MySQL Router 9.6

Abstract

MySQL Router is part of InnoDB Cluster, and is lightweight middleware that provides transparent routing between
your application and back-end MySQL Servers. It can be used for a wide variety of use cases, such as providing
high availability and scalability by effectively routing database traffic to appropriate back-end MySQL Servers. The
pluggable architecture also enables developers to extend MySQL Router for custom use cases. For additional details
about how MySQL Router is part of InnoDB Cluster, see MySQL AdminAPI.

MySQL Router 9.6 is highly recommended for use with MySQL Server 9.6.
For notes detailing the changes in each release, see the MySQL Router Release Notes.
If you have not yet installed MySQL Router, download it from the download site.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Router, see MySQL Router Commercial License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Router, see MySQL Router Community License Information
User Manual for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Document generated on: 2026-01-15 (revision: 84253)

https://dev.mysql.com/doc/mysql-shell/9.6/en/admin-api-userguide.html
https://dev.mysql.com/doc/relnotes/mysql-router/9.6/en/
https://dev.mysql.com/downloads/router
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysql-router-9.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.6-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.6-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuiiiiiiiiieiiii ettt ettt e et e e et et e e e e et e e e ee bt e e e eebaaeeees v
1 General INFOMMALIONiiiii ettt e et e et et e e e et e e e e et e e e e nba s 1
1.1 Routing for MySQL INNODB CIUSTETuiiiiiitiieeiiii ettt et e e et e eeeni e eeens 1

1.2 Cluster Metadata and STALEccouuuiiiiiii et e e 2
1.2.1 MySQL Router Read Replica SUPPOITccouuiiiiiiieeiii e 3

1.3 CONNECLION ROULING ..eetteiiiti ettt ettt et e et e e et et e e et et e e e ee b e e e eete e eeeen 4

1.4 Application CONSIAEIALIONSuuiiiiiie ettt e e e e e s 4

2 INStalling MYSQL ROULET ...ttt ettt ettt e et e et et e e e eba e 7
2.1 Installing MySQL ROULEE ON LINUX ..uuuiiiiitieieiii ettt ettt e e e e e e e e e e e s 7

2.2 Installing MySQL Router With DOCKETcoouuiiiiiiiii et 10

2.3 Installing MySQL Router 0n MaCOS ...ttt 11

2.4 Installing MySQL Router 0N WINAOWSoouuuiiiiiiieiiii et 11

2.5 Installing MySQL Router from SOUICE COUEccuuuiiiiiiiieiiiii et 12

2.6 Upgrading MYSQL ROULEEccouuuiiiiiti ettt ettt e et e e et e et e e e e et e e e eeba e eene 13

3 Deploying MYSQL ROULET ...ttt ettt et e e e et et e b e e e e aa e e ennans 15
3.1 Bootstrapping MYSQL ROULETcceuuiiiiii ettt e e e e 16

3.2 Trying out MySQL Router in @ SandBOXccouuuiiiiiiiiiiiiiieee e 18

3.3 BasiC CONNECHON ROULING ... ceiuttieiiitiie ettt ettt ettt e et e ettt e et e e e e et e e e eeaa e eeene 22

3.4 Connection Sharing and REUSEcoiiuiiiiiiii et 23

3.5 REAA/WIILE SPIILEING ..eeveneeeeii ettt ettt e e e e e e e 24
ST o] a1 1o U] r= 11 (o] o ISP PP PP PPPPPRPUPPPPIN 24

3.5.2 STAEMENTS ..oeeiiieiieii et 26

3.6 MySQL Router TLS SeSSION CACNEuuiiiiiiiieiiiii et 27

3.7 MYSQL ROULEN SEE TIACE ...cvuiiiiiiieiiiiit ettt et e r e er et e r e e e e 28

o] a1 1To U] = 11 (o] ¢ ISP 35
4.1 Configuration File SYNTAXcciuuuniiiiii e e et e e e e e e e et e e e ena e eeen 35

4.2 Configuration LOCALIONSc.uuuiiiiiiiei ettt ettt et e e e e e 37

4.3 Configuration OPLIONSuuiiiiiiti ettt ettt e e et ettt e e e et e e e et e e e eetn e aeene 40
4.3.1 Defining Options Using the Command LiNeooviiiiiiiiiiiiiiiieii e 40

4.3.2 MySQL Router Command Line Programsocceeuuuiieiruiieieiiieeeeiiaeeeenineeeeiiaeeees 41

4.3.3 Configuration File OPLIONSiiiiiiiieiiii e eene 66

4.3.4 Configuration File EXamPple ... 105

4.4 TLS CONTIQUIALION ..eeteiiiiit ettt et e ettt e e ettt e e e e et e et e abreeeesbaeaeenbnaeeees 107

5 MySQL ROULEr APPIICALIONcevtieiiite ettt ettt ettt e e e e e s 109
5.1 Starting MYSQL ROULETcceutiiiiiiii ettt et ettt e e et e e et e e e e e eenans 109

5.2 USiNg the LOgQiNG FEALUIEcouuuiiiiiii ettt e e s 110

6 MYSQL ROULET REST AP ..ot et ettt ettt ettt e e e e et e eeeeba e eenes 113
6.1 A Simple MySQL Router REST APl GUIAEcoouuiiiiiiiiiiiciiii e 113

6.2 MySQL Router REST APl REFEIENCEuiiiiiiii et 115

A MySQL Router Frequently Asked QUESTIONScceuuuuiiiiiiieiiii ettt 137

Preface and Legal Notices

This is the MySQL Router manual. This document covers MySQL Router.

Licensing information. This product may include third-party software, used under license. If you are
using a Commercial release of MySQL Router, see MySQL Router Commercial License Information User
Manual for licensing information, including licensing information relating to third-party software that may
be included in this Commercial release. If you are using a Community release of MySQL Router, see
MySQL Router Community License Information User Manual for licensing information, including licensing
information relating to third-party software that may be included in this Community release.

Legal Notices

Copyright © 2006, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other

https://downloads.mysql.com/docs/licenses/mysql-router-9.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.6-gpl-en.pdf

Documentation Accessibility

measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=acc& d=t r s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 General Information

Table of Contents

1.1 Routing for MySQL INNODB CIUSLELccuuiiiiiii et e e e e e e e e e aanas
1.2 Cluster Metadata and STALEccouuiiiiiiiii e et e e e

1.2.1 MySQL Router Read RepliCa SUPPOITcouuiiiiieiie et e e e e
I I @do] a=Tox T o T o 11 1 oo [P
Y o] o] o= L To] g I @] 0 T T [=1 r= L 4o i 1

MySQL Router is a building block for high availability (HA) solutions. It simplifies application development
by intelligently routing connections to MySQL servers for increased performance and reliability.

MySQL Router officially supports active MySQL Server versions equal to or below the MySQL Router
version. For example, MySQL Router 9.6 officially supports MySQL 8.0, 8.4, and 9.6. MySQL Router does
not support versions from a newer series; for example, MySQL Router 9.5 cannot be used with MySQL
Server 9.6.

Note
@ Kerberos Authentication is not supported by MySQL Router or MySQL Shell's
AdminAPI.

1.1 Routing for MySQL InnoDB Cluster

MySQL Router is part of InnoDB Cluster and is lightweight middleware that provides transparent routing
between your application and back-end MySQL Servers. It is used for a wide variety of use cases, such
as providing high availability and scalability by routing database traffic to appropriate back-end MySQL
servers. The pluggable architecture also enables developers to extend MySQL Router for custom use
cases.

For additional details about how Router is part of InnoDB Cluster, see MySQL AdminAPI.
Introduction

For client applications to handle failover, they need to be aware of the InnoDB cluster topology and know
which MySQL instance is the PRIMARY. While it is possible for applications to implement that logic,
MySQL Router can provide and handle this functionality for you.

MySQL uses Group Replication to replicate databases across multiple servers while performing automatic
failover in the event of a server failure. When used with a MySQL InnoDB Cluster, MySQL Router acts

as a proxy to hide the multiple MySQL instances on your network and map the data requests to one

of the cluster instances. As long as there are enough online replicas and communication between the
components is intact, applications will be able to contact one of them. MySQL Router also makes this
possible by having applications connect to MySQL Router instead of directly to MySQL.

Deploying Router with MySQL InnoDB Cluster

The recommended deployment model for MySQL Router is with InnoDB Cluster, with Router sitting on the
same host as the application.

The steps for deploying MySQL Router with an InnoDB Cluster after configuring the cluster are:

1. Install MySQL Router.

https://dev.mysql.com/doc/mysql-shell/9.6/en/admin-api-userguide.html

Cluster Metadata and State

2. Bootstrap InnoDB Cluster, and test.

Bootstrapping automatically configures MySQL Router for an existing InnoDB Cluster by using - -
boot st r ap and other command-line options. During bootstrap, Router connects to the cluster, fetches
its metadata, and configures itself for use. Bootstrapping is optional.

For additional information, see Chapter 3, Deploying MySQL Router.
3. Set up MySQL Router for automatic startup.

Configure your system to automatically start MySQL Router when the host is rebooted, a process
similar to how the MySQL server is configured to start automatically. For additional details, see
Section 5.1, “Starting MySQL Router”.

For example, after creating a MySQL InnoDB Cluster, you might configure MySQL Router using:

$> nysql router --bootstrap |ocal host: 3310 --directory /opt/nyrouter --user snoopy
This example bootstraps MySQL Router to an existing InnoDB Cluster where:

e | ocal host : 3310 is a member of an InnoDB cluster, and either the PRIMARY or bootstrap will redirect
to a PRIMARY in the cluster.

» Because the optional - - di r ect or y bootstrap option was used, this example creates a self-contained
installation with all generated directories and files at / opt / myr out er /. These files include st art . sh,
stop. sh, | og/, and a fully functional MySQL Router configuration file named nysql r out er. conf.

* Only the host's system user named snoopy will have access to / opt / myrouter/*.

See - - boot st r ap and related options for ways to modify the bootstrap configuration process. For
example, passing in - - conf - use- socket s enables Unix domain socket connections because only TCP/
IP connections are enabled by default.

1.2 Cluster Metadata and State

MySQL Router works by sitting in between applications and MySQL servers. Applications connect to
Router normally as if they were connecting to an ordinary MySQL server. Whenever an application
connects to Router, Router chooses a suitable MySQL server from the pool of candidates that it knows
about, and then connects to it. From that moment on, Router forwards all network traffic between the
application and MySQL, including responses coming back from it.

MySQL Router keeps a cached list of the online MySQL servers, or the topology and state of the
configured InnoDB cluster. Initially, the list is loaded from Router's configuration file when Router is
started. This list was generated with InnoDB Cluster servers when Router was bootstrapped using the - -
boot st r ap option.

To keep the cache updated, the metadata cache component keeps an open connection to one of the
InnoDB Cluster servers that contains metadata. It does so by querying the metadata database and live
state information from MySQL's performance schema. The cluster metadata is changed whenever the
InnoDB Cluster is modified, such as adding or removing a MySQL server using the MySQL Shell, and the
performance_schema tables are updated in real-time by the MySQL server's Group Replication plugin
whenever a cluster state change is detected.

When Router detects that a connected MySQL server shuts down, for example because the metadata
cache has lost its connection and can not connect again, it attempts to connect to a different MySQL server
to fetch metadata and InnoDB Cluster state from the new MySQL server.

MySQL Router Read Replica Support

dba. dr opMet adat aSchena(), causes Router to drop all current connections and

Note
@ Dropping cluster metadata using MySQL Shell, such as
forbid new connections. This causes a full outage.

Application connections to a MySQL server that shuts down are automatically closed. They must then
reconnect to Router, which redirects them to an online MySQL server.

1.2.1 MySQL Router Read Replica Support

MySQL Router reads the values defined in the metadata field,
v2 router_options.router_options.read only targets, toretrieve routing information for
read-only traffic.

v2 router_options.router_options.read _only_ targets is populated by the AdminAPI method
cl uster.set Routi ngOpti on() which sets the routing policy to one of the following values using the
read_onl y_target s option:

» al | : all Read Replicas and Secondary cluster members are used for read-only traffic.
* read_replicas: only Read Replicas are used for read-only traffic.

* secondari es: only Secondary cluster members are used for read-only traffic.

read_replicas, orsecondari es, MySQL Router defaults to secondari es and

Note
@ If read_onl y_t ar get s is not present, or set to a value other than al | ,
logs a warning message.

MySQL Router does not use Read Replicas as a source for Cluster metadata. Also, it is not possible to use
a Read Replica in a MySQL Router bootstrap command. An error is returned for any attempt to bootstrap
with a Read Replica.

Failure Handling
MySQL Router does not route connections to Read Replicas in the following situations:
« If there is no quorum in the Cluster.
+ If all Cluster members are in OFFLINE state.
« If no Cluster members can be reached when checking their Group Replication state.
MySQL Router routing policy is affected by configuration in the following ways:

« If the Cluster state is INVALID and the i nval i dat ed_cl uster _policyissettodrop_all, Read
Replicas are not used for new read-only connections and all existing connections to the Read Replicas
are dropped.

« If the Cluster state is INVALID and the i nval i dat ed_cl uster _policyissettoal | ow ro, Read
Replicas are used for new read-only connections and existing connections to the Read Replicas are
unaffected.

MySQL Router uses the standard quarantine mechanism for Read Replicas, as defined by the
desi nati on_st at us configuration parameters. See Destination Status Options.

Connection Routing

1.3 Connection Routing

Connection routing means redirecting MySQL connections to an available MySQL server. MySQL packets
are routed in their entirety without inspection. For an example deployment using basic connection routing,
see Section 3.3, “Basic Connection Routing”.

Applications connect to MySQL Router and not directly to MySQL Server, and if the connection fails
then applications are designed to retry the connection because MySQL Router selects a new MySQL
server after failed attempts. This is also called simple redirect connection routing because it requires the
application to retry the connection. That is, if a connection from MySQL Router to the MySQL server is
interrupted, the application encounters a connection failure. However, a new connection attempt triggers
Router to find and connect to another MySQL server.

Routed servers and routing strategies are defined in a configuration file. For example, the following
section tells MySQL Router to listen for connections on port 7002 of the localhost, and then redirect those
connections to a MySQL instance defined by the dest i nat i ons option, including servers running on the
localhost listening on ports 3306, 3307, and 3308. We also use the r out i ng_st r at egy option to use the
round robin form of load-balancing. For additional information, see Section 4.3, “Configuration Options”

[routing:sinple_redirect]

bi nd_port = 7002

routing_strategy = round-robin

destinations = | ocal host: 3306, | ocal host: 3307, | ocal host : 3308

This example section is titled r out i ng: si npl e_r edi r ect . The first part, r out i ng, is the section name
used internally to determine which plugin to load. The second part, si npl e_r edi r ect , is an optional
section key to differentiate between other routing strategies.

When a server is no longer reachable, MySQL Router moves to the next server destination in the list and
circles back to the first server destination if the list is exhausted as per the round-robin strategy.

1.4 Application Considerations

MySQL Router usage does not require specific libraries or interfaces. Aside from managing the MySQL
Router instance, write your application as if MySQL Router was a typical MySQL instance.

The only difference when using MySQL Router is how you make connections to the MySQL server.
Applications using a single MySQL connection at startup that does not test for connection errors must be
updated. This is because MySQL Router redirects connections when the connection is attempted and does
not read packets or perform an analysis. If a MySQL server fails, Router returns the connection error to the
application.

For these reasons, the application should be written to test for connection errors and, if encountered, retry
the connection. If this technique or one similar is employed in your application then using MySQL Router
will not require any extra effort.

The following gives a better sense of why you may want to use MySQL Router and looks into how it is
used from an application's point of view.

Scenarios

There are several possible scenarios for MySQL Router, including:

» As a developer, | want my application to connect to a service so it gets a connection to, by default, the
current primary of a group replication cluster.

Workflow with MySQL Router

« As an administrator, | want to set up multiple services so MySQL Router listens on a different port for
each highly available replica set.

» As an administrator, | want to be able to run a connection routing service on port 3306 so it is more
transparent to a user or application.

» As an administrator, | want to configure a routing strategy for each connection routing service so | can
specify whether a primary or secondary is returned.

Workflow with MySQL Router

The workflow for using MySQL Router is as follows:

MySQL Client or Connector connects to MySQL Router to, for example, port 6446.
Router checks for an available MySQL server.

Router opens a connection to a suitable MySQL server.

Router forwards packets back and forth, between the application and the MySQL server

a & © dpoE

Router disconnects the application if the connected MySQL server fails. The application can then retry
connecting to Router, and Router then chooses a different and available MySQL server.

Connections using MySQL Router

An application connects to MySQL Router, and Router connects the application to an available MySQL
server.

This example demonstrates that a connection transparently connects to one of the InnoDB Cluster
instances. Because this example uses a sandboxed InnoDB Cluster where all instances run on the same
host, we check the port status variable to see which MySQL instance is connected.

Make a connection to MySQL Router using the MySQL client, for example:
$> nysgl -u root -h 127.0.0.1 -P 6446 -p
These port numbers depend on your configuration, but compare ports in this example:

nmysql > sel ect @@ort;

+ommmmmmm +
| @@ort |
+ommmmmmm +
| 3310 |
+ommmmmmm +

1 rowin set (0.00 sec)

To summarize, the client (application) connected to port 6446 but is connected to a MySQL instance on
port 3310.

Recommendations

The following are recommendations for using MySQL Router.

* Install and run MySQL Router on the same host as the application. For a list of reasons, see Chapter 3,
Deploying MySQL Router.

« Bind Router to localhost using bi nd_port = 127. 0. 0. 1: <port > in the configuration file.
Alternatively, on Linux, disable TCP connections (see - - conf - ski p-t cp) and limit this to only using
Unix socket connections (see - - conf - use- socket s).

Chapter 2 Installing MySQL Router

Table of Contents

2.1 Installing MySQL ROULEE ON LINUX ...uuiiiiiiiiiiiiiee ettt e ettt e e e e e e e e e e aa e 7
2.2 Installing MySQL RoUEr With DOCKETcciiiiiiieiiii et 10
2.3 Installing MySQL ROULEr ON MACOSuiiiiiiiie ettt et e e 11
2.4 Installing MySQL RoUter 0N WINAOWSc.uuuiiiiiiiieiii e et eeabi e 11
2.5 Installing MySQL Router from SOUrCE COUEiiiiiiiiiiiiiii e 12
2.6 Upgrading MYSQL ROULETccuuuiiiiiiiiet ittt ettt e e et e et e e e e e e e e eab e e e etaa e eeennes 13

This chapter describes how to obtain and install MySQL Router. Downloads are available from the
download site.

System Requirements

* MySQL Router supports the same platforms as MySQL Server, as listed here: https://www.mysql.com/
support/supportedplatforms/database.html

* Har dwar e: Minimum requirement is 1 CPU Core and 256 MB of RAM. 4+ CPU Cores and 4+ GB of
RAM is recommended.

* Di sk Space: Minimum requirement is 100 MB.

« External |ibraries:Mostexternal dependencies, such as protobuf and rapidjson, are bundled
within the MySQL Router packages. One exception is OpenSSL, which is only bundled for Windows
builds. Package managers should resolve the OpenSSL dependency and install the proper OpenSSL
version as required.

2.1 Installing MySQL Router on Linux

There are binary distributions of MySQL Router available for several variants of Linux, including Fedora,
Oracle Linux, Red Hat, and Ubuntu.

Installation options include:

» Official MySQL Yum or APT repository packages: These binaries are built by the MySQL Release
team. For additional information about installing these, see the quick guides for installing them using
Yum or APT.

» Download official MySQL packages: Downloads are available at https://dev.mysql.com/downloads/
router. Download and install using your preferred package manager.

» Download the source code and compile yourself: The source code is available as part of MySQL
Server at https://dev.mysqgl.com/downloads/mysql. Alternatively, the source code is also available on
GitHub (specifically in the r out er directory).

For information about compiling MySQL Router, see Installing MySQL Router from Source Code.
The procedure for installing on Linux depends on your Linux distribution.

Installing MySQL Router using an official DEB or RPM package creates a local system user and group
named "mysglrouter" on the host that MySQL Router runs as by default. For additional information, see the
system user 's configuration option.

https://dev.mysql.com/downloads/router
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/mysql
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server

Installing DEB packages

Installing DEB packages

On Ubuntu, and other systems that use the Debian package scheme, you can either download and
install .deb packages or use the APT package manager.

Using the APT Package Manager

1. Install the MySQL APT repository as described in the MySQL APT Repository documentation. For
example:

Note
@ Download the APT configuration package from here.

$> sudo dpkg -i nysql -apt-config_0.8.30-1_all.deb

Choose the desired MySQL Server series to install, such as MySQL Server 8.4. Choose Innovation to
install and upgrade to the latest Innovation series, which today installs MySQL 9.6. This choice also
determines the MySQL Router version that is installed from the MySQL repository.

2. Update your APT repository:

$> sudo apt-get update
3. Install MySQL Router. For example:
$> sudo apt-get install nysql-router

Manually Installing a Package

You can also download the .deb package and install it from the command line similarly to
$> sudo dpkg -i package. deb
package. deb is the MySQL Router package name; for example, mysql - r out er -

comuni ty-ver si on- lubunt u23. 04_and64. deb, where ver si on is the MySQL Router version
number.

Installing RPM packages

On RPM-based systems, you can either download and install RPM packages or use the Yum package
manager.

Using the Yum Package Manager

* First, install the MySQL Yum repository as described in the MySQL Yum Repository documentation. For
example:

Note
@ Download the Yum configuration package from here.

$> sudo rpm - Uvh nysql 84- communi ty-rel ease-el 7-1. noarch. rpm

* Next, optionally change the active MySQL Server version, which defaults to MySQL 8.4 LTS. For
example, to install and upgrade to the latest Innovation version (which is MySQL 9.6 today) from both
the MySQL Server (mysqgl) and MySQL Router (part of mysgl-tools) subrepositories:

http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/yum/

Uninstalling

$> sudo yum confi g- manager --disable nysql-8.4-1ts-community
$> sudo yum confi g-manager --enable nysql-innovation-conmunity

$> sudo yum confi g-manager --disable nysql-tools-8.4-1ts-community
$> sudo yum confi g-manager --enable nysql-tools-innovation-conmmunity

Now both installations and upgrades will use the latest version from the current Innovation series.

* Next, install MySQL Router. For example:

$> sudo yuminstall nysql-router-conmunity

Manually Installing an RPM Package

$> sudo rpm -i package.rpm

package. r pmis the MySQL Router package name; for example, nmysql - r out er -
comuni ty-version-el 7. x86_64. r pm where ver si on is the MySQL Router version number.

Uninstalling
The procedure for uninstalling MySQL Router on Linux depends on the package you are using.
Uninstalling DEB packages

To uninstall a Debian package, use this command:

$> sudo dpkg -r nysql-router

This command does not remove the configuration files. To also remove them and the data directory, use:

$> sudo dpkg --purge nysql -router

Note
@ Alternatively, use apt - get renove nysql -router orapt-get purge
nysql -router.

Uninstalling RPM packages

To uninstall an RPM package, use this command:

$> sudo rpm -e nysql -rout er-comunity

Note
@ Similarly, use yum r enove nysql -rout er-comunity.

This command does not remove the configuration files.
What Is Not Removed

When not purging, the uninstallation process does not remove your configuration files. On Debian systems,
this might include files such as:

/etc/init.d/ nysqlrouter

Installing MySQL Router with Docker

/et c/ mysql rout er/ mysql rout er . conf
/ et c/ appar nor . d/ usr . sbi n. nysql r out er

2.2 Installing MySQL Router with Docker

The Docker deployment framework supports easy installation and configuration of MySQL Router. This
section explains how to use a MySQL Router Docker image.

You need to have Docker installed on your system before you can use a MySQL Router Docker image.
See Install Docker for instructions.

Important

A You need to either run docker commands with sudo, or create a docker user
group, and then add to it any users who want to run docker commands. See
details here. Because Docker containers are always run with root privileges, you
should understand the Docker daemon attack surface and properly mitigate the
related risks.

