts new connections from SUPER clients.

» Updates can be performed even when the r ead_onl y system variable is enabled. This applies to
explicit table updates, and to use of account-management statements such as GRANT and REVOKE
that update tables implicitly.

You may also need the SUPER privilege to create or alter stored functions if binary logging is enabled, as
described in Stored Program Binary Logging.

* TRI GGER

Enables trigger operations. You must have this privilege for a table to create, drop, execute, or display
triggers for that table.

When a trigger is activated (by a user who has privileges to execute | NSERT, UPDATE, or DELETE
statements for the table associated with the trigger), trigger execution requires that the user who defined
the trigger still have the TRI GGER privilege for the table.

 UPDATE
Enables rows to be updated in tables in a database.

* USAGE

48

https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sql_log_off
https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/5.7/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/5.7/en/set-transaction.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/binlog.html
https://dev.mysql.com/doc/refman/5.7/en/create-server.html
https://dev.mysql.com/doc/refman/5.7/en/alter-server.html
https://dev.mysql.com/doc/refman/5.7/en/drop-server.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_des-encrypt
https://dev.mysql.com/doc/refman/5.7/en/kill.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html

Privilege-Granting Guidelines

This privilege specifier stands for “no privileges.” It is used at the global level with GRANT to modify
account attributes such as resource limits or SSL characteristics without naming specific account
privileges in the privilege list. SHOW GRANTS displays USAGE to indicate that an account has no
privileges at a privilege level.

Privilege-Granting Guidelines

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular
caution in granting the FI LE and administrative privileges:

» FI LE can be abused to read into a database table any files that the MySQL server can read on the
server host. This includes all world-readable files and files in the server's data directory. The table can
then be accessed using SELECT to transfer its contents to the client host.

* GRANT OPTI ON enables users to give their privileges to other users. Two users that have different
privileges and with the GRANT OPTI ON privilege are able to combine privileges.

» ALTER may be used to subvert the privilege system by renaming tables.
» SHUTDOWN can be abused to deny service to other users entirely by terminating the server.

» PROCESS can be used to view the plain text of currently executing statements, including statements that
set or change passwords.

» SUPER can be used to terminate other sessions or change how the server operates.

 Privileges granted for the mysql system database itself can be used to change passwords and other
access privilege information:

« Passwords are stored encrypted, so a malicious user cannot simply read them to know the
plain text password. However, a user with write access to the mysql . user system table
aut henti cation_string column can change an account's password, and then connect to the
MySQL server using that account.

* | NSERT or UPDATE granted for the mysql system database enable a user to add privileges or modify
existing privileges, respectively.

» DROP for the nysql system database enables a user to remote privilege tables, or even the database
itself.

4.3 Grant Tables

The mysql system database includes several grant tables that contain information about user accounts
and the privileges held by them. This section describes those tables. For information about other tables in
the system database, see The mysql System Database.

The discussion here describes the underlying structure of the grant tables and how the server uses their
contents when interacting with clients. However, normally you do not modify the grant tables directly.
Modifications occur indirectly when you use account-management statements such as CREATE USER,
GRANT, and REVOKE to set up accounts and control the privileges available to each one. See Account
Management Statements. When you use such statements to perform account manipulations, the server
modifies the grant tables on your behalf.

49

https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/show-grants.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/system-schema.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/account-management-statements.html
https://dev.mysql.com/doc/refman/5.7/en/account-management-statements.html

Grant Table Overview

Note

Direct modification of grant tables using statements such as | NSERT, UPDATE, or
DELETE is discouraged and done at your own risk. The server is free to ignore rows
that become malformed as a result of such modifications.

As of MySQL 5.7.18, for any operation that modifies a grant table, the server
checks whether the table has the expected structure and produces an error if
not. To update the tables to the expected structure, perform the MySQL upgrade
procedure. See Upgrading MySQL.

» Grant Table Overview

* The user and db Grant Tables

» The tables_priv and columns_priv Grant Tables
e The procs_priv Grant Table

» The proxies_priv Grant Table

» Grant Table Scope Column Properties

e Grant Table Privilege Column Properties

Grant Table Overview
These nysql database tables contain grant information:

e user: User accounts, global privileges, and other nonprivilege columns.

db: Database-level privileges.

» tabl es_priv: Table-level privileges.

e col utms_pri v: Column-level privileges.

e procs_pri v: Stored procedure and function privileges.

e proxies_priv:Proxy-user privileges.

Each grant table contains scope columns and privilege columns:

» Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of ' hl. exanpl e. net' and
' bob' applies to authenticating connections made to the server from the host h1. exanpl e. net by
a client that specifies a user name of bob. Similarly, a db table row with Host , User , and Db column
values of ' h1l. exanpl e. net',"' bob' and' reports' applies when bob connects from the host
h1l. exanpl e. net to access the r eport s database. Thet abl es_priv and col unms_pri v tables
contain scope columns indicating tables or table/column combinations to which each row applies. The
procs_pri v scope columns indicate the stored routine to which each row applies.

 Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 4.6, “Access Control, Stage 2: Request Verification”, describes
the rules for this.

In addition, a grant table may contain columns used for purposes other than scope or privilege
assessment.

50

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/upgrading.html

The user and db Grant Tables

The server uses the grant tables in the following manner:

» The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's global privileges. Any
privileges granted in this table apply to all databases on the server.

Caution

Because a global privilege is considered a privilege for all databases, any global
privilege enables a user to see all database names with SHON DATABASES or by
examining the | NFORVATI ON_SCHEMA SCHENATA table.

» The db table scope columns determine which users can access which databases from which hosts. The
privilege columns determine the permitted operations. A privilege granted at the database level applies
to the database and to all objects in the database, such as tables and stored programs.

e Thetabl es_privandcol utms_pri v tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies only
to a specific column.

» The procs_pri v table applies to stored routines (stored procedures and functions). A privilege granted
at the routine level applies only to a single procedure or function.

* The proxi es_pri v table indicates which users can act as proxies for other users and whether a user
can grant the PROXY privilege to other users.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload the
tables by issuing a FLUSH PRI VI LEGES statement or executing a nysql admi n fl ush-privil eges
or mysql adm n rel oad command. Changes to the grant tables take effect as indicated in Section 4.9,
“When Privilege Changes Take Effect”.

When you modify an account, it is a good idea to verify that your changes have the intended effect.

To check the privileges for a given account, use the SHON GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob and
pc84. exanpl e. com use this statement:

SHOW GRANTS FOR ' bob' @ pc84. exanpl e. con ;

To display nonprivilege properties of an account, use SHOWV CREATE USER:

SHOW CREATE USER ' bob' @ pc84. exanpl e. com ;

The user and db Grant Tables

The server uses the user and db tables in the nysql database at both the first and second stages of
access control (see Chapter 4, Access Control and Account Management). The columns in the user and
db tables are shown here.

Table 4.2 user and db Table Columns

Table Name user db
Scope columns Host Host
User Db
User

Privilege columns

Sel ect _priv

Sel ect _priv

I nsert_priv

I nsert_priv

51

https://dev.mysql.com/doc/refman/5.7/en/show-databases.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-schemata-table.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/5.7/en/show-grants.html
https://dev.mysql.com/doc/refman/5.7/en/show-create-user.html

The user and db Grant Tables

Table Name user db

Update_priv Update_priv
Del ete_priv Del ete_priv
| ndex_priv | ndex_priv
Alter_priv Alter _priv
Create_priv Create_priv
Drop_priv Drop_priv

Grant _priv Grant _priv

Create_view priv

Create_view priv

Show view priv

Show vi ew priv

Create_routine_priv

Create_routine_priv

Alter _routine priv

Al'ter_routine_priv

Execute_priv

Execute_priv

Trigger_priv

Trigger_priv

Event _priv

Event _priv

Create tnp_table priv

Create tnp_table priv

Lock_tables_priv

Lock _tables _priv

Ref erences_priv

Ref erences_priv

Rel oad_priv

Shut down_pri v

Process_priv

File priv

Show _db_priv

Super _priv

Repl _sl ave _priv

Repl client _priv

Create_user _priv

Create_tabl espace priv

Security columns

ssl _type

ssl _ci pher

x509 i ssuer

x509_subj ect

pl ugi n

aut henti cation_string

password_expired

password_| ast _changed

password_lifetine

account _| ocked

Resource control columns

max_questions

52

The tables_priv and columns_priv Grant Tables

Table Name user db

max_updat es

max_connecti ons

max_user _connections

The user table pl ugi n and aut henti cati on_stri ng columns store authentication plugin and
credential information.

The server uses the plugin named in the pl ugi n column of an account row to authenticate connection
attempts for the account.

The pl ugi n column must be nonempty. At startup, and at runtime when FLUSH PRI VI LEGES is
executed, the server checks user table rows. For any row with an empty pl ugi n column, the server
writes a warning to the error log of this form:

[Warni ng] User entry 'user_nanme' @host_nanme' has an enpty plugin
val ue. The user will be ignored and no one can login with this user
anynor e.

To address this problem, see Section 6.1.3, “Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin”.

The passwor d_expi r ed column permits DBAS to expire account passwords and require users to reset
their password. The default passwor d_expi red valueis' N , but can be setto' Y' with the ALTER
USER statement. After an account's password has been expired, all operations performed by the account in
subsequent connections to the server result in an error until the user issues an ALTER USER statement to
establish a new account password.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

password | ast _changed is a TI MESTAMP column indicating when the password was last changed. The
value is non-NULL only for accounts that use MySQL built-in authentication methods (accounts that use an
authentication plugin of mysql _nati ve_passwor d or sha256_passwor d). The value is NULL for other
accounts, such as those authenticated using an external authentication system.

password_| ast changed is updated by the CREATE USER, ALTER USER, and SET PASSWORD
statements, and by GRANT statements that create an account or change an account password.

password_|ifeti ne indicates the account password lifetime, in days. If the password is past its lifetime
(assessed using the passwor d_| ast _changed column), the server considers the password expired
when clients connect using the account. A value of N greater than zero means that the password must

be changed every N days. A value of 0 disables automatic password expiration. If the value is NULL (the
default), the global expiration policy applies, as defined by the def aul t _password | i feti nme system
variable.

account _| ocked indicates whether the account is locked (see Section 4.15, “Account Locking”).
The tables_priv and columns_priv Grant Tables
During the second stage of access control, the server performs request verification to ensure that each

client has sufficient privileges for each request that it issues. In addition to the user and db grant tables,
the server may also consult the t abl es_pri v and col unms_pri v tables for requests that involve tables.

53

https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime

The procs_priv Grant Table

The latter tables provide finer privilege control at the table and column levels. They have the columns

shown in the following table.

Table 4.3 tables_priv and columns_priv Table Columns

Table Name tables _priv columms_priv
Scope columns Host Host

Db Db

User User

Tabl e_nane

Tabl e_nane

Col um_nane

Privilege columns

Tabl e_priv

Col um_priv

Col um_priv

Other columns

Ti mest anp

Ti mest anp

Grant or

The Ti nest anp and Gr ant or columns are set to the current timestamp and the CURRENT_USER value,
respectively, but are otherwise unused.

The procs_priv Grant Table

For verification of requests that involve stored routines, the server may consult the procs_pri v table,

which has the columns shown in the following table.

Table 4.4 procs_priv Table Columns

Table Name

procs_priv

Scope columns

Host

Db

User

Rout i ne_nane

Routi ne_type

Privilege columns Proc_priv
Other columns Ti mest anmp
G ant or

The Rout i ne_t ype column is an ENUMcolumn with values of " FUNCTI ON' or ' PROCEDURE' to indicate
the type of routine the row refers to. This column enables privileges to be granted separately for a function
and a procedure with the same name.

The Ti nest anp and Gr ant or columns are unused.

The proxies_priv Grant Table

The pr oxi es_pri v table records information about proxy accounts. It has these columns:

» Host, User: The proxy account; that is, the account that has the PROXY privilege for the proxied

account.

e Proxi ed _host, Proxi ed_user: The proxied account.

54

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/enum.html

Grant Table Scope Column Properties

e Grantor, Ti nest anp: Unused.
Wt h_grant: Whether the proxy account can grant the PROXY privilege to other accounts.

For an account to be able to grant the PROXY privilege to other accounts, it must have a row in the

proxi es_priv table with Wth_grant setto1and Proxi ed_host and Proxi ed_user set to indicate
the account or accounts for which the privilege can be granted. For example, the ' r oot @ | ocal host "'
account created during MySQL installation has a row in the pr oxi es_pr i v table that enables granting the
PROXY privilege for' ' @', that is, for all users and all hosts. This enables r oot to set up proxy users, as
well as to delegate to other accounts the authority to set up proxy users. See Section 4.14, “Proxy Users”.

Grant Table Scope Column Properties

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 4.5 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters
Host, Proxi ed_host 60
User, Proxi ed_user 32
Passwor d 41
Db 64
Tabl e_nane 64
Col utm_nane 64
Rout i ne_nane 64

Host and Pr oxi ed_host values are converted to lowercase before being stored in the grant tables.

For access-checking purposes, comparisons of User , Pr oxi ed_user, Passwor d,
aut henti cation_string, Db, and Tabl e_nane values are case-sensitive. Comparisons of Host ,
Proxi ed_host, Col umm_nane, and Rout i ne_nane values are not case-sensitive.

Grant Table Privilege Column Properties

The user and db tables list each privilege in a separate column that is declared as ENUM ' N , ' Y")
DEFAULT ' N . In other words, each privilege can be disabled or enabled, with the default being disabled.

The tabl es_priv,colums_priv, and procs_pri v tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 4.6 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Tabl e_priv "Select', 'lInsert',
"Update', 'Delete',
"Create', 'Drop',

"Grant', 'References',
"Index', "Alter', 'Create
View , 'Show view,
"Trigger'

55

https://dev.mysql.com/doc/refman/5.7/en/set.html

Specifying Account Names

Table Name Column Name Possible Set Elements
tables_priv Col um_priv "Select', 'lInsert',
"Update', 'References’
colums_priv Col um_priv "Select', '"lnsert',
"Update', 'References'
procs_priv Proc_priv ' Execute', 'Alter
Routine', 'Gant'’

Only the user table specifies administrative privileges, such as RELOAD and SHUTDOAN. Administrative
operations are operations on the server itself and are not database-specific, so there is no reason to list
these privileges in the other grant tables. Consequently, the server need consult only the user table to
determine whether a user can perform an administrative operation.

The FI LE privilege also is specified only in the user table. It is not an administrative privilege as such, but
a user's ability to read or write files on the server host is independent of the database being accessed.

4.4 Specifying Account Names

MySQL account names consist of a user name and a host name, which enables creation of distinct
accounts for users with the same user name who connect from different hosts. This section describes the
syntax for account hames, including special values and wildcard rules.

Account names appear in SQL statements such as CREATE USER, GRANT, and SET PASSWORD and
follow these rules:

» Account name syntax is' user _nane' @ host _nane' .

 The @ host _nane' part is optional. An account name consisting only of a user name is equivalent to
"user_name' @ % . For example, ' ne' is equivalentto’' ne' @ % .

» The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes must
be used if a user _nane string contains special characters (such as space or -), or a host _nanmne string
contains special characters or wildcard characters (such as . or %). For example, in the account name
"test-user' @% coni, both the user name and host name parts require quotes.

» Quote user names and host names as identifiers or as strings, using either backticks ("), single
quotation marks ('), or double quotation marks ("). For string-quoting and identifier-quoting guidelines,
see String Literals, and Schema Object Names.

» The user name and host name parts, if quoted, must be quoted separately. That is,
write ' me' @ | ocal host' ,not' me@ ocal host' . The latter is actually equivalent to
"me@ ocal host' @ % .

» A reference to the CURRENT _USER or CURRENT _USER() function is equivalent to specifying the current
client's user name and host name literally.

MySQL stores account names in grant tables in the mysql system database using separate columns for
the user name and host name parts:

* The user table contains one row for each account. The User and Host columns store the user name
and host name. This table also indicates which global privileges the account has.

« Other grant tables indicate privileges an account has for databases and objects within databases. These
tables have User and Host columns to store the account name. Each row in these tables associates
with the account in the user table that has the same User and Host values.

56

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/string-literals.html
https://dev.mysql.com/doc/refman/5.7/en/identifiers.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

Specifying Account Names

» For access-checking purposes, comparisons of User values are case-sensitive. Comparisons of Host
values are not case-sensitive.

For additional detail about the properties of user names and host names as stored in the grant tables, such
as maximum length, see Grant Table Scope Column Properties.

User names and host names have certain special values or wildcard conventions, as described following.

The user name part of an account name is either a nonblank value that literally matches the user name for
incoming connection attempts, or a blank value (the empty string) that matches any user name. An account
with a blank user name is an anonymous user. To specify an anonymous user in SQL statements, use a
guoted empty user name part, suchas'' @1 ocal host " .

The host name part of an account name can take many forms, and wildcards are permitted:

» A host value can be a host name or an IP address (IPv4 or IPv6). The name ' | ocal host"' indicates the
local host. The IP address ' 127. 0. 0. 1' indicates the IPv4 loopback interface. The IP address ' : : 1'
indicates the IPv6 loopback interface.

» The %and _ wildcard characters are permitted in host name or IP address values. These have the same
meaning as for pattern-matching operations performed with the LI KE operator. For example, a host
value of ' % matches any host name, whereas a value of ' % nysqgl . comi matches any host in the
mysql . comdomain. ' 198. 51. 100. % matches any host in the 198.51.100 class C network.

Because IP wildcard values are permitted in host values (for example, ' 198. 51. 100. % to

match every host on a subnet), someone could try to exploit this capability by naming a host

198. 51. 100. sonewher e. com To foil such attempts, MySQL does not perform matching on host
names that start with digits and a dot. For example, if a host is named 1. 2. exanpl e. com its name
never matches the host part of account names. An IP wildcard value can match only IP addresses, not
host names.

» For a host value specified as an IPv4 address, a netmask can be given to indicate how many address
bits to use for the network number. Netmask notation cannot be used for IPv6 addresses.

The syntax is host i p/ net mask. For example:

CREATE USER ' davi d' @ 198. 51. 100. 0/ 255. 255. 255. 0' ;

This enables davi d to connect from any client host having an IP address cl i ent _i p for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 198. 51. 100. 0
IP addresses that satisfy this condition range from 198. 51. 100. 0 to 198. 51. 100. 255.
A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

¢ 198. 0. 0.0/ 255. 0. 0. 0: Any host on the 198 class A network

198. 51. 0. 0/ 255. 255. 0. 0: Any host on the 198.51 class B network

198. 51. 100. 0/ 255. 255. 255. 0: Any host on the 198.51.100 class C network

198. 51. 100. 1: Only the host with this specific IP address

57

https://dev.mysql.com/doc/refman/5.7/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

Access Control, Stage 1: Connection Verification

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, the server performs this comparison as a string
match, even for an account host value given as an IP address. This means that you should specify account
host values in the same format used by DNS. Here are examples of problems to watch out for:

» Suppose that a host on the local network has a fully qualified name of host 1. exanpl e. com If DNS
returns name lookups for this host as host 1. exanpl e. com use that name in account host values. If
DNS returns just host 1, use host 1 instead.

 If DNS returns the IP address for a given host as 198. 51. 100. 2, that matches an account host
value of 198. 51. 100. 2 but not 198. 051. 100. 2. Similarly, it matches an account host pattern like
198. 51. 100. %but not 198. 051. 100. %

To avoid problems like these, it is advisable to check the format in which your DNS returns host names and
addresses. Use values in the same format in MySQL account names.

4.5 Access Control, Stage 1. Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on
these conditions:

* Your identity and whether you can verify it by supplying the proper credentials.
» Whether your account is locked or unlocked.

The server checks credentials first, then account locking state. A failure at either step causes the server to
deny access to you completely. Otherwise, the server accepts the connection, and then enters Stage 2 and
waits for requests.

The server performs identity and credentials checking using columns in the user table, accepting the
connection only if these conditions are satisfied:

* The client host name and user name match the Host and User columns in some user table row. For
the rules governing permissible Host and User values, see Section 4.4, “Specifying Account Names”.

» The client supplies the credentials specified in the row (for example, a password), as indicated by the
aut henti cati on_stri ng column. Credentials are interpreted using the authentication plugin named
in the pl ugi n column.

» The row indicates that the account is unlocked. Locking state is recorded in the account _| ocked
column, which must have a value of ' N' . Account locking can be set or changed with the CREATE USER
or ALTER USER statement.

Your identity is based on two pieces of information:

* Your MySQL user name.

» The client host from which you connect.

If the User column value is nonblank, the user name in an incoming connection must match exactly. If the

User value is blank, it matches any user name. If the user table row that matches an incoming connection
has a blank user name, the user is considered to be an anonymous user with no name, not a user with the

name that the client actually specified. This means that a blank user name is used for all further access
checking for the duration of the connection (that is, during Stage 2).

58

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html

Access Control, Stage 1: Connection Verification

The aut henti cati on_st ri ng column can be blank. This is not a wildcard and does not mean that any
password matches. It means that the user must connect without specifying a password. The authentication
method implemented by the plugin that authenticates the client may or may not use the password in the
aut henti cation_stri ng column. In this case, it is possible that an external password is also used to
authenticate to the MySQL server.

Nonblank password values stored in the aut hent i cati on_stri ng column of the user table are
encrypted. MySQL does not store passwords as cleartext for anyone to see. Rather, the password
supplied by a user who is attempting to connect is encrypted (using the password hashing method
implemented by the account authentication plugin). The encrypted password then is used during the
connection process when checking whether the password is correct. This is done without the encrypted
password ever traveling over the connection. See Section 4.1, “Account User Names and Passwords”.

From the MySQL server's point of view, the encrypted password is the real password, so you should never
give anyone access to it. In particular, do not give nonadministrative users read access to tables in the
nysql system database.

The following table shows how various combinations of User and Host values in the user table apply to
incoming connections.

User Value Host Value Permissible Connections
"fred "hl. exanpl e. net' f r ed, connecting from
hl. exanpl e. net
"hl. exanpl e. net' Any user, connecting from
hl. exanpl e. net
"fred "% f r ed, connecting from any host
v "% Any user, connecting from any
host
"fred ' % exanpl e. net"' f r ed, connecting from any host in

the exanpl e. net domain

"fred ' x. exanpl e. % f r ed, connecting from

x. exanpl e. net,

X. exanpl e. com

x. exanpl e. edu, and so on; this
is probably not useful

"fred '198. 51.100. 177 f r ed, connecting from
the host with IP address
198. 51. 100. 177

"fred '198. 51. 100. % f r ed, connecting from any host in
the 198. 51. 100 class C subnet
"fred '198. 51. 100. 0/ 255. 255. 255. |Bame as previous example

It is possible for the client host name and user name of an incoming connection to match more than one
row in the user table. The preceding set of examples demonstrates this: Several of the entries shown
match a connection from h1l. exanpl e. net by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this issue
as follows:

» Whenever the server reads the user table into memory, it sorts the rows.

* When a client attempts to connect, the server looks through the rows in sorted order.

59

Access Control, Stage 1: Connection Verification

» The server uses the first row that matches the client host name and user name.
The server uses sorting rules that order rows with the most-specific Host values first:
« Literal IP addresses and host hames are the most specific.

* The specificity of a literal IP address is not affected by whether it has a netmask, so 198. 51. 100. 13
and 198. 51. 100. 0/ 255. 255. 255. 0 are considered equally specific.

» The pattern' % means “any host” and is least specific.

e The empty string ' ' also means “any host” but sorts after ' % .

Non-TCP (socket file, named pipe, and shared memory) connections are treated as local connections and
match a host part of | ocal host if there are any such accounts, or host parts with wildcards that match

| ocal host otherwise (for example, | ocal % | % %).

Rows with the same Host value are ordered with the most-specific User values first. A blank User value
means “any user” and is least specific, so for rows with the same Host value, nonanonymous users sort
before anonymous users.

For rows with equally-specific Host and User values, the order is nondeterministic.

To see how this works, suppose that the user table looks like this:

% | jeffrey |
| ocal host | root |
| ocal host | |

When the server reads the table into memory, it sorts the rows using the rules just described. The result
after sorting looks like this:

local host	root
local host	
%	jeffrey
%	root

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from | ocal host by | ef f r ey, two of the rows from the table match: the one with
Host and User values of ' | ocal host' and' ', and the one with values of ' % and ' j effrey' . The
"l ocal host"' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

| %

The sorted table looks like this:

60

Access Control, Stage 2: Request Verification

ooccococccocoooan ooccoooooo +-
| Host | User |
ooccococccocoooan ooccoooooo +-
| hl.exanpl e. net | |
| % | jeffrey |
ooccococccocoooan ooccoooooo +-

The first row matches a connection by any user from h1. exanpl e. net , whereas the second row matches
a connection by j ef f r ey from any host.

Note

It is a common misconception to think that, for a given user name, all rows that
explicitly name that user are used first when the server attempts to find a match
for the connection. This is not true. The preceding example illustrates this, where
a connection from h1l. exanpl e. net by j ef f r ey is first matched not by the row
containing ' j ef frey' asthe User column value, but by the row with no user
name. As a result, j ef f r ey is authenticated as an anonymous user, even though
he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably

are being authenticated as some other account. To find out what account the server used to
authenticate you, use the CURRENT _USER() function. (See Information Functions.) It returns a value in
user _nane@ost _namne format that indicates the User and Host values from the matching user table
row. Suppose that j ef f r ey connects and issues the following query:

nysql > SELECT CURRENT USER();

e +
| CURRENT_USER() |
e +
| @ ocal host |
e +

The result shown here indicates that the matching user table row had a blank User column value. In other
words, the server is treating j ef f r ey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to see
where the first match is being made.

4.6 Access Control, Stage 2: Request Verification

After the server accepts a connection, it enters Stage 2 of access control. For each request that you issue
through the connection, the server determines what operation you want to perform, then checks whether
your privileges are sufficient. This is where the privilege columns in the grant tables come into play. These
privileges can come from any of the user, db, t abl es_pri v, col utms_pri v, or procs_pri v tables.
(You may find it helpful to refer to Section 4.3, “Grant Tables”, which lists the columns present in each
grant table.)

The user table grants global privileges. The user table row for an account indicates the account
privileges that apply on a global basis no matter what the default database is. For example, if the user
table grants you the DELETE privilege, you can delete rows from any table in any database on the server
host. It is wise to grant privileges in the user table only to people who need them, such as database
administrators. For other users, leave all privileges in the user table setto' N and grant privileges at
more specific levels only (for particular databases, tables, columns, or routines).

The db table grants database-specific privileges. Values in the scope columns of this table can take the
following forms:

61

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html

Access Control, Stage 2: Request Verification

A blank User value matches the anonymous user. A nonblank value matches literally; there are no
wildcards in user names.

» The wildcard characters %and _ can be used in the Host and Db columns. These have the same
meaning as for pattern-matching operations performed with the LI KE operator. If you want to use either
character literally when granting privileges, you must escape it with a backslash. For example, to include
the underscore character (_) as part of a database name, specify it as\ _ in the GRANT statement.

A' % or blank Host value means “any host.”

A' % or blank Db value means “any database.”

The server reads the db table into memory and sorts it at the same time that it reads the user table. The
server sorts the db table based on the Host , Db, and User scope columns. As with the user table, sorting
puts the most-specific values first and least-specific values last, and when the server looks for matching
rows, it uses the first match that it finds.

The tabl es_priv,colums_priv, and procs_pri v tables grant table-specific, column-specific, and
routine-specific privileges. Values in the scope columns of these tables can take the following forms:

» The wildcard characters %and _ can be used in the Host column. These have the same meaning as for
pattern-matching operations performed with the LI KE operator.

* A' % or blank Host value means “any host.”

e The Db, Tabl e_nane, Col utm_nane, and Rout i ne_namne columns cannot contain wildcards or be
blank.

The server sorts the t abl es_pri v, col ums_pri v, and procs_pri v tables based on the Host , Db,
and User columns. This is similar to db table sorting, but simpler because only the Host column can
contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row
because that is the only table that specifies administrative privileges. The server grants access if the
row permits the requested operation and denies access otherwise. For example, if you want to execute
nysql adm n shut down but your user table row does not grant the SHUTDOWN privilege to you, the
server denies access without even checking the db table. (The latter table contains no Shut down_pri v
column, so there is no need to check it.)

For database-related requests (I NSERT, UPDATE, and so on), the server first checks the user's global
privileges in the user table row. If the row permits the requested operation, access is granted. If the global
privileges in the user table are insufficient, the server determines the user's database-specific privileges
from the db table:

» The server looks in the db table for a match on the Host , Db, and User columns.

» The Host and User columns are matched to the connecting user's host name and MySQL user hame.
» The Db column is matched to the database that the user wants to access.

* If there is no row for the Host and User, access is denied.

After determining the database-specific privileges granted by the db table rows, the server adds them
to the global privileges granted by the user table. If the result permits the requested operation, access
is granted. Otherwise, the server successively checks the user's table and column privileges in the

62

https://dev.mysql.com/doc/refman/5.7/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

Adding Accounts, Assigning Privileges, and Dropping Accounts

tabl es_priv andcol unms_pri v tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_pri v table rather
thant abl es_priv and col utms_pri v.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

gl obal privil eges

OR dat abase privil eges
OR tabl e privil eges
OR col um privil eges
OR routine privil eges

It may not be apparent why, if the global privileges are initially found to be insufficient for the requested
operation, the server adds those privileges to the database, table, and column privileges later. The reason
is that a request might require more than one type of privilege. For example, if you execute an | NSERT

I NTO ... SELECT statement, you need both the | NSERT and the SELECT privileges. Your privileges
might be such that the user table row grants one privilege global and the db table row grants the other
specifically for the relevant database. In this case, you have the necessary privileges to perform the
request, but the server cannot tell that from either your global or database privileges alone. It must make
an access-control decision based on the combined privileges.

4.7 Adding Accounts, Assigning Privileges, and Dropping Accounts

To manage MySQL accounts, use the SQL statements intended for that purpose:
* CREATE USERand DROP USER create and remove accounts.

* CGRANT and REVCKE assign privileges to and revoke privileges from accounts.

» SHOW GRANTS displays account privilege assignments.

Account-management statements cause the server to make appropriate modifications to the underlying
grant tables, which are discussed in Section 4.3, “Grant Tables”.

Note

Direct modification of grant tables using statements such as | NSERT, UPDATE, or
DELETE is discouraged and done at your own risk. The server is free to ignore rows
that become malformed as a result of such modifications.

As of MySQL 5.7.18, for any operation that modifies a grant table, the server
checks whether the table has the expected structure and produces an error if not.
nysql _upgr ade must be run to update the tables to the expected structure.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmi n is one such program.

This section discusses the following topics:

» Creating Accounts and Granting Privileges
» Checking Account Privileges and Properties
» Revoking Account Privileges

» Dropping Accounts

63

https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/show-grants.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html

Creating Accounts and Granting Privileges

For additional information about the statements discussed here, see Account Management Statements.

Creating Accounts and Granting Privileges

The following examples show how to use the nysql client program to set up new accounts. These
examples assume that the MySQL r oot account has the CREATE USER privilege and all privileges that it
grants to other accounts.

At the command line, connect to the server as the MySQL r oot user, supplying the appropriate password
at the password prompt:

$> nysql -u root -p
Enter password: (enter root password here)

After connecting to the server, you can add new accounts. The following example uses CREATE USER
and GRANT statements to set up four accounts (where you see ' passwor d' , substitute an appropriate
password):

CREATE USER 'finley' @Il ocal host'
| DENTI FI ED BY ' password';
GRANT ALL
O\l *‘ *
TO 'finley' @Il ocal host'
W TH GRANT OPTI ON,;
CREATE USER 'finl ey' @ % exanpl e. conl
| DENTI FI ED BY ' password';
GRANT ALL
O\l *‘ *
TO 'finley' @% exanpl e. com
W TH GRANT OPTI ON,;
CREATE USER 'admi n' @1 ocal host '
| DENTI FI ED BY ' password';
GRANT RELQOAD, PROCESS
O\l *‘ *
TO 'adm n' @1 ocal host ' ;
CREATE USER ' dumy' @1 ocal host ' ;

The accounts created by those statements have the following properties:

» Two accounts have a user name of f i nl ey. Both are superuser accounts with full global privileges to
do anything. The ' finl ey’ @I ocal host' account can be used only when connecting from the local
host. The ' finl ey' @ % exanpl e. conml account uses the ' % wildcard in the host part, so it can be
used to connect from any host in the exanpl e. comdomain.

The' finley' @Il ocal host' accountis necessary if there is an anonymous-user account for

| ocal host . Withoutthe ' finl ey’ @I ocal host' account, that anonymous-user account takes
precedence when f i nl ey connects from the local host and f i nl ey is treated as an anonymous user.
The reason for this is that the anonymous-user account has a more specific Host column value than
the' finley' @% accountand thus comes earlier in the user table sort order. (For information about
user table sorting, see Section 4.5, “Access Control, Stage 1: Connection Verification”.)

e The'adm n' @I ocal host"' account can be used only by adni n to connect from the local host. It is
granted the global RELOAD and PROCESS administrative privileges. These privileges enable the admi n
user to execute the nysqgl adm n rel oad, nysgl adm n refresh,and mysqgl adm n fl ush- xxx
commands, as well as nysqgl adm n processli st . No privileges are granted for accessing any
databases. You could add such privileges using GRANT statements.

e The' dummy' @1 ocal host' account has no password (which is insecure and not recommended). This
account can be used only to connect from the local host. No privileges are granted. It is assumed that
you grant specific privileges to the account using GRANT statements.

64

https://dev.mysql.com/doc/refman/5.7/en/account-management-statements.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html

Checking Account Privileges and Properties

The previous example grants privileges at the global level. The next example creates three accounts and
grants them access at lower levels; that is, to specific databases or objects within databases. Each account
has a user name of cust om but the host name parts differ:

CREATE USER ' custom @I ocal host'
| DENTI FI ED BY ' password';
GRANT ALL
ON bankaccount . *
TO 'custom @1 ocal host ' ;
CREATE USER ' cust oml @ host 47. exanpl e. com
| DENTI FI ED BY ' password';
GRANT SELECT, | NSERT, UPDATE, DELETE, CREATE, DROP
ON expenses. *
TO ' cust oml @ host 47. exanpl e. com ;
CREATE USER ' cust oml @ % exanpl e. com
| DENTI FI ED BY ' password';
GRANT SELECT, | NSERT, UPDATE, DELETE, CREATE, DROP
ON cust oner . addr esses
TO ' cust oml @ % exanpl e. com ;

The three accounts can be used as follows:

 The' custom @I ocal host' account has all database-level privileges to access the bankaccount
database. The account can be used to connect to the server only from the local host.

» The' custom @ host 47. exanpl e. com account has specific database-level privileges to access
the expenses database. The account can be used to connect to the server only from the host
host 47. exanpl e. com

e The' custom @ % exanpl e. conmi account has specific table-level privileges to access the
addr esses table in the cust oner database, from any host in the exanpl e. comdomain. The account
can be used to connect to the server from all machines in the domain due to use of the %wildcard
character in the host part of the account name.

Checking Account Privileges and Properties

To see the privileges for an account, use SHON GRANTS:

nysgl > SHOW GRANTS FOR ' adnin' @I ocal host ' ;

e m e e e e e e e e e eeeemmeeeeemmamaaa-aaaa +
| Grants for adm n@ ocal host |
e m e e e e e e e e e eeeemmeeeeemmamaaa-aaaa +
| GRANT RELOAD, PROCESS ON *.* TO 'adnmin' @Il ocal host' |
e m e e e e e e e e e eeeemmeeeeemmamaaa-aaaa +

To see nonprivilege properties for an account, use SHON CREATE USER:

nysqgl > SHOW CREATE USER ' adnmin' @I ocal host'\ G

khkkkhkkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkkhkkkkkkkkkx*x 1 r ow khkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkkkkkkk*x*x

CREATE USER for adm n@ ocal host: CREATE USER 'adm n' @I ocal host'
| DENTI FI ED W TH ' nysql _nati ve_password'

AS ' *67ACDEBDAB923990001FOFFB017EBSED41861105'

REQUI RE NONE PASSWORD EXPI RE DEFAULT ACCOUNT UNLOCK

Revoking Account Privileges

To revoke account privileges, use the REVOKE statement. Privileges can be revoked at different levels, just
as they can be granted at different levels.

Revoke global privileges:

REVOKE ALL

65

https://dev.mysql.com/doc/refman/5.7/en/show-grants.html
https://dev.mysql.com/doc/refman/5.7/en/show-create-user.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html

Dropping Accounts

O\l *.*

FROM ' finl ey’ @ % exanpl e. com ;
REVOKE RELOAD

O\l *.*

FROM ' adnmi n' @I ocal host ' ;

Revoke database-level privileges:
REVOKE CREATE, DROP

ON expenses. *
FROM ' cust oml @ host 47. exanpl e. coni ;

Revoke table-level privileges:
REVOKE | NSERT, UPDATE, DELETE

ON cust oner . addr esses
FROM ' cust omi @ % exanpl e. com ;

To check the effect of privilege revocation, use SHON GRANTS:

nysgl > SHOW GRANTS FOR ' adnin' @I ocal host ' ;

ffmoceooc--ccooc--ccooc---cooc---cooc---coo---oc +
| Grants for adm n@ ocal host |
ffmoceooc--ccooc--ccooc---cooc---cooc---coo---oc +
| GRANT PROCESS ON *.* TO 'admin' @I ocal host' |
ffmoceooc--ccooc--ccooc---cooc---cooc---coo---oc +

Dropping Accounts

To remove an account, use the DROP USER statement. For example, to drop some of the accounts created
previously:

DROP USER 'finley' @l ocal host';
DROP USER ' finl ey’ @ % exanpl e. coni ;
DROP USER ' admi n' @I ocal host ' ;

DROP USER ' dummy' @I ocal host ' ;

4.8 Reserved Accounts

One part of the MySQL installation process is data directory initialization (see Section 3.1, “Initializing
the Data Directory”). During data directory initialization, MySQL creates user accounts that should be
considered reserved:

* 'root" @I ocal host : Used for administrative purposes. This account has all privileges and can
perform any operation.

Strictly speaking, this account name is not reserved, in the sense that some installations rename the
r oot account to something else to avoid exposing a highly privileged account with a well-known name.

 'nmysql .sys' @I ocal host' : Used as the DEFI NER for sys schema objects. Use of the nysql . sys
account avoids problems that occur if a DBA renames or removes the r oot account. This account is
locked so that it cannot be used for client connections.

* "nysgl . session @I ocal host' : Used internally by plugins to access the server. This account is
locked so that it cannot be used for client connections.

4.9 When Privilege Changes Take Effect

If the mysql d server is started without the - - ski p- gr ant - t abl es option, it reads all grant table
contents into memory during its startup sequence. The in-memory tables become effective for access
control at that point.

66

https://dev.mysql.com/doc/refman/5.7/en/show-grants.html
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
https://dev.mysql.com/doc/refman/5.7/en/sys-schema.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables

Assigning Account Passwords

If you modify the grant tables indirectly using an account-management statement, the server notices these
changes and loads the grant tables into memory again immediately. Account-management statements are
described in Account Management Statements. Examples include GRANT, REVOKE, SET PASSWORD, and
RENAME USER.

If you modify the grant tables directly using statements such as | NSERT, UPDATE, or DELETE (which is not
recommended), the changes have no effect on privilege checking until you either tell the server to reload
the tables or restart it. Thus, if you change the grant tables directly but forget to reload them, the changes
have no effect until you restart the server. This may leave you wondering why your changes seem to make
no difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRI VI LEGES statement or by executing a nysql adm n fl ush-privil eges or
nysql adm n rel oad command.

A grant table reload affects privileges for each existing client session as follows:

» Table and column privilege changes take effect with the client's next request.

» Database privilege changes take effect the next time the client executes a USE db_nane statement.
Note

Client applications may cache the database name; thus, this effect may not be
visible to them without actually changing to a different database.

» Global privileges and passwords are unaffected for a connected client. These changes take effect only in
sessions for subsequent connections.

If the server is started with the - - ski p- gr ant - t abl es option, it does not read the grant tables or
implement any access control. Any user can connect and perform any operation, which is insecure. To
cause a server thus started to read the tables and enable access checking, flush the privileges.

4.10 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores credentials in the user table in the mysqgl system database. Operations that assign or
modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively, privileges
for the nysql database (I NSERT privilege to create new accounts, UPDATE privilege to modify existing
accounts). If the r ead_onl y system variable is enabled, use of account-modification statements such as
CREATE USERor ALTER USER additionally requires the SUPER privilege.

The discussion here summarizes syntax only for the most common password-assignment statements. For
complete details on other possibilities, see CREATE USER Statement, ALTER USER Statement, GRANT
Statement, and SET PASSWORD Statement.

MySQL uses plugins to perform client authentication; see Section 4.13, “Pluggable Authentication”. In
password-assigning statements, the authentication plugin associated with an account performs any
hashing required of a cleartext password specified. This enables MySQL to obfuscate passwords prior to
storing them in the mysql . user system table. For the statements described here, MySQL automatically
hashes the password specified. There are also syntax for CREATE USER and ALTER USER that permits
hashed values to be specified literally. For details, see the descriptions of those statements.

To assign a password when you create a hew account, use CREATE USER and include an | DENTI FI ED
BY clause:

67

https://dev.mysql.com/doc/refman/5.7/en/account-management-statements.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/rename-user.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

Password Management

CREATE USER 'jeffrey' @I ocal host' | DENTIFI ED BY ' password';

CREATE USER also supports syntax for specifying the account authentication plugin. See CREATE USER
Statement.

To assign or change a password for an existing account, use the ALTER USER statement with an
| DENTI FI ED BY clause:

ALTER USER 'jeffrey' @I ocal host' | DENTIFIED BY ' password';

If you are not connected as an anonymous user, you can change your own password without naming your
own account literally:

ALTER USER USER() | DENTI FI ED BY ' password';

To change an account password from the command line, use the nysql adm n command:

nysqgl admi n -u user_nane -h host_nane password "password"

The account for which this command sets the password is the one with a row in the nysql . user system
table that matches user _nane in the User column and the client host from which you connect in the Host
column.

Warning

Setting a password using nysgl adm n should be considered insecure. On some
systems, your password becomes visible to system status programs such as ps
that may be invoked by other users to display command lines. MySQL clients
typically overwrite the command-line password argument with zeros during their
initialization sequence. However, there is still a brief interval during which the value
is visible. Also, on some systems this overwriting strategy is ineffective and the
password remains visible to ps. (SystemV Unix systems and perhaps others are
subject to this problem.)

If you are using MySQL Replication, be aware that, currently, a password used by a replica as part of a
CHANGE MASTER TOstatement is effectively limited to 32 characters in length; if the password is longer,
any excess characters are truncated. This is not due to any limit imposed by the MySQL Server generally,
but rather is an issue specific to MySQL Replication. (For more information, see Bug #43439.)

4.11 Password Management

MySQL enables database administrators to expire account passwords manually, and to establish a
policy for automatic password expiration. Expiration policy can be established globally, and individual
accounts can be set to either defer to the global policy or override the global policy with specific per-
account behavior.

« Internal Versus External Credentials Storage

» Password Expiration Policy

Internal Versus External Credentials Storage

Some authentication plugins store account credentials internally to MySQL, in the mysql . user system
table:

 mysql _native_ password

68

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html

Password Expiration Policy

* sha256_password

The discussion in this section applies to such authentication plugins because the password-management

capabilities described here are based on internal credentials storage handled by MySQL itself.

Other authentication plugins store account credentials externally to MySQL. For accounts that use plugins
that perform authentication against an external credentials system, password management must be
handled externally against that system as well.

For information about individual authentication plugins, see Section 6.1, “Authentication Plugins”.

Password Expiration Policy

To expire an account password manually, use the ALTER USER statement:

ALTER USER 'jeffrey' @Il ocal host' PASSWORD EXPI RE;

This operation marks the password expired in the corresponding mysql . user system table row.

Password expiration according to policy is automatic and is based on password age, which for a given
account is assessed from the date and time of its most recent password change. The nysql . user system

table indicates for each account when its password was last changed, and the server automatically treats

the password as expired at client connection time if its age is greater than its permitted lifetime. This works
with no explicit manual password expiration.

To establish automatic password-expiration policy globally, use the def aul t _password_lifetine
system variable. Its default value is 0, which disables automatic password expiration. If the value of

defaul t _password_|ifetineisa positive integer N, it indicates the permitted password lifetime, such
that passwords must be changed every N days.

Examples:

Note

Prior to 5.7.11, the default def aul t _password_| i f eti ne value is 360
(passwords must be changed approximately once per year). For such versions,

be aware that, if you make no changes to the def aul t _password _|ifetine
variable or to individual user accounts, each user password expires after 360 days
and the account starts running in restricted mode. Clients that connect to the server
using the account then get an error indicating that the password must be changed:
ERROR 1820 (HYO000): You must reset your password using ALTER
USER st at enent before executing this statenent.

However, this is easy to miss for clients that automatically connect to the server,
such as connections made from scripts. To avoid having such clients suddenly stop
working due to a password expiring, make sure to change the password expiration
settings for those clients, like this:

ALTER USER 'script' @I ocal host' PASSWORD EXPI RE NEVER

Alternatively, set the def aul t _password_I i f et i nme variable to 0, thus disabling
automatic password expiration for all users.

» To establish a global policy that passwords have a lifetime of approximately six months, start the server
with these lines in a server ny. cnf file:

[mysql d]

69

https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime

Password Expiration Policy

def aul t _password_|ifetine=180

» To establish a global policy such that passwords never expire, set def aul t _password_|ifetineto
0:

[nysql d]
def aul t _password_|ifetine=0

o default_password_|ifetine can also be changed at runtime:

SET GLOBAL default_password_lifetinme = 180;
SET GLOBAL default_password_lifetime = 0;

The global password-expiration policy applies to all accounts that have not been set to override it. To
establish policy for individual accounts, use the PASSWORD EXPI RE options of the CREATE USER and
ALTER USER statements. See CREATE USER Statement, and ALTER USER Statement.

Example account-specific statements:

» Require the password to be changed every 90 days:

CREATE USER 'jeffrey' @I ocal host' PASSWORD EXPI RE | NTERVAL 90 DAY;
ALTER USER 'jeffrey' @Il ocal host' PASSWORD EXPI RE | NTERVAL 90 DAY;

This expiration option overrides the global policy for all accounts named by the statement.

» Disable password expiration:

CREATE USER 'jeffrey' @l ocal host' PASSWORD EXPlI RE NEVER;
ALTER USER 'jeffrey' @I ocal host' PASSWORD EXPI RE NEVER;

This expiration option overrides the global policy for all accounts named by the statement.

» Defer to the global expiration policy for all accounts named by the statement:

CREATE USER 'jeffrey' @I ocal host' PASSWORD EXPlI RE DEFAULT;
ALTER USER 'jeffrey' @Il ocal host' PASSWORD EXPI RE DEFAULT;

When a client successfully connects, the server determines whether the account password has expired:
» The server checks whether the password has been manually expired.

» Otherwise, the server checks whether the password age is greater than its permitted lifetime according
to the automatic password expiration policy. If so, the server considers the password expired.

If the password is expired (whether manually or automatically), the server either disconnects the client
or restricts the operations permitted to it (see Section 4.12, “Server Handling of Expired Passwords”).
Operations performed by a restricted client result in an error until the user establishes a new account
password:

nysql > SELECT 1;

ERROR 1820 (HYOO00): You nust reset your password using ALTER USER
statement before executing this statenent.

nysqgl > ALTER USER USER() | DENTI FI ED BY ' password';
Query OK, 0 rows affected (0.01 sec)

nysql > SELECT 1;

+---+

| 1]

+---+

| 1]

+---+

1 rowin set (0.00 sec)

70

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_password_lifetime
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html

Server Handling of Expired Passwords

This restricted mode of operation permits SET statements, which is useful before MySQL 5.7.6 if SET
PASSWORD must be used instead of ALTER USER and the account password has a hashing format that
requires ol d_passwor ds to be set to a value different from its default.

After the client resets the password, the server restores normal access for the session, as well as for
subsequent connections that use the account. It is also possible for an administrative user to reset the
account password, but any existing restricted sessions for that account remain restricted. A client using the
account must disconnect and reconnect before statements can be executed successfully.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

4.12 Server Handling of Expired Passwords

MySQL provides password-expiration capability, which enables database administrators to require that
users reset their password. Passwords can be expired manually, and on the basis of a policy for automatic
expiration (see Section 4.11, “Password Management”).

The ALTER USER statement enables account password expiration. For example:

ALTER USER ' nyuser' @I ocal host' PASSWORD EXPI RE;

For each connection that uses an account with an expired password, the server either disconnects the
client or restricts the client to “sandbox mode,” in which the server permits the client to perform only those
operations necessary to reset the expired password. Which action is taken by the server depends on both
client and server settings, as discussed later.

If the server disconnects the client, it returns an ER_MUST CHANGE PASSWORD LOd N error:

$> nysql -u nyuser -p

Passwor d: ******

ERROR 1862 (HY000): Your password has expired. To log in you nust
change it using a client that supports expired passwords.

If the server restricts the client to sandbox mode, these operations are permitted within the client session:

» The client can reset the account password with ALTER USER or SET PASSWORD. After that has been
done, the server restores normal access for the session, as well as for subsequent connections that use
the account.

Note

Although it is possible to “reset” an expired password by setting it to its current
value, it is preferable, as a matter of good policy, to choose a different password.

e The client can use the SET statement, which is useful before MySQL 5.7.6 if SET PASSWORD
must be used instead of ALTER USER and the account uses an authentication plugin for which the
ol d_passwor ds system variable must first be set to a nondefault value to perform password hashing in
a specific way.

For any operation not permitted within the session, the server returns an ER_MJST_CHANGE_PASSWORD
error:

nmysql > USE perfornmance_schens;

ERROR 1820 (HY000): You nust reset your password using ALTER USER
statement before executing this statenent.

nmysql > SELECT 1;

71

https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_must_change_password_login
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_old_passwords
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_must_change_password

Server Handling of Expired Passwords

ERROR 1820 (HY000): You nust reset your password using ALTER USER
statement before executing this statenent.

That is what normally happens for interactive invocations of the mysql client because by default such
invocations are put in sandbox mode. To resume normal functioning, select a new password.

For noninteractive invocations of the nysql client (for example, in batch mode), the server normally
disconnects the client if the password is expired. To permit noninteractive nysql invocations to stay
connected so that the password can be changed (using the statements permitted in sandbox mode), add
the - - connect - expi r ed- passwor d option to the mysql command.

As mentioned previously, whether the server disconnects an expired-password client or restricts it to
sandbox mode depends on a combination of client and server settings. The following discussion describes
the relevant settings and how they interact.

Note

This discussion applies only for accounts with expired passwords. If a client
connects using a nonexpired password, the server handles the client normally.

On the client side, a given client indicates whether it can handle sandbox mode for expired passwords. For
clients that use the C client library, there are two ways to do this:

* Pass the MYSQL_COPT_CAN_HANDLE_EXPI RED_PASSWORDS flag to nysql _opti ons() prior to
connecting:

ny_bool arg = 1;

nysql _options(nysql,
MYSQL_OPT_CAN_HANDLE EXPI RED_PASSWORDS,
&arg) ;

This is the technique used within the nysql client, which enables
MYSQL_OPT_CAN_HANDLE_EXPI RED_PASSWORDS if invoked interactively or with the - - connect -
expi r ed- passwor d option.

e Passthe CLI ENT_CAN HANDLE EXPI RED PASSWORDS flag to nysql _real connect () atconnect
time:

MYSQ nysql ;
nysql _i nit (&ysql);
if (!nysql _real _connect (&ysql,
host, user, password, db,
port, unix_socket,
CLI ENT_CAN_HANDLE_EXPI RED_PASSWORDS))

{
}

handl e error ...

Other MySQL Connectors have their own conventions for indicating readiness to handle sandbox mode.
See the documentation for the Connector in which you are interested.

On the server side, if a client indicates that it can handle expired passwords, the server puts it in sandbox
mode.

If a client does not indicate that it can handle expired passwords (or uses an older version
of the client library that cannot so indicate), the server action depends on the value of the
di sconnect _on_expi r ed_passwor d system variable:

» Ifdi sconnect _on_expi red_passwor d is enabled (the default), the server disconnects the client with
an ER_MJST_CHANGE _PASSWORD LOG N error.

72

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_connect-expired-password
https://dev.mysql.com/doc/c-api/5.7/en/mysql-real-connect.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_must_change_password_login

Pluggable Authentication

e Ifdi sconnect _on_expired_passwor d is disabled, the server puts the client in sandbox mode.

4.13 Pluggable Authentication

When a client connects to the MySQL server, the server uses the user name provided by the client and
the client host to select the appropriate account row from the nysql . user system table. The server then
authenticates the client, determining from the account row which authentication plugin applies to the client:

* If the server cannot find the plugin, an error occurs and the connection attempt is rejected.

» Otherwise, the server invokes that plugin to authenticate the user, and the plugin returns a status to the
server indicating whether the user provided the correct password and is permitted to connect.

Pluggable authentication enables these important capabilities:

» Choice of authentication methods. Pluggable authentication makes it easy for DBAs to choose and
change the authentication method used for individual MySQL accounts.

» External authentication. Pluggable authentication makes it possible for clients to connect to
the MySQL server with credentials appropriate for authentication methods that store credentials
elsewhere than in the nysql . user system table. For example, plugins can be created to use external
authentication methods such as PAM, Windows login IDs, LDAP, or Kerberos.

* Proxy users: If a user is permitted to connect, an authentication plugin can return to the server a user
name different from the name of the connecting user, to indicate that the connecting user is a proxy for
another user (the proxied user). While the connection lasts, the proxy user is treated, for purposes of
access control, as having the privileges of the proxied user. In effect, one user impersonates another.
For more information, see Section 4.14, “Proxy Users”.

Note

If you start the server with the - - ski p- gr ant -t abl es option, authentication
plugins are not used even if loaded because the server performs no client
authentication and permits any client to connect. Because this is insecure, you
might want to use - - ski p- gr ant -t abl es in conjunction with enabling the
ski p_net wor ki ng system variable to prevent remote clients from connecting.

 Available Authentication Plugins
» Authentication Plugin Usage

» Restrictions on Pluggable Authentication

Available Authentication Plugins

MySQL 5.7 provides these authentication plugins:

» Plugins that perform native authentication; that is, authentication based on the password
hashing methods in use from before the introduction of pluggable authentication in MySQL. The
nysql _native_passwor d plugin implements authentication based on the native password
hashing method. The nysql _ol d_passwor d plugin implements native authentication based on
the older (pre-4.1) password hashing method (and is deprecated and removed in MySQL 5.7.5).
See Section 6.1.1, “Native Pluggable Authentication”, and Section 6.1.2, “Old Native Pluggable
Authentication”.

* Plugins that perform authentication using SHA-256 password hashing. This is stronger encryption than
that available with native authentication. See Section 6.1.5, “SHA-256 Pluggable Authentication”, and
Section 6.1.4, “Caching SHA-2 Pluggable Authentication”.

73

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_disconnect_on_expired_password
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_networking

Authentication Plugin Usage

A client-side plugin that sends the password to the server without hashing or encryption. This plugin is
used in conjunction with server-side plugins that require access to the password exactly as provided by
the client user. See Section 6.1.6, “Client-Side Cleartext Pluggable Authentication”.

A plugin that performs external authentication using PAM (Pluggable Authentication Modules), enabling
MySQL Server to use PAM to authenticate MySQL users. This plugin supports proxy users as well. See
Section 6.1.7, “PAM Pluggable Authentication”.

A plugin that performs external authentication on Windows, enabling MySQL Server to use native
Windows services to authenticate client connections. Users who have logged in to Windows can
connect from MySQL client programs to the server based on the information in their environment
without specifying an additional password. This plugin supports proxy users as well. See Section 6.1.8,
“Windows Pluggable Authentication”.

Plugins that perform authentication using LDAP (Lightweight Directory Access Protocol) to authenticate
MySQL users by accessing directory services such as X.500. These plugins support proxy users as well.
See Section 6.1.9, “LDAP Pluggable Authentication”.

A plugin that prevents all client connections to any account that uses it. Use cases for this plugin include
proxied accounts that should never permit direct login but are accessed only through proxy accounts
and accounts that must be able to execute stored programs and views with elevated privileges without
exposing those privileges to ordinary users. See Section 6.1.10, “No-Login Pluggable Authentication”.

A plugin that authenticates clients that connect from the local host through the Unix socket file. See
Section 6.1.11, “Socket Peer-Credential Pluggable Authentication”.

A test plugin that checks account credentials and logs success or failure to the server error log.
This plugin is intended for testing and development purposes, and as an example of how to write an
authentication plugin. See Section 6.1.12, “Test Pluggable Authentication”.

Note

For information about current restrictions on the use of pluggable authentication,
including which connectors support which plugins, see Restrictions on Pluggable
Authentication.

Third-party connector developers should read that section to determine the extent
to which a connector can take advantage of pluggable authentication capabilities
and what steps to take to become more compliant.

If you are interested in writing your own authentication plugins, see Writing Authentication Plugins.

Authentication Plugin Usage

This section provides general instructions for installing and using authentication plugins. For instructions
specific to a given plugin, see the section that describes that plugin under Section 6.1, “Authentication
Plugins”.

In general, pluggable authentication uses a pair of corresponding plugins on the server and client sides, so
you use a given authentication method like this:

If necessary, install the plugin library or libraries containing the appropriate plugins. On the server host,
install the library containing the server-side plugin, so that the server can use it to authenticate client
connections. Similarly, on each client host, install the library containing the client-side plugin for use by
client programs. Authentication plugins that are built in need not be installed.

For each MySQL account that you create, specify the appropriate server-side plugin to use for
authentication. If the account is to use the default authentication plugin, the account-creation statement

74

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-authentication-plugins.html

Restrictions on Pluggable Authentication

need not specify the plugin explicitly. The def aul t _aut henti cati on_pl ugi n system variable
configures the default authentication plugin.

* When a client connects, the server-side plugin tells the client program which client-side plugin to use for
authentication.

In the case that an account uses an authentication method that is the default for both the server and
the client program, the server need not communicate to the client which client-side plugin to use, and a
round trip in client/server negotiation can be avoided. This is true for accounts that use native MySQL
authentication.

For standard MySQL clients such as nmysql and nysql admi n, the - - def aul t - aut h=pl ugi n_nane
option can be specified on the command line as a hint about which client-side plugin the program can
expect to use, although the server overrides this if the server-side plugin associated with the user account
requires a different client-side plugin.

If the client program does not find the client-side plugin library file, specify a - - pl ugi n-di r =di r _nane
option to indicate the plugin library directory location.

Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Section 4.13, “Pluggable Authentication”. The second part describes
how third-party connector developers can determine the extent to which a connector can take advantage of
pluggable authentication capabilities and what steps to take to become more compliant.

The term “native authentication” used here refers to authentication against passwords stored in the

nysql . user system table. This is the same authentication method provided by older MySQL servers,
before pluggable authentication was implemented. “Windows native authentication” refers to authentication
using the credentials of a user who has already logged in to Windows, as implemented by the Windows
Native Authentication plugin (“Windows plugin” for short).

» General Pluggable Authentication Restrictions

» Pluggable Authentication and Third-Party Connectors

General Pluggable Authentication Restrictions

» Connector/C++: Clients that use this connector can connect to the server only through accounts that
use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to | i bnysqgl cl i ent
dynamically (rather than statically) and it loads the current version of | i brrysql cl i ent if that version is
installed, or if the connector is recompiled from source to link against the current | i bnysql cl i ent .

e Connector/NET: Clients that use Connector/NET can connect to the server through accounts that use
native authentication or Windows native authentication.

» Connector/PHP: Clients that use this connector can connect to the server only through accounts that
use native authentication, when compiled using the MySQL native driver for PHP (nysql nd).

» Windows native authentication: Connecting through an account that uses the Windows plugin requires
Windows Domain setup. Without it, NTLM authentication is used and then only local connections are
possible; that is, the client and server must run on the same computer.

* Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a user
name different from that of the connecting user). For example, the PAM and Windows plugins support

75

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_authentication_plugin
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_default-auth
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_plugin-dir

Proxy Users

proxy users. The nysql native_password and sha256 passwor d authentication plugins do not
support proxy users by default, but can be configured to do so; see Server Support for Proxy User
Mapping.

* Replication: Replicas can employ not only source accounts using native authentication, but can also
connect through source accounts that use nonnative authentication if the required client-side plugin is
available. If the plugin is built into | i bmysql ¢l i ent, it is available by default. Otherwise, the plugin
must be installed on the replica side in the directory named by the replica pl ugi n_di r system variable.

» FEDERATEDtables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a connector to
take advantage of pluggable authentication capabilities and what steps to take to become more compliant:

» An existing connector to which no changes have been made uses native authentication and clients
that use the connector can connect to the server only through accounts that use native authentication.
However, you should test the connector against a recent version of the server to verify that such
connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
toli bnysql cli ent dynamically (rather than statically) and it loads the current version of
I'i bmysqgl cl i ent if that version is installed.

» To take advantage of pluggable authentication capabilities, a connector thatis | i bnysql cl i ent -based
should be relinked against the current version of | i bnysql cl i ent . This enables the connector to
support connections though accounts that require client-side plugins now built into | i brrysqgl cl i ent
(such as the cleartext plugin needed for PAM authentication and the Windows plugin needed for
Windows native authentication). Linking with a current | i bnysqgl cl i ent also enables the connector to
access client-side plugins installed in the default MySQL plugin directory (typically the directory named
by the default value of the local server's pl ugi n_di r system variable).

If a connector links to | i brrysql ¢l i ent dynamically, it must be ensured that the newer version of
i brysqgl cl i ent is installed on the client host and that the connector loads it at runtime.

» Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/NET uses this approach to provide support for Windows native
authentication.

« If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities for
this include a command-line option or environment variable from which the connector can obtain the
directory name. Standard MySQL client programs such as nysql and mysql admi n implement a - -
pl ugi n- di r option. See also C API Client Plugin Interface.

» Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

4.14 Proxy Users

The MySQL server authenticates client connections using authentication plugins. The plugin that
authenticates a given connection may request that the connecting (external) user be treated as a different
user for privilege-checking purposes. This enables the external user to be a proxy for the second user; that
is, to assume the privileges of the second user:

76

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/c-api/5.7/en/c-api-plugin-interface.html

Requirements for Proxy User Support

The external user is a “proxy user” (a user who can impersonate or become known as another user).

The second user is a “proxied user” (a user whose identity and privileges can be assumed by a proxy
user).

This section describes how the proxy user capability works. For general information about authentication
plugins, see Section 4.13, “Pluggable Authentication”. For information about specific plugins, see
Section 6.1, “Authentication Plugins”. For information about writing authentication plugins that support
proxy users, see Implementing Proxy User Support in Authentication Plugins.

Requirements for Proxy User Support

Simple Proxy User Example

Preventing Direct Login to Proxied Accounts
Granting and Revoking the PROXY Privilege
Default Proxy Users

Default Proxy User and Anonymous User Conflicts
Server Support for Proxy User Mapping

Proxy User System Variables

Requirements for Proxy User Support

For proxying to occur for a given authentication plugin, these conditions must be satisfied:

Proxying must be supported, either by the plugin itself, or by the MySQL server on behalf of the plugin.
In the latter case, server support may need to be enabled explicitly; see Server Support for Proxy User
Mapping.

The account for the external proxy user must be set up to be authenticated by the plugin. Use the
CREATE USER statement to associate an account with an authentication plugin, or ALTER USERto
change its plugin.

The account for the proxied user must exist and be granted the privileges to be assumed by the proxy
user. Use the CREATE USER and GRANT statements for this.

Normally, the proxied user is configured so that it can be used only in proxying scenaries and not for
direct logins.

The proxy user account must have the PROXY privilege for the proxied account. Use the GRANT
statement for this.

For a client connecting to the proxy account to be treated as a proxy user, the authentication plugin must
return a user name different from the client user name, to indicate the user name of the proxied account
that defines the privileges to be assumed by the proxy user.

Alternatively, for plugins that are provided proxy mapping by the server, the proxied user is determined
from the PROXY privilege held by the proxy user.

The proxy mechanism permits mapping only the external client user name to the proxied user name. There
is no provision for mapping host names:

When a client connects to the server, the server determines the proper account based on the user name
passed by the client program and the host from which the client connects.

77

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-authentication-plugins-proxy-users.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html

Simple Proxy User Example

« If that account is a proxy account, the server attempts to determine the appropriate proxied account by
finding a match for a proxied account using the user name returned by the authentication plugin and the
host name of the proxy account. The host name in the proxied account is ignored.

Simple Proxy User Example

Consider the following account definitions:

-- create proxy account
CREATE USER ' enpl oyee_ext' @1 ocal host "'
| DENTI FI ED W TH ny_aut h_pl ugi n
AS 'nmy_auth_string';
-- create proxied account and grant its privil eges;
-- use nysqgl_no_login plugin to prevent direct |ogin
CREATE USER ' enpl oyee' @1 ocal host"'
| DENTI FI ED W TH nysql _no_| ogi n;
GRANT ALL
ON enpl oyees. *
TO ' enpl oyee' @I ocal host "' ;
-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
ON ' enpl oyee' @I ocal host"'
TO ' enpl oyee_ext' @1 ocal host ' ;

When a client connects as enpl oyee_ext from the local host, MySQL uses the plugin named

nmy_aut h_pl ugi n to perform authentication. Suppose that my _aut h_pl ugi n returns a user name of
enpl oyee to the server, based on the content of ' ny_aut h_stri ng' and perhaps by consulting some
external authentication system. The name enpl oyee differs from enpl oyee_ext, so returning enpl oyee
serves as a request to the server to treat the enpl oyee_ext external user, for purposes of privilege
checking, as the enpl oyee local user.

In this case, enpl oyee_ext is the proxy user and enpl oyee is the proxied user.

The server verifies that proxy authentication for enpl oyee is possible for the enpl oyee_ ext user by
checking whether enpl oyee_ext (the proxy user) has the PROXY privilege for enpl oyee (the proxied
user). If this privilege has not been granted, an error occurs. Otherwise, enpl oyee_ext assumes

the privileges of enpl oyee. The server checks statements executed during the client session by

enpl oyee_ext against the privileges granted to enpl oyee. In this case, enpl oyee_ext can access
tables in the enpl oyees database.

The proxied account, enpl oyee, uses the nysgl _no_| ogi n authentication plugin to prevent clients
from using the account to log in directly. (This assumes that the plugin is installed. For instructions, see
Section 6.1.10, “No-Login Pluggable Authentication”.) For alternative methods of protecting proxied
accounts against direct use, see Preventing Direct Login to Proxied Accounts.

When proxying occurs, the USER() and CURRENT USER() functions can be used to see the difference
between the connecting user (the proxy user) and the account whose privileges apply during the current
session (the proxied user). For the example just described, those functions return these values:

mysql > SELECT USER(), CURRENT_USER();

e cmcmmcooomomcsoomoao oo b cccmmcooooomoooo oo +
| USER() | CURRENT USER() [
e cmcmmcooomomcsoomoao oo b cccmmcooooomoooo oo +
| enpl oyee_ext @ ocal host | enpl oyee@ ocal host |
e cmcmmcooomomcsoomoao oo b cccmmcooooomoooo oo +

In the CREATE USER statement that creates the proxy user account, the | DENTI FI ED W TH clause
that names the proxy-supporting authentication plugin is optionally followed by an AS ' aut h_stri ng'
clause specifying a string that the server passes to the plugin when the user connects. If present, the string

78

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

Preventing Direct Login to Proxied Accounts

provides information that helps the plugin determine how to map the proxy (external) client user name
to a proxied user name. It is up to each plugin whether it requires the AS clause. If so, the format of the
authentication string depends on how the plugin intends to use it. Consult the documentation for a given
plugin for information about the authentication string values it accepts.

Preventing Direct Login to Proxied Accounts

Proxied accounts generally are intended to be used only by means of proxy accounts. That is, clients
connect using a proxy account, then are mapped onto and assume the privileges of the appropriate
proxied user.

There are multiple ways to ensure that a proxied account cannot be used directly:

» Associate the account with the mysql _no_ I ogi n authentication plugin. In this case, the account
cannot be used for direct logins under any circumstances. This assumes that the plugin is installed. For
instructions, see Section 6.1.10, “No-Login Pluggable Authentication”.

* Include the ACCOUNT LOCK option when you create the account. See CREATE USER Statement. With
this method, also include a password so that if the account is unlocked later, it cannot be accessed with
no password. (If the val i dat e_passwor d plugin is enabled, it does not permit creating an account
without a password, even if the account is locked. See Section 6.3, “The Password Validation Plugin”.)

» Create the account with a password but do not tell anyone else the password. If you do not let anyone
know the password for the account, clients cannot use it to connect directly to the MySQL server.

Granting and Revoking the PROXY Privilege

The PROXY privilege is needed to enable an external user to connect as and have the privileges of another
user. To grant this privilege, use the GRANT statement. For example:

GRANT PROXY ON ' proxied_user' TO 'proxy_user';

The statement creates a row in the mysql . proxi es_pri v grant table.

At connect time, pr oxy_user must represent a valid externally authenticated MySQL user, and
proxi ed_user must represent a valid locally authenticated user. Otherwise, the connection attempt fails.

The corresponding REVOKE syntax is:

REVOKE PROXY ON ' proxied_user' FROM'proxy_user';

MySQL CGRANT and REVOKE syntax extensions work as usual. Examples:

-- grant PROXY to multiple accounts

GRANT PROXY ON 'a' TO'b', 'c¢', 'd';

-- revoke PROXY fromnultiple accounts

REVOKE PROXY ON 'a' FROM'b', 'c', 'd';

-- grant PROXY to an account and enabl e the account to grant
-- PROXY to the proxied account

GRANT PROXY ON 'a' TO 'd" W TH GRANT OPTI ON;

-- grant PROXY to default proxy account

GRANT PROXY ON 'a' TO'' @' ;

The PROXY privilege can be granted in these cases:
» By a user that has GRANT PROXY ... W TH GRANT OPTI ONfor pr oxi ed _user.

e By proxied_user foritself: The value of USER() must exactly match CURRENT USER() and
proxi ed_user, for both the user name and host name parts of the account name.

79

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

Default Proxy Users

The initial r oot account created during MySQL installation has the PROXY ... W TH GRANT OPTI ON
privilege for' ' @' , that is, for all users and all hosts. This enables r oot to set up proxy users, as well as
to delegate to other accounts the authority to set up proxy users. For example, r oot can do this:

CREATE USER ' adnin' @I ocal host*

| DENTI FI ED BY ' adm n_password';
GRANT PROXY

N''"@'

TO 'admin' @1 ocal host'

W TH GRANT OPTI ON;

Those statements create an adni n user that can manage all GRANT PROXY mappings. For example,
admi n can do this:

GRANT PROXY ON sally TO j oe;

Default Proxy Users

To specify that some or all users should connect using a given authentication plugin, create a “blank”
MySQL account with an empty user name and host name (' ' @ '), associate it with that plugin, and let
the plugin return the real authenticated user name (if different from the blank user). Suppose that there
exists a plugin named | dap_aut h that implements LDAP authentication and maps connecting users onto
either a developer or manager account. To set up proxying of users onto these accounts, use the following
statements:

-- create default proxy account
CREATE USER '' @'

| DENTI FI ED W TH | dap_aut h

AS ' O=Oracl e, O=W/SQ';
-- create proxied accounts; use
-- nysqgl _no_l ogin plugin to prevent direct |ogin
CREATE USER ' devel oper' @I ocal host"

| DENTI FI ED W TH nysql _no_| ogi n;
CREATE USER ' manager' @ ocal host'

| DENTI FI ED W TH nysql _no_| ogi n;
-- grant to default proxy account the
-- PROXY privilege for proxied accounts
GRANT PROXY

ON ' manager' @I ocal host'

T0''@';
GRANT PROXY

ON ' devel oper' @I ocal host"

0@

Now assume that a client connects as follows:

$> nysql --user=nyuser --password ...
Ent er password: myuser_password

The server does not find nyuser defined as a MySQL user, but because there is a blank user account
(" @") that matches the client user name and host name, the server authenticates the client against
that account: The server invokes the | dap_aut h authentication plugin and passes nyuser and
myuser _passwor d to it as the user name and password.

If the | dap_aut h plugin finds in the LDAP directory that nyuser passwor d is not the correct password
for nyuser , authentication fails and the server rejects the connection.

If the password is correct and | dap_aut h finds that myuser is a developer, it returns the user name
devel oper to the MySQL server, rather than myuser . Returning a user name different from the client
user name of myuser signals to the server that it should treat myuser as a proxy. The server verifies that
"' @' can authenticate as devel oper (because'' @' has the PROXY privilege to do so) and accepts
the connection. The session proceeds with myuser having the privileges of the devel oper proxied user.

80

Default Proxy User and Anonymous User Conflicts

(These privileges should be set up by the DBA using GRANT statements, not shown.) The USER() and
CURRENT _USER() functions return these values:

nysql > SELECT USER(), CURRENT_USER();
+

e +
| USER() | CURRENT_USER() |
. R +
| myuser @ocal host | devel oper @ ocal host |
. R +

If the plugin instead finds in the LDAP directory that myuser is a manager, it returns manager as the user
name and the session proceeds with myuser having the privileges of the nanager proxied user.

mysql > SELECT USER(), CURRENT_USER();

frocomecoccomoooo=o rocomooocoomooooooo +
| USER() | CURRENT USER() |
frocomecoccomoooo=o rocomooocoomooooooo +
| nmyuser @ocal host | nanager @ ocal host |
frocomecoccomoooo=o rocomooocoomooooooo +

For simplicity, external authentication cannot be multilevel: Neither the credentials for devel oper nor
those for nenager are taken into account in the preceding example. However, they are still used if a
client tries to connect and authenticate directly as the devel oper or manager account, which is why
those proxied accounts should be protected against direct login (see Preventing Direct Login to Proxied
Accounts).

Default Proxy User and Anonymous User Conflicts

If you intend to create a default proxy user, check for other existing “match any user” accounts that take
precedence over the default proxy user because they can prevent that user from working as intended.

In the preceding discussion, the default proxy user account has ' ' in the host part, which matches any
host. If you set up a default proxy user, take care to also check whether nonproxy accounts exist with the
same user part and ' % in the host part, because ' % also matches any host, but has precedence over ' '
by the rules that the server uses to sort account rows internally (see Section 4.5, “Access Control, Stage 1:
Connection Verification”).

Suppose that a MySQL installation includes these two accounts:

-- create default proxy account
CREATE USER '' @'
| DENTI FI ED W TH sone_pl ugi n
AS 'sone_auth_string';
-- create anonynous account
CREATE USER '' @ %
| DENTI FI ED BY ' anon_user _password';

The first account (' * @ ") is intended as the default proxy user, used to authenticate connections for users
who do not otherwise match a more-specific account. The second account (' * @ %) is an anonymous-
user account, which might have been created, for example, to enable users without their own account to
connect anonymously.

Both accounts have the same user part (' '), which matches any user. And each account has a host
part that matches any host. Nevertheless, there is a priority in account matching for connection attempts
because the matching rules sort a host of ' % ahead of ' ' . For accounts that do not match any more-
specific account, the server attempts to authenticate them against ' ' @ % (the anonymous user) rather
than'' @' (the default proxy user). As a result, the default proxy account is never used.

To avoid this problem, use one of the following strategies:

» Remove the anonymous account so that it does not conflict with the default proxy user.

81

https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

Server Support for Proxy User Mapping

» Use a more-specific default proxy user that matches ahead of the anonymous user. For example, to
permit only | ocal host proxy connections, use' ' @ | ocal host "' ;

CREATE USER '' @1 ocal host'
| DENTI FI ED W TH sone_pl ugi n
AS 'sone_auth_string';

In addition, modify any GRANT PROXY statements to name ' ' @ | ocal host"' ratherthan'' @' as the
proxy user.

Be aware that this strategy prevents anonymous-user connections from | ocal host .

» Use a named default account rather than an anonymous default account. For an example of this
technique, consult the instructions for using the aut hent i cat i on_w ndows plugin. See Section 6.1.8,
“Windows Pluggable Authentication”.

» Create multiple proxy users, one for local connections and one for “everything else” (remote
connections). This can be useful particularly when local users should have different privileges from
remote users.

Create the proxy users:

- create proxy user for local connections
CREATE USER '' @1 ocal host'
| DENTI FI ED W TH sone_pl ugi n
AS 'sone_auth_string';
- create proxy user for renmote connections
CREATE USER '' @ %
| DENTI FI ED W TH sone_pl ugi n
AS 'sone_auth_string';

Create the proxied users:

- create proxied user for |ocal connections
CREATE USER ' devel oper' @1 ocal host"
| DENTI FI ED W TH nysql _no_I ogi n;
- create proxied user for renpte connections
CREATE USER ' devel oper' @ %
| DENTI FI ED W TH nysql _no_I ogi n;

Grant to each proxy account the PROXY privilege for the corresponding proxied account:

GRANT PROXY
ON ' devel oper' @I ocal host"'
TO '*' @I ocal host " ;

GRANT PROXY
ON ' devel oper' @ %
TO'"@%;

Finally, grant appropriate privileges to the local and remote proxied users (not shown).

Assume that the sone_pl ugi n/' sone_aut h_string' combination causes sone_pl ugi n to map
the client user name to devel oper . Local connections matchthe ' * @ | ocal host' proxy user, which
maps to the ' devel oper' @ | ocal host' proxied user. Remote connections match the ' ' @ % proxy
user, which maps to the ' devel oper' @ % proxied user.

Server Support for Proxy User Mapping

Some authentication plugins implement proxy user mapping for themselves (for example, the PAM and
Windows authentication plugins). Other authentication plugins do not support proxy users by default.
Of these, some can request that the MySQL server itself map proxy users according to granted proxy

82

Server Support for Proxy User Mapping

privileges: nysql _nati ve_passwor d, sha256_passwor d. If the check_proxy_users system
variable is enabled, the server performs proxy user mapping for any authentication plugins that make such
arequest:

» By default, check proxy_users is disabled, so the server performs no proxy user mapping even for
authentication plugins that request server support for proxy users.

» If check_proxy_users is enabled, it may also be necessary to enable a plugin-specific system
variable to take advantage of server proxy user mapping support:

e Forthe nysql native_ password plugin, enable nysql native password_proxy_users.
e Forthe sha256_ passwor d plugin, enable sha256 password_proxy_users.
For example, to enable all the preceding capabilities, start the server with these lines in the ny. cnf file:

[nysql d]

check_proxy_user s=ON

nysql _nati ve_passwor d_proxy_user s=ON
sha256_passwor d_pr oxy_user s=ON

Assuming that the relevant system variables have been enabled, create the proxy user as usual using
CREATE USER, then grant it the PROXY privilege to a single other account to be treated as the proxied
user. When the server receives a successful connection request for the proxy user, it finds that the user
has the PROXY privilege and uses it to determine the proper proxied user.

-- create proxy account
CREATE USER ' proxy_user' @I ocal host'
| DENTI FI ED W TH nysql _nati ve_password
BY ' password' ;
-- create proxied account and grant its privil eges;
-- use nysqgl _no_login plugin to prevent direct |ogin
CREATE USER ' proxi ed_user' @I ocal host'
| DENTI FI ED W TH nysql _no_|I ogi n;
-- grant privileges to proxied account
TO ' proxi ed_user' @I ocal host "' ;
-- grant to proxy account the
-- PROXY privilege for proxied account
GRANT PROXY
ON ' proxi ed_user' @I ocal host"*
TO ' proxy_user' @Il ocal host "' ;

To use the proxy account, connect to the server using its name and password:

$> nysql -u proxy_user -p
Enter password: (enter proxy_user password here)

Authentication succeeds, the server finds that pr oxy _user has the PROXY privilege for pr oxi ed_user,
and the session proceeds with pr oxy_user having the privileges of pr oxi ed_user.

Proxy user mapping performed by the server is subject to these restrictions:

» The server does not proxy to or from an anonymous user, even if the associated PROXY privilege is
granted.

* When a single account has been granted proxy privileges for more than one proxied account, server
proxy user mapping is nondeterministic. Therefore, granting to a single account proxy privileges for
multiple proxied accounts is discouraged.

83

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_check_proxy_users
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_mysql_native_password_proxy_users
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_proxy_users
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

Proxy User System Variables

Proxy User System Variables

Two system variables help trace the proxy login process:

* proxy_user: This value is NULL if proxying is not used. Otherwise, it indicates the proxy user account.
For example, if a client authenticates throughthe "' @' proxy account, this variable is set as follows:

nmysql > SELECT @@r oxy_user ;

dimcccccococcccooo +
| @@roxy_user |
dimcccccococcccooo +
| '@ |
dimcccccococcccooo +

» external _user: Sometimes the authentication plugin may use an external user to authenticate to the
MySQL server. For example, when using Windows native authentication, a plugin that authenticates
using the windows API does not need the login ID passed to it. However, it still uses a Windows user
ID to authenticate. The plugin may return this external user ID (or the first 512 UTF-8 bytes of it) to the
server using the ext er nal _user read-only session variable. If the plugin does not set this variable, its
value is NULL.

4.15 Account Locking

MySQL supports locking and unlocking user accounts using the ACCOUNT LOCK and ACCOUNT UNLOCK
clauses for the CREATE USER and ALTER USER statements:

* When used with CREATE USER, these clauses specify the initial locking state for a new account. In the
absence of either clause, the account is created in an unlocked state.

If the val i dat e_passwor d plugin is enabled, it does not permit creating an account without a
password, even if the account is locked. See Section 6.3, “The Password Validation Plugin”.

» When used with ALTER USER, these clauses specify the new locking state for an existing account. In
the absence of either clause, the account locking state remains unchanged.

Account locking state is recorded in the account _| ocked column of the nysql . user system table. The
output from SHOW CREATE USER indicates whether an account is locked or unlocked.

If a client attempts to connect to a locked account, the attempt fails. The server increments the
Locked_connect s status variable that indicates the number of attempts to connect to a locked account,
returns an ER_ACCOUNT_HAS BEEN LOCKED error, and writes a message to the error log:

Access denied for user 'user_nane' @host_nane'.
Account is | ocked.

Locking an account does not affect being able to connect using a proxy user that assumes the identity
of the locked account. It also does not affect the ability to execute stored programs or views that have
a DEFI NER attribute naming the locked account. That is, the ability to use a proxied account or stored
programs or views is not affected by locking the account.

The account-locking capability depends on the presence of the account | ocked column in the

nysql . user system table. For upgrades from MySQL versions older than 5.7.6, perform the MySQL
upgrade procedure to ensure that this column exists. See Upgrading MySQL. For nonupgraded
installations that have no account | ocked column, the server treats all accounts as unlocked, and using
the ACCOUNT LOCK or ACCOUNT UNLOCK clauses produces an error.

4.16 Setting Account Resource Limits

84

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_proxy_user
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_external_user
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/show-create-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Locked_connects
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_account_has_been_locked
https://dev.mysql.com/doc/refman/5.7/en/upgrading.html

Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global

max_user _connect i ons system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user _connect i ons does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server resources:
» The number of queries an account can issue per hour

» The number of updates an account can issue per hour

» The number of times an account can connect to the server per hour

» The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit, unless its results are served from the
guery cache. Only statements that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the nysql . user system table. That is, a connection
is assessed against the User and Host values in the user table row that applies to the connection. For
example, an account' user a' @ % exanpl e. coni corresponds to a row in the user table that has
User and Host values of user a and % exanpl e. com to permit user a to connect from any host in

the exanpl e. comdomain. In this case, the server applies resource limits in this row collectively to all
connections by user a from any host in the exanpl e. comdomain because all such connections use the
same account.

Before MySQL 5.0, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the - - ol d- st yl e-

user -1 i m ts option. In this case, if user a connects simultaneously from host 1. exanpl e. comand
host 2. exanpl e. com the server applies the account resource limits separately to each connection.
If user a connects again from host 1. exanpl e. com the server applies the limits for that connection
together with the existing connection from that host.

To establish resource limits for an account at account-creation time, use the CREATE USER statement.
To modify the limits for an existing account, use ALTER USER. Provide a W TH clause that names each
resource to be limited. The default value for each limit is zero (no limit). For example, to create a new

account that can access the cust oner database, but only in a limited fashion, issue these statements:

nmysql > CREATE USER 'francis' @I ocal host' | DENTI FI ED BY ' frank'

-> W TH MAX_QUERI ES_PER HOUR 20
-> MAX_UPDATES_PER HOUR 10
-> MAX_CONNECTI ONS_PER_HOUR 5
-> MAX_USER CONNECTI ONS 2;

The limit types need not all be named in the W TH clause, but those named can be present in any

order. The value for each per-hour limit should be an integer representing a count per hour. For

MAX USER_CONNECTI ONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user _connecti ons system
variable value determines the number of simultaneous connections. If rax_user connecti ons is also
zero, there is no limit for the account.

To modify limits for an existing account, use an ALTER USER statement. The following statement changes
the query limit for f r anci s to 100:

nysqgl > ALTER USER 'franci s' @Il ocal host' W TH MAX_QUERI ES_PER HOUR 100;

85

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_old-style-user-limits
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_old-style-user-limits
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html

Setting Account Resource Limits

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
franci s can connect, use this statement:

nmysqgl > ALTER USER 'franci s' @I ocal host' W TH MAX_CONNECTI ONS_PER_HOUR O0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTI ONS limit and the max_user _connect i ons system variable. Suppose that the
global max_user _connect i ons value is 10 and three accounts have individual resource limits specified
as follows:

ALTER USER 'user1' @I ocal host' W TH MAX_USER_CONNECTI ONS O0;
ALTER USER 'user?2' @I ocal host' W TH MAX_USER_CONNECTI ONS 5;
ALTER USER ' user3' @I ocal host' W TH MAX_USER_CONNECTI ONS 20;

user 1 has a connection limit of 10 (the global mex_user connect i ons value) because it has
a MAX_USER CONNECTI ONS limit of zero. user 2 and user 3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX USER CONNECTI ONS limits.

The server stores resource limits for an account in the user table row corresponding to the account. The
max_questions, nax_updat es, and max_connect i ons columns store the per-hour limits, and the
max_user _connecti ons column stores the MAX _USER CONNECTI ONS limit. (See Section 4.3, “Grant
Tables”.)

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of the
resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches

its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or updates,
the server rejects further queries or updates until the hour is up. In all such cases, the server issues
appropriate error messages.

Resource counting occurs per account, not per client. For example, if your account has a query limit of 50,
you cannot increase your limit to 100 by making two simultaneous client connections to the server. Queries
issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given
account:

» To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRI VI LEGES
statement or a nysql adnm n rel oad command).

» The counts for an individual account can be reset to zero by setting any of its limits again. Specify a limit
value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER CONNECTI ONS limit.
All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTI ONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result in
an error (ER_TOO MANY USER CONNECTI ONS or ER_USER LI M T_REACHED) if the server has not fully
processed the disconnect by the time the connect occurs. When the server finishes disconnect processing,
another connection is once more permitted.

86

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_user_connections
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-user-resources
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-privileges
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_too_many_user_connections
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_user_limit_reached

Troubleshooting Problems Connecting to MySQL

4.17 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

» Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an attempt to
connect to the server fails with a message such as one of those following, one cause might be that the
server is not running:

$> nysql

ERROR 2003: Can't connect to MySQ. server on 'host_nanme' (111)
$> nysql

ERROR 2002: Can't connect to |ocal MySQ server through socket
"/tmp/ nysql . sock' (111)

« It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or
Unix socket file different from the one on which the server is listening. To correct this when you invoke
a client program, specify a - - port option to indicate the proper port number, or a - - socket option to
indicate the proper named pipe or Unix socket file. To find out where the socket file is, you can use this
command:

$> netstat -In | grep nysql

» Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with the ski p_net wor ki ng system variable enabled, it does not
accept TCP/IP connections at all. If the server was started with the bi nd_addr ess system variable
setto 127. 0. 0. 1, it listens for TCP/IP connections only locally on the loopback interface and does not
accept remote connections.

» Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured
on the basis of the application being executed, or the port number used by MySQL for communication
(3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the
port has not been blocked. Under Windows, applications such as ZoneAlarm or Windows Firewall may
need to be configured not to block the MySQL port.

» The grant tables must be properly set up so that the server can use them for access control. For some
distribution types (such as binary distributions on Windows, or RPM and DEB distributions on Linux),
the installation process initializes the MySQL data directory, including the nysqgl system database
containing the grant tables. For distributions that do not do this, you must initialize the data directory
manually. For details, see Chapter 3, Postinstallation Setup and Testing.

To determine whether you need to initialize the grant tables, look for a mysql directory under the

data directory. (The data directory normally is named dat a or var and is located under your MySQL
installation directory.) Make sure that you have a file named user . MYDin the mysqgl database directory.
If not, initialize the data directory. After doing so and starting the server, you should be able to connect to
the server.

» After a fresh installation, if you try to log on to the server as r oot without using a password, you might
get the following error message.

$> nysql -u root
ERROR 1045 (28000): Access denied for user 'root' @l ocal host' (using password: NO

It means a root password has already been assigned during installation and it has to be supplied. See
Section 3.4, “Securing the Initial MySQL Account” on the different ways the password could have been
assigned and, in some cases, how to find it. If you need to reset the root password, see instructions in

87

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_port
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_socket
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_bind_address

Troubleshooting Problems Connecting to MySQL

How to Reset the Root Password. After you have found or reset your password, log on again as r oot
using the - - passwor d (or - p) option:

$> nysql -u root -p
Ent er passwor d:

However, the server is going to let you connect as r oot without using a password if you have initialized
MySQL using mysqld --initialize-insecure (see Section 3.1, “Initializing the Data Directory”
for details). That is a security risk, so you should set a password for the r oot account; see Section 3.4,
“Securing the Initial MySQL Account” for instructions.

If you have updated an existing MySQL installation to a newer version, did you perform the MySQL
upgrade procedure? If not, do so. The structure of the grant tables changes occasionally when new
capabilities are added, so after an upgrade you should always make sure that your tables have the
current structure. For instructions, see Upgrading MySQL.

If a client program receives the following error message when it tries to connect, it means that the server
expects passwords in a newer format than the client is capable of generating:
$> nysq

Client does not support authentication protocol requested
by server; consider upgrading MySQ cli ent

For information on how to deal with this, see Section 6.1.3, “Migrating Away from Pre-4.1 Password
Hashing and the mysql_old_password Plugin”.

Remember that client programs use connection parameters specified in option files or environment
variables. If a client program seems to be sending incorrect default connection parameters when you
have not specified them on the command line, check any applicable option files and your environment.
For example, if you get Access deni ed when you run a client without any options, make sure that you
have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the - - no- def aul t s
option. For example:

$> nysqgladmin --no-defaults -u root version

The option files that clients use are listed in Using Option Files. Environment variables are listed in
Environment Variables.

If you get the following error, it means that you are using an incorrect r oot password:

$> nysqgl admin -u root -pxxxx ver
Access denied for user 'root' @l ocal host' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the - - no- def aul t s option as described in the
previous item.

For information on changing passwords, see Section 4.10, “Assigning Account Passwords”.
If you have lost or forgotten the r oot password, see How to Reset the Root Password.

| ocal host is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a - - host =127. 0. 0. 1 option to name the server host explicitly. This makes a TCP/IP
connection to the local nysql d server. You can also use TCP/IP by specifying a - - host option that
uses the actual host name of the local host. In this case, the host name must be specified in a user

88

https://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/5.7/en/upgrading.html
https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/5.7/en/option-files.html
https://dev.mysql.com/doc/refman/5.7/en/environment-variables.html
https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_host
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_host

Troubleshooting Problems Connecting to MySQL

table row on the server host, even though you are running the client program on the same host as the
server.

The Access deni ed error message tells you who you are trying to log in as, the client host from which
you are trying to connect, and whether you were using a password. Normally, you should have one

row in the user table that exactly matches the host name and user name that were given in the error
message. For example, if you get an error message that contains usi ng passwor d: NO, it means that
you tried to log in without a password.

If you get an Access deni ed error when trying to connect to the database with mysqgl -u
user _nane, you may have a problem with the user table. Check this by executing mysqgl -u root
nysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name and
your MySQL user name.

If the following error occurs when you try to connect from a host other than the one on which the MySQL
server is running, it means that there is no row in the user table with a Host value that matches the
client host:

Host ... is not allowed to connect to this MySQ. server

You can fix this by setting up an account for the combination of client host name and user name that you
are using when trying to connect.

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with ' % as the Host column value in the user table. After trying to connect from the
client machine, use a SELECT USER() query to see how you really did connect. Then change the ' %
in the user table row to the actual host name that shows up in the log. Otherwise, your system is left
insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version that

is compiled with a different version of the gl i bc library than the one you are using. In this case, you
should either upgrade your operating system or gl i bc, or download a source distribution of MySQL
version and compile it yourself. A source RPM is normally trivial to compile and install, so this is not a big
problem.

If you specify a host name when trying to connect, but get an error message where the host name is not
shown or is an IP address, it means that the MySQL server got an error when trying to resolve the IP
address of the client host to a name:

$> nysqgladmin -u root -pxxxx -h some_host name ver
Access denied for user '‘root' @' (using password: YES)

If you try to connect as r oot and get the following error, it means that you do not have a row in the user
table with a User column value of ' r oot ' and that mysqgl d cannot resolve the host name for your
client:

Access deni ed for user '' @ unknown'

These errors indicate a DNS problem. To fix it, execute mysql admi n fl ush- host s to reset the
internal DNS host cache. See DNS Lookups and the Host Cache.

Some permanent solutions are:

« Determine what is wrong with your DNS server and fix it.

89

https://dev.mysql.com/doc/refman/5.7/en/host-cache.html

Troubleshooting Problems Connecting to MySQL

» Specify IP addresses rather than host names in the MySQL grant tables.

¢ Put an entry for the client machine name in/ et ¢/ host s on Unix or \ wi ndows\ host s on Windows.
« Start nysql d with the ski p_nane_r esol ve system variable enabled.

« Start mysql d with the - - ski p- host - cache option.

* On Unix, if you are running the server and the client on the same machine, connect to | ocal host .
For connections to | ocal host , MySQL programs attempt to connect to the local server by using a
Unix socket file, unless there are connection parameters specified to ensure that the client makes
a TCP/IP connection. For more information, see Connecting to the MySQL Server Using Command
Options.

* On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

If mysqgl -u root works butmysqgl -h your hostnane -u root resultsin Access deni ed
(where your _host nane is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a

fully qualified domain name (or vice versa). For example, if you have a row with host' pl ut o' in the
user table, but your DNS tells MySQL that your host name is ' pl ut 0. exanpl e. coni , the row does
not work. Try adding a row to the user table that contains the IP address of your host as the Host
column value. (Alternatively, you could add a row to the user table with a Host value that contains a
wildcard (for example, ' pl ut 0. %). However, use of Host values ending with %is insecure and is not
recommended!)

If nysqgl -u user nane works but mysqgl -u user name sone_db does not, you have not granted
access to the given user for the database named sone_db.

If nysql -u user_nane works when executed on the server host, but nysql -h host_nane -u
user _nane does not work when executed on a remote client host, you have not enabled access to the
server for the given user name from the remote host.

If you cannot figure out why you get Access deni ed, remove from the user table all rows that have
Host values containing wildcards (rows that contain ' % or' ' characters). A very common error is
to insert a new row with Host =" % and User =' sone_user ', thinking that this enables you to specify
| ocal host to connect from the same machine. The reason that this does not work is that the default
privileges include a row with Host =' | ocal host' and User ="' ' . Because that row has a Host value
"l ocal host' thatis more specific than' % , it is used in preference to the new row when connecting
from | ocal host ! The correct procedure is to insert a second row with Host =' | ocal host' and
User = sone_user ', or to delete the row with Host =' | ocal host' and User ="' . After deleting
the row, remember to issue a FLUSH PRI VI LECES statement to reload the grant tables. See also
Section 4.5, “Access Control, Stage 1: Connection Verification”.

If you are able to connect to the MySQL server, but get an Access deni ed message whenever you
issue a SELECT ... | NTO OQUTFI LE or LOAD DATA statement, your row in the user table does not
have the FI LE privilege enabled.

If you change the grant tables directly (for example, by using | NSERT, UPDATE, or DELETE statements)
and your changes seem to be ignored, remember that you must execute a FLUSH PRI VI LEGES
statement or a nysql adm n fl ush-privil eges command to cause the server to reload the privilege
tables. Otherwise, your changes have no effect until the next time the server is restarted. Remember

90

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_skip_name_resolve
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-host-cache
https://dev.mysql.com/doc/refman/5.7/en/connecting.html
https://dev.mysql.com/doc/refman/5.7/en/connecting.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-privileges

SQL-Based Account Activity Auditing

that after you change the r oot password with an UPDATE statement, you do not need to specify the
new password until after you flush the privileges, because the server does not yet know that you have
changed the password.

* If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator
has changed them. Reloading the grant tables affects new client connections, but it also affects existing
connections as indicated in Section 4.9, “When Privilege Changes Take Effect”.

« If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server
with nysql -u user_nanme db_nane ornysqgl -u user_nanme -ppassword db_nane. If
you are able to connect using the nysql client, the problem lies with your program, not with the
access privileges. (There is no space between - p and the password; you can also use the - -
passwor d=passwor d syntax to specify the password. If you use the - p or - - passwor d option with no
password value, MySQL prompts you for the password.)

» For testing purposes, start the mysql d server with the - - ski p- gr ant - t abl es option. Then you
can change the MySQL grant tables and use the SHON GRANTS statement to check whether your
modifications have the desired effect. When you are satisfied with your changes, execute nmysql adm n
flush-privil eges totell the nysql d server to reload the privileges. This enables you to begin using
the new grant table contents without stopping and restarting the server.

« If everything else fails, start the nmysql d server with a debugging option (for example, - -
debug=d, gener al , query). This prints host and user information about attempted connections, as well
as information about each command issued. See The DBUG Package.

* If you have any other problems with the MySQL grant tables and ask on the MySQL Community Slack,
always provide a dump of the MySQL grant tables. You can dump the tables with the nysql dunp
nysqgl command. To file a bug report, see the instructions at How to Report Bugs or Problems. In some
cases, you may need to restart nysql d with - - ski p- grant -t abl es to run mysql dunp.

4.18 SQL-Based Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity to
MySQL accounts.

MySQL accounts correspond to rows in the nmysql . user system table. When a client connects
successfully, the server authenticates the client to a particular row in this table. The User

and Host column values in this row uniquely identify the account and correspond to the

"user _nane' @ host _nane' format in which account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its value
is constructed from the User and Host columns of the user table row for the account.

However, there are circumstances under which the CURRENT_USER() value corresponds not to the client
user but to a different account. This occurs in contexts when privilege checking is not based the client's
account:

 Stored routines (procedures and functions) defined with the SQL SECURI TY DEFI NER characteristic
» Views defined with the SQ. SECURI TY DEFI NER characteristic
» Triggers and events

In those contexts, privilege checking is done against the DEFI NER account and CURRENT _USER() refers
to that account, not to the account for the client who invoked the stored routine or view or who caused

91

https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/5.7/en/show-grants.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_debug
https://dev.mysql.com/doc/refman/5.7/en/dbug-package.html
https://mysqlcommunity.slack.com/
https://dev.mysql.com/doc/refman/5.7/en/bug-reports.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

SQL-Based Account Activity Auditing

the trigger to activate. To determine the invoking user, you can call the USER() function, which returns a
value indicating the actual user name provided by the client and the host from which the client connected.
However, this value does not necessarily correspond directly to an account in the user table, because the
USER() value never contains wildcards, whereas account values (as returned by CURRENT USER()) may
contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of' * @ | ocal host' enables clients to
connect as an anonymous user from the local host with any user name. In this case, if a client connects as
user 1 from the local host, USER() and CURRENT USER() return different values:

mysql > SELECT USER(), CURRENT_USER();

L E TR e mccoccoomoooo=o +
| USER() | CURRENT_USER() |
L E TR e mccoccoomoooo=o +
| userl@ocal host | @ ocal host |
L E TR e mccoccoomoooo=o +

The host name part of an account can contain wildcards, too. If the host name containsa' % or

' ' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT _USER() value does not indicate which one. For example, the account
"user2' @ % exanpl e. com can be used by user 2 to connect from any host in the exanpl e. com
domain. If user 2 connects from r enot e. exanpl e. com USER() and CURRENT USER() return different
values:

mysql > SELECT USER(), CURRENT_USER();

frecccmmccoocomoooooonosoos s e +
| USER() | CURRENT USER() [
frecccmmccoocomoooooonosoos s e +
| user2@ enot e. exanpl e. com | user 2@b6 exanpl e. com |
frecccmmccoocomoooooonosoos s e +

If an application must invoke USER() for user auditing (for example, if it does auditing from within triggers)
but must also be able to associate the USER() value with an account in the user table, it is necessary

to avoid accounts that contain wildcards in the User or Host column. Specifically, do not permit User to
be empty (which creates an anonymous-user account), and do not permit pattern characters or netmask
notation in Host values. All accounts must have a nonempty User value and literal Host value.

With respect to the previous examples, the ' ' @1 ocal host' and ' user2' @ % exanpl e. coni
accounts should be changed not to use wildcards:

RENAME USER '' @I ocal host' TO 'userl1' @I ocal host';
RENAME USER ' user2' @ % exanpl e.comi TO ' user2' @r enot e. exanpl e. cont ;

If user 2 must be able to connect from several hosts in the exanpl e. comdomain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT _USER() or USER() value, use the
SUBSTRI NG _| NDEX() function:

nysql > SELECT SUBSTRI NG | NDEX(CURRENT _USER(),' @, 1)

o m e m e e e e e e meeememmeoaaa-aa +
| SUBSTRI NG | NDEX(CURRENT USER(),' @, 1) |
o m e m e e e e e e meeememmeoaaa-aa +
| userl |

o m e m e e e e e e meeememmeoaaa-aa +
mysql > SELECT SUBSTRI NG | NDEX(CURRENT_USER(),' @, - 1)
P +
| SUBSTRI NG_| NDEX(CURRENT_USER(),' @, -1) |
P +
| I ocal host |
P +

92

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_substring-index

Chapter 5 Using Encrypted Connections

Table of Contents

5.1 Configuring MySQL to Use Encrypted CONNECLIONSc.uiiiiuiiiiiieii e e e e e eenns 95
5.2 Encrypted Connection TLS Protocols and Ciphersco.o oo 100
5.3 Creating SSL and RSA Certificates and KEYSiiiiiiiiiiiiiiiii e 107
5.3.1 Creating SSL and RSA Certificates and Keys using MySQLccooiiiiiiiiiiniiiiiiineecin, 107
5.3.2 Creating SSL Certificates and Keys USiNg OPENSS|cccuuiiiiiiiiiiiiiiiinieiiii e 110
5.3.3 Creating RSA Keys USING OPENSSiiiiiiiiiiiii ettt e e e 115
5.4 SSL Library-Dependent Capabilitiesccouuiiiiiiii e 116
5.5 Connecting to MySQL Remotely from Windows with SSH ... 117

With an unencrypted connection between the MySQL client and the server, someone with access to the
network could watch all your traffic and inspect the data being sent or received between client and server.

When you must move information over a network in a secure fashion, an unencrypted connection

is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of encrypted
messages or replaying data twice.

MySQL supports encrypted connections between clients and the server using the TLS (Transport Layer
Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer) but MySQL does not
actually use the SSL protocol for encrypted connections because its encryption is weak (see Section 5.2,
“Encrypted Connection TLS Protocols and Ciphers”).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It has
mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide identity
verification using the X.509 standard.

X.509 makes it possible to identify someone on the Internet. In basic terms, there should be some entity
called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them.
Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a
secret key). A certificate owner can present the certificate to another party as proof of identity. A certificate
consists of its owner's public key. Any data encrypted using this public key can be decrypted only using the
corresponding secret key, which is held by the owner of the certificate.

MySQL can be compiled for encrypted-connection support using OpenSSL or yaSSL. For a comparison
of the two packages, see Section 5.4, “SSL Library-Dependent Capabilities” For information about the
encryption protocols and ciphers each package supports, see Section 5.2, “Encrypted Connection TLS
Protocols and Ciphers”.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and all
MySQL builds use OpenSSL.

By default, MySQL programs attempt to connect using encryption if the server supports encrypted
connections, falling back to an unencrypted connection if an encrypted connection cannot be established.
For information about options that affect use of encrypted connections, see Section 5.1, “Configuring
MySQL to Use Encrypted Connections” and Command Options for Encrypted Connections.

93

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options

MySQL performs encryption on a per-connection basis, and use of encryption for a given user can be
optional or mandatory. This enables you to choose an encrypted or unencrypted connection according

to the requirements of individual applications. For information on how to require users to use encrypted
connections, see the discussion of the REQUI RE clause of the CREATE USER statement in CREATE USER
Statement. See also the description of the r equi re_secur e_transport system variable at Server
System Variables

Encrypted connections can be used between source and replica servers. See Setting Up Replication to
Use Encrypted Connections.

For information about using encrypted connections from the MySQL C API, see Support for Encrypted
Connections.

It is also possible to connect using encryption from within an SSH connection to the MySQL server host.
For an example, see Section 5.5, “Connecting to MySQL Remotely from Windows with SSH”.

Several improvements were made to encrypted-connection support in MySQL 5.7. The following timeline
summarizes the changes:

» 5.7.3: On the client side, an explicit - - ss| option is no longer advisory but prescriptive. Given a server
enabled to support encrypted connections, a client program can require an encrypted connection by
specifying only the - - ssl option. (Previously, it was necessary for the client to specify either the - -
ssl - ca option, or all three of the - - ssl - ca, - - ssl - key, and - - ssl - cert options.) The connection
attempt fails if an encrypted connection cannot be established. Other - - ss| - xxx options on the client
side are advisory in the absence of - - ss| : The client attempts to connect using encryption but falls back
to an unencrypted connection if an encrypted connection cannot be established.

» 5.7.5: The server-side - - ss| option value is enabled by default.

For servers compiled using OpenSSL, the aut o_generate_certs and

sha256 password_aut o_generat e _rsa_keys system variables are available to enable
autogeneration and autodiscovery of SSL/RSA certificate and key files at startup. For certificate and key
autodiscovery, if - - ssl is enabled and other - - ssl| - xxx options are not given to configure encrypted
connections explicitly, the server attempts to enable support for encrypted connections automatically at
startup if it discovers the requisite certificate and key files in the data directory.

» 5.7.6: The nysqgl _ssl rsa_set up utility is available to make it easier to manually generate SSL/RSA
certificate and key files. Autodiscovery of SSL/RSA files at startup is expanded to apply to all servers,
whether compiled using OpenSSL or yaSSL. (This means that aut o_gener at e_cert s need not be
enabled for autodiscovery to occur.)

If the server discovers at startup that the CA certificate is self-signed, it writes a warning to the
error log. (The certificate is self-signed if created automatically by the server, or manually using
nysql _ssl _rsa_setup.)

» 5.7.7: The C client library attempts to establish an encrypted connection by default if the server supports
encrypted connections. This affects client programs as follows:

< In the absence of an - - ss| option, clients attempt to connect using encryption, falling back to an
unencrypted connection if an encrypted connection cannot be established.

* The presence of an explicit - - ssl option or a synonym (- - ssl =1, - - enabl e- ssl) is prescriptive:
Clients require an encrypted connection and fail if one cannot be established.

¢ With an - - ssl| =0 option or a synonym (- - ski p- ssl, - - di sabl e- ssl), clients use an unencrypted
connection.

94

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl

Configuring MySQL to Use Encrypted Connections

This change also affects subsequent releases of MySQL Connectors that are based on the C client
library: Connector/C++ and Connector/ODBC.

 5.7.8: Therequi re_secure_transport system variable is available to control whether client
connections to the server must use some form of secure transport.

e 5.7.10: TLS protocol support is extended from TLSv1 to also include TLSv1.1 and TLSv1.2. The
t1 s_ver si on system variable on the server side and - - t | s- ver si on option on the client side enable
the level of support to be selected. See Section 5.2, “Encrypted Connection TLS Protocols and Ciphers”.

e 5.7.11: MySQL client programs support an - - ssl - node option that enables you to specify the security
state of the connection to the server. The - - ss| - nbde option comprises the capabilities of the client-
side - - ssl and --ssl -verify-server-cert options. Consequently, - -ssl and - -ssl -verify-
server-cert are deprecated, and are removed in MySQL 8.0.

5.7.28: Support for yaSSL is removed. All MySQL builds use OpenSSL.

5.7.35: The TLSv1 and TLSv1.1 protocols are deprecated.

5.1 Configuring MySQL to Use Encrypted Connections

Several configuration parameters are available to indicate whether to use encrypted connections, and to
specify the appropriate certificate and key files. This section provides general guidance about configuring
the server and clients for encrypted connections:

» Server-Side Startup Configuration for Encrypted Connections

» Client-Side Configuration for Encrypted Connections

» Configuring Encrypted Connections as Mandatory

Encrypted connections also can be used in other contexts, as discussed in these additional sections:
» Between source and replica servers. See Setting Up Replication to Use Encrypted Connections.

« Among Group Replication servers. See Group Replication Secure Socket Layer (SSL) Support.

» By client programs that are based on the MySQL C API. See Support for Encrypted Connections.

Instructions for creating any required certificate and key files are available in Section 5.3, “Creating SSL
and RSA Certificates and Keys”.

Server-Side Startup Configuration for Encrypted Connections

On the server side, the - - ssl option specifies that the server permits but does not require encrypted
connections. This option is enabled by default, so it need not be specified explicitly.

To require that clients connect using encrypted connections, enable the r equi re_secure_transport
system variable. See Configuring Encrypted Connections as Mandatory.

These system variables on the server side specify the certificate and key files the server uses when
permitting clients to establish encrypted connections:

» ssl| _ca: The path name of the Certificate Authority (CA) certificate file. (ss| _capat h is similar but
specifies the path name of a directory of CA certificate files.)

95

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-verify-server-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-verify-server-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-verify-server-cert
https://dev.mysql.com/doc/refman/5.7/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/c-api/5.7/en/c-api-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_capath

Client-Side Configuration for Encrypted Connections

e ssl| _cert: The path name of the server public key certificate file. This certificate can be sent to the
client and authenticated against the CA certificate that it has.

» ssl _key: The path name of the server private key file.

For example, to enable the server for encrypted connections, start it with these lines in the my. cnf file,
changing the file names as necessary:

[mysql d]

ssl _ca=ca. pem

ssl _cert=server-cert.pem
ssl _key=server-key. pem

To specify in addition that clients are required to use encrypted connections, enable the
requi re_secure_transport system variable:

[nysql d]

ssl _ca=ca. pem

ssl _cert=server-cert.pem
ssl _key=server-key. pem
require_secure_transport=0N

Each certificate and key system variable names a file in PEM format. Should you need to create the
required certificate and key files, see Section 5.3, “Creating SSL and RSA Certificates and Keys”. MySQL
servers compiled using OpenSSL can generate missing certificate and key files automatically at startup.
See Section 5.3.1, “Creating SSL and RSA Certificates and Keys using MySQL”". Alternatively, if you have
a MySQL source distribution, you can test your setup using the demonstration certificate and key files in its
nmysql -t est/ st d_dat a directory.

The server performs certificate and key file autodiscovery. If no explicit encrypted-connection options are
given other than - - ssl (possibly along with ssl _ci pher) to configure encrypted connections, the server
attempts to enable encrypted-connection support automatically at startup:

* If the server discovers valid certificate and key files named ca. pem server - cert. pem and ser ver -
key. pemin the data directory, it enables support for encrypted connections by clients. (The files need
not have been generated automatically; what matters is that they have those names and are valid.)

« If the server does not find valid certificate and key files in the data directory, it continues executing but
without support for encrypted connections.

If the server automatically enables encrypted connection support, it writes a note to the error log. If the
server discovers that the CA certificate is self-signed, it writes a warning to the error log. (The certificate is
self-signed if created automatically by the server or manually using nysql ssl _rsa_setup.)

MySQL also provides these system variables for server-side encrypted-connection control:
» ssl _ci pher: The list of permissible ciphers for connection encryption.

e ssl _crl: The path name of the file containing certificate revocation lists. (ssl _cr | pat h is similar but
specifies the path name of a directory of certificate revocation-list files.)

» t1s_version: Which encryption protocols the server permits for encrypted connections; see
Section 5.2, “Encrypted Connection TLS Protocols and Ciphers”. For example, you can configure
t1s_versi on to prevent clients from using less-secure protocols.

Client-Side Configuration for Encrypted Connections

For a complete list of client options related to establishment of encrypted connections, see Command
Options for Encrypted Connections.

96

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_crl
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_crlpath
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options

Client-Side Configuration for Encrypted Connections

By default, MySQL client programs attempt to establish an encrypted connection if the server supports
encrypted connections, with further control available through the - - ss| - node option:

* Inthe absence of an - - ssl - node option, clients attempt to connect using encryption, falling back to an
unencrypted connection if an encrypted connection cannot be established. This is also the behavior with
an explicit - - ssl - nnde=PREFERRED option.

* With - - ssl - nnde=REQUI RED, clients require an encrypted connection and fail if one cannot be
established.

» With - - ssl - node=DI SABLED, clients use an unencrypted connection.

e With - - ssl - node=VERI FY_CAor - - ssl| - nnode=VERI FY_| DENTI TY, clients require an encrypted
connection, and also perform verification against the server CA certificate and (with VERI FY_| DENTI TY)
against the server host name in its certificate.

Important

The default setting, - - ss| - node=PREFERRED, produces an encrypted connection
if the other default settings are unchanged. However, to help prevent sophisticated
man-in-the-middle attacks, it is important for the client to verify the server’s identity.
The settings - - ssl - nnode=VERI FY_CA and - - ssl - node=VERI FY_| DENTI TY
are a better choice than the default setting to help prevent this type of attack.

VERI FY_CA makes the client check that the server’s certificate is valid.

VERI FY_| DENTI TY makes the client check that the server’s certificate is valid,

and also makes the client check that the host name the client is using matches the
identity in the server’s certificate. To implement one of these settings, you must first
ensure that the CA certificate for the server is reliably available to all the clients that
use it in your environment, otherwise availability issues will result. For this reason,
they are not the default setting.

Attempts to establish an unencrypted connection fail if the r equi re_secure_transport system
variable is enabled on the server side to cause the server to require encrypted connections. See
Configuring Encrypted Connections as Mandatory.

The following options on the client side identify the certificate and key files clients use when establishing
encrypted connections to the server. They are similar to the ssl _ca, ssl _cert, and ssl _key system
variables used on the server side, but - - ssl - cert and - - ssl - key identify the client public and private
key:

» --ssl -ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must
specify the same certificate used by the server. (- - ssl - capat h is similar but specifies the path name
of a directory of CA certificate files.)

» --ssl -cert: The path name of the client public key certificate file.
» --ssl - key: The path name of the client private key file.

For additional security relative to that provided by the default encryption, clients can supply a CA certificate
matching the one used by the server and enable host name identity verification. In this way, the server and
client place their trust in the same CA certificate and the client verifies that the host to which it connected is
the one intended:

» To specify the CA certificate, use - - ssl - ca (or - - ssl - capat h), and specify - - ssl -
node=VERI FY_CA.

» To enable host name identity verification as well, use - - ssl - node=VERI FY_| DENTI TY rather than - -
ssl - node=VERI FY_CA.

97

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode

Client-Side Configuration for Encrypted Connections

Note

Host name identity verification with VERI FY_| DENTI TY does not work with self-
signed certificates that are created automatically by the server or manually using
nysqgl _ssl _rsa_set up (see Section 5.3.1, “Creating SSL and RSA Certificates
and Keys using MySQL"). Such self-signed certificates do not contain the server
name as the Common Name value.

Prior to MySQL 5.7.23, host name identity verification also does not work with
certificates that specify the Common Name using wildcards because that name is
compared verbatim to the server name.

MySQL also provides these options for client-side encrypted-connection control:
e --ssl-cipher: The list of permissible ciphers for connection encryption.

* --ssl-crl: The path name of the file containing certificate revocation lists. (- - ssl - cr | pat h is similar
but specifies the path name of a directory of certificate revocation-list files.)

» --tls-version: The permitted encryption protocols; see Section 5.2, “Encrypted Connection TLS
Protocols and Ciphers”.

Depending on the encryption requirements of the MySQL account used by a client, the client may be
required to specify certain options to connect using encryption to the MySQL server.

Suppose that you want to connect using an account that has no special encryption requirements or that
was created using a CREATE USER statement that included the REQUI RE SSL clause. Assuming that the
server supports encrypted connections, a client can connect using encryption with no - - ssl - node option
or with an explicit - - ssl| - nnde=PREFERRED option:

nysq
Or:

nysqgl --ssl - nbode=PREFERRED

For an account created with a REQUI RE SSL clause, the connection attempt fails if an encrypted
connection cannot be established. For an account with no special encryption requirements, the attempt
falls back to an unencrypted connection if an encrypted connection cannot be established. To prevent
fallback and fail if an encrypted connection cannot be obtained, connect like this:

mysql --ssl-nmde=REQUI RED

If the account has more stringent security requirements, other options must be specified to establish an
encrypted connection:

e For accounts created with a REQUI RE X509 clause, clients must specify at least - - ssl -cert and - -
ssl - key. In addition, - - ssl - ca (or - - ssl - capat h) is recommended so that the public certificate
provided by the server can be verified. For example (enter the command on a single line):

nmysql --ssl-ca=ca. pem
--ssl-cert=client-cert.pem
--ssl -key=client - key. pem

» For accounts created with a REQUI RE | SSUER or REQUI RE SUBJECT clause, the encryption
requirements are the same as for REQUI RE X509, but the certificate must match the issue or subject,
respectively, specified in the account definition.

For additional information about the REQUI RE clause, see CREATE USER Statement.

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

Configuring Encrypted Connections as Mandatory

MySQL servers can generate client certificate and key files that clients can use to connect to MySQL
server instances. See Section 5.3, “Creating SSL and RSA Certificates and Keys”.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with

the ext endedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (cl i ent Aut h). If the SSL certificate

is only specified for server authentication (ser ver Aut h) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no ext endedKeyUsage extension in SSL
certificates generated by MySQL Server (as described in Section 5.3.1, “Creating
SSL and RSA Certificates and Keys using MySQL"), and SSL certificates created
using the openssl command following the instructions in Section 5.3.2, “Creating
SSL Certificates and Keys Using openssl”. If you use your own client certificate
created in another way, ensure any ext endedKeyUsage extension includes client
authentication.

To prevent use of encryption and override other - - ssl - xxx options, invoke the client program with - -
ssl - node=DI SABLED:

nmysql --ssl-nobde=Dl SABLED

To determine whether the current connection with the server uses encryption, check the session value of
the Ssl _ci pher status variable. If the value is empty, the connection is not encrypted. Otherwise, the
connection is encrypted and the value indicates the encryption cipher. For example:

nmysql > SHOW SESSI ON STATUS LI KE ' Ssl _ci pher';

foocomcoomoooo=o fmoooccooooscooomoooooooo-oo +
| Variable_nane | Val ue |
foocomcoomoooo=o fmoooccooooscooomoooooooo-oo +
| Ssl _cipher | DHE- RSA- AES128- GCM SHA256 |
foocomcoomoooo=o fmoooccooooscooomoooooooo-oo +

For the nysqgl client, an alternative is to use the STATUS or \ s command and check the SSL line:

mysql > \'s

SSL: Not in use

Or:

nmysql > \'s

SSL: G pher in use is DHE- RSA- AES128- GCM SHA256

Configuring Encrypted Connections as Mandatory

For some MySQL deployments it may be not only desirable but mandatory to use encrypted connections
(for example, to satisfy regulatory requirements). This section discusses configuration settings that enable
you to do this. These levels of control are available:

* You can configure the server to require that clients connect using encrypted connections.

* You can invoke individual client programs to require an encrypted connection, even if the server permits
but does not require encryption.

* You can configure individual MySQL accounts to be usable only over encrypted connections.

99

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Ssl_cipher

Encrypted Connection TLS Protocols and Ciphers

To require that clients connect using encrypted connections, enable the r equi re_secure_transport
system variable. For example, put these lines in the server ny. cnf file:

[nysql d]
require_secure_transport=0N

With r equi re_secure_transport enabled, client connections to the server are required to use some
form of secure transport, and the server permits only TCP/IP connections that use SSL, or connections
that use a socket file (on Unix) or shared memory (on Windows). The server rejects honsecure connection
attempts, which fail with an ER_ SECURE_TRANSPORT _REQUI RED error.

To invoke a client program such that it requires an encrypted connection whether or not the server requires
encryption, use an - - ssl - node option value of REQUI RED, VERI FY_CA, or VERI FY_I DENTI TY. For
example:

nmysql --ssl-nmde=REQUI RED

nmysql dunp --ssl - node=VERI FY_CA
nysql adm n --ssl - node=VERI FY_| DENTI TY

To configure a MySQL account to be usable only over encrypted connections, include a REQUI RE
clause in the CREATE USER statement that creates the account, specifying in that clause the encryption
characteristics you require. For example, to require an encrypted connection and the use of a valid X.509
certificate, use REQUI RE X5009:

CREATE USER 'jeffrey' @l ocal host' REQUI RE X5009;
For additional information about the REQUI RE clause, see CREATE USER Statement.

To modify existing accounts that have no encryption requirements, use the ALTER USER statement.

5.2 Encrypted Connection TLS Protocols and Ciphers

MySQL supports multiple TLS protocols and ciphers, and enables configuring which protocols and ciphers
to permit for encrypted connections. It is also possible to determine which protocol and cipher the current
session uses.

» Supported Connection TLS Protocols

» Connection TLS Protocol Configuration
» Deprecated TLS Protocols

» Connection Cipher Configuration

» Connection TLS Protocol Negotiation

» Monitoring Current Client Session TLS Protocol and Cipher

Supported Connection TLS Protocols

MySQL supports encrypted connections using the TLSv1, TLSv1.1, and TLSv1.2 protocols, listed in order
from less secure to more secure. The set of protocols actually permitted for connections is subject to
multiple factors:

» MySQL configuration. Permitted TLS protocols can be configured on both the server side and client side
to include only a subset of the supported TLS protocols. The configuration on both sides must include at
least one protocol in common or connection attempts cannot negotiate a protocol to use. For details, see
Connection TLS Protocol Negotiation.

100

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_require_secure_transport
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_secure_transport_required
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html

Connection TLS Protocol Configuration

» System-wide host configuration. The host system may permit only certain TLS protocols, which means
that MySQL connections cannot use nonpermitted protocols even if MySQL itself permits them:

e Suppose that MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2, but your host system
configuration permits only connections that use TLSv1.2 or higher. In this case, you cannot establish
MySQL connections that use TLSv1 or TLSv1.1, even though MySQL is configured to permit them,
because the host system does not permit them.

e If MySQL configuration permits TLSv1, TLSv1.1, and TLSv1.2, but your host system configuration
permits only connections that use TLSv1.3 or higher, you cannot establish MySQL connections at all,
because no protocol permitted by MySQL is permitted by the host system.

Workarounds for this issue include:

* Change the system-wide host configuration to permit additional TLS protocols. Consult your operating
system documentation for instructions. For example, your system may have an/ et ¢/ ssl /
openssl . cnf file that contains these lines to restrict TLS protocols to TLSv1.2 or higher:

[system defaul t _sect]
M nProt ocol = TLSv1.2

Changing the value to a lower protocol version or None makes the system more permissive. This
workaround has the disadvantage that permitting lower (less secure) protocols may have adverse
security consequences.

« If you cannot or prefer not to change the host system TLS configuration, change MySQL applications
to use higher (more secure) TLS protocols that are permitted by the host system. This may not be
possible for older versions of MySQL that support only lower protocol versions. For example, TLSv1 is
the only supported protocol prior to MySQL 5.6.46, so attempts to connect to a pre-5.6.46 server fail
even if the client is from a newer MySQL version that supports higher protocol versions. In such cases,
an upgrade to a version of MySQL that supports additional TLS versions may be required.

e The SSL library. If the SSL library does not support a particular protocol, neither does MySQL, and any
parts of the following discussion that specify that protocol do not apply.

« When compiled using OpenSSL 1.0.1 or higher, MySQL supports the TLSv1, TLSv1.1, and TLSv1.2
protocaols.

¢ When compiled using yaSSL, MySQL supports the TLSv1 and TLSv1.1 protocols.
Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and
all MySQL builds use OpenSSL.

Connection TLS Protocol Configuration

On the server side, the value of the t | s_ver si on system variable determines which TLS protocols

a MySQL server permits for encrypted connections. The t | s_ver si on value applies to connections
from clients and from replica servers using regular source/replica replication. The variable value is a list
of one or more comma-separated protocol versions from this list (not case-sensitive): TLSv1, TLSv1.1,
TLSv1.2. By default, this variable lists all protocols supported by the SSL library used to compile MySQL
(TLSv1, TLSv1. 1, TLSv1. 2 for OpenSSL, TLSv1, TLSv1. 1 for yaSSL). To determine the value of

t I s_versi on at runtime, use this statement:

nmysqgl > SHOW GLOBAL VARI ABLES LIKE 'tls_version';

101

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version

Connection TLS Protocol Configuration

S P +
| Variabl e_nane | Val ue

S R P S P +
| tls_version | TLSv1, TLSv1. 1, TLSv1.2

S R P S P +

To change the value of t | s_ver si on, set it at server startup. For example, to permit connections that use
the TLSv1.1 or TLSv1.2 protocol, but prohibit connections that use the less-secure TLSv1 protocol, use
these lines in the server ny. cnf file:

[mysql d]
tls_version=TLSv1. 1, TLSv1. 2

To be even more restrictive and permit only TLSv1.2 connections, sett| s_ver si on like this (assuming
that your server is compiled using OpenSSL because yaSSL does not support TLSv1.2):

[nysgl d]
tls_version=TLSv1. 2

Note

As of MySQL 5.7.35, the TLSv1 and TLSv1.1 connection protocols are deprecated
and support for them is subject to removal in a future version of MySQL. See
Deprecated TLS Protocols.

On the client side, the - -t | s- ver si on option specifies which TLS protocols a client program permits
for connections to the server. The format of the option value is the same as forthe t | s_ver si on system
variable described previously (a list of one or more comma-separated protocol versions).

For source/replica replication, the MASTER _TLS VERSI ON option for the CHANGE NMASTER TO statement
specifies which TLS protocols a replica server permits for connections to the source. The format of the
option value is the same as forthe t | s_ver si on system variable described previously. See Setting Up
Replication to Use Encrypted Connections.

The protocols that can be specified for MVASTER TLS VERSI ON depend on the SSL library. This option is
independent of and not affected by the servert | s_ver si on value. For example, a server that acts as

a replica can be configured witht | s_ver si on set to TLSv1.2 to permit only incoming connections that
use TLSv1.2, but also configured with MASTER_TLS_ VERSI ON set to TLSv1.1 to permit only TLSv1.1 for
outgoing replica connections to the source.

TLS protocol configuration affects which protocol a given connection uses, as described in Connection TLS
Protocol Negotiation.

Permitted protocols should be chosen such as not to leave “holes” in the list. For example, these server
configuration values do not have holes:

tls_version=TLSv1, TLSv1. 1, TLSv1. 2
tls_version=TLSv1. 1, TLSv1. 2
tls_version=TLSv1. 2

This value does have a hole and should not be used:

tls_version=TLSv1, TLSv1. 2 (TLSv1.1 is m ssing)
The prohibition on holes also applies in other configuration contexts, such as for clients or replicas.

Unless you intend to disable encrypted connections, the list of permitted protocols should not be empty. If
you set a TLS version parameter to the empty string, encrypted connections cannot be established:

e tls_version: The server does not permit encrypted incoming connections.

102

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version

Deprecated TLS Protocols

e --tls-version: The client does not permit encrypted outgoing connections to the server.

« MASTER TLS VERSI ON: The replica does not permit encrypted outgoing connections to the source.

Deprecated TLS Protocols

As of MySQL 5.7.35, the TLSv1 and TLSv1.1 connection protocols are deprecated and support for them
is subject to removal in a future MySQL version. (For background, refer to the IETF memo Deprecating
TLSv1.0 and TLSv1.1)) It is recommended that connections be made using the more-secure TLSv1.2 and
TLSv1.3 protocols. TLSv1.3 requires that both the MySQL server and the client application be compiled
with OpenSSL 1.1.1 or higher.

On the server side, this deprecation has the following effects:

» Ifthet| s_versi on system variable is assigned a value containing a deprecated TLS protocol during
server startup, the server writes a warning for each deprecated protocol to the error log.

« If a client successfully connects using a deprecated TLS protocol, the server writes a warning to the error
log.

On the client side, the deprecation has no visible effect. Clients do not issue a warning if configured to
permit a deprecated TLS protocol. This includes:

 Client programs that supporta - - t | s- ver si on option for specifying TLS protocols for connections to
the MySQL server.

» Statements that enable replicas to specify TLS protocols for connections to the source server. (CHANGE
MASTER TOhas a MASTER_TLS_VERSI ON option.)

Connection Cipher Configuration

A default set of ciphers applies to encrypted connections, which can be overridden by explicitly configuring
the permitted ciphers. During connection establishment, both sides of a connection must permit some
cipher in common or the connection fails. Of the permitted ciphers common to both sides, the SSL library
chooses the one supported by the provided certificate that has the highest priority.

To specify a cipher or ciphers for encrypted connections, set the ss| _ci pher system variable on the
server side, and use the - - ssl - ci pher option for client programs.

For source/replica replication connections, where this server instance is the source, set the ssl _ci pher
system variable. Where this server instance is the replica, use the MASTER _SSL_ Cl PHER option for the
CHANGE MASTER TOstatement. See Setting Up Replication to Use Encrypted Connections.

A given cipher may work only with particular TLS protocols, which affects the TLS protocol negotiation
process. See Connection TLS Protocol Negotiation.

To determine which ciphers a given server supports, check the session value of the SsI _ci pher | i st
status variable:

SHOW SESSI ON STATUS LI KE ' Ssl _ci pher _list";

The Ssl _ci pher _|i st status variable lists the possible SSL ciphers (empty for non-SSL connections).
The set of available ciphers depends on your MySQL version and whether MySQL was compiled using
OpenSSL or yaSSL, and (for OpenSSL) the library version used to compile MySQL.

Note

ECDSA ciphers only work in combination with an SSL certificate that uses ECDSA
for the digital signature, and they do not work with certificates that use RSA. MySQL

103

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://tools.ietf.org/id/draft-ietf-tls-oldversions-deprecate-02.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Ssl_cipher_list
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Ssl_cipher_list

Connection Cipher Configuration

Server’s automatic generation process for SSL certificates does not generate
ECDSA signed certificates, it generates only RSA signed certificates. Do not select
ECDSA ciphers unless you have an ECDSA certificate available to you.

MySQL passes a default cipher list to the SSL library.

MySQL passes this default cipher list to OpenSSL.:

ECDHE- ECDSA- AES128- GOM SHA256
ECDHE- ECDSA- AES256- GCM SHA384
ECDHE- RSA- AES128- GCM SHA256
ECDHE- RSA- AES256- GCM SHA384
ECDHE- ECDSA- AES128- SHA256
ECDHE- RSA- AES128- SHA256
ECDHE- ECDSA- AES256- SHA384
ECDHE- RSA- AES256- SHA384

DHE- RSA- AES128- GCM SHA256
DHE- DSS- AES128- GCM SHA256
DHE- RSA- AES128- SHA256

DHE- DSS- AES128- SHA256

DHE- DSS- AES256- GCM SHA384
DHE- RSA- AES256- SHA256

DHE- DSS- AES256- SHA256

ECDHE- RSA- AES128- SHA

ECDHE- ECDSA- AES128- SHA
ECDHE- RSA- AES256- SHA

ECDHE- ECDSA- AES256- SHA

DHE- DSS- AES128- SHA

DHE- RSA- AES128- SHA

TLS DHE DSS_W TH_AES 256_CBC_SHA
DHE- RSA- AES256- SHA

AES128- GOM SHA256

DH- DSS- AES128- GCM SHA256
ECDH- ECDSA- AES128- GOM SHA256
AES256- GOM SHA384

DH- DSS- AES256- GCM SHA384
ECDH- ECDSA- AES256- GOM SHA384
AES128- SHA256

DH- DSS- AES128- SHA256

ECDH- ECDSA- AES128- SHA256
AES256- SHA256

DH- DSS- AES256- SHA256

ECDH- ECDSA- AES256- SHA384
AES128- SHA

DH- DSS- AES128- SHA

ECDH- ECDSA- AES128- SHA
AES256- SHA

DH- DSS- AES256- SHA

ECDH- ECDSA- AES256- SHA

DHE- RSA- AES256- GCM SHA384

DH- RSA- AES128- GCM SHA256
ECDH- RSA- AES128- GCM SHA256
DH- RSA- AES256- GCM SHA384
ECDH- RSA- AES256- GCM SHA384
DH- RSA- AES128- SHA256

ECDH- RSA- AES128- SHA256

DH- RSA- AES256- SHA256

ECDH- RSA- AES256- SHA384

ECDHE- RSA- AES128- SHA

ECDHE- ECDSA- AES128- SHA
ECDHE- RSA- AES256- SHA

ECDHE- ECDSA- AES256- SHA

DHE- DSS- AES128- SHA

DHE- RSA- AES128- SHA

TLS DHE DSS_W TH_AES 256_CBC_SHA
DHE- RSA- AES256- SHA

104

Connection TLS Protocol Negotiation

AES128- SHA

DH- DSS- AES128- SHA
ECDH- ECDSA- AES128- SHA
AES256- SHA

DH- DSS- AES256- SHA
ECDH- ECDSA- AES256- SHA
DH- RSA- AES128- SHA
ECDH- RSA- AES128- SHA
DH- RSA- AES256- SHA
ECDH- RSA- AES256- SHA
DES- CBC3- SHA

MySQL passes this default cipher list to yaSSL:

DHE- RSA- AES256- SHA
DHE- RSA- AES128- SHA
AES128- RVD

DES- CBC3- RVD

DHE- RSA- AES256- RVD
DHE- RSA- AES128- RVD
DHE- RSA- DES- CBC3- RVD
AES256- SHA

RCA- SHA

RCA- MD5

DES- CBC3- SHA

DES- CBC- SHA

EDH- RSA- DES- CBC3- SHA
EDH- RSA- DES- CBC- SHA
AES128- SHA: AES256- RVD

As of MySQL 5.7.10, these cipher restrictions are in place:

» The following ciphers are permanently restricted:

! DHE- DSS- DES- CBC3- SHA

! DHE- RSA- DES- CBC3- SHA

! ECDH- RSA- DES- CBC3- SHA

I ECDH- ECDSA- DES- CBC3- SHA

! ECDHE- RSA- DES- CBC3- SHA

! ECDHE- ECDSA- DES- CBC3- SHA

» The following categories of ciphers are permanently restricted:

I'aNULL
I'eNULL

I EXPORT
I'LOW

I MD5

! DES
I'RC2

I RCA

I PSK

I SSLv3

If the server is started with the ssl _cert system variable set to a certificate that uses any of the
preceding restricted ciphers or cipher categories, the server starts with support for encrypted connections
disabled.

Connection TLS Protocol Negotiation

Connection attempts in MySQL negotiate use of the highest TLS protocol version available on both sides
for which a protocol-compatible encryption cipher is available on both sides. The negotiation process
depends on factors such as the SSL library used to compile the server and client, the TLS protocol and
encryption cipher configuration, and which key size is used:

105

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cert

Connection TLS Protocol Negotiation

» For a connection attempt to succeed, the server and client TLS protocol configuration must permit some
protocol in common.

 Similarly, the server and client encryption cipher configuration must permit some cipher in common.
A given cipher may work only with particular TLS protocols, so a protocol available to the negotiation
process is not chosen unless there is also a compatible cipher.

« If the server and client are compiled using OpenSSL, TLSv1.2 is used if possible. If either or both
the server and client are compiled using yaSSL, TLSv1.1 is used if possible. (“Possible” means that
server and client configuration both must permit the indicated protocol, and both must also permit
some protocol-compatible encryption cipher.) Otherwise, MySQL continues through the list of available
protocols, proceeding from more secure protocols to less secure. Negotiation order is independent of
the order in which protocols are configured. For example, negotiation order is the same regardless of
whethert | s_versi on has avalue of TLSv1, TLSv1. 1, TLSv1. 2 or TLSv1. 2, TLSv1. 1, TLSv1.

Note

Prior to MySQL 5.7.10, MySQL supports only TLSv1, for both OpenSSL and
yaSSL, and no system variable or client option exist for specifying which TLS
protocols to permit.

e TLSv1.2 does not work with all ciphers that have a key size of 512 bits or less. To use this protocol with
such a key, set the ssl _ci pher system variable on the server side or use the - - ssl - ci pher client
option to specify the cipher name explicitly:

AES128- SHA
AES128- SHA256
AES256- SHA
AES256- SHA256
CAMELL| A128- SHA
CAMELLI A256- SHA
DES- CBC3- SHA
DHE- RSA- AES256- SHA
RC4- MD5

RC4- SHA

SEED- SHA

 For better security, use a certificate with an RSA key size of at least 2048 bits.

If the server and client do not have a permitted protocol in common, and a protocol-compatible cipher in
common, the server terminates the connection request. Examples:

* If the server is configured with t | s_ver si on=TLSv1. 1, TLSv1. 2:

« Connection attempts fail for clients invoked with - - t | s- ver si on=TLSv 1, and for older clients that
support only TLSv1.

« Similarly, connection attempts fail for replicas configured with MASTER TLS VERSI ON = ' TLSv1',
and for older replicas that support only TLSv1.

« If the server is configured witht | s_ver si on=TLSv1 or is an older server that supports only TLSv1:
¢ Connection attempts fail for clients invoked with - -t | s-ver si on=TLSv1. 1, TLSv1. 2.

 Similarly, connection attempts fail for replicas configured with MASTER_TLS_VERSI ON =
"TLSv1. 1, TLSv1. 2'.

MySQL permits specifying a list of protocols to support. This list is passed directly down to the underlying
SSL library and is ultimately up to that library what protocols it actually enables from the supplied list.

106

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_tls-version

Monitoring Current Client Session TLS Protocol and Cipher

Please refer to the MySQL source code and the OpenSSL SSL_CTX _new() documentation for information
about how the SSL library handles this.

Monitoring Current Client Session TLS Protocol and Cipher

To determine which encryption TLS protocol and cipher the current client session uses, check the session
values of the Ss| _versi on and Ssl _ci pher status variables:

nysqgl > SELECT * FROM perfor mance_schena. sessi on_st at us
WHERE VARI ABLE NAME I N (' Ssl _version','Ssl _cipher');

Fommmmmmeea e om e e e e e emeeeeeemaaaaa +
| VARI ABLE_NAME | VARI ABLE_VALUE |
Fommmmmmeea e om e e e e e emeeeeeemaaaaa +
| Ssl_ci pher | DHE- RSA- AES128- GCM SHA256 |
| Ssl _version | TLSv1.2 |
Fommmmmmeea e om e e e e e emeeeeeemaaaaa +

If the connection is not encrypted, both variables have an empty value.

5.3 Creating SSL and RSA Certificates and Keys

The following discussion describes how to create the files required for SSL and RSA support in MySQL.
File creation can be performed using facilities provided by MySQL itself, or by invoking the openssl
command directly.

SSL certificate and key files enable MySQL to support encrypted connections using SSL. See Section 5.1,
“Configuring MySQL to Use Encrypted Connections”.

RSA key files enable MySQL to support secure password exchange over unencrypted connections
for accounts authenticated by the sha256 passwor d plugin. See Section 6.1.5, “SHA-256 Pluggable
Authentication”.

5.3.1 Creating SSL and RSA Certificates and Keys using MySQL

MySQL provides these ways to create the SSL certificate and key files and RSA key-pair files required to
support encrypted connections using SSL and secure password exchange using RSA over unencrypted
connections, if those files are missing:

» The server can autogenerate these files at startup, for MySQL distributions compiled using OpenSSL.
» Users can invoke the nysql _ssl _rsa_set up utility manually.

» For some distribution types, such as RPM and DEB packages, nysql _ssl rsa_set up invocation
occurs during data directory initialization. In this case, the MySQL distribution need not have been
compiled using OpenSSL as long as the openss| command is available.

Important

Server autogeneration and nmysql _ssl _rsa_set up help lower the barrier to
using SSL by making it easier to generate the required files. However, certificates
generated by these methods are self-signed, which may not be very secure. After
you gain experience using such files, consider obtaining certificate/key material
from a registered certificate authority.

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the ext endedKeyUsage extension (an X.509 v3 extension), the extended key

107

https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_new.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Ssl_version
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Ssl_cipher

Creating SSL and RSA Certificates and Keys using MySQL

usage must include client authentication (cl i ent Aut h). If the SSL certificate

is only specified for server authentication (ser ver Aut h) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no ext endedKeyUsage extension in SSL
certificates generated by MySQL Server. If you use your own client certificate
created in another way, ensure any ext endedKeyUsage extension includes client
authentication.

» Automatic SSL and RSA File Generation
* Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

* SSL and RSA File Characteristics

Automatic SSL and RSA File Generation

For MySQL distributions compiled using OpenSSL, the MySQL server has the capability of

automatically generating missing SSL and RSA files at startup. The aut o_generate_certs and

sha256 password_aut o_generate_rsa_keys system variables control automatic generation of these
files. These variables are enabled by default. They can be enabled at startup and inspected but not set at
runtime.

At startup, the server automatically generates server-side and client-side SSL certificate and key files

in the data directory if the aut o_gener at e_cert s system variable is enabled, no SSL options other
than - - ssl are specified, and the server-side SSL files are missing from the data directory. These files
enable encrypted client connections using SSL; see Section 5.1, “Configuring MySQL to Use Encrypted
Connections”.

1. The server checks the data directory for SSL files with the following names:

ca. pem
server-cert.pem
server - key. pem

2. If any of those files are present, the server creates no SSL files. Otherwise, it creates them, plus some
additional files:

ca. pem Sel f-signed CA certificate
ca- key. pem CA private key
server-cert. pem Server certificate

server - key. pem Server private key
client-cert. pem Cient certificate
client-key. pem Client private key

3. If the server autogenerates SSL files, it uses the names of the ca. pem server -cert. pem and
server - key. pemfiles to set the corresponding system variables (ssl _ca, ssl _cert, ssl _key).

At startup, the server automatically generates RSA private/public key-pair files in the data directory if all
of these conditions are true: The sha256_password_aut o_generate_rsa_keys system variable

is enabled; no RSA options are specified; the RSA files are missing from the data directory. These key-
pair files enable secure password exchange using RSA over unencrypted connections for accounts
authenticated by the sha256_passwor d plugin; see Section 6.1.5, “SHA-256 Pluggable Authentication”.

1. The server checks the data directory for RSA files with the following names:

private_key. pem Private nenber of private/public key pair
publ i c_key. pem Publ i c nenber of private/public key pair

2. If any of these files are present, the server creates no RSA files. Otherwise, it creates them.

108

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_ssl
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys

Creating SSL and RSA Certificates and Keys using MySQL

3. If the server autogenerates the RSA files, it uses their names to set the corresponding system variables
(sha256_password_private_key path,sha256 password_public_key_ path).

Manual SSL and RSA File Generation Using mysql_ssl_rsa_setup

MySQL distributions include a nysql _ssl _rsa_set up utility that can be invoked manually to generate
SSL and RSA files. This utility is included with all MySQL distributions, but it does require that the
openssl command be available. For usage instructions, see mysql_ssl_rsa_setup — Create SSL/RSA
Files.

SSL and RSA File Characteristics

SSL and RSA files created automatically by the server or by invoking mysql ssl _rsa_set up have these
characteristics:

» SSL and RSA keys have a size of 2048 bits.
» The SSL CA certificate is self signed.

» The SSL server and client certificates are signed with the CA certificate and key, using the
sha256W t hRSAEncr ypt i on signature algorithm.

» SSL certificates use these Common Name (CN) values, with the appropriate certificate type (CA, Server,
Client):

ca. pem MySQL_Server _suffix_Auto_Generated_CA Certificate
server-cert.pm MSQ._Server_suffix_Auto_Generated_Server_Certificate
client-cert. pm MSQ._Server_suffix_Auto_Generated_Client_Certificate

The suf f i x value is based on the MySQL version number. For files generated by
nysql _ssl _rsa_set up, the suffix can be specified explicitly using the - - suf f i x option.

For files generated by the server, if the resulting CN values exceed 64 characters, the _suf fi x portion
of the name is omitted.

» SSL files have blank values for Country (C), State or Province (ST), Organization (O), Organization Unit
Name (OU) and email address.

» SSL files created by the server or by nysql ssl _rsa_set up are valid for ten years from the time of
generation.

» RSA files do not expire.
» SSL files have different serial numbers for each certificate/key pair (1 for CA, 2 for Server, 3 for Client).

« Files created automatically by the server are owned by the account that runs the server. Files created
using nysql _ssl _rsa_set up are owned by the user who invoked that program. This can be changed
on systems that support the chown() system call if the program is invoked by r oot and the - - ui d
option is given to specify the user who should own the files.

» On Unix and Unix-like systems, the file access mode is 644 for certificate files (that is, world readable)
and 600 for key files (that is, accessible only by the account that runs the server).

To see the contents of an SSL certificate (for example, to check the range of dates over which it is valid),
invoke openssl| directly:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

109

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/5.7/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-ssl-rsa-setup.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-ssl-rsa-setup.html#option_mysql_ssl_rsa_setup_suffix
https://dev.mysql.com/doc/refman/5.7/en/mysql-ssl-rsa-setup.html#option_mysql_ssl_rsa_setup_uid

Creating SSL Certificates and Keys Using openssl|

It is also possible to check SSL certificate expiration information using this SQL statement:

nysqgl > SHOW STATUS LI KE ' Ssl _server_not % ;

| Ssl _server_not_after | Apr 28 14:16:39 2027 GM |
| Ssl_server_not_before | May 1 14:16:39 2017 GM |
o e e i o m e e +

5.3.2 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openss| command to set up SSL certificate and key files for use
by MySQL servers and clients. The first example shows a simplified procedure such as you might use
from the command line. The second shows a script that contains more detail. The first two examples are
intended for use on Unix and both use the openss| command that is part of OpenSSL. The third example
describes how to set up SSL files on Windows.

Note

There are easier alternatives to generating the files required for SSL than

the procedure described here: Let the server autogenerate them or use the
nysql _ssl _rsa_set up program. See Section 5.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL".

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ from
the Common Name value used for the CA certificate. Otherwise, the certificate and
key files do not work for servers compiled using OpenSSL. A typical error in this
case is:

ERROR 2026 (HYOO00): SSL connection error:
error:00000001: 1ib(0):func(0):reason(1)

Important

If a client connecting to a MySQL server instance uses an SSL certificate with
the ext endedKeyUsage extension (an X.509 v3 extension), the extended key
usage must include client authentication (cl i ent Aut h). If the SSL certificate

is only specified for server authentication (ser ver Aut h) and other non-client
certificate purposes, certificate verification fails and the client connection to the
MySQL server instance fails. There is no ext endedKeyUsage extension in SSL
certificates created using the openss| command following the instructions in this
topic. If you use your own client certificate created in another way, ensure any
ext endedKeyUsage extension includes client authentication.

» Example 1: Creating SSL Files from the Command Line on Unix
» Example 2: Creating SSL Files Using a Script on Unix
» Example 3: Creating SSL Files on Windows
Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key
files. You must respond to several prompts by the openssl commands. To generate test files, you can
press Enter to all prompts. To generate files for production use, you should provide nonempty responses.

110

Creating SSL Certificates and Keys Using openssl|

Create cl ean environment
rm-rf newcerts
nmkdi r newcerts &% cd newcerts
Create CA certificate
openssl genrsa 2048 > ca- key. pem
openssl req -new -x509 -nodes -days 3600 \

-key ca-key. pem -out ca.pem
Create server certificate, renove passphrase, and sign it
server-cert.pem = public key, server-key.pem= private key
openssl req -newkey rsa: 2048 -days 3600 \

-nodes -keyout server-key.pem -out server-req.pem
openssl rsa -in server-key.pem -out server-key.pem
openssl x509 -req -in server-reg. pem -days 3600 \

- CA ca. pem - CAkey ca-key.pem -set_serial 01 -out server-cert.pem
Create client certificate, renove passphrase, and sign it
client-cert.pem = public key, client-key.pem= private key
openssl req -newkey rsa: 2048 -days 3600 \

-nodes -keyout client-key. pem-out client-req.pem
openssl rsa -in client-key. pem-out client-key.pem
openssl x509 -req -in client-req. pem-days 3600 \

- CA ca. pem - CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

openssl verify -CAfile ca.pemserver-cert.pemclient-cert.pem

You should see a response like this:

server-cert.pem OK
client-cert.pem K

To see the contents of a certificate (for example, to check the range of dates over which a certificate is
valid), invoke openssl like this:

openssl x509 -text -in ca.pem
openssl x509 -text -in server-cert.pem
openssl x509 -text -in client-cert.pem

Now you have a set of files that can be used as follows:

e ca. pem Use this to set the ssl _ca system variable on the server side and the - - ssl - ca option on the
client side. (The CA certificate, if used, must be the same on both sides.)

* server-cert.pemserver-key. pem Use these to setthe ssl _cert and ssl _key system
variables on the server side.

o client-cert.pemclient-key. pen Use these as the arguments to the - - ssl -cert and - - ssl -
key options on the client side.

For additional usage instructions, see Section 5.1, “Configuring MySQL to Use Encrypted Connections”.
Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 5.1, “Configuring MySQL to
Use Encrypted Connections”.

Dl R=" pwd" / openssl

PRI V=$DI R/ pri vat e

nkdir $DI R $PRIV $DI R/ newcerts

cp /usr/share/ssl/openssl.cnf $DIR

repl ace ./denpCA $DIR -- $Dl R/ openssl . cnf

Create necessary files: $database, $serial and $new certs_dir
directory (optional)

touch $DI R/ i ndex. t xt

111

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-key

Creating SSL Certificates and Keys Using openssl|

echo "01" > $DI R/ seri al

#
#
#

Generation of Certificate Authority(CA)

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DI R/ ca. pem\

#
#
#

HHFHFHFEHFHFEHFEHFEHFHHEEHEH R

-days 3600 -config $Dl R/ openssl . cnf
Sanpl e out put :
Usi ng configuration from/home/finley/openssl/openssl.cnf
CGenerating a 1024 bit RSA private key
,,,,,,,,,,,,,,,, APAFAFTFARA R
,,,,,,,,, APAFAFTFARA R
witing new private key to '/home/finl ey/openssl/private/cakey. pem
Ent er PEM pass phrase:
Verifying password - Enter PEM pass phrase:
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distingui shed Nane
or a DN.
There are quite a few fields but you can | eave sone bl ank
For sone fields there will be a default val ue,
If you enter '."', the field will be left blank.
Country Nane (2 letter code) [AU : Fl
State or Province Nanme (full nane) [Sone-State]:.
Locality Nanme (eg, city) []:
Organi zati on Nane (eg, conpany) [Internet Wdgits Pty Ltd]: My\SQL AB
Organi zational Unit Nane (eg, section) []:
Common Narme (eg, YOUR nane) []: M/SQL admin
Emai| Address []:

Create server request and key

openssl req -new -keyout $DI R/ server-key.pem -out \

HHFHFHFEHFHFEHFFEHFFEHFFFFEHFEHFEHF R E R

$DI R/ server-req. pem -days 3600 -config $Dl R/ openssl . cnf
Sanpl e out put :
Usi ng configuration from/home/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key
o o APAFPTPAR
,,,,,,,,,, APAFAFTFARA R
witing new private key to '/hone/finl ey/openssl/server-key. pem
Ent er PEM pass phrase:
Verifying password - Enter PEM pass phrase:
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distingui shed Nane
or a DN.
There are quite a few fields but you can | eave sone bl ank
For sone fields there will be a default val ue,
If you enter '."', the field will be left blank.
Country Nane (2 letter code) [AU : Fl
State or Province Name (full nane) [Sone-State]:.
Locality Nanme (eg, city) []:
Organi zati on Nane (eg, conpany) [Internet Wdgits Pty Ltd]: MySQL AB
Organi zational Unit Nane (eg, section) []:
Common Narme (eg, YOUR nane) []: MySQL server
Emai| Address []:

Pl ease enter the following 'extra' attributes
to be sent with your certificate request

A chal | enge password []:

An optional conpany nanme []:

Renmove the passphrase fromthe key

112

Creating SSL Certificates and Keys Using openssl|

openssl rsa -in $Dl R/ server-key. pem -out $DI R/ server-key. pem
#
Sign server cert
#
openssl ca -cert $DI R/ ca.pem -policy policy_anything \
-out $DI R/ server-cert.pem-config $D R/ openssl.cnf \
-infiles $DI R/ server-req. pem

Sanpl e out put :

Usi ng configuration from/home/finley/openssl/openssl.cnf
Ent er PEM pass phrase:

Check that the request matches the signature

Si ghat ure ok

The Subj ects Distinguished Nane is as foll ows

count r yName : PRI NTABLE: ' FI'*

or gani zat i onNane : PRI NTABLE: ' \ySQL. AB'

commonNane : PRI NTABLE: ' MySQL admi n'
Certificate is to be certified until Sep 13 14:22:46 2003 GMI
(365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, conmt? [y/n]y
Wite out database with 1 new entries
Dat a Base Updat ed

Create client request and key

HHHHHH R R

openssl req -new -keyout $DI R/ client-key. pem-out \

$DI R/ cl i ent-req. pem -days 3600 -config $Dl R/ openssl . cnf
Sanpl e out put :
Using configuration from/hone/finley/openssl/openssl.cnf
Generating a 1024 bit RSA private key

,,, APAFAFTFARA R

witing new private key to '/hone/finley/openssl/client-key.pem
Ent er PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distingui shed Nane
or a DN.