Basic Steps for MySQL Router Deployment with Docker

Linux platforms. Other platforms are not supported, and users using these MySQL

Warning
O The MySQL Docker images maintained by the MySQL team are built specifically for
Docker images on them are doing so at their own risk.

Downloading a MySQL Router Docker Image

Downloading the server image in a separate step is not strictly necessary; however, performing this step
before you create your Docker container ensures your local image is up to date. To download the MySQL
Community Edition image, run this command:

$> docker pull container-registry.oracle.com nysql/community-router:tag

The t ag is the label for the image version you want to pull (for example, 8. 0). If : t ag is omitted,

the | at est label is used, and the image for the latest GA version of MySQL Community Router is
downloaded. Refer to Oracle Container Registry and navigate to the MySQL Router image in the MySQL
repository for a complete list of tags for available versions.

Table 2.1 Variables

Variable Description

MYSQL_HOST Required. MySQL host to connect to.

MYSQ._PORT Required. MySQL server listening port.

MYSQL_USER Required. MySQL user to connect with.

MYSQL_PASSWORD Required. String. MySQL user's password.

MYSQL_ 1 NNODB_CLUSTER MEMBERS Optional. Integer. Wait for this number of cluster
instances to be online.

MYSQL_CREATE_ROUTER_USER Optional. Boolean. Whether to create a new account
for MySQL Router to use when running. Default
value is enabled (1). Set to O (zero) to disable.

10

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/
https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
https://container-registry.oracle.com/

Installing MySQL Router on macOS

Variable Description

MYSQL_ROUTER_BOOTSTRAP_EXTRA OPTI ONS Optional. Comma-separated list of additional
command line options to apply during bootstrapping.

Running in a container requires a working InnoDB cluster. If supplied, the run script waits for the given
mysq|l host to start, the InnoDB cluster to have the MYSQL_| NNODB_CLUSTER MEMBERS-defined number
of members, and then uses the supplied host for bootstrapping. See Section 3.1, “Bootstrapping MySQL
Router”.

For example:
$> docker run \

-e MYSQ._HOST=l ocal host \

-e MYSQ._PORT=3306 \

-e MYSQL_USER=nysql \

-e MYSQ._PASSWORD=nysql \

e MYSQL_I NNODB_CLUSTER MEMBERS=3 \
e
t

-e MYSQL_ROUTER _BOOTSTRAP_EXTRA OPTI ONS="- - conf - use- socket --conf-use-gr-notification" \
-ti container-registry.oracle.conl nmysql/comunity-router

To use a specific version of MySQL Router, add a tag to the -t i value. For example: -ti cont ai ner -
regi stry.oracle.confnysql/community-router:9.0.0 for MySQL Router 9.0.0. To use the
latest version, do not add a tag.

Checking the status:

$> docker ps

For additional details, see Oracle Container Registry and navigate to the MySQL Router image in the
MySQL repository.

2.3 Installing MySQL Router on macOS

Download the DMG archive from https://dev.mysqgl.com/downloads/router/, and execute it to install MySQL
Router.

Alternatively, download, unpack, and manually install the compressed . t ar . gz file.

2.4 Installing MySQL Router on Windows

MySQL Router for Windows can be installed using the MySQL Installer that installs and updates all MySQL
products on Windows, or by downloading the ZIP Archive.

Windows Prerequisites
For the Community version of MySQL Router: The Visual C++ Redistributable for Visual Studio 2015

(available at the Microsoft Download Center) is required. Install it before installing MySQL Router on
Windows.

Installing Using MSI

To install MySQL Router on Microsoft Windows using the MSI Installer, do the following:

1. Download the Windows (x86, 64-bit), MSI Installer package from http://dev.mysqgl.com/downloads/
router/.

11

https://container-registry.oracle.com/
https://dev.mysql.com/downloads/router/
http://www.microsoft.com/en-us/download/default.aspx
http://dev.mysql.com/downloads/router/
http://dev.mysql.com/downloads/router/

Installing the ZIP Archive

2. When prompted, click Run.

3. Follow the steps in the Setup Wizard.

Installing the ZIP Archive

The ZIP Archive download is available at https://dev.mysql.com/downloads/router/.

Unlike installing with MySQL Installer, unpacking the MySQL Router ZIP archive does not check for
dependencies on your system, such as the required VC++ 2015 runtime. When installing MySQL Router
using the ZIP archive, download and install Visual C++ Redistributable for Visual Studio 2015 before using
MySQL Router.

After installing the prerequisites, unzip the ZIP Archive and execute bi n/ nmysqgl r out er . exe as you
normally would.

For information about installing and using MySQL Router as a Windows service, see Section 5.1, “Starting
MySQL Router”.

2.5 Installing MySQL Router from Source Code

MySQL Router is part of the MySQL Server source code tree; compiling MySQL Server also compiles
MySQL Router. This assumes - DW TH_ROUTER=Q0N, which is enabled by default. The instructions here are
brief, see Installing MySQL from Source for specific prerequisites and additional details.

Note
@ MySQL Router source code can be found in the r out er directory inside the
MySQL Server source code repository.

Get Source Code

To compile MySQL Router, download the MySQL Server source code from https://dev.mysql.com/
downloads/mysql. Alternatively, git clone mysql-server on GitHub.

Download and unpack the MySQL Server source files, for example:

$> tar xzf nysqgl-9.6.0.tar.gz
$> cd nysqgl-9.6.0

Once this is complete, you need to configure using cmake as you would for MySQL Server.

Configure

The CMake program provides control over how you configure a source distribution. Typically, you do this
using options on the CMake command line. The CMake options are not documented here, see MySQL
Source-Configuration Options.

To compile the source code, create a folder to contain the compiled binaries and executables, run cmake
to create the make file, and then compile the code. See Installing MySQL Server from Source for additional
details, including platform specific prerequisites and concerns.

Note
@ If you change anything and need to recompile from scratch, be sure to delete the
ChvakeCache. t xt file before executing the cnake command.

12

https://dev.mysql.com/downloads/router/
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://dev.mysql.com/doc/refman/9.6/en/source-installation.html
https://dev.mysql.com/downloads/mysql
https://dev.mysql.com/downloads/mysql
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.6/en/source-installation.html

Compile

Begin by executing the cnake command to create the make file. The following commands are run from the
root of the MySQL Server source code tree:

$> nkdir build & cd build
$> cnake ..

Executing cnmake may yield errors related to missing libraries or tools. For example, macOS builds may
need to reference a newer bi son executable:

$> cneke .. -DBI SON_EXECUTABLE=/usr/ | ocal / opt/ bi son/ bi n/ bi son
Compile

You can compile MySQL Server as you normally would (simply nmake) as it also compiles MySQL Router,
or build MySQL Router specific targets. For example, to only build MySQL Router with its libraries, plugins,
and tests:

$> nmake nysqlrouter _all
Optionally execute the MySQL Router specific tests with ct est :

$> ctest -Rroutertest_

Installation

There is not a make option to only install MySQL Router from source because executing nake i nst al |
initiates a full MySQL Server build.

Developer Related Notes
Notes related to using and testing a locally compiled MySQL Router version for development purposes:

* To run a local build without make i nst al | , configure Router to find the newly built pl ugi n_f ol der
as compiling generates a non-standard installation directory structure. Either manually edit the
generated nmysql r out er . conf or set it during bootstrap, for example with: - - conf - set -
opt i on=DEFAULT. pl ugi n_fol der=../plugi n_output _directory

Similarly, also setr unt i ne_f ol der accordingly, for example: - - conf - set -
opti on=DEFAULT. runti nme_fol der=../runtime_output _directory

» While individual targets do produce binaries, such as make nysql r out er _passwor d, building all
Router targets is recommended

» To avoid building unit tests, also configure with - DW TH_UNI T_TESTS=0
2.6 Upgrading MySQL Router
MySQL Router as a part of InnoDB Cluster

MySQL Router is most commonly used as an InnoDB Cluster component; with Router bootstrapped
against the cluster. For related information, see Section 3.1, “Bootstrapping MySQL Router”.

If No Metadata Upgrade Needed

MySQL Router can be upgraded independently of the InnoDB Cluster components if a metadata upgrade
is not needed.

13

Standalone MySQL Router (not a part of InnoDB Cluster)

Since the assumption is that the Router configuration file and state file remain backward compatible, the
simplest upgrade scenario is to install a new version using an installer/upgrade package for the system. In
most cases, the installer handles stopping and restarting the running instance after the upgrade. If that is
not the case (such as installing from the source or a tar.gz archive) then the running Router instance must
be manually stopped and restarted after the installation/upgrade process.

If a Metadata Upgrade Needed

When the InnoDB Cluster requires a cluster metadata schema upgrade, MySQL Router must be upgraded
as a part of the metadata upgrade procedure described in the MySQL Shell guide at Upgrade Metadata
Schema.

MySQL Router logs indicate if existing metadata is incompatible with the new version with an error, such
as:

This version of MySQL Router is not conpatible with the provided MySQL | nnoDB cl uster netadata

Bootstrapping Router after installing a new version

Usually bootstrapping is not needed after the upgrade. The exceptions to this are:

« If the new Router version introduces new capabilities, another bootstrap operation is required to use
them. For example, if an active cluster is part of a ClusterSet, bootstrapping sets up the appropriate
configuration options to work with a ClusterSet.

« If the new MySQL Router is installed at a different location than the previous version; in that case the
configuration file will contain paths (such as pl ugi n_f ol der) to the previous installation. Manually
changing the existing configuration file is an alternative.

Standalone MySQL Router (not a part of InnoDB Cluster)

Since the assumption is that the Router configuration file and state file remain backward compatible, the
simplest upgrade scenario is to install a new version using an installer/upgrade package for the system. In
most cases, the installer handles stopping and restarting the running instance after the upgrade. If that is
not the case (such as installing from the source or a tar.gz archive) then the running Router instance must
be manually stopped and restarted after the installation/upgrade process.

The existing configuration file is likely compatible with the new version but would require adjusting to set
newly added options.

14

https://dev.mysql.com/doc/mysql-shell/9.6/en/mysql-innodb-dba-upgrade-metadata.html
https://dev.mysql.com/doc/mysql-shell/9.6/en/mysql-innodb-dba-upgrade-metadata.html

Chapter 3 Deploying MySQL Router

Table of Contents

3.1 Bootstrapping MYSQL ROULETcouuiiiiiiii ettt ettt ettt e e e e e e e 16
3.2 Trying out MySQL ROULET iN @ SANADOXiiiiitieiiiiiiee ettt e e e e e eeaans 18
3.3 BasiC CONNECHON ROULINGcceuuuueiiiiiiee ettt e e e et e e e e e et e e et e e eennas 22
3.4 Connection Sharing and REUSEcoouuiiiiiiii et e e e 23
3.5 REAAIWIILE SPIILEING ..eevreieeeit ettt ettt e et e et e e e et e e e e eba s 24

ST O] 01 To [] r= L1 (o] o ISP PPPPPTRUPPPPR 24

3.5.2 STALEMENTS ..oeeiitiiii ettt et e e 26
3.6 MySQL Router TLS SeSSION CACNEuuiiiiiiiiiiei et 27
3.7 MYSQL ROULEN SEE TIACE ...ceuuiiiiiiiiieiie ettt et e e e e e e e e e e eaens 28

Performance Recommendations

For best performance, MySQL Router is typically installed on the same host as the application that uses it.
Possible reasons include:

» To allow local UNIX domain socket connections to the application, instead of TCP/IP.

Note
@ Unix domain sockets can function with applications connecting to MySQL Router,
but not for MySQL Router connecting to a MySQL Server.

» To decrease network latency.

* To allow MySQL Router to connect to MySQL without requiring extra accounts for the Router's host,
for MySQL accounts that are created specifically for application hosts such as myapp@198.51.100.45
instead of a value like myapp@%.

» Typically application servers are easiest to scale.

You can run multiple MySQL Router instances on your network, and you do not need to isolate MySQL
Router to a single machine. This is because MySQL Router has no affinity for any particular server or host.

15

Bootstrapping MySQL Router

Figure 3.1 Example MySQL Router Deployment

Application

MySQL Connector

Application
MySQL Connector '

’

MySQL Shell

4P

.. Group Replication .-~

C .
™ e
" it

LTI

3.1 Bootstrapping MySQL Router

Here is a brief example to demonstrate how MySQL Router can be deployed to use an InnoDB Cluster
using bootstrapping. For additional information, see - - boot st r ap and the other bootstrap options.

This example creates a standalone MySQL Router instance using the - - di r ect or y option, enables
sockets, uses - - account to customize Router's MySQL username, and sets - - account - cr eat e to
al ways to only bootstrap if the account does not already exist. This example assumes that an InnoDB
Cluster named nyCl ust er already exists.

$> nysqlrouter --bootstrap root @ocal host: 3310 --directory /tnp/ myrouter
--conf-use-sockets --account routerfriend --account-create always

Pl ease enter MySQ. password for root:

Boot strappi ng MySQL Router instance at '/tnp/nyrouter'...

Pl ease enter MySQ. password for routerfriend:

- Creating account(s)

- Verifying account (using it to run SQL queries that would be run by Router)
- Storing account in keyring

- Adj usting perm ssions of generated files

- Creating configuration /tnp/nyrouter/nysqlrouter.conf

MySQL Router configured for the InnoDB C uster 'nyd uster'

After this M/SQL Router has been started with the generated configuration

16

Bootstrapping MySQL Router

$ nysqlrouter -c /tnp/ nyrouter/nysqlrouter.conf
the cluster 'nyCluster' can be reached by connecting to:
MySQL Cl assic protocol

- Read/Wite Connections: |ocal host: 6446, /tnp/nyrouter/nysql.sock
- Read/ Only Connections: |ocal host: 6447, /tnp/nyrouter/nysqlro.sock

MySQL X protocol

- Read/Wite Connections: |ocal host: 6448, /tnp/nyrouter/mnmysqglx. sock
- Read/ Only Connections: |ocal host: 6449, /tnp/nyrouter/mnmysqglxro.sock

At this point the bootstrap process has created a nmysql r out er . conf file with the required files at the
directory specified, and the result shows you how to start this MySQL Router instance. A generated
MySQL Router directory looks similar to:

$>1s -1 | awk '{print $9}'

dat a/

| og/

mysql rout er. conf
nmysql rout er. key

run/
start.sh
st op. sh

A generated MySQL Router configuration file (mysql r out er . conf) looks similar to:

File automatically generated during M/SQL Router bootstrap
[DEFAULT]

| oggi ng_f ol der =/t np/ myrout er/ | og

runti me_f ol der =/t np/ myrout er/run

dat a_f ol der =/t np/ nyr out er/ dat a

keyri ng_pat h=/t nmp/ nyr out er / dat a/ keyri ng

mast er _key_pat h=/t np/ myr out er/ nysql r out er . key

connect _ti meout =15

read_ti meout =30

dynami c_st at e=/t np/ myrout er/ dat a/ st ate. j son

[l ogger]
I evel = I NFO

[met adat a_cache: nyCl ust er]

cl uster_type=gr

router_id=1

user=routerfriend

met adat a_cl ust er =nyCl ust er
tt1=0.5

aut h_cache_ttl=-1

aut h_cache_refresh_i nterval =2
use_gr_noti ficati ons=0

[routing: myCd uster_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =6446

socket =/t np/ myr out er/ nysql . sock

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =cl assi ¢

[routing: myd uster_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6447

socket =/t np/ myr out er/ nysql r 0. sock

dest i nati ons=net adat a- cache: // myC ust er/ ?r ol e=SECONDARY

Trying out MySQL Router in a Sandbox

routing_strategy=round-robin-wth-fall back
pr ot ocol =cl assi ¢

[routing: myd uster_x_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =6448

socket =/t np/ myr out er / nysql x. sock

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =x

[routing: myd uster_x_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6449

socket =/t np/ myr out er / nysql x. sock

desti nati ons=met adat a- cache: // myC ust er/ ?r ol e=SECONDARY
routing_strategy=round-robin-wth-fall back

pr ot ocol =x

In this example, MySQL Router configured four ports and four sockets. Ports are added by default, and
sockets were added by passing in - - conf - use- socket s. The InnoDB Cluster named "myCluster" is
the source of the metadata, and the dest i nat i ons are using the InnoDB Cluster metadata cache to
dynamically configure host information. The related command line options:

» --conf-use-socket s: Optionally enable UNIX domain sockets for all four connection types, as
demonstrated in the example.

e --conf-ski p-tcp: Optionally disable TCP ports, an option to pass in with - - conf - use- socket s if
you only want sockets.

e --conf-base- port : Optionally change the range of ports rather than using the default ports. This sets
the port for classic read-write (PRIMARY) connections, and defaults to 6446.

» --conf - bi nd- addr ess: Optionally change the bind_address value for each route.

To demonstrate MySQL Router's behavior, the following client (application) connects to port 6446 but is
connected to a MySQL instance on port 3310.

$> nysql -u root -h 127.0.0.1 -P 6446 -p

nysqgl > sel ect @®ort;

osssssss +
| @@ort |
osssssss +
| 3310 |
osssssss +

1 rowin set (0.00 sec)

For additional examples, see Set Up a MySQL Server Sandbox and Deploying a Production InnoDB
Cluster.

3.2 Trying out MySQL Router in a Sandbox

Test a MySQL Router installation by setting up a Router sandbox with InnoDB Cluster. In this case, Router
acts as an intermediate node redirecting client connections to a list of servers. If one server fails, clients
are redirected to the next available server in the list.

Set Up a MySQL Server Sandbox

Begin by starting three MySQL Servers. You can do this in a variety of ways, including:

18

https://dev.mysql.com/doc/mysql-shell/9.6/en/deploying-production-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/9.6/en/deploying-production-innodb-cluster.html

Set Up a MySQL Server Sandbox

 Using the MySQL Shell AdminAPI interface that InnoDB Cluster provides. This is the recommended and
simplest approach, and is documented in this section. For additional information, see MySQL AdminAPI.

For a scripted approach, see Scripting AdminAPI.
» By installing three MySQL Server instances on three different hosts, or on the same host.

» Using the mysql -t est -run. pl script that is part of the MySQL Test Suite framework. For additional
information, see The MySQL Test Suite.

The following example uses the AdminAPI method to set up our cluster sandbox. This is a brief overview,
so see MySQL InnoDB Cluster in the InnoDB Cluster manual for additional details. The following assumes
you have a current version of MySQL Shell, MySQL Server, and MySQL Router installed.

Deploy a Sandbox cluster

This example uses MySQL Shell AdminAPI to set up a InnoDB Cluster with three MySQL instances
(one primary and two secondaries), and a bootstrapped standalone MySQL Router with a generate
configuration file. Output was shortened using "...".

$> nysql sh
nysql -j s> dba. depl oySandbox| nst ance(3310)
nysql -j s> dba. depl oySandbox| nst ance(3320)

nysql -j s> dba. depl oySandbox| nst ance(3330)
nysql -j s> \connect root @ ocal host: 3310
nysql -j s> cluster = dba.createC uster("nyC uster")

nysql -j s> cl uster. addl nst ance("root @ ocal host: 3320")

nysql -j s> cl uster. addl nst ance("root @ ocal host: 3330")

nysql -j s> cluster.status()
{
"clusterName": "myC uster"”,
"def aul t ReplicaSet": {
"nane": “"defaul t",
“primary": "127.0.0.1:3310",
"ssl": "REQUI RED',
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",
"nmode": "R'W,
"readReplicas": {},
"replicationLag": null,

“role": "HA",
"status": "ONLI NE",
"version": "8.0.27"

127.0.0. 1: 3320": {

"address": "127.0.0.1:3320",
“menber Rol e": " SECONDARY",
"nmode": "R O',

19

https://dev.mysql.com/doc/mysql-shell/9.6/en/admin-api-userguide.html
https://dev.mysql.com/doc/mysql-shell/9.6/en/use-mysql-shell-execute-script.html
https://dev.mysql.com/doc/extending-mysql/9.6/en/mysql-test-suite.html
https://dev.mysql.com/doc/mysql-shell/9.6/en/mysql-innodb-cluster.html

Set Up the Router

Set Up

"readReplicas": {},

"replicationLag": null,

"role": "HA",
"status": "ONLINE",
"version": "8.0.27"

"127.0.0.1:3330": {

"address": "127.0.0.1:3330",
"menmber Rol e": " SECONDARY",

"nmode": "R O,
"readReplicas": {},

"replicationLag": null,

“role": "HA",
"status": "ONLINE",
“version": "8.0.27"
}
b
"t opol ogyMode": "Singl e-Prinmary"
b
" groupl nf or mati onSour ceMenber": "127.0.0. 1: 3310"
}
nysqgl -js> \q
Bye!
the Router

Next, set up MySQL Router to redirect to these MySQL instances. We'll use bootstrapping (using - -
boot st r ap), and create a self-contained MySQL Router installation using - - di r ect or y. This uses the

metadata cache plugin to securely store the credentials.

$> nysqlrouter --bootstrap root@ocal host: 3310 --directory /tnp/router

Pl ease enter MySQL password for root:

Boot strappi ng M/SQL Router instance at

- Creating account(s) (only those that are needed,
- Verifying account (using it to run SQL queries that would be run by Router)

- Storing account in keyring

- Adjusting perm ssions of generated files
- Creating configuration /tnp/router/nysqlrouter.conf

MySQL Router configured for the InnoDB Custer 'nyd uster'

After this M/SQL Router has been started with the generated configuration

$ nysqlrouter -c /tnp/router/nmysqlrouter.conf

I nnoDB Cl uster 'nyC uster' can be reached by connecting to:

MySQL d assic protocol

- Read/Wite Connections: |ocal host:
- Read/ Only Connections: |ocal host:

MySQL X prot ocol

- Read/Wite Connections: |ocal host:
- Read/ Only Connections: |ocal host:

$> cd /tnp/router

$> ./start.sh

MySQL Router is now configured and running, and is using the myCluster cluster that we set up earlier.

6446
6447

6448
6449

20

"/tnp/router’'. ..

if any)

Testing the Router

Testing the Router

Now connect to MySQL Router as you would any other MySQL Server by connecting to a configured
MySQL Router port.

The following example connects to MySQL Router on port 6446, the port we configured for read-write
connections:

$> nysql -u root -h 127.0.0.1 -P 6446 -p
nysqgl > SELECT @®ort ;

moccoooo +
| @@ort |
moccoooo +
| 3310 |
moccoooo +

As demonstrated, we connected to MySQL Router using port 6446 but see we are connected to our
MySQL instance on port 3310 (our PRIMARY). Next let's connect to a read-only MySQL instance:

$> nysgl -u root -h 127.0.0.1 -P 6447 -p
nysqgl > SELECT @@ort ;

osssssss +
| @@ort |
osssssss +
| 3320 |
osssssss +

As demonstrated, we connected to MySQL Router using port 6447 but are connected to the MySQL
instance on port 3320, one of the secondaries. The read-only mode defaults to the round-robin strategy
where the next connection refers to a different secondary:

$> nysql -u root -h 127.0.0.1 -P 6447 -p
nmysql > SELECT @@ort ;

e +
| @ort |
e +
| 3330 |
e +

As demonstrated, our second read-only connection to port 6447 connected to a different MySQL
secondary, in this case to port 3330 instead of 3320.

Now test failover by first killing the primary MySQL instance (port 3310) that we connected to above.
$> nysql sh --uri root @27.0.0. 1: 6446
nysql -j s> dba. ki | | Sandbox| nst ance(3310)

The MySQL sandbox instance on this host in
/ hone/ phi |'i p/ nysql - sandboxes/ 3310 will be killed

Killing MySQL instance...

I nstance | ocal host: 3310 successfully kill ed.