There are quite a few fields but you can | eave sone bl ank

For sone fields there will be a default val ue,

If you enter '."', the field will be left blank.

Country Nane (2 letter code) [AU : Fl

State or Province Nanme (full nane) [Sone-State]:.

Locality Nanme (eg, city) []:

Organi zational Unit Nane (eg, section) []:
Common Narme (eg, YOUR nane) []: M/SQL user
Emai| Address []:

Pl ease enter the following 'extra' attributes
to be sent with your certificate request

A chal | enge password []:

An optional conpany nanme []:

Renmove the passphrase fromthe key

penssl rsa -in $D R/ client-key. pem-out $D R/ client-key. pem

Sign client cert

HHHFOHFHRFTHFHFHFFHFFFHTHFEHFEHFHHHHTHFHHR

openssl ca -cert $DI R/ ca.pem -policy policy_anything \
-out $DIR/client-cert.pem-config $D R/ openssl.cnf \

Organi zati on Nane (eg, conpany) [Internet Wdgits Pty Ltd]: My\SQL AB

113

Creating SSL Certificates and Keys Using openssl|

-infiles $DI R/ client-req. pem

Sanpl e out put :

Usi ng configuration from/home/finley/openssl/openssl.cnf
Ent er PEM pass phrase:

Check that the request matches the signature

Si ghat ure ok

The Subj ects Di stinguished Nane is as foll ows

count r yName : PRI NTABLE: ' FI'*

or gani zat i onNane : PRI NTABLE: ' MySQL. AB'

conmmonNanme : PRI NTABLE: ' MySQL user'

Certificate is to be certified until Sep 13 16:45:17 2003 GMVI
(365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, conmmt? [y/n]y
Wite out database with 1 new entries
Dat a Base Updat ed

Create a ny.cnf file that you can use to test the certificates

HHHHHH R R

cat <<ECOF > $DI R/ ny. cnf
[client]

ssl -ca=$Dl R/ ca. pem
ssl-cert=$DI R/ client-cert.pem
ssl - key=3%$DI R/ cl i ent - key. pem
[nysgqld]

ssl _ca=$Dl R/ ca. pem

ssl _cert=$Dl R/ server-cert.pem
ssl _key=3%$DI R/ server - key. pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available packages
can be seen here:

http://ww. sl proweb. conl product s/ Wn320penSSL. ht m

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture (32-
bit or 64-bit). The default installation location is C. \ OQpenSSL- W n32 or C. \ OpenSSL- W n64, depending

on which package you downloaded. The following instructions assume a default location of C. \ CpenSSL-

W n32. Modify this as necessary if you are using the 64-bit package.

If a message occurs during setup indicating' . . . critical conponent is mssing: Mcrosoft
Vi sual C++ 2008 Redi stri butabl es', cancel the setup and download one of the following
packages as well, again depending on your architecture (32-bit or 64-bit):

* Visual C++ 2008 Redistributables (x86), available at:

http://ww. m crosoft.conl downl oads/ det ai | s. aspx?f ami | yi d=9B2DA534- 3E03- 4391- 8A4D- 074B9F2BC1BF
 Visual C++ 2008 Redistributables (x64), available at:

http://ww. m crosoft.com downl oads/ det ai | s. aspx?fam | yi d=bd2a6171- e2d6-4230- b809- 9a8d7548c1hb6
After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C. \ OpenSSL- W n32 as the install path, and also leave the default
option' Copy OpenSSL DLL files to the Wndows system directory' selected.

When the installation has finished, add C: \ OpenSSL- W n32\ bi n to the Windows System Path variable
of your server (depending on your version of Windows, the following path-setting instructions might differ

slightly):

114

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF
http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

Creating RSA Keys Using openssl

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the Environment
Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable dialogue
should appear.

4, Add'; C.\ QpenSSL- W n32\ bi n' to the end (notice the semicolon).
5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (St art >Run>cnd. exe) and verifying that OpenSSL is available:

M crosoft Wndows [Version ...]

Copyright (c) 2006 M crosoft Corporation. Al rights reserved.

C: \ W ndows\ syst enB2>cd \

C: \ >openssl

penSSL> exit <<< |f you see the OpenSSL pronpt, installation was successful.
C\>

After OpenSSL has been installed, use instructions similar to those from Example 1 (shown earlier in this
section), with the following changes:

» Change the following Unix commands:

Create clean environnent
rm-rf newcerts
nkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environnent
md c:\newcerts
cd c:\newcerts

 Whena'\' character is shown at the end of a command line, this' \ ' character must be removed and
the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 5.1,
“Configuring MySQL to Use Encrypted Connections”.

5.3.3 Creating RSA Keys Using openssl

This section describes how to use the openssl command to set up the RSA key files that enable MySQL
to support secure password exchange over unencrypted connections for accounts authenticated by the
sha256_passwor d plugin.

Note

There are easier alternatives to generating the files required for RSA than

the procedure described here: Let the server autogenerate them or use the
nysqgl ssl _rsa_set up program. See Section 5.3.1, “Creating SSL and RSA
Certificates and Keys using MySQL".

To create the RSA private and public key-pair files, run these commands while logged into the system
account used to run the MySQL server so the files are owned by that account:

openssl genrsa -out private_key. pem 2048

115

SSL Library-Dependent Capabilities

openssl rsa -in private_key. pem - pubout -out public_key.pem
Those commands create 2,048-bit keys. To create stronger keys, use a larger value.

Then set the access modes for the key files. The private key should be readable only by the server,
whereas the public key can be freely distributed to client users:

chnod 400 private_key. pem
chnod 444 public_key. pem

5.4 SSL Library-Dependent Capabilities

MySQL can be compiled using OpenSSL or yaSSL, both of which enable encrypted connections based on
the OpenSSL API:

» MySQL Enterprise Edition binary distributions are compiled using OpenSSL. It is not possible to use
yaSSL with MySQL Enterprise Edition.

* MySQL Community Edition binary distributions are compiled using yaSSL.

e MySQL Community Edition source distributions can be compiled using either OpenSSL or yaSSL (see
Configuring SSL Library Support).

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and all
MySQL builds use OpenSSL.

OpenSSL and yaSSL offer the same basic functionality, but MySQL distributions compiled using OpenSSL
have additional features:

* OpenSSL supports TLSv1, TLSv1.1, and TLSv1.2 protocols. yaSSL supports only TLSv1 and TLSv1.1
protocols.

» OpenSSL supports a more flexible syntax for specifying ciphers (for the ssl _ci pher system variable
and - - ssl - ci pher client option), and supports a wider range of encryption ciphers from which to
choose. See Command Options for Encrypted Connections, and Section 5.2, “Encrypted Connection
TLS Protocols and Ciphers”.

» OpenSSL supports the ssl _capat h system variable and - - ss| - capat h client option. MySQL
distributions compiled using yaSSL do not because yaSSL does not look in any directory and do
not follow a chained certificate tree. yaSSL requires that all components of the CA certificate tree
be contained within a single CA certificate tree and that each certificate in the file has a unique
SubjectName value. To work around this limitation, concatenate the individual certificate files comprising
the certificate tree into a new file and specify that file as the value of the ss| _ca system variable and - -
ssl - ca option.

» OpenSSL supports certificate revocation-list capability (for the ssl _cr| and ssl _cr| pat h system
variables and - - ssl -cr| and - - ssl - crl pat h client options). Distributions compiled using yaSSL do
not because revocation lists do not work with yaSSL. (yaSSL accepts these options but silently ignores
them.)

» Accounts that authenticate using the sha256_passwor d plugin can use RSA key files for secure
password exchange over unencrypted connections. See Section 6.1.5, “SHA-256 Pluggable
Authentication”.

116

https://dev.mysql.com/doc/refman/5.7/en/source-ssl-library-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_crl
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_ssl_crlpath
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl-crlpath

Connecting to MySQL Remotely from Windows with SSH

The server can automatically generate missing SSL and RSA certificate and key files at startup. See
Section 5.3.1, “Creating SSL and RSA Certificates and Keys using MySQL".

OpenSSL supports more encryption modes for the AES_ENCRYPT() and AES_DECRYPT() functions.
See Encryption and Compression Functions

Certain OpenSSL-related system and status variables are present only if MySQL was compiled using
OpenSSL:

auto_generate_certs
sha256_password_aut o_generate_rsa_keys
sha256_password_private_key path
sha256 password_public_key path

Rsa_public_key

To determine whether a server was compiled using OpenSSL, test the existence of any of those variables.
For example, this statement returns a row if OpenSSL was used and an empty result if yaSSL was used:

SHOW STATUS LI KE ' Rsa_publ i c_key' :

5.5 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get an encrypted connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcar | son@mpl conm con®.

1.

Install an SSH client on your Windows machine. For a comparison of SSH clients, see http://
en.wikipedia.org/wiki/Comparison_of SSH_clients.

Start your Windows SSH client. Set Host _Nanme = yournysqgl server URL_or _| P. Set
userid=your _useri dtolog in to your server. This useri d value might not be the same as the user
name of your MySQL account.

Set up port forwarding. Either do a remote forward (Set| ocal port: 3306, renote_host:
your mysql servernane_or _ip,renote_port: 3306) or alocal forward (Setport: 3306,
host: | ocal host,renote port: 3306).

Save everything; otherwise you must to redo it the next time.
Log in to your server with the SSH session you just created.
On your Windows machine, start some ODBC application (such as Access).

Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do,
except type in | ocal host for the MySQL host server, not your nysql ser ver nane.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

117

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_aes-encrypt
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_aes-decrypt
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_auto_generate_certs
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rsa_public_key
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients
http://en.wikipedia.org/wiki/Comparison_of_SSH_clients

118

Chapter 6 Security Plugins

Table of Contents

Lo AN Ui =T a1 o= o T I d U T 11 P 120
6.1.1 Native Pluggable AUtheNntiCationcoiiiiiiiii e 120
6.1.2 Old Native Pluggable AUthentiCationcccouuiiiiiiiii e 121
6.1.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin 122
6.1.4 Caching SHA-2 Pluggable AUthentiCationccoiiiiiiiiiiiiii e 126
6.1.5 SHA-256 Pluggable AUthentiCatioNiiiiiiiiiiiei e e e e 131
6.1.6 Client-Side Cleartext Pluggable Authenticationcccocvuiieiiiiiiiii i, 135
6.1.7 PAM Pluggable AUthentiCationcooouiiiiiiii e e 136
6.1.8 Windows Pluggable AUthentiCatioNoiiiiiiiiiici e e e 147
6.1.9 LDAP Pluggable AUtNENtICAtIONcoouuiiiii e e e e e s 152
6.1.10 No-Login Pluggable AUthentiCationceiiuiiiiiiiiii e e e 166
6.1.11 Socket Peer-Credential Pluggable Authenticationcccoiiiiiiiiiii i 169
6.1.12 Test Pluggable AUthentiCationccouiiiiiiii e e 171
6.1.13 Pluggable Authentication System Variablescc.iiiiiiiiiiiiii e 173

6.2 ConNection COoNrol PIUGINSiiueiiiici et e e e et e e e et e e e e e aanaees 190
6.2.1 Connection Control Plugin Installationcc.oiiiiiiiiiii e 190
6.2.2 Connection Control Plugin System and Status Variablescccccccoviiiiiiiiii e, 194

6.3 The Password Validation PIUGINooiuiiiiiir e e e e e e e e e e eanas 196
6.3.1 Password Validation Plugin Installationcooiiiiiiiiiii e 198
6.3.2 Password Validation Plugin Options and Variablescccooooiiiiiiiiinie e, 199

6.4 The MYSQL KEYIING .uuiiiiieiii et e ettt et e e e e e e e e e e e et e e et e e et e e e at e aateesteeeanaeeanaees 204
6.4.1 Keyring Plugin INStallationcoouiiiiiii e e e 205
6.4.2 Using the keyring_file File-Based Keyring PIUgINccooiiiiiiiiiiiiie e, 207
6.4.3 Using the keyring_encrypted_file Encrypted File-Based Keyring Pluginccc.ccoe. 208
6.4.4 Using the keyring_okv KMIP PIUGQINcoouiiiiiiii e e e e 209
6.4.5 Using the keyring_aws Amazon Web Services Keyring Pluginccocoooviiiiiiiiieieeeennnn, 214
6.4.6 Supported Keyring Key Types and LENGINSoovuiiiiiiii e 218
6.4.7 Migrating Keys Between Keyring KEYSIOIEScvvuiiiiieii i e et e e 219
6.4.8 General-Purpose Keyring Key-Management FUNCLIONSccooeviiiiiiiiiiiiic e 222
6.4.9 Plugin-Specific Keyring Key-Management FUNCLONScccooviiiiiieiiiieciin e 230
L O = 1T Y11 = Lo = = P 231
6.4.11 Keyring Command OPLIONSuiiiuueiiiieiiiiee i ee e e e e e e e s e e e e e et e e st e e st e e eaneaanaens 231
6.4.12 Keyring System Variablesccoooiiiiiiiii e 233

6.5 MySQL ENLErpriSE AUILcvuiiii it e e e e e e e et e e et e e e et e e et e e eanaeeees 240
6.5.1 Elements of MySQL ENnterpris@ AUitcc.uiiiiiiiiiiiie e e 241
6.5.2 Installing or Uninstalling MySQL Enterprise Auditcooeiiiiiiiiiiii e 241
6.5.3 MySQL Enterprise Audit Security CONSIAErationscoeevuiiiiiieiiiieiiiieeeee e e e 244
6.5.4 Audit LOg File FOIMALSciiiiiii e e e e e e e e e e e e e e aens 244
6.5.5 Configuring Audit Logging CharacteriStiCScoiiiuiiiiiieiii e 264
6.5.6 Reading AUdit LOG FlESciiiiii e e e e e 270
6.5.7 Audit LOG FIEIING ..ovniiiiei e e 274
6.5.8 Writing Audit Log Filter Definitionsccouiiiiiiiiiie e 277
(SRS I DIEST=1 o] [Ta o XU o [T 8 oo o 1o o [N 291
6.5.10 Legacy Mode Audit LOg FIlLEIING ...c.ouiiiiiii e 291
6.5.11 Audit LOG REFEIENCEuniiieiiiii e e e e e e e 294
6.5.12 Audit LOG RESIICHONSceiiiiiiieiii e e e e e e e e e e e et e e e e e ean e eeen 311

6.6 MySQL ENterprise FIrEWaIlcoouiiiiiiii e e e e e e e e 311
6.6.1 Elements of MySQL Enterprise FireWallcocouiiiiiiiiiiiiii e 312

119

Authentication Plugins

6.6.2 Installing or Uninstalling MySQL Enterprise Firewallc.cccoiviiiiiiiiiiiiin e, 313
6.6.3 Using MySQL ENnterprise FireWallcc.uiiiiiiiiiiiiii i 316
6.6.4 MySQL Enterprise Firewall REFEIENCEcovviiiiiie e 323

MySQL includes several plugins that implement security features:

 Plugins for authenticating attempts by clients to connect to MySQL Server. Plugins are available for
several authentication protocols. For general discussion of the authentication process, see Section 4.13,
“Pluggable Authentication”. For characteristics of specific authentication plugins, see Section 6.1,
“Authentication Plugins”.

» A password-validation plugin for implementing password strength policies and assessing the strength of
potential passwords. See Section 6.3, “The Password Validation Plugin”.

» Keyring plugins that provide secure storage for sensitive information. See Section 6.4, “The MySQL
Keyring”.

* (MySQL Enterprise Edition only) MySQL Enterprise Audit, implemented using a server plugin, uses
the open MySQL Audit API to enable standard, policy-based monitoring and logging of connection and
query activity executed on specific MySQL servers. Designed to meet the Oracle audit specification,
MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution for
applications that are governed by both internal and external regulatory guidelines. See Section 6.5,
“MySQL Enterprise Audit”.

* (MySQL Enterprise Edition only) MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against lists of
accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.
See Section 6.6, “MySQL Enterprise Firewall”.

» (MySQL Enterprise Edition only) MySQL Enterprise Data Masking and De-ldentification, implemented
as a plugin library containing a plugin and a set of functions. Data masking hides sensitive information
by replacing real values with substitutes. MySQL Enterprise Data Masking and De-ldentification
functions enable masking existing data using several methods such as obfuscation (removing identifying
characteristics), generation of formatted random data, and data replacement or substitution. See MySQL
Enterprise Data Masking and De-Identification.

6.1 Authentication Plugins

The following sections describe pluggable authentication methods available in MySQL and the plugins
that implement these methods. For general discussion of the authentication process, see Section 4.13,
“Pluggable Authentication”.

The default plugin is indicated by the value of the def aul t _aut henti cati on_pl ugi n system variable.

6.1.1 Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based on the
password hashing methods in use from before the introduction of pluggable authentication. This section
describes nysql _nati ve_ passwor d, which implements authentication against the nysql . user system
table using the native password hashing method. For information about mysql ol d_passwor d, which
implements authentication using the older (pre-4.1) native password hashing method, see Section 6.1.2,
“Old Native Pluggable Authentication”. For information about these password hashing methods, see
Section 2.2.4, “Password Hashing in MySQL".

120

https://dev.mysql.com/doc/refman/5.7/en/data-masking.html
https://dev.mysql.com/doc/refman/5.7/en/data-masking.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_authentication_plugin

Old Native Pluggable Authentication

The following table shows the plugin names on the server and client sides.

Table 6.1 Plugin and Library Names for Native Password Authentication

Plugin or File Plugin or File Name
Server-side plugin nysqgl _native_password
Client-side plugin nmysql _native_password
Library file None (plugins are built in)

The following sections provide installation and usage information specific to native pluggable
authentication:

* Installing Native Pluggable Authentication
» Using Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”.

Installing Native Pluggable Authentication
The nysql _native_passwor d plugin exists in server and client forms:

» The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

e The client-side plugin is built into the | i brrysql ¢l i ent client library and is available to any program
linked against | i brmysql cl i ent.

Using Native Pluggable Authentication

MySQL client programs use mysql _nati ve_passwor d by default. The - - def aul t - aut h option can be
used as a hint about which client-side plugin the program can expect to use:

$> nysql --default-auth=nysql _native_password ...

6.1.2 Old Native Pluggable Authentication

MySQL includes two plugins that implement native authentication; that is, authentication based on

the password hashing methods in use from before the introduction of pluggable authentication. This
section describes nysql _ol d_passwor d, which implements authentication against the mysql . user
system table using the older (pre-4.1) native password hashing method. For information about

nmysqgl _native_passwor d, which implements authentication using the native password hashing method,
see Section 6.1.1, “Native Pluggable Authentication”. For information about these password hashing
methods, see Section 2.2.4, “Password Hashing in MySQL".

Note

Passwords that use the pre-4.1 hashing method are less secure than
passwords that use the native password hashing method and should be
avoided. Pre-4.1 passwords are deprecated and support for them (including

the nysql _ol d_passwor d plugin) was removed in MySQL 5.7.5. For account
upgrade instructions, see Section 6.1.3, “Migrating Away from Pre-4.1 Password
Hashing and the mysql_old_password Plugin”.

The following table shows the plugin names on the server and client sides.

121

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_default-auth

Migrating Away from Pre-4.1 Password Hashing and the mysqgl_old_password Plugin

Table 6.2 Plugin and Library Names for Old Native Password Authentication

Plugin or File Plugin or File Name
Server-side plugin nmysql ol d_password
Client-side plugin nysqgl ol d_password
Library file None (plugins are built in)

The following sections provide installation and usage information specific to old native pluggable
authentication:

* Installing Old Native Pluggable Authentication
» Using Old Native Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”.

Installing Old Native Pluggable Authentication

The nmysql _ol d_passwor d plugin exists in server and client forms:

e The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

» The client-side plugin is built into the | i brysqgl cl i ent client library and is available to any program
linked against | i brmysql cl i ent.

Using Old Native Pluggable Authentication

MySQL client programs can use the - - def aul t - aut h option to specify the nysqgl _ol d_passwor d
plugin as a hint about which client-side plugin the program can expect to use:

$> nysql --default-auth=nysql _old _password ...

6.1.3 Migrating Away from Pre-4.1 Password Hashing and the
mysql_old_password Plugin

The MySQL server authenticates connection attempts for each account listed in the nmysql . user system
table using the authentication plugin named in the pl ugi n column. If the pl ugi n column is empty, the
server authenticates the account as follows:

» Before MySQL 5.7, the server uses the nysql _native_password ornysqgl ol d_password
plugin implicitly, depending on the format of the password hash in the Passwor d column.
If the Passwor d value is empty or a 4.1 password hash (41 characters), the server uses
nysqgl native passwor d. If the password value is a pre-4.1 password hash (16 characters),
the server uses nysql ol d_passwor d. (For additional information about these hash formats, see
Section 2.2.4, “Password Hashing in MySQL".)

» As of MySQL 5.7, the server requires the pl ugi n column to be nonempty and disables accounts that
have an empty pl ugi n value.

Pre-4.1 password hashes and the nysqgl ol d_passwor d plugin are deprecated in MySQL 5.6 and
support for them is removed in MySQL 5.7. They provide a level of security inferior to that offered by 4.1
password hashing and the mysqgl nati ve_passwor d plugin.

122

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_default-auth

Migrating Away from Pre-4.1 Password Hashing and the mysqgl_old_password Plugin

Given the requirement in MySQL 5.7 that the pl ugi n column must be nonempty, coupled with removal of
nysgl ol d_passwor d support, DBAs are advised to upgrade accounts as follows:

» Upgrade accounts that use nysqgl nati ve passwor d implicitly to use it explicitly

» Upgrade accounts that use nysql _ol d_passwor d (either implicitly or explicitly) to use
nysqgl _native_passwor d explicitly

The instructions in this section describe how to perform those upgrades. The result is that no account has
an empty pl ugi n value and no account uses pre-4.1 password hashing or the nysql ol d_password

plugin.

As a variant on these instructions, DBAs might offer users the choice to upgrade to the
sha256_ passwor d plugin, which authenticates using SHA-256 password hashes. For information about
this plugin, see Section 6.1.5, “SHA-256 Pluggable Authentication”.

The following table lists the types of nysql . user accounts considered in this discussion.

pl ugi n Column Passwor d Column Authentication Result |Upgrade Action
Empty Empty Implicitly uses Assign plugin
nysqgl native password
Empty 4.1 hash Implicitly uses Assign plugin
nysqgl _native_password
Empty Pre-4.1 hash Implicitly uses Assign plugin, rehash
nysqgl _ol d_password |password
mysqgl native_passwoiBmpty Explicitly uses None
nysqgl native_ password
mysqgl native passwoi4ll hash Explicitly uses None
nysqgl native password
mysqgl ol d_password |Empty Explicitly uses Upgrade plugin
nysqgl _ol d_passwor d
mysqgl ol d_password |Pre-4.1 hash Explicitly uses Upgrade plugin, rehash
nysqgl _ol d_password |password

Accounts corresponding to lines for the mnysql _nati ve_passwor d plugin require no upgrade action
(because no change of plugin or hash format is required). For accounts corresponding to lines for which
the password is empty, consider asking the account owners to choose a password (or require it by using
ALTER USER to expire empty account passwords).

Upgrading Accounts from Implicit to Explicit mysql_native_password Use

Accounts that have an empty plugin and a 4.1 password hash use nysql _nati ve_passwor d implicitly.
To upgrade these accounts to use nysql nati ve_passwor d explicitly, execute these statements:

UPDATE nysql . user SET plugin = 'nysql _native_password'

WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRI VI LEGES;

Before MySQL 5.7, you can execute those statements to uprade accounts proactively. As of MySQL 5.7,
you can run nmysql _upgr ade, which performs the same operation among its upgrade actions.

Notes:

123

https://dev.mysql.com/doc/refman/5.7/en/alter-user.html

Migrating Away from Pre-4.1 Password Hashing and the mysqgl_old_password Plugin

e The upgrade operation just described is safe to execute at any time because it makes the
nysqgl native_ passwor d plugin explicit only for accounts that already use it implicitly.

» This operation requires no password changes, so it can be performed without affecting users or requiring
their involvement in the upgrade process.

Upgrading Accounts from mysqgl_old_password to mysql_native_password

Accounts that use mysql _ol d_passwor d (either implicitly or explicitly) should be upgraded to use
nmysgl _native_passwor d explicitly. This requires changing the plugin and changing the password from
pre-4.1 to 4.1 hash format.

For the accounts covered in this step that must be upgraded, one of these conditions is true:

e The account uses nysql ol d_passwor d implicitly because the pl ugi n column is empty and the
password has the pre-4.1 hash format (16 characters).

* The account uses nysql _ol d_passwor d explicitly.

To identify such accounts, use this query:
SELECT User, Host, Password FROM nysql . user

WHERE (plugin = '' AND LENGTH(Password) = 16)
OR plugin = 'nysqgl _ol d_password' ;

The following discussion provides two methods for updating that set of accounts. They have differing
characteristics, so read both and decide which is most suitable for a given MySQL installation.

Method 1.
Characteristics of this method:

* It requires that server and clients be run with secur e_aut h=0 until all users have been upgraded to
nmysql _native_passwor d. (Otherwise, users cannot connect to the server using their old-format
password hashes for the purpose of upgrading to a new-format hash.)

It works for MySQL 5.5 and 5.6. In 5.7, it does not work because the server requires accounts to have a
nonempty plugin and disables them otherwise. Therefore, if you have already upgraded to 5.7, choose
Method 2, described later.

You should ensure that the server is running with secur e_aut h=0.

For all accounts that use mysql _ol d_passwor d explicitly, set them to the empty plugin:

UPDATE nysql . user SET plugin ="'
VWHERE pl ugin = 'nysql _ol d_password';
FLUSH PRI VI LEGES;

To also expire the password for affected accounts, use these statements instead:

UPDATE nysql . user SET plugin ="', password_expired ="'Y
WHERE plugin = 'nysql ol d_password';
FLUSH PRI VI LEGES;

Now affected users can reset their password to use 4.1 hashing. Ask each user who now has an empty
plugin to connect to the server and execute these statements:

SET ol d_passwords = 0;
SET PASSWORD = PASSWORD(' user - chosen- password');

124

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth

Migrating Away from Pre-4.1 Password Hashing and the mysqgl_old_password Plugin

Note

The client-side - - secur e- aut h option is enabled by default, so remind users to
disable it; otherwise, they cannot connect:

$> nysqgl -u user_nane -p --secure-auth=0

After an affected user has executed those statements, you can set the corresponding account plugin to
nmysqgl native passwor d to make the plugin explicit. Or you can periodically run these statements to
find and fix any accounts for which affected users have reset their password:

UPDATE nysql . user SET plugin = 'nysqgl _native_password'

WHERE plugin = '' AND (Password = '' OR LENGTH(Password) = 41);
FLUSH PRI VI LEGES;

When there are no more accounts with an empty plugin, this query returns an empty result:

SELECT User, Host, Password FROM nysql . user
WHERE plugin = '' AND LENGTH(Password) = 16;

At that point, all accounts have been migrated away from pre-4.1 password hashing and the server no
longer need be run with secur e_aut h=0.

Method 2.
Characteristics of this method:

« It assigns each affected account a new password, so you must tell each such user the new password
and ask the user to choose a new one. Communication of passwords to users is outside the scope of
MySQL, but should be done carefully.

* It does not require server or clients to be run with secur e_aut h=0.
« It works for any version of MySQL 5.5 or later (and for 5.7 has an easier variant).

With this method, you update each account separately due to the need to set passwords individually.
Choose a different password for each account.

Suppose that ' user 1' @ | ocal host ' is one of the accounts to be upgraded. Modify it as follows:

* In MySQL 5.7, ALTER USER provides the capability of modifying both the account password and its
authentication plugin, so you need not modify the nysqgl . user system table directly:

ALTER USER 'user1' @I ocal host"'
| DENTI FI ED W TH nysql _nati ve_password BY ' DBA-chosen- password' ;

To also expire the account password, use this statement instead:
ALTER USER 'userl' @I ocal host'

| DENTI FI ED W TH nysql _nati ve_password BY ' DBA- chosen- passwor d'
PASSWORD EXPI RE;

Then tell the user the new password and ask the user to connect to the server with that password and
execute this statement to choose a new password:

ALTER USER USER() | DENTI FI ED BY ' user-chosen-password' ;

» Before MySQL 5.7, you must modify the nmysql . user system table directly using these statements:

SET ol d_passwords = 0;

125

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_secure-auth
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_secure_auth

Caching SHA-2 Pluggable Authentication

UPDATE nmnysql . user SET plugin = 'nysqgl _native_password',
Password = PASSWORD(' DBA- chosen- password')

WHERE (User, Host) = ('userl', 'localhost');

FLUSH PRI VI LEGES;

To also expire the account password, use these statements instead:

SET ol d_passwords = 0;

UPDATE nysql . user SET plugin = 'nysqgl _native_password',

Password = PASSWORD(' DBA- chosen- password'), password_expired = "Y'
WHERE (User, Host) = ('userl', 'local host');

FLUSH PRI VI LECES;

Then tell the user the new password and ask the user to connect to the server with that password and
execute these statements to choose a new password:

SET ol d_passwords = 0;
SET PASSWORD = PASSWORD(' user - chosen- password');

Repeat for each account to be upgraded.

6.1.4 Caching SHA-2 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account passwords:
» sha256_passwor d: Implements basic SHA-256 authentication.

» cachi ng_sha2_passwor d: Implements SHA-256 authentication (like sha256_passwor d), but uses
caching on the server side for better performance and has additional features for wider applicability. (In
MySQL 5.7, cachi ng_sha2_passwor d is implemented only on the client side, as described later in this
section.)

This section describes the caching SHA-2 authentication plugin, available as of MySQL 5.7.23. For
information about the original basic (noncaching) plugin, see Section 6.1.5, “SHA-256 Pluggable
Authentication”.

Important

In MySQL 5.7, the default authentication plugin is mysql nati ve_passwor d.
As of MySQL 8.0, the default authentication plugin is changed to

cachi ng_sha2_passwor d. To enable MySQL 5.7 clients to connect

to 8.0 and higher servers using accounts that authenticate with

cachi ng_sha2_ passwor d, the MySQL 5.7 client library and client programs
support the cachi ng_sha2_ passwor d client-side authentication plugin. This
improves MySQL 5.7 client connect-capability compatibility with respect to MySQL
8.0 and higher servers, despite the differences in default authentication plugin.

Limiting cachi ng_sha2_passwor d support in MySQL 5.7 to the client-side plugin
in the client library has these implications compared to MySQL 8.0:

e The cachi ng_sha2_passwor d server-side plugin is not implemented in MySQL
5.7.

« MySQL 5.7 servers do not support creating accounts that authenticate with
cachi ng_sha2_ password.

e MySQL 5.7 servers do not implement system and status variables
specific to cachi ng_sha2_passwor d server-side support:

126

Caching SHA-2 Pluggable Authentication

cachi ng_sha2_password_aut o_generate_rsa_keys,
cachi ng_sha2_password_private_key_ path,

cachi ng_sha2_password_public_key_ path,

Cachi ng_sha2_password_rsa_public_key.

In addition, there is no support for MySQL 5.7 replicas to connect to

MySQL 8.0 replication source servers using accounts that authenticate with
cachi ng_sha2_passwor d. That would involve a source replicating to a replica
with a version number lower than the source version, whereas sources normally
replicate to replicas having a version equal to or higher than the source version.

Important

To connect to a MySQL 8.0 or higher server using an account that authenticates
with the cachi ng_sha2_ passwor d plugin, you must use either a secure
connection or an unencrypted connection that supports password exchange
using an RSA key pair, as described later in this section. Either way, the

cachi ng_sha2_ passwor d plugin uses MySQL's encryption capabilities. See
Chapter 5, Using Encrypted Connections.

Note

In the name sha256_passwor d, “sha256” refers to the 256-bit digest length

the plugin uses for encryption. In the name cachi ng_sha2_passwor d, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-bit
encryption is one instance. The latter name choice leaves room for future expansion
of possible digest lengths without changing the plugin name.

The cachi ng_sha2_passwor d plugin has these advantages, compared to sha256 passwor d:

» On the server side, an in-memory cache enables faster reauthentication of users who have connected
previously when they connect again. (This server-side behavior is implemented only in MySQL 8.0 and
higher.)

» Support is provided for client connections that use the Unix socket-file and shared-memory protocols.

The following table shows the plugin name on the client side.

Table 6.3 Plugin and Library Names for SHA-2 Authentication

Plugin or File Plugin or File Name
Client-side plugin cachi ng_sha2 password
Library file None (plugin is built in)

The following sections provide installation and usage information specific to caching SHA-2 pluggable
authentication:

* Installing SHA-2 Pluggable Authentication
e Using SHA-2 Pluggable Authentication
» Cache Operation for SHA-2 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”.

127

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key

Caching SHA-2 Pluggable Authentication

Installing SHA-2 Pluggable Authentication

In MySQL 5.7, the cachi ng_sha2_passwor d plugin exists in client form. The client-side plugin is built
into the | i brysqgl cl i ent client library and is available to any program linked against | i bnysqgl cl i ent .

Using SHA-2 Pluggable Authentication

In MySQL 5.7, the cachi ng_sha2_ passwor d client-side plugin enables connecting to MySQL 8.0 or
higher servers using accounts that authenticate with the cachi ng_sha2_ passwor d server-side plugin.
The discussion here assumes that an account named ' sha2user' @ | ocal host' exists on the MySQL
8.0 or higher server. For example, the following statement creates such an account, where passwor d is
the desired account password:

CREATE USER ' sha2user' @I ocal host'
| DENTI FI ED W TH cachi ng_sha2_password BY ' password';

cachi ng_sha2_passwor d supports connections over secure transport. cachi ng_sha2_ passwor d also
supports encrypted password exchange using RSA over unencrypted connections if these conditions are
satisfied:

» The MySQL 5.7 client library and client programs are compiled using OpenSSL, not yaSSL.
cachi ng_sha2_passwor d works with distributions compiled using either package, but RSA support
requires OpenSSL.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and
all MySQL builds use OpenSSL.

» The MySQL 8.0 or higher server to which you wish to connect is configured to support RSA (using the
RSA configuration procedure given later in this section).

RSA support has these characteristics, where all aspects that pertain to the server side require a MySQL
8.0 or higher server:

» On the server side, two system variables name the RSA private and public
key-pair files: cachi ng_sha2_password_private_key_ pathand
cachi ng_sha2 password_public_key pat h. The database administrator must set these variables
at server startup if the key files to use have names that differ from the system variable default values.

» The server uses the cachi ng_sha2 password_aut o_generate rsa_keys system variable to
determine whether to automatically generate the RSA key-pair files. See Section 5.3, “Creating SSL and
RSA Certificates and Keys”.

e The Cachi ng_sha2_password_rsa_publ i c_key status variable displays the RSA public key value
used by the cachi ng_sha2_passwor d authentication plugin.

* Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

» For connections by accounts that authenticate with cachi ng_sha2_passwor d and RSA key pair-
based password exchange, the server does not send the RSA public key to clients by default. Clients
can use a client-side copy of the required public key, or request the public key from the server.

Use of a trusted local copy of the public key enables the client to avoid a round trip in the client/
server protocol, and is more secure than requesting the public key from the server. On the other hand,

128

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key

Caching SHA-2 Pluggable Authentication

requesting the public key from the server is more convenient (it requires no management of a client-side
file) and may be acceptable in secure network environments.

e For command-line clients, use the - - ser ver - publ i c- key- pat h option to specify the RSA public
key file. Use the - - get - server - publ i c- key option to request the public key from the server. The
following programs support the two options: nysql , nysql admi n, mysql bi nl og, nysql check,
mysql dunp, nysql i nport, nysql punp, nysqgl show, mysqgl sl ap, nysql t est.

« For programs that use the C API, call mysqgl _opti ons() to specify the RSA public key file by
passing the MYSQL_SERVER PUBLI C_KEY option and the name of the file, or request the public key
from the server by passing the MYSQL_OPT_CGET_SERVER PUBLI C_KEY option.

In all cases, if the option is given to specify a valid public key file, it takes precedence over the option to
request the public key from the server.

For clients that use the cachi ng_sha2_passwor d plugin, passwords are never exposed as cleartext
when connecting to the MySQL 8.0 or higher server. How password transmission occurs depends on
whether a secure connection or RSA encryption is used:

« If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to TCP
connections encrypted using TLS, as well as Unix socket-file and shared-memory connections. The
password is sent as cleartext but cannot be snooped because the connection is secure.

« If the connection is not secure, an RSA key pair is used. This applies to TCP connections not encrypted
using TLS and named-pipe connections. RSA is used only for password exchange between client and
server, to prevent password snooping. When the server receives the encrypted password, it decrypts it.
A scramble is used in the encryption to prevent repeat attacks.

* If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

As mentioned previously, RSA password encryption is available only if MySQL 5.7 was compiled using
OpenSSL. The implication for clients from MySQL 5.7 distributions compiled using yaSSL is that, to use
SHA-2 passwords, clients must use an encrypted connection to access the server. See Section 5.1,
“Configuring MySQL to Use Encrypted Connections”.

Assuming that MySQL 5.7 has been compiled using OpenSSL, use the following procedure to enable use
of an RSA key pair for password exchange during the client connection process.

Important

Aspects of this procedure that pertain to server configuration must be done on the
MySQL 8.0 or higher server to which you wish to connect using MySQL 5.7 clients,
not on your MySQL 5.7 server.

1. Create the RSA private and public key-pair files using the instructions in Section 5.3, “Creating SSL and
RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are named pri vat e_key. pem
and publ i c_key. pem(the default values of the cachi ng_sha2_password_private_key path
and cachi ng_sha2_password_publ i c_key_pat h system variables), the server uses them
automatically at startup.

Otherwise, to hame the key files explicitly, set the system variables to the key file names in the server
option file. If the files are located in the server data directory, you need not specify their full path names:

[nysql d]
cachi ng_sha2_password_privat e_key_pat h=nypri vkey. pem

129

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_private_key_path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path

Caching SHA-2 Pluggable Authentication

cachi ng_sha2_passwor d_publ i c_key_pat h=mypubkey. pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[mysgl d]
cachi ng_sha2_password_private_key_pat h=/usr/| ocal / mysql / mypri vkey. pem
cachi ng_sha2_password_publ i c_key_pat h=/usr/| ocal / mysql / mypubkey. pem

3. Restart the server, then connect to it and check the Cachi ng_sha2 password_rsa_public_key
status variable value. The actual value differs from that shown here, but should be nonempty:

nysgl > SHOW STATUS LI KE ' Cachi ng_sha2_password_rsa_public_key'\G

KRKKK KKK KKK KK I AR ARk hkkkkhx] [QWY % % % % ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK kK ok ok kK

Vari abl e_nanme: Cachi ng_sha2_password_rsa_public_key

Val ue: ----- BEG N PUBLI C KEY- - - - -
M Gf MAOGCSqGSI b3DQEBAQUAA4GNADCBI QKBgQDO9NnRUDA+Kv SZg Y7 c NBZMNpwX6
M/E1PbJFXO7ul18nJ9l we99Du/ E71 we CVXw7 VKr XPe HbVQUz Gy UNkf 45Nz/ ckaaJda
alLgJOBCl DmiN\VnyUs40T/ 11 cs2xi yf aDMe8f C164ZwTnKbY2gkt 11 M UAB5Qgd5kJ
g8aV7Et KwyhHb0c30Q DAQAB
----- END PUBLI C KEY-- - - -

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the

cachi ng_sha2 passwor d plugin have the option of using those key files to connect to the server. As
mentioned previously, such accounts can use either a secure connection (in which case RSA is not used)
or an unencrypted connection that performs password exchange using RSA. Suppose that an unencrypted
connection is used. For example:

$> nysql --ssl-node=DI SABLED -u sha2user -p
Enter password: password

For this connection attempt by sha2user , the server determines that cachi ng_sha2_passwor d is

the appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE
USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. However, the server does not send the public key to the client, and the
client provided no public key, so it cannot encrypt the password and the connection fails:

ERROR 2061 (HYO0O00): Authentication plugin 'caching_sha2_password
reported error: Authentication requires secure connection

To request the RSA public key from the server, specify the - - get - ser ver - publ i c- key option:

$> nysql --ssl-npde=Dl SABLED -u sha2user -p --get-server-public-key
Enter password: password

In this case, the server sends the RSA public key to the client, which uses it to encrypt the password and
returns the result to the server. The plugin uses the RSA private key on the server side to decrypt the
password and accepts or rejects the connection based on whether the password is correct.

Alternatively, if the client has a file containing a local copy of the RSA public key required by the server, it
can specify the file using the - - ser ver - publ i c- key- pat h option:

$> nysql --ssl-node=Dl SABLED -u sha2user -p --server-public-key-path=file_nane
Ent er password: password

In this case, the client uses the public key to encrypt the password and returns the result to the server.
The plugin uses the RSA private key on the server side to decrypt the password and accepts or rejects the
connection based on whether the password is correct.

130

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Caching_sha2_password_rsa_public_key
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path

SHA-256 Pluggable Authentication

The public key value in the file named by the - - ser ver - publ i c- key- pat h option should be the same
as the key value in the server-side file named by the cachi ng_sha2 password_public_key path
system variable. If the key file contains a valid public key value but the value is incorrect, an access-denied
error occurs. If the key file does not contain a valid public key, the client program cannot use it.

Client users can obtain the RSA public key two ways:

» The database administrator can provide a copy of the public key file.

A client user who can connect to the server some other way can use a SHOW STATUS LI KE
' Cachi ng_sha2 password rsa_public_key' statement and save the returned key value in a file.

Cache Operation for SHA-2 Pluggable Authentication

On the server side, the cachi ng_sha2_passwor d plugin uses an in-memory cache for faster
authentication of clients who have connected previously. For MySQL 5.7, which supports only the
cachi ng_sha2_passwor d client-side plugin, this server-side caching thus takes place on the MySQL 8.0

or higher server to

which you connect using MySQL 5.7 clients. For information about cache operation, see

Cache Operation for SHA-2 Pluggable Authentication, in the MySQL 8.0 Reference Manual.

6.1.5 SHA-256 Pluggable Authentication

MySQL provides two authentication plugins that implement SHA-256 hashing for user account passwords:

* sha256_passwor d: Implements basic SHA-256 authentication.

e cachi ng_sha2_passwor d: Implements SHA-256 authentication (like sha256_passwor d), but uses
caching on the server side for better performance and has additional features for wider applicability.

This section describes the original noncaching SHA-2 authentication plugin. For information about the
caching plugin, see Section 6.1.4, “Caching SHA-2 Pluggable Authentication”.

Important

To connect to the server using an account that authenticates with the
sha256_passwor d plugin, you must use either a TLS connection or an
unencrypted connection that supports password exchange using an RSA key pair,
as described later in this section. Either way, the sha256_passwor d plugin uses
MySQL' encryption capabilities. See Chapter 5, Using Encrypted Connections.

Note

In the name sha256_passwor d, “sha256” refers to the 256-bit digest length

the plugin uses for encryption. In the name cachi ng_sha2 passwor d, “sha2”
refers more generally to the SHA-2 class of encryption algorithms, of which 256-bit
encryption is one instance. The latter name choice leaves room for future expansion
of possible digest lengths without changing the plugin name.

The following table shows the plugin names on the server and client sides.

Table 6.4 Plugin and Library Names for SHA-256 Authentication

Plugin or File

Plugin or File Name

Server-side plugin

sha256_ password

131

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_caching_sha2_password_public_key_path
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html#caching-sha2-pluggable-authentication-cache-operation

SHA-256 Pluggable Authentication

Plugin or File Plugin or File Name
Client-side plugin sha256_password
Library file None (plugins are built in)

The following sections provide installation and usage information specific to SHA-256 pluggable
authentication:

* Installing SHA-256 Pluggable Authentication

e Using SHA-256 Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”.

Installing SHA-256 Pluggable Authentication

The sha256_passwor d plugin exists in server and client forms:

e The server-side plugin is built into the server, need not be loaded explicitly, and cannot be disabled by
unloading it.

» The client-side plugin is built into the | i brysqgl cl i ent client library and is available to any program
linked against | i brmysql cl i ent.

Using SHA-256 Pluggable Authentication

To set up an account that uses the sha256_passwor d plugin for SHA-256 password hashing, use the
following statement, where passwor d is the desired account password:

CREATE USER ' sha256user' @I ocal host'
| DENTI FI ED W TH sha256_password BY ' password';

The server assigns the sha256_passwor d plugin to the account and uses it to encrypt the password
using SHA-256, storing those values in the pl ugi n and aut henti cati on_stri ng columns of the
nysgl . user system table.

The preceding instructions do not assume that sha256_ passwor d is the default authentication plugin. If
sha256_ passwor d is the default authentication plugin, a simpler CREATE USER syntax can be used.

To start the server with the default authentication plugin set to sha256_passwor d, put these lines in the
server option file:

[nysql d]
def aul t _aut henti cati on_pl ugi n=sha256_passwor d

That causes the sha256_passwor d plugin to be used by default for new accounts. As a result, it is
possible to create the account and set its password without naming the plugin explicitly:

CREATE USER ' sha256user' @1 ocal host' | DENTI FI ED BY ' password';

Another consequence of setting def aul t _aut henti cati on_pl ugi nto sha256_passwor d is that, to
use some other plugin for account creation, you must specify that plugin explicitly. For example, to use the
nysgl native_ passwor d plugin, use this statement:

CREATE USER ' nativeuser' @I ocal host'

132

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_authentication_plugin

SHA-256 Pluggable Authentication

| DENTI FI ED W TH nysql _nati ve_password BY ' password';

sha256_ passwor d supports connections over secure transport. sha256_passwor d also supports
encrypted password exchange using RSA over unencrypted connections if these conditions are satisfied:

* MySQL is compiled using OpenSSL, not yaSSL. sha256_passwor d works with distributions compiled
using either package, but RSA support requires OpenSSL.

Note

It is possible to compile MySQL using yaSSL as an alternative to OpenSSL only
prior to MySQL 5.7.28. As of MySQL 5.7.28, support for yaSSL is removed and
all MySQL builds use OpenSSL.

» The MySQL server to which you wish to connect is configured to support RSA (using the RSA
configuration procedure given later in this section).

RSA support has these characteristics:

« On the server side, two system variables name the RSA private and public key-pair files:
sha256_password _private_key path and sha256 password_public_key path. The
database administrator must set these variables at server startup if the key files to use have names that
differ from the system variable default values.

» The server uses the sha256_password_aut o_generat e_rsa_keys system variable to determine
whether to automatically generate the RSA key-pair files. See Section 5.3, “Creating SSL and RSA
Certificates and Keys”.

» The Rsa_publ i c_key status variable displays the RSA public key value used by the
sha256_passwor d authentication plugin.

 Clients that are in possession of the RSA public key can perform RSA key pair-based password
exchange with the server during the connection process, as described later.

» For connections by accounts that authenticate using sha256 passwor d and RSA public key pair-based
password exchange, the server sends the RSA public key to the client as needed. However, if a copy of
the public key is available on the client host, the client can use it to save a round trip in the client/server
protocol:

« For these command-line clients, use the - - ser ver - publ i c- key- pat h option to specify the
RSA public key file: mysql , mysql t est, and (as of MySQL 5.7.23) nysql adni n, mysqgl bi nl og,
mysql check, nysql dunp, mysql i nport, mysql punp, nysql show, nysql sl ap, nysql t est.

« For programs that use the C API, call mysqgl _opti ons() to specify the RSA public key file by
passing the MYSQL_SERVER PUBLI C_KEY option and the name of the file.

e Forreplicas, RSA key pair-based password exchange cannot be used to connect to source servers
for accounts that authenticate with the sha256 passwor d plugin. For such accounts, only secure
connections can be used.

For clients that use the sha256_passwor d plugin, passwords are never exposed as cleartext when
connecting to the server. How password transmission occurs depends on whether a secure connection or
RSA encryption is used:

« If the connection is secure, an RSA key pair is unnecessary and is not used. This applies to connections
encrypted using TLS. The password is sent as cleartext but cannot be snooped because the connection
is secure.

133

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_auto_generate_rsa_keys
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rsa_public_key
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html

SHA-256 Pluggable Authentication

Note

Unlike cachi ng_sha2_ passwor d, the sha256 _passwor d plugin does not
treat shared-memory connections as secure, even though share-memory
transport is secure by default.

« If the connection is not secure, and an RSA key pair is available, the connection remains unencrypted.
This applies to connections not encrypted using TLS. RSA is used only for password exchange between
client and server, to prevent password snooping. When the server receives the encrypted password, it
decrypts it. A scramble is used in the encryption to prevent repeat attacks.

« If a secure connection is not used and RSA encryption is not available, the connection attempt fails
because the password cannot be sent without being exposed as cleartext.

As mentioned previously, RSA password encryption is available only if MySQL was compiled using
OpenSSL. The implication for MySQL distributions compiled using yaSSL is that, to use SHA-256
passwords, clients must use an encrypted connection to access the server. See Section 5.1, “Configuring
MySQL to Use Encrypted Connections”.

Note

To use RSA password encryption with sha256 passwor d, the client and server
both must be compiled using OpenSSL, not just one of them.

Assuming that MySQL has been compiled using OpenSSL, use the following procedure to enable use of
an RSA key pair for password exchange during the client connection process:

1. Create the RSA private and public key-pair files using the instructions in Section 5.3, “Creating SSL and
RSA Certificates and Keys”.

2. If the private and public key files are located in the data directory and are named pri vat e_key. pem
and publ i c_key. pem(the default values of the sha256_passwor d_pri vat e_key_pat h and
sha256_passwor d_publ i c_key_pat h system variables), the server uses them automatically at
startup.

Otherwise, to name the key files explicitly, set the system variables to the key file names in the server
option file. If the files are located in the server data directory, you need not specify their full path names:

[nysql d]
sha256_passwor d_pri vat e_key_pat h=mypri vkey. pem
sha256_passwor d_publ i c_key_pat h=mypubkey. pem

If the key files are not located in the data directory, or to make their locations explicit in the system
variable values, use full path names:

[nysql d]
sha256_password_private_key_ pat h=/usr/ | ocal / mysql / mypri vkey. pem
sha256_passwor d_publ i c_key_pat h=/usr/| ocal / nysql / nypubkey. pem

3. Restart the server, then connect to it and check the Rsa_publ i ¢c_key status variable value. The
actual value differs from that shown here, but should be nonempty:

mysql > SHOW STATUS LI KE ' Rsa_public_key'\ G
EEEEEEEEREEREEEEEEEEEEEEEESESES] 1 rOW EREEEEEEEEEREEEEEEEEEEEESEESESESE]
Vari abl e_nanme: Rsa_public_key

Val ue: ----- BEG N PUBLI C KEY- - - - -
M G MAOGCSqGS| b3DQEBAQUAA4 GNADCBiI QKBgQDOINRUDd +Kv SZg Y7 ¢ NBZMNpwX6
M/E1PbJFXO7ul18nJ9l we99Du/ E71 w6 CVXw7 VKr XPeHbVQUz Gy UNKf 45Nz/ ckaaJa
alL.gJOBCl DmiN\VnyU540T/ 11 cs2xi yf aDMe8f C164ZwTnKbY2gkt 11 M UAB5Qyd5kJ

134

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_private_key_path
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Rsa_public_key

Client-Side Cleartext Pluggable Authentication

g8aV7Et KwyhHb0c30Q DAQAB
----- END PUBLI C KEY-- - - -

If the value is empty, the server found some problem with the key files. Check the error log for
diagnostic information.

After the server has been configured with the RSA key files, accounts that authenticate with the
sha256_passwor d plugin have the option of using those key files to connect to the server. As mentioned
previously, such accounts can use either a secure connection (in which case RSA is not used) or an
unencrypted connection that performs password exchange using RSA. Suppose that an unencrypted
connection is used. For example:

$> nysql --ssl-node=DI SABLED -u sha256user -p
Ent er password: password

For this connection attempt by sha256user , the server determines that sha256_passwor d is the
appropriate authentication plugin and invokes it (because that was the plugin specified at CREATE

USER time). The plugin finds that the connection is not encrypted and thus requires the password to be
transmitted using RSA encryption. In this case, the plugin sends the RSA public key to the client, which
uses it to encrypt the password and returns the result to the server. The plugin uses the RSA private key
on the server side to decrypt the password and accepts or rejects the connection based on whether the
password is correct.

The server sends the RSA public key to the client as needed. However, if the client has a file containing
a local copy of the RSA public key required by the server, it can specify the file using the - - ser ver -
publ i c- key- pat h option:

$> nysql --ssl-node=Dl SABLED -u sha256user -p --server-public-key-path=file_nane
Ent er password: password

The public key value in the file named by the - - ser ver - publ i c- key- pat h option should be the same
as the key value in the server-side file named by the sha256_ password_publ i ¢c_key pat h system
variable. If the key file contains a valid public key value but the value is incorrect, an access-denied error
occurs. If the key file does not contain a valid public key, the client program cannot use it. In this case,
the sha256 passwor d plugin sends the public key to the client as if no - - server - publ i c- key- pat h
option had been specified.

Client users can obtain the RSA public key two ways:
» The database administrator can provide a copy of the public key file.

» A client user who can connect to the server some other way can use a SHOW STATUS LI KE
'Rsa_public_key' statement and save the returned key value in a file.

6.1.6 Client-Side Cleartext Pluggable Authentication

A client-side authentication plugin is available that enables clients to send passwords to the server as
cleartext, without hashing or encryption. This plugin is built into the MySQL client library.

The following table shows the plugin name.

Table 6.5 Plugin and Library Names for Cleartext Authentication

Plugin or File Plugin or File Name
Server-side plugin None, see discussion
Client-side plugin nysql cl ear _password
Library file None (plugin is built in)

135

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sha256_password_public_key_path
https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_server-public-key-path

PAM Pluggable Authentication

Many client-side authentication plugins perform hashing or encryption of a password before the client
sends it to the server. This enables clients to avoid sending passwords as cleartext.

Hashing or encryption cannot be done for authentication schemes that require the server to receive

the password as entered on the client side. In such cases, the client-side nysql _cl ear _password
plugin is used, which enables the client to send the password to the server as cleartext. There is no
corresponding server-side plugin. Rather, mysql _cl ear _passwor d can be used on the client side in
concert with any server-side plugin that needs a cleartext password. (Examples are the PAM and simple
LDAP authentication plugins; see Section 6.1.7, “PAM Pluggable Authentication”, and Section 6.1.9,
“LDAP Pluggable Authentication”.)

The following discussion provides usage information specific to cleartext pluggable authentication.
For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”.

Note

Sending passwords as cleartext may be a security problem in some configurations.
To avoid problems if there is any possibility that the password would be intercepted,
clients should connect to MySQL Server using a method that protects the
password. Possibilities include SSL (see Chapter 5, Using Encrypted Connections),
IPsec, or a private network.

To make inadvertent use of the nysql _cl ear _passwor d plugin less likely, MySQL clients must explicitly
enable it. This can be done in several ways:

» Setthe LI BWSQL_ENABLE CLEARTEXT_PLUGQ N environment variable to a value that begins with 1, Y,
or y. This enables the plugin for all client connections.

e The nysqgl , nysqgl adm n, and nysql sl ap client programs (also nysql check, nysql dunp, and
nysql showfor MySQL 5.7.10 and later) support an - - enabl e- cl eart ext - pl ugi n option that
enables the plugin on a per-invocation basis.

» Thenmysqgl _options() C API function supports a MYSQL_ENABLE CLEARTEXT_PLUG N option that
enables the plugin on a per-connection basis. Also, any program that uses | i brmysqgl cl i ent and reads
option files can enable the plugin by including an enabl e- cl eart ext - pl ugi n option in an option
group read by the client library.

6.1.7 PAM Pluggable Authentication

Note

PAM pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

MySQL Enterprise Edition supports an authentication method that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as traditional Unix passwords
or an LDAP directory.

PAM pluggable authentication provides these capabilities:

» External authentication: PAM authentication enables MySQL Server to accept connections from users
defined outside the MySQL grant tables and that authenticate using methods supported by PAM.

136

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://www.mysql.com/products/

PAM Pluggable Authentication

» Proxy user support: PAM authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the PAM groups the external user is a member
of and the authentication string provided. This means that the plugin can return the MySQL user that
defines the privileges the external PAM-authenticated user should have. For example, an operating
sytem user named j oe can connect and have the privileges of a MySQL user named devel oper.

PAM pluggable authentication has been tested on Linux and macOS.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the pl ugi n_di r system variable. For
installation information, see Installing PAM Pluggable Authentication.

Table 6.6 Plugin and Library Names for PAM Authentication

Plugin or File Plugin or File Name
Server-side plugin aut henti cati on_pam
Client-side plugin nmysql cl ear _password
Library file aut henti cati on_pam so

The client-side nysql _cl ear _passwor d cleartext plugin that communicates with the server-side
PAM plugin is built into the | i brmysqgl cl i ent client library and is included in all distributions, including
community distributions. Inclusion of the client-side cleartext plugin in all MySQL distributions enables
clients from any distribution to connect to a server that has the server-side PAM plugin loaded.

The following sections provide installation and usage information specific to PAM pluggable authentication:
* How PAM Authentication of MySQL Users Works

« Installing PAM Pluggable Authentication

* Uninstalling PAM Pluggable Authentication

» Using PAM Pluggable Authentication

* PAM Unix Password Authentication without Proxy Users

» PAM LDAP Authentication without Proxy Users

» PAM Unix Password Authentication with Proxy Users and Group Mapping

* PAM Authentication Access to Unix Password Store

* PAM Authentication Debugging

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”. For information about the nmysql _cl ear _passwor d plugin, see Section 6.1.6, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 4.14, “Proxy Users”.

How PAM Authentication of MySQL Users Works

This section provides an overview of how MySQL and PAM work together to authenticate MySQL users.
For examples showing how to set up MySQL accounts to use specific PAM services, see Using PAM
Pluggable Authentication.

1. The client program and the server communicate, with the client sending to the server the client user
name (the operating system user name by default) and password:

137

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

PAM Pluggable Authentication

* The client user name is the external user name.

» For accounts that use the PAM server-side authentication plugin, the corresponding client-side plugin
ismysqgl _cl ear _passwor d. This client-side plugin performs no password hashing, with the result
that the client sends the password to the server as cleartext.

2. The server finds a matching MySQL account based on the external user name and the host from which
the client connects. The PAM plugin uses the information passed to it by MySQL Server (such as
user name, host name, password, and authentication string). When you define a MySQL account that
authenticates using PAM, the authentication string contains:

* A PAM service name, which is a name that the system administrator can use to refer to an
authentication method for a particular application. There can be multiple applications associated
with a single database server instance, so the choice of service name is left to the SQL application
developer.

» Optionally, if proxying is to be used, a mapping from PAM groups to MySQL user names.

3. The plugin uses the PAM service named in the authentication string to check the user credentials and
returns ' Aut henti cati on succeeded, Username is user_nane' or' Aut hentication
fail ed . The password must be appropriate for the password store used by the PAM service.
Examples:

* For traditional Unix passwords, the service looks up passwords stored in the / et ¢/ shadowfile.
e For LDAP, the service looks up passwords stored in an LDAP directory.
If the credentials check fails, the server refuses the connection.

4. Otherwise, the authentication string indicates whether proxying occurs. If the string contains no PAM
group mapping, proxying does not occur. In this case, the MySQL user name is the same as the
external user name.

5. Otherwise, proxying is indicated based on the PAM group mapping, with the MySQL user name
determined based on the first matching group in the mapping list. The meaning of “PAM group”
depends on the PAM service. Examples:

* For traditional Unix passwords, groups are Unix groups defined in the / et ¢/ gr oup file, possibly
supplemented with additional PAM information in a file such as / et ¢/ securi ty/ group. conf.

e For LDAP, groups are LDAP groups defined in an LDAP directory.

If the proxy user (the external user) has the PROXY privilege for the proxied MySQL user name,
proxying occurs, with the proxy user assuming the privileges of the proxied user.

Installing PAM Pluggable Authentication

This section describes how to install the server-side PAM authentication plugin. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

The plugin library file base name is aut hent i cat i on_pam The file name suffix differs per platform (for
example, . so for Unix and Unix-like systems, . dl | for Windows).

138

https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

PAM Pluggable Authentication

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server ny. cnf file, adjusting the . so suffix for your platform as necessary:

[nysal d]
pl ugi n- | oad- add=aut henti cati on_pam so

After modifying ny. cnf , restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

I NSTALL PLUG N aut henti cati on_pam SONAME ' aut henti cati on_pam so';

| NSTALL PLUG Nloads the plugin immediately, and also registers it in the mysql . pl ugi ns system table
to cause the server to load it for each subsequent normal startup without the need for - - pl ugi n-1 oad-
add.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N NAME, PLUG N_STATUS
FROM | NFORMATI ON_SCHEMA. PLUGI NS
WHERE PLUG N_NAME LI KE ' %pant6 ;

e e emeeeeeeaaao F T +
| PLUG N_NAME | PLUG N_STATUS |
e e emeeeeeeaaao F T +
| authentication_pam | ACTIVE |
e e emeeeeeeaaao F T +

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the PAM plugin, see Using PAM Pluggable Authentication.
Uninstalling PAM Pluggable Authentication

The method used to uninstall the PAM authentication plugin depends on how you installed it:

« If you installed the plugin at server startup using a - - pl ugi n- | oad- add option, restart the server
without the option.

« If you installed the plugin at runtime using an | NSTALL PLUGQ N statement, it remains installed across
server restarts. To uninstall it, use UNI NSTALL PLUG N:

UNI NSTALL PLUG N aut henti cati on_pam

Using PAM Pluggable Authentication

This section describes in general terms how to use the PAM authentication plugin to connect from MySQL
client programs to the server. The following sections provide instructions for using PAM authentication

in specific ways. It is assumed that the server is running with the server-side PAM plugin enabled, as
described in Installing PAM Pluggable Authentication.

To refer to the PAM authentication plugin in the | DENTI FI ED W TH clause of a CREATE USER statement,
use the name aut hent i cati on_pam For example:

CREATE USER user

| DENTI FI ED W TH aut hent i cati on_pam
AS 'auth_string';

The authentication string specifies the following types of information:

139

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

PAM Pluggable Authentication

e The PAM service name (see How PAM Authentication of MySQL Users Works). Examples in the
following discussion use a service name of nysql - uni x for authentication using traditional Unix
passwords, and nysql - | dap for authentication using LDAP.

» For proxy support, PAM provides a way for a PAM module to return to the server a MySQL user name
other than the external user name passed by the client program when it connects to the server. Use the
authentication string to control the mapping from external user names to MySQL user names. If you want
to take advantage of proxy user capabilities, the authentication string must include this kind of mapping.

For example, if an account uses the nmysql - uni x PAM service name and should map operating
system users in the r oot and user s PAM groups to the devel oper and dat a_ent ry MySQL users,
respectively, use a statement like this:

CREATE USER user
| DENTI FI ED W TH aut henti cati on_pam
AS ' nmysql - uni x, root=devel oper, users=data_entry’

Authentication string syntax for the PAM authentication plugin follows these rules:

» The string consists of a PAM service name, optionally followed by a PAM group mapping list consisting
of one or more keyword/value pairs each specifying a PAM group name and a MySQL user name:

pam servi ce_nane[, pam gr oup_nane=nysql _user _nang]. ..

The plugin parses the authentication string for each connection attempt that uses the account. To
minimize overhead, keep the string as short as possible.

e Each pam group_name=nysql _user nane pair must be preceded by a comma.
» Leading and trailing spaces not inside double quotation marks are ignored.

» Unquoted pam servi ce_name, pam gr oup_nane, and nysql _user _nane values can contain
anything except equal sign, comma, or space.

» Ifapam servi ce_nane, pam group_namne, or mysql _user narme value is quoted with double
guotation marks, everything between the quotation marks is part of the value. This is necessary, for
example, if the value contains space characters. All characters are legal except double quotation mark
and backslash (\). To include either character, escape it with a backslash.

If the plugin successfully authenticates the external user name (the name passed by the client), it looks for
a PAM group mapping list in the authentication string and, if present, uses it to return a different MySQL
user name to the MySQL server based on which PAM groups the external user is a member of:

« If the authentication string contains no PAM group mapping list, the plugin returns the external name.

« If the authentication string does contain a PAM group mapping list, the plugin examines each
pam group_name=nysql user _nane pair in the list from left to right and tries to find a match for the
pam gr oup_narmne value in a non-MySQL directory of the groups assigned to the authenticated user and
returns mysql _user _nane for the first match it finds. If the plugin finds no match for any PAM group, it
returns the external name. If the plugin is not capable of looking up a group in a directory, it ignores the
PAM group mapping list and returns the external name.

The following sections describe how to set up several authentication scenarios that use the PAM
authentication plugin:

» No proxy users. This uses PAM only to check login names and passwords. Every external user
permitted to connect to MySQL Server should have a matching MySQL account that is defined to use
PAM authentication. (For a MySQL account of ' user _nane' @ host _nane' to match the external
user, user _namne must be the external user name and host _nane must match the host from which the

140

PAM Pluggable Authentication

client connects.) Authentication can be performed by various PAM-supported methods. Later discussion
shows how to authenticate client credentials using traditional Unix passwords, and passwords in LDAP.

PAM authentication, when not done through proxy users or PAM groups, requires the MySQL user name
to be same as the operating system user name. MySQL user names are limited to 32 characters (see
Section 4.3, “Grant Tables”), which limits PAM nonproxy authentication to Unix accounts with names of
at most 32 characters.

» Proxy users only, with PAM group mapping. For this scenario, create one or more MySQL accounts
that define different sets of privileges. (Ideally, nobody should connect using those accounts directly.)
Then define a default user authenticating through PAM that uses some mapping scheme (usually based
on the external PAM groups the users are members of) to map all the external user names to the few
MySQL accounts holding the privilege sets. Any client who connects and specifies an external user
name as the client user name is mapped to one of the MySQL accounts and uses its privileges. The
discussion shows how to set this up using traditional Unix passwords, but other PAM methods such as
LDAP could be used instead.

Variations on these scenarios are possible:

» You can permit some users to log in directly (without proxying) but require others to connect through
proxy accounts.

* You can use one PAM authentication method for some users, and another method for other users, by
using differing PAM service names among your PAM-authenticated accounts. For example, you can use
the nysql - uni x PAM service for some users, and nysql - | dap for others.

The examples make the following assumptions. You might need to make some adjustments if your system
is set up differently.

» The login name and password are ant oni o and ant oni o_passwor d, respectively. Change these to
correspond to the user you want to authenticate.

» The PAM configuration directory is / et ¢/ pam d.

e The PAM service name corresponds to the authentication method (nmysql - uni x or nysql - | dap in this
discussion). To use a given PAM service, you must set up a PAM file with the same name in the PAM
configuration directory (creating the file if it does not exist). In addition, you must name the PAM service
in the authentication string of the CREATE USER statement for any account that authenticates using that
PAM service.

The PAM authentication plugin checks at initialization time whether the AUTHENTI CATI ON_PAM LOG
environment value is set in the server's startup environment. If so, the plugin enables logging of diagnostic
messages to the standard output. Depending on how your server is started, the message might appear
on the console or in the error log. These messages can be helpful for debugging PAM-related issues that
occur when the plugin performs authentication. For more information, see PAM Authentication Debugging.

PAM Unix Password Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system

user names and Unix passwords, without proxying. Every such external user permitted to connect to
MySQL Server should have a matching MySQL account that is defined to use PAM authentication through
traditional Unix password store.

Note

Traditional Unix passwords are checked using the / et ¢/ shadowfile. For
information regarding possible issues related to this file, see PAM Authentication
Access to Unix Password Store.

141

https://dev.mysql.com/doc/refman/5.7/en/create-user.html

PAM Pluggable Authentication

1. Verify that Unix authentication permits logins to the operating system with the user name ant oni o and

password ant oni o_passwor d.

Set up PAM to authenticate MySQL connections using traditional Unix passwords by creating a

nysql - uni x PAM service file named / et ¢/ pam d/ nysqgl - uni x. The file contents are system
dependent, so check existing login-related files in the / et ¢/ pam d directory to see what they look like.
On Linux, the nysql - uni x file might look like this:

#YPAM 1. 0
aut h i ncl ude passwor d- aut h
account i ncl ude passwor d- aut h

For macOS, use | ogi n rather than passwor d- aut h.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-based
systems, use these file contents instead:

@ ncl ude commmon- aut h
@ ncl ude commmon- account
@ ncl ude commmon- sessi on-noni nteractive

Create a MySQL account with the same user name as the operating system user name and define it to
authenticate using the PAM plugin and the mysql - uni x PAM service:

CREATE USER ' antoni o' @1 ocal host"'
| DENTI FI ED W TH aut henti cati on_pam
AS ' nysql - uni x';
GRANT ALL PRI VI LEGES
ON nydb. *
TO ' antoni o' @I ocal host " ;

Here, the authentication string contains only the PAM service name, nysql - uni x, which authenticates
Unix passwords.

Use the nysql command-line client to connect to the MySQL server as ant oni 0. For example:

$> nysql --user=antonio --password --enabl e-cl eartext-plugin
Ent er password: antoni o_password

The server should permit the connection and the following query returns output as shown:

nmysql > SELECT USER(), CURRENT_USER(), @@roxy_user;
------------------- T S

CURRENT_USER() | @@roxy_user |

This demonstrates that the ant oni o operating system user is authenticated to have the privileges
granted to the ant oni o MySQL user, and that no proxying has occurred.

Note

The client-side nysql _cl ear passwor d authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to PAM. A cleartext password is
necessary to use the server-side PAM library, but may be a security problem in
some configurations. These measures minimize the risk:

* To make inadvertent use of the nysql _cl ear _passwor d plugin less likely,
MySQL clients must explicitly enable it (for example, with the - - enabl e-

142

PAM Pluggable Authentication

cl eart ext - pl ugi n option). See Section 6.1.6, “Client-Side Cleartext Pluggable
Authentication”.

« To avoid password exposure with the nysql _cl ear _passwor d plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use Encrypted
Connections”.

PAM LDAP Authentication without Proxy Users

This authentication scenario uses PAM to check external users defined in terms of operating system user
names and LDAP passwords, without proxying. Every such external user permitted to connect to MySQL
Server should have a matching MySQL account that is defined to use PAM authentication through LDAP.

To use PAM LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:
* An LDAP server must be available for the PAM LDAP service to communicate with.

» Each LDAP user to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

Note

Another way to use LDAP for MySQL user authentication is to use the
LDAP-specific authentication plugins. See Section 6.1.9, “LDAP Pluggable
Authentication”.

Configure MySQL for PAM LDAP authentication as follows:

1. Verify that Unix authentication permits logins to the operating system with the user name ant oni o and
password ant oni o_passwor d.

2. Setup PAM to authenticate MySQL connections using LDAP by creating a nysql - | dap PAM service
file named / et ¢/ pam d/ nysql - | dap. The file contents are system dependent, so check existing
login-related files in the / et ¢/ pam d directory to see what they look like. On Linux, the mysql - | dap
file might look like this:

#%PAM 1. O
aut h required pam | dap. so
account required pam | dap. so

If PAM object files have a suffix different from . so on your system, substitute the correct suffix.
The PAM file format might differ on some systems.

3. Create a MySQL account with the same user name as the operating system user name and define it to
authenticate using the PAM plugin and the nysql - | dap PAM service:

CREATE USER ' antoni o' @I ocal host'
| DENTI FI ED W TH aut henti cati on_pam
AS 'nysql -1 dap' ;
GRANT ALL PRI VI LEGES
ON nydb. *
TO ' antoni o' @I ocal host " ;

Here, the authentication string contains only the PAM service name, nysql - | dap, which authenticates
using LDAP.

4. Connecting to the server is the same as described in PAM Unix Password Authentication without Proxy
Users.

143

PAM Pluggable Authentication

PAM Unix Password Authentication with Proxy Users and Group Mapping

The authentication scheme described here uses proxying and PAM group mapping to map connecting
MySQL users who authenticate using PAM onto other MySQL accounts that define different sets of
privileges. Users do not connect directly through the accounts that define the privileges. Instead, they
connect through a default proxy account authenticated using PAM, such that all the external users are
mapped to the MySQL accounts that hold the privileges. Any user who connects using the proxy account
is mapped to one of those MySQL accounts, the privileges for which determine the database operations
permitted to the external user.

The procedure shown here uses Unix password authentication. To use LDAP instead, see the early steps
of PAM LDAP Authentication without Proxy Users.

Note

Traditional Unix passwords are checked using the / et ¢/ shadowfile. For
information regarding possible issues related to this file, see PAM Authentication
Access to Unix Password Store.

1. Verify that Unix authentication permits logins to the operating system with the user name ant oni o and
password ant oni o_passwor d.

2. Verify that ant oni o is a member of the r oot or user s PAM group.

3. Set up PAM to authenticate the mysql - uni x PAM service through operating system users by creating
a file named / et ¢/ pam d/ nysql - uni x. The file contents are system dependent, so check existing
login-related files in the / et ¢/ pam d directory to see what they look like. On Linux, the nysqgl - uni x
file might look like this:

#YPAM 1. 0
aut h i ncl ude passwor d- aut h
account i ncl ude passwor d- aut h

For macOS, use | ogi n rather than passwor d- aut h.

The PAM file format might differ on some systems. For example, on Ubuntu and other Debian-based
systems, use these file contents instead:

@ ncl ude common- aut h
@ ncl ude common- account
@ ncl ude common-sessi on-noni nteractive

4. Create a default proxy user (' ' @ ') that maps external PAM users to the proxied accounts:

CREATE USER '' @'
| DENTI FI ED W TH aut henti cati on_pam
AS ' nysql -uni x, root=devel oper, users=data_entry';

Here, the authentication string contains the PAM service hame, nmysql - uni x, which authenticates
Unix passwords. The authentication string also maps external users in the r oot and user s PAM
groups to the devel oper and dat a_ent ry MySQL user names, respectively.

The PAM group mapping list following the PAM service name is required when you set up proxy users.
Otherwise, the plugin cannot tell how to perform mapping from external user names to the proper
proxied MySQL user names.

144

PAM Pluggable Authentication

Note

If your MySQL installation has anonymous users, they might conflict with the
default proxy user. For more information about this issue, and ways of dealing
with it, see Default Proxy User and Anonymous User Conflicts.

5. Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER ' devel oper' @1 ocal host'
| DENTI FI ED W TH nysql _no_I ogi n;
CREATE USER 'data_entry' @I ocal host'
| DENTI FI ED W TH nysql _no_I ogi n;
GRANT ALL PRI VI LEGES

ON nydevdb. *

TO ' devel oper' @1 ocal host ' ;
GRANT ALL PRI VI LEGES

ON nydb. *

TO 'data_entry' @l ocal host "' ;

The proxied accounts use the nysgl _no_| ogi n authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, it is expected that users who authenticate
using PAM use the devel oper or dat a_ent ry account by proxy based on their PAM group.

(This assumes that the plugin is installed. For instructions, see Section 6.1.10, “No-Login Pluggable
Authentication”.) For alternative methods of protecting proxied accounts against direct use, see
Preventing Direct Login to Proxied Accounts.

Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY
ON ' devel oper' @1 ocal host'
0@

GRANT PROXY
ON 'data_entry' @I ocal host'
0@

Use the mnysql command-line client to connect to the MySQL server as ant oni o.

$> nysql --user=antoni o --password --enabl e-cl eartext-plugin
Ent er password: antoni o_password

The server authenticates the connection using the default' * @' proxy account. The resulting
privileges for ant oni o depend on which PAM groups ant oni o is a member of. If ant oni o is a
member of the r oot PAM group, the PAM plugin maps r oot to the devel oper MySQL user name
and returns that name to the server. The server verifies that' * @' has the PROXY privilege for
devel oper and permits the connection. The following query returns output as shown:

mysql > SELECT USER(), CURRENT_USER(), @@proxy_user;

145

PAM Pluggable Authentication

This demonstrates that the ant oni o operating system user is authenticated to have the privileges
granted to the devel oper MySQL user, and that proxying occurs through the default proxy account.

If ant oni o is not a member of the r oot PAM group but is a member of the user s PAM group, a
similar process occurs, but the plugin maps user PAM group membership to the dat a_ent ry MySQL
user name and returns that name to the server:

nmysql > SELECT USER(), CURRENT_USER(), @@roxy_user;

dimcccccococccooccccoo dimccccocccccococccooccooo dimccccccoccccoos +
| USER() | CURRENT_USER() | @@roxy_user |
dimcccccococccooccccoo dimccccocccccococccooccooo dimccccccoccccoos +
| antoni o@ocal host | data_entry@ocal host | '' @' [
dimcccccococccooccccoo dimccccocccccococccooccooo dimccccccoccccoos +

This demonstrates that the ant oni 0 operating system user is authenticated to have the privileges of
the dat a_ent ry MySQL user, and that proxying occurs through the default proxy account.

Note

The client-side nysql _cl ear _passwor d authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to PAM. A cleartext password is
necessary to use the server-side PAM library, but may be a security problem in
some configurations. These measures minimize the risk:

* To make inadvertent use of the nysql _cl ear _passwor d plugin less likely,
MySQL clients must explicitly enable it (for example, with the - - enabl e-
cl eart ext - pl ugi n option). See Section 6.1.6, “Client-Side Cleartext Pluggable
Authentication”.

¢ To avoid password exposure with the nysql _cl ear passwor d plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use Encrypted
Connections”.

PAM Authentication Access to Unix Password Store

On some systems, Unix authentication uses a password store such as / et ¢/ shadow, a file that typically
has restricted access permissions. This can cause MySQL PAM-based authentication to fail. Unfortunately,
the PAM implementation does not permit distinguishing “password could not be checked” (due, for
example, to inability to read / et ¢/ shadow) from “password does not match.” If you are using Unix
password store for PAM authentication, you may be able to enable access to it from MySQL using one of
the following methods:

» Assuming that the MySQL server is run from the nysql operating system account, put that account in

the shadow group that has / et ¢/ shadow access:

1. Create a shadowgroupin/etc/ group.

2. Add the nysql operating system user to the shadowgroup in/ et c/ gr oup.

3. Assign/ et c/ group to the shadowgroup and enable the group read permission:

chgrp shadow / et c/ shadow
chnmod g+r /etc/shadow

146

Windows Pluggable Authentication

4. Restart the MySQL server.

« If you are using the pam uni x module and the uni x_chkpwd utility, enable password store access as
follows:

chnmod u-s /usr/sbin/uni x_chkpwd
setcap cap_dac_read_search+ep /usr/sbin/ uni x_chkpwd

Adjust the path to uni x_chkpwd as necessary for your platform.
PAM Authentication Debugging

The PAM authentication plugin checks at initialization time whether the AUTHENTI CATI ON_PAM LOG
environment value is set. In MySQL 5.7, and in MySQL NDB Cluster rrior to NDB 7.5.33 and NDB 7.6.29,
the value does not matter. The plugin enables logging of diagnostic messages to the standard output,
including passwords. These messages may be helpful for debugging PAM-related issues that occur when
the plugin performs authentication.

In MySQL NDB Cluster, beginning with versions 7.5.33 and 7.6.29, passwords are not
included if you set AUTHENTI CATI ON_PAM LOG=1 (or some other arbitrary value);
you can enable logging of debugging messages, passwords included, by setting
AUTHENTI CATI ON_PAM LOG=PAM LOG W TH_SECRET_I NFQO.

Some messages include reference to PAM plugin source files and line numbers, which enables plugin
actions to be tied more closely to the location in the code where they occur.

Another technique for debugging connection failures and determining what is happening during connection
attempts is to configure PAM authentication to permit all connections, then check the system log files. This
technique should be used only on a temporary basis, and not on a production server.

Configure a PAM service file named / et ¢/ pam d/ nysqgl - any- passwor d with these contents (the
format may differ on some systems):

#%PAM 1. 0
aut h required pam pernit.so
account required pam pernit.so

Create an account that uses the PAM plugin and names the nysql - any- passwor d PAM service:

CREATE USER 'testuser' @I ocal host'
| DENTI FI ED W TH aut henti cati on_pam
AS ' nysql - any- password' ;

The nmysql - any- passwor d service file causes any authentication attempt to return true, even for
incorrect passwords. If an authentication attempt fails, that tells you the configuration problem is on
the MySQL side. Otherwise, the problem is on the operating system/PAM side. To see what might be
happening, check system log files such as / var /| og/ secure,/var/ | og/audit.|og,/var/l og/
sysl og, or/var/| og/ messages.

After determining what the problem is, remove the mysqgl - any- passwor d PAM service file to disable
any-password access.

6.1.8 Windows Pluggable Authentication
Note

Windows pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

147

https://www.mysql.com/products/

Windows Pluggable Authentication

MySQL Enterprise Edition for Windows supports an authentication method that performs external
authentication on Windows, enabling MySQL Server to use native Windows services to authenticate client
connections. Users who have logged in to Windows can connect from MySQL client programs to the server
based on the information in their environment without specifying an additional password.

The client and server exchange data packets in the authentication handshake. As a result of this
exchange, the server creates a security context object that represents the identity of the client in the
Windows OS. This identity includes the name of the client account. Windows pluggable authentication
uses the identity of the client to check whether it is a given account or a member of a group. By default,
negotiation uses Kerberos to authenticate, then NTLM if Kerberos is unavailable.

Windows pluggable authentication provides these capabilities:

« External authentication: Windows authentication enables MySQL Server to accept connections from
users defined outside the MySQL grant tables who have logged in to Windows.

» Proxy user support: Windows authentication can return to MySQL a user name different from the
external user name passed by the client program. This means that the plugin can return the MySQL
user that defines the privileges the external Windows-authenticated user should have. For example, a
Windows user named j oe can connect and have the privileges of a MySQL user named devel oper .

The following table shows the plugin and library file names. The file must be located in the directory named
by the pl ugi n_di r system variable.

Table 6.7 Plugin and Library Names for Windows Authentication

Plugin or File Plugin or File Name

Server-side plugin aut henti cati on_w ndows
Client-side plugin aut henti cati on_wi ndows_cl i ent
Library file aut henti cati on_wi ndows. dl |

The library file includes only the server-side plugin. The client-side plugin is built into the
['i bnysqgl client clientlibrary.

The server-side Windows authentication plugin is included only in MySQL Enterprise Edition. It is not
included in MySQL community distributions. The client-side plugin is included in all distributions, including
community distributions. This enables clients from any distribution to connect to a server that has the
server-side plugin loaded.

The following sections provide installation and usage information specific to Windows pluggable
authentication:

« Installing Windows Pluggable Authentication
* Uninstalling Windows Pluggable Authentication
» Using Windows Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”. For proxy user information, see Section 4.14, “Proxy Users”.

Installing Windows Pluggable Authentication

This section describes how to install the server-side Windows authentication plugin. For general
information about installing plugins, see Installing and Uninstalling Plugins.

148

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html

Windows Pluggable Authentication

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server my. cnf file:

[mysql d]
pl ugi n- | oad- add=aut henti cati on_wi ndows. dl |

After modifying ny. cnf , restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

I NSTALL PLUG N aut henti cati on_wi ndows SONAME ' aut henti cati on_wi ndows. dl | ";

| NSTALL PLUG N loads the plugin immediately, and also registers it in the mysql . pl ugi ns system table
to cause the server to load it for each subsequent normal startup without the need for - - pl ugi n-1 oad-
add.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHEMA. PLUG NS
WHERE PLUG N_NAME LI KE ' 9% ndows% ;

dhsccooooocoococooooooooooooo dhmccoooocococoooooo +
| PLUG N_NAME | PLUG N_STATUS |
dhsccooooocoococooooooooooooo dhmccoooocococoooooo +
| aut hentication_w ndows | ACTI VE |
dhsccooooocoococooooooooooooo dhmccoooocococoooooo +

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the Windows authentication plugin, see Using

Windows Pluggable Authentication. Additional plugin control is provided by the

aut henti cati on_wi ndows_use_princi pal _name and aut henti cati on_w ndows_| og | evel
system variables. See Server System Variables.

Uninstalling Windows Pluggable Authentication
The method used to uninstall the Windows authentication plugin depends on how you installed it:

« If you installed the plugin at server startup using a - - pl ugi n- 1 oad- add option, restart the server
without the option.

« If you installed the plugin at runtime using an | NSTALL PLUGQ N statement, it remains installed across
server restarts. To uninstall it, use UNI NSTALL PLUG N:

UNI NSTALL PLUG N aut henti cati on_wi ndows;
In addition, remove any startup options that set Windows plugin-related system variables.
Using Windows Pluggable Authentication

The Windows authentication plugin supports the use of MySQL accounts such that users who have logged
in to Windows can connect to the MySQL server without having to specify an additional password. It is
assumed that the server is running with the server-side plugin enabled, as described in Installing Windows

149

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_authentication_windows_use_principal_name
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_authentication_windows_log_level
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html

Windows Pluggable Authentication

Pluggable Authentication. Once the DBA has enabled the server-side plugin and set up accounts to use it,
clients can connect using those accounts with no other setup required on their part.

To refer to the Windows authentication plugin in the | DENTI FI ED W TH clause of a CREATE USER
statement, use the name aut hent i cati on_w ndows. Suppose that the Windows users Raf al and
Tasha should be permitted to connect to MySQL, as well as any users in the Admi ni strat or s or Power
User s group. To set this up, create a MySQL account named sql _admi n that uses the Windows plugin
for authentication:

CREATE USER sql _adnin
| DENTI FI ED W TH aut hent i cat i on_wi ndows
AS 'Rafal, Tasha, Adm nistrators, "Power Users"';

The plugin name is aut hent i cati on_w ndows. The string following the AS keyword is the
authentication string. It specifies that the Windows users named Raf al or Tasha are permitted

to authenticate to the server as the MySQL user sql _admni n, as are any Windows users in the

Admi ni strators or Power Users group. The latter group hame contains a space, so it must be quoted
with double quote characters.

After you create the sql _adni n account, a user who has logged in to Windows can attempt to connect to
the server using that account:

C.\> nysqgl --user=sqgl_adnin

No password is required here. The aut hent i cati on_w ndows plugin uses the Windows security API
to check which Windows user is connecting. If that user is named Raf al or Tasha, or is a member of the
Admi ni strators or Power Users group, the server grants access and the client is authenticated as
sql _adm n and has whatever privileges are granted to the sql _adni n account. Otherwise, the server
denies access.

Authentication string syntax for the Windows authentication plugin follows these rules:
» The string consists of one or more user mappings separated by commas.

» Each user mapping associates a Windows user or group name with a MySQL user name:

Wi n_user _or_group_nane=nysql _user _nane
W n_user _or _group_nane

For the latter syntax, with no nysql _user _nane value given, the implicit value is the MySQL user
created by the CREATE USER statement. Thus, these statements are equivalent:

CREATE USER sql _admi n
| DENTI FI ED W TH aut henti cati on_wi ndows
AS 'Rafal, Tasha, Administrators, "Power Users"';
CREATE USER sql _admi n
| DENTI FI ED W TH aut henti cati on_wi ndows
AS ' Raf al =sql _admi n, Tasha=sql _adni n, Adni ni strators=sql _adnin,
"Power Users"=sqgl _admin';

» Each backslash character (\) in a value must be doubled because backslash is the escape character in
MySQL strings.

» Leading and trailing spaces not inside double quotation marks are ignored.

* Unquoted wi n_user _or _group_nane and nysqgl _user _nane values can contain anything except
equal sign, comma, or space.

e Ifawi n_user_or_group_namne and or mysqgl _user _nane value is quoted with double quotation
marks, everything between the quotation marks is part of the value. This is necessary, for example, if the

150

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

Windows Pluggable Authentication

name contains space characters. All characters within double quotes are legal except double quotation
mark and backslash. To include either character, escape it with a backslash.

* Wi n_user_or_group_namne values use conventional syntax for Windows principals, either local or in a
domain. Examples (note the doubling of backslashes):

donmi n\\ user

.\\user

domai n\\ gr oup

.\\group

BUI LTI N\ \ V&l | KnownGr oup

When invoked by the server to authenticate a client, the plugin scans the authentication string left to right
for a user or group match to the Windows user. If there is a match, the plugin returns the corresponding
nysql _user _nane to the MySQL server. If there is no match, authentication fails.

A user name match takes preference over a group name match. Suppose that the Windows user named
Wi n_user is a member of wi n_gr oup and the authentication string looks like this:

"win_group = sql _userl, w n_user = sql_user?2'

When wi n_user connects to the MySQL server, there is a match both towi n_group and towi n_user.
The plugin authenticates the user as sql _user 2 because the more-specific user match takes precedence
over the group match, even though the group is listed first in the authentication string.

Windows authentication always works for connections from the same computer on which the server

is running. For cross-computer connections, both computers must be registered with Microsoft Active
Directory. If they are in the same Windows domain, it is unnecessary to specify a domain name. It is also
possible to permit connections from a different domain, as in this example:

CREATE USER sgl _accounti ng
| DENTI FI ED W TH aut hent i cati on_wi ndows
AS ' SoneDonmi n\\ Accounti ng' ;

Here SoneDomnmai n is the name of the other domain. The backslash character is doubled because it is the
MySQL escape character within strings.

MySQL supports the concept of proxy users whereby a client can connect and authenticate to the MySQL
server using one account but while connected has the privileges of another account (see Section 4.14,
“Proxy Users”). Suppose that you want Windows users to connect using a single user name but be
mapped based on their Windows user and group names onto specific MySQL accounts as follows:

» Thel ocal _user and MyDomai n\ domai n_user local and domain Windows users should map to the
| ocal _w ad MySQL account.

e Users in the MyDomai n\ Devel oper s domain group should map to the | ocal _dev MySQL account.
» Local machine administrators should map to the | ocal _adm n MySQL account.

To set this up, create a proxy account for Windows users to connect to, and configure this account so that
users and groups map to the appropriate MySQL accounts (I ocal _w ad, | ocal _dev, | ocal _admi n).
In addition, grant the MySQL accounts the privileges appropriate to the operations they need to perform.
The following instructions use wi n_pr oxy as the proxy account, and | ocal _w ad, | ocal _dev, and

| ocal _adm n as the proxied accounts.

1. Create the proxy MySQL account:

CREATE USER w n_pr oxy
| DENTI FI ED W TH aut henti cati on_wi ndows

151

LDAP Pluggable Authentication

AS 'l ocal _user = local _W ad,
MyDonmi n\\ domai n_user = | ocal _w ad,
MyDonmi n\\ Devel opers = | ocal _dev,

BUI LTI N\\ Admi ni strators = | ocal _admi n';

2. For proxying to work, the proxied accounts must exist, so create them:

CREATE USER | ocal _wW ad

| DENTI FI ED W TH nmysql _no_| ogi n;
CREATE USER | ocal _dev

| DENTI FI ED W TH nmysql _no_| ogi n;
CREATE USER | ocal _admi n

| DENTI FI ED W TH nysql _no_| ogi n;

The proxied accounts use the nysgl _no_| ogi n authentication plugin to prevent clients from using
the accounts to log in directly to the MySQL server. Instead, it is expected that users who authenticate
using Windows use the wi n_pr oxy proxy account. (This assumes that the plugin is installed. For
instructions, see Section 6.1.10, “No-Login Pluggable Authentication”.) For alternative methods of
protecting proxied accounts against direct use, see Preventing Direct Login to Proxied Accounts.

You should also execute GRANT statements (not shown) that grant each proxied account the privileges
required for MySQL access.

3. Grant to the proxy account the PROXY privilege for each proxied account:

GRANT PROXY ON | ocal _w ad TO wi n_pr oxy;
GRANT PROXY ON | ocal _dev TO wi n_pr oxy;
GRANT PROXY ON | ocal _admin TO wi n_pr oxy;

Now the Windows users | ocal _user and MyDonai n\ donai n_user can connect to the MySQL server
as wi n_pr oxy and when authenticated have the privileges of the account given in the authentication
string (in this case, | ocal _wl ad). A user in the MyDomai n\ Devel oper s group who connects as

wi n_pr oxy has the privileges of the | ocal _dev account. A user in the BUI LTI N\ Adni ni strators
group has the privileges of the | ocal _adm n account.

To configure authentication so that all Windows users who do not have their own MySQL account go
through a proxy account, substitute the default proxy account (' * @ ") for wi n_pr oxy in the preceding
instructions. For information about default proxy accounts, see Section 4.14, “Proxy Users”.

Note

If your MySQL installation has anonymous users, they might conflict with the default
proxy user. For more information about this issue, and ways of dealing with it, see
Default Proxy User and Anonymous User Conflicts.

To use the Windows authentication plugin with Connector/NET connection strings in Connector/NET 8.0
and higher, see Connector/NET Authentication.

6.1.9 LDAP Pluggable Authentication

Note

LDAP pluggable authentication is an extension included in MySQL Enterprise
Edition, a commercial product. To learn more about commercial products, see
https://www.mysql.com/products/.

As of MySQL 5.7.19, MySQL Enterprise Edition supports an authentication method that enables MySQL
Server to use LDAP (Lightweight Directory Access Protocol) to authenticate MySQL users by accessing
directory services such as X.500. MySQL uses LDAP to fetch user, credential, and group information.

152

https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/connector-net/en/connector-net-authentication.html
https://www.mysql.com/products/

LDAP Pluggable Authentication

LDAP pluggable authentication provides these capabilities:

» External authentication: LDAP authentication enables MySQL Server to accept connections from users
defined outside the MySQL grant tables in LDAP directories.

» Proxy user support: LDAP authentication can return to MySQL a user name different from the external
user name passed by the client program, based on the LDAP groups the external user is a member
of. This means that an LDAP plugin can return the MySQL user that defines the privileges the external
LDAP-authenticated user should have. For example, an LDAP user named j oe can connect and have
the privileges of a MySQL user named devel oper , if the LDAP group for j oe is devel oper.

e Security: Using TLS, connections to the LDAP server can be secure.

The following tables show the plugin and library file names for simple and SASL-based LDAP
authentication. The file name suffix might differ on your system. The files must be located in the directory
named by the pl ugi n_di r system variable.

Table 6.8 Plugin and Library Names for Simple LDAP Authentication

Plugin or File Plugin or File Name

Server-side plugin name aut hentication_| dap_sinple
Client-side plugin name nysql _cl ear _password

Library file name aut henti cation_| dap_si npl e. so

Table 6.9 Plugin and Library Names for SASL-Based LDAP Authentication

Plugin or File Plugin or File Name
Server-side plugin name aut henti cation_| dap_sasl
Client-side plugin name aut henti cation_| dap_sasl _client
Library file names aut henti cati on_I dap_sasl . so,
aut hentication_|l dap_sasl _client.so

The library files include only the aut hent i cat i on_| dap_ XXX authentication plugins. The client-side
nmysql _cl ear _passwor d plugin is built into the | i bnysqgl cl i ent client library.

Each server-side LDAP plugin works with a specific client-side plugin:

e The server-side aut henti cati on_| dap_si npl e plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
nysqgl _cl ear passwor d plugin, which sends the password to the server as cleartext. No password
hashing or encryption is used, so a secure connection between the MySQL client and server is
recommended to prevent password exposure.

e The server-side aut henti cati on_| dap_sasl plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-side
aut hentication_| dap_sasl _client plugin. The client-side and server-side SASL LDAP plugins
use SASL messages for secure transmission of credentials within the LDAP protocol, to avoid sending
the cleartext password between the MySQL client and server.

The server-side LDAP authentication plugins are included only in MySQL Enterprise Edition. They
are not included in MySQL community distributions. The client-side SASL LDAP plugin is included
in all distributions, including community distributions, and, as mentioned previously, the client-side
nysqgl cl ear passwor d plugin is built into the | i bmysqgl cl i ent client library, which also is included

153

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

LDAP Pluggable Authentication

in all distributions. This enables clients from any distribution to connect to a server that has the appropriate
server-side plugin loaded.

The following sections provide installation and usage information specific to LDAP pluggable
authentication:

» Prerequisites for LDAP Pluggable Authentication

» How LDAP Authentication of MySQL Users Works

* Installing LDAP Pluggable Authentication
 Uninstalling LDAP Pluggable Authentication

» LDAP Pluggable Authentication and Idap.conf

» Using LDAP Pluggable Authentication

» Simple LDAP Authentication (Without Proxying)

» SASL-Based LDAP Authentication (Without Proxying)
» LDAP Authentication with Proxying

» LDAP Authentication Group Preference and Mapping Specification
» LDAP Authentication User DN Suffixes

» LDAP Authentication Methods

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”. For information about the nysql _cl ear _passwor d plugin, see Section 6.1.6, “Client-
Side Cleartext Pluggable Authentication”. For proxy user information, see Section 4.14, “Proxy Users”.

Note

If your system supports PAM and permits LDAP as a PAM authentication
method, another way to use LDAP for MySQL user authentication is to use the
server-side aut hent i cat i on_pamplugin. See Section 6.1.7, “PAM Pluggable
Authentication”.

Prerequisites for LDAP Pluggable Authentication
To use LDAP pluggable authentication for MySQL, these prerequisites must be satisfied:
* An LDAP server must be available for the LDAP authentication plugins to communicate with.

» LDAP users to be authenticated by MySQL must be present in the directory managed by the LDAP
server.

* An LDAP client library must be available on systems where the server-side
aut hentication_| dap_sasl orauthentication_| dap_si npl e plugin is used. Currently,
supported libraries are the Windows native LDAP library, or the OpenLDAP library on non-Windows
systems.

» To use SASL-based LDAP authentication:

* The LDAP server must be configured to communicate with a SASL server.

154

LDAP Pluggable Authentication

* A SASL client library must be available on systems where the client-side
aut hentication_| dap_sasl _client pluginis used. Currently, the only supported library is the
Cyrus SASL library.

How LDAP Authentication of MySQL Users Works

This section provides a general overview of how MySQL and LDAP work together to authenticate MySQL
users. For examples showing how to set up MySQL accounts to use specific LDAP authentication plugins,
see Using LDAP Pluggable Authentication.

The client connects to the MySQL server, providing the MySQL client user name and the LDAP password:

» For simple LDAP authentication, the client-side and server-side plugins communicate the password
as cleartext. A secure connection between the MySQL client and server is recommended to prevent
password exposure.

e For SASL-based LDAP authentication, the client-side and server-side plugins avoid sending the cleartext
password between the MySQL client and server. For example, the plugins might use SASL messages
for secure transmission of credentials within the LDAP protocol.

If the client user name and host name match no MySQL account, the connection is rejected.

If there is a matching MySQL account, authentication against LDAP occurs. The LDAP server looks for an
entry matching the user and authenticates the entry against the LDAP password:

« If the MySQL account names an LDAP user distinguished name (DN), LDAP authentication uses that
value and the LDAP password provided by the client. (To associate an LDAP user DN with a MySQL
account, include a BY clause that specifies an authentication string in the CREATE USER statement that
creates the account.)

* If the MySQL account names no LDAP user DN, LDAP authentication uses the user name and LDAP
password provided by the client. In this case, the authentication plugin first binds to the LDAP server
using the root DN and password as credentials to find the user DN based on the client user name, then
authenticates that user DN against the LDAP password. This bind using the root credentials fails if the
root DN and password are set to incorrect values, or are empty (not set) and the LDAP server does not
permit anonymous connections.

If the LDAP server finds no match or multiple matches, authentication fails and the client connection is
rejected.

If the LDAP server finds a single match, LDAP authentication succeeds (assuming that the password is
correct), the LDAP server returns the LDAP entry, and the authentication plugin determines the name of
the authenticated user based on that entry:

* If the LDAP entry has a group attribute (by default, the cn attribute), the plugin returns its value as the
authenticated user name.

« If the LDAP entry has no group attribute, the authentication plugin returns the client user name as the
authenticated user name.

The MySQL server compares the client user name with the authenticated user name to determine whether
proxying occurs for the client session:

« If the names are the same, no proxying occurs: The MySQL account matching the client user name is
used for privilege checking.

155

https://dev.mysql.com/doc/refman/5.7/en/create-user.html

LDAP Pluggable Authentication

« If the names differ, proxying occurs: MySQL looks for an account matching the authenticated user name.
That account becomes the proxied user, which is used for privilege checking. The MySQL account that
matched the client user name is treated as the external proxy user.

Installing LDAP Pluggable Authentication

This section describes how to install the server-side LDAP authentication plugins. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library files must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

The server-side plugin library file base names are aut henti cati on_| dap_si npl e and
aut henti cation_I| dap_sasl . The file name suffix differs per platform (for example, . so for Unix and
Unix-like systems, . dl | for Windows).

To load the plugins at server startup, use - - pl ugi n- | oad- add options to name the library files that
contain them. With this plugin-loading method, the options must be given each time the server starts. Also,
specify values for any plugin-provided system variables you wish to configure.

Each server-side LDAP plugin exposes a set of system variables that enable its operation to be configured.
Setting most of these is optional, but you must set the variables that specify the LDAP server host (so the
plugin knows where to connect) and base distinguished name for LDAP bind operations (to limit the scope
of searches and obtain faster searches). For details about all LDAP system variables, see Section 6.1.13,
“Pluggable Authentication System Variables”.

To load the plugins and set the LDAP server host and base distinguished name for LDAP bind operations,
put lines such as these in your ny. cnf file, adjusting the . so suffix for your platform as necessary:

[nysql d]

pl ugi n- | oad- add=aut henti cati on_| dap_si npl e. so

aut henti cati on_| dap_si npl e_server_host =127.0.0. 1

aut henti cati on_| dap_si npl e_bi nd_base_dn="dc=exanpl e, dc=con!
pl ugi n- | oad- add=aut henti cati on_| dap_sasl . so

aut henti cati on_| dap_sasl _server_host=127.0.0. 1

aut henti cati on_| dap_sasl _bi nd_base_dn="dc=exanpl e, dc=con!

After modifying ny. cnf , restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the . so suffix for your platform
as necessary:

I NSTALL PLUG N aut henti cati on_| dap_si npl e
SONAME ' aut henti cati on_| dap_si npl e. so'

I NSTALL PLUG N aut henti cati on_| dap_sas
SONAME ' aut henti cati on_| dap_sasl . so'

| NSTALL PLUG N loads the plugin immediately, and also registers it in the mysql . pl ugi ns system table
to cause the server to load it for each subsequent normal startup without the need for - - pl ugi n- 1 oad-
add.

After installing the plugins at runtime, their system variables become available and you can add settings for
them to your nmy. cnf file to configure the plugins for subsequent restarts. For example:

[nysgl d]
aut henti cati on_| dap_si npl e_server _host =127.0.0. 1
aut henti cati on_| dap_si npl e_bi nd_base_dn="dc=exanpl e, dc=conf'

156

https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add

LDAP Pluggable Authentication

aut henti cati on_| dap_sasl _server_host=127.0.0. 1
aut henti cati on_| dap_sasl _bi nd_base_dn="dc=exanpl e, dc=cont

After modifying ny. cnf , restart the server to cause the new settings to take effect.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORMATI ON_SCHEMA. PLUGI NS
VWHERE PLUG N_NAME LI KE ' % dap% ;

fmoco-c--cco-—-ccoco-—-cooo--oc foocomc-occo-o== +
| PLUG N _NAVE | PLUG N STATUS |
fmoco-c--cco-—-ccoco-—-cooo--oc foocomc-occo-o== +
| authentication_| dap_sasl | ACTI VE |
| authentication_|ldap_sinple | ACTIVE |
fmoco-c--cco-—-ccoco-—-cooo--oc foocomc-occo-o== +

If a plugin fails to initialize, check the server error log for diagnostic messages.
To associate MySQL accounts with an LDAP plugin, see Using LDAP Pluggable Authentication.
Additional Notes for SELinux

On systems running EL6 or EL that have SELinux enabled, changes to the SELinux
policy are required to enable the MySQL LDAP plugins to communicate with the
LDAP service:

1. Create afile mysql | dap. t e with these contents:
nodul e nysql | dap 1. 0;
require {
type | dap_port _t;

type nysqld_t;
cl ass tcp_socket nane_connect;

S s e e e e e e e e n'ysq| d_t E===========es
all ow nysqgl d_t |dap_port_t:tcp_socket nanme_connect;

2. Compile the security policy module into a binary representation:
checkmodul e -M -m nysql | dap.te -o mysql | dap. nbd
3. Create an SELinux policy module package:
senpodul e_package -m nysql | dap. mod -0 mnysql | dap. pp
4. Install the module package:
senodul e -i nysql | dap. pp
5. When the SELinux policy changes have been made, restart the MySQL server:
service nysqgld restart

Uninstalling LDAP Pluggable Authentication

The method used to uninstall the LDAP authentication plugins depends on how you installed them:

« If you installed the plugins at server startup using - - pl ugi n- | oad- add options, restart the server
without those options.

157

https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add

LDAP Pluggable Authentication

« If you installed the plugins at runtime using | NSTALL PLUG N, they remain installed across server
restarts. To uninstall them, use UNI NSTALL PLUGQ N:

UNI NSTALL PLUG N aut henti cati on_| dap_si npl e;
UNI NSTALL PLUG N aut henti cati on_| dap_sasl ;

In addition, remove from your ny. cnf file any startup options that set LDAP plugin-related system
variables.

LDAP Pluggable Authentication and ldap.conf

For installations that use OpenLDAP, the | dap. conf file provides global defaults for LDAP clients.
Options can be set in this file to affect LDAP clients, including the LDAP authentication plugins. OpenLDAP
uses configuration options in this order of precedence:

 Configuration specified by the LDAP client.

» Configuration specified in the | dap. conf file. To disable use of this file, set the LDAPNO NI T
environment variable.

e OpenLDAP library built-in defaults.

If the library defaults or | dap. conf values do not yield appropriate option values, an LDAP authentication
plugin may be able to set related variables to affect the LDAP configuration directly. For example,

LDAP plugins can override | dap. conf parameters for TLS configuration: System variables are

available to enable TLS and control CA configuration, such as aut henti cati on_| dap _sinple tls
and aut henti cati on_| dap_si npl e_ca_pat h for simple LDAP authentication, and

aut hentication_ | dap _sasl _tlsandauthentication |dap _sasl _ca_ path for SASL LDAP
authentication.

For more information about | dap. conf consult the | dap. conf (5) man page.

Using LDAP Pluggable Authentication

This section describes how to enable MySQL accounts to connect to the MySQL server using LDAP
pluggable authentication. It is assumed that the server is running with the appropriate server-side plugins
enabled, as described in Installing LDAP Pluggable Authentication, and that the appropriate client-side
plugins are available on the client host.

This section does not describe LDAP configuration or administration. You are assumed to be familiar with
those topics.

The two server-side LDAP plugins each work with a specific client-side plugin:

e The server-side aut henti cati on_| dap_si npl e plugin performs simple LDAP authentication.
For connections by accounts that use this plugin, client programs use the client-side
nysqgl _cl ear passwor d plugin, which sends the password to the server as cleartext. No password
hashing or encryption is used, so a secure connection between the MySQL client and server is
recommended to prevent password exposure.

* The server-side aut henti cati on_| dap_sasl| plugin performs SASL-based LDAP
authentication. For connections by accounts that use this plugin, client programs use the client-side
aut hentication_| dap_sasl _client plugin. The client-side and server-side SASL LDAP plugins
use SASL messages for secure transmission of credentials within the LDAP protocol, to avoid sending
the cleartext password between the MySQL client and server.

Overall requirements for LDAP authentication of MySQL users:

158

https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html

LDAP Pluggable Authentication

e There must be an LDAP directory entry for each user to be authenticated.

» There must be a MySQL user account that specifies a server-side LDAP authentication plugin and
optionally names the associated LDAP user distinguished name (DN). (To associate an LDAP user DN
with a MySQL account, include a BY clause in the CREATE USER statement that creates the account.)
If an account names no LDAP string, LDAP authentication uses the user name specified by the client to
find the LDAP entry.

 Client programs connect using the connection method appropriate for the server-side
authentication plugin the MySQL account uses. For LDAP authentication, connections require
the MySQL user name and LDAP password. In addition, for accounts that use the server-side
aut henti cation_I| dap_si npl e plugin, invoke client programs with the - - enabl e- cl ear t ext -
pl ugi n option to enable the client-side mysql _cl ear _passwor d plugin.

The instructions here assume the following scenario:

* MySQL users bet sy and bor i s authenticate to the LDAP entries for bet sy | dap and bori s_| dap,
respectively. (It is not necessary that the MySQL and LDAP user names differ. The use of different
names in this discussion helps clarify whether an operation context is MySQL or LDAP.)

» LDAP entries use the ui d attribute to specify user names. This may vary depending on
LDAP server. Some LDAP servers use the cn attribute for user names rather than ui d. To
change the attribute, modify the aut henti cati on_| dap_si npl e_user _search_attr or
aut hentication | dap_sasl user search_attr system variable appropriately.

» These LDAP entries are available in the directory managed by the LDAP server, to provide distinguished
name values that uniquely identify each user:

ui d=bet sy_| dap, ou=Peopl e, dc=exanpl e, dc=com
ui d=bori s_| dap, ou=Peopl e, dc=exanpl e, dc=com

» CREATE USER statements that create MySQL accounts name an LDAP user in the BY clause, to
indicate which LDAP entry the MySQL account authenticates against.

The instructions for setting up an account that uses LDAP authentication depend on which server-side
LDAP plugin is used. The following sections describe several usage scenarios.

Simple LDAP Authentication (Without Proxying)

The procedure outlined in this section requires that
aut hentication_| dap_sinple group search_attr be settoan empty string, like this:

SET GLOBAL. aut henti cati on_| dap_si npl e_group_search_attr="";
Otherwise, proxying is used by default.

To set up a MySQL account for simple LDAP authentication, use a CREATE USER statement to specify the
aut henti cation_I dap_si npl e plugin, optionally including the LDAP user distinguished name (DN), as
shown here:

CREATE USER user

| DENTI FI ED W TH aut henti cati on_| dap_si npl e
[BY ' LDAP user DN];

Suppose that MySQL user bet sy has this entry in the LDAP directory:

ui d=bet sy_| dap, ou=Peopl e, dc=exanpl e, dc=com

159

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

LDAP Pluggable Authentication

Then the statement to create the MySQL account for bet sy looks like this:

CREATE USER ' betsy' @I ocal host'
| DENTI FI ED W TH aut hent i cati on_| dap_si npl e
AS ' ui d=bet sy_| dap, ou=Peopl e, dc=exanpl e, dc=coni ;

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password, and by
enabling the client-side mysql _cl ear _passwor d plugin:

$> nysql --user=betsy --password --enabl e-cleartext-plugin
Ent er password: betsy_| dap_password

Note

The client-side nysql _cl ear _passwor d authentication plugin leaves the
password untouched, so client programs send it to the MySQL server as cleartext.
This enables the password to be passed as is to the LDAP server. A cleartext
password is necessary to use the server-side LDAP library without SASL, but may
be a security problem in some configurations. These measures minimize the risk:

¢ To make inadvertent use of the mysql _cl ear _passwor d plugin less likely,
MySQL clients must explicitly enable it (for example, with the - - enabl e-
cl eart ext - pl ugi n option). See Section 6.1.6, “Client-Side Cleartext Pluggable
Authentication”.

« To avoid password exposure with the nysql _cl ear _passwor d plugin
enabled, MySQL clients should connect to the MySQL server using an
encrypted connection. See Section 5.1, “Configuring MySQL to Use Encrypted
Connections”.

The authentication process occurs as follows:

1. The client-side plugin sends bet sy and bet sy _passwor d as the client user name and LDAP
password to the MySQL server.

2. The connection attempt matches the ' bet sy' @ | ocal host"' account. The
server-side LDAP plugin finds that this account has an authentication string of
" ui d=bet sy | dap, ou=Peopl e, dc=exanpl e, dc=coni to name the LDAP user DN. The plugin
sends this string and the LDAP password to the LDAP server.

3. The LDAP server finds the LDAP entry for bet sy_| dap and the password matches, so LDAP
authentication succeeds.

4. The LDAP entry has no group attribute, so the server-side plugin returns the client user name (bet sy)
as the authenticated user. This is the same user name supplied by the client, so no proxying occurs
and the client session uses the ' bet sy' @1 ocal host' account for privilege checking.

Had the CREATE USER statement contained no BY clause to specify the bet sy_| dap LDAP distinguished
name, authentication attempts would use the user name provided by the client (in this case, bet sy). In the
absence of an LDAP entry for bet sy, authentication would fail.

SASL-Based LDAP Authentication (Without Proxying)

The procedure outlined in this section requires that
aut hentication_| dap_sasl _group_search_attr be setto an empty string, like this:

160

https://dev.mysql.com/doc/refman/5.7/en/create-user.html

LDAP Pluggable Authentication

SET GLOBAL. aut henti cati on_| dap_sasl _group_search_attr="";
Otherwise, proxying is used by default.

To set up a MySQL account for SALS LDAP authentication, use a CREATE USER statement to specify the
aut henti cation_I dap_sasl plugin, optionally including the LDAP user distinguished name (DN), as
shown here:

CREATE USER user
| DENTI FI ED W TH aut henti cati on_| dap_sasl
[BY ' LDAP user DN];

Suppose that MySQL user bor i s has this entry in the LDAP directory:

ui d=bori s_| dap, ou=Peopl e, dc=exanpl e, dc=com

Then the statement to create the MySQL account for bor i s looks like this:

CREATE USER ' boris' @I ocal host'
| DENTI FI ED W TH aut henti cati on_| dap_sasl
AS ' ui d=bori s_| dap, ou=Peopl e, dc=exanpl e, dc=coni ;

The authentication string specified in the BY clause does not include the LDAP password. That must be
provided by the client user at connect time.

Clients connect to the MySQL server by providing the MySQL user name and LDAP password:

$> nysql --user=boris --password
Ent er password: boris_| dap_password

For the server-side aut henti cati on_I dap_sasl plugin, clients use the client-side
aut hentication_I dap_sasl _client plugin. If a client program does not find the client-side plugin,
specify a - - pl ugi n- di r option that names the directory where the plugin library file is installed.

The authentication process for bor i s is similar to that previously described for bet sy with simple LDAP
authentication, except that the client-side and server-side SASL LDAP plugins use SASL messages for
secure transmission of credentials within the LDAP protocol, to avoid sending the cleartext password
between the MySQL client and server.

LDAP Authentication with Proxying

LDAP authentication plugins support proxying, enabling a user to connect to the MySQL server as one
user but assume the privileges of a different user. This section describes basic LDAP plugin proxy support.
The LDAP plugins also support specification of group preference and proxy user mapping; see LDAP
Authentication Group Preference and Mapping Specification.

The proxying implementation described here is based on use of LDAP group attribute values to map
connecting MySQL users who authenticate using LDAP onto other MySQL accounts that define different
sets of privileges. Users do not connect directly through the accounts that define the privileges. Instead,
they connect through a default proxy account authenticated with LDAP, such that all external logins are
mapped to the proxied MySQL accounts that hold the privileges. Any user who connects using the proxy
account is mapped to one of those proxied MySQL accounts, the privileges for which determine the
database operations permitted to the external user.

The instructions here assume the following scenario:

» LDAP entries use the ui d and cn attributes to specify user name and group values, respectively. To use
different user and group attribute names, set the appropriate plugin-specific system variables:

161

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_plugin-dir

LDAP Pluggable Authentication

e Forthe aut henti cati on_| dap_si npl e plugin: Set
aut hentication_| dap_sinple_user_search_attr and
aut henti cation_|l dap_si npl e_group_search_attr.

e Forthe aut henti cati on_| dap_sasl| plugin: Set
aut hentication_| dap_sasl _user_search_attr and
aut hentication_| dap_sasl _group_search_attr.

» These LDAP entries are available in the directory managed by the LDAP server, to provide distinguished
name values that uniquely identify each user:

ui d=basha, ou=Peopl e, dc=exanpl e, dc=com cn=accounti ng
ui d=basi | , ou=Peopl e, dc=exanpl e, dc=com cn=front _of fi ce

At connect time, the group attribute values become the authenticated user names, so they name the
accountingandfront_offi ce proxied accounts.

» The examples assume use of SASL LDAP authentication. Make the appropriate adjustments for simple
LDAP authentication.

Create the default proxy MySQL account:

CREATE USER '' @ %
| DENTI FI ED W TH aut henti cati on_| dap_sasl ;

The proxy account definition has no AS ' aut h_string' clause to name an LDAP user DN. Thus:
* When a client connects, the client user name becomes the LDAP user name to search for.

» The matching LDAP entry is expected to include a group attribute naming the proxied MySQL account
that defines the privileges the client should have.

Note

If your MySQL installation has anonymous users, they might conflict with the default
proxy user. For more information about this issue, and ways of dealing with it, see
Default Proxy User and Anonymous User Conflicts.

Create the proxied accounts and grant to each one the privileges it should have:

CREATE USER ' accounting' @I ocal host"

| DENTI FI ED W TH nysql _no_I ogi n;
CREATE USER 'front_office' @I ocal host'

| DENTI FI ED W TH nysql _no_I ogi n;
GRANT ALL PRI VI LEGES

ON accounti ngdb. *

TO 'accounting' @I ocal host "' ;
GRANT ALL PRI VI LEGES

ON frontdb. *

TO 'front _office' @Il ocal host"';

The proxied accounts use the nysqgl _no_| ogi n authentication plugin to prevent clients from using the
accounts to log in directly to the MySQL server. Instead, users who authenticate using LDAP are expected
to use the default' * @ % proxy account. (This assumes that the mysqgl _no_| ogi n plugin is installed.
For instructions, see Section 6.1.10, “No-Login Pluggable Authentication”.) For alternative methods of
protecting proxied accounts against direct use, see Preventing Direct Login to Proxied Accounts.

Grant to the proxy account the PROXY privilege for each proxied account:

162

LDAP Pluggable Authentication

GRANT PROXY
ON 'accounting' @I ocal host"'
TO''"@% ;

GRANT PROXY
ON 'front _office' @Il ocal host'
TO'"'"@% ;

Use the nysql command-line client to connect to the MySQL server as basha.

$> nysql --user=basha --password
Ent er password: basha_password (basha LDAP passwor d)

Authentication occurs as follows:

1. The server authenticates the connection using the default' ' @ % proxy account, for client user
basha.

2. The matching LDAP entry is:

ui d=basha, ou=Peopl e, dc=exanpl e, dc=com cn=accounti ng

3. The matching LDAP entry has group attribute cn=account i ng, so account i ng becomes the
authenticated proxied user.

4. The authenticated user differs from the client user name basha, with the result that basha is treated as
a proxy for account i ng, and basha assumes the privileges of the proxied account i ng account. The
following query returns output as shown:

nysqgl > SELECT USER(), CURRENT_USER(), @@proxy_user;

e cccmmcsooomoesos deccommcoooomocomomooe s e ccommcomomoos +
| USER() | CURRENT_USER() | @g@proxy_user |
e cccmmcsooomoesos deccommcoooomocomomooe s e ccommcomomoos +
| basha@ ocal host | accounting@ocal host | '' @% |
e cccmmcsooomoesos deccommcoooomocomomooe s e ccommcomomoos +

This demonstrates that basha uses the privileges granted to the proxied account i ng MySQL account,
and that proxying occurs through the default proxy user account.

Now connect as basi | instead:

$> nysql --user=basil --password
Ent er password: basil_password (basil LDAP passwor d)

The authentication process for basi | is similar to that previously described for basha:

1. The server authenticates the connection using the default' ' @ % proxy account, for client user
basi | .

2. The matching LDAP entry is:

ui d=basi | , ou=Peopl e, dc=exanpl e, dc=com cn=front _of fi ce

3. The matching LDAP entry has group attribute cn=f ront _of fi ce, sofront _of fi ce becomes the
authenticated proxied user.

4. The authenticated user differs from the client user name basi | , with the result that basi | is treated
as a proxy forfront _of fi ce, and basi | assumes the privileges of the proxied f ront _of fice
account. The following query returns output as shown:

mysql > SELECT USER(), CURRENT_USER(), @@proxy_user;
oloiooo oo T T +

163

LDAP Pluggable Authentication

This demonstrates that basi | uses the privileges granted to the proxied f r ont _of fi ce MySQL account,
and that proxying occurs through the default proxy user account.

LDAP Authentication Group Preference and Mapping Specification

As described in LDAP Authentication with Proxying, basic LDAP authentication proxying works by the
principle that the plugin uses the first group name returned by the LDAP server as the MySQL proxied user
account name. This simple capability does not enable specifying any preference about which group name
to use if the LDAP server returns multiple group names, or specifying any name other than the group name
as the proxied user name.

As of MySQL 5.7.25, for MySQL accounts that use LDAP authentication, the authentication string can
specify the following information to enable greater proxying flexibility:

» A list of groups in preference order, such that the plugin uses the first group name in the list that matches
a group returned by the LDAP server.

» A mapping from group names to proxied user names, such that a group name when matched can
provide a specified hame to use as the proxied user. This provides an alternative to using the group
name as the proxied user.

Consider the following MySQL proxy account definition:

CREATE USER '' @ %
| DENTI FI ED W TH aut henti cati on_| dap_sasl
AS ' +ou=Peopl e, dc=exanpl e, dc=con¥#gr pl=user a, gr p2, gr p3=userc' ;

The authentication string has a user DN suffix ou=Peopl e, dc=exanpl e, dc=comprefixed by the +
character. Thus, as described in LDAP Authentication User DN Suffixes, the full user DN is constructed
from the user DN suffix as specified, plus the client user name as the ui d attribute.

The remaining part of the authentication string begins with #, which signifies the beginning of group
preference and mapping information. This part of the authentication string lists group names in the order
grpl, grp2, gr p3. The LDAP plugin compares that list with the set of group names returned by the LDAP
server, looking in list order for a match against the returned names. The plugin uses the first match, or if
there is no match, authentication fails.

Suppose that the LDAP server returns groups gr p3, gr p2, and gr p7. The LDAP plugin uses gr p2
because it is the first group in the authentication string that matches, even though it is not the first group
returned by the LDAP server. If the LDAP server returns gr p4, gr p2, and gr p1, the plugin uses gr p1
even though gr p2 also matches. gr p1 has a precedence higher than gr p2 because it is listed earlier in
the authentication string.

Assuming that the plugin finds a group hame match, it performs mapping from that group name to the
MySQL proxied user name, if there is one. For the example proxy account, mapping occurs as follows:

« If the matching group name is gr p1 or gr p3, those are associated in the authentication string with user
names user a and user c, respectively. The plugin uses the corresponding associated user name as the
proxied user name.

« If the matching group name is gr p2, there is no associated user name in the authentication string. The
plugin uses gr p2 as the proxied user name.

164

LDAP Pluggable Authentication

If the LDAP server returns a group in DN format, the LDAP plugin parses the group DN to extract the group
name from it.

To specify LDAP group preference and mapping information, these principles apply:

Begin the group preference and mapping part of the authentication string with a # prefix character.

The group preference and mapping specification is a list of one or more items, separated by commas.
Each item has the form gr oup_name=user _nane or gr oup_narme. Iltems should be listed in group
name preference order. For a group name selected by the plugin as a match from set of group names
returned by the LDAP server, the two syntaxes differ in effect as follows:

< For an item specified as gr oup_nane=user _nane (with a user name), the group name maps to the
user name, which is used as the MySQL proxied user name.

¢ For an item specified as gr oup_nane (with no user name), the group name is used as the MySQL
proxied user name.

To quote a group or user name that contains special characters such as space, surround it by double
quote (") characters. For example, if an item has group and user names of ny gr oup nane and nmy
user namne, it must be written in a group mapping using quotes:

“my group name"="ny user nane"

If an item has group and user names of ny _gr oup_nane and ny_user _nane (which contain no special
characters), it may but need not be written using quotes. Any of the following are valid:

ny_Qgr oup_nane=mny_user _namne
ny_group_nanme="mnmy_user_nane"
"ny_group_nane" =my_user _nane
"my_group_nane" ="ny_user _nanme"

To escape a character, precede it by a backslash (\). This is useful particularly to include a literal double
quote or backslash, which are otherwise not included literally.

A user DN need not be present in the authentication string, but if present, it must precede the group
preference and mapping part. A user DN can be given as a full user DN, or as a user DN suffix with a +
prefix character. (See LDAP Authentication User DN Suffixes.)

LDAP Authentication User DN Suffixes

As of MySQL 5.7.21, LDAP authentication plugins permit the authentication string that provides user DN
information to begin with a + prefix character:

In the absence of a + character, the authentication string value is treated as is without modification.

If the authentication string begins with +, the plugin constructs the full user DN value from the

user name sent by the client, together with the DN specified in the authentication string (with

the + removed). In the constructed DN, the client user name becomes the value of the attribute

that specifies LDAP user names. This is ui d by default; to change the attribute, modify the

appropriate system variable (aut henti cati on_| dap_si npl e _user_search_attr or

aut hentication_| dap_sasl user_search_attr). The authentication string is stored as given in
the nysql . user system table, with the full user DN constructed on the fly before authentication.

This account authentication string does not have + at the beginning, so it is taken as the full user DN:

CREATE USER ' bal dwi n'

| DENTI FI ED W TH aut henti cati on_| dap_si npl e

165

No-Login Pluggable Authentication

AS ' ui d=admi n, ou=Peopl e, dc=exanpl e, dc=coni ;

The client connects with the user name specified in the account (bal dwi n). In this case, that name is not
used because the authentication string has no prefix and thus fully specifies the user DN.

This account authentication string does have + at the beginning, so it is taken as just part of the user DN:

CREATE USER ' accounti ng'
| DENTI FI ED W TH aut henti cati on_| dap_si npl e
AS ' +ou=Peopl e, dc=exanpl e, dc=comni ;

The client connects with the user name specified in the account (account i ng), which in this
case is used as the ui d attribute together with the authentication string to construct the user DN:
ui d=accounti ng, ou=Peopl e, dc=exanpl e, dc=com

The accounts in the preceding examples have a nonempty user name, so the client always connects to
the MySQL server using the same name as specified in the account definition. If an account has an empty
user name, such as the default anonymous ' ' @ % proxy account described in LDAP Authentication with
Proxying, clients might connect to the MySQL server with varying user names. But the principle is the
same: If the authentication string begins with +, the plugin uses the user name sent by the client together
with the authentication string to construct the user DN.

LDAP Authentication Methods

The LDAP authentication plugins use a configurable authentication method. The appropriate system
variable and available method choices are plugin-specific:

» Forthe aut henti cati on_| dap_si npl e plugin: Configure the method by setting the
aut hentication_| dap_sinpl e _auth_net hod_nane system variable. The permitted choices are
SI MPLE and AD- FOREST.

* Forthe aut henti cati on_| dap_sasl| plugin: Configure the method by setting the
aut henti cation_I| dap_sasl _aut h_net hod_nane system variable. The only permitted choice is
SCRAM SHA- 1.

See the system variable descriptions for information about each permitted method.

6.1.10 No-Login Pluggable Authentication

The mysql _no_| ogi n server-side authentication plugin prevents all client connections to any account
that uses it. Use cases for this plugin include:

» Accounts that must be able to execute stored programs and views with elevated privileges without
exposing those privileges to ordinary users.

» Proxied accounts that should never permit direct login but are intended to be accessed only through
proxy accounts.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the pl ugi n_di r system variable.

Table 6.10 Plugin and Library Names for No-Login Authentication

Plugin or File Plugin or File Name
Server-side plugin nysqgl _no_login
Client-side plugin None

166

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

No-Login Pluggable Authentication

Plugin or File Plugin or File Name

Library file nmysql _no_l ogi n. so

The following sections provide installation and usage information specific to no-login pluggable
authentication:

« Installing No-Login Pluggable Authentication
» Uninstalling No-Login Pluggable Authentication
» Using No-Login Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”. For proxy user information, see Section 4.14, “Proxy Users”.

Installing No-Login Pluggable Authentication

This section describes how to install the no-login authentication plugin. For general information about
installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

The plugin library file base name is nysql _no_| ogi n. The file name suffix differs per platform (for
example, . so for Unix and Unix-like systems, . dl | for Windows).

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server ny. cnf file, adjusting the . so suffix for your platform as necessary:

[mysql d]
pl ugi n- 1 oad- add=nysql _no_I ogi n. so

After modifying ny. cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

I NSTALL PLUG N nysql _no_I ogi n SONAME ' nysql _no_I ogi n. so';

| NSTALL PLUG N loads the plugin immediately, and also registers it in the mysql . pl ugi ns system table
to cause the server to load it for each subsequent normal startup without the need for - - pl ugi n- 1 oad-
add.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHEMA. PLUG NS
WHERE PLUG N_NAME LI KE ' % ogi n% ;

doococccocccoooooo doococococoocoooao +
| PLUG N_NAMVE | PLUGJ N_STATUS |
doococccocccoooooo doococococoocoooao +
| mysql _no_l ogin | ACTIVE |
doococccocccoooooo doococococoocoooao +

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the no-login plugin, see Using No-Login Pluggable Authentication.

167

https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html

No-Login Pluggable Authentication

Uninstalling No-Login Pluggable Authentication

The method used to uninstall the no-login authentication plugin depends on how you installed it:

« If you installed the plugin at server startup using a - - pl ugi n-1 oad- add option, restart the server
without the option.

* If you installed the plugin at runtime using an | NSTALL PLUG N statement, it remains installed across
server restarts. To uninstall it, use UNI NSTALL PLUG N:

UNI NSTALL PLUG N nysql _no_I ogi n;

Using No-Login Pluggable Authentication

This section describes how to use the no-login authentication plugin to prevent accounts from being used
for connecting from MySQL client programs to the server. It is assumed that the server is running with the
no-login plugin enabled, as described in Installing No-Login Pluggable Authentication.

To refer to the no-login authentication plugin in the | DENTI FI ED W TH clause of a CREATE USER
statement, use the name nysql _no_| ogi n.

An account that authenticates using mysql _no_I| ogi n may be used as the DEFI NER for stored program
and view objects. If such an object definition also includes SQL SECURI TY DEFI NER, it executes with that
account's privileges. DBAs can use this behavior to provide access to confidential or sensitive data that is
exposed only through well-controlled interfaces.

The following example illustrates these principles. It defines an account that does not permit client
connections, and associates with it a view that exposes only certain columns of the nysql . user system
table:

CREATE DATABASE nol ogi ndb;
CREATE USER ' nol ogi n' @1 ocal host"'
| DENTI FI ED W TH nysql _no_I ogi n;
GRANT ALL ON nol ogi ndb. *
TO 'nol ogi n' @1 ocal host "' ;
GRANT SELECT ON nysgl . user
TO 'nol ogi n' @1 ocal host ' ;
CREATE DEFI NER = ' nol ogi n' @I ocal host'
SQL SECURI TY DEFI NER
VI EW nol ogi ndb. nyvi ew
AS SELECT User, Host FROM nysql . user;

To provide protected access to the view to an ordinary user, do this:

GRANT SELECT ON nol ogi ndb. myvi ew
TO 'ordi naryuser' @I ocal host"' ;

Now the ordinary user can use the view to access the limited information it presents:

SELECT * FROM nol ogi ndb. nyvi ew,

Attempts by the user to access columns other than those exposed by the view result in an error, as do
attempts to select from the view by users not granted access to it.

Note

Because the nol ogi n account cannot be used directly, the operations required to
set up objects that it uses must be performed by r oot or similar account that has
the privileges required to create the objects and set DEFI NER values.

168

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

Socket Peer-Credential Pluggable Authentication

The nysql _no_I| ogi n plugin is also useful in proxying scenarios. (For a discussion of concepts involved
in proxying, see Section 4.14, “Proxy Users”.) An account that authenticates using nysql _no_| ogi n may
be used as a proxied user for proxy accounts:

-- create proxied account
CREATE USER ' proxi ed_user' @I ocal host"'
| DENTI FI ED W TH nysql _no_|I ogi n;
-- grant privileges to proxied account
TO ' proxi ed_user' @I ocal host "' ;
-- permt proxy_user to be a proxy account for proxied account
GRANT PROXY
ON ' proxi ed_user' @I ocal host"*
TO ' proxy_user' @Il ocal host "' ;

This enables clients to access MySQL through the proxy account (pr oxy_user) but not to bypass the
proxy mechanism by connecting directly as the proxied user (pr oxi ed_user). A client who connects
using the pr oxy_user account has the privileges of the pr oxi ed_user account, but pr oxi ed_user
itself cannot be used to connect.

For alternative methods of protecting proxied accounts against direct use, see Preventing Direct Login to
Proxied Accounts.

6.1.11 Socket Peer-Credential Pluggable Authentication

The server-side aut h_socket authentication plugin authenticates clients that connect from the local
host through the Unix socket file. The plugin uses the SO PEERCRED socket option to obtain information
about the user running the client program. Thus, the plugin can be used only on systems that support the
SO _PEERCRED option, such as Linux.

The source code for this plugin can be examined as a relatively simple example demonstrating how to
write a loadable authentication plugin.

The following table shows the plugin and library file names. The file must be located in the directory named
by the pl ugi n_di r system variable.

Table 6.11 Plugin and Library Names for Socket Peer-Credential Authentication

Plugin or File Plugin or File Name
Server-side plugin aut h_socket
Client-side plugin None, see discussion
Library file aut h_socket. so

The following sections provide installation and usage information specific to socket pluggable
authentication:

* Installing Socket Pluggable Authentication
» Uninstalling Socket Pluggable Authentication

» Using Socket Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”.

169

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

Socket Peer-Credential Pluggable Authentication

Installing Socket Pluggable Authentication

This section describes how to install the socket authentication plugin. For general information about
installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server ny. cnf file:

[nysql d]
pl ugi n- | oad- add=aut h_socket . so

After modifying ny. cnf , restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement:

I NSTALL PLUG N aut h_socket SONAME ' aut h_socket . so';

| NSTALL PLUG N loads the plugin immediately, and also registers it in the mysql . pl ugi ns system table
to cause the server to load it for each subsequent normal startup without the need for - - pl ugi n- | oad-
add.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

mysql > SELECT PLUG N _NAVE, PLUG N _STATUS
FROM | NFORMATI ON_SCHEMA. PLUG NS
WHERE PLUG N_NAME LI KE ' %socket % ;

Fommem e maaao F T +
| PLUG N_NAME | PLUG N_STATUS |
Fommem e maaao F T +
| auth_socket | ACTIVE |
Fommem e maaao F T +

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the socket plugin, see Using Socket Pluggable Authentication.

Uninstalling Socket Pluggable Authentication
The method used to uninstall the socket authentication plugin depends on how you installed it:

« If you installed the plugin at server startup using a - - pl ugi n-1 oad- add option, restart the server
without the option.

« If you installed the plugin at runtime using an | NSTALL PLUQ N statement, it remains installed across
server restarts. To uninstall it, use UNI NSTALL PLUG N:

UNI NSTALL PLUG N aut h_socket ;

Using Socket Pluggable Authentication

The socket plugin checks whether the socket user name (the operating system user name) matches the
MySQL user name specified by the client program to the server. If the names do not match, the plugin
checks whether the socket user name matches the name specified in the aut henti cati on_string
column of the nysql . user system table row. If a match is found, the plugin permits the connection. The

170

https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html

Test Pluggable Authentication

aut henti cati on_stri ng value can be specified using an | DENTI FI ED . . . AS clause with CREATE
USER or ALTER USER.

Suppose that a MySQL account is created for an operating system user named val eri e who is to be
authenticated by the aut h_socket plugin for connections from the local host through the socket file:

CREATE USER 'val erie' @Il ocal host' | DENTI FI ED W TH aut h_socket ;

If a user on the local host with a login name of st ef ani e invokes nmysql with the option - -

user =val eri e to connect through the socket file, the server uses aut h_socket to authenticate the
client. The plugin determines that the - - user option value (val eri e) differs from the client user's name
(st ephani e) and refuses the connection. If a user named val eri e tries the same thing, the plugin finds
that the user name and the MySQL user name are both val er i e and permits the connection. However,
the plugin refuses the connection even for val er i e if the connection is made using a different protocol,
such as TCP/IP.

To permit both the val eri e and st ephani e operating system users to access MySQL through socket file
connections that use the account, this can be done two ways:

« Name both users at account-creation time, one following CREATE USER, and the other in the
authentication string:

CREATE USER 'val erie' @Il ocal host' |DENTIFIED W TH aut h_socket AS 'stephanie';

« If you have already used CREATE USERto create the account for a single user, use ALTER USERto add
the second user:

CREATE USER 'val erie' @I ocal host' | DENTI FI ED W TH aut h_socket ;
ALTER USER 'val erie' @Il ocal host' |DENTIFIED WTH aut h_socket AS 'stephanie';

To access the account, both val eri e and st ephani e specify - - user =val eri e at connect time.

6.1.12 Test Pluggable Authentication

MySQL includes a test plugin that checks account credentials and logs success or failure to the server
error log. This is a loadable plugin (not built in) and must be installed prior to use.

The test plugin source code is separate from the server source, unlike the built-in native plugin, so it can be
examined as a relatively simple example demonstrating how to write a loadable authentication plugin.

Note

This plugin is intended for testing and development purposes, and is not for use in
production environments or on servers that are exposed to public networks.

The following table shows the plugin and library file names. The file name suffix might differ on your
system. The file must be located in the directory named by the pl ugi n_di r system variable.

Table 6.12 Plugin and Library Names for Test Authentication

Plugin or File Plugin or File Name
Server-side plugin test plugin_server
Client-side plugin auth_test plugin
Library file aut h_test_plugin.so

The following sections provide installation and usage information specific to test pluggable authentication:

« Installing Test Pluggable Authentication

171

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

Test Pluggable Authentication

« Uninstalling Test Pluggable Authentication
» Using Test Pluggable Authentication

For general information about pluggable authentication in MySQL, see Section 4.13, “Pluggable
Authentication”.

Installing Test Pluggable Authentication

This section describes how to install the server-side test authentication plugin. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server ny. cnf file, adjusting the . so suffix for your platform as necessary:

[nysql d]
pl ugi n- | oad- add=aut h_t est _pl ugi n. so

After modifying ny. cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

I NSTALL PLUG N test_pl ugi n_server SONAME 'aut h_test_plugin.so';

| NSTALL PLUG Nloads the plugin immediately, and also registers it in the nysql . pl ugi ns system table
to cause the server to load it for each subsequent normal startup without the need for - - pl ugi n- | oad-
add.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N NAME, PLUG N_STATUS
FROM | NFORMATI ON_SCHEMA. PLUGH NS
WHERE PLUG N_NAME LI KE ' % est _pl ugi n%

e e emeeeeaaaao F T +
| PLUG N_NAME | PLUG N_STATUS |
e e emeeeeaaaao F T +
| test_plugin_server | ACTIVE |
e e emeeeeaaaao F T +

If the plugin fails to initialize, check the server error log for diagnostic messages.

To associate MySQL accounts with the test plugin, see Using Test Pluggable Authentication.

Uninstalling Test Pluggable Authentication

The method used to uninstall the test authentication plugin depends on how you installed it:

* If you installed the plugin at server startup using a - - pl ugi n- | oad- add option, restart the server
without the option.

« If you installed the plugin at runtime using an | NSTALL PLUQ N statement, it remains installed across
server restarts. To uninstall it, use UNI NSTALL PLUGQ N:

172

https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html

Pluggable Authentication System Variables

UNI NSTALL PLUG N test_pl ugi n_server;

Using Test Pluggable Authentication

To use the test authentication plugin, create an account and name that plugin in the | DENTI FI ED W TH
clause:

CREATE USER 'testuser' @I ocal host'

| DENTI FI ED W TH t est _pl ugi n_ser ver
BY 'testpassword';

Then provide the - - user and - - passwor d options for that account when you connect to the server. For
example:

$> nysql --user=testuser --password
Ent er password: testpassword

The plugin fetches the password as received from the client and compares it with the value stored in the
aut henti cati on_stri ng column of the account row in the nmysql . user system table. If the two values
match, the plugin returns the aut henti cati on_st ri ng value as the new effective user ID.

You can look in the server error log for a message indicating whether authentication succeeded (notice that
the password is reported as the “user”):

[Note] Plugin test_plugin_server reported:
'successful |y authenticated user testpassword'

6.1.13 Pluggable Authentication System Variables

These variables are unavailable unless the appropriate server-side plugin is installed:

e authentication_| dap_sasl for system variables with names of the form
aut henti cati on_| dap_sasl _xxx

» aut hentication_| dap_si npl e for system variables with names of the form
aut henti cation_| dap_si npl e_xxx

Table 6.13 Authentication Plugin System Variable Summary

Name Cmd-Line Option File |System Var |Status Var Var Scope Dynamic
authentication |Meg_ sasl_authYmeethod _nameYes Global Yes
authentication |Meg_ sasl_bind Ylemse _dn Yes Global Yes
authentication |Meg_sasl_bind Yrest dn Yes Global Yes
authentication |Me$ sasl_bind Yrest pwd Yes Global Yes
authentication |Me sasl_ca_péds Yes Global Yes
authentication |Meg_ sasl_groujgesearch_attr |Yes Global Yes
authentication |Me$ sasl_groujesearch_filter Yes Global Yes
authentication |Me$ sasl_init_|ped_size Yes Global Yes
authentication |Meg_sasl_log |Matus Yes Global Yes
authentication |Meg_sasl_max Y@sol_size Yes Global Yes
authentication |Meg_ sasl_servate$ost Yes Global Yes
authentication |Meg sasl_servéfeport Yes Global Yes

173

https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_user
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_password

Pluggable Authentication System Variables

Name Cmd-Line Option File |System Var |Status Var Var Scope Dynamic
authentication |Mep_sasl_tls |Yes Yes Global Yes
authentication |Meg_ sasl_userYasarch_attr |Yes Global Yes
authentication |Meg_simple_allflesmethod_ngies Global Yes
authentication [Meg simple_bjivéshase dn |Yes Global Yes
authentication |Me_simple_biesroot_dn Yes Global Yes
authentication |Meg_simple_bjivésroot pwd |Yes Global Yes
authentication |Meg_simple_caYesath Yes Global Yes
authentication [Me$ simple_gr¥eg _search_attres Global Yes
authentication |Mep_simple_gr¥es_search_filt¥es Global Yes
authentication |Meg_simple_ini¥gsool_size |Yes Global Yes
authentication |Me$_simple_loy estatus Yes Global Yes
authentication [Meg simple_matespool_size |Yes Global Yes
authentication |Me®_simple_seYes host Yes Global Yes
authentication |Meg_simple_sevesr port Yes Global Yes
authentication |Meg_simple_tlsYes Yes Global Yes
authentication [Me$ simple_uséessearch_attrYes Global Yes
authentication | Weslows_log_lexkes Yes Global No
authentication |Weslows_use_|Maxipal_name Yes Global No

 authentication_|dap_sasl auth_nethod_nane

Command-Line Format --aut henti cati on-1 dap- sasl - aut h-
nmet hod- nanme=val ue
Introduced 5.7.19

System Variable

aut henti cation_| dap_sasl _auth_net hod_n

ane

Scope Global
Dynamic Yes

Type String

Default Value SCRAM SHA- 1
Valid Values SCRAM SHA- 1

For SASL LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method to ensure
password security.

These authentication method values are permitted:

e SCRAM SHA- 1: Use a SASL challenge-response mechanism.

The client-side aut hent i cati on_| dap_sasl _cl i ent plugin communicates with the SASL server,
using the password to create a challenge and obtain a SASL request buffer, then passes this buffer to
the server-side aut henti cati on_| dap_sasl| plugin. The client-side and server-side SASL LDAP
plugins use SASL messages for secure transmission of credentials within the LDAP protocol, to avoid
sending the cleartext password between the MySQL client and server.

174

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_authentication_windows_log_level
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_authentication_windows_use_principal_name

Pluggable Authentication System Variables

e aut hentication_| dap_sasl _bi nd_base_dn

Command-Line Format

--aut henti cati on-1 dap- sasl - bi nd- base-
dn=val ue

Introduced

5.7.19

System Variable

aut henti cati on_| dap_sasl _bi nd_base_dn

Scope Global
Dynamic Yes
Type String
Default Value NULL

For SASL LDAP authentication, the base distinguished name (DN). This variable can be used to limit the
scope of searches by anchoring them at a certain location (the “base”) within the search tree.

Suppose that members of one set of LDAP user entries each have this form:

ui d=user _nane, ou=Peopl e, dc=exanpl e, dc=com

And that members of another set of LDAP user entries each have this form:

ui d=user _nane, ou=Adni n, dc=exanpl e, dc=com

Then searches work like this for different base DN values:

« If the base DN is ou=Peopl e, dc=exanpl e, dc=com Searches find user entries only in the first set.

« If the base DN is ou=Admi n, dc=exanpl e, dc=com Searches find user entries only in the second

set.

« |If the base DN is ou=dc=exanpl e, dc=com Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search scope

more.

e aut hentication_| dap_sasl _bi nd_root _dn

Command-Line Format

--aut henti cati on-1 dap- sasl - bi nd-r oot -
dn=val ue

Introduced

5.7.19

System Variable

aut henti cati on_| dap_sasl _bi nd_root _dn

Scope Global
Dynamic Yes
Type String
Default Value NULL

For SASL LDAP authentication, the root distinguished name (DN). This variable is used in conjunction
with aut hent i cati on_| dap_sasl _bi nd_root pwd as the credentials for authenticating to the

175

Pluggable Authentication System Variables

LDAP server for the purpose of performing searches. Authentication uses either one or two LDAP bind
operations, depending on whether the MySQL account names an LDAP user DN:

« If the account does not name a user DN: aut henti cati on_I| dap_sasl| performs
an initial LDAP binding using aut hent i cati on_| dap_sasl _bi nd_root dn and
aut hentication_| dap_sasl bind root pwd. (These are both empty by default, so if they
are not set, the LDAP server must permit anonymous connections.) The resulting bind LDAP handle
is used to search for the user DN, based on the client user name. aut hent i cati on_| dap_sasl
performs a second bind using the user DN and client-supplied password.

« If the account does name a user DN: The first bind operation is unnecessary in this case.
aut henti cati on_| dap_sasl| performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

e authentication_| dap_sasl _bind _root_ pwd

Command-Line Format

--aut henti cati on-1 dap- sasl - bi nd-r oot -
pwd=val ue

Introduced

5.7.19

System Variable

aut henti cati on_| dap_sasl _bi nd_root_pwd

Scope Global
Dynamic Yes
Type String
Default Value NULL

For SASL LDAP authentication, the password for the root distinguished name. This variable is used in
conjunction with aut henti cati on_| dap_sasl _bi nd_r oot _dn. See the description of that variable.

e« authentication_| dap_sasl _ca path

Command-Line Format

--aut henti cati on-| dap-sasl - ca-
pat h=val ue

Introduced

5.7.19

System Variable

aut henti cation_| dap_sasl _ca_path

Scope Global
Dynamic Yes
Type String
Default Value NULL

For SASL LDAP authentication, the absolute path of the certificate authority file. Specify this file if it is
desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the aut henti cati on_| dap_sasl ca_pat h variable to
the file name, you must add the appropriate certificate authority certificates to the
file and enable the aut henti cati on_| dap_sasl t| s system variable. These
variables can be set to override the default OpenLDAP TLS configuration; see
LDAP Pluggable Authentication and Idap.conf

e authentication_|dap_sasl _group_search_attr

176

Pluggable Authentication System Variables

Command-Line Format

--aut henti cati on-1 dap-sasl - gr oup-
search-attr=val ue

Introduced

5.7.19

System Variable

aut hentication_| dap_sasl _group_search_attr

Scope Global
Dynamic Yes
Type String
Default Value cn

For SASL LDAP authentication, the name of the attribute that specifies group names in LDAP directory

entries. If aut henti cati on_| dap_sasl _group_search_attr has its default value of cn, searches
return the cn value as the group name. For example, if an LDAP entry with a ui d value of user 1 has a
cn attribute of mygr oup, searches for user 1 return nygr oup as the group name.

This variable should be the empty string if you want no group or proxy authentication.

As of MySQL 5.7.21, if the group search attribute is i sMenber OF , LDAP authentication directly retrieves
the user attribute i sMenber O value and assigns it as group information. If the group search attribute is
not i sMenmber OF , LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two ways:
1) A group entry can have an attribute named nenber U d or nenber with a value that is a user name;
2) A user entry can have an attribute named i sMenber OF with values that are group names.

aut hentication_| dap_sasl _group_search filter

Command-Line Format

--aut henti cati on-| dap-sasl - gr oup-
search-filter=val ue

Introduced

5.7.21

System Variable

aut henti cati on_| dap_sasl _group_search_{

Scope Global
Dynamic Yes
Type String

Default Value

(| (&(obj ect A ass=posi xG oup)
(menber Ui d=%)) (& obj ect C ass=gr oup)
(menber=%)))

For SASL LDAP authentication, the custom group search filter.

As of MySQL 5.7.22, the search filter value can contain { UA} and { UD} notation to represent the user
name and the full user DN. For example, { UA} is replaced with a user name such as " admi n", whereas
{UD} is replaced with a use full DN such as " ui d=adni n, ou=Peopl e, dc=exanpl e, dc=coni'. The
following value is the default, which supports both OpenLDAP and Active Directory:

(| (&(obj ect G ass=posi xG oup) (menber Ui d={ UA}))
(&(obj ect G ass=group) (menber={UD})))

Previously, if the group search attribute was i sMenber O or nenber O, it was treated as a user
attribute that has group information. However, in some cases for the user scenario, nenber O was a
simple user attribute that held no group information. For additional flexibility, an optional { GA} prefix

177

ilter

Pluggable Authentication System Variables

now can be used with the group search attribute. (Previously, it was assumed that if the group search
attribute is i sMenber Of , it is treated differently. Now any group attribute with a {GA} prefix is treated as
a user attribute having group names.) For example, with a value of { GA} Menber O , if the group value is
the DN, the first attribute value from the group DN is returned as the group name.

In MySQL 5.7.21, the search filter used %s notation, expanding it to the user name for OpenLDAP
(&(obj ect O ass=posi xG oup) (nenber U d=%)) and to the full user DN for Active Directory
(&(obj ect d ass=gr oup) (nenber =%s)).

aut henti cation_I dap_sasl _i nit_pool _si ze

Command-Line Format --aut henti cati on-1dap-sasl-init-pool -
Si ze=#

Introduced 5.7.19

System Variable aut hentication_| dap_sasl _init_pool _size

Scope Global

Dynamic Yes

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 32767

Unit connections

For SASL LDAP authentication, the initial size of the pool of connections to the LDAP server. Choose the
value for this variable based on the average number of concurrent authentication requests to the LDAP
server.

The plugin uses aut henti cati on_| dap_sasl _init_pool size and
aut hentication_| dap_sasl _nax_pool _si ze together for connection-pool management:

* When the authentication plugin initializes, it creates
aut hentication_| dap_sasl _init_pool _size connections, unless
aut henti cation_| dap_sasl _nax_pool _si ze=0 to disable pooling.

« If the plugin receives an anthentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by aut henti cati on_| dap_sasl nmax_pool _si ze.

« If the plugin receives a request when the pool size is already at its maximum and there are no free
connections, authentication fails.

* When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the pool. For
example, modifying the LDAP server host, port, or TLS settings does not affect existing connections.
However, if the original variable values were invalid and the connection pool could not be initialized, the
plugin attempts to reinitialize the pool for the next LDAP request. In this case, the new system variable
values are used for the reinitialization attempt.

If aut henti cation_| dap_sasl _nmax_pool _si ze=0 to disable pooling, each LDAP connection
opened by the plugin uses the values the system variables have at that time.

178

Pluggable Authentication System Variables

e aut hentication_|l dap_sasl _| og_status

Command-Line Format

--aut henti cati on-1 dap-sasl -1 og-
st at us=#

Introduced

5.7.19

System Variable

aut henti cation_| dap_sasl _| og_status

Scope Global
Dynamic Yes
Type Integer
Default Value 1
Minimum Value 1
Maximum Value 5

For SASL LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 6.14 Log Levels for authentication_Idap_sasl_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Same as previous level plus debugging messages
from MySQL

On the client side, messages can be logged to the standard output by setting the
AUTHENTI CATI ON_LDAP_CLI ENT_LOGenvironment variable. The permitted and default values are the
same as for aut henti cati on_| dap_sasl | og_stat us.

The AUTHENTI CATI ON_LDAP_CLI ENT_LOG environment variable applies only to SASL LDAP
authentication. It has no effect for simple LDAP authentication because the client plugin in that case is
nysql _cl ear passwor d, which knows nothing about LDAP operations.

e authentication_|dap_sasl _max_pool _size

Command-Line Format

--aut henti cati on-1 dap- sasl - max- pool -
Size=#

Introduced

5.7.19

System Variable

aut henti cati on_| dap_sasl _nax_pool _si ze

Scope Global

Dynamic Yes

Type Integer

Default Value 1000 179

Minimum Value

0

Pluggable Authentication System Variables

Maximum Value 32767

Unit connections

For SASL LDAP authentication, the maximum size of the pool of connections to the LDAP server. To
disable connection pooling, set this variable to 0.