You can continue using MySQL Shell to check the connection but let us use the same nysql client
example we did above:

$> nysql -u root -h 127.0.0.1 -P 6446 -p
nmysql > SELECT @@ort;

21

Basic Connection Routing

+ommmmmmm +
| @@ort |
+ommmmmmm +
| 3320 |
+ommmmmmm +

$> nysql -u root -h 127.0.0.1 -P 6447 -p
nmysql > SELECT @gport

+ommmmmmm +
| @@ort |
+ommmmmmm +
| 3330

+ommmmmmm +

As shown, despite connecting to the same ports (6446 for the primary and 6447 for a secondary), the
underlying ports changed. Our new primary server changed from port 3310 to 3320 while our secondary
changed from 3320 to 3330.

We have now demonstrated MySQL Router performing simple redirects to a list of primary and secondary
MySQL instances.

Router also enables a REST API by default in the generated nysql r out er . conf at bootstrap, and by
default the following URL displays a swagger . j son for your local setup: htt ps: //127. 0. 0. 1: 8443/
api / 20190715/ swagger . j son. See also Chapter 6, MySQL Router REST API.

3.3 Basic Connection Routing

The Connection Routing plugin performs connection-based routing, meaning it forwards packets to the
server without inspecting them. This is a simplistic approach that provides high throughput. For additional
general information about connection routing, see Section 1.3, “Connection Routing”.

A simple connection-based routing setup is shown below. These and additional options are documented
under Section 4.3.3, “Configuration File Options”.

[l ogger]
I evel = I NFO

[routing: secondary]

bi nd_address = | ocal host

bi nd_port = 7001

destinations = foo. exanpl e. org: 3306, bar. exanpl e. or g: 3306, baz. exanpl e. or g: 3306
routing_strategy = round-robin

[routing: primary]

bi nd_address = | ocal host

bi nd_port = 7002

destinations = foo. exanpl e. org: 3306, bar. exanpl e. or g: 3306
routing_strategy = first-avail abl e

Here we use connection routing to round-robin MySQL connections to three MySQL servers on port 7001
as defined by round-robin r out i ng_st r at egy. This example also configures the first-available strategy
for two of the servers using port 7002. The first-available strategy uses the first available server from the
destinations list. The number of MySQL instances assigned to each dest i nat i ons is up to you as this is
only an example. Router does not inspect the packets and does not restrict connections based on routing
strategy, so it is up the application to determine where to send read and write requests, which is either port
7001 or 7002 in our example.

Assuming all three MySQL instances are running, next start MySQL Router by passing in the configuration
file:

22

Connection Sharing and Reuse

$> ./ bin/nysqlrouter -config=/etc/nysqlrouter-config.conf

Now MySQL Router is listening to ports 7001 and 7002 and sends requests to the appropriate MySQL
instances. For example:

$> ./bin/nysql --user=root --port 7001 --protocol =TCP

That will first connect to foo.example.org, and then bar.example.org next, then baz.example.org, and the
fourth call goes back to foo.example.org. Instead, we configured port 7002 behavior differently:

$> ./bin/nysql --user=root --port 7002 --protocol =TCP

That first connects to foo.example.org, and additional requests will continue connecting to foo.example.org
until there is a failure, at which point bar.example.org is now used. For additional information about this
behavior, see rout i ng_strat egy.

3.4 Connection Sharing and Reuse

MySQL Router enables server connections to be pooled and shared. If a client disconnects, the server
connection is moved to the connection pool, where it is available for reuse. If the client connection is idle
for more than a specified time, the server connection idles until a new client connection is established. This
lowers the number of connections the server has to maintain and frees up resources normally bound to
idling connections.

MySQL Router tracks the statements executed by the client and the SQL state of the session to ensure
client connections do not lose their session state. If a connection is shared, the reconnected session is in
the state the client left it. If that is not possible, the connection is not shared.

Warnings and errors generated by statements are captured and returned when requested by the client. As
are session variables.

supported by the host and can be configured with the t hr eads configuration

Note
@ The default number of I/O threads is the same as the number of CPU threads
option.

Limitations
e Connection sharing is not supported in PASSTHROUGH mode or if ser ver - ssl - node=AS_CLI ENT
and cl i ent - ssl - nrode=PREFERRED.
» Connection sharing is only supported for classic connections.

* SQL statements that depend on previous session state will not work when connection sharing is active,
unless inside a transaction.

 Certain features will leave the connection in a state that blocks it from being shared when idle. Closing or
resetting the connection (COM_RESET_CONNECTION) will allow the connection to be reused again.

Unsupported SQL Features

The following statements and functions are not supported when connection sharing is active, except inside
a transaction.

« GET DI AGNOSTI CS
e LAST_I NSERT_| IX)

23

Configuration

SQL Features which Prevent Sharing

The following SQL features prevent the connection from being pooled until the connection is closed or
reset by the client.

« SQL_CALC_FOUND ROWS,
e GET_LOCK(),service get wite |ocks().andSQ._CALC FOUND RONS
» User variables

» Temporary tables

 Prepared statements

Note

S Transactions and LOCK TABLES also block connection sharing until the transaction
is closed, or the lock released.

Configuration
Connection sharing is configured using the following options:
* connection_sharing
e connection_sharing_del ay
 max_i dl e_server_connecti ons
e idle_tineout
The following is an example of configuring connection sharing during bootstrap:

--conf-set-option=routing: bootstrap_rw. connecti on_shari ng=1
--conf-set-option=routing: bootstrap_ro.connecti on_shari ng=1
--conf -set-opti on=connecti on_pool . max_i dl e_server _connecti ons=32

3.5 Read/Write Splitting

MySQL Router supports Read-Write splitting. This configuration enables you to direct all read traffic to
read-only instances, and all write traffic to read-write instances.

Read-write instances are primaries or sources. Read-only instances are secondaries in an InnoDB Cluster
or the primary or secondary instances in a Replica Cluster.

MySQL Router classifies each query as read or write and directs it to the appropriate backend. It
is also possible to manually, or programmatically, specify the type of query using ROUTER SET or
query_attri butes.

Note
@ Each client session can communicate with one read_write and one read_only
destination.

3.5.1 Configuration

To enable read-write splitting, the following r out er options must be enabled:

24

https://dev.mysql.com/doc/refman/9.6/en/lock-tables.html

Configuration

» access_node: must be set to aut o.

Note
@ It is possible to defineread _writeandread only access _node values per
session, only. See Per-Session Configuration.

e connection_shari ng: must be setto 1.
e protocol : must be setto cl assi c.

e destinations: must be setto a net adat a- cache URL with the role set to
PRI MARY _AND SECONDARY.

Per-Session Configuration
Read-write splitting configuration can be defined per session, using one of the following:
« ROUTER SET opti onNanme='val ue'
e query_attributes router.optionNanme val ue
The following are the possible opt i onNanes and values:
» access_node set to one of the following values:
e read_writ e: all session traffic is sent to a read_write server.
e read_onl y: all session traffic is sent to a read_only server.

e aut o: the server is selected based on the type of transaction, reads are targetted to read_only
servers, writes to read_write servers.

e wait _for_nmy wites [O | 1]:Ifenabled, 1, read-only queries wait for the last written
transaction of the session.

e wait for _nmy wites tineout [O | 4294967295]:Maximum time in seconds to wait for a
read_only destination to apply the written transaction, before falling back to a read_write destination.

Default is 1.
Note
@ Session variables are reset to their initial values if the client sends a change_user
orreset_connecti on.
For example:

SQ.> ROUTER SET access_npde='read_wite'

SQ.> query_attribute router.access_node read_wite

Bootstrapping

When MySQL Router is bootstrapped, the default configuration is created with the following values:

25

Statements

[DEFAULT]
max_i dl e_server_connecti ons=64

[routing:read_wite_split]

bi nd_port =6450

desti nati ons=met adat a- cache: // mycl ust er/ ?r ol e=PRI MARY_AND_SECONDARY
routing_strategy=round-robin

access_node=aut o

pr ot ocol =cl assi ¢

connecti on_shari ng=1

To disable this configuration, you must bootstrap with - - di sabl e-rwsplit.

3.5.2 Statements

» The following describes read-only statements:
« Statements are read-only if they start with:

o SELECT
« DO
« VALUES
e TABLE
e W THthat is not followed by UPDATE or DELETE.
e EXPLAI N, DESCRI BE, or DESC which are not followed by UPDATE or DELETE.
e HELP
« USE
¢ CHECKSUM
» Parenthesized Query Expressions.

« If they start with any of the above and do not contain functions or keywords which must be executed
on a read-write server. Such as:

o CGET_LOCK()
* FOR UPDATE| SHARE
« LOCK I N SHARE MODE

« Some functions can produce a write from within a read-only statement. Such statements fail with an
error similar to the following

The MySQL server is running with the --super-read-only option so it cannot execute this statenent.

Such statements can be explicitly routed to a read-write server, with ROUTER SET or
query_attribut es. See Per-Session Configuration. You can also wrap the statement in a START
TRANSACTION ... COW T.

» The following describes read-write statements:

26

https://dev.mysql.com/doc/refman/9.6/en/select.html
https://dev.mysql.com/doc/refman/9.6/en/do.html
https://dev.mysql.com/doc/refman/9.6/en/table.html
https://dev.mysql.com/doc/refman/9.6/en/with.html
https://dev.mysql.com/doc/refman/9.6/en/explain.html
https://dev.mysql.com/doc/refman/9.6/en/describe.html
https://dev.mysql.com/doc/refman/9.6/en/help.html
https://dev.mysql.com/doc/refman/9.6/en/use.html
https://dev.mysql.com/doc/refman/9.6/en/parenthesized-query-expressions.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html

MySQL Router TLS Session Cache

« Data Definition Statements.

* The following DML: CALL, | NSERT, UPDATE, DELETE, REPLACE, | MPORT TABLE, LOAD DATA, LOAD
XML, W TH. . . UPDATE/ DELETE.

« The following Account Management statements: GRANT, REVOKE, RENAVE USER, CREATE RCLE,
CREATE USER, DROP ROLE, DROP USER, SET PASSWORD, SET ROLE, SET DEFAULT ROLE.

« The following Transaction and Locking statements: BEG N, START TRANSACTI ON, XA, SAVEPO NT,
ROLLBACK, COWM T.

e The following database administration statements: SHOW CREATE. . . , SHOW VARI ABLES, SHOW
STATUS, SET TRANSACTI ON (including SET SESSI ON .. .), SET NAMES, SET CHARACTER SET,
FLUSH PRI VI LEGES.

« The following utility statements: EXPLAI N, DESCRI BE, DESC.

« The following table maintenance statements: ANALYZE TABLE, OPTI M ZE TABLE, CHECK TABLE,
REPAI R TABLE.

» The following statements are not supported if access_node=aut o:

« Any statement which is not read-only or read-write. This includes ALTER RESOURCE GROUP
Statement, Replication Statements, and Other Administrative Statements.

3.6 MySQL Router TLS Session Cache

TLS sessions from client to router and router to server can be cached and resumed when needed. This
shortens the connection handshake, saving time and resources.

MySQL Router uses the following caches:
e Client TLS session cache: Caches TLS session from the client to MySQL Router.

» Server TLS session cache: Caches TLS sessions from the MySQL Router to the server.

The following configuration options control the session caching:
» Client TLS session cache:
e client _ssl _session_cache node: Enables or disables the cache for client-router TLS sessions.

Note

S Enabled by default. If this parameter is not set, the cache is enabled. To
disable the cache, you must explicitly define it.

e client _ssl _session_cache_si ze: Defines the maximum number of sessions cached.

e client_ssl _session_cache_ti neout: Defines the maximum amount of time, in seconds, a
session remains in the cache. If the timeout is reached, and this session is not reused, the session is
removed from the cache and the connection is closed.

» Server TLS Cache:

e server_ssl _session_cache_node: Enables or disables the cache for router-server sessions.

27

https://dev.mysql.com/doc/refman/9.6/en/sql-data-definition-statements.html
https://dev.mysql.com/doc/refman/9.6/en/call.html
https://dev.mysql.com/doc/refman/9.6/en/insert.html
https://dev.mysql.com/doc/refman/9.6/en/update.html
https://dev.mysql.com/doc/refman/9.6/en/delete.html
https://dev.mysql.com/doc/refman/9.6/en/replace.html
https://dev.mysql.com/doc/refman/9.6/en/import-table.html
https://dev.mysql.com/doc/refman/9.6/en/load-data.html
https://dev.mysql.com/doc/refman/9.6/en/load-xml.html
https://dev.mysql.com/doc/refman/9.6/en/load-xml.html
https://dev.mysql.com/doc/refman/9.6/en/grant.html
https://dev.mysql.com/doc/refman/9.6/en/revoke.html
https://dev.mysql.com/doc/refman/9.6/en/rename-user.html
https://dev.mysql.com/doc/refman/9.6/en/create-role.html
https://dev.mysql.com/doc/refman/9.6/en/create-user.html
https://dev.mysql.com/doc/refman/9.6/en/drop-role.html
https://dev.mysql.com/doc/refman/9.6/en/drop-user.html
https://dev.mysql.com/doc/refman/9.6/en/set-password.html
https://dev.mysql.com/doc/refman/9.6/en/set-role.html
https://dev.mysql.com/doc/refman/9.6/en/set-default-role.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/savepoint.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/commit.html
https://dev.mysql.com/doc/refman/9.6/en/show-variables.html
https://dev.mysql.com/doc/refman/9.6/en/show-status.html
https://dev.mysql.com/doc/refman/9.6/en/show-status.html
https://dev.mysql.com/doc/refman/9.6/en/set-transaction.html
https://dev.mysql.com/doc/refman/9.6/en/set-names.html
https://dev.mysql.com/doc/refman/9.6/en/set-character-set.html
https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/9.6/en/explain.html
https://dev.mysql.com/doc/refman/9.6/en/describe.html
https://dev.mysql.com/doc/refman/9.6/en/analyze-table.html
https://dev.mysql.com/doc/refman/9.6/en/optimize-table.html
https://dev.mysql.com/doc/refman/9.6/en/check-table.html
https://dev.mysql.com/doc/refman/9.6/en/repair-table.html
https://dev.mysql.com/doc/refman/9.6/en/alter-resource-group.html
https://dev.mysql.com/doc/refman/9.6/en/alter-resource-group.html
https://dev.mysql.com/doc/refman/9.6/en/sql-replication-statements.html
https://dev.mysql.com/doc/refman/9.6/en/other-administrative-statements.html

MySQL Router Set Trace

Note
g Enabled by default. If this parameter is not set, the cache is enabled. To
disable the cache, you must explicitly define it.

e server_ssl _session_cache_si ze: Defines the maximum number of sessions cached.

e server_ssl _session_cache_ti neout : Defines the maximum amount of time, in seconds, a
session remains in the cache. If the timeout is reached, and this session is not reused, the session is
removed from the cache and the connection is closed.

3.7 MySQL Router Set Trace

MySQL Router supports tracing of statements as they are processed by MySQL Router from client to
server and the response to the client. The trace is returned as JSON.

This enables debugging, testing, application connection comparisons, and so on.

Configuration

To configure ROUTER SET t r ace you must add the following to your MySQL Router configuration file:
e« max_idl e_server_connecti ons: add to the DEFAULT section. This must be set to at least 1.

» The following values can be added to the DEFAULT section and apply to all connections, or you can add
them to the individual ROUTI NG ... sections of connections you want to examine in detail.

e client_ssl _node: Setto PREFERRED or REQUI RED.
e server_ssl _node: Set to PREFERRED,REQUI RED, or DI SABLED.
e connection_sharing: Setto 1 to enable connection sharing.

For example:

[DEFAULT]
max_i dl e_server_connecti ons=64

[routing:{...}]

client_ssl _nmde=PREFERRED
server _ssl _nmde=PREFERRED
connecti on_shari ng=1

Enable ROUTER TRACE

ROUTER TRACE can be enabled per session or per statement on the command line of your MySQL client.
» Enable per session:

ROUTER SET TRACE = 1;
» Disable per session:

ROUTER SET TRACE = O0;

* Enable per statement:

query_attributes router.trace 1

28

Trace Format

 Disable per statement:

query_attributes router.trace O;

Trace Format

The trace is returned in a JSON object with the following properties:
« start_tine: Date and time string denoting the start of the span.
» end_ti nme: Date and time string denoting the end of the span.

* el apsed_i n_span_us: Microseconds spent in the current span. This value is end_t i ne minus
start _tine.

» st at us_code: Represents the canonical status code of a finished Span. Default value is empty.
» nane: Name of the event.
« attributes: Attributes of the event.
« event s: An array of events. These contain the following:
e tinest anp: Date and time string.
« nane: Name of the event.
e attri butes: Attributes of the event.

For example:

> nmysqgl --host=127.0.0.1 --port=6446 --show warni ngs
> ROUTER SET trace = 1;
> SELECT @gport;

Foococooo +
| @ort |
Foococooo +
| 3306 |
Foococooo +

1 rowin set, 1 warning (0,02 sec)
Not e (code 4600): {
"start_tine": "2023-03-23T15: 31: 08. 05244227",
"end_tinme": "2023-03-23T15: 31: 08. 0526532",
"el apsed_i n_span_us": 211,
"nanme": "nysql/query",
"attributes": {
"nysql . sharing_bl ocked": fal se

b
"events": [
{
"tinmestanp": "2023-03-23T15: 31: 08. 052444Z",
"nanme": "nysql/query_cl assify",
"attributes": {
"nmysql . query. cl assification": "change_on_tracker"
}
b
{

"start_tine": "2023-03-23T15: 31: 08. 052455Z",
"end_time": "2023-03-23T15: 31: 08. 052495Z",
"el apsed_i n_span_us": 39,

"nanme": "nysql/connect _and_f orward",
"attributes": {

29

Trace Events

"nmysqgl . renote.is_connected": true,

"nysql . renot e. endpoi nt " :

"l ocal host: 3306",

"nysql . renot e. connection_id": 17,

}

{

"start_tinme":
"end_tine":
"el apsed_i n_span_us":
"nanme": "nysql/response",
“"attributes":

vents": [

"start_tinme":

"2023- 03- 23T15: 31: 08. 052458Z",
"2023- 03- 23T15: 31: 08. 052495Z",

"el apsed_i n_span_us":
"nmysql / f or war d"

36,

"2023- 03- 23T15: 31: 08. 052623Z",
"2023- 03- 23T15: 31: 08. 052627Z",

"mysql . sessi on. @BESSI ON. st at enent _i d": " 84"

}
}
]
}

Trace Events

The following trace events and attributes are supported:

nysql / query

MySQL Router receives a query.
Attributes:

e mysql . sharing_bl ocked: Boolean. If connection sharing is

blocked, nysql . shari ng_bl ocked_by is displayed along with a
reason why sharing is blocked.

nysql . shari ng_bl ocked_by: String. Displays the reason why
connection sharing is blocked. This can be one of the following
values:

e frx-state:Atransaction is active.

e trx-characteristics: Transaction state is set. For example,
SET TRANSACTI ON READ ONLY.

e sone- st at e- changed: The session is in an unrecoverable state.

* session-track-gtids:session_track_gti ds does not
contain the expected value.

e session-track-state-change:
session_track_state_change does not contain the expected
value.

e session-track-transaction-info:
session_track _state change does not contain the expected
value.

30

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_state_change
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_session_track_state_change

Trace Events

mysql / query_cl assify

nmysql /
connect _and_forward

nmysql /
from pool _or_connect

Describes how MySQL Router analyzed the statement in the context of
connection-sharing.

Attributes:

e nmysql . query. cl assi fi cati on: comma-separated list of none or
more of the following:

e accept _session_state from session_tracker: The
statement resulted in a notification from the session tracker which
was accepted as is.

e ignore_session_tracker_sone_state changed: The
statement resulted in a notification from the session tracker which
was ignored.

e session_not _sharabl e _on_error: Statements such as SET
known_variable = 1, unknown_variabl e = 2 can cause
a session state change, although the statement failed. The server
responds with an error, but no session tracker, even though the
session state changed.

e session_not _sharabl e on_success: Set if a statement
modifies the session state, but the session tracker does not report
it.

e forbidden_function_w th_connection_sharing:
The statement contains functions or keywords which are not
possible with connection sharing. Such as GET DI AGNOSTI CS or
LAST | NSERT | DX() .

e forbidden_set w th_connection_shari ng: The statement
attempted to set the session tracker information required for
connection sharing.

Attributes:

 nmysql . renote.is_connect ed: Boolean. If f al e, there is no
connection. If t r ue, the following values are returned:

* nysql . renot e. endpoi nt : Name of the server connection
endpoint.

e nysqgl . renot e. connecti on_i d: Connection ID of the server
connection.

* db. nane: Name of the schema.
Attributes:
e nysql . renot e. candi dat es: Comma-separated list of endpoints.

* net. peer. nane: Hostname of the endpoint this connection
connected to in its previous session.

e net. peer. port: Port of the endpoint this connection connected to
in its previous session.

31

https://dev.mysql.com/doc/refman/9.6/en/get-diagnostics.html
https://dev.mysql.com/doc/refman/9.6/en/information-functions.html#function_last-insert-id

Trace Events

nmysql / from pool

nysql / connect

nysql / aut henti cat e

nmysql / server _greeting

nmysql /client _greeting

nmysqgl /tl s_connect

nysql / response

nysql / set _var

Attributes:
e nysql . error _nessage: Displayed if st at us_code is ERROR.

e nmysql . renot e. connecti on_i d: Connection ID of the server
connection.

Attributes:

e net. peer. nanme: Hostname of the endpoint.
e net. peer. port: Port of the endpoint.
Attributes:

e nmysql . renote. needs_full authenticati on: Boolean. If a full
handshake is required (t r ue) or if a fast reset-connection is possible
(fal se).

If t r ue, followed by nysql / change_user. If f al se, followed by
mysql / reset _connect ed.

Attributes:

e nmysql . renot e. connecti on_i d: Connection ID of the server
connection.

Attributes:

e db. nane: Name of the schema.

Attributes:

e tls.version: TLS version in use.

e tls.cipher:TLS cipher used for the connection.

e tls.session_resused: Boolean. Tr ue if the TLS session was
reused.

Attributes:

e nmysqgl . sessi on. @@BESSI ON. *: Session variables changed
according to the server session tracker.

e nmysql . session.transacti on_st at e;: Comma-separated list of
transaction states.

e nmysql . session.transacti on_characteri sti cs: Statement
required to restore the transaction state.

Attributes:

e nysql . sessi on. @IBESSI ON. *: Session variables restored after a
reconnect.

The following events have the same attributes as nmysql / query:

* nysql / ping

32

Trace Examples

e mysql/stm _prepare

* nysql/stnt_execute

e nysql /kill

* mysql/statistics

* nysql/set_option

* nysql/rel oad

e mysql/list _fields

The following events have no attributes:
» nysql / prepare_server_connecti on:
* nysql/reset _connecti on:

e mysql / greeting:

* nysql/forward:

Trace Examples

Simple Query Forwarding
The following example shows a trace of a simple forwarding of a query:
1. MySQL Router receives a query.
2. MySQL Router forwards the query to the server.
3. MySQL Router waits for the result.
4. MySQL Router forwards the result to the client.