This variable is used in conjunction with aut henti cati on_| dap_sasl _init_pool _si ze. See the
description of that variable.

aut henti cation_| dap_sasl _server_host

Command-Line Format --aut henti cati on-| dap-sasl - server -
host =host _nane

Introduced 5.7.19

System Variable aut henti cati on_| dap_sasl _server _host

Scope Global

Dynamic Yes

Type String

For SASL LDAP authentication, the LDAP server host. The permitted values for this variable depend on
the authentication method:

e Forauthentication_| dap_sasl _auth_net hod_nane=SCRAM SHA- 1: The LDAP server host
can be a host name or IP address.

aut hentication_| dap_sasl _server_port

Command-Line Format --aut henti cation-| dap-sasl -server-
port=port_num

Introduced 5.7.19

System Variable aut henti cati on_| dap_sasl _server_port

Scope Global

Dynamic Yes

Type Integer

Default Value 389

Minimum Value 1

Maximum Value 32376

For SASL LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 5.7.25, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from st art TLS.)

aut hentication_| dap_sasl tls

Command-Line Format --aut henti cati on-1dap-sasl -tl s[={ OFF|
ON}]

Introduced 5.7.19

System Variable aut hentication_| dap_sasl _tls

180

Pluggable Authentication System Variables

Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

For SASL LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and Idap.conf If you enable this variable, you may also wish to set the
aut hentication_| dap_sasl ca_ pat h variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 5.7.25, LDAPS can be used by setting the
aut hentication_| dap_sasl _server port system variable.

e authentication_|dap_sasl user_search_attr

Command-Line Format --aut henti cati on-1 dap-sasl - user -
search-attr=val ue

Introduced 5.7.19

System Variable aut hentication_| dap_sasl _user_search_attr

Scope Global

Dynamic Yes

Type String

Default Value ui d

For SASL LDAP authentication, the name of the attribute that specifies user names in LDAP directory
entries. If a user distinguished name is not provided, the authentication plugin searches for the name
using this attribute. For example, if the aut henti cati on_| dap_sasl _user_search_attr valueis
ui d, a search for the user name user 1 finds entries with a ui d value of user 1.

e authentication_| dap_sinpl e_aut h_net hod_nane

Command-Line Format --aut henti cati on-1dap-si npl e-aut h-
met hod- name=val ue
Introduced 5.7.19
System Variable aut henti cation_| dap_si npl e_aut h_net hod| nane
Scope Global
Dynamic Yes
Type String
Default Value S| MPLE
Valid Values S| MPLE

181

Pluggable Authentication System Variables

AD- FOREST

For simple LDAP authentication, the authentication method name. Communication between the
authentication plugin and the LDAP server occurs according to this authentication method.

Note

For all simple LDAP authentication methods, it is recommended to also set TLS
parameters to require that communication with the LDAP server take place over

secure connections.

These authentication method values are permitted:

« S| MPLE: Use simple LDAP authentication. This method uses either one or two LDAP bind operations,
depending on whether the MySQL account names an LDAP user distinguished name. See the
description of aut henti cati on_| dap_si npl e_bi nd_root dn.

* AD- FOREST: A variation on SI MPLE, such that authentication searches all domains in the Active
Directory forest, performing an LDAP bind to each Active Directory domain until the user is found in

some domain.

* authentication_| dap_si npl e_bi nd_base_dn

Command-Line Format

--aut henti cati on-| dap-si npl e- bi nd-
base- dn=val ue

Introduced

5.7.19

System Variable

aut henti cati on_| dap_si npl e_bi nd_base_d

-

Scope Global
Dynamic Yes
Type String

182

Pluggable Authentication System Variables

Default Value ‘

NULL

For simple LDAP authentication, the base distinguish

ed name (DN). This variable can be used to limit

the scope of searches by anchoring them at a certain location (the “base”) within the search tree.

Suppose that members of one set of LDAP user entri

ui d=user _nane, ou=Peopl e, dc=exanpl e, dc=com

es each have this form:

And that members of another set of LDAP user entries each have this form:

ui d=user _nane, ou=Adm n, dc=exanpl e, dc=com

Then searches work like this for different base DN values:

« If the base DN is ou=Peopl e, dc=exanpl e, dc=com Searches find user entries only in the first set.

« If the base DN is ou=Admi n, dc=exanpl e, dc=com Searches find user entries only in the second

set.

« If the base DN is ou=dc=exanpl e, dc=cont Searches find user entries in the first or second set.

In general, more specific base DN values result in faster searches because they limit the search scope

maore.

aut henti cati on_| dap_si npl e_bi nd_root _dn

Command-Line Format

--aut henti cati on-1 dap-si npl e- bi nd-
root - dn=val ue

Introduced

5.7.19

System Variable

aut henti cati on_| dap_si npl e_bi nd_root _d

Scope Global
Dynamic Yes
Type String
Default Value NULL

For simple LDAP authentication, the root distinguished name (DN). This variable is used in conjunction
with aut henti cation_| dap_si npl e_bi nd_root pwd as the credentials for authenticating to the

LDAP server for the purpose of performing searches.

Authentication uses either one or two LDAP bind

operations, depending on whether the MySQL account names an LDAP user DN:

If the account does not name a user DN: aut hent
an initial LDAP binding using aut hent i cati on_|

i cation_I| dap_si npl e performs
dap_si npl e_bi nd_root _dn and

aut henti cation_I dap_sinpl e_bi nd_root pwd. (These are both empty by default, so if they
are not set, the LDAP server must permit anonymous connections.) The resulting bind LDAP handle
is used to search for the user DN, based on the client user name. aut henti cati on_| dap_si npl e
performs a second bind using the user DN and client-supplied password.

If the account does name a user DN: The first bind operation is unnecessary in this case.

aut henti cation_| dap_si npl e performs a single bind using the user DN and client-supplied
password. This is faster than if the MySQL account does not specify an LDAP user DN.

183

Pluggable Authentication System Variables

e aut hentication_| dap_si npl e_bi nd_root_pwd

Command-Line Format

--aut henti cati on-1 dap-si npl e- bi nd-
root - pwd=val ue

Introduced

5.7.19

System Variable

aut henti cati on_I| dap_si npl e_bi nd_root _p

vl

Scope Global
Dynamic Yes
Type String
Default Value NULL

For simple LDAP authentication, the password for the root distinguished name. This variable is used
in conjunction with aut henti cati on_| dap_si npl e_bi nd_r oot _dn. See the description of that

variable.

e« authentication_| dap_sinple_ca path

Command-Line Format

--aut henti cati on-1 dap-si npl e-ca-
pat h=val ue

Introduced

5.7.19

System Variable

aut henti cati on_| dap_si npl e_ca_path

Scope Global
Dynamic Yes
Type String
Default Value NULL

For simple LDAP authentication, the absolute path of the certificate authority file. Specify this file if it is
desired that the authentication plugin perform verification of the LDAP server certificate.

Note

In addition to setting the aut henti cati on_| dap_si npl e_ca_pat h variable

to the file name, you must add the appropriate certificate authority certificates to
the file and enable the aut henti cati on_| dap_si npl e_t | s system variable.
These variables can be set to override the default OpenLDAP TLS configuration;
see LDAP Pluggable Authentication and Idap.conf

e authentication_|l dap_sinple_group_search_attr

Command-Line Format

--aut henti cati on-I| dap-si npl e- gr oup-
search-attr=val ue

Introduced

5.7.19

System Variable

aut henti cation_| dap_sinple_group_searc

h_attr

Scope Global
Dynamic Yes
Type String

184

Pluggable Authentication System Variables

Default Value

cn

For simple LDAP authentication, the name of the attribute that specifies group names in LDAP directory
entries. If aut henti cati on_| dap_si npl e_group_search_attr has its default value of cn,
searches return the cn value as the group name. For example, if an LDAP entry with a ui d value of
user 1 has a cn attribute of nygr oup, searches for user 1 return nygr oup as the group name.

As of MySQL 5.7.21, if the group search attribute is i sMenber O, LDAP authentication directly retrieves
the user attribute i sMenber O value and assigns it as group information. If the group search attribute is
not i sMermber O, LDAP authentication searches for all groups where the user is a member. (The latter
is the default behavior.) This behavior is based on how LDAP group information can be stored two ways:
1) A group entry can have an attribute named nenber U d or nenber with a value that is a user name;
2) A user entry can have an attribute named i sMenber OF with values that are group names.

e authentication_|l dap_sinple_group_search _filter

Command-Line Format

--aut henti cati on-1 dap- si npl e- gr oup-
search-filter=val ue

Introduced

5.7.21

System Variable

aut henti cation_| dap_sinpl e_group_searc

h filte

Scope Global
Dynamic Yes
Type String

Default Value

(| (& obj ect O ass=posi xG oup)
(rmenber Ui d=%)) (& obj ect G ass=gr oup)

(nmenber=9%s)))

For simple LDAP authentication, the custom group search filter.

As of MySQL 5.7.22, the search filter value can contain { UA} and { UD} notation to represent the user
name and the full user DN. For example, { UA} is replaced with a user name such as " admi n", whereas
{ UD} is replaced with a use full DN such as " ui d=admi n, ou=Peopl e, dc=exanpl e, dc=coni'. The
following value is the default, which supports both OpenLDAP and Active Directory:

(] (& obj ect d ass=posi xG oup) (menber Ui d={ UA}))
(&(obj ect A ass=gr oup) (menber ={UD})))

Previously, if the group search attribute was i sMenber O or menmber O | it was treated as a user
attribute that has group information. However, in some cases for the user scenario, nrenber & was a
simple user attribute that held no group information. For additional flexibility, an optional { GA} prefix
now can be used with the group search attribute. (Previously, it was assumed that if the group search
attribute is i sMenber O , it is treated differently. Now any group attribute with a {GA} prefix is treated as
a user attribute having group names.) For example, with a value of { GA} Menber O , if the group value is
the DN, the first attribute value from the group DN is returned as the group name.

In MySQL 5.7.21, the search filter used % notation, expanding it to the user name for OpenLDAP
(& obj ect G ass=posi xG oup) (menber Ui d=%)) and to the full user DN for Active Directory

(&(obj ect d ass=gr oup) (nenber =%s)).

 authentication_|dap_sinple_init_pool _size

Command-Line Format

--authentication-|dap-sinple-init-

pool - si ze=#

185

Pluggable Authentication System Variables

Introduced

5.7.19

System Variable

aut hentication_|dap_sinple_init_pool s

Scope Global
Dynamic Yes
Type Integer
Default Value 10
Minimum Value 0
Maximum Value 32767

Unit

connections

For simple LDAP authentication, the initial size of the pool of connections to the LDAP server. Choose
the value for this variable based on the average number of concurrent authentication requests to the

LDAP server.

The plugin uses aut henti cation_ | dap_sinple init_ pool sizeand
aut hentication_| dap_si npl e_max_pool _si ze together for connection-pool management:

* When the authentication plugin initializes, it creates
aut hentication_|l dap_sinple_init_pool _size connections, unless
aut henti cation_I dap_si npl e_nmax_pool _si ze=0 to disable pooling.

« If the plugin receives an authentication request when there are no free connections in the current
connection pool, the plugin can create a new connection, up to the maximum connection pool size
given by aut henti cati on_| dap_si npl e_nmax_pool _si ze.

« If the plugin receives a request when the pool size is already at its maximum and there are no free

connections, authentication fails.

* When the plugin unloads, it closes all pooled connections.

Changes to plugin system variable settings may have no effect on connections already in the pool. For
example, modifying the LDAP server host, port, or TLS settings does not affect existing connections.
However, if the original variable values were invalid and the connection pool could not be initialized, the
plugin attempts to reinitialize the pool for the next LDAP request. In this case, the new system variable

values are used for the reinitialization attempt.

If aut henti cation_| dap_si npl e_max_pool _si ze=0 to disable pooling, each LDAP connection
opened by the plugin uses the values the system variables have at that time.

aut henti cation_I| dap_si npl e_| og_st atus

Command-Line Format

--aut henticati on-| dap-si npl e-1 og-
st at us=#

Introduced

5.7.19

System Variable

aut henti cati on_| dap_si npl e_| og_st at us

Scope Global
Dynamic Yes
Type Integer
Default Value 1

186

ze

Pluggable Authentication System Variables

Minimum Value

Maximum Value

For simple LDAP authentication, the logging level for messages written to the error log. The following
table shows the permitted level values and their meanings.

Table 6.15 Log Levels for authentication_ldap_simple_log_status

Option Value Types of Messages Logged

1 No messages

2 Error messages

3 Error and warning messages

4 Error, warning, and information messages

5 Same as previous level plus debugging messages

from MySQL

aut henti cation_| dap_si npl e_nmax_pool _si ze

Command-Line Format

--aut henti cati on-| dap- si npl e- max-
pool - si ze=#

Introduced

5.7.19

System Variable

aut henti cation_| dap_si npl e_nmax_pool _si

Scope Global
Dynamic Yes
Type Integer
Default Value 1000
Minimum Value 0
Maximum Value 32767

Unit

connections

For simple LDAP authentication, the maximum size of the pool of connections to the LDAP server. To

disable connection pooling, set this variable to O.

This variable is used in conjunction with aut henti cati on_I dap_si npl e_i nit _pool _si ze. See

the description of that variable.

aut henti cati on_| dap_si npl e_server _host

Command-Line Format

--aut henti cati on-| dap-si npl e-server -
host =host _nane

Introduced

5.7.19

System Variable

aut henti cati on_| dap_si npl e_server _host

Scope

Global

Dynamic

Yes

187

Pluggable Authentication System Variables

Type String

For simple LDAP authentication, the LDAP server host. The permitted values for this variable depend on
the authentication method:

e Foraut hentication_|dap_sinple_auth_nmethod nanme=SI MPLE: The LDAP server host can
be a host name or IP address.

e Forauthentication_| dap_sinpl e_aut h_net hod nane=AD- FOREST. The LDAP server
host can be an Active Directory domain name. For example, for an LDAP server URL of | dap: //
exanpl e. mrem | ocal : 389, the domain name can be nem | ocal .

An Active Directory forest setup can have multiple domains (LDAP server IPs), which can be
discovered using DNS. On Unix and Unix-like systems, some additional setup may be required to
configure your DNS server with SRV records that specify the LDAP servers for the Active Directory
domain. For information about DNS SRV, see RFC 2782.

Suppose that your configuration has these properties:

» The name server that provides information about Active Directory domains has IP address
10.172. 166. 100.

e The LDAP servers have names | dapl. nem | ocal through | dap3. nem | ocal and IP addresses
10. 172. 166. 101 through 10. 172. 166. 103.

You want the LDAP servers to be discoverable using SRV searches. For example, at the command
line, a command like this should list the LDAP servers:

host -t SRV _ldap._tcp.nem | ocal

Perform the DNS configuration as follows:

1. Addalineto/etc/resol v. conf to specify the name server that provides information about
Active Directory domains:

naneserver 10.172.166.100

2. Configure the appropriate zone file for the name server with SRV records for the LDAP servers:

_ldap. _tcp.nem | ocal. 86400 IN SRV 0 100 389 |dapl. nem | ocal .
_ldap. _tcp.nem | ocal. 86400 IN SRV 0 100 389 |dap2. mem | ocal .
_ldap. _tcp.nem | ocal. 86400 IN SRV 0 100 389 |dap3. mem | ocal .

3. It may also be necessary to specify the IP address for the LDAP servers in/ et ¢/ host s if the
server host cannot be resolved. For example, add lines like this to the file:

10.172. 166. 101 | dapl. nem | ocal
10.172. 166. 102 | dap2. nem | ocal
10.172. 166. 103 | dap3. nem | ocal

With the DNS configured as just described, the server-side LDAP plugin can discover the LDAP
servers and tries to authenticate in all domains until authentication succeeds or there are no more
servers.

Windows needs no such settings as just described. Given the LDAP server host in the
aut hentication_| dap_sinpl e _server host value, the Windows LDAP library searches all
domains and attempts to authenticate.

188

https://tools.ietf.org/html/rfc2782

Pluggable Authentication System Variables

e aut hentication_|l dap_sinpl e_server_port

Command-Line Format --aut henti cati on-1 dap- si npl e-server -
port=port_num

Introduced 5.7.19

System Variable aut henti cation_| dap_si npl e_server_port

Scope Global

Dynamic Yes

Type Integer

Default Value 389

Minimum Value 1

Maximum Value 32376

For simple LDAP authentication, the LDAP server TCP/IP port number.

As of MySQL 5.7.25, if the LDAP port number is configured as 636 or 3269, the plugin uses LDAPS
(LDAP over SSL) instead of LDAP. (LDAPS differs from st art TLS.)

e authentication_|ldap_sinple_tls

Command-Line Format --aut henti cati on-1 dap-si npl e-
t1s[={ OFF| ON}]

Introduced 5.7.19

System Variable aut hentication_|dap_sinple_tls

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

For simple LDAP authentication, whether connections by the plugin to the LDAP server are
secure. If this variable is enabled, the plugin uses TLS to connect securely to the LDAP server.
This variable can be set to override the default OpenLDAP TLS configuration; see LDAP
Pluggable Authentication and Idap.conf If you enable this variable, you may also wish to set the
aut henti cation_I| dap_si npl e_ca_pat h variable.

MySQL LDAP plugins support the StartTLS method, which initializes TLS on top of a plain LDAP
connection.

As of MySQL 5.7.25, LDAPS can be used by setting the
aut hentication_| dap_si npl e_server_port system variable.

e authentication_|l dap_sinpl e _user_search_attr

Command-Line Format --aut henti cati on-| dap- si npl e- user -
search-attr=val ue

Introduced 5.7.19

System Variable aut henti cation_| dap_si npl e_user_search|attr

Scope Global 189

Connection Control Plugins

Dynamic Yes
Type String
Default Value uid

For simple LDAP authentication, the name of the attribute that specifies user names in LDAP directory
entries. If a user distinguished name is not provided, the authentication plugin searches for the name
using this attribute. For example, if the aut henti cati on_| dap_si npl e_user _search_attr value
is ui d, a search for the user name user 1 finds entries with a ui d value of user 1.

6.2 Connection Control Plugins

As of MySQL 5.7.17, MySQL Server includes a plugin library that enables administrators to introduce an
increasing delay in server response to connection attempts after a configurable number of consecutive
failed attempts. This capability provides a deterrent that slows down brute force attacks against MySQL
user accounts. The plugin library contains two plugins:

» CONNECTI ON_CONTROL checks incoming connection attempts and adds a delay to server responses as
necessary. This plugin also exposes system variables that enable its operation to be configured and a
status variable that provides rudimentary monitoring information.

The CONNECTI ON_CONTROL plugin uses the audit plugin interface (see Writing Audit Plugins). To collect
information, it subscribes to the MYSQL_AUDI T_CONNECTI ON_CLASSMASK event class, and processes
MYSQL_AUDI T_CONNECTI ON_CONNECT and MySQL_AUDI T_CONNECTI ON_CHANGE USER subevents
to check whether the server should introduce a delay before responding to connection attempts.

* CONNECTI ON_CONTROL_FAI LED LOGE N_ATTEMPTS implements an | NFORVATI ON_SCHENA table that
exposes more detailed monitoring information for failed connection attempts. For more information about
this table, see The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Table.

The following sections provide information about connection control plugin installation and configuration.

6.2.1 Connection Control Plugin Installation

This section describes how to install the connection control plugins, CONNECTI ON_CONTROL and
CONNECTI ON_CONTRCL_FAI LED LOG N_ATTEMPTS. For general information about installing plugins,
see Installing and Uninstalling Plugins.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

The plugin library file base name is connecti on_contr ol . The file name suffix differs per platform (for
example, . so for Unix and Unix-like systems, . dl | for Windows).

To load the plugins at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains them. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server ny. cnf file, adjusting the . so suffix for your platform as necessary:

[mysql d]
pl ugi n- | oad- add=connecti on_control . so

After modifying ny. cnf, restart the server to cause the new settings to take effect.

Alternatively, to load the plugins at runtime, use these statements, adjusting the . so suffix for your platform
as necessary:

190

https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-audit-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add

Connection Control Plugin Installation

I NSTALL PLUG N CONNECTI ON_CONTROL
SONAME ' connecti on_control . so';

I NSTALL PLUG N CONNECTI ON_CONTROL_FAI LED_LOQd N_ATTEMPTS
SONAME ' connecti on_control . so';

| NSTALL PLUG Nloads the plugin immediately, and also registers it in the mysql . pl ugi ns system table
to cause the server to load it for each subsequent normal startup without the need for - - pl ugi n-1 oad-
add.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

mysql > SELECT PLUG N_NAME, PLUGQ N_STATUS
FROM | NFORVATI ON_SCHENMA. PLUG NS
WHERE PLUG N _NAME LI KE ' connecti on% ;

e e e e e e e e e e e e e e aao - oo +
| PLUGH N_NAVE | PLUGH N_STATUS |
e e e e e e e e e e e e e e aao - oo +
| CONNECTI ON_CONTROL | ACTI VE [
| CONNECTI ON_CONTROL_FAI LED LOG N_ATTEMPTS | ACTI VE |
e e e e e e e e e e e e e e aao - oo +

If a plugin fails to initialize, check the server error log for diagnostic messages.

If the plugins have been previously registered with | NSTALL PLUG N or are loaded with - - pl ugi n-

| oad- add, you can use the - - connecti on-control and--connection-control -fail ed-1ogin-
at t enpt s options at server startup to control plugin activation. For example, to load the plugins at startup
and prevent them from being removed at runtime, use these options:

[nysql d]

pl ugi n- | oad- add=connecti on_control . so

connect i on- cont r ol =FORCE_PLUS_PERVANENT
connecti on-control -fail ed-1ogi n-attenpt s=FORCE_PLUS_PERMANENT

If it is desired to prevent the server from running without a given connection control plugin, use an option
value of FORCE or FORCE_PLUS_PERVMANENT to force server startup to fail if the plugin does not initialize
successfully.

Note

It is possible to install one plugin without the other, but both must be

installed for full connection control capability. In particular, installing only the
CONNECTI ON_CONTROL_FAI LED_LOG N_ATTEMPTS plugin is of little use
because, without the CONNECTI ON_CONTROL plugin to provide the data that
populates the CONNECTI ON_CONTROL_FAI LED LOGd N_ATTEMPTS table, the table
is always empty.

» Connection Delay Configuration
» Connection Failure Assessment
» Connection Failure Monitoring
Connection Delay Configuration
To enable configuring its operation, the CONNECTI ON_CONTRCL plugin exposes these system variables:

e connection_control failed connections_threshol d: The number of
consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts. To disable failed-connection counting, set
connection_control failed _connections_threshol dto zero.

191

https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-connection-control-failed-login-attempts-table.html

Connection Control Plugin Installation

e connection_control _m n_connection_del ay: The minimum delay in milliseconds for connection
failures above the threshold.

e connection_control _max_connection_del ay: The maximum delay in milliseconds for connection
failures above the threshold.

If connecti on_control _failed_connections_threshol dis nonzero, failed-connection counting is
enabled and has these properties:

» The delay is zero up through connecti on_control fail ed connections_threshol d
consecutive failed connection attempts.

» Thereafter, the server adds an increasing delay for subsequent consecutive attempts, until a successful
connection occurs. The initial unadjusted delays begin at 1000 milliseconds (1 second) and increase by
1000 milliseconds per attempt. That is, once delay has been activated for an account, the unadjusted
delays for subsequent failed attempts are 1000 milliseconds, 2000 milliseconds, 3000 milliseconds, and
so forth.

» The actual delay experienced by a client is the unadjusted delay, adjusted to lie
within the values of the connecti on_control _m n_connecti on_del ay and
connection_control max_connecti on_del ay system variables, inclusive.

» Once delay has been activated for an account, the first successful connection thereafter by the account
also experiences a delay, but failure counting is reset for subsequent connections.

For example, with the default connecti on_control failed connections_threshold
value of 3, there is no delay for the first three consecutive failed connection attempts by an
account. The actual adjusted delays experienced by the account for the fourth and subsequent
failed connections depend on the connecti on_control _nm n_connecti on_del ay and
connection_control _max_connecti on_del ay values:

e Ifconnection_control _mn_connection_del ay and
connection_control nmax_connecti on_del ay are 1000 and 20000, the adjusted delays are the
same as the unadjusted delays, up to a maximum of 20000 milliseconds. The fourth and subsequent
failed connections are delayed by 1000 milliseconds, 2000 milliseconds, 3000 milliseconds, and so forth.

e Ifconnection_control _mn_connection_del ay and
connection_control max_connecti on_del ay are 1500 and 20000, the adjusted delays for the
fourth and subsequent failed connections are 1500 milliseconds, 2000 milliseconds, 3000 milliseconds,
and so forth, up to a maximum of 20000 milliseconds.

e If connection_control _m n_connection_del ay and
connection_control max_connecti on_del ay are 2000 and 3000, the adjusted delays for
the fourth and subsequent failed connections are 2000 milliseconds, 2000 milliseconds, and 3000
milliseconds, with all subsequent failed connections also delayed by 3000 milliseconds.

You can set the CONNECTI ON_CONTROL system variables at server startup or runtime. Suppose that you
want to permit four consecutive failed connection attempts before the server starts delaying its responses,
with a minimum delay of 2000 milliseconds. To set the relevant variables at server startup, put these lines
in the server nny. cnf file:

[nysgl d]

pl ugi n- | oad- add=connecti on_control . so

connecti on-control -fail ed- connecti ons-threshol d=4
connecti on-control - m n-connect i on- del ay=2000

To set the variables at runtime, use these statements:

SET GLOBAL connection_control _failed_connections_threshold = 4;

192

Connection Control Plugin Installation

SET GLOBAL connection_control _m n_connecti on_del ay = 1500;

SET GLOBAL sets the value for the running MySQL instance. To make the change permanent, add a line
in your ny. cnf file, as shown previously.

The connection_control _m n_connecti on_del ay and

connection_control max_connecti on_del ay system variables both have minimum and maximum
values of 1000 and 2147483647. In addition, the permitted range of values of each variable also depends
on the current value of the other:

e connection_control _m n_connection_del ay cannot be set greater than the current value of
connection_control _max_connecti on_del ay.

e connection_control _max_connecti on_del ay cannot be set less than the current value of
connection_control _m n_connection_del ay.

Thus, to make the changes required for some configurations, you might need to set the
variables in a specific order. Suppose that the current minimum and maximum delays
are 1000 and 2000, and that you want to set them to 3000 and 5000. You cannot first
set connection_control _nin_connection_del ay to 3000 because that is greater
than the current connecti on_control _nmax_connecti on_del ay value of 2000.
Instead, set connecti on_control _nax_connecti on_del ay to 5000, then set
connection_control _m n_connecti on_del ay to 3000.

Connection Failure Assessment

When the CONNECTI ON_CONTRCL plugin is installed, it checks connection attempts and tracks whether
they fail or succeed. For this purpose, a failed connection attempt is one for which the client user and host
match a known MySQL account but the provided credentials are incorrect, or do not match any known
account.

Failed-connection counting is based on the user/host combination for each connection attempt.
Determination of the applicable user name and host name takes proxying into account and occurs as
follows:

* If the client user proxies another user, the account for failed-connection counting is the
proxying user, not the proxied user. For example, if ext er nal _user @xanpl e. com
proxies pr oxy_user @xanpl e. com connection counting uses the proxying user,
ext ernal _user @xanpl e. com rather than the proxied user, pr oxy _user @xanpl e. com
Both ext er nal _user @xanpl e. comand pr oxy_user @xanpl e. commust have valid entries
in the mysql . user system table and a proxy relationship between them must be defined in the
nysql . proxi es_pri v system table (see Section 4.14, “Proxy Users”).

« If the client user does not proxy another user, but does match a nysql . user entry, counting uses
the CURRENT _USER() value corresponding to that entry. For example, if a user user 1 connecting
from a host host 1. exanpl e. commatches a user 1@ost 1. exanpl e. comentry, counting uses
user 1@ost 1. exanpl e. com If the user matches a user 1 @6 exanpl e. com user 1@o com
or user 1@bentry instead, counting uses user 1@6 exanpl e. com user 1@%6 com or user 1@4
respectively.

For the cases just described, the connection attempt matches some nysql . user entry, and whether the
request succeeds or fails depends on whether the client provides the correct authentication credentials.
For example, if the client presents an incorrect password, the connection attempt fails.

If the connection attempt matches no mysql . user entry, the attempt fails. In this case, no
CURRENT _USER() value is available and connection-failure counting uses the user name provided
by the client and the client host as determined by the server. For example, if a client attempts to

193

https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

Connection Control Plugin System and Status Variables

connect as user user 2 from host host 2. exanpl e. com the user name part is available in the client
request and the server determines the host information. The user/host combination used for counting is
user 2@host 2. exanpl e. com

Note

The server maintains information about which client hosts can possibly connect to
the server (essentially the union of host values for nysql . user entries). If a client
attempts to connect from any other host, the server rejects the attempt at an early
stage of connection setup:

ERROR 1130 (HY000): Host 'host_nane' is not
all owed to connect to this M/SQL server

Because this type of rejection occurs so early, CONNECTI ON_CONTRCL does not
see it, and does not count it.

Connection Failure Monitoring
To monitor failed connections, use these information sources:

 The Connection_control _del ay_gener at ed status variable indicates the number
of times the server added a delay to its response to a failed connection attempt. This
does not count attempts that occur before reaching the threshold defined by the
connection_control _failed connections_threshol d system variable.

e The | NFORVATI ON_SCHENMA CONNECTI ON_CONTROL_FAI LED LOG N_ATTEMPTS table provides
information about the current number of consecutive failed connection attempts per account (user/host
combination). This counts all failed attempts, regardless of whether they were delayed.

Assigning a value to connecti on_control _fail ed_connections_threshol d at runtime has these
effects:

» All accumulated failed-connection counters are reset to zero.
» The Connection_control _del ay_gener at ed status variable is reset to zero.

» The CONNECTI ON_CONTROL_FAI LED LOG N_ATTEMPTS table becomes empty.

6.2.2 Connection Control Plugin System and Status Variables

This section describes the system and status variables that the CONNECTI ON_CONTRCL plugin provides to
enable its operation to be configured and monitored.

» Connection Control Plugin System Variables
» Connection Control Plugin Status Variables
Connection Control Plugin System Variables
If the CONNECTI ON_CONTRCL plugin is installed, it exposes these system variables:

e connection_control _failed connections_threshold

Command-Line Format --connection-control -fail ed-
connecti ons-t hreshol d=#

Introduced 5.7.17

System Variable connection_control failed connections_threshold

194

https://dev.mysql.com/doc/refman/5.7/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-connection-control-failed-login-attempts-table.html

Connection Control Plugin System and Status Variables

Scope Global
Dynamic Yes

Type Integer
Default Value 3

Minimum Value 0

Maximum Value 2147483647

The number of consecutive failed connection attempts permitted to accounts before the server adds a
delay for subsequent connection attempts:

« |f the variable has a nonzero value N, the server adds a delay beginning with consecutive failed
attempt N+1. If an account has reached the point where connection responses are delayed, a delay
also occurs for the next subsequent successful connection.

< Setting this variable to zero disables failed-connection counting. In this case, the server never adds
delays.

For information about how connecti on_control failed connections_threshol d interacts
with other connection control system and status variables, see Section 6.2.1, “Connection Control Plugin
Installation”.

e connection_control _max_connection_del ay

Command-Line Format --connecti on-control - max- connecti on-
del ay=#

Introduced 5.7.17

System Variable connecti on_control _max_connection_del a

Scope Global

Dynamic Yes

Type Integer

Default Value 2147483647

Minimum Value 1000

Maximum Value 2147483647

Unit milliseconds

The maximum delay in milliseconds for server response to failed connection attempts, if
connection_control failed_connections_threshol dis greater than zero.

For information about how connecti on_control max_connecti on_del ay interacts with other
connection control system and status variables, see Section 6.2.1, “Connection Control Plugin
Installation”.

e connection_control _m n_connection_del ay

Command-Line Format --connection-control -m n-connecti on-
del ay=#

Introduced 5.7.17

System Variable connection_control _m n_connection_del a

195

The Password Validation Plugin

Scope Global
Dynamic Yes

Type Integer
Default Value 1000
Minimum Value 1000
Maximum Value 2147483647
Unit milliseconds

The minimum delay in milliseconds for server response to failed connection attempts, if
connection_control failed_connections_threshol dis greater than zero.

For information about how connecti on_control _m n_connecti on_del ay interacts with other
connection control system and status variables, see Section 6.2.1, “Connection Control Plugin
Installation”.

Connection Control Plugin Status Variables

If the CONNECTI ON_CONTRCL plugin is installed, it exposes this status variable:

Connection_control del ay_generat ed

The number of times the server added a delay to its response to a failed connection attempt.
This does not count attempts that occur before reaching the threshold defined by the
connection_control failed connections_threshol d system variable.

This variable provides a simple counter. For more detailed connection control monitoring information,
examine the | NFORMATI ON_SCHENMA CONNECTI ON_CONTROL_FAI LED _LOG N_ATTEMPTS table; see
The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table.

Assigning a value to connection_control fail ed connections_threshol d at runtime resets
Connection_control _del ay_gener at ed to zero.

This variable was added in MySQL 5.7.17.

6.3 The Password Validation Plugin

The val i dat e_passwor d plugin serves to improve security by requiring account passwords and enabling
strength testing of potential passwords. This plugin exposes a set of system variables that enable you to
configure password policy.

The val i dat e_passwor d plugin implements these capabilities:

For SQL statements that assign a password supplied as a cleartext value, val i dat e_password
checks the password against the current password policy and rejects the password if it is weak (the
statement returns an ER_NOT_VAL| D_PASSWORD error). This applies to the ALTER USER, CREATE
USER, GRANT, and SET PASSWORD statements, and passwords given as arguments to the PASSWORDY)
function.

For CREATE USER statements, val i dat e_passwor d requires that a password be given, and that
it satisfies the password policy. This is true even if an account is locked initially because otherwise
unlocking the account later would cause it to become accessible without a password that satisfies the

policy.

196

https://dev.mysql.com/doc/refman/5.7/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-connection-control-failed-login-attempts-table.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_not_valid_password
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/create-user.html

The Password Validation Plugin

e val i dat e_passwor d implements a VALI DATE_PASSWORD STRENGTH() SQL function that assesses
the strength of potential passwords. This function takes a password argument and returns an integer
from O (weak) to 100 (strong).

Note

For statements that assign, modify, or generate account passwords (ALTER USER,
CREATE USER, GRANT, and SET PASSWORD; statements that use PASSVWORD() ,
the val i dat e_passwor d capabilities described here apply only to accounts

that use an authentication plugin that stores credentials internally to MySQL. For
accounts that use plugins that perform authentication against a credentials system
external to MySQL, password management must be handled externally against
that system as well. For more information about internal credentials storage, see
Section 4.11, “Password Management”.

The preceding restriction does not apply to use of the
VALI DATE_PASSWORD STRENGTH() function because it does not affect accounts
directly.

Examples:

» val i dat e_passwor d checks the cleartext password in the following statement. Under the default
password policy, which requires passwords to be at least 8 characters long, the password is weak and
the statement produces an error:

mysql > ALTER USER USER() | DENTI FI ED BY ' abc' ;
ERROR 1819 (HYO00): Your password does not satisfy the current
policy requirenents

» Passwords specified as hashed values are not checked because the original password value is not
available for checking:

nysqgl > ALTER USER 'jeffrey' @I ocal host'

| DENTI FI ED W TH nysql _nati ve_passwor d

AS ' * OD3CEDIBEC10A777AEC23CCC353A8C08A633045E' ;
Query OK, 0 rows affected (0.01 sec)

» This account-creation statement fails, even though the account is locked initially, because it does not
include a password that satisfies the current password policy:

nysql > CREATE USER 'juanita' @I ocal host' ACCOUNT LOCK;

ERROR 1819 (HYO000): Your password does not satisfy the current
policy requirenents

» To check a password, use the VALI DATE_PASSWORD STRENGTH() function:

nysql > SELECT VALI DATE_PASSWORD STRENGTH(' weak') ;

fccoo000000000000000000000000000000S +
| VALI DATE_PASSWORD STRENGTH(' weak') |
fccoo000000000000000000000000000000S +

| 25 |
fccoo000000000000000000000000000000S +

nysql > SELECT VALI DATE_PASSWORD STRENGTH(' | essweak$_@23') ;
o S SRy Sy Sy +

| VALI DATE_PASSWORD STRENGTH(' | essweak$_@23') |
S S SRy Sy Sy +

| 50 |
S S SRy Sy Sy +

nysql > SELECT VALI DATE_PASSWORD STRENGTH(' NOTweak$_@.23!");
S S SRy Sy Sy +

| VALI DATE_PASSWORD STRENGTH(' NOTweak$_@.23!"') |
S S SRy Sy Sy +

197

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_validate-password-strength

Password Validation Plugin Installation

To configure password checking, modify the system variables having names of the form
val i dat e_passwor d_xxx; these are the parameters that control password policy. See Section 6.3.2,
“Password Validation Plugin Options and Variables”.

If val i dat e_passwor d is not installed, the val i dat e_passwor d_xxx system variables are not
available, passwords in statements are not checked, and the VALI DATE _PASSWORD STRENGTH()
function always returns 0. For example, without the plugin installed, accounts can be assigned passwords
shorter than 8 characters, or no password at all.

Assuming that val i dat e_passwor d is installed, it implements three levels of password

checking: LOW MEDI UM and STRONG. The default is MEDI UM to change this, modify the value of

val i dat e_passwor d_pol i cy. The policies implement increasingly strict password tests. The following
descriptions refer to default parameter values, which can be modified by changing the appropriate system
variables.

» LOWpolicy tests password length only. Passwords must be at least 8 characters long. To change this
length, modify val i dat e_passwor d_I engt h.

« VEDI UMpolicy adds the conditions that passwords must contain at least 1 numeric
character, 1 lowercase character, 1 uppercase character, and 1 special (nonalphanumeric)
character. To change these values, modify val i dat e_password_nunber count,
val i dat e_password_mi xed_case_count, and val i dat e_password_speci al _char_count.

» STRONG policy adds the condition that password substrings of length 4 or longer must not match
words in the dictionary file, if one has been specified. To specify the dictionary file, modify
val i dat e_password _dictionary file.

In addition, as of MySQL 5.7.15, val i dat e_passwor d supports the capability of rejecting
passwords that match the user name part of the effective user account for the current session, either
forward or in reverse. To provide control over this capability, val i dat e_passwor d exposes a

val i dat e_passwor d_check _user nane system variable, which is enabled by default.

6.3.1 Password Validation Plugin Installation

This section describes how to install the val i dat e_passwor d password-validation plugin. For general
information about installing plugins, see Installing and Uninstalling Plugins.

| Note

If you installed MySQL 5.7 using the MySQL Yum repository, MySQL SLES
Repository, or RPM packages provided by Oracle, val i dat e_passwor d is
enabled by default after you start your MySQL Server for the first time.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

The plugin library file base name is val i dat e_passwor d. The file name suffix differs per platform (for
example, . so for Unix and Unix-like systems, . dl | for Windows).

To load the plugin at server startup, use the - - pl ugi n- | oad- add option to name the library file that
contains it. With this plugin-loading method, the option must be given each time the server starts. For
example, put these lines in the server nny. cnf file, adjusting the . so suffix for your platform as necessary:

[nysql d]
pl ugi n- | oad- add=val i dat e_passwor d. so

198

https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/downloads/repo/suse/
https://dev.mysql.com/doc/refman/5.7/en/linux-installation-rpm.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add

Password Validation Plugin Options and Variables

After modifying ny. cnf , restart the server to cause the new settings to take effect.

Alternatively, to load the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

I NSTALL PLUG N val i dat e_password SONAME ' val i dat e_password. so';

| NSTALL PLUG Nloads the plugin, and also registers it in the nysql . pl ugi ns system table to cause the
plugin to be loaded for each subsequent normal server startup without the need for - - pl ugi n-1 oad- add.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHEMA. PLUG NS
WHERE PLUG N_NAME LI KE ' val i dat e% ;

dimccocccosccoosoco=o dieccocccoscoocoso +
| PLUG N_NANE | PLUG N_STATUS |
dimccocccosccoosoco=o dieccocccoscoocoso +
| validate_password | ACTI VE |
dimccocccosccoosoco=o dieccocccoscoocoso +

If the plugin fails to initialize, check the server error log for diagnostic messages.

If the plugin has been previously registered with | NSTALL PLUG Nor is loaded with - - pl ugi n-1 oad-
add, you can use the - - val i dat e- passwor d option at server startup to control plugin activation. For
example, to load the plugin at startup and prevent it from being removed at runtime, use these options:

[nysql d]
pl ugi n- | oad- add=val i dat e_passwor d. so
val i dat e- passwor d=FORCE_PLUS_PERVANENT

If it is desired to prevent the server from running without the password-validation plugin, use - -
val i dat e- passwor d with a value of FORCE or FORCE_PLUS PERMANENT to force server startup to fail if
the plugin does not initialize successfully.

6.3.2 Password Validation Plugin Options and Variables

This section describes the options, system variables, and status variables that val i dat e_password
provides to enable its operation to be configured and monitored.

» Password Validation Plugin Options
» Password Validation Plugin System Variables
» Password Validation Plugin Status Variables
Password Validation Plugin Options
To control activation of the val i dat e_passwor d plugin, use this option:

e --validat e- password[=val ue]

Command-Line Format --val i dat e- passwor d[=val ue]
Type Enumeration
Default Value ON
Valid Values ON
OFF

199

https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add

Password Validation Plugin Options and Variables

FORCE

FORCE_PLUS_PERVANENT

This option controls how the server loads the val i dat e_passwor d plugin at startup. The value should
be one of those available for plugin-loading options, as described in Installing and Uninstalling Plugins.
For example, - - val i dat e- passwor d=FORCE_PLUS PERVMANENT tells the server to load the plugin at
startup and prevents it from being removed while the server is running.

This option is available only if the val i dat e_passwor d plugin has been previously registered with
| NSTALL PLUGQ Nor is loaded with - - pl ugi n-1 oad- add. See Section 6.3.1, “Password Validation
Plugin Installation”.

Password Validation Plugin System Variables

If the val i dat e_passwor d plugin is enabled, it exposes several system variables that enable
configuration of password checking:

nmysqgl > SHOW VARI ABLES LI KE ' val i dat e_passwor d% ;

== eSSy doocoocoao +
| Vari abl e_nane | Value |
== eSSy doocoocoao +
validate_password_check_user_nane	OFF	
validate_password_dictionary file		
validate_password_	ength	8
validate_password_m xed_case_count	1	
validate_password_nunber _count	1	
validate_password_policy	MEDI UM	
validate_password_special _char_count	1	
+

To change how passwords are checked, you can set these system variables at server startup or at
runtime. The following list describes the meaning of each variable.

e val i date_password_check_user_nane

Command-Line Format --val i dat e- passwor d- check- user -
name[={ OFF| ON}]

Introduced 5.7.15

System Variable val i dat e_password_check_user _nane

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Whether val i dat e_passwor d compares passwords to the user name part of the effective user
account for the current session and rejects them if they match. This variable is unavailable unless
val i dat e_passwor d is installed.

By default, val i dat e_password_check _user nane is disabled. This variable controls user name
matching independent of the value of val i dat e_password_policy.

When val i dat e_passwor d_check _user nane is enabled, it has these effects:

200

https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add

Password Validation Plugin Options and Variables

* Checking occurs in all contexts for which val i dat e_passwor d is invoked, which includes use of
statements such as ALTER USER or SET PASSWORD to change the current user's password, and
invocation of functions such as PASSWORD() and VALI DATE _PASSWORD STRENGTH() .

e The user names used for comparison are taken from the values of the USER() and
CURRENT_USER() functions for the current session. An implication is that a user who has
sufficient privileges to set another user's password can set the password to that user's name, and
cannot set that user' password to the name of the user executing the statement. For example,
"root' @I ocal host' can set the password for' jeffrey' @Il ocal host' to'jeffrey', but
cannot set the password to ' r oot .

¢ Only the user name part of the USER() and CURRENT _USER() function values is used, not the host
name part. If a user name is empty, no comparison occurs.

 If a password is the same as the user name or its reverse, a match occurs and the password is
rejected.

* User-name matching is case-sensitive. The password and user name values are compared as binary
strings on a byte-by-byte basis.

 If a password matches the user name, VALI DATE _PASSWORD STRENGTH() returns O regardless of
how other val i dat e_passwor d system variables are set.

val i dat e_password_dictionary file

Command-Line Format --val i dat e- passwor d-di cti onary-
file=file_name

System Variable val i dat e_password_dictionary file

Scope Global

Dynamic Yes

Type File name

The path name of the dictionary file that val i dat e_passwor d uses for checking passwords. This
variable is unavailable unless val i dat e_passwor d is installed.

By default, this variable has an empty value and dictionary checks are not performed. For dictionary
checks to occur, the variable value must be nonempty. If the file is named as a relative path, it is
interpreted relative to the server data directory. File contents should be lowercase, one word per line.
Contents are treated as having a character set of ut f 8. The maximum permitted file size is 1MB.

For the dictionary file to be used during password checking, the password policy must be set to 2
(STRONG); see the description of the val i dat e_passwor d_pol i cy system variable. Assuming that is
true, each substring of the password of length 4 up to 100 is compared to the words in the dictionary file.
Any match causes the password to be rejected. Comparisons are not case-sensitive.

For VALI DATE_PASSWORD STRENGTH() , the password is checked against all policies,
including STRONG, so the strength assessment includes the dictionary check regardless of the
val i dat e_password_pol i cy value.

val i dat e_password_di ctionary_fil e can be set at runtime and assigning a value causes the
named file to be read without a server restart.

201

https://dev.mysql.com/doc/refman/5.7/en/alter-user.html
https://dev.mysql.com/doc/refman/5.7/en/set-password.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_password
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_validate-password-strength
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_validate-password-strength

Password Validation Plugin Options and Variables

e validate_password_| ength

Command-Line Format

--val i dat e- passwor d- | engt h=#

System Variable

val i dat e_password_| ength

Scope Global
Dynamic Yes
Type Integer
Default Value 8
Minimum Value 0

The minimum number of characters that val i dat e_passwor d requires passwords to have. This
variable is unavailable unless val i dat e _passwor d is installed.

The val i dat e_passwor d_| engt h minimum value is a function of several other related system
variables. The value cannot be set less than the value of this expression:

val i dat e_passwor d_nunber _count

+ val i dat e_passwor d_speci al _char _count
+ (2 * validate_password_ni xed_case_count)

If val i dat e_passwor d adjusts the value of val i dat e_passwor d_| engt h due to the preceding
constraint, it writes a message to the error log.

val i dat e_passwor d_m xed_case_count

Command-Line Format

--val i dat e- passwor d- m xed- case-
count =#

System Variable

val i dat e_password_m xed_case_count

Scope Global
Dynamic Yes
Type Integer
Default Value 1
Minimum Value 0

The minimum number of lowercase and uppercase characters that val i dat e_passwor d requires
passwords to have if the password policy is MEDI UMor stronger. This variable is unavailable unless
val i dat e_passwor d is installed.

Foragivenval i date_password_ni xed_case_count value, the password must have that many

lowercase characters, and that many uppercase characters.

» val i date_password_nunber count

Command-Line Format

--val i dat e- passwor d- nunber - count =#

System Variable

val i dat e_passwor d_nunber _count

Scope Global
Dynamic Yes
Type Integer
Default Value 1

202

Password Validation Plugin Options and Variables

Minimum Value 0

The minimum number of numeric (digit) characters that val i dat e_passwor d requires passwords
to have if the password policy is MEDI UMor stronger. This variable is unavailable unless
val i dat e_passwor d is installed.

val i dat e_password_policy

Command-Line Format --val i dat e- passwor d- pol i cy=val ue
System Variable val i dat e_password_policy
Scope Global
Dynamic Yes
Type Enumeration
Default Value 1
Valid Values 0
1
2

The password policy enforced by val i dat e_passwor d. This variable is unavailable unless
val i dat e_passwor d is installed.

val i dat e_passwor d_pol i cy affects how val i dat e_passwor d uses its other policy-setting system
variables, except for checking passwords against user names, which is controlled independently by
val i dat e_password_check_user _nane.

The val i dat e_passwor d_pol i cy value can be specified using numeric values 0, 1, 2,

or the corresponding symbolic values LOW VEDI UM STRONG. The following table describes

the tests performed for each policy. For the length test, the required length is the value of the

val i dat e_passwor d_| engt h system variable. Similarly, the required values for the other tests are
given by other val i dat e_passwor d_xxx variables.

Policy Tests Performed
0 or LOW Length
1 or VEDI UM Length; numeric, lowercase/uppercase, and

special characters

2 or STRONG Length; numeric, lowercase/uppercase, and
special characters; dictionary file

» val i dat e_password_speci al _char _count

Command-Line Format --val i dat e- passwor d- speci al - char -
count =#
System Variable val i dat e_passwor d_speci al _char _count
Scope Global
Dynamic Yes
Type Integer
Default Value 1 203

The MySQL Keyring

Minimum Value 0

The minimum number of nonalphanumeric characters that val i dat e_passwor d requires
passwords to have if the password policy is MEDI UMor stronger. This variable is unavailable unless
val i dat e_passwor d is installed.

Password Validation Plugin Status Variables

If the val i dat e_passwor d plugin is enabled, it exposes status variables that provide operational

information:

nmysqgl > SHOW STATUS LI KE ' val i dat e_passwor d% ;
e == doococccoococococococooan +
| Vari abl e_nane | Val ue
e == doococccoococococococooan +

| validate_password.dictionary file_|last_parsed | 2019-10-03 08: 33: 49
| validate_password_dictionary_file_words_count | 1902
e == doococccoococococococooan +

The following list describes the meaning of each status variable.

» validate password dictionary file |ast parsed
When the dictionary file was last parsed.

« validate_password _dictionary file_ words_count

The number of words read from the dictionary file.

6.4 The MySQL Keyring

MySQL Server supports a keyring that enables internal server components and plugins to securely store
sensitive information for later retrieval. The implementation comprises these elements:

» Keyring plugins that manage a backing store or communicate with a storage back end. These keyring
plugins are available:

e keyring_fil e: Stores keyring data in a file local to the server host. Available in MySQL Community
Edition and MySQL Enterprise Edition distributions as of MySQL 5.7.11. See Section 6.4.2, “Using the
keyring_file File-Based Keyring Plugin”.

e keyring_encrypted_fil e: Stores keyring data in an encrypted, password-protected file local
to the server host. Available in MySQL Enterprise Edition distributions as of MySQL 5.7.21. See
Section 6.4.3, “Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin”.

e keyring_okv: AKMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products
such as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in MySQL Enterprise
Edition distributions as of MySQL 5.7.12. See Section 6.4.4, “Using the keyring_okv KMIP Plugin”.

e keyri ng_aws: Communicates with the Amazon Web Services Key Management Service for key
generation and uses a local file for key storage. Available in MySQL Enterprise Edition distributions as
of MySQL 5.7.19. See Section 6.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”.

» A keyring service interface for keyring key management (MySQL 5.7.13 and higher). This service is
accessible at two levels:

¢ SQL interface: In SQL statements, call the functions described in Section 6.4.8, “General-Purpose
Keyring Key-Management Functions”.

204

Keyring Plugin Installation

« Cinterface: In C-language code, call the keyring service functions described in The Keyring Service.

» A key migration capability. MySQL 5.7.21 and higher supports migration of keys between keystores,
enabling DBAs to switch a MySQL installation from one keystore to another. See Section 6.4.7,
“Migrating Keys Between Keyring Keystores”.

Warning

For encryption key management, the keyring fil e and
keyring_encrypted fil e plugins are not intended as a regulatory compliance
solution. Security standards such as PCI, FIPS, and others require use of key
management systems to secure, manage, and protect encryption keys in key vaults
or hardware security modules (HSMs).

Within MySQL, keyring service consumers include:

* The | nnoDB storage engine uses the keyring to store its key for tablespace encryption. See InnoDB
Data-at-Rest Encryption.

* MySQL Enterprise Audit uses the keyring to store the audit log file encryption password. See Encrypting
Audit Log Files.

For general keyring installation instructions, see Section 6.4.1, “Keyring Plugin Installation”. For installation
and configuration information specific to a given keyring plugin, see the section describing that plugin.

For information about using the keyring functions, see Section 6.4.8, “General-Purpose Keyring Key-
Management Functions”.

Keyring plugins and functions access a keyring service that provides the interface to the keyring. For
information about accessing this service and writing keyring plugins, see The Keyring Service, and Writing
Keyring Plugins.

6.4.1 Keyring Plugin Installation

Keyring service consumers require that a keyring plugin be installed. This section describes how to install
the keyring plugin of your choosing. Also, for general information about installing plugins, see Installing and
Uninstalling Plugins.

If you intend to use keyring functions in conjunction with the chosen keyring plugin, install the functions
after installing that plugin, using the instructions in Section 6.4.8, “General-Purpose Keyring Key-
Management Functions”.

Note

Only one keyring plugin should be enabled at a time. Enabling multiple keyring
plugins is unsupported and results may not be as anticipated.

MySQL provides these keyring plugin choices:

e keyring fil e: Stores keyring data in a file local to the server host. Available in MySQL Community
Edition and MySQL Enterprise Edition distributions.

» keyring encrypted fil e: Stores keyring data in an encrypted, password-protected file local to the
server host. Available in MySQL Enterprise Edition distributions.

» keyring_okv: AKMIP 1.1 plugin for use with KMIP-compatible back end keyring storage products such
as Oracle Key Vault and Gemalto SafeNet KeySecure Appliance. Available in MySQL Enterprise Edition
distributions.

205

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-keyring-plugins.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/writing-keyring-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html

Keyring Plugin Installation

e keyring_aws: Communicates with the Amazon Web Services Key Management Service as a back
end for key generation and uses a local file for key storage. Available in MySQL Enterprise Edition
distributions.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

The keyring plugin must be loaded early during the server startup sequence so that components can
access it as necessary during their own initialization. For example, the | nnoDB storage engine uses the
keyring for tablespace encryption, so the keyring plugin must be loaded and available prior to | nnoDB
initialization.

Installation for each keyring plugin is similar. The following instructions describe how to install
keyring_ file.To use a different keyring plugin, substitute its name for keyring fil e.

The keyri ng_fil e plugin library file base name is keyri ng_fi | e. The file name suffix differs per
platform (for example, . so for Unix and Unix-like systems, . dl | for Windows).

To load the plugin, use the - - ear | y- pl ugi n- | oad option to name the plugin library file that contains it.
For example, on platforms where the plugin library file suffix is . so, use these lines in the server ny. cnf
file, adjusting the . so suffix for your platform as necessary:

[nysql d]
earl y-pl ugi n-1 oad=keyring_file.so

Important

In MySQL 5.7.11, the default - - ear | y- pl ugi n- | oad value is the name of the
keyring_fil e plugin library file, causing that plugin to be loaded by default. In
MySQL 5.7.12 and higher, the default - - ear | y- pl ugi n-1 oad value is empty; to
load the keyring fil e plugin, you must explicitly specify the option with a value
naming the keyring_fi | e plugin library file.

| nnoDB tablespace encryption requires that the keyring plugin to be used be loaded
prior to | nnoDB initialization, so this change of default - - ear | y- pl ugi n-1 oad
value introduces an incompatibility for upgrades from 5.7.11 to 5.7.12 or higher.
Administrators who have encrypted | nnoDB tablespaces must take explicit action to
ensure continued loading of the keyring plugin: Start the server with an - - ear | y-

pl ugi n- | oad option that names the plugin library file.

Before starting the server, check the notes for your chosen keyring plugin for configuration instructions
specific to that plugin:

* keyring_fil e:Section 6.4.2, “Using the keyring_file File-Based Keyring Plugin”.

» keyring encrypted fil e: Section 6.4.3, “Using the keyring_encrypted_file Encrypted File-Based
Keyring Plugin”.

e keyring_okv: Section 6.4.4, “Using the keyring_okv KMIP Plugin”.
» keyring_aws: Section 6.4.5, “Using the keyring_aws Amazon Web Services Keyring Plugin”

After performing any plugin-specific configuration, start the server. Verify plugin installation by examining
the Information Schema PLUGQ NS table or use the SHOWN PLUG NS statement (see Obtaining Server
Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS

206

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html

Using the keyring_file File-Based Keyring Plugin

FROM | NFORVATI ON_SCHENMA. PLUG NS
VWHERE PLUG N_NAME LI KE ' keyring% ;

S S S +
| PLUG N_NAME | PLUG N_STATUS |
S S S +
| keyring_file | ACTIVE |
S S S +

If the plugin fails to initialize, check the server error log for diagnostic messages.

Plugins can be loaded by methods other than - - ear | y- pl ugi n-1 oad, such as the - - pl ugi n-1 oad or
- - pl ugi n-1 oad- add option or the | NSTALL PLUG N statement. However, keyring plugins loaded using
those methods may be available too late in the server startup sequence for certain components that use
the keyring, such as | nnoDB:

* Plugin loading using - - pl ugi n- 1 oad or - - pl ugi n- 1 oad- add occurs after | nnoDB initialization.

» Plugins installed using | NSTALL PLUG N are registered in the mysqgl . pl ugi n system table and loaded
automatically for subsequent server restarts. However, because nysql . pl ugi nis an | nnoDB table,
any plugins named in it can be loaded during startup only after | nnoDB initialization.

If no keyring plugin is available when a component tries to access the keyring service, the service cannot
be used by that component. As a result, the component may fail to initialize or may initialize with limited
functionality. For example, if | nnoDB finds that there are encrypted tablespaces when it initializes, it
attempts to access the keyring. If the keyring is unavailable, | nnoDB can access only unencrypted
tablespaces. To ensure that | nnoDB can access encrypted tablespaces as well, use - - ear | y- pl ugi n-
| oad to load the keyring plugin.

6.4.2 Using the keyring_file File-Based Keyring Plugin
The keyring_fi | e keyring plugin stores keyring data in a file local to the server host.
Warning

For encryption key management, the keyri ng_fi | e plugin is not intended as a
regulatory compliance solution. Security standards such as PCI, FIPS, and others
require use of key management systems to secure, manage, and protect encryption
keys in key vaults or hardware security modules (HSMs).

Toinstall keyri ng_fil e, use the general instructions found in Section 6.4.1, “Keyring Plugin Installation”,
together with the configuration information specific to keyri ng_fi | e found here.

To be usable during the server startup process, keyri ng_fi | e must be loaded using the - - ear | y-
pl ugi n-1 oad option. The keyri ng _fil e_dat a system variable optionally configures the location of
the file used by the keyri ng _fi | e plugin for data storage. The default value is platform specific. To
configure the file location explicitly, set the variable value at startup. For example, use these lines in the
server ny. cnf file, adjusting the . so suffix and file location for your platform as necessary:

[nysgl d]
earl y-pl ugi n-1 oad=keyring_file.so
keyring_fil e_data=/usr/I|ocal/nysql/nysql -keyring/ keyring

If keyring file_datais settoanew location, the keyring plugin creates a new, empty file containing no
keys; this means that any existing encrypted tables can no longer be accessed.

Keyring operations are transactional: The keyri ng_fi | e plugin uses a backup file during write operations
to ensure that it can roll back to the original file if an operation fails. The backup file has the same name as
the value of the keyri ng_fi | e_dat a system variable with a suffix of . backup.

207

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load

Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin

For additional information about keyri ng fil e _dat a, see Section 6.4.12, “Keyring System Variables”.

As of MySQL 5.7.17, to ensure that keys are flushed only when the correct keyring storage file exists,
keyring_fil e stores a SHA-256 checksum of the keyring in the file. Before updating the file, the plugin
verifies that it contains the expected checksum.

The keyring_fi | e plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

» SQL interface: In SQL statements, call the functions described in Section 6.4.8, “General-Purpose
Keyring Key-Management Functions”.

» Cinterface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key generate(' MyKey', 'AES , 32)
SELECT keyring_key_renove(' MyKey')

For information about the characteristics of key values permitted by keyri ng_fi | e, see Section 6.4.6,
“Supported Keyring Key Types and Lengths”.

6.4.3 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin

Note

The keyring_encrypted_fil e plugin is an extension included in MySQL
Enterprise Edition, a commercial product. To learn more about commercial
products, see https://www.mysqgl.com/products/.

The keyring_encrypt ed_fil e keyring plugin stores keyring data in an encrypted, password-protected
file local to the server host. A password must be specified for the file. This plugin is available as of MySQL
5.7.21.

Warning

For encryption key management, the keyri ng_encrypt ed_fi | e plugin is not
intended as a regulatory compliance solution. Security standards such as PCI,
FIPS, and others require use of key management systems to secure, manage, and
protect encryption keys in key vaults or hardware security modules (HSMs).

Toinstall keyri ng_encrypted_fil e, use the general instructions found in Section 6.4.1, “Keyring
Plugin Installation”, together with the configuration information specific to keyri ng_encrypted _fil e
found here.

To be usable during the server startup process, keyri ng_encrypt ed_fi | e must be loaded using the
--early-plugi n-1 oad option. To specify the password for encrypting the keyring data file, set the
keyring_encrypted fil e _password system variable. (The password is mandatory; if not specified at
server startup, keyri ng_encrypt ed_fil e initialization fails.) The keyri ng_encrypted fil e _data
system variable optionally configures the location of the file used by the keyri ng_encrypted file
plugin for data storage. The default value is platform specific. To configure the file location explicitly, set the
variable value at startup. For example, use these lines in the server ny. cnf file, adjusting the . so suffix
and file location for your platform as necessary and substituting your chosen password:

[nysql d]

ear | y-pl ugi n-1 oad=keyri ng_encrypted_file.so
keyring_encrypted_fil e_data=/usr/| ocal /nysql/nysql - keyri ng/ keyri ng-encrypt ed
keyring_encrypted_fil e_password=password

208

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load

Using the keyring_okv KMIP Plugin

Because the ny. cnf file stores a password when written as shown, it should have a restrictive mode and
be accessible only to the account used to run the MySQL server.

Keyring operations are transactional: The keyri ng_encrypt ed_fi | e plugin uses a backup file during
write operations to ensure that it can roll back to the original file if an operation fails. The backup file has
the same name as the value of the keyri ng_encrypted_fi | e_dat a system variable with a suffix of
. backup.

For additional information about the system variables used to configure the keyring _encrypted file
plugin, see Section 6.4.12, “Keyring System Variables”.

To ensure that keys are flushed only when the correct keyring storage file exists,
keyring_encrypted fil e stores a SHA-256 checksum of the keyring in the file. Before updating the
file, the plugin verifies that it contains the expected checksum. In addition, keyri ng_encrypted_file
encrypts file contents using AES before writing the file, and decrypts file contents after reading the file.

The keyring_encrypted fil e plugin supports the functions that comprise the standard MySQL
Keyring service interface. Keyring operations performed by those functions are accessible at two levels:

» SQL interface: In SQL statements, call the functions described in Section 6.4.8, “General-Purpose
Keyring Key-Management Functions”.

» Cinterface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate(' MyKey', 'AES , 32);
SELECT keyring_key_renmove(' MyKey');

For information about the characteristics of key values permitted by keyri ng_encrypted fil e, see
Section 6.4.6, “Supported Keyring Key Types and Lengths”.

6.4.4 Using the keyring_okv KMIP Plugin
Note

The keyri ng_okv plugin is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysgl.com/products/.

The Key Management Interoperability Protocol (KMIP) enables communication of cryptographic keys
between a key management server and its clients. The keyri ng_okv keyring plugin uses the KMIP 1.1
protocol to communicate securely as a client of a KMIP back end. Keyring material is generated exclusively
by the back end, not by keyri ng_okv. The plugin works with these KMIP-compatible products:

» Oracle Key Vault
» Gemalto SafeNet KeySecure Appliance
» Townsend Alliance Key Manager

Each MySQL Server instance must be registered separately as a client for KMIP. If two or more MySQL
Server instances use the same set of credentials, they can interfere with each other’s functioning.

The keyr i ng_okv plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by those functions are accessible at two levels:

» SQL interface: In SQL statements, call the functions described in Section 6.4.8, “General-Purpose
Keyring Key-Management Functions”.

209

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html
https://www.mysql.com/products/
https://www.mysql.com/products/

Using the keyring_okv KMIP Plugin

« Cinterface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate(' MyKey', 'AES , 32);
SELECT keyring_key_renmove(' MyKey');

For information about the characteristics of key values permitted by keyr i ng_okv, Section 6.4.6,
“Supported Keyring Key Types and Lengths”.

To install keyri ng_okv, use the general instructions found in Section 6.4.1, “Keyring Plugin Installation”,
together with the configuration information specific to keyr i ng_okv found here.

» General keyring_okv Configuration

» Configuring keyring_okv for Oracle Key Vault

» Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance
» Configuring keyring_okv for Townsend Alliance Key Manager

» Password-Protecting the keyring_okv Key File

General keyring_okv Configuration

Regardless of which KMIP back end the keyr i ng_okv plugin uses for keyring storage, the
keyring_okv_conf _dir system variable configures the location of the directory used by keyri ng_okv
for its support files. The default value is empty, so you must set the variable to name a properly configured
directory before the plugin can communicate with the KMIP back end. Unless you do so, keyri ng_okv
writes a message to the error log during server startup that it cannot communicate:

[Warni ng] Plugin keyring_okv reported: 'For keyring_okv to be
initialized, please point the keyring_okv_conf_dir variable to a directory
containing Oracle Key Vault configuration file and ssl materials

The keyri ng_okv_conf _dir variable must name a directory that contains the following items:

» okvclient. ora: A file that contains details of the KMIP back end with which keyri ng_okv
communicates.

» ssl : Adirectory that contains the certificate and key files required to establish a secure connection with
the KMIP back end: CA. pem cert. pem and key. pem As of MySQL 5.7.20, if the key file is password-
protected, the ssl directory can contain a single-line text file named passwor d. t xt containing the
password needed to decrypt the key file.

Both the okvcl i ent . or a file and ssl directory with the certificate and key files are required for
keyri ng_okv to work properly. The procedure used to populate the configuration directory with these files
depends on the KMIP back end used with keyri ng_okv, as described elsewhere.

The configuration directory used by keyri ng_okv as the location for its support files should have a
restrictive mode and be accessible only to the account used to run the MySQL server. For example,
on Unix and Unix-like systems, to use the / usr/ | ocal / nysql / nysql - keyri ng- okv directory, the
following commands (executed as r oot) create the directory and set its mode and ownership:

cd /usr/local /nmysq

nkdi r nysql - keyri ng- okv

chrmod 750 nysql - keyri ng- okv
chown mysqgl mysql - keyri ng- okv
chgrp nmysqgl mysql - keyri ng- okv

210

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html

Using the keyring_okv KMIP Plugin

To be usable during the server startup process, keyri ng_okv must be loaded using the - - ear | y-

pl ugi n- | oad option. Also, set the keyri ng_okv_conf _di r system variable to tell keyri ng_okv
where to find its configuration directory. For example, use these lines in the server ny. cnf file, adjusting
the . so suffix and directory location for your platform as necessary:

[nysql d]
ear| y- pl ugi n-1 oad=keyri ng_okv. so
keyring_okv_conf _dir=/usr/| ocal / nysql / nysql - keyri ng- okv

For additional information about keyri ng_okv_conf _dir, see Section 6.4.12, “Keyring System
Variables”.

Configuring keyring_okv for Oracle Key Vault

The discussion here assumes that you are familiar with Oracle Key Vault. Some pertinent information
sources:

» Oracle Key Vault site
» Oracle Key Vault documentation

In Oracle Key Vault terminology, clients that use Oracle Key Vault to store and retrieve security objects are
called endpoints. To communicate with Oracle Key Vault, it is necessary to register as an endpoint and
enroll by downloading and installing endpoint support files. Note that you must register a separate endpoint
for each MySQL Server instance. If two or more MySQL Server instances use the same endpoint, they can
interfere with each other’s functioning.

The following procedure briefly summarizes the process of setting up keyr i ng_okv for use with Oracle
Key Vault:

1. Create the configuration directory for the keyri ng_okv plugin to use.

2. Register an endpoint with Oracle Key Vault to obtain an enrollment token.

3. Use the enroliment token to obtain the okvcl i ent . j ar client software download.
4

Install the client software to populate the keyr i ng_okv configuration directory that contains the Oracle
Key Vault support files.

Use the following procedure to configure keyr i ng_okv and Oracle Key Vault to work together. This
description only summarizes how to interact with Oracle Key Vault. For details, visit the Oracle Key Vault
site and consult the Oracle Key Vault Administrator's Guide.

1. Create the configuration directory that contains the Oracle Key Vault support files, and make sure that
the keyri ng_okv_conf _di r system variable is set to name that directory (for details, see General
keyring_okv Configuration).

2. Log in to the Oracle Key Vault management console as a user who has the System Administrator role.
3. Select the Endpoints tab to arrive at the Endpoints page. On the Endpoints page, click Add.

4. Provide the required endpoint information and click Register. The endpoint type should be Other.
Successful registration results in an enroliment token.

5. Log out from the Oracle Key Vault server.

6. Connect again to the Oracle Key Vault server, this time without logging in. Use the endpoint enrollment
token to enroll and request the okvcl i ent . | ar software download. Save this file to your system.

7. Install the okvcl i ent.j ar file using the following command (you must have JDK 1.4 or higher):

211

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
http://www.oracle.com/technetwork/database/options/key-management/overview/index.html
http://www.oracle.com/technetwork/database/options/key-management/documentation/index.html
http://www.oracle.com/technetwork/database/options/key-management/overview/index.html

Using the keyring_okv KMIP Plugin

10.

java -jar okvclient.jar -d dir_nane [-v]

The directory name following the - d option is the location in which to install extracted files. The - v
option, if given, causes log information to be produced that may be useful if the command fails.

When the command asks for an Oracle Key Vault endpoint password, do not provide one. Instead,
press Enter. (The result is that no password is required when the endpoint connects to Oracle Key
Vault.)

The preceding command produces an okvcl i ent . or a file, which should be in this location under the
directory named by the - d option in the preceding j ava -] ar command:

instal |l _dir/conf/okvclient.ora

The expected file contents include lines that look like this:

SERVER=host i p: port_num
STANDBY_SERVER=host i p: port_num

Note

If the existing file is not in this format, then create a new file with the lines shown
in the previous example. Also, consider backing up the okvcl i ent . or a file
before you run the okvut i | command. Restore the file as needed.

The keyr i ng_okv plugin attempts to communicate with the server running on the host named by the
SERVER variable and falls back to STANDBY SERVER if that fails:

» For the SERVER variable, a setting in the okvcl i ent . or a file is mandatory.

« For the STANDBY_SERVER variable, a setting in the okvcl i ent . or a file is optional, as of MySQL
5.7.19. Prior to MySQL 5.7.19, a setting for STANDBY _SERVER is mandatory; if okvcl i ent . ora is
generated with no setting for STANDBY _SERVER, keyr i ng_okyv fails to initialize. The workaround is
to check or acl i ent . or a and add a “dummy” setting for STANDBY _SERVER, if one is missing. For
example:

STANDBY_SERVER=127. 0. 0. 1: 5696
Go to the Oracle Key Vault installer directory and test the setup by running this command:
okvutil/bin/okvutil Iist
The output should look something like this:
Uni que I D Type I dentifier

255AB8DE- C97F- 482C- E053- 0100007F28B9 Symmetric Key -
264BF6EO- A20E- 7CA2- E053- 0100007FB29C Symmetric Key -

For a fresh Oracle Key Vault server (a server without any key in it), the output looks like this instead, to
indicate that there are no keys in the vault:

no objects found
Use this command to extract the ss| directory containing SSL materials from the okvcl i ent . j ar file:

jar xf okvclient.jar ssli

Copy the Oracle Key Vault support files (the okvcl i ent . or a file and the ss| directory) into the
configuration directory.

212

Using the keyring_okv KMIP Plugin

11. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting the
keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyri ng_okv plugin and
keyri ng_okv uses the files in its configuration directory to communicate with Oracle Key Vault.

Configuring keyring_okv for Gemalto SafeNet KeySecure Appliance

Gemalto SafeNet KeySecure Appliance uses the KMIP protocol (version 1.1 or 1.2). As of MySQL 5.7.18,
the keyri ng_okv keyring plugin (which supports KMIP 1.1) can use KeySecure as its KMIP back end for
keyring storage.

Use the following procedure to configure keyri ng_okv and KeySecure to work together. The description
only summarizes how to interact with KeySecure. For details, consult the section named Add a KMIP
Server in the KeySecure User Guide.

1. Create the configuration directory that contains the KeySecure support files, and make sure that the
keyring_okv_conf _dir system variable is set to name that directory (for details, see General
keyring_okv Configuration).

2. In the configuration directory, create a subdirectory named ssl to use for storing the required SSL
certificate and key files.

3. In the configuration directory, create a file named okvcl i ent . or a. It should have following format:

SERVER=host _i p: port_num
STANDBY_SERVER=host _i p: port_num

For example, if KeySecure is running on host 198.51.100.20 and listening on port 9002, the
okvcl i ent. or a file looks like this:

SERVER=198. 51. 100. 20: 9002
STANDBY_SERVER=198. 51. 100. 20: 9002

4. Connect to the KeySecure Management Console as an administrator with credentials for Certificate
Authorities access.

5. Navigate to Security >> Local CAs and create a local certificate authority (CA).

6. Go to Trusted CA Lists. Select Default and click on Properties. Then select Edit for Trusted Certificate
Authority List and add the CA just created.

7. Download the CA and save it in the ss| directory as a file named CA. pem

8. Navigate to Security >> Certificate Requests and create a certificate. Then you can download a
compressed t ar file containing certificate PEM files.

9. Extract the PEM files from in the downloaded file. For example, if the file name is
csr_w _pk pkcs8. gz, decompress and unpack it using this command:

tar zxvf csr_w_pk_pkcs8. gz

Two files result from the extraction operation: certi fi cate_request. pemand
private_key pkcs8. pem

10. Use this openss| command to decrypt the private key and create a file named key. pem

openssl| pkcs8 -in private_key pkcs8. pem -out key.pem

11. Copy the key. pemfile into the ss| directory.

213

https://www2.gemalto.com/aws-marketplace/usage/vks/uploadedFiles/Support_and_Downloads/AWS/007-012362-001-keysecure-appliance-user-guide-v7.1.0.pdf

Using the keyring_aws Amazon Web Services Keyring Plugin

12. Copy the certificate requestin certi fi cat e_request . peminto the clipboard.

13. Navigate to Security >> Local CAs. Select the same CA that you created earlier (the one you
downloaded to create the CA. pemfile), and click Sign Request. Paste the Certificate Request from the
clipboard, choose a certificate purpose of Client (the keyring is a client of KeySecure), and click Sign
Request. The result is a certificate signed with the selected CA in a new page.

14. Copy the signed certificate to the clipboard, then save the clipboard contents as a file named
cert. peminthe ssl directory.

15. (Optional) If you wish to password-protect the key file, use the instructions in Password-Protecting the
keyring_okv Key File.

After completing the preceding procedure, restart the MySQL server. It loads the keyri ng_okv plugin and
keyri ng_okv uses the files in its configuration directory to communicate with KeySecure.

Configuring keyring_okv for Townsend Alliance Key Manager

Townsend Alliance Key Manager uses the KMIP protocol. The keyr i ng_okv keyring plugin can use
Alliance Key Manager as its KMIP back end for keyring storage. For additional information, see Alliance
Key Manager for MySQL.

Password-Protecting the keyring_okv Key File

As of MySQL 5.7.20, you can optionally protect the key file with a password and supply a file containing
the password to enable the key file to be decrypted. To so do, change location to the ssl directory and
perform these steps:

1. Encrypt the key. pemkey file. For example, use a command like this, and enter the encryption
password at the prompts:

$> openssl| rsa -des3 -in key.pem -out key.pem new

Ent er PEM pass phrase:
Verifying - Enter PEM pass phrase:

2. Save the encryption password in a single-line text file named passwor d. t xt in the ss| directory.

3. Verify that the encrypted key file can be decrypted using the following command. The decrypted file
should display on the console:

$> openssl rsa -in key.pem new -passin file:password. txt
4. Remove the original key. pemfile and rename key. pem newto key. pem

5. Change the ownership and access mode of new key. pemfile and passwor d. t xt file as necessary to
ensure that they have the same restrictions as other files in the ssl directory.

6.4.5 Using the keyring_aws Amazon Web Services Keyring Plugin
Note

The keyri ng_aws plugin is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysgl.com/products/.

The keyri ng_aws keyring plugin communicates with the Amazon Web Services Key Management
Service (AWS KMS) as a back end for key generation and uses a local file for key storage. All keyring
material is generated exclusively by the AWS server, not by keyri ng_aws.

214

https://www.townsendsecurity.com/product/encryption-key-management-mysql
https://www.townsendsecurity.com/product/encryption-key-management-mysql
https://www.mysql.com/products/
https://www.mysql.com/products/

Using the keyring_aws Amazon Web Services Keyring Plugin

MySQL Enterprise Edition can work with keyri ng_aws on Red Hat Enterprise Linux, SUSE Linux
Enterprise Server, Debian, Ubuntu, macOS, and Windows. MySQL Enterprise Edition does not support the
use of keyri ng_aws on these platforms:

+ EL6
» Generic Linux (glibc2.12)
+ Solaris

The discussion here assumes that you are familiar with AWS in general and KMS in particular. Some
pertinent information sources:

* AWS site
* KMS documentation
The following sections provide configuration and usage information for the keyri ng_aws keyring plugin:
» keyring_aws Configuration
» keyring_aws Operation
» keyring_aws Credential Changes
keyring_aws Configuration

To install keyr i ng_aws, use the general instructions found in Section 6.4.1, “Keyring Plugin Installation”,
together with the plugin-specific configuration information found here.

The plugin library file contains the keyr i ng_aws plugin and two loadable functions,
keyring_aws_rotate_cnk() and keyri ng_aws_rotate_keys().

To configure keyri ng_aws, you must obtain a secret access key that provides credentials for
communicating with AWS KMS and write it to a configuration file:

1. Create an AWS KMS account.

2. Use AWS KMS to create a secret access key ID and secret access key. The access key serves to
verify your identity and that of your applications.

3. Use the AWS KMS account to create a customer master key (CMK) ID. At MySQL startup, set the
keyring _aws_cnk_i d system variable to the CMK ID value. This variable is mandatory and there is
no default. (Its value can be changed at runtime if desired using SET G_LOBAL.)

4. If necessary, create the directory in which the configuration file should be located. The directory should
have a restrictive mode and be accessible only to the account used to run the MySQL server. For
example, on many Unix and Unix-like systems, such as Oracle Enterprise Linux, to use / usr/ | ocal /
nysql / mysql - keyri ng/ keyri ng_aws_conf as the file name, the following commands (executed
as r oot) create its parent directory and set the directory mode and ownership:

$> cd /usr/local / nysql

$> nkdir nysql -keyring

$> chnod 750 nysql - keyring
$> chown nysql nysql -keyring
$> chgrp nysql nysql -keyring

At MySQL startup, set the keyri ng aws_conf _fil e system variable to/ usr/| ocal / nmysql /
nysql - keyring/ keyring_aws_conf to indicate the configuration file location to the server.

215

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html

Using the keyring_aws Amazon Web Services Keyring Plugin

The location of the configuration file may vary according to Linux distribution; the directory for this
file may also already be provided by a system module or other application such as AppArmor. For
example, under AppArmor on recent editions of Ubuntu Linux, the keyring directory is specified as
[var/lib/mysqgl - keyring. See Ubuntu Server: AppArmor for more information about using
AppArmor on Ubuntu systems; see also this example MySQL configuration file. For other operating
platforms, see the system documentation for guidance.

5. Prepare the keyri ng_aws configuration file, which should contain two lines:
¢ Line 1: The secret access key ID
e Line 2: The secret access key

For example, if the key ID is wwwwwwwwwwWWWWEXANMPLE and the key is XXX XXXXXXXXXX/ yyyyyyy/
z727777727EXANPLEKEY, the configuration file looks like this:

WWWMMWWWMMWWEXAMPL E
XXXXXXXXXXXXX/ YYYYyyyyl zzzzzzzzEXAMPLEKEY

To be usable during the server startup process, keyri ng_aws must be loaded using the - - ear | y-

pl ugi n-| oad option. The keyri ng_aws_cnk i d system variable is mandatory and configures the
customer master key (CMK) ID obtained from the AWS KMS server. The keyring_aws _conf file
and keyring_aws_data_fil e system variables optionally configure the locations of the files used by
the keyri ng_aws plugin for configuration information and data storage. The file location variable default
values are platform specific. To configure the locations explicitly, set the variable values at startup. For
example, use these lines in the server ny. cnf file, adjusting the . so suffix and file locations for your
platform as necessary:

[nysgld]

earl y- pl ugi n-1 oad=keyri ng_aws. so

keyring_aws_cnk_i d="arn: aws: kns: us-west - 2: 111122223333: key/ abcd1234- ef 56- ab12- cd34- ef 56abcd1234'
keyring_aws_conf _fil e=/usr/|ocal / mysql/nmysql - keyri ng/ keyri ng_aws_conf

keyring_aws_data_fil e=/usr/ | ocal / mysql / nysql - keyri ng/ keyri ng_aws_dat a

For the keyr i ng_aws plugin to start successfully, the configuration file must exist and contain valid secret
access key information, initialized as described previously. The storage file need not exist. If it does not,
keyri ng_aws attempts to create it (as well as its parent directory, if necessary).

Important

The default AWS region is us- east - 1. For any other region, you must also set
keyring_aws_regi on explicitly in my. cnf .

For additional information about the system variables used to configure the keyr i ng_aws plugin, see
Section 6.4.12, “Keyring System Variables”.

Start the MySQL server and install the functions associated with the keyr i ng_aws plugin. This is a one-
time operation, performed by executing the following statements, adjusting the . so suffix for your platform
as necessary:

CREATE FUNCTI ON keyring_aws_rotate_cnk RETURNS | NTEGER
SONAME ' keyri ng_aws. so' ;

CREATE FUNCTI ON keyring_aws_rot at e_keys RETURNS | NTEGER
SONAME ' keyri ng_aws. so' ;

For additional information about the keyr i ng_aws functions, see Section 6.4.9, “Plugin-Specific Keyring
Key-Management Functions”.

216

https://documentation.ubuntu.com/server/how-to/security/apparmor/index.html
https://exampleconfig.com/view/mysql-ubuntu20-04-etc-apparmor-d-usr-sbin-mysqld
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load

Using the keyring_aws Amazon Web Services Keyring Plugin

keyring_aws Operation

At plugin startup, the keyr i ng_aws plugin reads the AWS secret access key ID and key from its
configuration file. It also reads any encrypted keys contained in its storage file into its in-memory cache.

During operation, keyr i ng_aws maintains encrypted keys in the in-memory cache and uses the storage
file as local persistent storage. Each keyring operation is transactional: keyr i ng_aws either successfully
changes both the in-memory key cache and the keyring storage file, or the operation fails and the keyring
state remains unchanged.

To ensure that keys are flushed only when the correct keyring storage file exists, keyri ng_aws stores a
SHA-256 checksum of the keyring in the file. Before updating the file, the plugin verifies that it contains the
expected checksum.

The keyri ng_aws plugin supports the functions that comprise the standard MySQL Keyring service
interface. Keyring operations performed by these functions are accessible at two levels:

e SQL interface: In SQL statements, call the functions described in Section 6.4.8, “General-Purpose
Keyring Key-Management Functions”.

» Cinterface: In C-language code, call the keyring service functions described in The Keyring Service.

Example (using the SQL interface):

SELECT keyring_key_generate(' MyKey', 'AES, 32);
SELECT keyring_key_renove(' MyKey');

In addition, the keyri ng_aws_rotate_cnk() andkeyring _aws_rotate_keys() functions “extend”
the keyring plugin interface to provide AWS-related capabilities not covered by the standard keyring
service interface. These capabilities are accessible only by calling these functions using SQL. There are no
corresponding C-languge key service functions.

For information about the characteristics of key values permitted by keyr i ng_aws, see Section 6.4.6,
“Supported Keyring Key Types and Lengths”.

keyring_aws Credential Changes

Assuming that the keyr i ng_aws plugin has initialized properly at server startup, it is possible to change
the credentials used for communicating with AWS KMS:

1. Use AWS KMS to create a new secret access key ID and secret access key.

2. Store the new credentials in the configuration file (the file named by the keyri ng_aws_conf _file
system variable). The file format is as described previously.

3. Reinitialize the keyr i ng_aws plugin so that it re-reads the configuration file. Assuming that the new
credentials are valid, the plugin should initialize successfully.

There are two ways to reinitialize the plugin:

< Restart the server. This is simpler and has no side effects, but is not suitable for installations that
require minimal server downtime with as few restarts as possible.

« Reinitialize the plugin without restarting the server by executing the following statements, adjusting
the . so suffix for your platform as necessary:

UNI NSTALL PLUG N keyri ng_aws;
I NSTALL PLUG N keyring_aws SONAME ' keyring_aws. so';

217

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html

Supported Keyring Key Types and Lengths

Note

In addition to loading a plugin at runtime, | NSTALL PLUQ N has the side
effect of registering the plugin it in the nysqgl . pl ugi n system table. Because
of this, if you decide to stop using keyri ng_aws, it is not sufficient to remove
the - - ear| y- pl ugi n- | oad option from the set of options used to start the
server. That stops the plugin from loading early, but the server still attempts
to load it when it gets to the point in the startup sequence where it loads the
plugins registered in mysql . pl ugi n.

Consequently, if you execute the UNI NSTALL PLUGQ Nplus | NSTALL

PLUG N sequence just described to change the AWS KMS credentials, then
to stop using keyri ng_aws, it is necessary to execute UNI NSTALL PLUG N
again to unregister the plugin in addition to removing the - - ear | y- pl ugi n-
| oad option.

6.4.6 Supported Keyring Key Types and Lengths

MySQL Keyring supports keys of different types (encryption algorithms) and lengths:
» The available key types depend on which keyring plugin is installed.
» The permitted key lengths are subject to multiple factors:

« General keyring loadable-function interface limits (for keys managed using one of the keyring functions
described in Section 6.4.8, “General-Purpose Keyring Key-Management Functions”), or limits from
back end implementations. These length limits can vary by key operation type.

« In addition to the general limits, individual keyring plugins may impose restrictions on key lengths per
key type.

Table 6.16, “General Keyring Key Length Limits” shows the general key-length limits. (The lower limits for
keyri ng_aws are imposed by the AWS KMS interface, not the keyring functions.) Table 6.17, “Keyring
Plugin Key Types and Lengths” shows the key types each keyring plugin permits, as well as any plugin-
specific key-length restrictions.

Table 6.16 General Keyring Key Length Limits

Key Operation Maximum Key Length
Generate key 2,048 bytes; 1,024 for keyri ng_aws
Store key 2,048 bytes
Fetch key 2,048 bytes
Table 6.17 Keyring Plugin Key Types and Lengths
Plugin Name Permitted Key Type Plugin-Specific Length
Restrictions

keyring_aws AES 16, 24, or 32 bytes
keyring_encrypted_file AES None

DSA None

RSA None
keyring_file AES None

218

https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_early-plugin-load

Migrating Keys Between Keyring Keystores

Plugin Name

Permitted Key Type

Plugin-Specific Length
Restrictions

DSA None
RSA None
keyri ng_okv AES 16, 24, or 32 bytes

6.4.7 Migrating Keys Between Keyring Keystores

A keyring migration copies keys from one keystore to another, enabling a DBA to switch a MySQL

installation to a different keystore. to another. A successful migration operation has this result:

» The destination keystore contains the keys it had prior to the migration, plus the keys from the source

keystore.

» The source keystore remains the same before and after the migration (because keys are copied, not

moved).

If a key to be copied already exists in the destination keystore, an error occurs and the destination keystore
is restored to its premigration state.

The following sections discuss the characteristics of offline and online migrations and describe how to
perform migrations.

» Offline and Online Key Migrations

» Key Migration Using a Migration Server

» Key Migration Involving Multiple Running Servers

Offline and Online Key Migrations

A key migration is either offline or online:

+ Offline migration: For use when you are sure that no running server on the local host is using the source

or destination keystore. In this case, the migration operation can copy keys from the source keystore
to the destination without the possibility of a running server modifying keystore content during the

operation.

» Online migration: For use when a running server on the local host is using the source or destination
keystore. In this case, care must be taken to prevent that server from updating keystores during the

migration. This involves connecting to the running server and instructing it to pause keyring operations

so that keys can be copied safely from the source keystore to the destination. When key copying is

complete, the running server is permitted to resume keyring operations.

When you plan a key migration, use these points to decide whether it should be offline or online:

» Do not perform offline migration involving a keystore that is in use by a running server.

» Pausing keyring operations during an online migration is accomplished by connecting to the running

server and setting its global keyri ng_oper at i ons system variable to OFF before key copying and ON
after key copying. This has several implications:

e keyring_operations was introduced in MySQL 5.7.21, so online migration is possible only if
the running server is from MySQL 5.7.21 or higher. If the running server is older, you must stop

219

Migrating Keys Between Keyring Keystores

it, perform an offline migration, and restart it. All migration instructions elsewhere that refer to
keyring_operati ons are subject to this condition.

« The account used to connect to the running server must have the SUPER privilege required to modify
keyri ng_operations.

< For an online migration, the migration operation takes care of enabling and disabling
keyri ng_operati ons on the running server. If the migration operation exits abnormally (for
example, if it is forcibly terminated), it is possible for keyri ng_oper at i ons to remain disabled on
the running server, leaving it unable to perform keyring operations. In this case, it may be necessary to
connect to the running server and enable keyr i ng_oper at i ons manually using this statement:

SET GLOBAL keyring _operations = ON;
» Online key migration provides for pausing keyring operations on a single running server. To perform a

migration if multiple running servers are using the keystores involved, use the procedure described at
Key Migration Involving Multiple Running Servers.

Key Migration Using a Migration Server

As of MySQL 5.7.21, a MySQL server becomes a migration server if invoked in a special operational mode
that supports key migration. A migration server does not accept client connections. Instead, it runs only
long enough to migrate keys, then exits. A migration server reports errors to the console (the standard
error output).

To perform a key migration operation using a migration server, determine the key migration options
required to specify which keyring plugins or components are involved, and whether the migration is offline
or online:

» To indicate the source and destination keyring plugins, specify these options:
e --keyring-nigration-source: The source keyring plugin that manages the keys to be migrated.

e --keyring-nigration-destination: The destination keyring plugin to which the migrated keys
are to be copied.

These options tell the server to run in key migration mode. For key migration operations, both options
are mandatory. The source and destination plugins must differ, and the migration server must support
both plugins.

 For an offline migration, no additional key migration options are needed.

» For an online migration, some running server currently is using the source or destination keystore. To
invoke the migration server, specify additional key migration options that indicate how to connect to the
running server. This is necessary so that the migration server can connect to the running server and tell
it to pause keyring use during the migration operation.

Use of any of the following options signifies an online migration:

e --keyring-m gration-host: The host where the running server is located. This is always the
local host because the migration server can migrate keys only between keystores managed by local
plugins.

e --keyring-nigration-user,--keyring-m gration-password: The account credentials to
use to connect to the running server.

e --keyring-nmgration-port:For TCP/IP connections, the port number to connect to on the
running server.

220

Migrating Keys Between Keyring Keystores

e --keyring-nigration-socket : For Unix socket file or Windows named pipe connections, the
socket file or named pipe to connect to on the running server.

For additional details about the key migration options, see Section 6.4.11, “Keyring Command Options”.

Start the migration server with key migration options indicating the source and destination keystores and
whether the migration is offline or online, possibly with other options. Keep the following considerations in
mind:

» Other server options might be required, such as configuration parameters for the two keyring plugins.
For example, if keyri ng_fi | e is the source or destination, you must set the keyring file data
system variable if the keyring data file location is not the default location. Other non-keyring options may
be required as well. One way to specify these options is by using - - def aul t s-f i | e to name an option
file that contains the required options.

» The migration server expects path name option values to be full paths. Relative path names may not be
resolved as you expect.

» The user who invokes a server in key-migration mode must not be the r oot operating system user,
unless the - - user option is specified with a non-r oot user name to run the server as that user.

e The user a server in key-migration mode runs as must have permission to read and write any local
keyring files, such as the data file for a file-based plugin.

If you invoke the migration server from a system account different from that normally used to run
MySQL, it might create keyring directories or files that are inaccessible to the server during normal
operation. Suppose that mysql d normally runs as the mysql operating system user, but you invoke the
migration server while logged in as i sabel . Any new directories or files created by the migration server
are owned by i sabel . Subsequent startup fails when a server run as the nysql operating system user
attempts to access file system objects owned by i sabel .

To avoid this issue, start the migration server as the r oot operating system user and provide a - -

user =user _narmne option, where user _nane is the system account normally used to run MySQL.
Alternatively, after the migration, examine the keyring-related file system objects and change their
ownership and permissions if necessary using chown, chnod, or similar commands, so that the objects
are accessible to the running server.

Example command line for offline migration (enter the command on a single line):

nysql d --defaults-file=/usr/local/mysql/etc/ny.cnf
--keyring-mgration-source=keyring file.so
--keyring-mgration-destination=keyring_encrypted file.so
--keyring_encrypted_fil e_password=password

Example command line for online migration:

nysql d --defaults-file=/usr/local/nysql/etc/ny.cnf
--keyring-m gration-source=keyring_file.so
--keyring-mgration-destinati on=keyri ng_encrypted_file.so
--keyring_encrypted_fil e_passwor d=passwor d
--keyring-mgration-host=127.0.0.1
--keyring-m gration-user=root
--keyring-m grati on- passwor d=r oot _passwor d

The key migration server performs a migration operation as follows:
1. (Online migration only) Connect to the running server using the connection options.

2. (Online migration only) Disable keyr i ng_oper at i ons on the running server.

221

https://dev.mysql.com/doc/refman/5.7/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_user

General-Purpose Keyring Key-Management Functions

Load the source and destination keyring plugins.

3
4. Copy keys from the source keystore to the destination.
5. Unload the keyring plugins.

6

(Online migration only) Enable keyri ng_oper at i ons on the running server.
7. (Online migration only) Disconnect from the running server.
If an error occurs during key migration, the destination keystore is restored to its premigration state.
Important

For an online migration operation, the migration server takes care of enabling

and disabling keyr i ng_oper at i ons on the running server. If the migration
server exits abnormally (for example, if it is forcibly terminated), it is possible for
keyring_operati ons to remain disabled on the running server, leaving it unable
to perform keyring operations. In this case, it may be necessary to connect to the
running server and enable keyr i ng_oper at i ons manually using this statement:

SET GLOBAL keyring_operations = ON;
After a successful online key migration operation, the running server might need to be restarted:

« If the running server was using the source keystore before the migration and should continue to use it
after the migration, it need not be restarted after the migration.

« If the running server was using the destination keystore before the migration and should continue to
use it after the migration, it should be restarted after the migration to load all keys migrated into the
destination keystore.

« If the running server was using the source keystore before the migration but should use the destination
keystore after the migration, it must be reconfigured to use the destination keystore and restarted. In this
case, be aware that although the running server is paused from modifying the source keystore during
the migration itself, it is not paused during the interval between the migration and the subsequent restart.
Care should be taken that the server does not modify the source keystore during this interval because
any such changes will not be reflected in the destination keystore.

Key Migration Involving Multiple Running Servers

Online key migration provides for pausing keyring operations on a single running server. To perform a
migration if multiple running servers are using the keystores involved, use this procedure:

1. Connect to each running server manually and set keyri ng_oper at i ons=0OFF. This ensures that no
running server is using the source or destination keystore and satisfies the required condition for offline
migration.

2. Use a migration server to perform an offline key migration for each paused server.
3. Connect to each running server manually and set keyri ng_oper ati ons=0N.

All running servers must support the keyri ng_oper at i ons system variable. Any server that does not
must be stopped before the migration and restarted after.

6.4.8 General-Purpose Keyring Key-Management Functions

MySQL Server supports a keyring service that enables internal server components and plugins to store
sensitive information securely for later retrieval.

222

General-Purpose Keyring Key-Management Functions

As of MySQL 5.7.13, MySQL Server includes an SQL interface for keyring key management, implemented
as a set of general-purpose functions that access the capabilities provided by the internal keyring service.
The keyring functions are contained in a plugin library file, which also contains a keyri ng_udf plugin
that must be enabled prior to function invocation. For these functions to be used, a keyring plugin such as
keyring_fileorkeyring_okv mustbe enabled.

The functions described here are general-purpose and intended for use with any keyring component or
plugin. A given keyring component or plugin may also provide functions of its own that are intended for
use only with that component or plugin; see Section 6.4.9, “Plugin-Specific Keyring Key-Management
Functions”.

The following sections provide installation instructions for the keyring functions and demonstrate how to
use them. For information about the keyring service functions invoked by these functions, see The Keyring
Service. For general keyring information, see Section 6.4, “The MySQL Keyring”.

* Installing or Uninstalling General-Purpose Keyring Functions
» Using General-Purpose Keyring Functions

» General-Purpose Keyring Function Reference

Installing or Uninstalling General-Purpose Keyring Functions

This section describes how to install or uninstall the keyring functions, which are implemented in a plugin
library file that also contains a keyri ng_udf plugin. For general information about installing or uninstalling
plugins and loadable functions, see Installing and Uninstalling Plugins, and Installing and Uninstalling
Loadable Functions.

The keyring functions enable keyring key management operations, but the keyr i ng_udf plugin must also
be installed because the functions do not work correctly without it. Attempts to use the functions without the
keyri ng_udf plugin resultin an error.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

The plugin library file base name is keyr i ng_udf . The file name suffix differs per platform (for example,
. so for Unix and Unix-like systems, . dl | for Windows).

To install the keyri ng_udf plugin and the keyring functions, use the | NSTALL PLUGQ Nand CREATE
FUNCTI ON statements, adjusting the . so suffix for your platform as necessary:

I NSTALL PLUG N keyri ng_udf SONAME ' keyring_udf.so';

CREATE FUNCTI ON keyri ng_key_generate RETURNS | NTEGER
SONAME ' keyri ng_udf. so';

CREATE FUNCTI ON keyri ng_key fetch RETURNS STRI NG
SONAME ' keyri ng_udf. so';

CREATE FUNCTI ON keyring_key_| ength_fetch RETURNS | NTEGER
SONAME ' keyri ng_udf. so';

CREATE FUNCTI ON keyri ng_key_type_fetch RETURNS STRI NG
SONAME ' keyri ng_udf. so';

CREATE FUNCTI ON keyri ng_key_store RETURNS | NTEGER
SONAME ' keyri ng_udf. so';

CREATE FUNCTI ON keyri ng_key_renpve RETURNS | NTEGER
SONAME ' keyri ng_udf. so';

If the plugin and functions are used on a source replication server, install them on all replicas as well to
avoid replication issues.

Once installed as just described, the plugin and functions remain installed until uninstalled. To remove
them, use the UNI NSTALL PLUG Nand DROP FUNCTI ON statements:

223

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html
https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/function-loading.html
https://dev.mysql.com/doc/refman/5.7/en/function-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/create-function.html
https://dev.mysql.com/doc/refman/5.7/en/create-function.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/drop-function.html

General-Purpose Keyring Key-Management Functions

UNI NSTALL PLUG N keyri ng_udf;

DROP FUNCTI ON keyri ng_key_gener at e;
DROP FUNCTI ON keyri ng_key_fetch;

DROP FUNCTI ON keyri ng_key_I| engt h_fetch;
DROP FUNCTI ON keyri ng_key_type_fetch;
DROP FUNCTI ON keyri ng_key_store;

DROP FUNCTI ON keyri ng_key_renove;

Using General-Purpose Keyring Functions

Before using the keyring general-purpose functions, install them according to the instructions provided in
Installing or Uninstalling General-Purpose Keyring Functions.

The keyring functions are subject to these constraints:

» To use any keyring function, the keyri ng_udf plugin must be enabled. Otherwise, an error occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring _key generate';
This function requires keyring_udf plugin which is not installed.
Pl ease install

To install the keyr i ng_udf plugin, see Installing or Uninstalling General-Purpose Keyring Functions.

» The keyring functions invoke keyring service functions (see The Keyring Service). The service functions
in turn use whatever keyring plugin is installed (for example, keyring_fil e or keyri ng_okv).
Therefore, to use any keyring function, some underlying keyring plugin must be enabled. Otherwise, an
error occurs:

ERROR 3188 (HY000): Function 'keyring_key generate' failed because
underlying keyring service returned an error. Please check if a
keyring plugin is installed and that provided argunents are valid
for the keyring you are using.

To install a keyring plugin, see Section 6.4.1, “Keyring Plugin Installation”.

» A user must possess the global EXECUTE privilege to use any keyring function. Otherwise, an error
occurs:

ERROR 1123 (HY000): Can't initialize function 'keyring_key_generate';
The user is not privileged to execute this function. User needs to
have EXECUTE

To grant the global EXECUTE privilege to a user, use this statement:

GRANT EXECUTE ON *.* TO user;

Alternatively, should you prefer to avoid granting the global EXECUTE privilege while still permitting users
to access specific key-management operations, “wrapper” stored programs can be defined (a technique
described later in this section).

* A key stored in the keyring by a given user can be manipulated later only by the same user. That is, the
value of the CURRENT USER() function at the time of key manipulation must have the same value as
when the key was stored in the keyring. (This constraint rules out the use of the keyring functions for
manipulation of instance-wide keys, such as those created by | nnoDB to support tablespace encryption.)

To enable multiple users to perform operations on the same key, “wrapper” stored programs can be
defined (a technique described later in this section).

» Keyring functions support the key types and lengths supported by the underlying keyring plugin. For
information about keys specific to a particular keyring plugin, see Section 6.4.6, “Supported Keyring Key
Types and Lengths”.

224

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

General-Purpose Keyring Key-Management Functions

To create a new random key and store it in the keyring, call keyri ng_key gener at e(), passing to it
an ID for the key, along with the key type (encryption method) and its length in bytes. The following call
creates a 2,048-bit DSA-encrypted key named MyKey:

nysqgl > SELECT keyring_key_generate(' MyKey', 'DSA', 256);

ffoceosc--cco-—c--cco-c--cco-—c-coco---coco--== +
| keyring_key_generate(' MyKey', 'DSA'", 256) |
ffoceosc--cco-—c--cco-c--cco-—c-coco---coco--== +
| 1]
ffoceosc--cco-—c--cco-c--cco-—c-coco---coco--== +

A return value of 1 indicates success. If the key cannot be created, the return value is NULL and an error
occurs. One reason this might be is that the underlying keyring plugin does not support the specified
combination of key type and key length; see Section 6.4.6, “Supported Keyring Key Types and Lengths”.

To be able to check the return type regardless of whether an error occurs, use SELECT ... | NTO
@ ar _nane and test the variable value:

nysqgl > SELECT keyring_key_generate('', '', -1) INTO @;

ERROR 3188 (HY000): Function 'keyring_key generate' failed because
under | yi ng keyring service returned an error. Please check if a
keyring plugin is installed and that provided argunents are valid
for the keyring you are using.

nysql > SELECT @;

ooooos +
| @ |
ooooos +
| NULL |
ooooos +

nysqgl > SELECT keyring_key_generate('x', 'AES, 16) |NTO @;
nysql > SELECT @;

ooooos +
| @ |
ooooos +
I 1]
ooooos +

This technique also applies to other keyring functions that for failure return a value and an error.

The ID passed to keyri ng_key_gener at e() provides a means by which to refer to the key in
subsequent functions calls. For example, use the key ID to retrieve its type as a string or its length in bytes
as an integer:

nmysql > SELECT keyring_key_type_fetch(' MyKey');

e e e e e e e mmmeeeeeeeecaeaaaa +
| keyring_key_type_fetch(' MyKey') |

e e e e e e e mmmeeeeeeeecaeaaaa +

| DSA I

e e e e e e e mmmeeeeeeeecaeaaaa +

mysql > SELECT keyring_key_l ength_fetch(' MyKey');
e e e e e e e mmmeeeeeeeeeaeaaaa +

| keyring_key_|ength_fetch(' MKey') |

e e e e e e e mmmeeeeeeeeeaeaaaa +

| 256 |

e e e e e e e mmmeeeeeeeeeaeaaaa +

To retrieve a key value, pass the key ID to keyri ng_key_f et ch() . The following example uses HEX()
to display the key value because it may contain nonprintable characters. The example also uses a short
key for brevity, but be aware that longer keys provide better security:

mysql > SELECT keyring_key_generate(' MyShortKey', 'DSA , 8);

225

https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_hex

General-Purpose Keyring Key-Management Functions

o P S P +
mysql > SELECT HEX(keyring_key_fetch(' MyShortKey'));
S S S e S +
| HEX(keyring_key fetch(' MyShortKey')) |
S S S e S +
| 1DB3BOFC3328A24C |
S S S e S +

Keyring functions treat key IDs, types, and values as binary strings, so comparisons are case-sensitive.
For example, IDs of MyKey and nykey refer to different keys.

To remove a key, pass the key ID to keyri ng_key_renove():

nysqgl > SELECT keyring_key_renove(' MyKey');

e +
| keyring_key_renove(' MyKey') |
e +
| 1]
e +

To obfuscate and store a key that you provide, pass the key ID, type, and value to
keyring_key store():

nysqgl > SELECT keyring_key_store(' AES key', 'AES', 'Secret string');

o m e e e e e e e e e e meeeeeemeeemeemeaaaa--aa- +
| keyring_key store('AES key', 'AES', 'Secret string') |
o m e e e e e e e e e e meeeeeemeeemeemeaaaa--aa- +
I 1]
o m e e e e e e e e e e meeeeeemeeemeemeaaaa--aa- +

As indicated previously, a user must have the global EXECUTE privilege to call keyring functions, and the
user who stores a key in the keyring initially must be the same user who performs subsequent operations
on the key later, as determined from the CURRENT _USER() value in effect for each function call. To permit
key operations to users who do not have the global EXECUTE privilege or who may not be the key “owner,”
use this technique:

1. Define “wrapper” stored programs that encapsulate the required key operations and have a DEFI NER
value equal to the key owner.

2. Grant the EXECUTE privilege for specific stored programs to the individual users who should be able to
invoke them.

3. If the operations implemented by the wrapper stored programs do not include key creation, create
any necessary keys in advance, using the account named as the DEFI NER in the stored program
definitions.

This technique enables keys to be shared among users and provides to DBAs more fine-grained control
over who can do what with keys, without having to grant global privileges.

The following example shows how to set up a shared key named Shar edKey that is owned by the DBA,
and aget _shared_key() stored function that provides access to the current key value. The value can
be retrieved by any user with the EXECUTE privilege for that function, which is created in the key _schenma
schema.

From a MySQL administrative account (' root' @ | ocal host' in this example), create the administrative
schema and the stored function to access the key:

nysql > CREATE SCHEMA key_schens;

nysqgl > CREATE DEFI NER = 'root' @I ocal host"'
FUNCTI ON key_schemna. get _shar ed_key()
RETURNS BLOB READS SQL DATA
RETURN keyring_key_fetch(' SharedKey');

226

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

General-Purpose Keyring Key-Management Functions

From the administrative account, ensure that the shared key exists:

nysqgl > SELECT keyring_key_generat e(' SharedKey', 'DSA", 8);

. +
| keyring_key_generate(' SharedKey', 'DSA", 8) |
. +
I 1]
. +

From the administrative account, create an ordinary user account to which key access is to be granted:

mysql > CREATE USER ' key_user' @I ocal host'
| DENTI FI ED BY ' key_user_pwd' ;

From the key_ user account, verify that, without the proper EXECUTE privilege, the new account cannot
access the shared key:

nysql > SELECT HEX(key_schema. get _shared_key());

ERROR 1370 (42000): execute command denied to user 'key user' @Il ocal host'
for routine 'key_schema.get shared_key'

From the administrative account, grant EXECUTE to key _user for the stored function:

nmysqgl > GRANT EXECUTE ON FUNCTI ON key_schena. get _shar ed_key
TO ' key_user' @I ocal host "' ;

From the key user account, verify that the key is now accessible:

nysql > SELECT HEX(key_schema. get _shared_key());

dhmccoccoooccoocoocosoSoccoooccoosooooo +
| HEX(key_schena. get _shared_key()) |
dhmccoccoooccoocoocosoSoccoooccoosooooo +
| 9BAFB9E75CEEB013 |
dhmccoccoooccoocoocosoSoccoooccoosooooo +

General-Purpose Keyring Function Reference

For each general-purpose keyring function, this section describes its purpose, calling sequence, and
return value. For information about the conditions under which these functions can be invoked, see Using
General-Purpose Keyring Functions.

» keyring_key fetch(key_ id)
Given a key ID, deobfuscates and returns the key value.
Arguments:
« key_id: A string that specifies the key ID.
Return value:

Returns the key value as a string for success, NULL if the key does not exist, or NULL and an error for
failure.

Note

Key values retrieved using keyri ng_key fetch() are subjectto the general
keyring function limits described in Section 6.4.6, “Supported Keyring Key
Types and Lengths”. A key value longer than that length can be stored using

a keyring service function (see The Keyring Service), but if retrieved using
keyring_key_fetch() istruncated to the general keyring function limit.

227

https://dev.mysql.com/doc/refman/5.7/en/keyring-service.html

General-Purpose Keyring Key-Management Functions

Example:

nysqgl > SELECT keyring_key_generate(' RSA key', 'RSA', 16);
dem e e ieeeeeeieeeceeeeaaaaoa- +

| keyring_key generate(' RSA key', 'RSA'", 16) |

dem e e ieeeeeeieeeceeeeaaaaoa- +

| 1]

dem e e ieeeeeeieeeceeeeaaaaoa- +
nysql > SELECT HEX(keyring_key fetch(' RSA key'));
dom e e eeeieeeeeiieaaaa- +

| HEX(keyring_key_ fetch(' RSA key')) |

dom e e eeeieeeeeiieaaaa- +

| 91C2253B696064D3556984B6630F891A |

dom e e eeeieeeeeiieaaaa- +

nysql > SELECT keyring_key_type_fetch(' RSA key');
dom e e eeeieeeeeiieaaaa- +

| keyring_key_ type_fetch(' RSA key') |

dom e e eeeieeeeeiieaaaa- +

| RSA |

dom e e eeeieeeeeiieaaaa- +

nysql > SELECT keyring_key_ | ength_fetch(' RSA key');
dee e e eeeeeeeeeeieeaaoaa- +

| keyring_key | ength_fetch(' RSA key') |

dee e e eeeeeeeeeeieeaaoaa- +

| 16 |

dee e e eeeeeeeeeeieeaaoaa- +

The example uses HEX() to display the key value because it may contain nonprintable characters. The
example also uses a short key for brevity, but be aware that longer keys provide better security.

keyring key generate(key id, key type, key |ength)

Generates a new random key with a given ID, type, and length, and stores it in the keyring. The type
and length values must be consistent with the values supported by the underlying keyring plugin. See
Section 6.4.6, “Supported Keyring Key Types and Lengths”.

Arguments:

» key_i d: A string that specifies the key ID.

« key type: A string that specifies the key type.

* key_| engt h: An integer that specifies the key length in bytes.
Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

nysql > SELECT keyring_key_generate(' RSA key', 'RSA', 384);
| keyri ng_key_generat e RSA key' | RSN, 384) |

TR R T L L L L L +

| 1]

TR R T L L L L L +

keyring key length fetch(key_ id)
Given a key ID, returns the key length.

Arguments:

228

https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_hex

General-Purpose Keyring Key-Management Functions

e key i d: A string that specifies the key ID.
Return value:

Returns the key length in bytes as an integer for success, NULL if the key does not exist, or NULL and an
error for failure.

Example:

See the description of keyri ng_key_fetch().
keyring_key renove(key_id)

Removes the key with a given ID from the keyring.
Arguments:

« key_i d: A string that specifies the key ID.
Return value:

Returns 1 for success, or NULL for failure.

Example:

nysql > SELECT keyring_key_renove(' AES key');

keyring _key store(key_ id, key type, key)
Obfuscates and stores a key in the keyring.
Arguments:

» key_i d: A string that specifies the key ID.

« key type: A string that specifies the key type.

* key: A string that specifies the key value.

Return value:

Returns 1 for success, or NULL and an error for failure.

Example:

nysql > SELECT keyring_key_store('new key', 'DSA", 'M key value');
[Keyi nghkeyLster (i naw|kayl | DGA) L by key) val Lail |
fleccsccccccoccccscoccccscococccoococccoooocscoooococoo +

| i
fleccsccccccoccccscoccccscococccoococccoooocscoooococoo +

keyring_key type fetch(key_id)

Given a key ID, returns the key type.

229

Plugin-Specific Keyring Key-Management Functions

Arguments:
e key i d: A string that specifies the key ID.
Return value:

Returns the key type as a string for success, NULL if the key does not exist, or NULL and an error for
failure.

Example:

See the description of keyri ng_key fetch().

6.4.9 Plugin-Specific Keyring Key-Management Functions

For each keyring plugin-specific function, this section describes its purpose, calling sequence, and return
value. For information about general-purpose keyring functions, see Section 6.4.8, “General-Purpose
Keyring Key-Management Functions”.

» keyring_aws_rotate_cnk()
Associated keyring plugin: keyri ng_aws

keyring aws rotate cnk() rotates the customer master key (CMK). Rotation changes only the key
that AWS KMS uses for subsequent data key-encryption operations. AWS KMS maintains previous CMK
versions, so keys generated using previous CMKs remain decryptable after rotation.

Rotation changes the CMK value used inside AWS KMS but does not change the ID used to
refer to it, so there is no need to change the keyri ng_aws_cnk_i d system variable after calling
keyring_aws_rotate_cnk().

This function requires the SUPER privilege.

Arguments:

None.

Return value:

Returns 1 for success, or NULL and an error for failure.
* keyring_aws_rotate_keys()

Associated keyring plugin: keyri ng_aws

keyring aws rotate keys() rotates keys stored in the keyri ng_aws storage file named by the
keyring aws data_ fil e system variable. Rotation sends each key stored in the file to AWS KMS
for re-encryption using the value of the keyri ng_aws_cnk i d system variable as the CMK value, and
stores the new encrypted keys in the file.

keyring _aws_rotate_keys() is useful for key re-encryption under these circumstances:
« After rotating the CMK; that is, after invoking the keyri ng_aws_rotate_cnk() function.
» After changing the keyri ng_aws_cnk_i d system variable to a different key value.

This function requires the SUPER privilege.

230

Keyring Metadata

Arguments:
None.
Return value:

Returns 1 for success, or NULL and an error for failure.

6.4.10 Keyring Metadata

To see whether a keyring plugin is loaded, check the Information Schema PLUG NS table or use the SHOW
PLUG NS statement (see Obtaining Server Plugin Information). For example:

mysql > SELECT PLUG N_NAMVE, PLUG N _STATUS
FROM | NFORVATI ON_SCHEMVA. PLUG NS
VWHERE PLUG N_NAME LI KE ' keyring% ;

Fommem e emeaa o F T +
| PLUG N_NAME | PLUG N_STATUS |
Fommem e emeaa o F T +
| keyring_file | ACTIVE |
Fommem e emeaa o F T +

6.4.11 Keyring Command Options

MySQL supports the following keyring-related command-line options:

o --keyring-mgration-destination=plugin

Command-Line Format --keyring-mgration-
desti nati on=pl ugi n_namne

Introduced 5.7.21

Type String

The destination keyring plugin for key migration. See Section 6.4.7, “Migrating Keys Between Keyring
Keystores”. The format and interpretation of the option value is the same as described for the - -
keyring-ni gration-source option.

Note

--keyring-mgration-source and--keyring-mgration-

dest i nat i on are mandatory for all keyring migration operations. The source
and destination plugins must differ, and the migration server must support both
plugins.

e --keyring-mgration-host=host_nane

Command-Line Format --keyring-m gration-host =host _nane
Introduced 5.7.21

Type String

Default Value | ocal host

The host location of the running server that is currently using one of the key migration keystores. See
Section 6.4.7, “Migrating Keys Between Keyring Keystores”. Migration always occurs on the local
host, so the option always specifies a value for connecting to a local server, such as | ocal host
127.0.0. 1, :: 1, or the local host IP address or host name.

231

https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html

Keyring Command Options

e --keyring-mgration-password[=passwor d]

Command-Line Format

--keyring-mgration-
passwor d[=passwor d]

Introduced

5.7.21

Type

String

The password of the MySQL account used for connecting to the running server that is currently using
one of the key migration keystores. See Section 6.4.7, “Migrating Keys Between Keyring Keystores”.

The password value is optional. If not given, the server prompts for one. If given, there must be no space
between - - keyri ng- m grati on- passwor d= and the password following it. If no password option is

specified, the default is to send no password.

Specifying a password on the command line should be considered insecure. See Section 2.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line. In this case, the file should have a restrictive mode and be accessible only to the account

used to run the migration server.

e --keyring-mgration-port=port_num

Command-Line Format

--keyring-mgration-port=port_num

Default Value

Introduced 5.7.21
Type Numeric
3306

For TCP/IP connections, the port number for connecting to the running server that is currently using one
of the key migration keystores. See Section 6.4.7, “Migrating Keys Between Keyring Keystores”.

« --keyring-mgration-socket=path

Command-Line Format

--keyring-mgration-
socket ={fil e_nane| pi pe_nane}

Introduced

5.7.21

Type

String

For Unix socket file or Windows named pipe connections, the socket file or named pipe for connecting
to the running server that is currently using one of the key migration keystores. See Section 6.4.7,

“Migrating Keys Between Keyring Keystores”.

e --keyring-m gration-source=plugin

Command-Line Format

--keyring-mgration-
sour ce=pl ugi n_nane

Introduced

5.7.21

232

Keyring System Variables

Type String

The source keyring plugin for key migration. See Section 6.4.7, “Migrating Keys Between Keyring
Keystores”.

The option value is similar to that for - - pl ugi n- | oad, except that only one plugin library can

be specified. The value is given as pl ugi n_| i brary or nanme=pl ugi n_I i brary, where

pl ugi n_li brary is the name of a library file that contains plugin code, and nane is the name of a
plugin to load. If a plugin library is named without any preceding plugin name, the server loads all plugins
in the library. With a preceding plugin name, the server loads only the named plugin from the libary. The
server looks for plugin library files in the directory named by the pl ugi n_di r system variable.

Note

--keyring-mgration-sourceand--keyring-nigration-

desti nat i on are mandatory for all keyring migration operations. The source
and destination plugins must differ, and the migration server must support both
plugins.

e --keyring-mgration-user=user_nane

Command-Line Format

--keyring-mgration-user=user_nane

Introduced

5.7.21

Type

String

The user name of the MySQL account used for connecting to the running server that is currently using

one of the key migration keystores. See Section 6.4.7, “Migrating Keys Between Keyring Keystores”.

6.4.12 Keyring System Variables

MySQL Keyring plugins support the following system variables. Use them to configure keyring plugin
operation. These variables are unavailable unless the appropriate keyring plugin is installed (see

Section 6.4.1, “Keyring Plugin Installation”).

* keyring_aws_cnk_id

Command-Line Format

--keyring-aws- cnk-i d=val ue

Introduced

5.7.19

System Variable

keyring_aws_cnk_id

Scope Global
Dynamic Yes
Type String

The customer master key (CMK) ID obtained from the AWS KMS server and used by the keyri ng_aws

plugin. This variable is unavailable unless that plugin is installed.

This variable is mandatory. If not specified, keyr i ng_aws initialization fails.

* keyring_aws_conf_file

Command-Line Format

--keyring-aws-conf-file=file_nane

Introduced

5.7.19

https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

Keyring System Variables

System Variable keyring_aws_conf _file
Scope Global

Dynamic No

Type File name

Default Value pl at f orm specific

The location of the configuration file for the keyri ng_aws plugin. This variable is unavailable unless that
plugin is installed.

At plugin startup, keyri ng_aws reads the AWS secret access key ID and key from the configuration
file. For the keyri ng_aws plugin to start successfully, the configuration file must exist and contain valid
secret access key information, initialized as described in Section 6.4.5, “Using the keyring_aws Amazon
Web Services Keyring Plugin”.

The default file name is keyri ng_aws_conf , located in the default keyring file directory. The location of
this default directory is the same as for the keyri ng fil e_dat a system variable. See the description
of that variable for details, as well as for considerations to take into account if you create the directory
manually.

keyring _aws_data file

Command-Line Format --keyring-aws-data-file
Introduced 5.7.19

System Variable keyring_aws_data_file
Scope Global

Dynamic No

Type File name

Default Value pl atf orm specific

The location of the storage file for the keyri ng_aws plugin. This variable is unavailable unless that
plugin is installed.

At plugin startup, if the value assigned to keyri ng_aws_dat a_fi | e specifies a file that does not exist,
the keyri ng_aws plugin attempts to create it (as well as its parent directory, if necessary). If the file
does exist, keyri ng_aws reads any encrypted keys contained in the file into its in-memory cache.
keyri ng_aws does not cache unencrypted keys in memory.

The default file name is keyri ng_aws_dat a, located in the default keyring file directory. The location of
this default directory is the same as for the keyri ng fil e_dat a system variable. See the description
of that variable for details, as well as for considerations to take into account if you create the directory
manually.

* keyring_aws_regi on

Command-Line Format --keyring-aws-regi on=val ue
Introduced 5.7.19

System Variable keyring_aws_region

Scope Global

Dynamic Yes

234

Keyring System Variables

Type

Enumeration

Default Value

us-east-1

Valid Values (= 5.7.39)

af -south-1
ap-east-1
ap-northeast-1
ap- nort heast-2
ap- nort heast-3
ap-south-1

ap- sout heast-1
ap- sout heast -2
ca-central -1
cn-north-1
cn-northwest-1
eu-central -1
eu-north-1
eu-sout h-1
eu-west-1
eu-west -2
eu-west-3

me- sout h-1
sa-east-1
us-east-1
us-east-2
us-gov-east-1
us-iso-east-1
us-iso-west-1
us-isob-east-1
us-west-1

us-west -2

Valid Values (2 5.7.27, < 5.7.38)

ap-northeast-1

235

Keyring System Variables

ap- nort heast -2
ap-south-1

ap- sout heast-1
ap- sout heast - 2
ca-central -1
cn-north-1
cn-northwest-1
eu-central -1
eu-west-1
eu-west -2
eu-west -3
sa-east-1
us-east-1
us-east-2
us-west-1

us-west -2

Valid Values (= 5.7.19, < 5.7.26) ap- northeast-1
ap- nort heast-2
ap-south-1

ap- sout heast-1
ap- sout heast -2
eu-central -1
eu-west-1
sa-east-1
us-east-1
us-west-1

us-west -2

The AWS region for the keyr i ng_aws plugin. This variable is unavailable unless that plugin is installed.

If not set, the AWS region defaults to us- east - 1. Thus, for any other region, this variable must be set
explicitly

236

Keyring System Variables

* keyring_encrypted file_data

Command-Line Format --keyring-encrypted-file-
data=fil e_nane

Introduced 5.7.21

System Variable keyring_encrypted_file data

Scope Global

Dynamic Yes

Type File name

Default Value pl atform specific

The path name of the data file used for secure data storage by the keyri ng_encrypted_fil e plugin.
This variable is unavailable unless that plugin is installed. The file location should be in a directory
considered for use only by keyring plugins. For example, do not locate the file under the data directory.

Keyring operations are transactional: The keyri ng_encrypt ed_fi | e plugin uses a backup file during
write operations to ensure that it can roll back to the original file if an operation fails. The backup file has
the same name as the value of the keyri ng_encrypted fil e dat a system variable with a suffix of
. backup.

Do not use the same keyri ng_encrypted fil e data file for multiple MySQL instances. Each
instance should have its own unique data file.

The default file name is keyri ng_encr ypt ed, located in a directory that is platform specific
and depends on the value of the | NSTALL_LAYOUT Clake option, as shown in the following
table. To specify the default directory for the file explicitly if you are building from source, use the
| NSTALL_MYSQLKEYRI NGDI R C\Vake option.

| NSTALL _LAYQOUT Value Default keyring_encrypted file data
Value
DEB, RPM SLES, SVR4 [var/libl/nysql -keyring/

keyring_encrypted

Otherwise keyring/ keyring_encrypt ed under the
CVAKE | NSTALL PREFI X value

At plugin startup, if the value assigned to keyri ng_encrypted_fi | e_dat a specifies a file that does
not exist, the keyri ng_encrypted_fil e plugin attempts to create it (as well as its parent directory, if
necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the / usr/
 ocal / mysql / mysql - keyri ng directory, the following commands (executed as r oot) create the
directory and set its mode and ownership:

cd /usr/local / nysql

nmkdi r nysql - keyring

chrmod 750 nysgql - keyri ng
chown nysgl nysql - keyring

237

https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_install_layout
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_install_mysqlkeyringdir
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_cmake_install_prefix

Keyring System Variables

chgrp mysql mnysql - keyring

If the keyri ng_encrypted_fil e plugin cannot create or access its data file, it writes an error
message to the error log. If an attempted runtime assignment to keyri ng_encrypted_fil e_data
results in an error, the variable value remains unchanged.

Important

Once the keyri ng_encrypted_fil e plugin has created its data file
and started to use it, it is important not to remove the file. Loss of the

file causes data encrypted using its keys to become inaccessible. (It is
permissible to rename or move the file, as long as you change the value of
keyring_encrypted_fil e_datato match.)

keyring encrypted fil e password

Command-Line Format

--keyring-encrypted-file-
passwor d=passwor d

Introduced

5.7.21

System Variable

keyring_encrypted file password

Scope Global
Dynamic Yes
Type String

The password used by the keyri ng_encrypt ed_fi | e plugin. This variable is unavailable unless that

plugin is installed.

This variable is mandatory. If not specified, keyri ng_encrypted fil e initialization fails.

If this variable is specified in an option file, the file should have a restrictive mode and be accessible only

to the account used to run the MySQL server.

Important

Once the keyring encrypted fil e password value has been

set, changing it does not rotate the keyring password and could make

the server inaccessible. If an incorrect password is provided, the
keyring_encrypted fil e plugin cannot load keys from the encrypted keyring

file.

The password value cannot be displayed at runtime with SHOW VARI ABLES or the Performance Schema
gl obal _vari abl es table because the display value is obfuscated.

keyring file data

Command-Line Format

--keyring-file-data=fil e_nane

Introduced 5.7.11

System Variable keyring_file_data
Scope Global

Dynamic Yes

Type Eile name

238

https://dev.mysql.com/doc/refman/5.7/en/show-variables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-system-variable-tables.html

Keyring System Variables

Default Value pl atf orm specific

The path name of the data file used for secure data storage by the keyri ng_fi | e plugin. This variable
is unavailable unless that plugin is installed. The file location should be in a directory considered for use
only by keyring plugins. For example, do not locate the file under the data directory.

Keyring operations are transactional: The keyri ng fi | e plugin uses a backup file during write
operations to ensure that it can roll back to the original file if an operation fails. The backup file has the
same name as the value of the keyri ng fil e dat a system variable with a suffix of . backup.

Do not use the same keyri ng_fil e data file for multiple MySQL instances. Each instance should have
its own unique data file.

The default file name is keyr i ng, located in a directory that is platform specific and depends on the
value of the | NSTALL _LAYOUT CMake option, as shown in the following table. To specify the default
directory for the file explicitly if you are building from source, use the | NSTALL _MYSQLKEYRI NGDI R
Cwvake option.

| NSTALL LAYQUT Value Default keyring fil e _data Value
DEB, RPM SLES, SVR4 [var/liblnysql -keyring/ keyring
Otherwise keyring/ keyri ng under the

CVAKE | NSTALL PREFI X value

At plugin startup, if the value assigned to keyri ng_fi | e_dat a specifies a file that does not exist, the
keyring_ fil e plugin attempts to create it (as well as its parent directory, if necessary).

If you create the directory manually, it should have a restrictive mode and be accessible only to the
account used to run the MySQL server. For example, on Unix and Unix-like systems, to use the / usr/
 ocal / mysql / mysql - keyri ng directory, the following commands (executed as r oot) create the
directory and set its mode and ownership:

cd /usr/local / mysql

mkdi r nysql - keyring

chnod 750 nysql - keyri ng
chown nysql nysql - keyring
chgrp mysql nysql - keyring

If the keyri ng_fi | e plugin cannot create or access its data file, it writes an error message to the error
log. If an attempted runtime assignmentto keyri ng_fi |l e_dat a results in an error, the variable value
remains unchanged.

Important

Once the keyri ng_fi | e plugin has created its data file and started to use it,

it is important not to remove the file. For example, | nnoDB uses the file to store
the master key used to decrypt the data in tables that use | nnoDB tablespace
encryption; see InnoDB Data-at-Rest Encryption. Loss of the file causes data

in such tables to become inaccessible. (It is permissible to rename or move

the file, as long as you change the value of keyring fil e dat a to match.)

It is recommended that you create a separate backup of the keyring data file
immediately after you create the first encrypted table and before and after master
key rotation.

239

https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_install_layout
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_install_mysqlkeyringdir
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_cmake_install_prefix
https://dev.mysql.com/doc/refman/5.7/en/innodb-data-encryption.html

MySQL Enterprise Audit

e keyring_okv_conf _dir

Command-Line Format

- -keyring- okv-conf-di r=di r_nane

Introduced

5.7.12

System Variable

keyring_okv_conf _dir

Scope Global
Dynamic Yes
Type Directory name

Default Value

enpty string

The path name of the directory that stores configuration information used by the keyri ng_okv plugin.
This variable is unavailable unless that plugin is installed. The location should be a directory considered
for use only by the keyri ng_okv plugin. For example, do not locate the directory under the data

directory.

The default keyri ng_okv_conf dir value is empty. For the keyri ng_okv plugin to be able
to access Oracle Key Vault, the value must be set to a directory that contains Oracle Key Vault
configuration and SSL materials. For instructions on setting up this directory, see Section 6.4.4, “Using

the keyring_okv KMIP Plugin”.

The directory should have a restrictive mode and be accessible only to the account used to run the
MySQL server. For example, on Unix and Unix-like systems, to use the / usr/ | ocal / mysql / nysql -
keyri ng- okv directory, the following commands (executed as r oot) create the directory and set its

mode and ownership:

cd /usr/local / mysql

nkdi r nysql - keyri ng- okv

chnmod 750 nysql - keyri ng- okv
chown nysqgl nysql - keyri ng- okv
chgrp nysgl nysql - keyri ng- okv

If the value assigned to keyri ng_okv_conf dir specifies a directory that does not exist, or that

does not contain configuration information that enables a connection to Oracle Key Vault to be
established, keyri ng_okv writes an error message to the error log. If an attempted runtime assignment
to keyring _okv_conf _dir resultsin an error, the variable value and keyring operation remain

unchanged.

* keyring_operations

Introduced 5.7.21

System Variable keyring operations
Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether keyring operations are enabled. This variable is used during key migration operations. See
Section 6.4.7, “Migrating Keys Between Keyring Keystores”.

6.5 MySQL Enterprise Audit

240

Elements of MySQL Enterprise Audit

Note

MySQL Enterprise Audit is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysgl.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin named
audi t _| og. MySQL Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based
monitoring, logging, and blocking of connection and query activity executed on specific MySQL servers.
Designed to meet the Oracle audit specification, MySQL Enterprise Audit provides an out of box, easy
to use auditing and compliance solution for applications that are governed by both internal and external
regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

After you install the audit plugin (see Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”), it
writes an audit log file. By default, the file is named audi t . | og in the server data directory. To change the
name of the file, setthe audit _| og_fi | e system variable at server startup.

By default, audit log file contents are written in new-style XML format, without compression or encryption.
To select the file format, set the audi t | og_f or nat system variable at server startup. For details on file
format and contents, see Section 6.5.4, “Audit Log File Formats”.

For more information about controlling how logging occurs, including audit log file naming and format
selection, see Section 6.5.5, “Configuring Audit Logging Characteristics”. To perform filtering of audited
events, see Section 6.5.7, “Audit Log Filtering”. For descriptions of the parameters used to configure the
audit log plugin, see Audit Log Options and Variables.

If the audit log plugin is enabled, the Performance Schema (see MySQL Performance Schema) has
instrumentation for it. To identify the relevant instruments, use this query:

SELECT NAME FROM per f or mance_schema. set up_i nstrunent s
VWHERE NAME LI KE ' % al og/ % ;

6.5.1 Elements of MySQL Enterprise Audit

MySQL Enterprise Audit is based on the audit log plugin and related elements:

» A server-side plugin named audi t _| og examines auditable events and determines whether to write
them to the audit log.

» A set of functions enables manipulation of filtering definitions that control logging behavior, the
encryption password, and log file reading.

e Tables in the nysql system database provide persistent storage of filter and user account data.

» System variables enable audit log configuration and status variables provide runtime operational
information.

Note

Prior to MySQL 5.7.13, MySQL Enterprise Audit consists only of the audi t _| og
plugin and operates in legacy mode. See Section 6.5.10, “Legacy Mode Audit Log
Filtering”.

6.5.2 Installing or Uninstalling MySQL Enterprise Audit

241

https://www.mysql.com/products/
https://www.mysql.com/products/
https://dev.mysql.com/doc/refman/5.7/en/performance-schema.html

Installing or Uninstalling MySQL Enterprise Audit

This section describes how to install or uninstall MySQL Enterprise Audit, which is implemented using the
audit log plugin and related elements described in Section 6.5.1, “Elements of MySQL Enterprise Audit”.
For general information about installing plugins, see Installing and Uninstalling Plugins.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, the audi t _| og plugin involves some minimal overhead even when
disabled. To avoid this overhead, do not install MySQL Enterprise Audit unless you
plan to use it.

To be usable by the server, the plugin library file must be located in the MySQL plugin directory (the
directory named by the pl ugi n_di r system variable). If necessary, configure the plugin directory location
by setting the value of pl ugi n_di r at server startup.

Note
The instructions here apply to MySQL 5.7.13 and later.

Also, prior to MySQL 5.7.13, MySQL Enterprise Audit consists only of the

audi t _| og plugin and includes none of the other elements described in

Section 6.5.1, “Elements of MySQL Enterprise Audit”. As of MySQL 5.7.13, if the
audi t _| og plugin is already installed from a version of MySQL prior to 5.7.13,
uninstall it using the following statement and restart the server before installing the
current version:

UNI NSTALL PLUG N audit_I og

To install MySQL Enterprise Audit, look in the shar e directory of your MySQL installation and choose the
script that is appropriate for your platform. The available scripts differ in the suffix used to refer to the plugin
library file:

e audit_log filter_w n_install.sql:Choose this script for Windows systems that use . dl | as
the file name suffix.

e audit _log filter linux_install.sqgl:Choose this script for Linux and similar systems that use
. S0 as the file name suffix.

Run the script as follows. The example here uses the Linux installation script. Make the appropriate
substitution for your system.

$> nysql -u root -p < audit_log_filter_linux_install.sq
Ent er password: (enter root password here)

Note

Some MySQL versions have introduced changes to the structure of the MySQL
Enterprise Audit tables. To ensure that your tables are up to date for upgrades
from earlier versions of MySQL 5.7, run nmysql _upgrade --force (which also
performs any other needed updates). If you prefer to run the update statements
only for the MySQL Enterprise Audit tables, see the following discussion.

As of MySQL 5.7.23, for new MySQL installations, the USER and HOST columns
in the audi t _| og_user table used by MySQL Enterprise Audit have definitions

242

https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir

Installing or Uninstalling MySQL Enterprise Audit

that better correspond to the definitions of the User and Host columns in the
nysqgl . user system table. For upgrades to 5.7.23 or higher of an installation for
which MySQL Enterprise Audit is already installed, it is recommended that you alter
the table definitions as follows:

ALTER TABLE nysql . audit_| og_user
DROP FOREI GN KEY audit_| og_user _i bf k_1;
ALTER TABLE nysql . audit_log_filter
ENG NE=I nnoDB;
ALTER TABLE nysql . audit_log_filter
CONVERT TO CHARACTER SET utf8 COLLATE utf 8_bi n;
ALTER TABLE nysql . audit_| og_user
ENG NE=I nnoDB;
ALTER TABLE nysql . audit_| og_user
CONVERT TO CHARACTER SET utf8 COLLATE ut f 8_bi n;
ALTER TABLE nysql . audit_| og_user
MODI FY COLUWN USER VARCHAR(32) ;
ALTER TABLE nysql . audit_| og_user
ADD FOREI GN KEY (FI LTERNAME) REFERENCES nysql . audit_| og_filter (NAME);

As of MySQL 5.7.21, for a new installation of MySQL Enterprise Audit, | nnoDB

is used instead of Myl SAMfor the audit log tables. For upgrades to 5.7.21 or
higher of an installation for which MySQL Enterprise Audit is already installed, it is
recommended that you alter the audit log tables to use | nnoDB:

ALTER TABLE nysql . audit _| og_user ENG NE=| nnoDB;
ALTER TABLE nysql . audit_log_filter ENG NE=I nnoDB;

Note

To use MySQL Enterprise Audit in the context of source/replica replication, Group
Replication, or InnoDB Cluster, you must use MySQL 5.7.21 or higher, and ensure
that the audit log tables use | nnoDB as just described. Then you must prepare
the replica nodes prior to running the installation script on the source node. This is
necessary because the | NSTALL PLUGQ N statement in the script is not replicated.

1. On each replica node, extract the | NSTALL PLUG N statement from the
installation script and execute it manually.

2. On the source node, run the installation script as described previously.

To verify plugin installation, examine the Information Schema PLUG NS table or use the SHOW PLUG NS
statement (see Obtaining Server Plugin Information). For example:

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHEMA. PLUG NS
WHERE PLUG N_NAME LI KE * audit % ;

fmocccoosoco==o moccccooooccoos +
| PLUG N_NAME | PLUG N_STATUS |
fmocccoosoco==o moccccooooccoos +
| audit_I| og | ACTI VE |
fmocccoosoco==o moccccooooccoos +

If the plugin fails to initialize, check the server error log for diagnostic messages.

After MySQL Enterprise Audit is installed, you can use the - - audi t - | og option for subsequent server
startups to control audi t _| og plugin activation. For example, to prevent the plugin from being removed at
runtime, use this option:

[nysql d]
audi t - | 0g=FORCE_PLUS_PERMANENT

243

https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-plugins.html
https://dev.mysql.com/doc/refman/5.7/en/obtaining-plugin-information.html

MySQL Enterprise Audit Security Considerations

If it is desired to prevent the server from running without the audit plugin, use - - audi t - | og with a
value of FORCE or FORCE_PLUS PERNMANENT to force server startup to fail if the plugin does not initialize
successfully.

Important

By default, rule-based audit log filtering logs no auditable events for any users.
This differs from legacy audit log behavior (prior to MySQL 5.7.13), which logs

all auditable events for all users (see Section 6.5.10, “Legacy Mode Audit Log
Filtering”). Should you wish to produce log-everything behavior with rule-based
filtering, create a simple filter to enable logging and assign it to the default account:

SELECT audit_log_ filter_set_filter('log_all', "{ "filter": { "log": true } }');
SELECT audit _log filter_set_user('%, 'log_all');

The filter assigned to %is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

Once installed as just described, MySQL Enterprise Audit remains installed until uninstalled. To remove it,
execute the following statements:

DROP TABLE | F EXI STS nysql . audi t _| og_user;

DROP TABLE | F EXI STS nysql .audit_log_filter;

UNI NSTALL PLUG N audit _| og;

DROP FUNCTION audit _log_filter_set filter;

DROP FUNCTI ON audit _log_filter_renove_filter;
DROP FUNCTI ON audit _log_filter_set_user;

DROP FUNCTI ON audit | og_filter_renpve_user;

DROP FUNCTI ON audit | og_filter_flush;

DROP FUNCTI ON audi t _| og_encrypti on_password_get ;
DROP FUNCTI ON audi t _| og_encrypti on_password_set ;
DROP FUNCTI ON audi t _| og_r ead;

DROP FUNCTI ON audi t _| og_r ead_booknar k;

6.5.3 MySQL Enterprise Audit Security Considerations

By default, contents of audit log files produced by the audit log plugin are not encrypted and may contain
sensitive information, such as the text of SQL statements. For security reasons, audit log files should be
written to a directory accessible only to the MySQL server and to users with a legitimate reason to view
the log. The default file name is audi t . | og in the data directory. This can be changed by setting the
audi t _| og_fil e system variable at server startup. Other audit log files may exist due to log rotation.

For additional security, enable audit log file encryption. See Encrypting Audit Log Files.

6.5.4 Audit Log File Formats

The MySQL server calls the audit log plugin to write an audit record to its log file whenever an auditable
event occurs. Typically the first audit record written after plugin startup contains the server description
and startup options. Elements following that one represent events such as client connect and disconnect
events, executed SQL statements, and so forth. Only top-level statements are logged, not statements
within stored programs such as triggers or stored procedures. Contents of files referenced by statements
such as LOAD DATA are not logged.

To select the log format that the audit log plugin uses to write its log file, set the audi t | og_f or nmat
system variable at server startup. These formats are available:

* New-style XML format (audi t _| og_f or mat =NEW: An XML format that has better compatibility with
Oracle Audit Vault than old-style XML format. MySQL 5.7 uses new-style XML format by default.

244

https://dev.mysql.com/doc/refman/5.7/en/load-data.html

Audit Log File Formats

e Old-style XML format (audi t _| og_f or mat =OLD): The original audit log format used by default in older

MySQL series.

* JSON format (audi t _| og_f or mat =JSON)

By default, audit log file contents are written in new-style XML format, without compression or encryption.

Note

For information about issues to consider when changing the log format, see
Selecting Audit Log File Format.

The following sections describe the available audit logging formats:
» New-Style XML Audit Log File Format
» Old-Style XML Audit Log File Format

» JSON Audit Log File Format
New-Style XML Audit Log File Format

Here is a sample log file in new-style XML format (audi t _| og_f or mat =NEW, reformatted slightly for
readability:

<?xm version="1.0" encodi ng="utf-8"?>
<AUDI T>

<AUDI T_RECCRD>
<TI MESTAMP>2019- 10- 03T14: 06: 33 UTC</ Tl MESTAMP>
<RECORD | D>1_2019- 10- 03T14: 06: 33</ RECORD | D>
<NAME>Audi t </ NAVE>
<SERVER | D>1</ SERVER | D>
<VERSI O\N>1</ VERS| ON>
<STARTUP_COPTI ONS>/ usr /| ocal / mysqgl / bi n/ nysql d

--socket =/usr/| ocal / mysqgl / mysql . sock
- - por t =3306</ STARTUP_OPTI ONS>

<OS_VERSI ON>i 686- Li nux</ OS_VERSI ON>
<MYSQL_VERSI ON>5. 7. 21- | og</ MYSQL_VERSI O\N>

</ AUDI T_RECORD>

<AUDI T_RECCRD>
<TI MESTAMP>2019- 10- 03T14: 09: 38 UTC</ Tl MESTAMP>
<RECORD | D>2_2019- 10- 03T14: 06: 33</ RECORD | D>
<NAME>Connect </ NAME>
<CONNECTI ON_| D>5</ CONNECTI ON_| D>
<STATUS>0</ STATUS>
<STATUS CODE>0</ STATUS CODE>
<USER>r oot </ USER>
<OS_LOG N/ >
<HGST>| ocal host </ HOST>
<| P>127.0.0. 1</ | P>
<COMMVAND_CLASS>connect </ COMWWAND CLASS>
<CONNECTI ON_TYPE>SSL/ TLS</ CONNECTI ON_TYPE>
<PRI V_USER>r oot </ PRI V_USER>
<PROXY_USER/ >
<DB>t est </ DB>

</ AUDI T_RECORD>

<AUDI T_RECORD>
<TI MESTAMP>2019- 10- 03T14: 09: 38 UTC</ Tl MESTAMP>
<RECORD | D>6_2019- 10- 03T14: 06: 33</ RECORD | D>
<NAME>Quer y</ NAME>
<CONNECTI ON_| D>5</ CONNECTI ON_| D>
<STATUS>0</ STATUS>
<STATUS CODE>0</ STATUS CODE>

245

Audit Log File Formats

<USER>root[root] @I ocal host [127.0.0. 1] </ USER>
<OS_LOG N >
<HOST>| ocal host </ HOST>
<| P>127.0. 0. 1</ | P>
<COMWAND_CLASS>dr op_t abl e</ COWAND_CLASS>
<SQLTEXT>DROP TABLE | F EXI STS t </ SQLTEXT>

</ AUDI T_RECORD>

<AUDI T_RECORD>
<TI MESTAMP>2019- 10- 03T14: 09: 39 UTC</ TI MESTAMP>
<RECORD _| D>8_2019- 10- 03T14: 06: 33</ RECORD_| D>
<NAME>Qui t </ NAME>
<CONNECTI ON_| D>5</ CONNECTI ON_I D>
<STATUS>0</ STATUS>
<STATUS_CODE>0</ STATUS_CODE>
<USER>r oot </ USER>
<0S_LOGE N >
<HOST>I ocal host </ HOST>
<I P>127.0.0. 1</ | P>
<COMMAND_CLASS>connect </ COWAND_CLASS>
<CONNECTI ON_TYPE>SSL/ TLS</ CONNECTI ON_TYPE>
</ AUDI T_RECORD>

<AUDI T_RECORD>
<TI MESTAMP>2019- 10- 03T14: 09: 43 UTC</ TI MESTAMP>
<RECORD_| D>11_2019- 10- 03T14: 06: 33</ RECORD_| D>
<NAME>Qui t </ NAME>
<CONNECTI ON_| D>6</ CONNECTI ON_I D>
<STATUS>0</ STATUS>
<STATUS_CODE>0</ STATUS_CODE>
<USER>r oot </ USER>
<OS_LOGE N >
<HOST>I ocal host </ HOST>
<I P>127.0.0. 1</ | P>
<COMMAND_CLASS>connect </ COWAND_CLASS>
<CONNECTI ON_TYPE>SSL/ TLS</ CONNECTI ON_TYPE>

</ AUDI T_RECORD>

<AUDI T_RECORD>
<TI MESTAMP>2019- 10- 03T14: 09: 45 UTC</ TI MESTAMP>
<RECORD_| D>12_2019- 10- 03T14: 06: 33</ RECORD_| D>
<NAME>NoAudi t </ NAMVE>
<SERVER | D>1</ SERVER | D>

</ AUDI T_RECORD>

</ AUDI T>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is

<AUDI T>. The root element contains <AUDI T_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDI T> root element tag. When the plugin closes a log file, it writes the closing
</ AUDI T> root element tag. The closing tag is not present while the file is open.

Elements within <AUDI T_RECORD> elements have these characteristics:

* Some elements appear in every <AUDI T_RECORD> element. Others are optional and may appear
depending on the audit record type.

 Order of elements within an <AUDI T_RECORD> element is not guaranteed.

» Element values are not fixed length. Long values may be truncated as indicated in the element
descriptions given later.

e The <, >,", and & characters are encoded as &l t ; , > ; , " ; , and &anp; , respectively. NUL
bytes (U+00) are encoded as the ? character.

246

Audit Log File Formats

» Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #xXA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000- #x10FFFF]

The following elements are mandatory in every <AUDI T_RECORD> element:

o <NAME>

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

Example:

<NAME>Quer y</ NAME>

Some common <NANVE> values:

Audi t When auditing starts, which may be server startup tine
Connect \When a client connects, also known as |ogging in

Query An SQL statenment (executed directly)

Prepare Preparation of an SQL statenent; usually foll owed by Execute
Execute Execution of an SQ. statenent; usually follows Prepare

Shut down Server shut down

Qui t When a client disconnects

NoAudit Auditing has been turned off

The possible values are Audi t, Bi nl og Dunp, Change user, C ose stnt, Connect CQut,
Connect, Creat e DB, Daenon, Debug, Del ayed i nsert,Drop DB, Execute, Fetch,Field
List,Init DB,Kill,Long Data, NoAudit, Pi ng, Prepare, Processlist,Query, Quit,

Ref resh, Regi ster Sl ave, Reset stnt,Set option, Shutdown, Sl eep, Stati stics, Tabl e
Dunp, Tabl eDel et e, Tabl el nsert, Tabl eRead, Tabl eUpdat e, Ti ne.

Many of these values correspond to the COM xxx command values listed in the ny_conmand. h
header file. For example, Cr eat e DB and Change user correspond to COM CREATE_DB and
COM CHANGE USER, respectively.

Events having <NAVE> values of Tabl eXXX accompany Quer y events. For example, the following
statement generates one Quer y event, two Tabl eRead events, and a Tabl el nsert events:

I NSERT INTO t3 SELECT t1.* FROMt1l JO N t 2;

Each Tabl eXXX event contains <TABLE> and <DB> elements to identify the table to which the event
refers and the database that contains the table.

« <RECORD | D>

A unigue identifier for the audit record. The value is composed from a sequence number and timestamp,
in the format SEQ Tl MESTAMP. When the audit log plugin opens the audit log file, it initializes the
sequence number to the size of the audit log file, then increments the sequence by 1 for each record
logged. The timestamp is a UTC value in YYYY- Mt DDThh: nm ss format indicating the date and time
when the audit log plugin opened the file.

Example:
<RECORD_| D>12_2019- 10- 03T14: 06: 33</ RECORD_| D>

» <TI MESTAVP>

247

Audit Log File Formats

A string representing a UTC value in YYYY- Mt DDThh: mm ss UTC format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a <TI MESTAMP> value occurring after the statement finishes, not
when it was received.

Example:

<TI MESTAMP>2019- 10- 03T14: 09: 45 UTC</ TI MESTAVP>

The following elements are optional in <AUDI T_RECORD> elements. Many of them occur only with specific
<NANE> element values.

* <COMVAND_CLASS>

A string that indicates the type of action performed.

Example:

<COVMAND_CLASS>dr op_t abl e</ COWAND_CLASS>

The values correspond to the st at enent / sgl / xxx command counters. For example, xxx is
drop_t abl e and sel ect for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statenent/sql/', '') AS nane

FROM per f or mance_schenm. event s_st at enent s_summary_gl obal _by event nane
VWHERE EVENT_NAME LI KE 'statenent/sql/%

ORDER BY nane;

<CONNECTI ON_| D>

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTI ON_I D() function within the session.

Example:
<CONNECTI ON_| D>127</ CONNECTI ON_| D>

<CONNECTI ON_TYPE>

The security state of the connection to the server. Permitted values are TCP/ | P (TCP/IP connection
established without encryption), SSL/ TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Naned Pi pe (Windows named pipe connection), and Shar ed Menory
(Windows shared memory connection).

Example:

<CONNECTI ON_TYPE>SSL/ TLS</ CONNECTI ON_TYPE>
<DB>
A string representing a database name.

Example:

<DB>t est </ DB>

248

https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_connection-id

Audit Log File Formats

For connect events, this element indicates the default database; the element is empty if there is no
default database. For table-access events, the element indicates the database to which the accessed
table belongs.

<HOST>

A string representing the client host name.
Example:

<HOST>| ocal host </ HOST>

<| P>

A string representing the client IP address.
Example:

<I P>127. 0. 0. 1</ | P>

<MYSQL_VERSI ON>

A string representing the MySQL server version. This is the same as the value of the VERSI ON()
function or ver si on system variable.

Example:
<MYSQL_VERSI ON>5. 7. 21- | og</ MYSQL_VERSI ON>
<0s_LOA N>

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set
the value, this element is empty. The value is the same as that of the ext er nal _user system variable
(see Section 4.14, “Proxy Users”).

Example:

<0S _LOG N>j ef frey</ OS_LOG N>

<0S_VERSI ON>

A string representing the operating system on which the server was built or is running.
Example:

<0S_VERS| ON>x86_64- Li nux</ OS_VERS| ON>

<PRI V_USER>

A string representing the user that the server authenticated the client as. This is the user name that the
server uses for privilege checking, and may differ from the <USER> value.

Example:

<PRI V_USER>j ef f r ey</ PRI V_USER>

249

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_external_user

Audit Log File Formats

* <PROXY_USER>

A string representing the proxy user (see Section 4.14, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:
<PROXY_USER>devel oper </ PROXY_USER>
<SERVER_| D>

An unsigned integer representing the server ID. This is the same as the value of the ser ver i d system
variable.

Example:
<SERVER | D>1</ SERVER | D>
<SQLTEXT>

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so
the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:
<SQLTEXT>DELETE FROM t 1</ SQLTEXT>
<STARTUP_COPTI ONS>

A string representing the options that were given on the command line or in option files when the MySQL
server was started. The first option is the path to the server executable.

Example:

<STARTUP_OPTI ONS>/ usr/ | ocal / nysql / bi n/ mysql d
--port=3306 --1og_out put=Fl LE</ STARTUP_OPTI ONS>

<STATUS>

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred.
This is the same as the value of the nysql _errno() C API function. See the description for
<STATUS CODE> for information about how it differs from <STATUS>.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

<STATUS>1051</ STATUS>

<STATUS CCDE>

An unsigned integer representing the command status: 0 for success, 1 if an error occurred.

The STATUS CODE value differs from the STATUS value: STATUS CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of the

250

https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Audit Log File Formats

nysql _errno() C API function. This is 0 for success and nonzero for error, and thus is not necessarily

1 for error.

Example:

<STATUS_CODE>0</ STATUS_CCODE>
 <TABLE>
A string representing a table name.

Example:

<TABLE>t 3</ TABLE>
* <USER>
A string representing the user name sent by the client. This may differ from the <PRI V_USER> value.

Example:

<USER>root[root] @] ocal host [127.0.0. 1] </ USER>
* <VERSI O\>
An unsigned integer representing the version of the audit log file format.