$ nysql --host=127.0.0.1 --port=6446 --show war ni ngs
> ROUTER SET trace = 1;
> SELECT @@ort ;

foococoao +
| @@ort |
foococoao +
| 3306 |
foococoao +

1 rowin set, 1 warning (0,02 sec)
Not e (code 4600): {
"start_tinme": "2023-03-23T15: 31: 08. 0524427",
"end_tinme": "2023-03-23T15: 31: 08. 0526532",
"el apsed_i n_span_us": 211,
"name": "nysql/query",
"attributes": {
"nysql . sharing_bl ocked": fal se

}

vents": [

{
"timestanp": "2023-03-23T15: 31: 08. 05244427",
"name": "nysqgl/query_cl assify",
"attributes": {

Trace Examples

}

]

"mysql . query. classification": "accept_session_state_from session_tracker"
}
iE
{
"start_tine": "2023-03-23T15: 31: 08. 052455Z",
"end_tinme": "2023-03-23T15: 31: 08. 052495Z",
"el apsed_i n_span_us": 39,
"name": "nysql/connect _and_f orward",
"attributes": {
"nmysqgl . renote.is_connected": true,
"nmysql . renot e. endpoi nt": "l ocal host: 3306",
"nmysql . renot e. connection_id": 17,
“db. name": ""
iE
"events": [
{
"start_tine": "2023-03-23T15: 31: 08. 0524582",
"end_tinme": "2023-03-23T15: 31: 08. 052495Z",
"el apsed_i n_span_us": 36,
"nanme": "nysql/forward"
}
]
iE
{
"start_tine": "2023-03-23T15: 31: 08. 0526232",
"end_tinme": "2023-03-23T15: 31: 08. 0526272",
"el apsed_i n_span_us": 3,
"nanme": "nysql/response",
"attributes": {
"mysql . sessi on. @@BESSI ON. st at enent _i d": " 84"
}
}

34

Chapter 4 Configuration

Table of Contents

4.1 Configuration FIlE SYNTAXiiiuiiiiiieiii e e e e e e e e e e e e e e e et e e et e e et e e et e eaneeanns 35
/M2 ©To] a1 iTe (U1 =410] o T Mo Yo L1 o] o - U 37
L R o] a1 le (U1 = x0T @] o] 1 o] o =S 40
4.3.1 Defining Options Using the Command LNcouiiiiiiiiiiicii e 40
4.3.2 MySQL Router Command LiNE Programsc...oevuuiiiiieiieeiiiieeiieeeeieesi e saeeeanieeaneeannnas 41
4.3.3 Configuration File OPLIONSccuuiiiiiii e e e e e e e e e e e e eanas 66
4.3.4 Configuration File EXAMPIEouiiiiii e e e 105
o W I @ T 11 = o) o PP 107

MySQL Router is configured using a required configuration file, additional optional configuration files, and
options available from the command line.

Bootstrapping is the preferred and common approach to generating a MySQL Router configuration file. For
additional information, see - - boot st r ap. Bootstrapping generates a fully functional mysql r out er . conf
file.

For command-line syntax related information and options, see Section 4.3.1, “Defining Options Using the
Command Line”.

4.1 Configuration File Syntax

The configuration file format resembles the traditional INI file format with sections and options, but with a
few additional extensions.

Note
@ Both forward slashes and backslashes are supported. Backslashes are
unconditionally copied, as they do not escape characters.

Comments

The configuration file can contain comment lines. Comment lines start with a hash (#) or semicolon (;) and
continue to the end of the line. Trailing comments are not supported.

Sections

Each configuration file consists of a list of configuration sections where each section contains a sequence
of configuration options. Each configuration option has a name and value. For example:

[section nane]

option = val ue
option = val ue
option = val ue

[section nane: optional section key]

option = val ue
option = val ue
option = val ue

A configuration file section header starts with an opening bracket ([) and ends with a closing bracket (]).
There can be leading and trailing space characters on the line, which are ignored, but no space inside the
section brackets.

35

Default Section

The section header inside the brackets consists of a section name and an optional section key that is
separated from the section header with a colon (:). The combination of section name and section key is
unique for a configuration.

The section names and section keys consist of a sequence of one or more letters, digits, or underscores
(). No other characters are allowed in the section name or section key.

A section is similar to a namespace. For example, the user option's meaning depends on its associated
section. A user in the [DEFAULT] section refers to the system user that MySQL Router is run as,

which is also controlled by the - - user command line option. Unrelated to that is defining user in the
[metadata_cache] section, which refers to the MySQL user that accesses a MySQL server's metadata.

Default Section

The special section name DEFAULT (any case) is used for default values for options. Options not found in a
section are looked up in the default section. The default section does not accept a section key.

Options

After a section's start header, there can be a sequence of zero or more option lines where each option line
is of the form:

nane = val ue

Any leading or trailing blank characters on the option name or option value are removed before being
handled. Option names are case-insensitive. Trailing comments are not supported, so in this example the
option r out i ng_str at egy is given the value round-robin # Circles back to first server
and generates an error when starting the router.

[routing: round- r obi n]
Trailing comments are not supported so the followi ng is incorrect
routing_strategy=round-robin # G rcles back to first server

Variable Interpolation

Option values support (variable interpolation) using an option name given within braces { and } .
Interpolation is done on retrieval of the option value and not when it is read from the configuration file. If a
variable is not defined then no substitutions are done and the option value is read literally.

Consider this sample configuration file:

[DEFAULT]
prefix = /usr/

[sanpl e]

bin = {prefix}bin/{nanme}

lib = {prefix}lib/{nanme}

name = magic

directory = C \foo\bar\{3a339172- 6898- 11e6- 8540- 9f 7b235af b23}

Here the value of bi n is "/usr/bin/magic”, the value of | i b is "/usr/lib/magic”, and the value of
di rect ory is "C:\foo\bar\{3a339172-6898-11e6-8540-9f7b235afb23}" because a variable named
"{3a339172-6898-11e6-8540-9f7b235afb23}" is not defined.

Predefined variables

MySQL Router defines predefined variables that are available to the configuration file. Variables use
braces, such as { pr ogr ant for the pr ogr ampredefined variable.

36

Command Line Related Details

Table 4.1 Predefined variables

Name Description

program Name of the program, normally nysql r out er
origin Path to directory where binary is located

| oggi ng_f ol der Path to folder for log files

pl ugi n_f ol der Path to folder for plugins

runti me_fol der Path to folder for runtime data

config_fol der Path to folder for configuration files

Command Line Related Details

For command-line syntax related information and options, see Section 4.3.1, “Defining Options Using the
Command Line”.

4.2 Configuration Locations

MySQL Router scans for the default configuration files at startup, and optionally loads user-defined
configuration files at runtime from the command line.

» Default Configuration File Locations

» User-Defined and Extra Configuration Files

Default Configuration File Locations (Linux)

Default Configuration File Locations (Windows)

e MySQL Router Configuration in Cluster Metadata

Default Configuration File Locations

By default, MySQL Router scans specific locations for its configuration files that depend on the platform
and how MySQL Router was set up.

You can alter the default locations at compile time by using the - DROUTER CONFI GDI R=<pat h> option.
You could also edit cnake/ set ti ngs. crmake to change the default locations before compiling MySQL
Router, thus adding new locations or exceptions for specific platforms.

Execute mysql rout er --hel p to see the default configuration file locations (and their availability) on
your system. For example:

$> nysql router --help

Start MySQL Router.

Configuration read fromthe following files in the given order (enclosed
in parentheses means not avail able for reading):
(/usr/local /nysql -router/nysql router.conf)
[User s/ philip/.nmnmysqlrouter.conf
Pl ugi ns Pat h:
lusr/|ocal/lib/mnysqlrouter
Default Log Directory:
/usr /| ocal / mysqgl - rout er
Default Persistent Data Directory:

37

User-Defined and Extra Configuration Files

/usr/|ocal /mysqgl -router/data
Default Runtine State Directory:
[usr/ | ocal /mysql -router/run

Usage: nysqlrouter [-v|--version] [-h]|--help]

Important

A The default configuration file is not loaded if a user-defined configuration file is
passed in with the - - conf i g option.

On Linux, MySQL Router scans the following locations by default, although these locations are system
dependent:

1. /etc/ mysql router/nysqlrouter. conf

Note
3 Unlike MySQL server, the backward compatible path "/ et ¢/
nysql r out er. conf " is not supported.

2. $HOVE/ . nysql rout er . conf

directory. In doing so, Router looks in the initial directory for the .conf version, then
checks for a .ini version, and then repeats the process in the next directory which is

Note
@ For backward compatibility, MySQL Router also looks for the .ini variant in each
typically the user's home directory on the system.

User-Defined and Extra Configuration Files
Two command line options help control these configuration file locations:

» --confi g (or-c): Read the base configuration from this file, and do not use or scan the default file
paths.

Example use: when generating a standalone MySQL Router installation with the - - di rect ory
bootstrap option, the generated st ar t . sh passes this option to the generated nysql r out er . conf
inside that directory.

» --extra-config (or-a): Read this additional configuration file after the configuration files are read
from either the default locations, or from files specified using the - - conf i g option.

For example:

$> nysqlrouter --config /custom path/to/router.conf --extra-config /another/config.conf

Multiple extra configuration options can be passed in and the files are loaded in the order they are entered,
with - - conf i g options being loaded before the - - ext r a- conf i g options. For example:

$> nysqlrouter --extra-config a.conf --config b.conf --extra-config c.conf

In the above example, b. conf is loaded first, and then a. conf and c. conf, in that order. Also, the
default configuration file, such as / et ¢/ nmysql r out er/ nysql r out er. conf, is not loaded because - -
confi g was used.

Each loaded configuration file overrides configuration settings from the previously read configuration files.

38

Default Configuration File Locations (Linux)

Default Configuration File Locations (Linux)

The following lists default file location for the router to read configuration files on popular Linux platforms.

Note
@ Execute mysql rout er --hel p to see the default configuration file locations (and
their availability) on your system.

» Default system-wide installation under / usr/ | ocal :/usr/local /etc/ nysql router. conf
« RPM and Debian :/ et ¢/ nysqgl rout er/ nysql rout er. conf

» On all systems, a bootstrapped standalone installation using - - di r ect ory adds nysql r out er . conf
into the directory defined by --directory.

Default Configuration File Locations (Windows)

Default file locations that MySQL Router searches for configuration files on Windows.

Note
@ Execute nysqgl rout er. exe - - hel p to see the default configuration file locations
(and their availability) on your system.

» Default system-wide installation under C: \ Pr ogr anDat a\ MySQL\ MySQL Rout er : C.\ Progr anDat a
\ MySQL\ MySQL Rout er\ mysql rout er. conf

* In addition: C. \ User s\ user nane\ AppDat a\ Roam ng\ mysql rout er. conf where user nane is
replaced with your system's user.

 In addition to mysqglrouter.conf, for backwards compatibility the system also looks for mysglrouter.ini

» With - - di r ect or y: a bootstrapped standalone installation using - - di r ect or y adds
nysql rout er. conf into the directory defined by --directory.

MySQL Router Configuration in Cluster Metadata

The full configuration of routers bootstrapped against a InnoDB Cluster is stored in the InnoDB Cluster
Metadata Schema and can be read by the MySQL Shell operation, obj ect . r out er Opt i ons, for Cluster,
ClusterSet, and ReplicaSets.

The configuration is stored per router as JSON in the nysql i nnodb_cl ust er _net adata. routers
table with one row per router. Each router's row is updated by the router on startup or restart.

For example:

nysqgl > select JSON PRETTY(attributes->>'$. Configuration') as Configuration from nysqgl _i nnodb_cl ust

Configuration: {
"io": {
"backend": "poll",
"threads": 0
b
"common": {
"nanme": "systeni,
"user": "",
"read_tinmeout": 30,
"client_ssl_key": "/Users/areligaldev/server/mysql -trunk/buil d/ pt/data/router-key. pent,
"client_ssl _cert": "/Users/areligaldev/server/nysql-trunk/buil d/ pt/data/router-cert.pent,
"client_ssl_node": "PREFERRED',

39

Configuration Options

"connect _ti meout": 5,

"server_ssl _node": "PREFERRED",
"server_ssl _verify": "Dl SABLED",
"max_t otal _connections": 512,
"unknown_config_option": "error",
"router_require_enforce": true,
"max_i dl e_server_connections": 64

b

"l oggers": {
"filelog": {
“level": "info",
“filename": "mysqlrouter.|og",
“destination": "",
"timestanp_precision": "second"
}

iE

"endpoi nts": {

"bootstrap_ro": {

See Viewing Router Configurations with MySQL Shell for more information.

For backward compatibility, MySQL Router continues to store some configuration parameters in the
attri butes JSONinnysql _i nnodb_cl ust er _net adat a. rout ers.

For example:
sel ect JSON _PRETTY(attri butes) from nysql _i nnodb_cl ust er _net adat a. rout ers;
|

"ROEndpoi nt": "6447",

"RWEndpoi nt": "6446",

" ROXEndpoi nt": "6449",

" RWKEndpoi nt ": "6448",

"RWBpl i t Endpoi nt": "6450",

" Met adat aUser": "nysql _routerl_plje99d",
"Configuration": { /*...*/ },

"boot strapTar get Type": "cluster"

o

4.3 Configuration Options

Configuration file options and command-line options serve different purposes and are documented in
separate locations.

When boot st r appi ng, the generated configuration file's settings depend on the bootstrap options
passed into mysql r out er . For example, passing in - - conf - use- socket s enables socket connections
by defining socket for each route in the generated configuration file. Or, - - di r ect or y adds all
generated files and subdirectories to a single directory and adjusts the generated configuration file values
accordingly.

4.3.1 Defining Options Using the Command Line

Options can be configured and overridden at runtime using these different methods:

 Using standard runtime options as shown by nmysql r out er - - hel p; how it affects the generated
configuration file depends on the option. For example:

40

https://dev.mysql.com/doc/mysql-shell/9.6/en/registered-routers.html#registered-routers-configuration

MySQL Router Command Line Programs

$> nysql router --bootstrap foo@ar.com --connect -t i meout =20

e Using the form - - secti on[: secti on_key] . opti on_nane=opti on_val ue at runtime; this does
not affect the generated configuration file. This is typically used for testing as using a configuration file is

preferred. For example:

$> nysql router -c nysqrouter.conf

--1 ogger. | evel =debug

» Using the - - conf - set - opti on=section[:section_key].option_nane=option_val ue option
that does alter the generated configuration file. This is used while bootstrapping to add or override a
configuration option. It has precedence over other forms.

$> nysqgl router --bootstrap foo@ar.com\
--conf -set-option=l ogger. | evel =debug \

--conf -set-opti on=DEFAULT. unknown_confi g_opti on=war ni ng \

--conf -set-opti on=DEFAULT. connect _ti meout =20 \

--connect - ti meout =10

This sets connect _ti neout to 20 in the generated nysql r out er . conf because - - conf - set -

opt i on always takes precedence.

4.3.2 MySQL Router Command Line Programs

This section describes the MySQL Router commands. The mysqgl r out er command is used for most
tasks, including bootstrapping and running MySQL Router, and nysql rout er _pl ugi n_i nfois an

optional debugging tool.

4.3.2.1 mysqlrouter — Command Line Options
* mysqglrouter Option Summaries

» mysqlrouter Option Descriptions

MySQL Router accepts command line options that are passed into nysql r out er to affect its behavior, or

to bootstrap router based on an InnoDB Cluster.

When starting Router, you can optionally use - - conf i g to pass in the main configuration file's location
(otherwise the default location is used) and - - ext r a- conf i g for an additional configuration file.

Bootstrapping command line options affect the generated files and directories that are used when starting

MySQL Router.

mysqlrouter Option Summaries

Table 4.2 General Options

Option Name

Description

--conf-set-option

Sets a value for a generated configuration option
during bootstrap

--config

Read configuration options from the provided file

--core-file

Write core file on Router crashes

--extra-config

Read this file after configuration files are read from
either default locations or from files specified by the
--config option

--help

Display help text and exit

--pid-file

Location to store the PID file

41

MySQL Router Command Line Programs

Option Name

Description

--user Run mysqlrouter as the user having the defined user
name or numeric user id
--version Display version information and exit

Table 4.3 Bootstrapping Options

Option Name

Description

--account

The MySQL user account used by Router after
bootstrapping

--account-create

Bootstrapped account creation behavior

--account-host

The host pattern used for bootstrapped accounts

--bootstrap

Bootstrap and configure Router for operation with a
MySQL InnoDB cluster

--bootstrap-socket

Connect to the MySQL metadata server through
a Unix domain socket, used in conjunction with --
bootstrap

--conf-base-port

Base port to use for listening Router ports

--conf-bind-address

IP address of the interface to which router's listening
sockets should bind

--conf-skip-tcp

Whether to disable binding of a TCP port for
incoming connections

--conf-target-cluster

Sets the target_cluster metadata option to a cluster
type

--conf-target-cluster-by-name

Sets the target_cluster metadata option to a specific
cluster name

--conf-use-gr-notifications

Enables Group Replication notifications

--conf-use-sockets

Whether to use Unix domain sockets

--connect-timeout

Number of seconds before connection attempts to a
metadata server are considered timed out

--directory Creates a self-contained directory for a new
instance of the Router
--disable-rest Disables generation of REST API configuration

details into the generated mysqlrouter.conf file

--disable-rw-split

Disables generation of read-write splitting
configuration details into the generated
mysqlrouter.conf file

--force

Force reconfiguration of a possibly existing instance
of the router

--force-password-validation

When creating a user account automatically, do not
skip the validate_password mechanism

--https-port

MySQL Router REST APl HTTP server port

--master-key-reader

Script that returns the master key to STDOUT

--master-key-writer

Script that reads the master key from STDIN

--name

Gives a symbolic name for the router instance

42

MySQL Router Command Line Programs

Option Name

Description

--password-retries

The number of retries to use for generating the
Router's user password

--read-timeout

Number of seconds before read operations to a
metadata server are considered timed out

--report-host

Router's hostname; overrides auto-detection

--strict

Enables bootstrap strict mode

Table 4.4 SSL Options

Option Name

Description

--client-ssl-ca

The path to the Certificate Authority (CA) certificate
file in PEM format

--client-ssl-capath

The path to the directory that contains the trusted
SSL Certificate Authority (CA) certificate files in
PEM format.

--client-ssl-cert

The path to the SSL public key certificate file,
in PEM format, used to encrypt client-to-router
connections

--client-ssl-cipher

Which ciphers are allowed between client and
MySQL Router, defaults to a secure list of SSL
ciphers

--client-ssl-crl

The path to the file containing the certificate
revocation lists in PEM format

--client-ssl-crlpath

The path to the directory that contains the certificate
revocation list files in PEM format

--client-ssl-curves

Which curves are allowed between the client and
MySQL Router, defaults to a secure list of SSL
curves

--client-ssl-dh-params

Filename of the DH parameter file. Not set by
default

--client-ssl-key

The path name of the SSL private key file, in PEM
format, used to encrypt client-to-router connections

--client-ssl-mode

Controls if connections from the client to MySQL
Router must be encrypted, defaults to PREFERRED
if not set

--server-ssl-ca

The path to the Certificate Authority (CA) certificate
file in PEM format

--server-ssl-capath

The path to the directory that contains the trusted
SSL Certificate Authority (CA) certificate files in
PEM format.

--server-ssl-cipher

SSL Cipher for Server

--server-ssl|-crl

The path to the file containing the certificate
revocation lists in PEM format

--server-ssl-crlpath

The path to the directory that contains the certificate
revocation list files in PEM format

--server-ssl-curves

SSL Curves for Server

43

MySQL Router Command Line Programs

Option Name

Description

--server-ssl-mode

Controls if connections from router to server must
be encrypted.

--server-ssl-verify

Verification of the SSL certificates presented to the
router by the server

--ssl-ca Path to SSL Certificate Authority file to verify
server's certificate against

--ssl-capath Directory that contains trusted SSL Certificate
Authority certificate files

--ssl-cert The client-side SSL certificate to facilitate client-side
authentication during bootstrap

--ssl-cipher A colon-separated list of SSL ciphers to allow, if
SSL is enabled

--ssl-crl Path to SSL CRL file to use when verifying server
certificate

--ssl-crlpath Path to directory containing SSL CRL files to use
when verifying server certificate

--ssl-key The private SSL key to facilitate client-side
authentication during bootstrap

--ssl-mode Desired security state when connecting to the
metadata server during bootstrap and normal
operation. Analogous to --ssl-mode in mysq| client

--tls-version Comma-separated list of TLS versions to request, if

SSL is enabled

Table 4.5 Windows Services Options

Option Name

Description

--clear-all-credentials

Clear all stored credentials

--install-service

Install MySQL Router as service and set it to
automatically start when Windows restarts; service
name defaults to MySQLRouter (Windows only)

--install-service-manual

Install MySQL Router as service that can be
manually started; service name defaults to
MySQLRouter (Windows only)

--remove-credentials-section

Remove a section's credentials

--remove-service

Remove MySQL Router as a Windows service;
service name defaults to MySQLRouter

--service

Start MySQL Router as a Windows service

--update-credentials-section

Update a section's credentials

mysqlrouter Option Descriptions

e --version,-V

Command-Line Format

--version , -V

Displays the version number and related information of the application, and exits. For example:

44

MySQL Router Command Line Programs

$> nysql router --version

MySQL Router v9.6.0 on Linux (64-bit) (GPL community edition)

--help,-?

Command-Line Format

--help , -7

Display help and informative information, and exit.

The - - hel p option has an added benefit. Along with the explanation of each of the options, the - - hel p

option also displays the paths used to find the configuration file, and also several default paths. The
following excerpt of the - - hel p output shows an example from a Ubuntu 16.04 machine:

$> nysqlrouter --help

Start MySQL Rout er.

Configuration read fromthe following files in the given order (enclosed

i n parent heses neans not avail able for reading):
(/etc/mysql rout er/ nysql rout er. conf)
/ hore/ phi | i p/ . mysql rout er. conf
Pl ugi n Pat h:
[usr/lib/x86_64-1inux-gnu/ mysqlrouter
Default Log Directory:
/var /1 og/ mysql rout er
Default Persistent Data Directory:
/var/lib/nysql router
Default Runtinme State Directory:
/ run/ mysql r out er

Usage: nysqlrouter [-V|--version] [-?]--help]

The configuration section shows the order for the paths that may be used for reading the configuration

file. In this case, only the second file is accessible.

--bootstrap URI,-B URI

Command-Line Format

--bootstrap URI,

-B URI

Type

String

The main option to perform a bootstrap of MySQL Router by connecting to the InnoDB Cluster metadata
server at the URI provided. MySQL Router configures itself based on the information retrieved from the

InnoDB Cluster metadata server. A password is prompted for if needed. If a username is not provided

as part of the URI then the default user name "root" is used. See Connecting Using URI-Like Connection
Strings for information on using a path to specify a server instance.

boot st r ap- socket option with a local Unix domain socket name replaces the

Note
@ While - - boot st r ap accepts a URI for TCP/IP connections, using the - -
"host:port” part of the URI passed to the - - boot st r ap option with the socket on

the same machine.

By default, the bootstrap process performs a system-wide configuration of MySQL Router. Only one

instance of MySQL Router can be configured for system-wide operation. The system instance of MySQL

45

https://dev.mysql.com/doc/refman/9.6/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-uri
https://dev.mysql.com/doc/refman/9.6/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-uri

MySQL Router Command Line Programs

Router has ar out er _nane of "system". If additional instances are desired, use the - -di rect ory
option to create self-contained MySQL Router installations.

URI : a server instance from an InnoDB Cluster to fetch metadata information from. If the provided URI
is a read-only instance, MySQL Router automatically reconnects to a read-write instance in the InnoDB
Cluster so it can register MySQL Router.

If a configuration file already exists when you start MySQL Router with the - - boot st r ap, the existing
rout er _id inthatfile is reused, and a reconfiguration process occurs. The configuration file is
regenerated from scratch and the MySQL Router's metadata server account is recreated, although with
the same name.

During the reconfiguration process, all changes made to an existing configuration file are discarded.
To customize a configuration file and still retain the ability of automatic reconfiguration (bootstrapping),
you can use the - - ext r a- conf i g command line option to specify an additional configuration file
that is read after the main configuration file. These configuration options are used because this extra
configuration file is loaded after the main configuration file.

The bootstrap process creates a new MySQL user account with a randomly generated password to

use by that specific MySQL Router instance. This account is used by MySQL Router when connecting
to the metadata server and InnoDB cluster to fetch information about its current state. For detailed
information about this user including how its password is stored and the MySQL privilege it requires, see
documentation for the MySQL user opti on.

The generated configuration file is named nmysql r out er . conf , and its location depends on the type of
instance being configured, the system, and the package. For system-wide installations, the generated
configuration file is added to the system's configuration directory such as / et ¢ or “PROGRANDATA%

\ MySQL\ MySQL Rout er\ . Executing nysql rout er --hel p will display this location.

The - - user option is required if executing a bootstrap with a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument such as --
user=root.

The minimum GRANT permissions required to execute - - boot st r ap are:

GRANT CREATE USER ON *.* TO 'bootstrapuser' @% W TH GRANT OPTI O\

GRANT SELECT, | NSERT, UPDATE, DELETE, EXECUTE ON nysgl _i nnodb_cl uster_netadata.* TO 'bootstrapuser' @% ;
GRANT SELECT ON nysgl . user TO 'bootstrapuser' @% ;

GRANT SELECT ON performance_schema. replication_group_nenbers TO 'bootstrapuser' @% ;

GRANT SELECT ON performance_schema. replication_group_nenber_stats TO 'bootstrapuser' @% ;

GRANT SELECT ON performance_schema. gl obal _vari abl es TO ' boot strapuser' @ % ;

Using - - boot st r ap adds default values to the generated MySQL Router configuration file, and some of

these default values depend on other conditions. Listed below are some of the conditions that affect the
generated default values, where default is defined by passing in - - boot st r ap by itself.

Table 4.6 Conditions that affect default --bootstrap values

Condition Description

--conf - base- port Modifies generated bi nd_port values for each connection type.

By default, generated bi nd_port values are as follows: For the
classic protocol, Read-Write uses 6446 and Read-Only uses 6447,
and for the X protocol Read-Write uses 6448 and Read-Only uses
6449.

MySQL Router Command Line Programs

Condition Description
Setting - - conf - base- port to 0 changes the default bi nd_port
values to the following defaults: For the classic protocol, Read-
Write uses 6446 and Read-Only uses 6447, and for the X protocol
Read-Write uses 64460 and Read-Only uses 64470.

--conf -use-socket s Inserts socket definitions for each connection type.
--conf-skip-tcp TCP/IP connection definitions are not defined.

--directory Affects all file paths, and also generates additional files.

Other This list is not exhaustive, other options and conditions also affect

the generated values.

e --bootstrap-socket socket nane
Command-Line Format - - boot st rap-socket socket_name
Platform Specific Linux

Used in conjunction with - - boot st r ap to bootstrap using a local Unix domain socket instead of TCP/
IP. The - - boot st r ap- socket value replaces the "host:port" part in the - - boot st r ap definition with
the assigned socket name for connecting to the MySQL metadata server using Unix domain sockets.
This is the MySQL instance that is being bootstrapped from, and this instance must be on the same
machine if sockets are used. For additional details about how bootstrapping works, see - - boot st r ap.

This option is different than the - - conf - use- socket s command line option that sets the socket
configuration file option during the bootstrap process.

This option is not available on Windows.

e --core-file

Command-Line Format --core-file[={0] 1}]
Type Boolean
Default Value 0

Write a core file if nysql r out er dies. The name and location of the core file is system dependent.

On Linux, a core file named cor e. pi d is written to the current working directory of the process. pi d
represents the process ID of the server process. On macOS, a core file named cor e. pi d is written to
the / cor es directory, if the process has the com appl e. security. get-task-al | owentitlement.
On Solaris, use the cor eadmcommand to specify where to write the core file and how to name it. On
Windows, a minidump file named nysql r out er . { pi d}. dnp is written to the current working directory
of the process.

e --directory dir_path,-d dir_path

Command-Line Format --directory dir_path, -d dir_path

47

MySQL Router Command Line Programs

Type String

Specifies that a self-contained MySQL Router installation will be created at the defined directory instead
of configuring the system-wide router instance. This also allows multiple router instances to be created
on the same system.

The self-contained directory structure for Router is:

$path/start. sh
$pat h/ st op. sh

$pat h/ mysql rout er . pi d
$pat h/ mysql r out er . conf
$pat h/ mysql rout er . key
$pat h/ run

$pat h/ run/ keyri ng
$pat h/ dat a

$path/ | og

$pat h/ | og/ nysql router. | og

If this option is specified, the keyring file is stored under the runtime state directory of that instance,
under r un/ in the specified directory, as opposed to the system-wide runtime state directory.

If - - conf - use- socket s is also enabled then the generated socket files are also added to this
directory.

--master-key-witer

Command-Line Format --master-key-witer file_path

Type String

This optional bootstrap option accepts a script that reads the master key from STDIN. It also uses the
ROUTER_ID environment variable set by MySQL Router before the nast er - key-wri t er scriptis
called.

The mast er - key-wri t er and nast er - key-r eader options must be used together, and using them
means the nast er _key fil e option must not be defined in nysql r out er . conf as the master key is
not written to the nysql r out er . key master key file.

This is also written to the generated MySQL Router configuration file as the nmast er - key-wri t er
[DEFAULT] option.

Example contents of a bash script named wr i t er . sh used in our example:

#!/ bi n/ bash

KI D =$(keyct| padd user ${ROUTER |D} @s <&0)

Example usage:

$> nysql router --bootstrap=127.0.0.1: 3310 --naster-key-reader=./reader.sh
--nmaster-key-witer=./witer.sh

This also affects the generated nysql r out er . conf, for example:

[DEFAULT]

48

master-key-reader =reader. sh

MySQL Router Command Line Programs

mast er-key-witer=witer.sh

- - mast er - key-r eader

Command-Line Format --mast er-key-reader file_path
Type String

This optional bootstrap option accepts a script that writes the master key to STDOUT. It also uses the
ROUTER_ID environment variable set by MySQL Router before the nmast er - key- r eader scriptis
called.

The mast er - key-reader and nast er - key-wr i t er options must be used together, and using them
means the nast er _key_ fil e option must not be defined in mysqgl r out er. conf as the master key
is not written to the mysqgl r out er . key master key file, and instead uses the value provided by this
option's script.

This is also written to the generated MySQL Router configuration file as the nast er - key- r eader
[DEFAULT] option.

Example contents of a bash script named r eader . sh used in our example:

#!/ bi n/ bash

KI D_=$(keyct| search @s user ${ROUTER | D} 2>/dev/null)
if [! -z $KID_]; then

keyct| pipe $KID_
fi

Example usage:

$> nysql router --bootstrap=127.0.0.1: 3310 --naster-key-reader=./reader.sh
O, nmultiple hosts--nmaster-key-witer=./witer.sh

This also affects the generated nysql r out er . conf, for example:
[DEFAULT]

nast er - key- r eader =r eader . sh
nmaster-key-witer=witer.sh

--strict
Command-Line Format --strict
Type String

Enables strict mode, which for example causes the bootstrap - - account user verification check to stop
the bootstrap process rather than only emit a warning and continue if the supplied user does not pass
the check.

- -account
Command-Line Format --account usernane
Type String

A bootstrap option to specify the MySQL user to use, which either reuses an existing MySQL user
account or creates one; behavior controlled by the related - - account - cr eat e option.

49

MySQL Router Command Line Programs

With - - account , usage favors ease of management over ease of deployment as multiple routers
may share the same account, and the username and password are manually defined rather than auto-
generated.

Setting this option triggers a password prompt for this account regardless of whether the password is
available in the keyring.

Bootstrapping without passing - - account does not recreate an existing MySQL server account.

Using this option assumes the user has sufficient access rights for Router because the bootstrap
process does not attempt to add missing grants to existing accounts. The bootstrap process does verify
the permissions and outputs information to the console of the failed check. The bootstrap process
continues despite these failed checks unless the optional - - st ri ct option is also used. Example
required permissions:

GRANT USAGE ON *.* TO "theuser @ %

GRANT SELECT, EXECUTE ON "nysqgl _i nnodb_cl uster_netadata .* TO "theuser @ %

GRANT | NSERT, UPDATE, DELETE ON "nysqgl _i nnodb_cl uster_netadata . routers’ TO “theuser @ %
GRANT | NSERT, UPDATE, DELETE ON "“nysql _i nnodb_cl uster_nmetadata . v2_routers’ TO "theuser @ %
GRANT SELECT ON " performance_schema . gl obal _variables® TO "theuser” @ %

GRANT SELECT ON " performance_schema . replication_group_nenber_stats™ TO "theuser @ %

GRANT SELECT ON " performance_schema . replication_group_nenbers’ TO "theuser @%

A password is not accepted from the command-line. For example, passing in "foo:bar" assumes "foo:bar'
is the desired username rather than user foo with the password bar.

--account-create

Command-Line Format --account -create behavi or
Type String
Default Value if-not-exists
Valid Values i f-not-exists
al ways
never

Specify the account creation policy to help guard against accidentally bootstrapping with the wrong user
account. Potential values are:

e i f-not-exists (default): Bootstrap either way; reuse the account if it exists, otherwise create it.
« al ways: Only bootstrap if the account does not already exist; and create it.

« never : Only bootstrap if the account already exists; and reuse it.

This option requires that the - - account option is also used, and that - - account - host is not used.

--account - host

Command-Line Format --account - host host_pattern
Type String

50

MySQL Router Command Line Programs

Default Value %

The host pattern used for accounts created by MySQL Router during the bootstrap process. This is
optional and defaults to '%'.

Pass in this option multiple times to define multiple patterns, in which case the generated MySQL
accounts use the same password.

Note
3 Router does not perform sanity checking and does not ensure that the pattern
authorizes Router to connect.

Note
3 Bootstrapping reuses existing Router accounts by dropping and recreating the
user, and this user recreation process applies to every host.

Examples:

One host
$> nysqglrouter --bootstrap |ocal host: 3310 --account-host host1l

O, nmultiple hosts

$> nysql router --bootstrap |ocal host: 3310 --account-host hostl --account-host host2
--account - host host3

--conf - use-socket s

Command-Line Format --conf-use-sockets

Platform Specific Linux

Enables local Unix domain sockets.

This option is used while bootstrapping, and enabling it adds the socket option to the generated
configuration file.

The name of the generated socket file depends on the pr ot ocol option. With the classic protocol
enabled, the file is named nysql . sock for read-write connections, and nmysql r o. sock for read-only

connections. With the X Protocol enabled, the file is named nmysql x. sock for read-write connections,
and nmysqgl xr 0. sock for read-only connections.

This option is not available on Windows.

--conf-use-gr-notifications

Command-Line Format ‘ -conf-use-gr-notifications

Enables the use_gr _noti fi cati ons [metadata_cache] option during bootstrap. When enabled,
Router is asynchronously notified about most cluster changes. See use_gr_noti fi cati ons for more
information. In addition, using this option setst t | =60 and aut h_cache_r ef resh_i nt er val =60.

--pid-file path

Command-Line Format --pid-file path 51

MySQL Router Command Line Programs

Type String

Sets location of the PID file. This can be set in three different ways (in order of precedence): this - - pi d-
fil e command-line option, setting pi d_f i | e in Router's configuration file, or defining the ROUTER_PI D
environment variable.

If - - boot st r ap is specified, then setting --pid-file causes Router to fail. This is unlike ROUTER_PID
and the pid_file configuration option, which are ignored if --bootstrap is specified.

If - - boot st r ap is not specified, then the following cause Router to fail: the --pid-file already exists,
pid_file or ROUTER_PID are set but empty, or if Router can't write the PID file.

--report - host

Command-Line Format --report-host hostname

Type String

Optionally define Router's hostname instead of relying on auto-detection to determine the externally
visible hostname registered to metadata during the bootstrap process.

Router does not check or confirm that the supplied hostname is reachable, but does use RFC 1123 to
validate host names, and RFC 2181 to validate addresses.

The supplied hostname is written to the host_name field of the mysqgl_innodb_cluster_metadata.hosts
table in the MySQL InnoDB cluster metadata store.

--conf-skip-tcp

Command-Line Format --conf-skip-tcp
Platform Specific Linux

Skips configuration of a TCP port for listening to incoming connections. See also - - conf - use-
socket s.

This option is not available on Windows.

--conf-base-port port_num

Command-Line Format --conf - base-port port_num
Type Integer
Default Value 0

Base (first) value used for the listening TCP ports by setting bi nd_port for each bootstrapped route.

This value is used for the classic read-write route, and each additional allocated port is incremented by a
value of one. The port order set is classic read-write / read-only, and then x read-write / read-only.

Setting - - conf - base- port to 0 changes the default bi nd_port values to the following defaults,
which were as follows: For the classic protocol, Read-Write uses 6446 and Read-Only uses 6447, and
for the X protocol Read-Write uses 64460 and Read-Only uses 64470.

Example usage:

Exanpl e w thout --conf-base-port
$> nysql router --bootstrap root@ocal host: 3310

52

MySQL Router Command Line Programs

Classic MySQL protocol connections to cluster 'devC uster':
- Read/Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

X protocol connections to cluster 'devC uster':
- Read/Wite Connections: |ocal host: 6448
- Read/ Only Connections: | ocal host: 6449

Exanpl e denonstrating --conf-base-port set to O
$> nysql router --bootstrap root @ ocal host: 3310 --conf-base-port 0

Cl assic MySQL protocol connections to cluster 'devC uster':
- Read/Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

X protocol connections to cluster 'devC uster':

- Read/ Wite Connections: |ocal host: 64460
- Read/ Only Connections: |ocal host: 64470

--conf - bi nd- addr ess addr ess

Command-Line Format --conf - bi nd- addr ess addr ess
Type String
Default Value 0.0.0.0

Modifies the bi nd_addr ess value set by - - boot st r ap in the generated Router configuration file.
By default, bootstrapping sets bi nd_addr ess=0. 0. 0. 0 for each route, and this option changes that
value.

Note
@ The default bi nd_addr ess value is 127.0.0.1 if bi nd_addr ess is not defined.

--read-tinmeout num seconds

Command-Line Format --read-timeout num seconds
Type Integer
Default Value 30

Number of seconds before read operations to a metadata server are considered timed out.

This affects read operations during both the bootstrap process, and also affects normal MySQL Router
operations by setting the associated r ead_t i neout option in the generated nysql r out er. conf.

This option is set under the [DEFAULT] namespace.

--connect-ti meout num seconds

Command-Line Format --connect-timeout num seconds

Type Integer

53

MySQL Router Command Line Programs

Default Value 30

Number of seconds before connection attempts to a metadata server are considered timed out.

This affects connections during both the bootstrap process, and also affects normal MySQL Router
operations by setting the associated connect _ti neout option in the generated nysql r out er. conf.

There are two connect_timeout variants. The metadata server variant is defined under the [DEFAULT]
namespace, while the MySQL server variant is defined under the [r out i ng] namespace.

e --user {user_nane|user _id},-u {user_nane|user_id}

--user {user_nane|user_id}, -u
{user _nane| user i d}

Command-Line Format

Platform Specific Linux

Type

String

Run nysql r out er as the user having the name user _nane or the numeric user ID user _i d. “User”
in this context refers to a system login account, not a MySQL user listed in the grant tables. When
bootstrapping, all generated files are owned by this user, and this also sets the associated user option.

This system user is defined in the configuration file under the [DEFAULT] namespace. For additional
information, see the user option's documentation that - - user configures.

The - - user option is required if executing a bootstrap as a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument, such as --

user=root.
This option is not available on Windows.

e --nane router_nane

Command-Line Format

--name router_nane

Type

String

Default Value

system

On initial bootstrap, specifies a symbolic name for a self-contained Router instance. This option is
optional, and is used with - - di r ect or y. When creating multiple instances, the names must be unique.

« --force-password-validation

Command-Line Format --force-password-validation

Linux

Platform Specific

By default, MySQL Router skips the MySQL Server's validate_password mechanism and instead Router
generates and uses a STRONG password based on known validate _password default settings. This is
because validate_password can be configured by the user and Router can not take into account unusual

custom settings.

This option ensures that password validation (validate_password) is not skipped for generated
passwords, and it is disabled by default.

MySQL Router Command Line Programs

--password-retries numretries

Command-Line Format

--password-retries numretries

Type Integer
Default Value 20
Minimum Value 1
Maximum Value 10000

Specifies the number of times MySQL Router should attempt to generate a password when creating user
account with the password validation rules. The default value is 20. The valid range is 1 to 10000.

The most likely reason for failure is due to custom validate password settings with unusual requirements
such as a 50 character minimum. In that fail scenario, it is likely that - - f or ce- passwor d- val i dati on

is set to true.

--force

Command-Line Format

--force

Force a reconfiguration over a previously configured router instance on the host.

--ssl -node node

Command-Line Format --ssl -node node
Type String
Default Value PREFERRED
Valid Values PREFERRED
DI SABLED
REQUI RED
VERI FY_CA
VERI FY_| DENTI TY

SSL connection mode for use during bootstrap and normal operation when connecting to the metadata
server. Analogous to - - ssl - node in the nysql client.

During bootstrap, all connections to metadata servers made by the Router will use the SSL options
specified. If ss| _node is not specified in the configuration, it will default to PREFERRED. During normal
operation, after Router is launched, its Metadata Cache plugin will read and honor all configured SSL
settings.

When set to a value other than the default (PREFERRED), an ss| _node entry is inserted under the
[met adat a_cache] section in the generated configuration file.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
PREFERRED is the default value. As with the mysqgl client, this value is case-insensitive.

The configuration file equivalent is documented separately at ssl _node.

55

https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_ssl-mode

MySQL Router Command Line Programs

e --ssl-cert file_path
Command-Line Format --ssl-cert file_path
Type String
Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process. This directly matches and uses functionality of the MySQL

client's - - ssl - cert option.

Like - - ssl - key, this option is only used during bootstrap that uses a root account. It is useful when
the root account was created with REQUIRE X509, and therefore logging in as root requires the client to

authenticate itself.

e --ssl-key file_path

Command-Line Format --ssl-key file_path
Type String

The path name of the SSL private key file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process. This directly matches and uses functionality of the MySQL

client's - - ssl - key option.

Like - - ssl - cer t, this option is only used during a bootstrap process that uses a root account. It is
useful when the root account was created with REQUIRE X509, and therefore logging in as root requires

the client to authenticate itself.

e --ssl|l-cipher ciphers
Command-Line Format --ssl -ci pher ciphers
Type String
Default Value

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

e --tls-version versions
Command-Line Format --tls-version versions
Type String
Default Value

A comma-separated (",") list of TLS versions to request, if SSL is enabled.

e --ssl-ca file_path
Command-Line Format --ssl-ca file_path
Type String
Default Value

Path to the SSL CA file to verify a server's certificate against.

e --ssl-capath dir_path

https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/9.6/en/connection-options.html#option_general_ssl-key

MySQL Router Command Line Programs

Command-Line Format

--ssl-capath dir_path

Type

String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

--ssl-crl file_path

Command-Line Format

--ssl-crl file_path

Type

String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

--ssl-crlpath dir_path

Command-Line Format

--ssl-crlpath dir_path

Type

String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

--client-ssl-npde node

Command-Line Format --client-ssl-npde
Type String
Default Value PREFERRED
Valid Values PREFERRED
DI SABLED
PASSTHROUGH
REQUI RED

SSL connection mode for use during bootstrap and normal operation when connecting between MySQL

Router and client.

During bootstrap, all connections to clients made by the Router will use the SSL options specified. If
client_ssl _node is not specified in the configuration, it defaults to PREFERRED.

The configuration file equivalent is documented separately at cl i ent _ssl _node.

--client-ssl-cert file _path

Command-Line Format

--client-ssl-cert file_path

Type

String

57

MySQL Router Command Line Programs

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process.

Like - - cl i ent - ssl - key, this option is only used during bootstrap that uses a root account. It is useful
when the root account was created with REQUIRE X509, and therefore logging in as root requires the
client to authenticate itself.

client-ssl-curves

Command-Line Format --client-ssl-curves
Type String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

--client-ssl-key file_path

Command-Line Format --client-ssl-key file_path
Type String

The path name of the SSL private key file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process.

Like --cl i ent-ssl -cert, this option is only used during a bootstrap process that uses a root account.
It is useful when the root account was created with REQUIRE X509, and therefore logging in as root
requires the client to authenticate itself.

--client-ssl-cipher ciphers

Command-Line Format --client-ssl-cipher
Type String

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

cl i ent-ssl-dh-parans

Command-Line Format --client-ssl-dh-params=filepath
Type String

Filename of the DH parameter file. If specified and not empty, the DH parameters from this file are used
instead of internal default DH parameters. Format the DH param file in PEM format.

--client-ssl-ca file_path

Command-Line Format --client-ssl-ca file_path
Type String

Default Value

58

Path to the SSL CA file to verify a server's certificate against.

MySQL Router Command Line Programs

--client-ssl-capath dir_path

Command-Line Format

--client-ssl-capath dir_path

Type

String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

--client-ssl-crl file_path

Command-Line Format

--client-ssl-crl file_path

Type

String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

--client-ssl-crlpath dir_path

Command-Line Format

--client-ssl-crlpath dir_path

Type

String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

--server-ssl -nobde node

Command-Line Format --server-ssl - nnde
Type String
Default Value PREFERRED
Valid Values AS_CLI ENT
DI SABLED
PREFERRED
REQUI RED

SSL connection mode for use during bootstrap and normal operation when connecting between MySQL

Router and server.

During bootstrap, all connections to servers made by the Router will use the SSL options specified. If
server _ssl _node is not specified in the configuration, it defaults to PREFERRED.

The configuration file equivalent is documented separately at ser ver _ssl _node.

 --server-ssl-cipher ciphers

Command-Line Format

--server-ssl-ci pher

lype

String 59

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

MySQL Router Command Line Programs

--server-ssl-ca file_path

Command-Line Format

--server-ssl-ca file_path

Type

String

Default Value

Path to the SSL CA file to verify a server's certificate against.

--server-ssl-capath dir_path

Command-Line Format

--server-ssl-capath dir_path

Type

String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

--server-ssl-crl file_path

Command-Line Format

--server-ssl-crl file_path

Type

String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

--server-ssl-crlpath dir_path

Command-Line Format

--server-ssl-crlpath dir_path

Type

String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

server-ssl -curves

Command-Line Format

--server-ssl-curves

Type

String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

--server-ssl-verify string

Command-Line Format

--server-ssl-verify

Type String

Default Value DI SABLED

Valid Values DI SABLED
VERI FY_CA

VERI FY_I| DENTI TY

Verification of the SSL certificates presented to the router by the server

60

MySQL Router Command Line Programs

« DI SABLED: the connection fails if the server does not provide a certificate in the handshake.

¢ VERI FY_CA: the connection fails if the server's certificate does not match a CA trusted by MySQL
Router.

« VERI FY_I DENTI TY: the connection fails if the server's certificate does not match a CA trusted by
MySQL Router, or the server certificate's subject does not match the hostname or IP address MySQL
Router connected to.

--config file_path,-c file_path

Command-Line Format --config file_path, -c file_path

Used to provide a path and file name for the configuration file to use. Use this option if you want to use a

configuration file located in a folder other than the default locations.

When used with - - boot st r ap, and if the configuration file already exists, a copy of the current file
is saved with a .bak extension if the generated configuration file contents is different than the original.
Existing .bak files are overwritten.

--extra-config file_path,-a file_path

Command-Line Format --extra-config file_path, -a
file_path

Used to provide an optional, additional configuration file to use. Use this option if you want to split the
configuration file into two parts for testing, multiple instances of the application running on the same
machine, etc.

This configuration file is read after the main configuration file. If there are conflicts (an option is set in
multiple configuration files), values from the file that is loaded last is used.

--install -service

Command-Line Format --install-service [service_nang]

Platform Specific Windows

Install Router as a Windows service that automatically starts when Windows starts. The service name
defaults to MySQLRouter.

This installation process does not validate configuration files passed in via - - conf i g.

This option is only available on Windows.

--install -servi ce- manual

Command-Line Format --install-servi ce- manual
[servi ce_nane]

Platform Specific Windows

Install MySQL Router as a Windows service that can be manually started. The service name defaults to
MySQLRouter.

This option is only available on Windows.

MySQL Router Command Line Programs

--renove-service

Command-Line Format --renove-servi ce [service_nane]

Platform Specific Windows

Remove the Router Windows service; service name defaults to MySQLRouter.

This option is only available on Windows.

--service
Command-Line Format --service
Platform Specific Windows

Start Router as a Windows service. This is a private option, meaning it is only meant to be used by the
Windows Service when launching Router as a service.

This option is only available on Windows.