Example:

<VERSI| ON>1</ VERSI ON\>

Old-Style XML Audit Log File Format

Here is a sample log file in old-style XML format (audi t _| og_f or mat =0OLD), reformatted slightly for
readability:

<?xm version="1.0" encodi ng="utf-8"?>
<AUDI T>

<AUDI T_RECORD
TI MESTAMP="2019- 10- 03T14: 25: 00 UTC'
RECORD | D="1_ 2019- 10- 03T14: 25: 00"
NAVE=" Audi t "
SERVER | D="1"
VERSI ON=" 1"
STARTUP_OPTI ONS=" - - por t =3306"
OS_VERSI ON="i 686- Li nux"
MYSQL_VERSI ON="5. 7. 21-1 og"/ >

<AUDI T_RECORD
TI MESTAMP="2019- 10- 03T14: 25: 24 UTC'
RECORD | D="2_2019- 10- 03T14: 25: 00"
NAME=" Connect "
CONNECTI ON_| D="4"
STATUS="0"
STATUS_CODE=" 0"
USER="r oot "
OS LOG N=""
HOST="1 ocal host"
| P="127.0.0. 1"
COMVAND_CLASS="connect "
CONNECT!I ON_TYPE="SSL/ TLS"
PRI V_USER="r oot "
PROXY_USER=""
DB="test"/>

251

https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html

Audit Log File Formats

<AUDI T_RECORD
TI MESTAMP="2019- 10- 03T14: 25: 24 UTC'
RECORD_| D="6_2019- 10- 03T14: 25: 00"
NAME=" Quer y"
CONNECTI ON_| D="4"
STATUS="0"
STATUS_CODE=" 0"
USER="root[root] @I ocal host [127.0.0.1]"

OS LOG N=""
HOST="1| ocal host "
| P="127.0.0. 1"

COVMAND_CLASS="dr op_t abl e"
SQLTEXT="DRCP TABLE | F EXISTS t"/>

<AUDI T_RECORD

TI MESTAMP="2019- 10- 03T14: 25: 24 UTC'
RECORD_| D="8_2019- 10- 03T14: 25: 00"
NAME=" Qui t "
CONNECTI ON_| D="4"
STATUS="0"
STATUS_CODE=" 0"
USER="r oot "
OS_LOG N=""
HOST="1 ocal host "
| P="127.0.0. 1"
COMVAND_CLASS="connect "
CONNECT!I ON_TYPE="SSL/ TLS"/ >

<AUDI T_RECORD
TI MESTAMP="2019- 10- 03T14: 25: 32 UTC'
RECORD_| D="12_2019- 10- 03T14: 25: 00"
NAME=" NoAudi t "
SERVER | D="1"/>

</ AUDI T>

The audit log file is written as XML, using UTF-8 (up to 4 bytes per character). The root element is

<AUDI T>. The root element contains <AUDI T_RECORD> elements, each of which provides information
about an audited event. When the audit log plugin begins writing a new log file, it writes the XML
declaration and opening <AUDI T> root element tag. When the plugin closes a log file, it writes the closing
</ AUDI T> root element tag. The closing tag is not present while the file is open.

Attributes of <AUDI T_RECORD> elements have these characteristics:

Some attributes appear in every <AUDI T_RECORD> element. Others are optional and may appear
depending on the audit record type.

Order of attributes within an <AUDI T_RECORD> element is not guaranteed.

Attribute values are not fixed length. Long values may be truncated as indicated in the attribute
descriptions given later.

The <, >, ", and & characters are encoded as &l t ; , > ; , " ; , and &anp; , respectively. NUL
bytes (U+00) are encoded as the ? character.

Characters not valid as XML characters are encoded using numeric character references. Valid XML
characters are:

#x9 | #XA | #xD | [#x20-#xDTFF] | [#xE000-#xFFFD] | [#x10000- #x10FFFF]

The following attributes are mandatory in every <AUDI T_RECCORD> element:

NANVE

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

252

Audit Log File Formats

Example: NAVE=" Quer y"

Some common NANE values:

Audi t When auditing starts, which nay be server startup tine
Connect When a client connects, also known as |ogging in

Query An SQL statenment (executed directly)

Prepare Preparation of an SQ. statenent; usually followed by Execute
Execute Execution of an SQ. statenent; usually follows Prepare

Shut down Server shut down

Qui t When a client disconnects

NoAudit Auditing has been turned off

The possible values are Audi t, Bi nl og Dunp, Change user, C ose stnt, Connect CQut,
Connect, Creat e DB, Daenon, Debug, Del ayed i nsert, Drop DB, Execute, Fetch,Field
List,Init DB,Kill,Long Data, NoAudit, Pi ng, Prepare, Processlist,Query, Quit,
Refresh, Regi ster Sl ave, Reset stnt, Set option, Shut down, Sl eep, Stati stics, Tabl e
Dunmp, Tabl eDel et e, Tabl el nsert, Tabl eRead, Tabl eUpdat e, Ti ne.

Many of these values correspond to the COM xxx command values listed in the ny_conmand. h
header file. For example, " Cr eat e DB" and " Change user" correspond to COM CREATE DB and
COM _CHANGE_USER, respectively.

Events having NANME values of Tabl eXXX accompany Quer y events. For example, the following
statement generates one Query event, two Tabl eRead events, and a Tabl el nsert events:

I NSERT INTO t3 SELECT t1.* FROMt1 JO N t 2;

Each Tabl eXXX event has TABLE and DB attributes to identify the table to which the event refers and
the database that contains the table.

RECORD_| D

A unigue identifier for the audit record. The value is composed from a sequence number and timestamp,
in the format SEQ Tl MESTAMP. When the audit log plugin opens the audit log file, it initializes the
sequence number to the size of the audit log file, then increments the sequence by 1 for each record
logged. The timestamp is a UTC value in YYYY- Mt DDThh: nm ss format indicating the date and time
when the audit log plugin opened the file.

Example: RECORD_| D="12_2019- 10- 03T14: 25: 00"
TI MESTAMP

A string representing a UTC value in YYYY- Mt DDThh: mm ss UTC format indicating the date and time
when the audit event was generated. For example, the event corresponding to execution of an SQL
statement received from a client has a TI MESTANP value occurring after the statement finishes, not
when it was received.

Example: TI MESTAVP="2019- 10- 03T14: 25: 32 UTC'

The following attributes are optional in <AUDI T_RECORD> elements. Many of them occur only for elements
with specific values of the NAME attribute.

COMMVAND CLASS
A string that indicates the type of action performed.

Example: COWAND CLASS="dr op_t abl e"

253

Audit Log File Formats

The values correspond to the st at enent / sqgl / xxx command counters. For example, XxxXx is
drop_t abl e and sel ect for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statenent/sqgl/', '') AS nane

FROM per f or mance_schena. event s_st at enent s_sumary_gl obal _by event _nane
VWHERE EVENT_NAME LI KE ' statenment/sql /%

ORDER BY nane;

CONNECTI ON_I D

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTI ON_| D() function within the session.

Example: CONNECTI ON_| D="127"
CONNECTI ON_TYPE

The security state of the connection to the server. Permitted values are TCP/ | P (TCP/IP connection
established without encryption), SSL/ TLS (TCP/IP connection established with encryption), Socket
(Unix socket file connection), Naned Pi pe (Windows named pipe connection), and Shar ed Menory
(Windows shared memory connection).

Example: CONNECTI ON_TYPE="SSL/ TLS"
DB

A string representing a database name.
Example: DB="t est "

For connect events, this attribute indicates the default database; the attribute is empty if there is no
default database. For table-access events, the attribute indicates the database to which the accessed
table belongs.

HOST

A string representing the client host name.
Example: HOST="1 ocal host "

| P

A string representing the client IP address.
Example: | P="127. 0. 0. 1"

MYSQL_ VERSI ON

A string representing the MySQL server version. This is the same as the value of the VERSI O\()
function or ver si on system variable.

Example: MYSQL_VERSI ON="5. 7. 21- | 0g"
s LOA N

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set

254

https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_version

Audit Log File Formats

the value, this attribute is empty. The value is the same as that of the ext er nal _user system variable
(see Section 4.14, “Proxy Users”).

Example: OS_LOG N="j effrey"

OS_VERSI ON

A string representing the operating system on which the server was built or is running.
Example: OS_VERSI ON="x86_64- Li nux"

PRI V_USER

A string representing the user that the server authenticated the client as. This is the user name that the
server uses for privilege checking, and it may differ from the USER value.

Example: PRI V_USER="j ef frey"
PROXY_USER

A string representing the proxy user (see Section 4.14, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example: PROXY_USER="devel oper"
SERVER | D

An unsigned integer representing the server ID. This is the same as the value of the ser ver _i d system
variable.

Example: SERVER | D="1"
SQLTEXT

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so
the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example: SQLTEXT="DELETE FROM t 1"
STARTUP_CPTI ONS

A string representing the options that were given on the command line or in option files when the MySQL
server was started.

Example: STARTUP_OPTI ONS="- - port =3306 --|o0g_out put =FI LE"
STATUS

An unsigned integer representing the command status: 0 for success, nonzero if an error occurred. This
is the same as the value of the nysql _errno() C API function. See the description for STATUS CODE
for information about how it differs from STATUS.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

255

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_external_user
https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Audit Log File Formats

Example: STATUS="1051"

. STATUS_CODE

An unsigned integer representing the command status: O for success, 1 if an error occurred.
The STATUS CODE value differs from the STATUS value: STATUS CODE is 0 for success and 1 for
error, which is compatible with the EZ_collector consumer for Audit Vault. STATUS is the value of the

nysql _errno() C API function. This is 0 for success and nonzero for error, and thus is not necessarily
1 for error.

Example: STATUS_CODE="0"

* TABLE
A string representing a table name.

Example: TABLE="1 3"

* USER

A string representing the user name sent by the client. This may differ from the PRI V_USER value.

* VERSI ON
An unsigned integer representing the version of the audit log file format.

Example: VERSI ON=" 1"

JSON Audit Log File Format

For JSON-format audit logging (audi t _| og_f or mat =JSQON), the log file contents form a JSON array

with each array element representing an audited event as a JSON hash of key-value pairs. Examples of

complete event records appear later in this section. The following is an excerpt of partial events:

[

{
“timestanp": "2019-10-03 13:50: 01",
"id": 0,
"class": "audit",
"event": "startup",
Jic
{
“timestanp": "2019-10-03 15: 02: 32",
"id": 0,
"class": "connection",
"event": "connect",
Ji e
{
“timestanp": "2019-10-03 17: 37: 26",
"id": 0,
"class": "tabl e_access",
"event": "insert",

256

https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html

Audit Log File Formats

The audit log file is written using UTF-8 (up to 4 bytes per character). When the audit log plugin begins

writing a new log file, it writes the opening [array marker. When the plugin closes a log file, it writes the

closing] array marker. The closing marker is not present while the file is open.
Items within audit records have these characteristics:

» Some items appear in every audit record. Others are optional and may appear depending on the aud
record type.

» Order of items within an audit record is not guaranteed.

 Item values are not fixed length. Long values may be truncated as indicated in the item descriptions
given later.

e The" and\ characters are encoded as\ " and \ \, respectively.

it

The following examples show the JSON object formats for different event types (as indicated by the cl ass

and event items), reformatted slightly for readability:

Auditing startup event:

{ "tinestanp": "2019-10-03 14:21:56",
"id": 0,
"class": "audit",
"event": "startup",
"connection_id": O,
"startup_data": { "server_id": 1,
"os_version": "i686-Linux",
"mysqgl _version": "5.7.21-10g",
"args": ["/usr/local/nysql/bin/mysqgld",
"--loose-audit-Iog-formt=JSON',
"--log-error=log.err",
"--pid-file=nmysql d. pid",
"--port=3306"] } }

When the audit log plugin starts as a result of server startup (as opposed to being enabled at runtime),
connection_idissetto0,and account and | ogi n are not present.

Auditing shutdown event:

{ "tinmestanp": "2019-10-03 14:28:20",
"id": 3,
"“class": "audit",
"event": "shutdown",
“connection_id": O,
"shutdown_data": { "server_id": 1} }

When the audit log plugin is uninstalled as a result of server shutdown (as opposed to being disabled at
runtime), connecti on_i dis setto 0, and account and | ogi n are not present.

Connect or change-user event:

{ "tinestanp": "2019-10-03 14:23:18",

"id": 1,

"class": "connection",

"event": "connect",

"connection_id": 5,

"account": { "user": "root", "host": "local host" },

"login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
"connection_data": { "connection_type": "ssl",

"status": O,
"db": "test" } }

Disconnect event:

257

Audit Log File Formats

{ "tinestanp": "2019-10-03 14:24:45",

"id": 3,

"class": "connection",

"event": "disconnect”,

"connection_id": 5,

"account": { "user": "root", "host": "local host" },

"login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
"connection_data": { "connection_type": "ssl" } }

Query event:

{ "tinestanp": "2019-10-03 14:23: 35",

"id": 2,

"class": "general ",

"event": "status",

"connection_id": 5,

"account": { "user": "root", "host": "local host" },

"login": { "user": "root", "os": "", "ip": "::1", "proxy": "" },
"general _data": { "command": "Query",

"sqgl _command": "show_ vari abl es",
"query": "SHOW VARI ABLES",
"status": 0} }

Table access event (read, delete, insert, update):

{ "tinestanp": "2019-10-03 14:23:41",

"id': 0,
“class": "tabl e_access",
"event": "insert",
“connection_id": b5,
"account": { "user": "root", "host": "local host" },
"login": { "user": "root", "os": "", "ip": "127.0.0.1", "proxy": "" },
"tabl e_access_data": { "db": "test",
“table": "t1",
"query": "INSERT INTO t1 (i) VALUES(1),(2),(3)",
"sqgl _command": "insert" } }

The items in the following list appear at the top level of JSON-format audit records: Each item value is
either a scalar or a JSON hash. For items that have a hash value, the description lists only the item names
within that hash. For more complete descriptions of second-level hash items, see later in this section.

e account

The MySQL account associated with the event. The value is a hash containing these items equivalent to
the value of the CURRENT _USER() function within the section: user, host .

Example:
"account": { "user": "root", "host": "local host" }

e cl ass

A string representing the event class. The class defines the type of event, when taken together with the
event item that specifies the event subclass.

Example:

“class": "connection"

The following table shows the permitted combinations of cl ass and event values.

258

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_current-user

Audit Log File Formats

Table 6.18 Audit Log Class and Event Combinations

Class Value Permitted Event Values

audi t st art up, shut down

connection connect, change_user, di sconnect
gener al st at us

tabl e_access_data read, del ete,i nsert,update

e connection_data

Information about a client connection. The value is a hash containing these items: connect i on_t ype,
st at us, db. This item occurs only for audit records with a cl ass value of connecti on.

Example:

“connection_data": { "connection_type": "ssl"
"status": O,
"db": “"test" }

e connection_id

An unsigned integer representing the client connection identifier. This is the same as the value returned
by the CONNECTI ON_| D() function within the session.

Example:

"connection_id": 5
e event

A string representing the subclass of the event class. The subclass defines the type of event, when
taken together with the cl ass item that specifies the event class. For more information, see the cl ass
item description.

Example:

"event": "connect"
* general data

Information about an executed statement or command. The value is a hash containing these items:
conmand, sql _comrand, query, st at us. This item occurs only for audit records with a cl ass value
of general .

Example:

"general _data": { "command": "Query",
"sqgl _command": "show vari abl es",
“query": " SHOW VARl ABLES",
"status": 0 }

259

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_connection-id

Audit Log File Formats

id

An unsigned integer representing an event ID.

Example:

“idv: 2

For audit records that have the same t i mest anp value, their i d values distinguish them and form a

sequence. Within the audit log, t i nest anp/i d pairs are unique. These pairs are bookmarks that identify
event locations within the log.

| ogin

Information indicating how a client connected to the server. The value is a hash containing these items:
user, 0s, i p, proxy.

Example:
"login": { "user": "root", "os": "", "ip": "::1", "proxy": "" }
shut down_dat a

Information pertaining to audit log plugin termination. The value is a hash containing these items:
server _i d This item occurs only for audit records with cl ass and event values of audi t and
shut down, respectively.

Example:

"shutdown_data": { "server_id": 1}
startup_data

Information pertaining to audit log plugin initialization. The value is a hash containing these items:
server _id,os_version,nysql _version,args. This item occurs only for audit records with cl ass
and event values of audi t and st art up, respectively.

Example:

"startup_data": { "server_id": 1,

"os_version": "i686-Linux",

"mysqgl _version": "5.7.21-10g",

"args": ["/usr/local/nysql/bin/msqld",
"--loose-audit-I|og-fornmt=JSON',
"--log-error=log.err",
"--pid-file=mysqld. pid",
"--port=3306"] }

tabl e_access_data

Information about an access to a table. The value is a hash containing these items: db, t abl e, query,
sql _command, This item occurs only for audit records with a cl ass value of t abl e_access.

Example:
"tabl e_access_data": { "db": "test",
"table": "t1",
"query": "INSERT INTOt1 (i) VALUES(1),(2),(3)",
"sql _command": "insert" }
e tinme

260

Audit Log File Formats

This field is similar to that in the t i nest anp field, but the value is an integer and represents the UNIX
timestamp value indicating the date and time when the audit event was generated.

Example:

“time" : 1618498687

The t i e field occurs in JISON-format log files only if the audit | og _format _uni x_ti nest anp
system variable is enabled.

e tinestanp

A string representing a UTC value in YYYY- MM DD hh: nm ss format indicating the date and time when
the audit event was generated. For example, the event corresponding to execution of an SQL statement
received from a client has a t i nest anp value occurring after the statement finishes, not when it was
received.

Example:

"timestanp”: "2019-10-03 13:50: 01"

For audit records that have the same t i mest anp value, their i d values distinguish them and form a
sequence. Within the audit log, t i nest anp/i d pairs are unique. These pairs are bookmarks that identify
event locations within the log.

These items appear within hash values associated with top-level items of JISON-format audit records:
e args

An array of options that were given on the command line or in option files when the MySQL server was
started. The first option is the path to the server executable.

Example:

"args": ["/usr/local/nysql/bin/msqld",
"--loose-audit-|og-fornmt=JSON',
"--log-error=log.err",
"--pid-file=nmysqld. pid",
"--port=3306"]

* conmmand

A string representing the type of instruction that generated the audit event, such as a command that the
server received from a client.

Example:
“command": "Query"
e connection_type

The security state of the connection to the server. Permitted values are t cp/ i p (TCP/IP connection
established without encryption), ssl (TCP/IP connection established with encryption), socket (Unix
socket file connection), nanmed_pi pe (Windows named pipe connection), and shar ed_nenory
(Windows shared memory connection).

Example:

“connection_type": “"tcp/tcp"

261

Audit Log File Formats

db

A string representing a database name. For connecti on_dat a, it is the default database. For
tabl e_access_dat a, itis the table database.

Example:
"db": "test"
host

A string representing the client host name.

Example:

“host": "l ocal host"

ip

A string representing the client IP address.
Example:

“ipt: Moot

nmysql _version

A string representing the MySQL server version. This is the same as the value of the VERSI O\()
function or ver si on system variable.

Example:
"mysqgl _version": "5.7.21-109"
0s

A string representing the external user name used during the authentication process, as set by the plugin
used to authenticate the client. With native (built-in) MySQL authentication, or if the plugin does not set
the value, this attribute is empty. The value is the same as that of the ext er nal _user system variable.
See Section 4.14, “Proxy Users”.

Example:

"os": "jeffrey"

0Ss_version

A string representing the operating system on which the server was built or is running.

Example:

"os_version": "i686-Linux"

262

https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_version
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_external_user

Audit Log File Formats

* proxy

A string representing the proxy user (see Section 4.14, “Proxy Users”). The value is empty if user
proxying is not in effect.

Example:
"proxy": "devel oper"
e query

A string representing the text of an SQL statement. The value can be empty. Long values may be
truncated. The string, like the audit log file itself, is written using UTF-8 (up to 4 bytes per character), so
the value may be the result of conversion. For example, the original statement might have been received
from the client as an SJIS string.

Example:
"query": "DELETE FROM t 1"
e server_id

An unsigned integer representing the server ID. This is the same as the value of the ser ver i d system
variable.

Example:
"server_id": 1
e sql _comuand
A string that indicates the SQL statement type.

Example:

"sqgl _command": "“insert"

The values correspond to the st at enent / sgl / xxx command counters. For example, xxx is
drop_t abl e and sel ect for DROP TABLE and SELECT statements, respectively. The following
statement displays the possible names:

SELECT REPLACE(EVENT_NAME, 'statenent/sql/', '') AS nane

FROM per f or mance_schenm. event s_st at enent s_sumary_gl obal _by event nane
VWHERE EVENT_NAME LI KE 'statenent/sql/%

ORDER BY nane;

e status

An unsigned integer representing the command status: O for success, nonzero if an error occurred. This
is the same as the value of the nysqgl _errno() C API function.

The audit log does not contain the SQLSTATE value or error message. To see the associations between
error codes, SQLSTATE values, and messages, see Server Error Message Reference.

Warnings are not logged.

Example:

"ot ot g . 1051
Statts——— 1TU9T

263

https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-errno.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html

Configuring Audit Logging Characteristics

* table
A string representing a table name.

Example:

"table": "t1"
e user

A string representing a user name. The meaning differs depending on the item within which user
occurs:

< Within account items, user is a string representing the user that the server authenticated the client
as. This is the user name that the server uses for privilege checking.

« Within | ogi n items, user is a string representing the user name sent by the client.

Example:

"user": "root"

6.5.5 Configuring Audit Logging Characteristics

This section describes how to configure audit logging characteristics, such as the file to which the audit log
plugin writes events, the format of written events, whether to enable log file compression and encryption,
and space management.

» Naming Conventions for Audit Log Files

» Selecting Audit Log File Format

e Compressing Audit Log Files

» Encrypting Audit Log Files

» Manually Uncompressing and Decrypting Audit Log Files
» Space Management of Audit Log Files

» Write Strategies for Audit Logging

For additional information about the functions and system variables that affect audit logging, see Audit Log
Functions, and Audit Log Options and Variables.

The audit log plugin can also control which audited events are written to the audit log file, based on event
content or the account from which events originate. See Section 6.5.7, “Audit Log Filtering”.

Naming Conventions for Audit Log Files

To configure the audit log file name, setthe audi t _| og_fi | e system variable at server startup. The
default name is audi t . | og in the server data directory. For best security, write the audit log to a directory
accessible only to the MySQL server and to users with a legitimate reason to view the log.

As of MySQL 5.7.21, the plugin interprets the audi t _| og_fi | e value as composed of an optional
leading directory name, a base name, and an optional suffix. If compression or encryption are enabled,
the effective file name (the name actually used to create the log file) differs from the configured file name
because it has additional suffixes:

264

Configuring Audit Logging Characteristics

« If compression is enabled, the plugin adds a suffix of . gz.

« If encryption is enabled, the plugin adds a suffix of . enc. The audit log plugin stores the encryption
password in the keyring (see Encrypting Audit Log Files.

The effective audit log file name is the name resulting from the addition of applicable compression and
encryption suffixes to the configured file name. For example, if the configured audi t | og_fi | e value is
audi t . | og, the effective file name is one of the values shown in the following table.

Enabled Features Effective File Name
No compression or encryption audi t. | og
Compression audit.l og. gz
Encryption audi t. | og. enc
Compression, encryption audi t.l og.gz. enc

Prior to MySQL 5.7.21, the configured and effective log file names are the same. For example, if the
configured audi t | og fil evalueisaudit.| og, the audit log plugin writes to audi t . | og.

The audit log plugin performs certain actions during initialization and termination based on the effective
audit log file name:

As of MySQL 5.7.21:

 During initialization, the plugin checks whether a file with the audit log file name already exists
and renames it if so. (In this case, the plugin assumes that the previous server invocation exited
unexpectedly with the audit log plugin running.) The plugin then writes to a new empty audit log file.

» During termination, the plugin renames the audit log file.

 File renaming (whether during plugin initialization or termination) occurs according to the usual rules for
automatic size-based log file rotation; see Manual Audit Log File Rotation.

Prior to MySQL 5.7.21, only the XML log formats are available and the plugin performs rudimentary
integrity checking:

 During initialization, the plugin checks whether the file ends with an </ AUDI T> tag and truncates the tag
before writing any <AUDI T_RECORD> elements. If the log file exists but does not end with </ AUDI T> or
the </ AUDI T> tag cannot be truncated, the plugin considers the file malformed and renames it. (Such
renaming can occur if the server exits unexpectedly with the audit log plugin running.) The plugin then
writes to a new empty audit log file.

« At termination, no file renaming occurs.

* When renaming occurs at plugin initialization, the renamed file has . cor r upt ed, a timestamp, and
. xm added to the end. For example, if the file name is audi t . | og, the plugin renames it to a value
such as audi t. | og. corrupted. 15081807937726520. xm . The timestamp value is similar to a
Unix timestamp, with the last 7 digits representing the fractional second part. For information about
interpreting the timestamp, see Space Management of Audit Log Files.

Selecting Audit Log File Format

To configure the audit log file format, set the audi t | og_f or nat system variable at server startup.
These formats are available:

265

Configuring Audit Logging Characteristics

e NEW New-style XML format. This is the default.
» OLD: Old-style XML format.

* JSON: JSON format.
For details about each format, see Section 6.5.4, “Audit Log File Formats”.

If you change audi t _| og_f or mat, it is recommended that you also change audit _| og fil e. For
example, if you setaudit _| og_fornmat to JSON, setaudit | og _fil etoaudit.json. Otherwise,
newer log files will have a different format than older files, but they will all have the same base name with
nothing to indicate when the format changed.

Note

Prior to MySQL 5.7.21, changing the value of audi t | og_f or mat can result
in writing log entries in one format to an existing log file that contains entries in a
different format. To avoid this issue, use the following procedure:

1. Stop the server.

2. Either change the value of the audi t _| og_f i | e system variable so the plugin
writes to a different file, or rename the current audit log file manually.

3. Restart the server with the new value of audi t _| og_f or nat . The audit log
plugin creates a new log file and writes entries to it in the selected format.

Compressing Audit Log Files

Audit log file compression is available as of MySQL 5.7.21. Compression can be enabled for any log
format.

To configure audit log file compression, set the audi t _| og_conpr essi on system variable at server
startup. Permitted values are NONE (no compression; the default) and GZI P (GNU Zip compression).

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

Encrypting Audit Log Files

Audit log file encryption is available as of MySQL 5.7.21. Encryption can be enabled for any log format.
Encryption is based on a user-defined password (with the exception of the initial password, which the audit
log plugin generates). To use this feature, the MySQL keyring must be enabled because audit logging uses
it for password storage. Any keyring plugin can be used; for instructions, see Section 6.4, “The MySQL
Keyring”.

To configure audit log file encryption, setthe audi t | og_encrypti on system variable at server startup.
Permitted values are NONE (no encryption; the default) and AES (AES-256-CBC cipher encryption).

To set or get an encryption password at runtime, use these audit log functions:

» To set the current encryption password, invoke audi t _| og_encrypti on_password_set ().
This function stores the new password in the keyring. If encryption is enabled, it also performs a log
file rotation operation that renames the current log file, and begins a new log file encrypted with the

266

Configuring Audit Logging Characteristics

password. File renaming occurs according to the usual rules for automatic size-based log file rotation;
see Manual Audit Log File Rotation.

Previously written audit log files are not re-encrypted with the new password. Keep a record of the
previous password should you need to decrypt those files manually.

e To get the current encryption password, invoke audi t | og_encrypti on_password_get (), which
retrieves the password from the keyring.

For additional information about audit log encryption functions, see Audit Log Functions.

When the audit log plugin initializes, if it finds that log file encryption is enabled, it checks whether
the keyring contains an audit log encryption password. If not, the plugin automatically generates a
random initial encryption password and stores it in the keyring. To discover this password, invoke
audit | og_encryption_password _get().

If both compression and encryption are enabled, compression occurs before encryption. To recover the
original file manually, first decrypt it, then uncompress it. See Manually Uncompressing and Decrypting
Audit Log Files.

Manually Uncompressing and Decrypting Audit Log Files

Audit log files can be uncompressed and decrypted using standard tools. This should be done only for log
files that have been closed (archived) and are no longer in use, not for the log file that the audit log plugin
is currently writing. You can recognize archived log files because they have been renamed by the audit log
plugin to include a timestamp in the file name just after the base name.

For this discussion, assume that audit | og fil eissettoaudit.| og.Inthat case, an archived audit
log file has one of the names shown in the following table.

Enabled Features Archived File Name

No compression or encryption audi t.tinmestanp. | og
Compression audit.timestanp.log.gz
Encryption audi t.timestanp. | og. enc
Compression, encryption audit.tinmestanp.l og. gz. enc

To uncompress a compressed log file manually, use gunzi p, gzi p - d, or equivalent command. For
example:

gunzip -c audit.tinmestanp.log.gz > audit.tinestanp.!|og

To decrypt an encrypted log file manually, use the openssl command. For example:

openssl enc -d -aes-256-chc -pass pass: password -nmd sha256
-in audit.tinestanp.|og.enc
-out audit.tinestanp.!og

If both compression and encryption are enabled for audit logging, compression occurs before encryption.
In this case, the file name has . gz and . enc suffixes added, corresponding to the order in which those
operations occur. To recover the original file manually, perform the operations in reverse. That is, first
decrypt the file, then uncompress it:

openssl enc -d -aes-256-chc -pass pass: password -nmd sha256

267

Configuring Audit Logging Characteristics

-in audit.tinmestanp. | og.gz.enc
-out audit.tinmestanp.!|og.gz
gunzip -c audit.tinmestanp.log.gz > audit.tinestanp.!|og

Space Management of Audit Log Files

The audit log file has the potential to grow quite large and consume a great deal of disk space. To manage
the space used, log rotation can be employed. This involves rotating the current log file by renaming

it, then opening a new current log file using the original name. Rotation can be performed manually, or
configured to occur automatically.

To configure audit log file space management, use the following system variables:
» Ifaudit | og rotate_on_size is 0 (the default), automatic log file rotation is disabled:
« No rotation occurs unless performed manually.

e To rotate the current file, manually rename it, then enable audi t | og_f | ush to close it and open a
new current log file using the original name; see Manual Audit Log File Rotation.

» Ifaudit | og rotate_on_si ze is greater than 0, automatic audit log file rotation is enabled:

« Automatic rotation occurs when a write to the current log file causes its size to exceed the
audit | og rotate_on_size value, as well as under certain other conditions; see Automatic Audit
Log File Rotation. When rotation occurs, the audit log plugin renames the current log file and opens a
new current log file using the original name.

< With automatic rotation enabled, audi t | og_f | ush has no effect.
Note

For JSON-format log files, rotation also occurs when the value of the

audit _log_format _uni x_tinmestanp system variable is changed at runtime.
However, this does not occur for space-management purposes, but rather so that,
for a given JSON-format log file, all records in the file either do or do not include the
ti e field.

Note

Rotated (renamed) log files are not removed automatically. For example, with
size-based log file rotation, renamed log files have uniqgue names and accumulate
indefinitely. They do not rotate off the end of the name sequence. To avoid
excessive use of space, remove old files periodically, backing them up first as
necessary.

The following sections describe log file rotation in greater detail.
* Manual Audit Log File Rotation
» Automatic Audit Log File Rotation
Manual Audit Log File Rotation
Ifaudit | og_rotate_on_sizeis 0 (the default), no log rotation occurs unless performed manually. In

this case, the audit log plugin closes and reopens the log file when the audi t _| og_f | ush value changes
from disabled to enabled. Log file renaming must be done externally to the server. Suppose that the log file

268

Configuring Audit Logging Characteristics

name is audi t . | og and you want to maintain the three most recent log files, cycling through the names
audi t. | og. 1 through audi t . | og. 3. On Unix, perform rotation manually like this:

1. From the command line, rename the current log files:

mv audit.log.2 audit.log.3
m/ audit.log.1 audit.log.2
m/ audit.log audit.log.1

This strategy overwrites the current audi t . | og. 3 contents, placing a bound on the number of
archived log files and the space they use.

2. At this point, the plugin is still writing to the current log file, which has been renamed to audi t . | og. 1.
Connect to the server and flush the log file so the plugin closes it and reopens a new audi t . | og file:

SET GLOBAL audit_log_flush = ON,

audit _| og_fl ush is special in that its value remains OFF so that you need not disable it explicitly
before enabling it again to perform another flush.

Note

For JSON-format logging, renaming audit log files manually makes them
unavailable to the log-reading functions because the audit log plugin can no longer
determine that they are part of the log file sequence (see Section 6.5.6, “Reading
Audit Log Files”). Consider setting audi t _| og_rot at e_on_si ze greater than 0
to use size-based rotation instead.

Automatic Audit Log File Rotation

Ifaudit | og _rotate_on_size is greater than O, setting audi t _| og_f | ush has no effect. Instead,
whenever a write to the current log file causes its size to exceed the audit _| og_rotate_on_si ze
value, the audit log plugin automatically renames the current log file and opens a new current log file using
the original name.

Automatic size-based rotation also occurs under these conditions:

 During plugin initialization, if a file with the audit log file name already exists (see Naming Conventions
for Audit Log Files).

 During plugin termination.

* Whenthe audit_| og_encryption_password_set () function is called to set the encryption
password.

The plugin renames the original file as follows:

» As of MySQL 5.7.21, the renamed file has a timestamp inserted after its base name and before
its suffix. For example, if the file name is audi t . | og, the plugin renames it to a value such as
audit.20180115T140633. | og. The timestamp is a UTC value in YYYYMVDDThhnmmss format. For
XML logging, the timestamp indicates rotation time. For JSON logging, the timestamp is that of the last
event written to the file.

If log files are encrypted, the original file name already contains a timestamp indicating
the encryption password creation time (see Naming Conventions for Audit Log Files). In
this case, the file name after rotation contains two timestamps. For example, an encrypted
log file named audi t . | 0og. 20180110T130749- 1. enc is renamed to a value such as
audit.20180115T140633. 1 0g. 20180110T130749- 1. enc.

269

Reading Audit Log Files

e Prior to MySQL 5.7.21, the renamed file has a timestamp and . xm added to the end.
For example, if the file name is audi t . | og, the plugin renames it to a value such as
audi t. | og. 15159344437726520. xni . The timestamp value is similar to a Unix timestamp, with
the last 7 digits representing the fractional second part. By inserting a decimal point, the value can be
interpreted using the FROM _UNI XTI ME() function:

nysql > SELECT FROM UNI XTI ME(1515934443, 7726520) ;

e m e e e e e e e e e e e memaa +
| FROM UNI XTI ME(1515934443, 7726520) |
e m e e e e e e e e e e e memaa +
| 2018-01-14 06: 54: 03. 772652 |
e m e e e e e e e e e e e memaa +

Write Strategies for Audit Logging

The audit log plugin can use any of several strategies for log writes. Regardless of strategy, logging occurs
on a best-effort basis, with no guarantee of consistency.

To specify a write strategy, set the audi t _| og_st r at egy system variable at server startup. By default,
the strategy value is ASYNCHRONOUS and the plugin logs asynchronously to a buffer, waiting if the

buffer is full. You can tell the plugin not to wait (PERFORVANCE) or to log synchronously, either using

file system caching (SEM SYNCHRONOUS) or forcing output with a sync() call after each write request
(SYNCHRONQUS).

For asynchronous write strategy, the audi t _| og_buf f er _si ze system variable is the buffer size in
bytes. Set this variable at server startup to change the buffer size. The plugin uses a single buffer, which
it allocates when it initializes and removes when it terminates. The plugin does not allocate this buffer for
nonasynchronous write strategies.

Asynchronous logging strategy has these characteristics:
» Minimal impact on server performance and scalability.

» Blocking of threads that generate audit events for the shortest possible time; that is, time to allocate the
buffer plus time to copy the event to the buffer.

» Output goes to the buffer. A separate thread handles writes from the buffer to the log file.

With asynchronous logging, the integrity of the log file may be compromised if a problem occurs during a
write to the file or if the plugin does not shut down cleanly (for example, in the event that the server host
exits unexpectedly). To reduce this risk, set audi t _| og_st r at egy to use synchronous logging.

A disadvantage of PERFORMANCE strategy is that it drops events when the buffer is full. For a heavily
loaded server, the audit log may have events missing.

6.5.6 Reading Audit Log Files

The audit log plugin supports functions that provide an SQL interface for reading JSON-format audit log
files. (This capability does not apply to log files written in other formats.)

When the audit log plugin initializes and is configured for JSON logging, it uses the directory containing
the current audit log file as the location to search for readable audit log files. The plugin determines the file
location, base name, and suffix from the value of the audit _| og_fi | e system variable, then looks for
files with names that match the following pattern, where [. . . | indicates optional file name parts:

basenane[.ti nmestanp].suffix[.gz][.enc]

270

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_from-unixtime

Reading Audit Log Files

If a file name ends with . enc, the file is encrypted and reading its unencrypted contents requires a
decryption password obtained from the keyring. For more information about encrypted audit log files, see
Encrypting Audit Log Files.

The plugin ignores files that have been renamed manually and do not match the pattern, and files that
were encrypted with a password no longer available in the keyring. The plugin opens each remaining
candidate file, verifies that the file actually contains JSON audit events, and sorts the files using the
timestamps from the first event of each file. The result is a sequence of files that are subject to access
using the log-reading functions:

e audit | og read() reads events from the audit log or closes the reading process.

e audit_| og _read_bookmar k() returns a bookmark for the most recently written audit log event. This
bookmark is suitable for passing to audit _| og_read() to indicate where to begin reading.

audit_| og_read() takes an optional JSON string argument, and the result returned from a successful
call to either function is a J SON string.

To use the functions to read the audit log, follow these principles:

» Callaudit | og_read() toread events beginning from a given position or the current position, or to
close reading:

< Toinitialize an audit log read sequence, pass an argument that indicates the position at which to
begin. One way to do so is to pass the bookmark returned by audit | og read bookmar k() :

SELECT audit_| og_read(audit_| og read_bookmark());

« To continue reading from the current position in the sequence, call audit _| og_read() with no
position specified:

SELECT audit_| og_read();

e To explicitly close the read sequence, pass a JSONnul | argument:

SELECT audit_log_read(' null');

It is unnecessary to close reading explicitly. Reading is closed implicitly when the session ends or a
new read sequence is initialized by calling audi t _| og_r ead() with an argument that indicates the
position at which to begin.

» Asuccessful callto audi t _| og_read() to read events returns a JSON string containing an array of
audit events:

« If the final value of the returned array is not a JSON nul | value, there are more events following those
justread and audit _| og_read() can be called again to read more of them.

« If the final value of the returned array is a JSON nul | value, there are no more events left to be read in
the current read sequence.

Each non-nul | array element is an event represented as a JSON hash. For example:

[
{
"timestanp": "2020-05-18 13:39:33", "id": O,
"class": "connection", "event": "connect",

o
{

271

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html

Reading Audit Log Files

“tinmestanp": "2020-05-18 13:39:33", "id": 1,
"class": "general", "event": "status",
},
{
“tinmestanp": "2020-05-18 13:39:33", "id": 2,
"class": "connection", "event": "disconnect",
},
nul |

]
For more information about the content of JSON-format audit events, see JSON Audit Log File Format.

« Anaudit_| og read() calltoread events that does not specify a position produces an error under any
of these conditions:

* Aread sequence has not yet been initialized by passing a position to audi t _| og_read() .

< There are no more events left to be read in the current read sequence; that is, audi t _| og_read()
previously returned an array ending with a JSON nul | value.

< The most recent read sequence has been closed by passing a JSON nul | value to
audit | og_read().

To read events under those conditions, it is necessary to first initialize a read sequence by calling
audi t _| og_read() with an argument that specifies a position.

To specify a positionto audi t _| og_read(), pass a bookmark, which is a JSON hash containing
ti mest anp and i d elements that uniquely identify a particular event. Here is an example bookmark,
obtained by calling the audi t _| og_read_bookmar k() function:

nysql > SELECT audit_| og_read_bookmark() ;

e +
| audit_I og_read_booknmark() |
e +
| { "tinmestanp": "2020-05-18 21:03:44", "id"': 0} |
e +

Passing the current bookmark to audi t _| og_r ead() initializes event reading beginning at the bookmark
position:

nmysqgl > SELECT audit_| og_read(audit_| og_read_bookmark());

e L LT +
| audit_|og_read(audit_| og_read_bookmark()) |
e L LT +
| [{"tinestanp":"2020-05-18 22:41:24","id":0,"class":"connection", |
e L LT +

The argumentto audit | og_read() is optional. If present, it can be a JSONnul | value to close the
read sequence, or a JSON hash.

Within a hash argument to audi t _| og_read(), items are optional and control aspects of the read
operation such as the position at which to begin reading or how many events to read. The following items
are significant (other items are ignored):

* tinestanp,id: The position within the audit log of the first event to read. If the position is omitted
from the argument, reading continues from the current position. The t i nest anp and i d items together
comprise a bookmark that uniquely identify a particular event. If an audi t _| og_r ead() argument
includes either item, it must include both to completely specify a position or an error occurs.

272

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html

Reading Audit Log Files

e max_array_| engt h: The maximum number of events to read from the log. If this item is omitted, the
default is to read to the end of the log or until the read buffer is full, whichever comes first.

Example arguments accepted by audi t | og_read():
* Read events starting with the event that has the exact timestamp and event ID:
audit_log_read('{ "tinmestanmp": "2020-05-24 12:30:00", "id": 0 }")
* Like the previous example, but read at most 3 events:
audit_log_read('{ "tinmestanmp": "2020-05-24 12:30:00", "id": O, "max_array_length": 3 }')
» Read events from the current position in the read sequence:
audit _| og_read()
» Read at most 5 events beginning at the current position in the read sequence:
audit _log read('{ "max_array_length": 5 }')
 Close the current read sequence:
audit_log_read(' null")

To use the binary JSON string with functions that require a nonbinary string (such as functions that
manipulate JSON values), perform a conversion to ut f 8nb4. Suppose that a call to obtain a bookmark
produces this value:

nysqgl > SET @mark := audit_| og_read_bookmark();
nysql > SELECT @rark;

Fom e e e e e eemeeeeemmeeeee-maaaa-- +
| @mark |
Fom e e e e e eemeeeeemmeeeee-maaaa-- +
| { "tinmestanp": "2020-05-18 16:10:28", "id": 2} |
Fom e e e e e eemeeeeemmeeeee-maaaa-- +

Calling audit _| og_read() with that argument can return multiple events. To limitaudi t | og_read()
to reading at most N events, convert the string to ut f 8nb4, then add to it a max_array_| engt h item with
that value. For example, to read a single event, modify the string as follows:

nysqgl > SET @mark = CONVERT(@mar k USI NG ut f 8nb4) ;
nysqgl > SET @mark := JSON SET(@mark, '$.max_array_length', 1);
nysql > SELECT @rark;

b= =cceo-c--cco-—c-coco---coc----coc--—--coc---cooc---cooc---coo---ccooo==o +
| @rark |
b= =cceo-c--cco-—c-coco---coc----coc--—--coc---cooc---cooc---coo---ccooo==o +
| {"id": 2, "tinestanp": "2020-05-18 16:10:28", "nex_array_|l ength": 1} |
b= =cceo-c--cco-—c-coco---coc----coc--—--coc---cooc---cooc---coo---ccooo==o +

The modified string, when passed to audi t _| og_r ead(), produces a result containing at most one
event, no matter how many are available.

To read a specific number of events beginning at the current position, pass a JSON hash that includes a
max_array_| engt h value but no position. This statement invoked repeatedly returns five events each
time until no more events are available:

SELECT audit_|l og_read(' {"max_array_l ength": 5}"');

To set a limit on the number of bytes that audi t _| og_r ead() reads, set the
audit | og_read buffer_ size system variable. As of MySQL 5.7.23, this variable has
a default of 32KB and can be set at runtime. Each client should set its session value of

273

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html

Audit Log Filtering

audi t | og_read_buffer_size appropriately for its use of audi t | og_read() . Prior to MySQL
5.7.23,audit _| og read_buffer_si ze has a default of 1MB, affects all clients, and can be changed
only at server startup.

For additional information about audit log-reading functions, see Audit Log Functions.

6.5.7 Audit Log Filtering
Note

As of MySQL 5.7.13, for audit log filtering to work as described here, the audit log
plugin and the accompanying audit tables and functions must be installed. If the
plugin is installed without the accompanying audit tables and functions needed

for rule-based filtering, the plugin operates in legacy filtering mode, described in
Section 6.5.10, “Legacy Mode Audit Log Filtering”. Legacy mode is filtering behavior
as it was prior to MySQL 5.7.13; that is, before the introduction of rule-based
filtering.

» Properties of Audit Log Filtering
» Constraints on Audit Log Filtering Functions
» Using Audit Log Filtering Functions
Properties of Audit Log Filtering
The audit log plugin has the capability of controlling logging of audited events by filtering them:
» Audited events can be filtered using these characteristics:
» User account
* Audit event class
 Audit event subclass
« Audit event fields such as those that indicate operation status or SQL statement executed
 Audit filtering is rule based:

 Afilter definition creates a set of auditing rules. Definitions can be configured to include or exclude
events for logging based on the characteristics just described.

» As of MySQL 5.7.20, filter rules have the capability of blocking (aborting) execution of qualifying
events, in addition to existing capabilities for event logging.

< Multiple filters can be defined, and any given filter can be assigned to any number of user accounts.
« ltis possible to define a default filter to use with any user account that has no explicitly assigned filter.
For information about writing filtering rules, see Section 6.5.8, “Writing Audit Log Filter Definitions”.

» Audit log filters can be defined and modified using an SQL interface based on function calls. By default,
audit log filter definitions are stored in the mysql system database, and you can display audit filters
by querying the nysql . audit | og_filter table. Itis possible to use a different database for this
purpose, in which case you should query the dat abase_nane. audit | og _filter table instead. See
Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”, for more information.

274

Audit Log Filtering

« Within a given session, the value of the read-only audit | og filter i d system variable indicates
whether a filter is assigned to the session.

Note

By default, rule-based audit log filtering logs no auditable events for any users. To
log all auditable events for all users, use the following statements, which create a
simple filter to enable logging and assign it to the default account:

SELECT audit_log filter_set filter('log_all', '{ "filter": { "log": true } }');
SELECT audit_log_filter_set_user('%, 'log_all"');

The filter assigned to %is used for connections from any account that has no
explicitly assigned filter (which initially is true for all accounts).

As previously mentioned, the SQL interface for audit filtering control is function based. The following list
briefly summarizes these functions:

e audit log filter_set filter(): Define afilter.

e audit _log filter_remove filter():Remove afilter.

e audit _log filter_set user(): Startfiltering a user account.

e audit_log filter_renove_user () : Stop filtering a user account.

e audit _log filter flush():Flush manual changes to the filter tables to affect ongoing filtering.

For usage examples and complete details about the filtering functions, see Using Audit Log Filtering
Functions, and Audit Log Functions.

Constraints on Audit Log Filtering Functions
Audit log filtering functions are subject to these constraints:

» To use any filtering function, the audi t _| og plugin must be enabled or an error occurs. In addition,
the audit tables must exist or an error occurs. To install the audi t _| og plugin and its accompanying
functions and tables, see Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

» To use any filtering function, a user must possess the SUPER privilege or an error occurs. To grant the
SUPER privilege to a user account, use this statement:

GRANT SUPER ON *.* TO user,

Alternatively, should you prefer to avoid granting the SUPER privilege while still permitting users

to access specific filtering functions, “wrapper” stored programs can be defined. This technique is
described in the context of keyring functions in Using General-Purpose Keyring Functions; it can be
adapted for use with filtering functions.

* The audi t _I og plugin operates in legacy mode if it is installed but the accompanying audit tables and
functions are not created. The plugin writes these messages to the error log at server startup:

[Warning] Plugin audit_|log reported: 'Failed to open the audit log filter tables.'
[Warning] Plugin audit_|log reported: 'Audit Log plugin supports a filtering,

whi ch has not been installed yet. Audit Log plugin will run in the |egacy

node, which will be disabled in the next rel ease.'

In legacy mode, filtering can be done based only on event account or status. For details, see
Section 6.5.10, “Legacy Mode Audit Log Filtering”.

275

Audit Log Filtering

Using Audit Log Filtering Functions

Before using the audit log functions, install them according to the instructions provided in Section 6.5.2,
“Installing or Uninstalling MySQL Enterprise Audit”. The SUPER privilege is required to use any of these
functions.

The audit log filtering functions enable filtering control by providing an interface to create, modify, and
remove filter definitions and assign filters to user accounts.

Filter definitions are JSON values. For information about using JSON data in MySQL, see The JSON Data
Type. This section shows some simple filter definitions. For more information about filter definitions, see
Section 6.5.8, “Writing Audit Log Filter Definitions”.

When a connection arrives, the audit log plugin determines which filter to use for the new session by
searching for the user account name in the current filter assignments:

« If afilter is assigned to the user, the audit log uses that filter.

« Otherwise, if no user-specific filter assignment exists, but there is a filter assigned to the default account
(99, the audit log uses the default filter.

» Otherwise, the audit log selects no audit events from the session for processing.

If a change-user operation occurs during a session (see mysql_change_user()), filter assignment for the
session is updated using the same rules but for the new user.

By default, no accounts have a filter assigned, so no processing of auditable events occurs for any
account.

Suppose that you want to change the default to be to log only connection-related activity (for example,

to see connect, change-user, and disconnect events, but not the SQL statements users execute while
connected). To achieve this, define a filter (shown here named | og_conn_event s) that enables logging
only of events in the connect i on class, and assign that filter to the default account, represented by the %
account name:

SET @ ="'{ "filter": { "class": { "name": "connection" } } }';
SELECT audit_log_filter_set filter('log_conn_events', @);
SELECT audit_log_filter_set_user('%, 'log_conn_events');

Now the audit log uses this default account filter for connections from any account that has no explicitly
defined filter.

To assign a filter explicitly to a particular user account or accounts, define the filter, then assign it to the
relevant accounts:

SELECT audit_log filter_set filter('log_all', "{ "filter": { "log": true } }');
SELECT audit_log filter_set_user('userl@ocal host', 'log_all");
SELECT audit_|log filter_set_user('user2@ocal host', 'log_all");

Now full logging is enabled for user 1@ ocal host and user 2@ ocal host . Connections from other
accounts continue to be filtered using the default account filter.

To disassociate a user account from its current filter, either unassign the filter or assign a different filter:

» To unassign the filter from the user account:

SELECT audit_l og_filter_renove_user('userl@ocal host');

276

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-change-user.html

Writing Audit Log Filter Definitions

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the default account filter if there is one, and are not logged otherwise.

» To assign a different filter to the user account:

SELECT audit_log filter_set_filter('log_nothing', '{ "filter": { "log": false } }');
SELECT audit_log filter_set_user('userl@ocal host', 'log_nothing');

Filtering of current sessions for the account remains unaffected. Subsequent connections from the
account are filtered using the new filter. For the filter shown here, that means no logging for new
connections from user 1@ ocal host .

For audit log filtering, user name and host name comparisons are case-sensitive. This differs from
comparisons for privilege checking, for which host name comparisons are not case-sensitive.

To remove a filter, do this:

SELECT audit_log_filter_renmove filter('log_nothing');

Removing a filter also unassigns it from any users to whom it is assigned, including any current sessions
for those users.

The filtering functions just described affect audit filtering immediately and update the audit log tables in
the mysql system database that store filters and user accounts (see Audit Log Tables). It is also possible
to modify the audit log tables directly using statements such as | NSERT, UPDATE, and DELETE, but

such changes do not affect filtering immediately. To flush your changes and make them operational, call
audit log filter flush():

SELECT audit_log filter_flush();
Warning

audit log filter flush() should be used only after modifying the audit
tables directly, to force reloading all filters. Otherwise, this function should

be avoided. Itis, in effect, a simplified version of unloading and reloading the
audi t _| og plugin with UNI NSTALL PLUG Nplus | NSTALL PLUG N.

audit_log_filter_flush() affects all current sessions and detaches them
from their previous filters. Current sessions are no longer logged unless they
disconnect and reconnect, or execute a change-user operation.

To determine whether a filter is assigned to the current session, check the session value of the read-only
audit _log_filter _id system variable. If the value is 0, no filter is assigned. A nonzero value indicates
the internally maintained ID of the assigned filter:

nysql > SELECT @@udit log filter id;

e e e e s s +
| @audit _log filter_id |
e e e e s s +
I 2 |
e e e e s s +

6.5.8 Writing Audit Log Filter Definitions

Filter definitions are JSON values. For information about using JSON data in MySQL, see The JSON Data
Type.

277

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html

Writing Audit Log Filter Definitions

Filter definitions have this form, where act i ons indicates how filtering takes place:
{ "filter": actions }

The following discussion describes permitted constructs in filter definitions.
e Logging All Events

* Logging Specific Event Classes

» Logging Specific Event Subclasses

* Inclusive and Exclusive Logging

» Testing Event Field Values

» Blocking Execution of Specific Events

 Logical Operators

» Referencing Predefined Variables

» Referencing Predefined Functions

» Replacing a User Filter
Logging All Events

To explicitly enable or disable logging of all events, use a | og item in the filter:

{
"filter": { "log": true }
}

The | og value can be eithertrue or f al se.
The preceding filter enables logging of all events. It is equivalent to:
{
“filter": { }
}
Logging behavior depends on the | og value and whether cl ass or event items are specified:

» With | og specified, its given value is used.

* Without | og specified, logging ist r ue if no cl ass or event item is specified, and f al se otherwise (in
which case, cl ass or event can include their own | og item).

Logging Specific Event Classes

To log events of a specific class, use a cl ass item in the filter, with its nane field denoting the name of the
class to log:

{
“filter": {
"class": { "nanme": "connection" }
}

}

278

Writing Audit Log Filter Definitions

The nane value can be connecti on, general ,ortabl e_access to log connection, general, or table-
access events, respectively.

The preceding filter enables logging of events in the connect i on class. It is equivalent to the following
filter with | og items made explicit:

{
"filter": {
"l og": false
"class": { "log": true
"name": "connection" }
}
}
To enable logging of multiple classes, define the cl ass value as a JSON array element that names the
classes:
{
“filter": {
"class": [
{ "name": "connection" },
{ "nanme": "general" }
{ "name": "table_access" }
]
}
}

Note

When multiple instances of a given item appear at the same level within a filter
definition, the item values can be combined into a single instance of that item within
an array value. The preceding definition can be written like this:

{
“filter": {
"class": [
{ "name": ["connection", "general", "table_ access"] }

]
}
}

Logging Specific Event Subclasses
To select specific event subclasses, use an event item containing a nane item that names the

subclasses. The default action for events selected by an event item is to log them. For example, this filter
enables logging for the named event subclasses:

{
"filter": {
"class": [
{
"nane": "connection"
"event": [
{ "nane": "connect" },
{ "nanme": "disconnect" }
]
b
{ "nane": "general" }
{
"nane": "tabl e_access"
"event": [
{ "nanme": "insert" },
{ "nanme": "delete" }

279

https://dev.mysql.com/doc/refman/5.7/en/json.html

Writing Audit Log Filter Definitions

{ "name": "update" }

The event item can also contain explicit | og items to indicate whether to log qualifying events. This
event item selects multiple events and explicitly indicates logging behavior for them:

"event": [
{ "nane": "read", "log": false },
{ "nane": "insert", "log": true },
{ "nane": "delete", "log": true },
{ "nane": "update", "log": true }

]

As of MySQL 5.7.20, the event item can also indicate whether to block qualifying events, if it contains an
abor t item. For details, see Blocking Execution of Specific Events.

Table 6.19, “Event Class and Subclass Combinations” describes the permitted subclass values for each
event class.

Table 6.19 Event Class and Subclass Combinations

Event Class Event Subclass Description

connection connect Connection initiation (successful
or unsuccessful)

connection change_user User re-authentication with
different user/password during
session

connection di sconnect Connection termination

gener al status General operation information

tabl e_access read Table read statements, such as
SELECT or | NSERT I NTO . ..
SELECT

t abl e_access del ete Table delete statements, such as
DELETE or TRUNCATE TABLE

tabl e_access i nsert Table insert statements, such as
I NSERT or REPLACE

tabl e_access updat e Table update statements, such as
UPDATE

Table 6.20, “Log and Abort Characteristics Per Event Class and Subclass Combination” describes for each
event subclass whether it can be logged or aborted.

Table 6.20 Log and Abort Characteristics Per Event Class and Subclass Combination

Event Class Event Subclass Can be Logged Can be Aborted
connection connect Yes No
connection change_user Yes No
connection di sconnect Yes No
gener al stat us Yes No

280

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

Writing Audit Log Filter Definitions

Event Class Event Subclass Can be Logged Can be Aborted
t abl e_access r ead Yes Yes
tabl e_access del ete Yes Yes
t abl e_access i nsert Yes Yes
t abl e_access updat e Yes Yes

Inclusive and Exclusive Logging
A filter can be defined in inclusive or exclusive mode:
« Inclusive mode logs only explicitly specified items.
» Exclusive mode logs everything but explicitly specified items.

To perform inclusive logging, disable logging globally and enable logging for specific classes. This filter
logs connect and di sconnect events in the connect i on class, and events in the gener al class:

{
“filter": {
"l og": fal se
"class": [
{ .
“name": "connection"
"event": [
{ "nane": "connect", "log": true }
{ "nane": "disconnect", "log": true }
]
Jic
{ "nane": "general", "log": true }
]
}
}

To perform exclusive logging, enable logging globally and disable logging for specific classes. This filter
logs everything except events in the gener al class:

“filter": {
"l og": true,
"cl ass"
{ "nane": "general", "log": false }
}
}

This filter logs change_user events in the connect i on class, and t abl e_access events, by virtue of
not logging everything else:

{
"filter": {
"l og": true,
"class": [
{
“name": "connection"
"event": [
{ "name": "connect", "log": false }
{ "nanme": "disconnect", "log": false }
]
iE
{ "name": "general", "log": false }
]
}

281

Writing Audit Log Filter Definitions

}

Testing Event Field Values

To enable logging based on specific event field values, specify afi el d item within the | og item that
indicates the field name and its expected value:

{
"filter": {
"class": {
"nane": "general ",
"event": {
"nanme": "status",
"log": {
"field": { "nane":
}
}
}
}
}

"general _command. str",

"Query” }

Each event contains event class-specific fields that can be accessed from within a filter to perform custom

filtering.

An event in the connect i on class indicates when a connection-related activity occurs during a session,
such as a user connecting to or disconnecting from the server. Table 6.21, “Connection Event Fields”

indicates the permitted fields for connect i on events.

Table 6.21 Connection Event Fields

Field Name

Field Type

Description

st at us

integer

Event status:
0: OK

Otherwise: Failed

connection_id

unsigned integer

Connection ID

user. str

string

User name specified during
authentication

user. | ength

unsigned integer

User name length

priv_user.str

string

Authenticated user name (account
user name)

priv_user.length

unsigned integer

Authenticated user name length

external user.str

string

External user name (provided by
third-party authentication plugin)

external _user.length

unsigned integer

External user name length

proxy_user.str

string

Proxy user name

proxy_user. |l ength

unsigned integer

Proxy user name length

host. str string Connected user host

host .l ength unsigned integer Connected user host length

i p.str string Connected user IP address

i p.length unsigned integer Connected user IP address length

282

Writing Audit Log Filter Definitions

Field Name

Field Type

Description

dat abase. str

string

Database name specified at
connect time

dat abase. | ength

unsigned integer

Database name length

connection_type

integer

Connection type:
Oor"::undefined": Undefined
lor"::tcp/ip":TCP/P
2o0r"::socket": Socket

3or"::nanmed_pi pe": Named
pipe

4or"::ssl": TCP/IP with
encryption

5o0r"::shared_nenory":
Shared memory

The ": : xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric

values. They must be quoted as strings and are case-sensitive.

An event in the gener al class indicates the status code of an operation and its details. Table 6.22,
“General Event Fields” indicates the permitted fields for gener al events.

Table 6.22 General Event Fields

Field Name

Field Type

Description

general _error_code

integer

Event status:
0: OK

Otherwise: Failed

general _thread_id

unsigned integer

Connection/thread ID

general _user. str

string

User name specified during
authentication

general _user.length

unsigned integer

User name length

general _command. str

string

Command name

general _command. | engt h

unsigned integer

Command name length

general _query.str

string

SQL statement text

general query. |l ength

unsigned integer

SQL statement text length

general _host.str

string

Host name

general host.length

unsigned integer

Host name length

general _sql _command. str

string

SQL command type name

general _sql _conmmand. | engt h

unsigned integer

SQL command type name length

general _external _user.str

string

External user name (provided by
third-party authentication plugin)

283

Writing Audit Log Filter Definitions

Field Name

Field Type

Description

general _external _user. | engumsigned integer

External user name length

general _ip.str

string

Connected user IP address

general _ip.length

unsigned integer

Connection user IP address length

general _conmmand. st r indicates a command name: Quer y, Execut e, Qui t, or Change user.

A gener al event with the general _conmmand. str field set to Query or Execut e contains
general sql _command. str setto a value that specifies the type of SQL command: al t er _db,

al ter _db_upgrade, adm n_comands, and so forth. The available general sql conmand. str
values can be seen as the last components of the Performance Schema instruments displayed by this

statement:

nysqgl > SELECT NAME FROM per f or mance_schena. set up_i nstrunents
WHERE NAME LI KE 'statenment/sql/% ORDER BY NAME;

statement/sql/alter_db

statenment/sql /al ter_event

statenment/sql /al ter_server

statenment/sql /al ter_db_upgrade

statement/sql /al ter_function
statenment/sql /al ter_i nstance
statement/sql /al ter_procedure

An eventinthe t abl e_access class provides information about a specific type of access to a table.
Table 6.23, “Table-Access Event Fields” indicates the permitted fields for t abl e_access events.

Table 6.23 Table-Access Event Fields

Field Name

Field Type

Description

connection_id

unsigned integer

Event connection ID

sql _command_i d

integer

SQL command ID

query.str

string

SQL statement text

query. |l ength

unsigned integer

SQL statement text length

t abl e_dat abase. str

string

Database name associated with
event

t abl e_dat abase. | ength

unsigned integer

Database name length

tabl e_nane. str

string

Table name associated with event

tabl e_nane. | ength

unsigned integer

Table name length

The following list shows which statements produce which table-access events:

e read event:

e SELECT

* | NSERT ...

* REPLACE ...

* UPDATE ...

SELECT (for tables referenced in SELECT clause)
SELECT (for tables referenced in SELECT clause)

VWHERE (for tables referenced in WHERE clause)

284

Writing Audit Log Filter Definitions

« HANDLER ... READ
» del et e event:
 DELETE
e TRUNCATE TABLE
* insert event:
¢ | NSERT

¢« | NSERT ... SELECT (for table referenced in | NSERT clause)

REPLACE

REPLACE ... SELECT (for table referenced in REPLACE clause

LOAD DATA
« LOAD XML

* updat e event:
 UPDATE

 UPDATE ... WHERE (for tables referenced in UPDATE clause)
Blocking Execution of Specific Events

As of MySQL 5.7.20, event items can include an abort item that indicates whether to prevent qualifying
events from executing. abor t enables rules to be written that block execution of specific SQL statements.

The abort item must appear within an event item. For example:

"event": {
"nanme": qualifying event subclass nanes
"abort": condition

}

For event subclasses selected by the nane item, the abor t action is true or false, depending on
condi t i on evaluation. If the condition evaluates to true, the event is blocked. Otherwise, the event
continues executing.

The condi t i on specification can be as simple as t r ue or f al se, or it can be more complex such that
evaluation depends on event characteristics.

This filter blocks | NSERT, UPDATE, and DELETE statements:

{
"filter": {
"class": {
"nanme": "tabl e_access"
"event": {
"name": ["insert", "update", "delete"]
"abort": true
}
}
}
}

285

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html

Writing Audit Log Filter Definitions

This more complex filter blocks the same statements, but only for a specific table
(fi nances. bank_account):

{
"filter": {
"class": {
"nane": "tabl e_access",
"event": {
"nane": ["insert", "update", "delete"],
"abort": {
"and": [
{ "field": { "name": "tabl e_database.str", "value": "finances" } },
{ "field": { "nane": "table_nane.str", "value": "bank_account" } }
]
}
}
}
}
}

Statements matched and blocked by the filter return an error to the client:

ERROR 1045 (28000): Statenent was aborted by an audit log filter

Not all events can be blocked (see Table 6.20, “Log and Abort Characteristics Per Event Class and
Subclass Combination”). For an event that cannot be blocked, the audit log writes a warning to the error
log rather than blocking it.

For attempts to define a filter in which the abor t item appears elsewhere than in an event item, an error
occurs.

Logical Operators

Logical operators (and, or, not) permit construction of complex conditions, enabling more advanced
filtering configurations to be written. The following | og item logs only gener al events with
gener al _conmand fields having a specific value and length:

{
“filter": {
"class": {
“name": "general ",
"event": {
"name": "status",
"log": {
"or": [
{
"and": [
{ "field": { "nane": "general _command.str", "val ue": "Query" } },
{ "field": { "nane": "general _command.|ength", "value": 5} }
]
Ir
{
"and": [
{ "field": { "nane": "general _command.str", "val ue": "Execute" } },
{ "field": { "nane": "general _command.|ength", “"value": 7 } }
]
}
]
}
}
}
}
}

286

Writing Audit Log Filter Definitions

Referencing Predefined Variables

To refer to a predefined variable in a | og condition, use a vari abl e item, which takes nane and val ue
items and tests equality of the named variable against a given value:

"variable": {
"nane": "variabl e_nane"
"val ue": conparison_val ue

}
This is true if var i abl e_namne has the value conpari son_val ue, false otherwise.

Example:

{
"filter": {
"class": {
"nanme": "general ",
"event": {
"nanme": "status"
"log": {
"variabl e": {
"name": "audit_I| og_connection_policy_val ue"
"val ue": "::none"

Each predefined variable corresponds to a system variable. By writing a filter that tests a
predefined variable, you can modify filter operation by setting the corresponding system variable,
without having to redefine the filter. For example, by writing a filter that tests the value of the

audi t | og_connection_policy_ val ue predefined variable, you can modify filter operation by
changing the value of the audi t | og_connecti on_pol i cy system variable.

The audit _| og_xxx_pol i cy system variables are used for the legacy mode audit log (see

Section 6.5.10, “Legacy Mode Audit Log Filtering”). With rule-based audit log filtering, those variables
remain visible (for example, using SHOW VARI ABLES), but changes to them have no effect unless you
write filters containing constructs that refer to them.

The following list describes the permitted predefined variables for var i abl e items:
e audit_| og_connection_policy_val ue

This variable corresponds to the value of the audit | og _connecti on_pol i cy system variable.
The value is an unsigned integer. Table 6.24, “audit_log_connection_policy value Values” shows the
permitted values and the corresponding audi t | og _connecti on_pol i cy values.

Table 6.24 audit_log_connection_policy value Values

Value Corresponding audit_log_connection_policy
Value

Oor"::none" NONE

lor"::errors” ERRORS

2or"::all" ALL

The ": : xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

287

https://dev.mysql.com/doc/refman/5.7/en/show-variables.html

Writing Audit Log Filter Definitions

e audit_l og_policy_val ue

This variable corresponds to the value of the audit _| og_pol i cy system variable. The value is an

unsigned integer. Table 6.25, “audit_log_policy_value Values” shows the permitted values and the
corresponding audi t _| og_pol i cy values.

Table 6.25 audit_log_policy_value Values

Value Corresponding audit_log_policy Value
Oor"::none" NONE

lor"::logins" LOG NS

2or":all” ALL

3or"::queries” QUERI ES

The ": : xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

 audit_| og statenment _policy_val ue

This variable corresponds to the value of the audit | og_st at enment _pol i cy system variable.
The value is an unsigned integer. Table 6.26, “audit_log_statement_policy value Values” shows the
permitted values and the corresponding audi t | og_st at enent _pol i cy values.

Table 6.26 audit_log_statement_policy_value Values

Value Corresponding audit_log_statement_policy
Value

Oor"::none" NONE

lor"::errors” ERRORS

2or"::all" ALL

The ": : xxx" values are symbolic pseudo-constants that may be given instead of the literal numeric
values. They must be quoted as strings and are case-sensitive.

Referencing Predefined Functions

To refer to a predefined function in a | og condition, use a f unct i on item, which takes nane and ar gs
items to specify the function name and its arguments, respectively:

"function": {
"nanme": "function_nane",
"args": argunents

}

The nane item should specify the function name only, without parentheses or the argument list.
The ar gs item must satisfy these conditions:

« If the function takes no arguments, no ar gs item should be given.

« If the function does take arguments, an ar gs item is needed, and the arguments must be given in the

order listed in the function description. Arguments can refer to predefined variables, event fields, or string
or numeric constants.

If the number of arguments is incorrect or the arguments are not of the correct data types required by the
function an error occurs.

288

Writing Audit Log Filter Definitions

Example:
{
"filter": {
"class": {
"name": "general ",
"event": {
"name": "status",
"log": {
"function": {
"name": "find_in_include_list",
"args": [{ "string": [{ "field": "user.str" },
{ "string": "@},
{ "field": "host.str" }] }]
}
}
}
}
}
}

The preceding filter determines whether to log gener al class st at us events depending on whether the
current user is found in the audi t _| og_i ncl ude_account s system variable. That user is constructed
using fields in the event.

The following list describes the permitted predefined functions for f unct i on items:

e« audit_| og_exclude_accounts_is null()

Checks whether the audi t _| og_excl ude_account s system variable is NULL. This function can be
helpful when defining filters that correspond to the legacy audit log implementation.

Arguments:
None.
audit _log include _accounts_is null ()

Checks whether the audi t | og_i ncl ude_account s system variable is NULL. This function can be
helpful when defining filters that correspond to the legacy audit log implementation.

Arguments:

None.

debug sl eep(mllisec)

Sleeps for the given number of milliseconds. This function is used during performance measurement.
debug_ sl eep() is available for debug builds only.

Arguments:

« m | lisec:An unsigned integer that specifies the number of milliseconds to sleep.

find_ in_exclude |ist(account)

Checks whether an account string exists in the audit log exclude list (the value of the
audit _| og_excl ude_account s system variable).

Arguments:

289

Writing Audit Log Filter Definitions

e account : A string that specifies the user account name.
e find_in_include I|ist(account)

Checks whether an account string exists in the audit log include list (the value of the
audi t _| og_i ncl ude_account s system variable).

Arguments:
e account : A string that specifies the user account name.

e string _find(text, substr)
Checks whether the subst r value is contained in the t ext value. This search is case-sensitive.
Arguments:
e text: The text string to search.
e subst r: The substring to search for in t ext .

Replacing a User Filter

In some cases, the filter definition can be changed dynamically. To do this, defineafi | t er configuration
within an existing f i | t er . For example:

{
"filter": {
"id"': "main",
"class": {
"nane": "tabl e_access",
"event": {
"nane": ["update", "delete"],
"l og": false,
"filter": {
"class": {
"nane": "general ",
"event" : { "nane": "status",
"filter": { "ref": "mmin" } }
b
"activate": {
"or": [
{ "field": { "nanme": "table_nanme.str", "value": "tenp_1" } },
{ "field": { "nane": "table_nanme.str", "value": "tenp_2" } }
|
}
}
}
}
}
}

A new filter is activated when the act i vat e item within a subfilter evaluates to t r ue. Using act i vat e in
atop-level fil t er is not permitted.

A new filter can be replaced with the original one by using a r ef item inside the subfilter to refer to the
original filter i d.

The filter shown operates like this:

» The mai n filter waits for t abl e_access events, either updat e or del et e.

290

Disabling Audit Logging

« Ifthe updat e or del et e t abl e_access event occurs onthe t enp_1 ort enp_2 table, the filter is
replaced with the internal one (without an i d, since there is no need to refer to it explicitly).

* If the end of the command is signalled (gener al /st at us event), an entry is written to the audit log file
and the filter is replaced with the nai n filter.

The filter is useful to log statements that update or delete anything fromthetenp_1 ort enp_2 tables,
such as this one:

UPDATE tenp_1, tenp_3 SET tenp_1.a=21, tenp_3.a=23,;

The statement generates multiple t abl e_access events, but the audit log file contains only gener al or
st at us entries.

Note

Any i d values used in the definition are evaluated with respect only to that
definition. They have nothing to do with the value of the audit |l og filter _id
system variable.

6.5.9 Disabling Audit Logging

The audi t _| og_di sabl e variable, introduced in MySQL 5.7.37, permits disabling audit logging for all
connecting and connected sessions. The audi t _| og_di sabl e variable can be setin a MySQL Server
option file, in a command-line startup string, or at runtime using a SET statement; for example:

SET GLOBAL audit_| og_di sabl e = true;

Setting audi t _| og_di sabl e to true disables the audit log plugin. The plugin is re-enabled when
audi t _| og_di sabl e is set back to f al se, which is the default setting.

Starting the audit log plugin with audi t _| og_di sabl e = true generates a warning

(ER_WARN_AUDI T_LOG DI SABLED) with the following message: Audit Log is di sabl ed. Enable
it with audit_| og _disable = fal se. Settingaudit_| og_di sabl e to false also generates
warning. When audi t _| og_di sabl e is set to true, audit log function calls and variable changes generate
a session warning.

Setting the runtime value of audi t _| og_di sabl e requires the SUPER privilege.

6.5.10 Legacy Mode Audit Log Filtering

Note

This section describes legacy audit log filtering, which applies under either of these
circumstances:

« Before MySQL 5.7.13, that is, prior to the introduction of rule-based audit log
filtering described in Section 6.5.7, “Audit Log Filtering”.

e As of MySQL 5.7.13, if the audi t _| og plugin is installed without the
accompanying audit tables and functions needed for rule-based filtering.

The audit log plugin can filter audited events. This enables you to control whether audited events are
written to the audit log file based on the account from which events originate or event status. Status filtering
occurs separately for connection events and statement events.

201

https://dev.mysql.com/doc/refman/5.7/en/set-variable.html

Legacy Mode Audit Log Filtering

» Legacy Event Filtering by Account

» Legacy Event Filtering by Status

Legacy Event Filtering by Account

To filter audited events based on the originating account, set one (not both) of the following system
variables at server startup or runtime. These variables apply only for legacy audit log filtering.

e audit_l og_include_account s: The accounts to include in audit logging. If this variable is set, only
these accounts are audited.

e audit | og_exclude_account s: The accounts to exclude from audit logging. If this variable is set, all
but these accounts are audited.

The value for either variable can be NULL or a string containing one or more comma-separated account
names, each in user _nane@ost nane format. By default, both variables are NULL, in which case, no
account filtering is done and auditing occurs for all accounts.

Modifications to audi t _| og i ncl ude_account s oraudi t | og_excl ude_account s affect only
connections created subsequent to the modification, not existing connections.

Example: To enable audit logging only for the user 1 and user 2 local host accounts, set the
audit | og_include_accounts system variable like this:

SET GLOBAL audit_I| og_include_accounts = 'user1@ ocal host, user2@ ocal host ' ;

Onlyone of audit | og_i nclude_accounts oraudit _| og exclude_account s can be non-NULL at
atime:

» Ifyousetaudit | og_ include_accounts,the server setsaudit | og_excl ude_account s to
NULL.

e If you attempt to setaudi t | og_excl ude_account s, an error occurs unless
audit | og_include_accounts is NULL. In this case, you must first clear
audit | og_include_accounts by setting it to NULL.

-- This sets audit_| og_exclude_accounts to NULL

SET GLOBAL audit_l og_i ncl ude_accounts = val ue;

-- This fails because audit_| og_include_accounts is not NULL
SET GLOBAL audit_I| og_excl ude_accounts = val ue;

-- To set audit_| og_exclude_accounts, first set

-- audit_log_include_accounts to NULL
SET GLOBAL audit_Il og_i ncl ude_accounts
SET GLOBAL audit _I| og_excl ude_accounts

NULL;
val ue;

If you inspect the value of either variable, be aware that SHOVN VARI ABLES displays NULL as an empty
string. To display NULL as NULL, use SELECT instead:

nmysqgl > SHOW VARI ABLES LI KE 'audit_| og_i ncl ude_accounts';

e e e e +eeeaoae +
| Vari abl e_nane | Val ue |

oo e e eeoeiooao +eemaoan +

| audit_log_include_accounts | |

oo e e eeoeiooao +eemaoan +
nysqgl > SELECT @oaudit_| og_i ncl ude_account s;
dem e e e +

| @@audit_| og_i ncl ude_accounts |

dem e e e +

292

https://dev.mysql.com/doc/refman/5.7/en/show-variables.html
https://dev.mysql.com/doc/refman/5.7/en/select.html

Legacy Mode Audit Log Filtering

If a user name or host name requires quoting because it contains a comma, space, or other special
character, quote it using single quotes. If the variable value itself is quoted with single quotes, double each
inner single quote or escape it with a backslash. The following statements each enable audit logging for the
local r oot account and are equivalent, even though the quoting styles differ:

'root @ ocal host ' ;
""'root'' @'l ocal host''";
'"\"root\' @'l ocal host\"'";
"'root' @I ocal host'";

SET GLOBAL audit_I| og_i ncl ude_accounts
SET GLOBAL audit_I| og_i ncl ude_accounts
SET GLOBAL audit_I| og_i ncl ude_accounts
SET GLOBAL audit_I| og_i ncl ude_accounts

The last statement does not work if the ANSI _ QUOTES SQL mode is enabled because in that mode double
guotes signify identifier quoting, not string quoting.

Legacy Event Filtering by Status

To filter audited events based on status, set the following system variables at server startup or runtime.
These variables apply only for legacy audit log filtering. For JSON audit log filtering, different status
variables apply; see Audit Log Options and Variables.

e audit_l og_connection_pol i cy: Logging policy for connection events

e audit | og statenent policy: Logging policy for statement events

Each variable takes a value of ALL (log all associated events; this is the default), ERRORS (log only failed
events), or NONE (do not log events). For example, to log all statement events but only failed connection
events, use these settings:

SET GLOBAL audit_| og_statenent_policy = ALL;
SET GLOBAL audit_| og_connection_policy = ERRCRS;

Another policy system variable, audi t _| og_pol i cy, is available but does not afford as much control as
audit | og_connection_policyandaudit | og statenent policy.Itcan be setonly at server
startup. At runtime, it is a read-only variable. It takes a value of ALL (log all events; this is the default),

LOd NS (log connection events), QUERI ES (log statement events), or NONE (do not log events). For any of
those values, the audit log plugin logs all selected events without distinction as to success or failure. Use of
audi t _| og_pol i cy at startup works as follows:

» Ifyoudonotsetaudit | og policy orsetittoits default of ALL, any explicit settings for
audit | og _connection_policyoraudit | og statenment policy apply as specified. If not
specified, they default to ALL.

» Ifyousetaudit | og_policy toanon-ALL value, that value takes precedence over and is used to
setaudit_| og_connection_policyandaudit | og_statenment_policy, as indicated in the
following table. If you also set either of those variables to a value other than their default of ALL, the
server writes a message to the error log to indicate that their values are being overridden.

Startup audit_log_policy Value |Resulting Resulting
audit_log_connection_policy |audit_log statement_policy
Value Value

LOA NS ALL NONE

QUERI ES NONE ALL

NONE NONE NONE

293

Audit Log Reference

6.5.11 Audit Log Reference

The following sections provide a reference to MySQL Enterprise Audit elements:

» Audit Log Tables

Audit Log Functions

Audit Log Option and Variable Reference

Audit Log Options and Variables
 Audit Log Status Variables

To install the audit log tables and functions, use the instructions provided in Section 6.5.2, “Installing or
Uninstalling MySQL Enterprise Audit”. Unless those objects are installed, the audi t _| og plugin operates
in legacy mode. See Section 6.5.10, “Legacy Mode Audit Log Filtering”.

Audit Log Tables

MySQL Enterprise Audit uses tables in the mysqgl system database for persistent storage of filter and user
account data. The tables can be accessed only by users who have privileges for that database. The tables
use the | nnoDB storage engine (Myl SAMprior to MySQL 5.7.21).

If these tables are missing, the audi t _| og plugin operates in legacy mode. See Section 6.5.10, “Legacy
Mode Audit Log Filtering”.

The audit | og filter table stores filter definitions. The table has these columns:
* NAME
The filter name.
* FILTER
The filter definition associated with the filter name. Definitions are stored as JSON values.
The audi t _| og_user table stores user account information. The table has these columns:
* USER
The user name part of an account. For an account user 1@ ocal host , the USER part is user 1.
e HOST
The host name part of an account. For an account user 1@ ocal host , the HOST partis | ocal host .
* FI LTERNAME

The name of the filter assigned to the account. The filter name associates the account with a filter
definedintheaudit | og filter table.

Audit Log Functions

This section describes, for each audit log function, its purpose, calling sequence, and return value. For
information about the conditions under which these functions can be invoked, see Section 6.5.7, “Audit Log
Filtering”.

294

https://dev.mysql.com/doc/refman/5.7/en/json.html

Audit Log Reference

Each audit log function returns a string that indicates whether the operation succeeded. OK indicates
success. ERROR: nessage indicates failure.

Audit log functions treat string arguments as binary strings (which means they do not distinguish
lettercase), and string return values are binary strings.

If an audit log function is invoked from within the mysql client, binary string results display using
hexadecimal notation, depending on the value of the - - bi nar y- as- hex. For more information about that
option, see mysgl — The MySQL Command-Line Client.

These audit log functions are available:
e« audit_| og_encryption_password_get ()

Retrieves the current audit log encryption password as a binary string. The password is fetched from
the MySQL keyring, which must be enabled or an error occurs. Any keyring plugin can be used; for
instructions, see Section 6.4, “The MySQL Keyring”.

For additional information about audit log encryption, see Encrypting Audit Log Files.
Arguments:

None.

Return value:

The password string for success (up to 766 bytes), or NULL and an error for failure.

Example:

nysql > SELECT audit_| og_encryption_password_get ();
o m m o e e e e e oo ee oo +

| audit_l og_encryption_password_get() |

o m m o e e e e e oo ee oo +

| secret |

o m m o e e e e e oo ee oo +

« audit | og_encryption_password_set (password)

Sets the audit log encryption password to the argument, stores the password in the MySQL keyring. If
encryption is enabled, the function performs a log file rotation operation that renames the current log file,
and begins a new log file encrypted with the password. The keyring must be enabled or an error occurs.
Any keyring plugin can be used; for instructions, see Section 6.4, “The MySQL Keyring”.

For additional information about audit log encryption, see Encrypting Audit Log Files.
Arguments:

passwor d: The password string. The maximum permitted length is 766 bytes.
Return value:

1 for success, 0 for failure.

Example:

mysql > SELECT audit _| og_encryption_password_set (password);
S S S +

| audit_l og_encryption_password_set (password) |
S S S +

295

https://dev.mysql.com/doc/refman/5.7/en/mysql-command-options.html#option_mysql_binary-as-hex
https://dev.mysql.com/doc/refman/5.7/en/mysql.html

Audit Log Reference

e audit_log_filter_flush()

Calling any of the other filtering functions affects operational audit log filtering immediately and updates
the audit log tables. If instead you modify the contents of those tables directly using statements such as
| NSERT, UPDATE, and DELETE, the changes do not affect filtering immediately. To flush your changes
and make them operational, callaudit |l og filter flush().

Warning

audit _log_filter_flush() should be used only after modifying the audit
tables directly, to force reloading all filters. Otherwise, this function should

be avoided. It is, in effect, a simplified version of unloading and reloading the
audi t _| og plugin with UNI NSTALL PLUGQ Nplus | NSTALL PLUG N

audit log filter flush() affects all current sessions and detaches them
from their previous filters. Current sessions are no longer logged unless they
disconnect and reconnect, or execute a change-user operation.

If this function fails, an error message is returned and the audit log is disabled until the next successful
calltoaudit _log_filter_flush().

Arguments:
None.
Return value:

A string that indicates whether the operation succeeded. CK indicates success. ERROR. nessage
indicates failure.

Example:

nysql > SELECT audit_log filter_flush();
Fem e e e eemeeeeaaaaa +

| audit_log_filter_flush() |

Fem e e e eemeeeeaaaaa +

| X |

Fem e e e eemeeeeaaaaa +

audit _log filter_renove filter(filter_nane)

Given a filter name, removes the filter from the current set of filters. It is not an error for the filter not to
exist.

If a removed filter is assigned to any user accounts, those users stop being filtered (they are removed
from the audi t _| og_user table). Termination of filtering includes any current sessions for those users:
They are detached from the filter and no longer logged.

Arguments:
e filter_name: A string that specifies the filter name.
Return value:

A string that indicates whether the operation succeeded. CK indicates success. ERROR. nessage
indicates failure.

296

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html

Audit Log Reference

Example:

nysql > SELECT audit_|log filter_renove filter (' SoneFilter');

g =g =g +
| audit_log_filter_renmove filter(' SoneFilter') |
g =g =g +
[o I
g =g =g +

audit _log_filter_renove_user(user_nane)

Given a user account name, cause the user to be no longer assigned to a filter. It is not an error if
the user has no filter assigned. Filtering of current sessions for the user remains unaffected. New
connections for the user are filtered using the default account filter if there is one, and are not logged
otherwise.

If the name is % the function removes the default account filter that is used for any user account that has
no explicitly assigned filter.

Arguments:

e user _nane: The user account name as a string in user _nanme@ ost _nane format, or %to represent
the default account.

Return value:

A string that indicates whether the operation succeeded. CK indicates success. ERROR. nessage
indicates failure.

Example:

nysqgl > SELECT audit_|log filter_renpve_user('userl@ocal host');

T +
| audit_log filter_renpve_user('userl@ocal host') |
T +
| X |
T +

audit log filter _set filter(filter_nanme, definition)

Given a filter name and definition, adds the filter to the current set of filters. If the filter already exists and
is used by any current sessions, those sessions are detached from the filter and are no longer logged.
This occurs because the new filter definition has a new filter ID that differs from its previous ID.

Arguments:

o filter_name: A string that specifies the filter name.

e definition:AJSONvalue that specifies the filter definition.
Return value:

A string that indicates whether the operation succeeded. CK indicates success. ERROR. nessage
indicates failure.

Example:

nysql> SET @ = '{ "filter": { "log": false } }';
nysql > SELECT audit_log filter_set filter(' SoneFilter', @);

297

https://dev.mysql.com/doc/refman/5.7/en/json.html

Audit Log Reference

e +
| audit_log filter_set filter(' SoneFilter', @) |
S e +
| X |
S e +

e audit _log filter_set user(user_nane, filter_nane)

Given a user account name and a filter name, assigns the filter to the user. A user can be assigned only
one filter, so if the user was already assigned a filter, the assignment is replaced. Filtering of current
sessions for the user remains unaffected. New connections are filtered using the new filter.

As a special case, the name %represents the default account. The filter is used for connections from any
user account that has no explicitly assigned filter.

Arguments:

e user _nane: The user account name as a string in user _nanme@ ost _nane format, or %to represent
the default account.

e filter_nane: A string that specifies the filter name.
Return value:

A string that indicates whether the operation succeeded. CK indicates success. ERROR. nessage
indicates failure.

Example:

nmysql > SELECT audit_log_filter_set user('userl@ocal host', 'SoneFilter');
I GOk oL G 111605t e (o o i © S e |
diecccccococcccocScccoocCcooSocccCoocSccoScccooSooccooocCoosoooooo +

| X |
diecccccococcccocScccoocCcooSocccCoocSccoScccooSooccooocCoosoooooo +

audit log read([arg])

Reads the audit log and returns a binary JSON string result. If the audit log format is not JSON, an error
occurs.

With no argument or a JSON hash argument, audi t _| og_r ead() reads events from the audit log and
returns a JSON string containing an array of audit events. Items in the hash argument influence how
reading occurs, as described later. Each element in the returned array is an event represented as a
JSON hash, with the exception that the last element may be a JSON nul | value to indicate no following
events are available to read.

With an argument consisting of a JSONnul | value, audi t _| og_read() closes the current read
sequence.

For additional details about the audit log-reading process, see Section 6.5.6, “Reading Audit Log Files”.
Arguments:

ar g: The argument is optional. If omitted, the function reads events from the current position. If present,
the argument can be a JSON nul | value to close the read sequence, or a JSON hash. Within a hash

298

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html

Audit Log Reference

argument, items are optional and control aspects of the read operation such as the position at which to
begin reading or how many events to read. The following items are significant (other items are ignored):

e timestanp,id: The position within the audit log of the first event to read. If the position is omitted
from the argument, reading continues from the current position. The t i nest anp and i d items
together comprise a bookmark that uniquely identify a particular event. If an audi t | og_r ead()
argument includes either item, it must include both to completely specify a position or an error occurs.

To obtain a bookmark for the most recently written event, call audi t | og read bookmar k() .

e max_array_I| engt h: The maximum number of events to read from the log. If this item is omitted, the
default is to read to the end of the log or until the read buffer is full, whichever comes first.

Return value:
If the call succeeds, the return value is a binary JSON string containing an array of audit events, or a
JSON nul | value if that was passed as the argument to close the read sequence. If the call fails, the

return value is NULL and an error occurs.

Example:

nmysql > SELECT audit | og_read(audit_| og_read_bookmark());

RS +
| audit_I| og_read(audit_I| og_read_bookmark()) |
RS +
| [{"tinmestanp":"2020-05-18 22:41:24","id":0,"class":"connection |
RS +
nysql > SELECT audit_|log_read(' null");

Fem e e e eeeeaaaaaaa +

| audit_log_read(' null"') |

Fem e e e eeeeaaaaaaa +

| null |

Fem e e e eeeeaaaaaaa +

audit | og_read _bookmark()

Returns a binary J SON string representing a bookmark for the most recently written audit log event. If the
audit log format is not JSON, an error occurs.

The bookmark is a JSON hash with t i nest anp and i d items that uniquely identify the position of an
event within the audit log. It is suitable for passing to audi t | og_r ead() to indicate to that function the
position at which to begin reading.

For additional details about the audit log-reading process, see Section 6.5.6, “Reading Audit Log Files”.
Arguments:

None.

Return value:

A binary JSON string containing a bookmark for success, or NULL and an error for failure.

Example:

nysql > SELECT audit_| og_read_bookmar k() ;

| { "tinmestanp”: "2019-10-03 21:03:44", "id": 0} |

299

https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html
https://dev.mysql.com/doc/refman/5.7/en/json.html

Audit Log Reference

Audit Log Option and Variable Reference

Table 6.27 Audit Log Option and Variable Reference

Name Cmd-Line Option File |System Var |Status Var Var Scope Dynamic
audit-log Yes Yes

audit_log_buffe¥esze Yes Yes Global No
audit_log_comp¥ession Yes Yes Global No
audit_log_conn¥e$on_policy |Yes Yes Global Yes
audit_log_current_session Yes Both No
Audit_log_current_size Yes Global No
audit_log_disapYes Yes Yes Global Yes
audit_log_encnyion Yes Yes Global No
Audit_log_event_max_drop_sjze Yes Global No
Audit_log_events Yes Global No
Audit_log_events_filtered Yes Global No
Audit_log_events_lost Yes Global No
Audit_log_events_written Yes Global No
audit_log_exclidesaccounts |Yes Yes Global Yes
audit_log_file |Yes Yes Yes Global No
audit_log_filter] id Yes Both No
audit_log_flush Yes Global Yes
audit_log_formates Yes Yes Global No
audit_log_inclyfeesaccounts |Yes Yes Global Yes
audit_log_poligyes Yes Yes Global No
audit_log_read Mmsdfer_size |Yes Yes Varies Varies
audit_log_rotat&Yem_size Yes Yes Global Yes
audit_log_stateMent policy |Yes Yes Global Yes
audit_log_stratetss Yes Yes Global No
Audit_log_total_size Yes Global No
Audit_log_write_waits Yes Global No

Audit Log Options and Variables

This section describes the command options and system variables that configure operation of MySQL

Enterprise Audit. If values specified at startup time are incorrect, the audi t _| og plugin may fail to initialize
properly and the server does not load it. In this case, the server may also produce error messages for other

audit log settings because it does not recognize them.

To configure activation of the audit log plugin, use this option:

e --audit-Iog[=val ue]

Command-L

ine Format

--audi t-1og[=val ue]

300

Audit Log Reference

Type Enumeration
Default Value ON
Valid Values ON

OFF

FORCE

FORCE_PLUS_PERVANENT

This option controls how the server loads the audi t _| og plugin at startup. It is available only if the
plugin has been previously registered with | NSTALL PLUG N or is loaded with - - pl ugi n- | oad or - -
pl ugi n-1 oad- add. See Section 6.5.2, “Installing or Uninstalling MySQL Enterprise Audit”.

The option value should be one of those available for plugin-loading options, as described in Installing
and Uninstalling Plugins. For example, - - audi t - | og=FORCE_PLUS_PERNMANENT tells the server to
load the plugin and prevent it from being removed while the server is running.

If the audit log plugin is enabled, it exposes several system variables that permit control over logging:

nysql > SHOW VARI ABLES LI KE ' audit_| 0g% ;

dheccoccocoscococosoSoccoocococooocooosooooas drmccoccooocooos +
| Vari abl e_nane | Val ue |
dheccoccocoscococosoSoccoocococooocooosooooas drmccoccooocooos +
audit_	og_buffer_size	1048576
audit_	og_conpression	NONE
audit_	og_connection_policy	ALL
audit_	og_current_session	OFF
audit_	og_disable	OFF
audit_l og_encryption	NONE	
audit_	og_excl ude_accounts	
audit_log_file	audit.log	
audit_log_filter_id	O	
audit_log_flush	OFF	
audit_	og_formt	NEW
audit_	og_format_uni x_tinestanp	OFF
audit_log_include_accounts		
audit_l og_policy	ALL	
audit_	og_read_buffer_size	32768
audit_	log_rotate_on_size	O
audit_	og_statenment_policy	ALL
audit_	og_strategy	ASYNCHRONCUS
dheccoccocoscococosoSoccoocococooocooosooooas drmccoccooocooos +

You can set any of these variables at server startup, and some of them at runtime. Those that are available

only for legacy mode audit log filtering are so noted.

« audit |l og_buffer_size

Command-Line Format

--audit-1og-buffer-size=#

System Variable

audit | og_buffer_size

Scope Global
Dynamic No

Type Integer
Default Value 1048576
Minimum Value 4096

301

https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html
https://dev.mysql.com/doc/refman/5.7/en/plugin-loading.html

Audit Log Reference

Maximum Value (64-bit platforms) 18446744073709547520
Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

When the audit log plugin writes events to the log asynchronously, it uses a buffer to store event
contents prior to writing them. This variable controls the size of that buffer, in bytes. The server adjusts
the value to a multiple of 4096. The plugin uses a single buffer, which it allocates when it initializes and
removes when it terminates. The plugin allocates this buffer only if logging is asynchronous.

e audit_| og_conpression

Command-Line Format

--audi t-1o0g-conpressi on=val ue

Introduced

5.7.21

System Variable

audit | og_conpression

Scope Global
Dynamic No
Type Enumeration
Default Value NONE
Valid Values NONE

&P

The type of compression for the audit log file. Permitted values are NONE (no compression; the default)
and &ZI P (GNU Zip compression). For more information, see Compressing Audit Log Files.

e audit_l og_connection_policy

Command-Line Format

--audi t-1og-connecti on-policy=val ue

System Variable

audit | og_connection_policy

Scope Global
Dynamic Yes
Type Enumeration
Default Value ALL
Valid Values ALL

ERRORS

302

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size

Audit Log Reference

NONE

Note

This variable applies only to legacy mode audit log filtering (see Section 6.5.10,
“Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes connection events to its log file. The following table

shows the permitted values.

Value Description

ALL Log all connection events
ERRORS Log only failed connection events
NONE Do not log connection events

Note

At server startup, any explicit value given for audi t | og_connecti on_policy
may be overridden if audi t _| og_pol i cy is also specified, as described in
Section 6.5.5, “Configuring Audit Logging Characteristics”.

e audit_l og_current_session

System Variable

audit | og_current _session

Scope Global, Session
Dynamic No
Type Boolean

Default Value

depends on filtering policy

Whether audit logging is enabled for the current session. The session value of this variable is read only.
It is set when the session begins based on the values of the audit _| og_i ncl ude_account s and
audit _| og_excl ude_account s system variables. The audit log plugin uses the session value to
determine whether to audit events for the session. (There is a global value, but the plugin does not use

it.)

e« audit_| og_disable

Command-Line Format

--audi t-1o0g-di sabl e[={ OFF| ON}]

Introduced

5.7.37

System Variable

audit _| og_di sabl e

Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

Permits disabling audit logging for all connecting and connected sessions. Disabling audit logging
requires the SUPER privilege. See Section 6.5.9, “Disabling Audit Logging”.

303

Audit Log Reference

audit _| og_encryption

Command-Line Format

--audit-1og-encryption=val ue

Introduced

5.7.21

System Variable

audit _| og_encryption

Scope Global
Dynamic No
Type Enumeration
Default Value NONE
Valid Values NONE

AES

The type of encryption for the audit log file. Permitted values are NONE (no encryption; the default) and
AES (AES-256-CBC cipher encryption). For more information, see Encrypting Audit Log Files.

audit | og_excl ude_accounts

Command-Line Format

--audi t-1 o0g-excl ude- account s=val ue

System Variable

audit _| og_excl ude_accounts

Scope Global
Dynamic Yes
Type String
Default Value NULL

Note

This variable applies only to legacy mode audit log filtering (see Section 6.5.10,
“Legacy Mode Audit Log Filtering”).

The accounts for which events should not be logged. The value should be NULL or a string containing
a list of one or more comma-separated account names. For more information, see Section 6.5.7, “Audit

Log Filtering”.

Modifications to audi t _| og_excl ude_account s affect only connections created subsequent to the

modification, not existing connections.

audit _log file

Command-Line Format

--audit-log-file=file_name

System Variable

audit _log file

Scope Global
Dynamic No

Type File name
Default Value audit. | og

The base name and suffix of the file to which the audit log plugin writes events. The default value is

304

audi t . | og, regardless of logging format. To have the name suffix correspond to the format, set the

Audit Log Reference

name explicitly, choosing a different suffix (for example, audi t . xm for XML format, audi t . j son for
JSON format).

If the value of audit | og fil e is arelative path name, the plugin interprets it relative to the data
directory. If the value is a full path name, the plugin uses the value as is. A full path name may be useful
if it is desirable to locate audit files on a separate file system or directory. For security reasons, write the

audit log file to a directory accessible only to the MySQL server and to users with a legitimate reason to
view the log.

For details about how the audit log plugin interprets the audi t | og _fi | e value and the rules for file
renaming that occurs at plugin initialization and termination, see Naming Conventions for Audit Log Files.

As of MySQL 5.7.21, the audit log plugin uses the directory containing the audit log file (determined
from the audi t _| og_fi | e value) as the location to search for readable audit log files. From these log
files and the current file, the plugin constructs a list of the ones that are subject to use with the audit log
bookmarking and reading functions. See Section 6.5.6, “Reading Audit Log Files”.

e audit _log filter_id

Introduced 5.7.13

System Variable audit _log filter_id
Scope Global, Session

Dynamic No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 4294967295

The session value of this variable indicates the internally maintained ID of the audit filter for the current
session. A value of 0 means that the session has no filter assigned.

audit | og_flush

System Variable audit _log flush
Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

Ifaudit | og rotate_on_size is 0, automatic audit log file rotation is disabled and rotation occurs
only when performed manually. In that case, enabling audi t _| og_f | ush by setting it to 1 or ON causes
the audit log plugin to close and reopen its log file to flush it. (The variable value remains OFF so that you
need not disable it explicitly before enabling it again to perform another flush.) For more information, see
Section 6.5.5, “Configuring Audit Logging Characteristics”.

e audit_l og fornmat

Command-Line Format --audi t-1og-formt=val ue
System Variable audit _| og_f or mat
Scope Global

305

Audit Log Reference

Dynamic No
Type Enumeration
Default Value NEW
Valid Values (= 5.7.21) oD
NEW
JSON
Valid Values (< 5.7.20) oLD
NEW

The audit log file format. Permitted values are OLD (old-style XML), NEW(new-style XML; the default),
and (as of MySQL 5.7.21) JSON. For details about each format, see Section 6.5.4, “Audit Log File
Formats”.

Note

For information about issues to consider when changing the log format, see
Selecting Audit Log File Format.

audit _log_format _uni x_tinmestanp

Command-Line Format --audi t-1og-fornmat-unix-
ti mest anp[={ OFF| ON}]
Introduced 5.7.35
System Variable audit | og_format_uni x_tinestanp
Scope Global
Dynamic Yes
Type Boolean
Default Value OFF

This variable applies only for JISON-format audit log output. When that is true, enabling this variable
causes each log file record to include a t i ne field. The field value is an integer that represents the UNIX
timestamp value indicating the date and time when the audit event was generated.

Changing the value of this variable at runtime causes log file rotation so that, for a given JSON-format
log file, all records in the file either do or do not include the t i ne field.

audit | og_include_accounts

Command-Line Format --audi t-1o0g-incl ude-account s=val ue
System Variable audit | og_include_accounts

Scope Global

Dynamic Yes

Type String

306

Audit Log Reference

Default Value NULL

Note

This variable applies only to legacy mode audit log filtering (see Section 6.5.10,
“Legacy Mode Audit Log Filtering”).

The accounts for which events should be logged. The value should be NULL or a string containing a list
of one or more comma-separated account names. For more information, see Section 6.5.7, “Audit Log
Filtering”.

Modifications to audi t _| og_i ncl ude_account s affect only connections created subsequent to the
modification, not existing connections.

 audit_Il og policy

Command-Line Format --audi t-1o0g-policy=val ue
System Variable audit | og_policy
Scope Global
Dynamic No
Type Enumeration
Default Value ALL
Valid Values ALL
LOG NS
QUERI ES
NONE

Note

This variable applies only to legacy mode audit log filtering (see Section 6.5.10,
“Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes events to its log file. The following table shows the
permitted values.

Value Description

ALL Log all events

LOd NS Log only login events

QUERI ES Log only query events

NONE Log nothing (disable the audit stream)

audi t _| og_pol i cy can be set only at server startup. At runtime, it is a read-only variable. Two

other system variables, audit | og _connecti on_policy andaudit | og statenent policy,
provide finer control over logging policy and can be set either at startup or at runtime. If you use

audi t _| og_pol i cy at startup instead of the other two variables, the server uses its value to set
those variables. For more information about the policy variables and their interaction, see Section 6.5.5,
“Configuring Audit Logging Characteristics”.

307

Audit Log Reference

e audit_| og_read_buffer_size

Command-Line Format

--audit-1og-read-buffer-size=#

Introduced

5.7.21

System Variable

audit _| og_read_buffer_size

Scope (= 5.7.23)

Global, Session

Scope (£5.7.22) Global
Dynamic (= 5.7.23) Yes
Dynamic (£ 5.7.22) No

Type Integer
Default Value (= 5.7.23) 32768
Default Value (< 5.7.22) 1048576
Minimum Value (2 5.7.23) 32768
Minimum Value (< 5.7.22) 1024
Maximum Value 4194304
Unit bytes

The buffer size for reading from the audit log file, in bytes. The audi t | og_read() function reads no
more than this many bytes. Log file reading is supported only for JSON log format. For more information,

see Section 6.5.6, “Reading Audit Log Files”.

As of MySQL 5.7.23, this variable has a default of 32KB and can be set at runtime. Each client

should set its session value of audit | og read_buffer_si ze appropriately for its use of

audit | og read(). Priorto MySQL 5.7.23, audit | og_read_buffer_size has a default of 1MB,
affects all clients, and can be changed only at server startup.

e audit_log rotate_on_size

Command-Line Format

--audit-1og-rotate-on-size=#

System Variable

audit _|og rotate on_size

Scope Global

Dynamic Yes

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615
Unit bytes

308

Audit Log Reference

Block Size

4096

Ifaudit _| og_rotate_on_sizeis 0, the audit log plugin does not perform automatic size-based log
file rotation. If rotation is to occur, you must perform it manually; see Manual Audit Log File Rotation.

Ifaudit | og rotate _on_si ze is greater than 0, automatic size-based log file rotation occurs.
Whenever a write to the log file causes its size to exceed the audit _| og_rot ate_on_si ze value, the
audit log plugin renames the current log file and opens a new current log file using the original name.

If yousetaudit_| og_rotate_on_size toavalue that is not a multiple of 4096, it is truncated to the
nearest multiple. In particular, setting it to a value less than 4096 sets it to 0 and no rotation occurs,

except manually.

For more information about audit log file rotation, see Space Management of Audit Log Files.

 audit_| og_statenent_policy

Command-Line Format

--audi t-1og-statenent-policy=val ue

System Variable

audit | og_statenment policy

Scope Global
Dynamic Yes
Type Enumeration
Default Value ALL
Valid Values ALL
ERRORS
NONE

Note

This variable applies only to legacy mode audit log filtering (see Section 6.5.10,
“Legacy Mode Audit Log Filtering”).

The policy controlling how the audit log plugin writes statement events to its log file. The following table

shows the permitted values.

Value Description

ALL Log all statement events
ERRORS Log only failed statement events
NONE Do not log statement events

Note

At server startup, any explicit value given for audi t | og_st at enent _pol i cy
may be overridden if audi t _| og_pol i cy is also specified, as described in
Section 6.5.5, “Configuring Audit Logging Characteristics”.

e audit_l og_strategy

Command-Line Format

--audit-1og-strategy=val ue 309

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#system-variables-block-size

Audit Log Reference

System Variable audit _| og_strategy

Scope Global

Dynamic No

Type Enumeration

Default Value ASYNCHRONOUS

Valid Values ASYNCHRONOUS
PERFORMANCE
SEM SYNCHRONOUS
SYNCHRONOUS

The logging method used by the audit log plugin. These strategy values are permitted:

« ASYNCHRONOUS: Log asynchronously. Wait for space in the output buffer.

PERFORMANCE: Log asynchronously. Drop requests for which there is insufficient space in the output
buffer.

SEM SYNCHRONOUS: Log synchronously. Permit caching by the operating system.

SYNCHRONOUS: Log synchronously. Call sync() after each request.

Audit Log Status Variables

If the audit log plugin is enabled, it exposes several status variables that provide operational information.
These variables are available for legacy mode audit filtering and JSON mode audit filtering.

e Audit | og_current_size

The size of the current audit log file. The value increases when an event is written to the log and is reset
to 0 when the log is rotated.

« Audit | og event nmax_drop_size

The size of the largest dropped event in performance logging mode. For a description of logging modes,
see Section 6.5.5, “Configuring Audit Logging Characteristics”.

* Audit_| og_events

The number of events handled by the audit log plugin, whether or not they were written to the log based
on filtering policy (see Section 6.5.5, “Configuring Audit Logging Characteristics”).

e Audit |l og_events filtered

The number of events handled by the audit log plugin that were filtered (not written to the log) based on
filtering policy (see Section 6.5.5, “Configuring Audit Logging Characteristics”).

e Audit_| og_events_| ost

The number of events lost in performance logging mode because an event was larger than the available
audit log buffer space. This value may be useful for assessing how to setaudit | og _buffer_size
to size the buffer for performance mode. For a description of logging modes, see Section 6.5.5,
“Configuring Audit Logging Characteristics”.

310

Audit Log Restrictions

e Audit | og_events witten
The number of events written to the audit log.
e Audit | og_total _size

The total size of events written to all audit log files. Unlike Audi t | og_current _si ze, the value of
Audit | og_total _size increases even when the log is rotated.

e Audit_log wite waits

The number of times an event had to wait for space in the audit log buffer in asynchronous
logging mode. For a description of logging modes, see Section 6.5.5, “Configuring Audit Logging
Characteristics”.

6.5.12 Audit Log Restrictions

MySQL Enterprise Audit is subject to these general restrictions:

» Only SQL statements are logged. Changes made by no-SQL APIs, such as memcached, Node.JS, and
the NDB API, are not logged.

» Only top-level statements are logged, not statements within stored programs such as triggers or stored
procedures.

» Contents of files referenced by statements such as LOAD DATA are not logged.

e Prior to MySQL 5.7.21, MySQL Enterprise Audit uses Myl SAMtables in the nysql system database.
Group Replication does not support Myl SAMtables. Consequently, MySQL Enterprise Audit and Group
Replication cannot be used together.

NDB Cluster. lItis possible to use MySQL Enterprise Audit with MySQL NDB Cluster, subject to the
following conditions:

 All changes to be logged must be done using the SQL interface. Changes using no-SQL interfaces, such
as those provided by the NDB API, memcached, or ClusterJ, are not logged.

* The plugin must be installed on each MySQL server that is used to execute SQL on the cluster.

 Audit plugin data must be aggregated amongst all MySQL servers used with the cluster. This
aggregation is the responsibility of the application or user.

6.6 MySQL Enterprise Firewall

Note

MySQL Enterprise Firewall is an extension included in MySQL Enterprise Edition,
a commercial product. To learn more about commercial products, see https://
www.mysgl.com/products/.

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against lists of
accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.

Each MySQL account registered with the firewall has its own statement allowlist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording, protecting, or detecting
mode, for training in the accepted statement patterns, active protection against unacceptable statements,

311

https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://www.mysql.com/products/
https://www.mysql.com/products/

Elements of MySQL Enterprise Firewall

or passive detection of unacceptable statements. The diagram illustrates how the firewall processes
incoming statements in each mode.

Figure 6.1 MySQL Enterprise Firewall Operation

Receive SQL from Digest into parser]
client ’ tokens > AL

Check
Firewall profile
mode

Store SQL digest in <« Recording
Firewall allowlist

I
Protect or Detect

v

Yes In allowlist?

|
Na

v

Send Firewall alert
to error log

!

Detect or
protect mode

Detect

Protect
v ¥

Execute SQL Reject SQL

t

The following sections describe the elements of MySQL Enterprise Firewall, discuss how to install and use
it, and provide reference information for its elements.

6.6.1 Elements of MySQL Enterprise Firewall

MySQL Enterprise Firewall is based on a plugin library that includes these elements:

» A server-side plugin named MYSQL_FI REWALL examines SQL statements before they execute and,
based on the registered firewall profiles, renders a decision whether to execute or reject each statement.

e Server-side plugins named MyYySQL_FI REWALL_USERS and MYSQL_FI REWALL_W\HI TELI ST implement
| NFORVATI ON_SCHENMA tables that provide views into the registered profiles.

312

Installing or Uninstalling MySQL Enterprise Firewall

 Profiles are cached in memory for better performance. Tables in the nysql system database provide
persistent backing storage of firewall data.

 Stored procedures perform tasks such as registering firewall profiles, establishing their operational
mode, and managing transfer of firewall data between the in-memory cache and persistent storage.

» Administrative functions provide an API for lower-level tasks such as synchronizing the cache with
persistent storage.

» System variables enable firewall configuration and status variables provide runtime operational
information.

6.6.2 Installing or Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall installation is a one-time operation that installs the elements described in
Section 6.6.1, “Elements of MySQL Enterprise Firewall”. Installation can be performed using a graphical
interface or manually:

* On Windows, MySQL Installer includes an option to enable MySQL Enterprise Firewall for you.

* MySQL Workbench 6.3.4 or higher can install MySQL Enterprise Firewall, enable or disable an installed
firewall, or uninstall the firewall.

» Manual MySQL Enterprise Firewall installation involves running a script located in the shar e directory of
your MySQL installation.

Important

Read this entire section before following its instructions. Parts of the procedure
differ depending on your environment.

Note

If installed, MySQL Enterprise Firewall involves some minimal overhead even when
disabled. To avoid this overhead, do not install the firewall unless you plan to use it.

Note

MySQL Enterprise Firewall does not work together with the query cache. If the
guery cache is enabled, disable it before installing the firewall (see Query Cache
Configuration).

For usage instructions, see Section 6.6.3, “Using MySQL Enterprise Firewall”. For reference information,
see Section 6.6.4, “MySQL Enterprise Firewall Reference”.

« Installing MySQL Enterprise Firewall

» Uninstalling MySQL Enterprise Firewall

Installing MySQL Enterprise Firewall

If MySQL Enterprise Firewall is already installed from an older version of MySQL, uninstall it using the
instructions given later in this section and then restart your server before installing the current version. In
this case, it is also necessary to register your configuration again.

On Windows, you can use MySQL Installer to install MySQL Enterprise Firewall, as shown in Figure 6.2,
“MySQL Enterprise Firewall Installation on Windows”. Check the Enable MySQL Enterprise Firewall

313

https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html
https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html

Installing or Uninstalling MySQL Enterprise Firewall

check box. (Open Firewall port for network access has a different purpose. It refers to Windows Firewall
and controls whether Windows blocks the TCP/IP port on which the MySQL server listens for client
connections.)

Figure 6.2 MySQL Enterprise Firewall Installation on Windows

MySQL. Installer Type and Networking

MySQL Server 5.6.25 Server Configuration Type

Choose the correct server configuration type for this MySCOL Server installation. This setting will
define how much system resources are assigned to the My3S0L Server instance.

Type and Networking Config Type: | Development Machine w |

Connectivity
Use the following controls to select how you would like to connect to this server.
TCP/IP Port Number:
Open Firewall port for network access
[] Mamed Pipe Pipe Name: MYSOL
[] Shared Memory Memory Name: MYSOL

Advanced Configuration

Select the checkbox below to get additional configuration page where you can set advanced
options for this server instance.

[] Show Advanced Options

MySCL Enterprise Firewall

Select the checkbox below to enable the Enterprise Firewall, a security whitelist that offers
protection from cyber attacks. Additional post installation configuration is necessary.

Enable Enterprise Firewall Click here to view the enline decumentation.

| | Cancel

To install MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface.

To install MySQL Enterprise Firewall manually, look in the shar e directory of your MySQL installation and
choose the script that is appropriate for your platform. The available scripts differ in the suffix used to refer
to the plugin library file:

e win_install _firewall.sql:Choose this script for Windows systems that use . dl | as the file
name suffix.

e linux_install _firewall.sqgl:Choose this script for Linux and similar systems that use . so as the
file name suffix.

The installation script creates stored procedures in the default database, nmysql . Run the script as
follows on the command line. The example here uses the Linux installation script. Make the appropriate
substitutions for your system.

$> nysql -u root -p < linux_install_firewall.sql

314

https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

Installing or Uninstalling MySQL Enterprise Firewall

Enter password: (enter root password here)
Note

As of MySQL 5.7.21, for a new installation of MySQL Enterprise Firewall, | nnoDB
is used instead of Myl SAMfor the firewall tables. For upgrades to 5.7.21 or higher
of an installation for which MySQL Enterprise Firewall is already installed, it is
recommended that you alter the firewall tables to use | nnoDB:

ALTER TABLE nysql . firewal | _users ENG NE=I nnoDB;
ALTER TABLE nysql . firewal | _whitelist ENGA NE=I nnoDB;

Note

To use MySQL Enterprise Firewall in the context of source/replica replication,
Group Replication, or InnoDB Cluster, you must use MySQL 5.7.21 or higher,

and ensure that the firewall tables use | nnoDB as just described. Then you must
prepare the replica nodes prior to running the installation script on the source node.
This is necessary because the | NSTALL PLUG N statements in the script are not
replicated.

1. On each replica node, extract the | NSTALL PLUGQ N statements from the
installation script and execute them manually.

2. On the source node, run the installation script as described previously.

Installing MySQL Enterprise Firewall either using a graphical interface or manually should enable the
firewall. To verify that, connect to the server and execute this statement:

nysql > SHOW GLOBAL VARI ABLES LI KE ' nysql _firewal | _node'

fmoccccosocccoosoocoos Gmooc=os +
| Vari abl e_nane | Val ue |
fmoccccosocccoosoocoos Gmooc=os +
| nysql _firewal |l _node | ON |
fmoccccosocccoosoocoos Gmooc=os +

If the plugin fails to initialize, check the server error log for diagnostic messages.
Uninstalling MySQL Enterprise Firewall

MySQL Enterprise Firewall can be uninstalled using MySQL Workbench or manually.

To uninstall MySQL Enterprise Firewall using MySQL Workbench 6.3.4 or higher, see MySQL Enterprise
Firewall Interface, in MySQL Workbench.

To uninstall MySQL Enterprise Firewall manually, execute the following statements. Statements use | F
EXI STS because, depending on the previously installed firewall version, some objects might not exist.

DROP TABLE | F EXI STS nysql . firewal | _users;

DROP TABLE | F EXI STS nysql .firewal | _whitelist;

UNI NSTALL PLUG N MYSQL_FI REWALL;

UNI NSTALL PLUG N MYSQ._FI REWALL USERS;

UNI NSTALL PLUG N MYSQ._FI REWALL_WHI TELI ST;

DROP FUNCTI ON | F EXI STS nysqgl _firewal | _fl ush_st at us;
DROP FUNCTI ON | F EXI STS nor el i ze_st at enent ;

DROP FUNCTION | F EXI STS read_firewal | _users;

DROP FUNCTION | F EXI STS read_firewal | _whitelist;
DROP FUNCTI ON | F EXI STS set _firewal | _node;

DROP PROCEDURE | F EXI STS nysql . sp_rel oad_firewal | _rul es;
DROP PROCEDURE | F EXI STS nysql . sp_set _firewal | _node;

315

https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/refman/5.7/en/install-plugin.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/refman/5.7/en/workbench.html

Using MySQL Enterprise Firewall

6.6.3 Using MySQL Enterprise Firewall

Before using MySQL Enterprise Firewall, install it according to the instructions provided in Section 6.6.2,
“Installing or Uninstalling MySQL Enterprise Firewall”. Also, MySQL Enterprise Firewall does not work
together with the query cache; disable the query cache if it is enabled (see Query Cache Configuration).

This section describes how to configure MySQL Enterprise Firewall using SQL statements. Alternatively,
MySQL Workbench 6.3.4 or higher provides a graphical interface for firewall control. See MySQL
Enterprise Firewall Interface.

» Enabling or Disabling the Firewall

 Assigning Firewall Privileges

Firewall Concepts
* Registering Firewall Account Profiles

* Monitoring the Firewall

Enabling or Disabling the Firewall

To enable or disable the firewall, set the mysql _firewal | node system variable. By default, this
variable is enabled when the firewall is installed. To control the initial firewall state explicitly, you can set
the variable at server startup. For example, to enable the firewall in an option file, use these lines:

[nysal d]
nysqgl _firewal | _nbde=ON

After modifying ny. cnf , restart the server to cause the new setting to take effect.

It is also possible to disable or enable the firewall at runtime:

SET GLOBAL nysql _firewal | _node

CFF;
SET GLOBAL nysql _firewal | _node ;

oN;

Assigning Firewall Privileges

With the firewall installed, grant the appropriate privileges to the MySQL account or accounts to be used for
administering it:

» Grant the EXECUTE privilege for the firewall stored procedures in the mysql system database. These
may invoke administrative functions, so stored procedure access also requires the privileges needed for
those functions.

» Grant the SUPER privilege so that the firewall administrative functions can be executed.

Firewall Concepts

The MySQL server permits clients to connect and receives from them SQL statements to be executed. If
the firewall is enabled, the server passes to it each incoming statement that does not immediately fail with
a syntax error. Based on whether the firewall accepts the statement, the server executes it or returns an
error to the client. This section describes how the firewall accomplishes the task of accepting or rejecting
statements.

* Firewall Profiles

» Firewall Statement Matching

316

https://dev.mysql.com/doc/refman/5.7/en/query-cache-configuration.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html
https://dev.mysql.com/doc/workbench/en/wb-mysql-firewall.html

Using MySQL Enterprise Firewall

» Profile Operational Modes
Firewall Profiles

The firewall uses a registry of profiles that determine whether to permit statement execution. Profiles have
these attributes:

» An allowlist. The allowlist is the set of rules that defines which statements are acceptable to the profile.

» A current operational mode. The mode enables the profile to be used in different ways. For example: the
profile can be placed in training mode to establish the allowlist; the allowlist can be used for restricting
statement execution or intrusion detection; the profile can be disabled entirely.

» A scope of applicability. The scope indicates which client connections the profile applies to.

The firewall supports account-based profiles such that each profile matches a particular client account
(client user name and host name combination). For example, you can register one account profile for
which the allowlist applies to connections originating from adnmi n@ ocal host and another account
profile for which the allowlist applies to connections originating from nyapp@pphost . exanpl e. com

Initially, no profiles exist, so by default, the firewall accepts all statements and has no effect on which
statements MySQL accounts can execute. To apply firewall protective capabilities, explicit action is
required:

» Register one or more profiles with the firewall.

 Train the firewall by establishing the allowlist for each profile; that is, the types of statements the profile
permits clients to execute.

 Place the trained profiles in protecting mode to harden MySQL against unauthorized statement
execution:

* MySQL associates each client session with a specific user name and host name combination. This
combination is the session account.

» For each client connection, the firewall uses the session account to determine which profile applies to
handling incoming statements from the client.

The firewall accepts only statements permitted by the applicable profile allowlist.
The profile-based protection afforded by the firewall enables implementation of strategies such as these:

« If an application has unique protection requirements, configure it to use an account not used for any
other purpose and set up a profile for that account.

« If related applications share protection requirements, configure them all to use the same account (and
thus the same account profile).

Firewall Statement Matching

Statement matching performed by the firewall does not use SQL statements as received from clients.
Instead, the server converts incoming statements to normalized digest form and firewall operation uses
these digests. The benefit of statement normalization is that it enables similar statements to be grouped
and recognized using a single pattern. For example, these statements are distinct from each other:

SELECT first_name, |ast_nanme FROM custonmer WHERE custoner _id
select first_nane, |ast_name from custonmer where custoner_id
SELECT first_name, |ast_nanme FROM custonmer WHERE custoner _id

i
99;
143;

317

Using MySQL Enterprise Firewall

But all of them have the same normalized digest form:

SELECT “first_name’ , “last_nane’ FROM " custoner’ WHERE "custoner_id = ?

By using normalization, firewall allowlists can store digests that each match many different statements
received from clients. For more information about normalization and digests, see Performance Schema
Statement Digests.

Warning

Setting the max_di gest | engt h system variable to zero disables digest
production, which also disables server functionality that requires digests, such as
MySQL Enterprise Firewall.

Profile Operational Modes

Each profile registered with the firewall has its own operational mode, chosen from these values:
« OFF: This mode disables the profile. The firewall considers it inactive and ignores it.

* RECORDI NG This is the firewall training mode. Incoming statements received from a client that matches
the profile are considered acceptable for the profile and become part of its “fingerprint.” The firewall
records the normalized digest form of each statement to learn the acceptable statement patterns for the
profile. Each pattern is a rule, and the union of the rules is the profile allowlist.

e PROTECTI NG In this mode, the profile allows or prevents statement execution. The firewall matches
incoming statements against the profile allowlist, accepting only statements that match and rejecting
those that do not. After training a profile in RECORDI NG mode, switch it to PROTECTI NG mode to harden
MySQL against access by statements that deviate from the allowlist. If the mysql _firewal | trace
system variable is enabled, the firewall also writes rejected statements to the error log.

» DETECTI NG This mode detects but not does not block intrusions (statements that are suspicious
because they match nothing in the profile allowlist). In DETECTI NG mode, the firewall writes suspicious
statements to the error log but accepts them without denying access.

When a profile is assigned any of the preceding mode values, the firewall stores the mode in the profile.
Firewall mode-setting operations also permit a mode value of RESET, but this value is not stored: setting a
profile to RESET mode causes the firewall to delete all rules for the profile and set its mode to OFF.

Note

Messages written to the error log in DETECTI NG mode or because

nysqgl _firewal | trace isenabled are written as Notes, which are information
messages. To ensure that such messages appear in the error log and are not
discarded, setthe | og_error_verbosi ty system variable to a value of 3.

As previously mentioned, MySQL associates each client session with a specific user name and host name
combination known as the session account. The firewall matches the session account against registered
profiles to determine which profile applies to handling incoming statements from the session:

» The firewall ignores inactive profiles (profiles with a mode of OFF).

» The session account matches an active account profile having the same user and host, if there is one.
There is at most one such account profile.

After matching the session account to registered profiles, the firewall handles each incoming statement as
follows:

318

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_digest_length
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity

Using MySQL Enterprise Firewall

« If there is no applicable profile, the firewall imposes no restrictions and accepts the statement.
« If there is an applicable profile, its mode determines statement handling:
* In RECORDI NG mode, the firewall adds the statement to the profile allowlist rules and accepts it.

e In PROTECTI NG mode, the firewall compares the statement to the rules in the profile
allowlist. The firewall accepts the statement if there is a match, and rejects it otherwise. If the
nysql _firewal | _trace system variable is enabled, the firewall also writes rejected statements to
the error log.

< In DETECTI NG mode, the firewall detects instrusions without denying access. The firewall accepts
the statement, but also matches it to the profile allowlist, as in PROTECTI NG mode. If the statement is
suspicious (nonmatching), the firewall writes it to the error log.

Registering Firewall Account Profiles

MySQL Enterprise Firewall enables profiles to be registered that correspond to individual accounts. To use
a firewall account profile to protect MySQL against incoming statements from a given account, follow these
steps:

1. Register the account profile and put it in RECORDI NG mode.

2. Connect to the MySQL server using the account and execute statements to be learned. This trains the
account profile and establishes the rules that form the profile allowlist.

3. Switch the account profile to PROTECTI NG mode. When a client connects to the server using the
account, the account profile allowlist restricts statement execution.

4. Should additional training be necessary, switch the account profile to RECORDI NG mode again, update
its allowlist with new statement patterns, then switch it back to PROTECTI NG mode.

Observe these guidelines for firewall-related account references:

» Take note of the context in which account references occur. To name an account for firewall operations,
specify it as a single quoted string (' user _nanme@ost nane'). This differs from the usual MySQL
convention for statements such as CREATE USER and GRANT, for which you quote the user and host
parts of an account name separately (' user _nane' @ host _nane").

The requirement for naming accounts as a single quoted string for firewall operations means that you
cannot use accounts that have embedded @characters in the user name.

e The firewall assesses statements against accounts represented by actual user and host names as
authenticated by the server. When registering accounts in profiles, do not use wildcard characters or
netmasks:

¢ Suppose that an account named me @6 exanpl e. or g exists and a client uses it to connect to the
server from the host abc. exanpl e. or g.

* The account name contains a %wildcard character, but the server authenticates the client as having a
user name of me and host name of abc. exanpl e. com and that is what the firewall sees.

» Consequently, the account name to use for firewall operations is mre@bc. exanpl e. or g rather than
me @6 exanpl e. org.

The following procedure shows how to register an account profile with the firewall, train the firewall to
know the acceptable statements for that profile (its allowlist), and use the profile to protect MySQL against
execution of unacceptable statements by the account. The example account, f wuser @ ocal host , is

319

https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/grant.html

Using MySQL Enterprise Firewall

presumed for use by an application that accesses tables in the saki | a database (available at https://
dev.mysql.com/doc/index-other.html).

Use an administrative MySQL account to perform the steps in this procedure, except those steps
designated for execution by the f wuser @ ocal host account that corresponds to the account profile
registered with the firewall. For statements executed using this account, the default database should be
saki | a. (You can use a different database by adjusting the instructions accordingly.)

1. If necessary, create the account to use for executing statements (choose an appropriate password) and
grant it privileges for the saki | a database:

CREATE USER ' fwuser' @I ocal host' | DENTI FI ED BY ' password' ;
GRANT ALL ON sakila.* TO 'fwuser' @Il ocal host"';

2. Usethesp set firewall node() stored procedure to register the account profile with the firewall
and place the profile in RECORDI NG (training) mode:

CALL nysql.sp_set_firewal | _node(' fwiser @ocal host', ' RECORDI NG);

3. To train the registered account profile, connect to the server as f wuser from the server host so that
the firewall sees a session account of f wuser @ ocal host . Then use the account to execute some
statements to be considered legitimate for the profile. For example:

SELECT first_nane, |ast_name FROM custonmer WHERE custoner_id = 1;
UPDATE rental SET return_date = NOA) WHERE rental id = 1;
SELECT get _cust oner _bal ance(1, NOW));

Because the profile is in RECORDI NG mode, the firewall records the normalized digest form of the
statements as rules in the profile allowlist.

Note

Until the f wuser @ ocal host account profile receives statements in
RECCORDI NG mode, its allowlist is empty, which is equivalent to “deny all.” No
statement can match an empty allowlist, which has these implications:

« The account profile cannot be switched to PROTECTI NG mode. It would
reject every statement, effectively prohibiting the account from executing any
statement.

* The account profile can be switched to DETECTI NG mode. In this case, the
profile accepts every statement but logs it as suspicious.

4. At this point, the account profile information is cached. To see this information, query the
| NFORVATI ON_SCHENA firewall tables:

nysql > SELECT MODE FROM | NFORVATI ON_SCHEMA. MYSQL_FI REWALL USERS
WHERE USERHOST = ' fwuser @ ocal host ' ;

dr=cccccc=cc== +
| MODE |
dr=cccccc=cc== +
| RECORDI NG |
dr=cccccc=cc== +

mysql > SELECT RULE FROM | NFORVATI ON_SCHEMA. MYSQL_FI REWALL_WHI TELI ST
WHERE USERHOST = ' fwuser @ ocal host ' ;

| SELECT “first_nane” , "last_nane” FROM " custoner® WHERE “custoner_id = ? |
| SELECT "get_custoner_balance” (? , NOW()) |
| UPDATE “rental ™ SET “return_date’ = NOV() WHERE “rental _id" = ? |

320

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Using MySQL Enterprise Firewall

| SELECT @@ version_comment™ LIMT ?

Note

The @@er si on_coment rule comes from a statement sent automatically by
the mysql client when you connect to the server.

Important

Train the firewall under conditions matching application use. For example, to
determine server characteristics and capabilities, a given MySQL connector
might send statements to the server at the beginning of each session. If an
application normally is used through that connector, train the firewall using the
connector, too. That enables those initial statements to become part of the
allowlist for the account profile associated with the application.

5. Invoke sp_set firewal | node() again, this time switching the account profile to PROTECTI NG
mode:

CALL mnysql .sp_set _firewal | _node(' fwuser @ ocal host', ' PROTECTI NG);
Important

Switching the account profile out of RECORDI NG mode synchronizes its cached
data to the nysql system database tables that provide persistent underlying
storage. If you do not switch the mode for a profile that is being recorded, the
cached data is not written to persistent storage and is lost when the server is
restarted.

6. Test the account profile by using the account to execute some acceptable and unacceptable
statements. The firewall matches each statement from the account against the profile allowlist and
accepts or rejects it:

¢ This statement is not identical to a training statement but produces the same normalized statement

as one of them, so the firewall accepts it:

nysqgl > SELECT first_nane, |ast_nanme FROM custoner WHERE custoner_id = '48';

T F +
| first_nane | |ast_nane |
T F +
| ANN | EVANS |
T F +

* These statements match nothing in the allowlist, so the firewall rejects each with an error:

nysqgl > SELECT first_nane, |ast_nane FROM custoner WHERE custoner_id = 1 OR TRUE;
ERROR 1045 (28000): Statenent was bl ocked by Firewall

nysqgl > SHOW TABLES LI KE ' cust oner % ;

ERROR 1045 (28000): Statenent was bl ocked by Firewall

nysqgl > TRUNCATE TABLE nysql . sl ow_| og;

ERROR 1045 (28000): Statenent was bl ocked by Firewall

e Ifthenysql _firewal | _trace system variable is enabled, the firewall also writes rejected
statements to the error log. For example:

[Note] Plugin MYSQL_FI REWALL report ed:
' ACCESS DENI ED for fwuser @ocal host. Reason: No match in whitelist.

321

Using MySQL Enterprise Firewall

St at ement: TRUNCATE TABLE “nysql® . “slow log '
These log messages may be helpful in identifying the source of attacks, should that be necessary.

The firewall account profile now is trained for the f wuser @ ocal host account. When clients connect
using that account and attempt to execute statements, the profile protects MySQL against statements not
matched by the profile allowlist.

It is possible to detect intrusions by logging nonmatching statements as suspicious without denying access.
First, put the account profile in DETECTI NG mode:

CALL nysql .sp_set _firewal |l _node(' fwiser @ocal host', ' DETECTI NG);

Then, using the account, execute a statement that does not match the account profile allowlist. In
DETECTI NG mode, the firewall permits the nonmatching statement to execute:

nysqgl > SHOW TABLES LI KE ' cust oner % ;

ffescoccscscoccccscoccsoscooosoos +
| Tables_in_sakila (custoner% |
ffescoccscscoccccscoccsoscooosoos +
| custoner |
| custoner_list |
ffescoccscscoccccscoccsoscooosoos +

In addition, the firewall writes a message to the error log:

[Note] Plugin MYSQL_FI REWALL reported:
' SUSPI Cl QUS STATEMENT from ' fwuser @ocal host'. Reason: No match in whitelist.
St at enent : SHOW TABLES LIKE ? '

To disable an account profile, change its mode to OFF:

CALL nysql .sp_set_firewal |l node(user, 'OFF);

To forget all training for a profile and disable it, reset it:

CALL nysql .sp_set_firewal |l _node(user, 'RESET');

The reset operation causes the firewall to delete all rules for the profile and set its mode to OFF.

Monitoring the Firewall

To assess firewall activity, examine its status variables. For example, after performing the procedure
shown earlier to train and protect the f wuser @ ocal host account, the variables look like this:

nmysqgl > SHOW GLOBAL STATUS LIKE ' Firewal | % ;

fooccocccococooccooocooocoooao oooccooo +
| Vari abl e_nane | Val ue |
fooccocccococooccooocooocoooao oooccooo +
Firewal	_access_deni ed	3
Firewal	_access_granted	4
Firewal	_access_suspicious	1
Firewal	l _cached_entries	4
fooccocccococooccooocooocoooao oooccooo +

The variables indicate the number of statements rejected, accepted, logged as suspicious, and

added to the cache, respectively. The Fi rewal | _access_gr ant ed count is 4 because of the

@er si on_comrent statement sent by the mysql client each of the three times you connected using
the registered account, plus the SHON TABLES statement that was not blocked in DETECTI NG mode.

322

https://dev.mysql.com/doc/refman/5.7/en/show-tables.html

MySQL Enterprise Firewall Reference

6.6.4 MySQL Enterprise Firewall Reference
The following sections provide a reference to MySQL Enterprise Firewall elements:
* MySQL Enterprise Firewall Tables

* MySQL Enterprise Firewall Stored Procedures

MySQL Enterprise Firewall Administrative Functions
» MySQL Enterprise Firewall System Variables

* MySQL Enterprise Firewall Status Variables
MySQL Enterprise Firewall Tables

MySQL Enterprise Firewall maintains profile information on a per-group and per-account basis, using
tables in the firewall database for persistent storage and Information Schema tables to provide views into
in-memory cached data. When enabled, the firewall bases operational decisions on the cached data.
The firewall database can be the mysql system database or a custom schema (see Installing MySQL
Enterprise Firewall).

Tables in the firewall database are covered in this section. For information about MySQL Enterprise
Firewall Information Schema tables, see INFORMATION_SCHEMA MySQL Enterprise Firewall Tables.

Each nmysql system database table is accessible only by accounts that have the SELECT privilege for it.
The | NFORVATI ON_SCHENA tables are accessible by anyone.

The nysql . firewal | _users table lists names and operational modes of registered firewall
account profiles. The table has the following columns (with the corresponding Information Schema
MYSQL_FI REWALL USERS table having similar but not necessarily identical columns):

¢ USERHOST
The account profile name. Each account name has the format user _nane@ ost _nane.
« MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTI NG,
PROTECTI NG, RECORDI NG, and RESET. For details about their meanings, see Firewall Concepts.

The nysql . firewal | _whitelist table lists allowlist rules of registered firewall account
profiles. The table has the following columns (with the corresponding Information Schema
MYSQL_FI REWALL _V\HI TELI ST table having similar but not necessarily identical columns):

» USERHOST
The account profile name. Each account name has the format user _nane@ost _nane.
* RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is the
union of its rules.

*ID

An integer column that is a primary key for the table. This column was added in MySQL 5.7.23.

323

https://dev.mysql.com/doc/refman/5.7/en/firewall-information-schema-tables.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-mysql-firewall-users-table.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-mysql-firewall-whitelist-table.html

MySQL Enterprise Firewall Reference

MySQL Enterprise Firewall Stored Procedures

MySQL Enterprise Firewall stored procedures perform tasks such as registering profiles with the firewall,
establishing their operational mode, and managing transfer of firewall data between the cache and
persistent storage. These procedures invoke administrative functions that provide an API for lower-level
tasks.

Firewall stored procedures are created in the mysql system database. To invoke a firewall stored
procedure, either do so while mysql is the default database, or qualify the procedure name with the
database name. For example:

CALL nysql .sp_set_firewal |l _node(user, node);
The following list describes each firewall stored procedure:
e sp_reload _firewall rul es(user)

This stored procedure provides control over firewall operation for individual account profiles. The
procedure uses firewall administrative functions to reload the in-memory rules for an account profile from
the rules stored in the nysql . firewal | _whitelist table.

Arguments:
e user: The name of the affected account profile, as a string in user _nane@ost nane format.

Example:

CALL nysql .sp_reload firewal |l _rul es('fwiser @ocal host');
Warning

This procedure clears the account profile in-memory allowlist rules before
reloading them from persistent storage, and sets the profile mode to OFF. If the
profile mode was not OFF prior tothe sp_rel oad_firewal | _rul es() call,
usesp_set _firewal |l node() to restore its previous mode after reloading
the rules. For example, if the profile was in PROTECTI NG mode, that is no longer
true after calling sp_rel oad_firewal | _rul es() and you must set it to
PROTECTI NG again explicitly.

e sp_set _firewall node(user, node)

This stored procedure establishes the operational mode for a firewall account profile, after registering the
profile with the firewall if it was not already registered. The procedure also invokes firewall administrative
functions as necessary to transfer firewall data between the cache and persistent storage. This
procedure may be called even if the nysql _firewal | _node system variable is OFF, although setting
the mode for a profile has no operational effect until the firewall is enabled.

Arguments:
« user : The name of the affected account profile, as a string in user _nane@ost _nane format.

e node: The operational mode for the profile, as a string. Permitted mode values are OFF, DETECTI NG,
PROTECTI NG, RECORDI NG, and RESET. For details about their meanings, see Firewall Concepts.

Switching an account profile to any mode but RECORDI NG synchronizes its firewall cache data to the
mysql system database tables that provide persistent underlying storage. Switching the mode from OFF
to RECORDI NGreloads the allowlist from the mysql . firewal | _whi t el i st table into the cache.

324

MySQL Enterprise Firewall Reference

If an account profile has an empty allowlist, its mode cannot be set to PROTECTI NG because the profile
would reject every statement, effectively prohibiting the account from executing statements. In response
to such a mode-setting attempt, the firewall produces a diagnostic message that is returned as a result

set rather than as an SQL error;

nmysql > CALL nysql .sp_set _firewal |l node(' a@',"' PROTECTI NG) ;

RS +
| set_firewal | _npde(arg_userhost, arg_node) |
RS +
| ERROR: PROTECTI NG npde requested for a@ but the whitelist is enpty. |
RS +

1 rowin set (0.02 sec)
Query OK, 0 rows affected (0.02 sec)

MySQL Enterprise Firewall Administrative Functions

MySQL Enterprise Firewall administrative functions provide an API for lower-level tasks such as
synchronizing the firewall cache with the underlying system tables.

Under normal operation, these functions are invoked by the firewall stored procedures, not directly by
users. For that reason, these function descriptions do not include details such as information about their
arguments and return types.

» Firewall Account Profile Functions
» Firewall Miscellaneous Functions
Firewall Account Profile Functions
These functions perform management operations on firewall account profiles:
e read firewal | _users(user, node)

This aggregate function updates the firewall account profile cache through a SELECT statement on the
nysql . firewal | _users table. It requires the SUPER privilege.

Example:

SELECT read_firewal | _users('fwiser@ocal host', ' RECORDI NG)
FROM nysql . firewal | _users;

e read firewall whitelist(user, rule)

This aggregate function updates the recorded-statement cache for the named account profile through a
SELECT statement on the nysql . firewal | _whiteli st table. It requires the SUPER privilege.

Example:
SELECT read _firewall _whitelist('fwiser@ocal host', fwrule)

FROM nysql . firewal | _whitelist AS fw
WHERE USERHOST = ' fwuser @ ocal host ' ;

e set firewall node(user, node)

This function manages the account profile cache and establishes the profile operational mode. It requires
the SUPER privilege.

Example:

SELECT set _firewal | _node(' fwuser @ocal host', ' RECORDI NG) ;

325

MySQL Enterprise Firewall Reference

Firewall Miscellaneous Functions

These functions perform miscellaneous firewall operations:
e nysql _firewall flush_status()

This function resets several firewall status variables to O:

e Firewal | _access_deni ed

e Firewal | _access_granted

e Firewal | _access_suspi ci ous

This function requires the SUPER privilege.

Example:

SELECT mysql _firewall _flush_status();

e normal i ze_statenent (stnt)

This function normalizes an SQL statement into the digest form used for allowlist rules. It requires the
SUPER privilege.

Example:

SELECT nornal i ze_statenent (' SELECT * FROMt1l WHERE c1 > 2');

MySQL Enterprise Firewall System Variables

MySQL Enterprise Firewall supports the following system variables. Use them to configure firewall
operation. These variables are unavailable unless the firewall is installed (see Section 6.6.2, “Installing or
Uninstalling MySQL Enterprise Firewall”).

e nysql _firewal |l node

Command-Line Format --nysql -firewal | - node[={ OFF| ON}]
System Variable nysqgl _firewal | _node

Scope Global

Dynamic Yes

Type Boolean

Default Value ON

Whether MySQL Enterprise Firewall is enabled (the default) or disabled.

e nysql _firewall trace

Command-Line Format --nysqgl -firewal | -trace[={ OFF| ON}]
System Variable nysql _firewall trace

Scope Global

Dynamic Yes

Type Boolean

326

MySQL Enterprise Firewall Reference

Default Value OFF

Whether the MySQL Enterprise Firewall trace is enabled or disabled (the default). When
nysql _firewal | _trace is enabled, for PROTECTI NG mode, the firewall writes rejected statements to
the error log.

MySQL Enterprise Firewall Status Variables

MySQL Enterprise Firewall supports the following status variables. Use them to obtain information

about firewall operational status. These variables are unavailable unless the firewall is installed (see
Section 6.6.2, “Installing or Uninstalling MySQL Enterprise Firewall”). Firewall status variables are set to

0 whenever the MYSQL_FI REWALL plugin is installed or the server is started. Many of them are reset to
zero by the nysqgl _firewal | _flush_status() function (see MySQL Enterprise Firewall Administrative
Functions).

e Firewal | access_deni ed

The number of statements rejected by MySQL Enterprise Firewall.
* Firewal | access _granted

The number of statements accepted by MySQL Enterprise Firewall.
e Firewal | _access_suspi ci ous

The number of statements logged by MySQL Enterprise Firewall as suspicious for users who are in
DETECTI NG mode.

e Firewal | cached entries

The number of statements recorded by MySQL Enterprise Firewall, including duplicates.

327

328

Appendix A MySQL 5.7 FAQ: Security

Questions

* A.1: Where can | find documentation that addresses security issues for MySQL?

e A.2: What is the default authentication plugin in MySQL 5.77?

» A.3: Does MySQL have native support for SSL?

* A.4: Is SSL support built into MySQL binaries, or must | recompile the binary myself to enable it?
« A.5: Does MySQL have built-in authentication against LDAP directories?

» A.6: Does MySQL include support for Roles Based Access Control (RBAC)?

» A.7: Does MySQL support TLS 1.0 and 1.1?

Questions and Answers

A.1l: Where can | find documentation that addresses security issues for MySQL?
The best place to start is Chapter 1, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific security
concerns include the following:

e Section 2.1, “Security Guidelines”.

» Section 2.3, “Making MySQL Secure Against Attackers”.

* How to Reset the Root Password.

e Section 2.5, “How to Run MySQL as a Normal User”.

» Section 2.4, “Security-Related mysqgld Options and Variables”.
» Section 2.6, “Security Considerations for LOAD DATA LOCAL".
» Chapter 3, Postinstallation Setup and Testing.

» Chapter 5, Using Encrypted Connections.

» Loadable Function Security Precautions.

There is also the Secure Deployment Guide, which provides procedures for deploying a generic binary
distribution of MySQL Enterprise Edition Server with features for managing the security of your MySQL
installation.

A.2: What is the default authentication plugin in MySQL 5.7?

The default authentication plugin in MySQL 5.7 is mysql _nati ve_passwor d. For information about
this plugin, see Section 6.1.1, “Native Pluggable Authentication”. For general information about pluggable
authentication and other available authentication plugins, see Section 4.13, “Pluggable Authentication”,
and Section 6.1, “Authentication Plugins”.

A.3: Does MySQL have native support for SSL?

329

https://dev.mysql.com/doc/refman/5.7/en/resetting-permissions.html
https://dev.mysql.com/doc/extending-mysql/5.7/en/adding-loadable-function.html#loadable-function-security
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/

Yes, the binaries have support for SSL connections between the client and server. See Chapter 5, Using
Encrypted Connections.

You can also tunnel a connection using SSH, if (for example) the client application does not support SSL
connections. For an example, see Section 5.5, “Connecting to MySQL Remotely from Windows with SSH”.

A.4: Is SSL support built into MySQL binaries, or must | recompile the binary myself to enable it?

Yes, the binaries have SSL enabled for client/server connections that are secured, authenticated, or both.
See Chapter 5, Using Encrypted Connections.

A.5: Does MySQL have built-in authentication against LDAP directories?

The Enterprise edition includes a PAM Authentication Plugin that supports authentication against an LDAP
directory.

A.6: Does MySQL include support for Roles Based Access Control (RBAC)?
Not at this time.
A.7: Does MySQL support TLS 1.0 and 1.17?

Support for the TLSv1 and TLSv1.1 connection protocols is removed as of MySQL 8.0.28. The protocols
were deprecated from MySQL 8.0.26. For the consequences of that removal, see Deprecated TLS
Protocols.

Support for TLS versions 1.0 and 1.1 is removed because those protocol versions are old, released in
1996 and 2006, respectively. The algorithms used are weak and outdated.

Unless you are using very old versions of MySQL Server or connectors, you are unlikely to have
connections using TLS 1.0 or 1.1. MySQL connectors and clients select the highest TLS version available
by default.

When was support for TLS 1.2 added to MySQL Server? MySQL Community Server added TLS 1.2
support when the community server switched to OpenSSL for MySQL 5.6, 5.7, and 8.0 in 2019. For
MySQL Enterprise Edition, OpenSSL added TLS 1.2 support in 2015, in MySQL Server 5.7.10.

How can one view which TLS versions are in active use? For MySQL 5.7 or 8.0, review whether TLS 1.0 or
1.1 is in use by running this query:

SELECT
“session_ssl _status'. thread_id, “session_ssl_status . ssl_version,
“session_ssl_status . ssl_cipher’, “session_ssl_status . ssl_sessions_reused’

FROM " sys' . session_ssl| _status®
WHERE ssl| _version NOT IN (' TLSv1.3',' TLSv1. 2");

If a thread using TLSv1.0 or TLSv1.1 is listed, you can determine where this connection is coming from by
running this query:

SELECT thd_id, conn_id, user, db, current_statenment, program nane
FROM sys. processl i st
WHERE thd_id IN (

SELECT "session_ssl_status . thread_id’

FROM " sys™. " session_ssl _status’

WHERE ssl _version NOT IN (' TLSv1.3',"'TLSv1.2")
E

Alternatively, you can run this query:

330

SELECT *

FROM sys. sessi on
WHERE thd_id IN (
SELECT "session_ssl_status . thread_id

FROM "sys'. session_ssl_status®

WHERE ssl| _version NOT IN (' TLSv1.3',' TLSv1. 2')
)

These queries provide details needed to determine which application is not supporting TLS 1.2 or 1.3, and
target upgrades for those.

Are there other options for testing for TLS 1.0 or 1.1? Yes, you can disable those versions prior to
upgrading your server to a newer version. Explicitly specify which version to use, either in nysql . cnf (or
nysql . i ni)orbyusing SET PERSI ST, for example: - -t | s-versi on=TLSv12.

Do all MySQL Connectors (5.7 and 8.0) support TLS 1.2 and higher? What about C and C++ applications
using | i bmysqgl ? For C and C++ applications using the community | i brrysql cl i ent library, use an
OpenSSL-based library (that is, do not use YaSSL). Usage of OpenSSL was unified in 2018 (in MySQL
8.0.4 and 5.7.28, respectively). The same applies for Connector/ODBC and Connector/C++. To determine
what library dependencies are used, run the following commands to see if OpenSSL is listed. On Linux,
use this command:

$> sudo | dd usr/local/nysql/lib/libmysqglclient.a | grep -i openss

On MacOS, use this command:

$> sudo otool -I /usr/local/nysql/lib/libnysqglclient.a | grep -i openss

Check the documentation for each connector, but they do support TLS 1.2 and TLS 1.3.

331

https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tls_version

332

	Security in MySQL
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Security
	Chapter 2 General Security Issues
	2.1 Security Guidelines
	2.2 Keeping Passwords Secure
	2.2.1 End-User Guidelines for Password Security
	2.2.2 Administrator Guidelines for Password Security
	2.2.3 Passwords and Logging
	2.2.4 Password Hashing in MySQL

	2.3 Making MySQL Secure Against Attackers
	2.4 Security-Related mysqld Options and Variables
	2.5 How to Run MySQL as a Normal User
	2.6 Security Considerations for LOAD DATA LOCAL
	2.7 Client Programming Security Guidelines

	Chapter 3 Postinstallation Setup and Testing
	3.1 Initializing the Data Directory
	3.2 Starting the Server
	3.2.1 Troubleshooting Problems Starting the MySQL Server

	3.3 Testing the Server
	3.4 Securing the Initial MySQL Account
	3.5 Starting and Stopping MySQL Automatically

	Chapter 4 Access Control and Account Management
	4.1 Account User Names and Passwords
	4.2 Privileges Provided by MySQL
	4.3 Grant Tables
	4.4 Specifying Account Names
	4.5 Access Control, Stage 1: Connection Verification
	4.6 Access Control, Stage 2: Request Verification
	4.7 Adding Accounts, Assigning Privileges, and Dropping Accounts
	4.8 Reserved Accounts
	4.9 When Privilege Changes Take Effect
	4.10 Assigning Account Passwords
	4.11 Password Management
	4.12 Server Handling of Expired Passwords
	4.13 Pluggable Authentication
	4.14 Proxy Users
	4.15 Account Locking
	4.16 Setting Account Resource Limits
	4.17 Troubleshooting Problems Connecting to MySQL
	4.18 SQL-Based Account Activity Auditing

	Chapter 5 Using Encrypted Connections
	5.1 Configuring MySQL to Use Encrypted Connections
	5.2 Encrypted Connection TLS Protocols and Ciphers
	5.3 Creating SSL and RSA Certificates and Keys
	5.3.1 Creating SSL and RSA Certificates and Keys using MySQL
	5.3.2 Creating SSL Certificates and Keys Using openssl
	5.3.3 Creating RSA Keys Using openssl

	5.4 SSL Library-Dependent Capabilities
	5.5 Connecting to MySQL Remotely from Windows with SSH

	Chapter 6 Security Plugins
	6.1 Authentication Plugins
	6.1.1 Native Pluggable Authentication
	6.1.2 Old Native Pluggable Authentication
	6.1.3 Migrating Away from Pre-4.1 Password Hashing and the mysql_old_password Plugin
	6.1.4 Caching SHA-2 Pluggable Authentication
	6.1.5 SHA-256 Pluggable Authentication
	6.1.6 Client-Side Cleartext Pluggable Authentication
	6.1.7 PAM Pluggable Authentication
	6.1.8 Windows Pluggable Authentication
	6.1.9 LDAP Pluggable Authentication
	6.1.10 No-Login Pluggable Authentication
	6.1.11 Socket Peer-Credential Pluggable Authentication
	6.1.12 Test Pluggable Authentication
	6.1.13 Pluggable Authentication System Variables

	6.2 Connection Control Plugins
	6.2.1 Connection Control Plugin Installation
	6.2.2 Connection Control Plugin System and Status Variables

	6.3 The Password Validation Plugin
	6.3.1 Password Validation Plugin Installation
	6.3.2 Password Validation Plugin Options and Variables

	6.4 The MySQL Keyring
	6.4.1 Keyring Plugin Installation
	6.4.2 Using the keyring_file File-Based Keyring Plugin
	6.4.3 Using the keyring_encrypted_file Encrypted File-Based Keyring Plugin
	6.4.4 Using the keyring_okv KMIP Plugin
	6.4.5 Using the keyring_aws Amazon Web Services Keyring Plugin
	6.4.6 Supported Keyring Key Types and Lengths
	6.4.7 Migrating Keys Between Keyring Keystores
	6.4.8 General-Purpose Keyring Key-Management Functions
	6.4.9 Plugin-Specific Keyring Key-Management Functions
	6.4.10 Keyring Metadata
	6.4.11 Keyring Command Options
	6.4.12 Keyring System Variables

	6.5 MySQL Enterprise Audit
	6.5.1 Elements of MySQL Enterprise Audit
	6.5.2 Installing or Uninstalling MySQL Enterprise Audit
	6.5.3 MySQL Enterprise Audit Security Considerations
	6.5.4 Audit Log File Formats
	6.5.5 Configuring Audit Logging Characteristics
	6.5.6 Reading Audit Log Files
	6.5.7 Audit Log Filtering
	6.5.8 Writing Audit Log Filter Definitions
	6.5.9 Disabling Audit Logging
	6.5.10 Legacy Mode Audit Log Filtering
	6.5.11 Audit Log Reference
	6.5.12 Audit Log Restrictions

	6.6 MySQL Enterprise Firewall
	6.6.1 Elements of MySQL Enterprise Firewall
	6.6.2 Installing or Uninstalling MySQL Enterprise Firewall
	6.6.3 Using MySQL Enterprise Firewall
	6.6.4 MySQL Enterprise Firewall Reference

	Appendix A MySQL 5.7 FAQ: Security