--update-credenti al s-section

Command-Line Format --updat e-credenti al s-section
section_name
Platform Specific Windows

This option is only available on Windows, and refers to its password vault.

--conf-target-cluster

Command-Line Format --conf-target-cluster val ue
Type String
Valid Values current

primary

Setsthet arget cl ust er metadata MySQL Router option. Accepts one of the following strings:

e current:setstarget_cluster tothe cluster containing the node being bootstrapped against. It
defines it as the cluster's UUID value.

If this is also the Primary, it does not dynamically follow role changes like the pri mary does; instead it
remains static.

e primary:setstarget cluster tothe primary cluster, including when it changes at runtime.

See also - - confi g-target - cl ust er - by- nane, which sets the t ar get _cl ust er to a specific
static cluster name.

Note

Bootstrapping against a ClusterSet requires the cl ust er _t ype Router

62

configuration option set to gr.

https://dev.mysql.com/doc/mysql-shell/9.6/en/innodb-clusterset.html

MySQL Router Command Line Programs

--conf-set-option

Command-Line Format --conf-set-option
section_nane[: optional _section_key]. opf
Type String

Sets a value for a generated configuration option during bootstrap; this can set a value for any
bootstrapped option, for example:
$> nysql router -B 127.0.0. 1: 5000 \

--directory=dirl \

--conf-set-option=l ogger. | evel =debug \

--conf-set-option=routing:test_rw max_connect_errors=0 \
--conf-set-option=routing:test_ro.nmax_connect_errors=0

Those commands alter the default values for those specific options by defining them as such:

[l ogger]
| evel =debug

[routing:test _rw

max_connect _errors=0

[routing:test _ro]

max_connect _errors=0

--conf - set - opt i on definitions take precedence over option specific parameters to

set specific value. For example, if both - - connect - t i meout =X and - - conf - set -

opt i on=DEFAULT. connect _ti meout =Y are specified when bootstrapping, the connect _t i meout is
set to Y in the generated configuration file.

--conf-target-cluster-by-nane

Command-Line Format --conf-target-cluster-by-nane
cl ust er Nane
Type String

Setsthet arget cl ust er metadata MySQL Router option to a specific cluster name.

Or, instead use - - conf -t ar get - ¢l ust er to assign a dynamic cluster type, such as primary.

--renove-credential s-section secti on_nane

Command-Line Format --renove-credenti al s-section
section_nane

Platform Specific Windows

Remove the credentials for a given section.

This option is only available on Windows, and refers to its password vault.

63

i on=V:

MySQL Router Command Line Programs

e --clear-all-credentials

Command-Line Format

--clear-all-credentials

Platform Specific

Windows

Clear the password vault by removing all credentials stored in it.

This option is only available on Windows, and refers to its password vault.

e --disabl e-rest

Command-Line Format

--di sabl e-rest

By default, configuration details for the MySQL Router REST API web service functionality are added
to the generated mysql r out er . conf file at bootstrap; and this parameter means those details are not
added. This does not disable REST API functionality, as the REST API functionality can be manually

configured (to enable it) later on.

e --https-port

Command-Line Format --https-port val ue
Type Integer

Default Value 8443

Minimum Value 1

Maximum Value 65535

Optionally define the HTTP server's por t for the MySQL Router REST API under the [http_server]

section in generated mysql r out er . conf at bootstrap. It defaults to 8443. Availability of the port is not
checked.

4.3.2.2 mysqlrouter_plugin_info — Command Line Options

The nysql rout er _pl ugi n_i nf o utility is a debugging tool that inspects a MySQL Router plugin for
potential conflicts and general problems.

Usage information:

$> . /nysqgl router_plugin_info --help

Usage:
. I nysql rout er _pl ugi n_i nfo <nysql rout er_pl ugi n_file> <nysql _pl ugi n_nane>

Exanpl e:
.Inysqlrouter_plugin_info /usr/lib/nysqlrouter/routing.so routing
To print help information:
.Inysqlrouter_plugin_info --help
To print application version:
.I'nysql router_plugin_info --version
$> ./ bin/nysqlrouter_plugin_info --version

M/SQLRout er Plugin Info App 9.4.0

Example usage:

64

MySQL Router Command Line Programs

$> . /bin/nysqlrouter_plugin_info lib/nysqlrouter/routing.so routing

{
"abi -version": "2.0",
"arch-descriptor": "i386/darwin//",
"brief": "Routing MySQL connections between MySQL clients/connectors and servers",
"pl ugi n-version": "0.0.1",
"requires": [],
"conflicts": []
}

4.3.2.3 mysqlrouter_passwd — Command Line Options

The nysql rout er _passwd utility is a command line application to manage the accounts in the passwd
file. For example usage, see Section 6.1, “A Simple MySQL Router REST API Guide”.

Usage information:

Usage
bi n/ nysql rout er _passwd [opts] <cmd> <fil enane> [<user nane>]
bi n/ nysql rout er _passwd --hel p
bi n/ nysql rout er _passwd --version

Commands

del ete
Del ete usernane (if it exists) from<fil enane>.
Iist
list one or all accounts of <filenanme>.
set
add or overwite account of <usernane> in <fil enane>.
verify
verify if password natches <usernane>'s credentials in <fil enane>.
Opt i ons
-?, --help
Display this help and exit.
--kdf <nane>
Key Derivation Function for 'set'. One of pbkdf2-sha256, pbkdf2-sha512,
sha256-crypt, sha512-crypt. default: sha256-crypt
-V, --version
Di spl ay version information and exit.

--wor k- factor <nune
Wor k-factor hint for KDF if account is updated.

4.3.2.4 mysqlrouter_keyring — Command Line Options
The mysql rout er _keyr i ng utility is a command line application to manage MySQL Router key rings.
Usage information:
Generic commands
» --hel p: usage information.
* --versi on: the tool's version.

Keyring commands; all commands also accept --master-key-reader and --master-key-writer instead of --
master-key-file.

e init: Initialize keyring with a master-key-file.

65

Configuration File Options

Creates a keyring and master-key-file if they do not exist; and adds keyring to master-key-file if it does

not yet exist there.

[i st: List usernames stored in the keyring; or list properties of a user stored in the keyring.

get : Get property of user from the keyring.

expor t : Export all entries of the keyring as JSON.

set : Add or overwrite account of the user in the keyring file

del et e: Delete user from the keyring.

Master-key commands

* mast er - key- | i st: List keyring-ids from master-key-file.

» nast er - key- del et e: Delete master-key from "keyring" from master-key-file.

* nmast er - key-r enanme: Rename keyring-id in a master-key-file.

Examples:

$>

$>
$>

$>
$>
$>

$>
$>

$>
$>
$>

nmysql rout er _keyri

nmysql rout er _keyri
nmysql rout er _keyri

nmysql rout er _keyri
nmysql rout er _keyri
nmysql rout er _keyri

nmysql rout er _keyri
nmysql rout er _keyri

nmysql rout er _keyri
nmysql rout er _keyri

nmysql rout er _keyri

ng

ng
ng

ng

ng

ng

ng
ng

ng

ng

ng

init --master-key-file=nysqlrouter.key datal/keyring

list --master-key-file=nysqlrouter.key datalkeyring
list --master-key-file=nysqlrouter.key datal/keyring user

get --master-key-fil e=nysqlrouter.key datal/keyring soneuser key
export --naster-key-file=nmysqlrouter.key data/keyring
set --master-key-fil e=nysqlrouter.key datal/keyring user key val ue

del ete --naster-key-fil e=nysql router. key data/keyring user
del ete --naster-key-fil e=nmysql router.key data/keyring user key

mast er - key-1ist --master-key-file=nysqlrouter.key
mast er - key-del ete --master-key-file=nysqlrouter.key datal/keyring

mast er - key-renanme --naster-key-file=nysqlrouter.key datal/keyring other/datal/keyring

4.3.3 Configuration File Options

When started, MySQL Router reads a list of configuration files that together make up the configuration of
the router. At least one configuration file is required.

MySQL Router reads options from configuration files that closely resemble the traditional INI file format,
with sections and options. These specify the options set when MySQL Router starts. For file syntax
information, see Section 4.1, “Configuration File Syntax”.

Options are defined under sections, that dictate the option's meaning. For example, user under the
[DEFAULT] section refers to the system user running router, while user under the [metadata_cache]
section refers to the MySQL user that accesses metadata.

The following tables are separated by section, and summarize the MySQL Router options defined in a
MySQL Router configuration file. Detailed information about each of these options, such as descriptions
and allowed values, is documented below these tables.

66

Configuration File Options

e General Options

* Routing Options

» Destination Status Options

» Metadata Cache Options
» Logging Options

» HTTP Server Options

* MySQL Router Configuration File Option Descriptions

General Options

Table 4.7 [DEFAULT]

connection attempts to a metadata
server are considered timed out

Option Name Description Type
config_fol der Path to configuration files String
connect _ti neout Number of seconds before Integer

as

event _source_nane Microsoft Windows platforms only. | String
Defines the service name used by
MySQL Router when it is run as a
service on Microsoft Windows.

keyring_path Path to keyring file String

| oggi ng_f ol der Path to router logs String

mast er _key_path Path to master keyring file String

mast er _key_reader Script that returns the master key |String
to STDOUT

master _key witer Script that reads the master key | String
from STDIN

max_total connections Total maximum number of allowed |Integer
client connections from the router

pidfile Location to store the PID file String

p! ugi n_f ol der Path to router plugins String

runti me_fol der Path to runtime files String

si nks Logging method(s) to receive String
configured log data

t hread_stack_si ze Size in KB of memory allocated to |Integer
each thread stack

unknown_confi g_option Error type sent if an unknown String
configuration option is
encountered

user System user MySQL Router is run | String

67

Configuration File Options

Routing Options

Table 4.8 [routing]

Option Name

Description

Type

access_node

Splits reads and writes according
to the category of transaction.

String

bi nd_addr ess

Address router is bound to, also
uses bind_port if a port is not
defined

String

bi nd_port

Default port used by bind_address

Integer

client_connect timeout

Maximum number of seconds
to receive packets from MySQL
server

Integer

client_ssl _ca

The path to the Certificate
Authority (CA) certificate file in
PEM format

String

client_ssl_capath

The path to the directory that
contains the trusted SSL
Certificate Authority (CA)
certificate files in PEM format.

String

client _ssl _cert

The path to the SSL certificate
(PEM) used to encrypt client-to-
router communications

String

client_ssl _cipher

Which ciphers are allowed
between client and MySQL
Router, defaults to a secure list of
SSL ciphers

String

client_ssl _crl

The path to the file containing the
certificate revocation lists in PEM
format

String

client_ssl _crlpath

The path to the directory that
contains the certificate revocation
list files in PEM format

String

client _ssl _curves

Which curves are allowed
between the client and MySQL
Router, defaults to a secure list of
SSL curves

String

client_ssl_dh_parans

Filename of the DH parameter file.
Not set by default

String

client_ssl_key

The path to the SSL private
key certificate file (PEM) used
to encrypt client-to-router
communications

String

(9]

i ent _ssl _node

Controls if connections from
the client to MySQL Router
must be encrypted, defaults to
PREFERRED if not set

String

68

Configuration File Options

Option Name

Description

Type

client_ssl _session_cache_ nrables or disables the

TLS session cache for client
connections

Boolean

client_ssl _session_cache_s

iNnember of entries in the
TLS session cache for client
connections

Integer

client_ssl _session_cache_t

iTimeeuh seconds until TLS
sessions are removed from the
client TLS session cache

Integer

connect _retry_tinmeout

Number of seconds MySQL
Router waits before retrying a
connection to a backend

Integer

connect _ti neout

Number of seconds before
connection attempts to a MySQL
server are considered timed out

Integer

connection_sharing

Whether to enable connection
sharing.

Integer

connecti on_sharing_del ay

Seconds to wait before moving an
idle connection to the connection
pool.

Integer

desti nations

Routing destinations as either a
comma-separated list of MySQL
servers, or a metadata-cache
definition

String

dynam c_state

Path to generated JSON file used
to track and store active MySQL
InnoDB Cluster Metadata server
addresses

String

max_connect _errors

Maximum number of failed
MySQL server connections before

giving up

Integer

max_connecti ons

Maximum number of connections
assigned to a routed destination
MySQL server

Integer

net _buffer_length

Set net_buffer_length

Integer

pr ot ocol

Protocol for connecting to MySQL
Server

String

read_tineout

Number of seconds before read
operations to a metadata server
are considered timed out

Integer

router_require_enforce

If enabled, retrieves the attributes
for the current user and enforces
them

Boolean

routing_strategy

Routing strategy, how router
chooses destination MySQL
servers

String

69

Configuration File Options

Option Name

Description

Type

server_ssl _ca

The path to the Certificate
Authority (CA) certificate file in
PEM format

String

server_ssl _capath

The path to the directory that
contains the trusted SSL
Certificate Authority (CA)
certificate files in PEM format.

String

server_ssl _cert

The path to the SSL certificate
(PEM) used to encrypt router-to-
server communications

String

server _ssl _ci pher

SSL Cipher for Server

String

server_ssl _crl

The path to the file containing the
certificate revocation lists in PEM
format

String

server_ssl _crlpath

The path to the directory that
contains the certificate revocation
list files in PEM format

String

server_ssl _curves

SSL Curves for Server

String

server_ssl _key

The path to the SSL private
key certificate file (PEM) used
to encrypt router-to-server
communications

String

server_ssl _node

Controls if connections from router
to server must be encrypted

String

server _ssl _sessi on_cache_nuEiables or disables the TLS

session cache for server
connections

Boolean

server _ssl _session_cache_s

iNnamber of entries in the TLS
session cache for server
connections

Integer

server _ssl _session_cache_t

iTimeeuh seconds until TLS
sessions are removed from the
server TLS session cache

Integer

server_ssl _verify

Verification of the SSL certificates
presented to the router by the
server

String

socket

Path to Unix domain socket file

String

wait _for_nmy wites

Read-only queries wait for the last
written transaction.

Integer

wait_for_nmy wites_tinmeout

Maximum time in seconds to

wait for a read_only destination

to apply the written transaction,
before falling back to a read_write
destination.

Integer

70

Configuration File Options

Destination Status Options

Table 4.9 [destination_status]

Option Name

Description

Type

error_quarantine_interval

Defines the interval, in seconds,
between checks on quarantined
destination connectivity. If a
connection is possible, the
destination is moved out of
quarantine and made available for
connections.

Integer

error_quarantine_t hreshol d

Defines the threshold of
consecutive, failed attempts to
connect to a routing destination
before MySQL Router adds the
destination to quarantine and
stops using it as a destination
until it is cleared by the quarantine
mechanism. For example, if set to
5, the destination is quarantined
after 5 consecutive, failed
attempts to connect to it.

Integer

Table 4.10 [connection_pool]

Option Name

Description

Type

i dl e_tineout

Seconds to keep the idling
connection in the collection pool
before closing it

Integer

max_i dl e_server _connection

<Connections to keep open after
the client disconnects

Integer

Metadata Cache Options

Table 4.11 [metadata_cache]

Option Name

Description

Type

aut h_cache_refresh_int ervalTime between auth-cache refresh

attempts

Numeric

auth_cache_ttl

Time until the cache becomes
invalid if not refreshed

Numeric

cl ose_connection_after ref

\V¥béther metadata_cache
connection to a MySQL server
should be closed after a metadata
refresh

Integer

cluster_type

Object Router was bootstrapped
against

String

nmet adat a_cl ust er

InnoDB Cluster name

String

router id

Router ID

Integer

71

Configuration File Options

Logging Options

Option Name Description Type

ssl _ca SSL CA file to verify server's String
certificate against

ssl _capath Directory containing SSL CA files |String
to verify server's certificate against

ssl _crl SSL CRL file to verify server's String
certificate against

ssl _crlpath Directory containing SSL CRL files|String
to verify server's certificate against

ssl _node SSL connection mode for String
connecting to the metadata
server, defaults to PREFERRED if
not set

tls_version Comma-separated list of TLS String
versions to request, if SSL is
enabled

ttl Time To Live, in seconds Integer

use_gr_notifications Group Replication notifications Integer
behavior

user MySQL user that accesses String
the MySQL Server's metadata
schema

Table 4.12 [logger]

Option Name Description Type

destination Name of device to log to; String
optionally used with [consolelog]

filenane Log file name; optionally used with | String
[logger] and [filelog]

| evel Logging level String

ti mestanp_precision Logger timestamp precision String

HTTP Server Options

Table 4.13 [http_server]

Option Name Description Type

bi nd_addr ess IP address bound to the HTTP String
port

port HTTP server TCP port Integer

require_realm [http_auth_realm] name String

ssl _cert SSL certification file name String

ssl _ci pher Approved SSL ciphers String

ssl _dh_param DH parameter file name String

72

Configuration File Options

Option Name Description Type

ssl Enables TLSv1.2 or later support |Integer

ssl _key SSL key filename String

static_fol der Directory for HTTP server static | String
file requests

Table 4.14 [http_auth_realm]

Option Name Description Type
backend Name of the [http_auth_backend] |String
section
nmet hod The HTTP authentication method |String
name Realm name for authenticated String
user
require Require authentication validation |String

Table 4.15 [http_auth_backend]

Option Name Description Type
backend Backend type String
filenane Backend storage file name String

Table 4.16 [io]

Option Name Description Type
backend The 10 backend String
t hr eads The 10 thread count Integer

Table 4.17 [keepalive]

Option Name Description Type

i nterval The keepalive ping frequency Integer
interval, in seconds

runs Limits the number of keepalive Integer
executions (runs), or 0 for no limit

MySQL Router Configuration File Option Descriptions

e access_node

Type String

Default Value

Valid Values aut o

Defines how MySQL Router treats read-only and read-write queries. If enabled, read-only queries are
directed to read-only servers, and read-write queries are directed to read-write servers. See Section 3.5,
“Read/Write Splitting”.

73

Configuration File Options

e wait_for_ny wites

Type Integer
Default Value 1
Minimum Value 0
Maximum Value 1

Read-only queries wait for the last written transaction.

See Section 3.5, “Read/Write Splitting”.

e wait_for_ny wites_tinmeout

Type Integer
Default Value 1

Minimum Value 0

Maximum Value 4294967295

Maximum time in seconds to wait for a read_only destination to apply the written transaction, before

falling back to a read_write destination.

See Section 3.5, “Read/Write Splitting”.

e router_require_enforce

Type

Boolean

Default Value

0

If enabled, MySQL Router retrieves the values defined in the user's r out er _requi r es attribute in the

USER_ATTRI BUTES table.

The attribute must take the following format:

{router_require: {value}}

The following are the possible values:

¢ {}: norequirements.

e {ssl: true}:MySQL Router requires SSL from the client.

{x509: true}: MySQL Router requires SSL and an x509 certificate from the client.

e {issuer: ""}:MySQL Router requires SSL, an x509 certificate, and the certificate issuer from the

client.

e {ssl: true}: MySQL Router requires SSL, an x509 certificate, and the certificate subject from the

client.

e event_source_nane

Type

String

74

https://dev.mysql.com/doc/refman/9.6/en/information-schema-user-attributes-table.html

Configuration File Options

Default Value

Microsoft Windows platforms only. Defines the service name used by MySQL Router when it is run as a
service on Microsoft Windows. This enables you to differentiate between services when running multiple
instances of MySQL Router and between their messages in the Event Log.

For example:

[DEFAULT]
event _source_nane = MySQLRout er Servi ce

| oggi ng_f ol der

Type String
Default Value $rout er _basepath

Path to the MySQL Router log file directory. The log file is named nmysql r out er . | og, and it is either
generated or appended to if this file already exists.

Setting | oggi ng_f ol der to an empty value sends the messages to the console (stdout).

Note
@ The default | oggi ng_f ol der value changed from " to Router's base path in
MySQL Router 2.1.

An example that sends logs to / var /| og/ nysql rout er/ mysql rout er. | 0g:

[DEFAULT]
| oggi ng_fol der = /var/| og/ nysql rout er

When the - - di r ect or y bootstrap option is used, the generated configuration file sets it to $directory/
log/.

pl ugi n_f ol der

Type String
Default Value (Windows)
Default Value (Other) [usr/local/lib/nmysqglrouter

Path to the MySQL Router plugins. This folder must match the MySQL Router installation directory. You
should only set this if you have a custom installation where the plugins are not in the standard installation
location.

Default value: / usr /1 ocal / I'i b/ mysql rout er

runtine_fol der

Type String
Default Value (Windows)
Default Value (Other) [run/ mysql rout er

Path to the MySQL Router runtime files.

Default value: / r un/ nysql r out er

75

Configuration File Options

mast er - key-writer

Command-Line Format

--master-key-witer file_path

Type

String

Script that reads the master key from STDIN. Set using the - - nast er - key-w i t er command-line

bootstrap option.

mast er - key-r eader

Command-Line Format

--mast er-key-reader file_path

Type

String

Script that returns the master key to STDOUT. Set using the - - mast er - key- r eader command-line

bootstrap option.

config_folder

Type

String

Default Value (Windows)

Default Value (Other)

[usr/local/etc/nysglrouter

Path to the MySQL Router configuration files.

K

Note

The confi g fol der is currently set at compile time. The option could be used

by future plugins when they have their own configuration files.

Default value: / usr/ | ocal / et c/ nysql rout er

e sinks

Type

String

Valid Values (Windows)

consol el og
filel og

event | og

Valid Values (Other)

consol el og

filel og

76

Configuration File Options

‘ sysl og

The sink(s) (different logging methods) that a defined log level are sent to.

Supported sink values are: consol el og, fi | el og, event | og (on Windows), and sysl| og (on Unix-
based systems). Use a comma-separated list to define multiple values.

Default value: fi | el og if the | oggi ng_f ol der option is not empty in the "[DEFAULT]" section,
otherwise consol el og.

For example, to configure logger to use the file, console and the event log each using the debug log level
configured in the [logger] section:

[1 ogger]
| evel =debug
si nks=consol el og, event | og, fi | el og

keyring_path

Type String

Default Value (Windows) %PROGRAMDATAY My SQL\ MySQL Rout er
\ keyring-data

Default Value (Other) [run/ nysql -rout er/ keyri ng-dat a

Points to the keyring file's location.

A system-wide bootstrap does not add this option to the generated configuration file, and assumes the
keyring file is located in the system-wide runtime state directory. If - - di r ect or y is also used, then
the keyring file is stored under the runtime state directory of that instance, under r un/ in the specified
directory.

System-wide default paths are used if this option is not defined.

Example usage:

keyring_path = /opt/nyrouter/datalkeyring
mast er _key_path = /opt/nyrouter/nysql router. key

nmast er _key path

Type String

Default Value (Windows) YPROGRAMDATA% My SQL\ MySQL Rout er
\ nmysql rout er. key

Default Value (Other) /run/ nysql -rout er/ mysql rout er. key

The master key file's location. This option allows unattended decryption, as otherwise its location is
requested at startup.

System-wide default paths are used if this option is not specified.

Example usage:

keyring_path = /opt/nyrouter/datalkeyring
nmast er _key_path = /opt/nyrouter/nysqlrouter. key

77

Configuration File Options

unknown_confi g_option

Type String

Default Value war ni ng

Valid Values war ni ng
error

Determines MySQL Router behavior for handling unknown configuration options, such as typos.

A warning is default behavior, and bootstrapping defines it as error in the generated configuration file.
Warning logs a warning message but does not halt, whereas an error means MySQL Router fails to
initialize and exits.

[DEFAULT]
unknown_confi g_opti on=war ni ng

user (systemn

Type String

Run nysql r out er as the user having the name user _nane or the numeric user ID user _i d. “User” in
this context refers to a system login account, not a MySQL user listed in the grant tables. This can also
be assigned at runtime using the - - user command line option.

On Linux, installing Router with official DEB or RPM packages creates a local system user and group
named "mysqlrouter" on the host, and MySQL Router runs as this user by default. This account does
not have shell access and its home directory points to the directory where the default configuration file is
stored.

The purpose of this option is to run MySQL Router as a user with restricted system privileges. If the user
does not exist on the system, or if an attempt to start Router as root is made, an error is emitted and
Router exits.

MySQL Router can be bootstrapped and executed under any Operating System user and does not
require special privileges other than read and write access to its own files. The files it accesses include
plugins (read/execute), configuration file, logs, UNIX domain socket files (if enabled), and more.

By default, the configuration and log files are written to a system-wide location such as/ et ¢ and / var/
| og. Alternatively, Router can be bootstrapped to a self-contained directory of its own by using the - -
di rect ory option. For example:

$> sudo nysqglrouter --bootstrap |ocal host:3310 --directory /al/path/ nyrouter --user snoopy

In this example, Router creates / a/ pat h/ myr out er and adds all of the generated files and directories
here, and these are only writable by the system user snoopy. Additionally, user is defined in the
generated configuration file / a/ pat h/ nyr out er / mysql r out er . conf:

[DEFAULT]
user =snoopy

Note
@ This is different from the user definition defined in the [net adat a_cache]

78

1 hinhht | W Tatall
STLLUUTT, WITIUTT TS a vy o\JL USCT.

Configuration File Options

ssl _ca

Type String

Path to the SSL CA file to verify server's certificate against when connecting to the metadata servers.

Can optionally be set with the - - ssl - ca bootstrap option.

ssl _capath

Type ‘ String

Path to directory containing SSL CA files to verify server's certificate against when connecting to the
metadata servers.

Can optionally be set with the - - ssl - capat h bootstrap option.

ssl _crl

Type String

Path to SSL CRL file to use when connecting to metadata servers and verifying their SSL certificate.

Can optionally be set with the - - ssl - cr| bootstrap option.

ssl _crlpath

Type String

Path to directory containing SSL CRL files to use when connecting to metadata servers and verifying
their SSL certificate.

Can optionally be set with the - - ssl - cr | pat h bootstrap option.

tls_version

Type String

Comma-separated list of TLS versions to request, such as 'TLSv1.2,TLSv1.3', if SSL is enabled.

Can optionally be set with the - - t | s- ver si on bootstrap option.

bi nd_addr ess

Type String

79

Configuration File Options

Default Value \127. 0.0.1

Information related to the optional bi nd_addr ess option:

* Routing entries can be bound to a network interface (NIC). The default bi nd_addr ess is 127.0.0.1. If
a port is not defined here, then setting bi nd_por t is required.

« By default, - - boot st r ap sets bi nd_addr ess=0. 0. 0. 0 for each route in the generated Router
configuration file. This value can be changed using - - conf - bi nd- addr ess.

 Binding to a specific IPv4 or IPv6 address allows and ensures that MySQL Router is not starting and
routing the service on an NIC on which nothing is allowed to execute.

« Itis not possible to specify more than one binding address per routing configuration group. However,
using 0.0.0.0:$por t (where you define $port) binds all network interfaces (IPs) on the host. IPv6
addresses can also be used.

Example usage:

bi nd_address = 127.0.0. 1: 7001

Note
@ The bi nd_addr ess cannot be listed in the dest i nat i ons list.
bi nd_port
Type Integer

Optionally, you can define a default port for bi nd_addr ess using bi nd_port . If a port is not
configured in bi nd_addr ess, then bi nd_port is required and used.

Optionally set these values by using the - - conf - base- port bootstrap option.

The three examples below all result in bind_address = 127.0.0.1:7001

[routing: exanpl e_1]
bi nd_port = 7001

[routing: exanpl e_2]
bi nd_port = 7001
bi nd_address = 127.0.0.1

[routing: exanpl e_3]
bi nd_address = 127.0.0. 1: 7001

socket
Platform Specific Linux
Type String

Sockets are enabled using the socket option, which can be specified with or without the TCP
bi nd_port and bi nd_addr ess options. An example:

[routing]
socket = /tnp/nysaglrouter.sock

80

Configuration File Options

destinations = a.exanpl e. com 3306, b. exanpl e. com 3307

When launching MySQL Router, Router will refuse to run if either the socket file already exists or it
cannot be written to.

Relative paths are acceptable and based on the current working directory where Router is launched.

Router can listen to both TCP sockets and Unix sockets simultaneously. For example, the following
[routing] configuration example is valid and configures Router to listen for connections on both
localhost:1234 and / t np/ nmysql r out er . sock:

[routing: my_redirect]

bi nd_address = | ocal host: 1234

socket = /tnp/ nysql router. sock

destinations = | ocal host: 57121, |ocal host: 57122, |ocal host: 57123

Note
@ A Unix domain socket length limit is platform-specific and should not exceed the
system's allowed length.
pr ot ocol
Type String
Default Value cl assic
Valid Values cl assic
X

Used by the routing plugin when connecting to the destination MySQL server, and can be set to either
"classic" (default), or "x" (X Protocol).

Example usage:

[routing: basic_failover]

bi nd_port = 7001

destinations = 10.20.200. 1: 33060, 10.20. 200. 2: 33060
protocol = x

The pr ot ocol option also affects the default port used by each destination. If a destination port is not
configured, then the default port is 3306 for "classic" (default), 33060 for "x" (X Protocol).

pidfile

Type ‘ String

Sets location of the PID file. This can be set in three different ways (in order of precedence): the - - pi d-
fi | e command-line option, setting this pi d_f i | e option in Router's configuration file, or defining the
ROUTER_PI D environment variable.

If - - boot st rap is specified, then the pi d_f i | e and ROUTER_PID definitions are ignored. This is
unlike the - - pi d- f i | e command-line option which causes Router to fail.

If - - boot st r ap is not specified, then the following cause Router to fail: the --pid-file already exists,
pid_file or ROUTER_PID are set but empty, or if Router can't write the PID file.

81

Configuration File Options

connect _ti nmeout

Type Integer
Default Value 5
Minimum Value 1
Maximum Value 65536

Timeout value used by the MySQL Router when connecting to the destination MySQL server. The value
cannot be unlimited, and an invalid value results in a configuration error. The valid range is between 1

and 65536. You should keep this value low.

Example usage:

[routing]
connect _tinmeout = 5

Can be set at bootstrap using - - conf - set - opt i on=r out i ng. connect ti neout.

connect _ti meout

Type

Integer

Default Value

5

Timeout value used by the MySQL Router when connecting to the MySQL metadata server.

Example usage:

[DEFAULT]
connect _tineout = 5

Can be set at bootstrap using either - - connect - t i meout or - - conf - set -

opt i on=DEFAULT. connect _ti neout.

read_ti neout

Type

Integer

Default Value

30

Timeout value used by the MySQL Router when reading from the MySQL metadata server. The default

value is 30 seconds.

Example usage:

[DEFAULT]
read_ti meout = 30

82

Configuration File Options

destinati ons

Type ‘ String

Provides host information for establishing connections. It accepts either a comma-separated list of
destination addresses or a metadata-cache link to an InnoDB cluster. The destination addresses can be
a mix of hostname[:port], ip-address[:port], or local: URIs for Unix sockets.

Example usage with specific hosts (static routing):

destinations = a.exanpl e. com b. exanpl e. com c. exanpl e. com

Note

@ If a destination's port is not explicitly set, then the default port is 3306 if
pr ot ocol is setto "classic" or not set (default), or port 33060 if pr ot ocol is set
to "x".

Example usage with a Unix socket:
destinati ons=l ocal : / t np/ mysql . sock
The Unix socket support specifics are:

* The accepted format is local:absol ut e- pat h or local://absol ut e- pat h where absol ut e- pat h
must start with a "/", which means the format is local: followed by one or three slashes.

» Accepts zero or more Unix domain socket (local: URI) destinations.
« On Windows, MySQL Router fails to start if a Unix socket (local: URI) is defined as a destination.
* MySQL Router fails to start if both a metadata-cache: and local: URI is present.

» Because a the comma is the destinations separator, a comma in a local: URI must be URI-encoded
(%2C).

« If the server_ssl_mode option is set to PREFERRED and the protocol is classic, then connections over
Unix domain sockets are unencrypted.

¢ Unix socket support was added in MySQL Router 9.2.0.
Example usage with InnoDB cluster metadata cache:

destinati ons=net adat a- cache: // mycl ust er/ def aul t ?r ol e=PRI MARY
The net adat a- cache URI options are:

» rol e: Determines the type of instances available to the connection. Acceptable values are PRIMARY,
SECONDARY, or PRIMARY_AND_SECONDARY.

Therouting_strategy mysql rout er. conf option defines the specific strategy, and the default
metadata-cache routing strategy is round-robin.

e di sconnect _on_pronoted_to_pri mary: Controls whether existing client connections to a
secondary are closed when the secondary is promoted as a primary. The default value is "no",

83

Configuration File Options

meaning existing client connections to the promoted secondary are not closed after promotion. Set
disconnect_on_promoted_to_primary=yes in the URI to close these existing connections.

e di sconnect _on_net adat a_unavai | abl e: Controls whether existing client connections are closed
when the group is overloaded. The default value is "no", meaning existing client connections are not
closed when the group is overloaded. Set disconnect_on_metadata_unavailable=yes in the URI to
close these existing connections.

the primary is downgraded to a secondary, and connections to a node that are no

Note
@ Related, these conditions cause disconnections: connections to a primary after
longer part of the cluster.

e dynamc_state

Type String

This option tracks and stores active MySQL InnoDB Cluster Metadata server addresses and loads them
if Router is restarted. This functionality is activated by - - boot st r ap.

Bootstrapping defines the dynam c_st at e option in mysql r out er . conf file under the [DEFAULT]
section. The value is a path to a JSON file named st at e. j son, which is created when Router has
been bootstrapped. The st at e. j son is initialized with InnoDB Cluster Metadata server addresses
and the Group Replication ID (the group_replication_name returned by the InnoDB Cluster); additional
information is added and updated while Router is running.

Example nysql rout er . conf entry:

[DEFAULT]
dynam c_stat e=/ opt/ myrouter/data/state.json

Example st at e.] son generated by - - boot st r ap:

{

"met adat a- cache": {
“group-replication-id': "4b9e817a- 0254-11e9- 9cc0- 080027bb5030",
"cl ust er - met adat a- servers": |
"mysql : / /1 ocal host: 3310",
"mysql : / /1 ocal host: 3320",
“mysql : / /1 ocal host: 3330"
]

ersion': "1.0.0"

}

e routing strategy

Type String

Valid Values first-avail abl e

next - avai |l abl e

round-r obi n

Configuration File Options

round-robin-w th-fall back

The routing strategy defines how MySQL Router chooses MySQL servers to connect to.

Available strategies:

Note
@ The role documentation following this section describes the available r ol e and
routing_strategy combinations and conflicts.

Unreachable destinations are quarantined and skipped, and are probed for availability every
error _quarantine_interval seconds. All routing strategies except for next - avai | abl e utilize
this behavior.

e round- r obi n: for load-balancing, each new connection is made to the next available server in a
round-robin fashion.

e round-robi n-wi t h-fall back: for load-balancing, each new connection is made to the next
available secondary server in a round-robin fashion. If a secondary server is not available then servers
from the primary list are used in round-robin fashion.

e first-avail abl e: the new connection is routed to the first available server from the destinations
list. In case of failure, the next available server is used. This cycle continues until all servers are
unavailable.

* next-avail abl e: likefirst-avail abl e, in that the new connection is routed to the first available
server from the destinations list. Unlike f i r st - avai | abl e, if a server is marked as unreachable then
it gets discarded and is never used again as a destination.

Limitations include:

« After all nodes of the selection are discarded, there is no way to add servers back to the list.

Unlike other strategies, unreachable destinations are not probed for availability every
error _quarantine_interval seconds.

« After restarting MySQL Router, all knowledge of what servers are discarded is lost and all servers
are available again.

» Metadata cache does not support the next-available routing policy, as next-available only functions
with static routing.

The r ol e defaults and available combinations:

< PRI MARY: r ound- r obi n is default behavior (if routing_strategy is not set), whereas bootstrapping
adds routi ng_strategy=first-avail abl e to the generated MySQL Router configuration file.
The available strategy values are first-available and round-robin.

« SECONDARY: r ound- r obi n is default behavior (if routing_strategy is not set), whereas bootstrapping
adds rout i ng_strat egy=round-robi n-wi t h-fall back to the generated MySQL Router

85

Configuration File Options

configuration file. The available strategy values are first-available, round-robin and round-robin-with-

fallback.

* PRI MARY_AND SECONDARY: r ound- r obi n is default behavior (if routing_strategy is not set). The
available strategy values are first-available, round-robin.

* nmax_connections

Type Integer
Default Value 512
Minimum Value 1
Maximum Value 65536

Each routing can limit the number of routes or connections. One possible use is to help prevent possible
Denial-Of-Service (DOS) attacks. The default value is 512, and the valid range is between 1 and 65536.

This is similar to MySQL Server's max_connections server system variable.

[routing: mycluster_default_rw

max_connections = 512

Alternatively, use the newer max_t ot al _connect i ons configuration option that sets one value for all

Router sections combined.

The maximum depends both on the system's poll (or linux_epoll) limitations and the number of available
CPU cores/threads. See also the [I0] backend and t hr eads configuration options.

Optionally setting max_connect i ons inthe [DEFAULT] section sets the default value for each routing

destination.

e max_total _connections

Type Integer

Default Value 512

Minimum Value 1

Maximum Value 9223372036854775807

The maximum number of client connections handled by Router, to help prevent running out of the file

descriptors.

This is similar to MySQL Server's max_connections server system variable.

[DEFAULT]
max_t ot al _connections = 512
Note
@ The legacy max_connect i ons option sets a value per routing instance,
such as one value for read-only, and another for write-only. The
max_t ot al _connect i ons option sets one value for all routing instances
combined.

The default value is 512, and it's set under the [DEFAULT] section.

e thread stack_size

86

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_max_connections

Configuration File Options

Type Integer
Default Value 64
Minimum Value 1
Maximum Value 65535

The stack size allocated for each thread. It is measured in kilobytes, and defaults to 64.

[DEFAULT]
t hread_st ack_si ze=128

e net_buffer_length

Type Integer

Sets the net _buf f er _| engt h MySQL server option.

* nmax_connect_errors

Type Integer
Default Value 100
Minimum Value 1

Maximum Value 4294967295

The default value is 100, and the valid range is between 1 and 2/32 (4294967295, an unsigned int).
This is similar to MySQL Server's max_connect_errors server system variable.

This can cause a slight performance penalty if an application performs frequent reconnections, because
MySQL Router attempts to discover if connection-related errors are present.

A successful connection resets the error counter.

Each routing has its own list of blocked hosts. Blocked clients receive the MySQL Server error 1129
code with a slightly different error message: "1129: Too many connection errors from fail.example.com”.
The Router logs contain extra information for blocked clients, such as: INFO [...] 1 authentication errors
for fail.example.com (max 100) WARNING [...] blocking client host fail.example.com

max_connect _errors = 100

e client_connect_tinmeout

Type Integer
Default Value 9
Minimum Value 2
Maximum Value 31536000

This is similar to MySQL Server's connect_timeout server system variable.

The default value is 9, which is one less than the MySQL 5.7 default. The valid range is between 2 and
31536000.

client_connect _timeout = 9 87

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_net_buffer_length
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_connect_timeout

Configuration File Options

auth_cache_refresh_interval

Type Numeric
Default Value 2
Minimum Value 0. 001
Maximum Value 3600

Time (in seconds) between the auth-cache refresh attempts. Defaults to 2. The value must be smaller
than aut h_cache_tt| andlargerthantt| else Router won't start.

This option is applied if the http_auth_backend section's backend option is set to metadata_cache;
which is a Router REST API feature.

auth_cache_ttl

Type Numeric
Default Value -1
Minimum Value 0. 001
Maximum Value 3600

Time (in seconds) until the cache becomes invalid if not refreshed. Defaults to -1 (infinite). The value
must be larger than aut h_cache_refresh_interval andtt| else Router won't start.

This option is applied if the http_auth_backend section's backend option is set to metadata_cache;
which is a Router REST API feature.

cl ose_connection_after_refresh

Type Integer
Default Value 0
Minimum Value 0
Maximum Value 1

Determines whether a metadata_cache connection to a MySQL server should be closed after the
metadata is refreshed. Defaults to 0.

If close_connection_after_refresh=0, the metadata_cache keeps the connection established after a
metadata refresh if it knows that the next refresh goes to the same server and the refresh succeeded.

If close_connection_after_refresh=0 and either the metadata_cache knows that the next connection
will go to another server or that the refresh failed, then the connection is closed after the refresh. A
maximum of one connection is kept open even if connections to multiple servers is needed, like with a

cluster set.

If close_connection_after _refresh=1, the metadata_cache connection is closed after a metadata refresh.
The related t t | option controls the frequency that the metadata cache is checked.

[met adat a_cache]

88

Configuration File Options

cl ose_connection_after_refresh=0

Note
@ This option was added in MySQL Router 9.2.0, and the connection is always
closed after a refresh in previous versions.
router id
Type Integer
Maximum Value 4294967295
The MySQL Router ID.
server_ssl _cert
Type String

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate server-side

authentication during the bootstrap process.

server_ssl _key

Type

String

Default Value

The path name of the SSL private key file in PEM format used to encrypt router-to-server connections.

See also Section 4.4, “TLS Configuration” .

server_ssl _curves

Type

String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

server _ssl _ci pher

Type

String

Defaults to a secure list of SSL ciphers. Format this string as a colon separated list of cipher names.

server_ssl _verify

Type String

Default Value DI SABLED

Valid Values DI SABLED
VERI FY_CA

89

Configuration File Options

VERI FY_I| DENTI TY

Verification of the SSL certificates presented to the router by the server.
« DI SABLED: the connection fails if the server does not provide a certificate in the handshake.

« VERI FY_CA: the connection fails if the server's certificate does not match a CA trusted by MySQL
Router.

« VERI FY_I DENTI TY: the connection fails if the server's certificate does not match a CA trusted by
MySQL Router, or the server certificate's subject does not match the hostname or IP address MySQL
Router connected to.

server_ssl _node

Type String

Default Value AS CLI ENT

Valid Values AS_CLI ENT
DI SABLED
PREFERRED
REQUI RED

SSL connection mode to use when connecting between MySQL Router and server. See also
Section 4.4, “TLS Configuration” .

server_ssl _ca

Command-Line Format --server-ssl-ca file_path

Type String

Default Value

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list of
trusted SSL Certificate Authorities. See also Section 4.4, “TLS Configuration” .

server_ssl _capath

Command-Line Format --server-ssl-capath dir_path
Type String
Default Value

The path name of the directory that contains trusted SSL Certificate Authority (CA) certificate files in
PEM format. See also Section 4.4, “TLS Configuration” .

client_ssl _cert

Command-Line Format --client-ssl-cert file_path

Type String

90

Configuration File Options

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process.

Like - cl i ent _ssl _key, this option is only used during bootstrap that uses a root account. It is useful
when the root account was created with REQUIRE X509, and therefore logging in as root requires the
client to authenticate itself.

e server_ssl _crlpath

Command-Line Format --server-ssl-crlpath dir_path

Type String

Default Value

The path of the directory that contains certificate revocation-list files in PEM format. See also
Section 4.4, “TLS Configuration” .

e server_ssl _crl

Command-Line Format --server-ssl-crl file_path

Type String

Default Value

The path name of the file containing certificate revocation lists in PEM format. See also Section 4.4,
“TLS Configuration” .

e client_ssl_key

Command-Line Format --client-ssl-key file_path

Type String

Default Value

The path name of the SSL private key file in PEM format used to encrypt client-to-router connections.
See also Section 4.4, “TLS Configuration” .

e client_ssl_dh_parans

Type String

Filename of the DH parameter file. If specified and not empty, the DH parameters from this file are used
instead of internal default DH parameters. Format the DH param file in PEM format.

e client _ssl curves

Type String

Which curves are allowed between the client and MySQL Router, defaults to a secure list of SSL curves.
Format this string as a colon separated list of curve names.

 client_ssl_cipher

Type String

91

Configuration File Options

Which ciphers are allowed between client and MySQL Router, defaults to a secure list of SSL ciphers.
Format this string as a colon separated list of cipher names.

client_ssl_node

Type String

Default Value PREFERRED

Valid Values PREFERRED
DI SABLED
PASSTHROUGH
REQUI RED

Controls if connections from the client to MySQL Router must be encrypted. See also Section 4.4, “TLS
Configuration” .

ssl _node

Type String

Default Value PREFERRED

Valid Values PREFERRED
DI SABLED
REQUI RED
VERI FY_CA

VERI FY_I DENTI TY

SSL mode for connecting to the MySQL metadata server. It defaults to PREFERRED if not set.

When set to PREFERRED (the default), bootstrapping will warn when SSL is not used and connection to
the metadata server is unencrypted.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY. As
with the mysql client, this value is case-insensitive.

There is also a runtime option for bootstrapping; see - - ssl - node.

user (MySQL)

‘ Type String

A generated MySQL user with privileges to access the MySQL server's metadata schema. This user's
password is auto-generated and stored in an encrypted keyring. By default, the encryption key for this
keyring is stored in a read protected master key store file, which is defined in the configuration file. Most
commonly, this user and associated password are automatically generated during bootstrap. Related

Configuration File Options

command line options are - - f or ce- passwor d- val i dati on and - - passwor d-retri es. By default,
the generated password passes the STRONG validate_password strength.

The password is entirely managed by Router and never exposed, and is stored in a local keyring system
using the operating system's account that MySQL Router is running as. It can then be used by Router
to connect to InnoDB Cluster and retrieve current topology information. Sessions between Router and
metadata server are encrypted with SSL by default.

Where the generated keyring files are stored depends on how bootstrap is configured. For self-contained
installations (when - - di r ect ory is used), it is stored under r un/ in the self-contained directory. For
system-wide installations, it is stored in the system-wide runtime state directory, and that path is platform
specific. For additional information, see nast er _key_ pat h and keyri ng_path

This user is assigned (and requires) the following privileges:
Privil eges needed by the Router account:
On Metadata Server:
SELECT ON nysql _i nnodb_cl ust er _net adat a. *
On Target Replica Sets:

SELECT ON perfornmance_schemna. replicati on_group_nenbers
SELECT ON perfornmance_schema. replication_group_nenber_stats

The generated username follows this pattern: mysql_router {rout er id} [0-9a-z]{7}, where
{router_id} is the numeric router id and [0-9a-z]{7} is 7 random lowercase alphanumeric characters. The
router id is reused if already present in mysqgl r out er . conf and its value can not exceed 4294967295
(2732-1).

Note
@ This user is different from the user definition defined in the [DEFAULT] section,
which is a system user.

nmet adat a_cl ust er

‘ Type String

Name of the InnoDB Cluster.

Note
@ SQL query to list the MySQL InnoDB cluster names: SELECT * FROM
mysql_innodb_cluster_metadata.clusters;

use_gr _notifications

Type Integer
Default Value 0
Valid Values 0

93

Configuration File Options

1

Enables Group Replication notifications. When enabled, Router is asynchronously notified about most
cluster changes. It can be enabled manually in mysqgl r out er . conf or enabled there using the - -
conf-use-gr-notificati ons command-line option during bootstrap.

When Router receives any of the following notifications from Group Replication, it refreshes the cluster

metadata:

« group_replication/membership/quorum_loss

 group_replication/membership/view

« group_replication/status/role_change

e group_replication/status/state_change

K

Note

The Group Replication notifications feature requires an X Protocol connection
from Router to each instance, which must be running X Plugin. If an X Protocol
connection is not available, the metadata refresh is carried out att t | intervals as
though the notifications feature was not enabled.

Although the Group Replication notifications rely on an X Protocol connection,
received notifications trigger a metadata refresh which uses a classic MySQL
protocol connection to the instance.

When enabled, the Group Replication notification feature allows a higher t t | value because the
metadata refreshes carried out at t t | intervals become an additional safeguard, rather than the primary
means of keeping the information about the cluster state up to date. When disabled, alowt t | value
(such as 0.5s, the default) is recommended to avoid the overhead of reconnecting to the instances and
querying them for metadata changes often.

o ttl
Type Numeric
Default Value 0.5
Minimum Value 0
Maximum Value 3600

Time to live (in seconds) of information in the metadata cache.

Accepts either an integer or a floating point value. The granularity is limited to milliseconds, where 0.001
equates to one millisecond. Precision is truncated to the supported range; for example TTL=0.0119 is

94

Configuration File Options

treated as 11 milliseconds. The value 0 means that the metadata cache module queries the metadata

continuously in a tight loop.

The related cl ose_connecti on_after _refresh option controls whether the metadata_cache
connection to a MySQL server should close or remain open after a successful metadata refresh.

The value must be smaller than aut h_cache refresh_interval andauth cache ttl else

Router won't start.

The only supported decimal separator is '.' (a period) regardless of locale, and scientific notation, such

as TTL=1.6E-2, is supported.

destination

Type String
Default Value (Windows) CON
Default Value (Other) [dev/ stderr
Valid Values (Windows) CON
NUL
Valid Values (Other) / dev/ nul |
/ dev/ st derr
/ dev/ st dout

Direct console log output to this device destination; set under the [consolelog] section. Defaults to /dev/
stderr and an empty value uses the default.

Available values are: / dev/ st dout , / dev/ st derr, and/ dev/ nul | ; or CONand NUL on Windows.

[DEFAULT]
| oggi ng_f ol der =

[consol el og]
desti nati on=/ dev/ nul |

filenanme

Type

String

Redirect log output to a specific file named f i | enane that resides in the | oggi ng_f ol der directory. It
must be defined as a file name and not a file path, and works with both the [logger] and [filelog] sections.

Using f i | enane with [logger] to define the default value for the [filelog] section, and it also changes

Router's log file from mysql r out er . | og to this new value.

[DEFAULT]
| oggi ng_f ol der =/ pat h/ t o/ | ogs/

[1 ogger]

95

Configuration File Options

filename = router_error.!|og

Router does not report an error if filename is set under [logger] but no file-based logger is used.

Using f i | enane with [filelog]:

[DEFAULT]
| oggi ng_f ol der =/ pat h/ t o/ | ogs/

[filelog:a]
filename = a_router_error.|log

[filelog:b]
filename = b_router_error.|log

If filename is empty or not set under [filelog] then the filename definition under [logger] is used; and the
default log file is used (nysql r out er . | og) if flename is not set under [logger] either.

Related, directing console output to / dev/ nul | :

[DEFAULT]
| oggi ng_f ol der =

[consol el og]
desti nati on=/ dev/ nul

| evel

Type String

Default Value I NFO

Valid Values DEBUG
NOTE

I NFO
WARNI NG
ERROR
SYSTEM

FATAL

Use the logger plugin to log notices, errors, and debugging information. The available log levels are
DEBUG, NOTE, INFO (default), WARNING, ERROR, SYSTEM, and FATAL. These values are case-
insensitive.

The INFO level displays all informational messages, warnings, and error messages. The DEBUG level
displays additional diagnostic information from the Router code, including successful routes. SYSTEM
includes messages such as startup messages.

[1 ogger]

Configuration File Options

| evel = DEBUG

Output behavior depends on the | oggi ng_f ol der option. Setting | oggi ng_f ol der to a folder saves
a log file named nmysql r out er . | og to that folder. Setting | oggi ng_f ol der to an empty value, or not

setting it, outputs the log to the console. It is set in the [DEFAULT] section.

Bootstrapping accepts a configuration file using - - conf i g and utilizes the logger level definition.

ti mestanp_precision

Type

String

The logger timestamp precision; the available definitions with example values are:

e second, sec,
e mllisecond,
* m crosecond,

* nanosecond,

or s:2019-05-1012:10:25
msec, or ns:2019-05-10 12:10:25.428
usec, or us:2019-05-1012:10:25.428754

nsec, ns:2019-05-10 12:10:25.428754000

por t
Type Integer
Default Value 8081

The TCP port listening for HTTP requests; it defaults to 8081.

bi nd_addr ess

Type

String

Default Value

0.0.0.0

IP address bound to the HTTP por t ; it defaults to 0.0.0.0.

static_fol der

Type

String

Base directory for static file requests; it's empty by default. An empty value means no static files are

served.

require_realm

Type String
Name of the [http_auth_realm] instance.
o ssli
Type Integer 97
Default Value 1

Valid Values

1

Configuration File Options

0

The value 1 enables SSL, and 0 disables it. TLS clients supporting TLSv1.2 or later are required. This is
defined under the [hitp_server] section.

ssl _cert

Type String

File name of the certificate and its chain certifications in PEM format; required if ssl=1. This is defined
under the [http_server] section.

ssl _key

Type String

File name of the key in PEM format; required if ssl=1. This is defined under the [http_server] section.

ssl _ci pher

‘Type ‘ String

The cipher-spec (see openssl's 'ciphers' list). Defaults to a comma-separated list of all approved ciphers.
Unknown ciphers are silently ignored. Fails if list of ciphers is empty and ssl=1. This is defined under the
[http_server] section.

ssl _dh_param

‘Type ‘ String

Read the DH parameter from this file in PEM format. Uses the dh-param from RFC 5114 by default if
ssl=1. This is defined under the [http_server] section.

i nterval
Type Integer
Default Value 60

Determines the frequency (in seconds) that MySQL Router sends a keepalive ping message. The total
number of pings is determiend by the r uns configuration option.

[keepal i ve]
interval = 42
runs = 0

Note

@ The keepalive plugin exists for testing purposes and is safe to remove after
MySQL Router is configured. Because at least one active plugin is required to
launch, the default configuration file enables the keepalive plugin so MySQL

Configuration File Options

runs
Type Integer
Default Value 0

Limits the number of intervals MySQL Router sends a keepalive ping message. Setting it to 0 (default)
means it executes until MySQL Router is shut down. The frequency is determined by the i nt er val

option.

[keepal i ve]
interval = 42
runs = 0
Note
@ The keepalive plugin exists for testing purposes and is safe to remove after
MySQL Router is configured. Because at least one active plugin is required to
launch, the default configuration file enables the keepalive plugin so MySQL
Router does not immediately exit. The keepalive plugin is not active if another
plugin is enabled.
backend
Type String
Default Value (Windows) pol |
Default Value (Other) l'i nux_epol |
Valid Values (Windows) pol |
Valid Values (Other) l'i nux_epol |
pol |

The 10 backend that handles async operations. The generic poll backend is available on all platforms,
while each platform may provide alternative backends.

Options are pol | (all platforms) and | i nux_epol | (Linux). Defaults to | i nux_epol | on Linux.

[io]

backend=l i nux_epol

t hr eads=32

Note

@ This is one of several backend options, each in a different [sect i on] with a
different purpose:
e [io0] backend for async operations.
« [http_auth_real m backend defines a custom name for a backend

associated with a particular realm

e [http_auth_backend] backend type of auth backend

t hr eads

<o)
(o)

Type ‘ Integer

Configuration File Options

Default Value 0
Minimum Value 0
Maximum Value 1024

The number of 10 threads that handles connections.

Defaults to 0 (uses all available CPU cores/threads)

but also accepts a number between 1 and 1024. At

runtime the system may restrict the upper limit beyond this value.

[io]
backend=li nux_epol |
t hr eads=32

connection_sharing_del ay

Type Integer
Default Value 1
Minimum Value 0
Maximum Value 2763-1

Seconds to wait before an idle server connection is available for reuse by another client connection.

See Section 3.4, “Connection Sharing and Reuse”.

connection_sharing

Type Integer
Default Value 0
Minimum Value 0
Maximum Value 1
Whether to enable connection sharing.
See Section 3.4, “Connection Sharing and Reuse”.
idle_tinmeout
Type Integer
Default Value 5
Minimum Value 1
Maximum Value 4294967296

Seconds to keep the idling connection in the connection pool before closing it. This is set in the
[connection_pool] section, and affects all routes in the connection pool. Defaults to 5, accepts a value

between 1 and 4294967296.

max_i dl e_server _connections

Type Integer
Default Value 0
Minimum Value 0

100

Configuration File Options

‘Maximum Value

4294967296

Connections to keep open in the connection pool after the client disconnects; and is set in the
[connecti on_pool] section. The default is 0, which disables connection pooling.

client _ssl _session_cache _node

Type Boolean

Default Value

Enables or disables the cache for client-router TLS sessions.

K

client_ssl _session_cache_size

Note

Enabled by default. If this parameter is not set, the cache is enabled. To disable
the cache, you must explicitly define it.

Type Integer
Default Value 1024
Minimum Value 1
Maximum Value 27"31-1

Defines the maximum number of sessions cached. If adding a new session to the cache causes the
number of cached sessions to exceed the defined maximum, the oldest cached session is dropped to

allow the newest to be cached.

client_ssl _session_cache_tineout

Type Integer
Default Value 300
Minimum Value 1
Maximum Value 84600

Defines the maximum amount of time, in seconds, a session remains in the cache. If the timeout is
reached, and this season is not reused, the session is removed from the cache and the connection is

closed.

e server_ssl_session_cache_node

Boolean
1

Type
Default Value

Enables or disables the cache for router-server TLS sessions.

K

Note

Enabled by default. If this parameter is not set, the cache is enabled. To disable

the cache, you must explicitly define it. 101

Configuration File Options

server _ssl _session_cache_si ze

Type Integer
Default Value 1024
Minimum Value 1
Maximum Value 2731-1

Defines the maximum number of sessions cached. If adding a new session to the cache causes the
number of cached sessions to exceed the defined maximum, the oldest cached session is dropped to

allow the newest to be cached.

server _ssl _session_cache_ti neout

Type Integer
Default Value 300
Minimum Value 1
Maximum Value 84600

Time in seconds until TLS sessions are removed from the server TLS session cache.

connect _retry_ti neout

Type Integer
Default Value 7
Minimum Value 1
Maximum Value 3600

If a classic connection fails with a transient error, such as max- connecti ons reached, MySQL
Router waits the defined number of seconds before retrying the connection. The connection is retried

according to the defined routing strategy.

If connect _retry_tineout is notdefined, it defaults to 7 seconds. If the value of
connect _retry_timeout is defined outside of the valid range of values, MySQL Router will fail to

start.

Note
@ If connection sharing is enabled, the retried connection is to the same server as

the initial connection attempt.

If a connection fails with a transient error after authentication has occurred, the connection can only be
retried if the client-router connection is TLS encrypted or has a public key.

Table 4.18 SSL Modes and Retry

client_ssl_mode server_ssl_mode Supports Retry
PASSTHROUGH Any No
DISABLED Any No
PREEERRED AS _CLIENT No

102 PREFERRED Any other mode Yes

Configuration File Options

client_ssl_mode ‘server_ssl_mode ‘Supports Retry
REQUIRED ‘Yes
backend
‘Type String
Name of the [htt p_aut h_backend] section.
Note
3 This is one of several backend options, each in a different [sect i on] with a

different purpose:

e [io] backend for async operations.

e [http_auth_real m backend defines a custom name for a backend

associated with a particular realm

e [http_aut h_backend] backend type of auth backend

nmet hod

Type String
Default Value basi c
The HTTP authentication method; defaults to basic.

name

Type String

Name of the realm presented to the authentication user.

require

Type

String

Default Value

val i d- user

Requires that the user validates with the authentication backend; defaults to val i d- user, which

enables this check.

backend
Type String
Default Value file

Name of the backend implementation; accepted values are f i | e (default) or net adat a_cache.

[http_aut h_backend: nane]
backend=net adat a_cache

[met adat a_cache]

aut h_cache_refresh_i nterval =2

aut h_cache_ttl=-1

103

Configuration File Options

Note
@ This is one of several backend options, each in a different [sect i on] with a
different purpose:

e [i0] backend for async operations.

e [http_auth_real n] backend defines a custom name for a backend
associated with a particular realm

e [http_aut h_backend] backend type of auth backend

e filenane

Type ‘ String

Name of the backend storage file, is relative to the dat a_f ol der directory.

e cluster_type

Type String
Valid Values gr
rs

The type of AdminAPI object that the Router was bootstrapped against, which is either an InnoDB
ReplicaSet (rs) or InnoDB Cluster (gr). Use 'gr' for cluster sets.

Bootstrapping evaluates the target instance and sets this option accordingly in the generated
configuration file.

e error_quarantine_interval

Type Integer
Default Value 1
Minimum Value 1
Maximum Value 3600

Defines the interval, in seconds, between checks on quarantined destination connectivity. If a connection
is possible, the destination is moved out of quarantine and made available for connections.

If an invalid value is defined, MySQL Router fails to start and an error is logged.

For example:

[destinati on_st at us]
error_quarantine_t hreshol d=5
error_quarantine_i nterval =20

Note
@ If undefined in the configuration file, the default value, 1, is used.

104

Configuration File Example

e error_quarantine_threshold

Type Integer
Default Value 1
Minimum Value 1
Maximum Value 65535

Defines the threshold of consecutive, failed attempts to connect to a routing destination before MySQL
Router adds the destination to quarantine and stops using it as a destination until it is cleared by the
quarantine mechanism. For example, if set to 5, the destination is quarantined after 5 consecutive, failed
attempts to connect to it.

If an invalid value is defined, MySQL Router fails to start and an error is logged.

For example:

[destinati on_st at us]
error_quarantine_t hreshol d=5
error_quarantine_i nterval =20

Note
@ If undefined in the configuration file, the default value, 1, is used.

4.3.4 Configuration File Example

Here is a basic connection routing example to a MySQL InnoDB Cluster named nyCl ust er . Both classic
MySQL protocol and X Protocol are enabled, it uses TCP/IP connections instead of Unix domain sockets,
and it was generated using - - boot st r ap as a standalone configuration with - - di rect ory setto/ t np/
router.

In this example, read-write (primary) traffic is sent to port 6446 (classic) or 6448 (X Protocol), and read-only
(secondaries) are accessed using port 6447 (classic) or 6449 (X Protocol).

The routing section keys (such as myCluster_rw) are optional but descriptive section keys help while
debugging and also allows multiple configuration sections for the same plugin.

The dest i nat i ons option references metadata-cache to utilize InnoDB cluster's metadata cache that
dynamically configures host information. Alternatively, dest i nat i ons could be a comma-separated list of
hosts to accommodate basic connection routing without InnoDB cluster.

The options starting with [ht t p_ser ver] reference the REST API that is enabled by default. For
additional details, see Chapter 6, MySQL Router REST API

File automatically generated during M/SQL Router bootstrap
[DEFAULT]

| oggi ng_f ol der=/tnp/router/l og

runtime_f ol der=/tnp/router/run

dat a_f ol der=/tnp/router/data

keyri ng_pat h=/t np/ r out er/ dat a/ keyri ng

mast er _key_pat h=/t np/ rout er/ mysqgl r out er . key
connect _t i meout =15

read_ti meout =30

dynami c_state=/tnp/router/datal/state.json
client_ssl _cert=/tnp/router/datal/router-cert.pem
client_ssl_key=/tnp/router/datalrouter-key. pem

cl i ent _ssl _node=PREFERRED

105

Configuration File Example

server_ssl _nmode=AS_CLI ENT
server_ssl _veri f y=DI SABLED

[l ogger]
I evel = I NFO

[met adat a_cache: nyCl ust er]

cl uster_type=gr

router_id=1

user =nysql _routerl_x9v4uklOnbcd
met adat a_cl ust er =nyCl ust er
tt1=0.5

aut h_cache_ttl=-1

aut h_cache_refresh_i nterval =2
use_gr_noti ficati ons=0

[routing: myd uster_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =6446

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =cl assi ¢

[routing: myd uster_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6447

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=SECONDARY
routing_strategy=round-robin-wth-fall back

pr ot ocol =cl assi ¢

[routing: myd uster_x_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =6448

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =x

[routing: myd uster_x_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6449

dest i nati ons=net adat a- cache: // myC ust er/ ?r ol e=SECONDARY
routing_strategy=round-robin-wth-fall back

pr ot ocol =x

[http_server]

port =8443

ssl =1

ssl _cert=/tnp/router/datal/router-cert.pem
ssl _key=/tnp/router/datalrouter-key. pem

[http_auth_real mdefaul t _auth_real nj
backend=def aul t _aut h_backend

nmet hod=basi c

name=def aul t _real m

[rest _router]
require_real medefaul t _aut h_real m

[rest _api]

[http_aut h_backend: def aul t _aut h_backend]
backend=net adat a_cache

[rest _routing]
require_real medefaul t _aut h_real m

[rest _met adat a_cache]

106

TLS Configuration

require_real medef aul t _aut h_r eal m

4.4 TLS Configuration

Important

A This section is a draft and subject to change.

The default behavior is:

PREFERRED
AS_CLI ENT

client_ssl_node
server_ssl _node

This establishes TLS connections between the client and Router if the client desires switching to TLS and
the server supports TLS. This also matches the existing behavior for client and server without the Router
in-between.

TLS Endpoint Configuration

MySQL Router accepts the TLS session and opens a hew TLS session to the server. For example:

client <-> router /Il TCP
router <-> server /1 TCP
client <-> router /1 TLS

router <-> server /1 TLS

To accept a TLS session from a client, Router has to present a TLS client with the certificate using
client_ssl _cert andclient_ssl_key.

To connect a TLS session to a server, MySQL Router verifies the server's certificates using
server_ssl _verify,server_ssl _ca,server_ssl _capath,server_ssl _crl,and
server _ssl _crl path.

Note
@ The TLSv1 and TLSv1.1 connection protocols are deprecated as of MySQL Router
8.0.26 and support for them is subject to removal in a future version.

SSL Modes

Because there are two TLS sessions (between client and Router; Router and server) there can also be two
independent states of the connection.

Both cl i ent _ssl _node and server _ssl _node accept DISABLED, PREFERRED, or REQUIRED. In
addition, ser ver _ssl _node accepts AS_CLIENT, and cl i ent _ssl node accepts PASSTHROUGH.

» DI SABLED: Router does not offer encryption to the client, and the client can't switch the client-router
connection to TLS. The client may abort the connection if it must switch to TLS.

» PREFERRED (default): Router accepts a TLS connection from the client, but is also okay if the client does
not switch to encryption.

» REQUI RED: Router accepts a TLS connection from the client, and will fail if the connection is not
switched to TLS before authentication finishes.

107

Additional Related Options

» PASSTHROUGH: Means 'forward everything to the server' and lets the client and server decide if they
want to switch to TLS or not. This was default behavior before Router 8.0.23, and is only accepted by
client_ssl _node.

» AS CLI ENT (default): if the client-router connection is encrypted then also encrypt the router-server
connection, otherwise do not. This option is only accepted by server _ssl| _node.

Additional Related Options

The server _ssl _veri fy option splits out 'VERIFY_CA' and 'VERIFY_IDENTITY' from the 'ssl_mode'
that is known from the MySQL client and MySQL server. In the MySQL client's case, VERIFY_CA means
ssl_mode=REQUIRED and to verify the CA|IDENTITY. In Router's case, Router verifies certificates
independent of ser ver _ssl| _node; instead it's purely based on whether the connection is encrypted and
if server _ssl _veri fy isnot DISABLED, in which case it is verified.

Additional options include server ssl dh_parans,client ssl _dh_parans, server_ssl _curves,
and cl i ent _ssl _curves.

All routing options and additional information is available at Routing Options.

108

Chapter 5 MySQL Router Application

Table of Contents

5.1 Starting MYSQL ROULETeuniiiiii ettt e et et et e e et e e et e e et e e ean e aaaeeeens 109
5.2 Using the LoggQing FEALUIEiiuiiiii ettt e et e e e eenns 110

The MySQL Router is an executable that typically runs on the same machine as the application that uses
it. This chapter describes the application including available options, how to start the application, and how
to use the logging feature.

There are a number of options available for controlling the application when executing nysql r out er . See
the mysql r out er documentation for information about the command-line options.

5.1 Starting MySQL Router

MySQL Router requires a configuration file. Although Router searches a predetermined list of default paths
for the configuration file, it is common to start Router by passing in a configuration file with the - - conf i g
option.

The process of configuring MySQL Router to automatically start when the host reboots is similar to the
steps needed for MySQL server, which is described at Starting and Stopping MySQL Automatically.

For example, when using systemd:

$> sudo systenttl start nysqlrouter.service
$> sudo systentt| enable nysqlrouter. service

Example Log Output

Starting MySQL Router generates several log entries, for example when connecting to a sandboxed
InnoDB Cluster:

$> nysqlrouter --config=/path/to/file/my_router.conf
AC

$> less /path/to/log/nysqglrouter.|og

2019- 04- 07 16: 30: 49 | NFO [0x7000022f c000] [routing:devC uster_default_ro] started: |istening on
2019- 04- 07 16: 30: 49 | NFO [0x70000237f 000] [routing:devC uster_default_rw] started: |istening on
2019- 04- 07 16: 30: 49 | NFO [0x700002402000] [routing:devC uster_default_x_ro] started: |istening on
2019- 04- 07 16: 30: 49 | NFO [0x700002485000] [routing:devC uster_default_x_rw] started: |istening on
2019- 04- 07 16: 30: 49 | NFO [0x700002279000] Starting Metadata Cache

2019- 04- 07 16: 30: 49 | NFO [0x700002279000] Connections using ssl_node ' PREFERRED

2019- 04- 07 16: 30: 49 | NFO [0x700002279000] Connected wi th netadata server running on 127.0.0. 1: 3310
2019-04-07 16:30: 49 | NFO [0x700002279000] Changes detected in cluster 'devCuster' after netadata refre:
2019- 04- 07 16: 30: 49 | NFO [0x700002279000] Metadata for cluster 'devCluster' has 1 replicasets:

2019- 04- 07 16: 30: 49 | NFO [0x700002279000] 'default’' (3 nenbers, single-master)

2019- 04- 07 16: 30: 49 | NFO [0x700002714000] Connected wi th nmetadata server running on 127.0.0. 1: 3310

0.0.0.0:
0.0.0.0:
0.0.0
0.0.0

The log shows that MySQL Router is listening on four ports, lists the active routing strategies by name,
InnoDB Cluster information, and more.

For example, the first line lists the active routing strategy named r out i ng: devCl ust er _defaul t _ro,
is listening on port 6447, and its mode is r ead- onl y. The corresponding section in the MySQL Router
configuration file looks similar to:

[routing: devCl uster_defaul t_ro]

109

https://dev.mysql.com/doc/refman/9.6/en/automatic-start.html

Example Start and Stop Scripts

bi nd_addr ess=0. 0. 0.0

bi nd_port =6447

desti nat i ons=net adat a- cache: // devC ust er/ def aul t ?r ol e=SECONDARY
pr ot ocol =cl assi ¢

See how the name and port were taken directly from the configuration file. In this way, you can quickly
determine which routing strategies are active. This could be particularly useful if running several instances
of MySQL Router, or if multiple configuration files are loaded.

On Windows, MySQL Router can install, remove, or start the service. By default, the service name is
MySQLRouter. For additional information, see the - - ser vi ce and related command line options for
Windows services.

Example Start and Stop Scripts

Bootstrapping MySQL Router with the - - di r ect or y option generates bash scripts to start and stop
MySQL Router, which look similar to the following:

// * k% Stal’t.Sh kkkkkkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*%x //

#! / bi n/ bash

basedi r =/ opt / myr out er

ROUTER_PI D=$basedi r/ nysql rout er. pid /usr/bin/nysqlrouter -c $basedir/nysqlrouter.conf &
di sown %

// * k% StOp.Sh kkkkkkkhkkhkkhkkhkkkkkkkkkkkkk*%x //

if [-f /opt/myrouter/nysqglrouter.pid]; then
kill -HUP “cat /opt/nyrouter/nysqglrouter.pid
rm-f /opt/nyrouter/nysqlrouter.pid

f

5.2 Using the Logging Feature

The logging feature can be handy for developing and testing your application and deployment of the
MySQL Router. To use logging, enable the logging | evel option in the configuration file under the section
named [| ogger] . For example:

[l ogger]
I evel = | NFO

Set the log file's location with the | oggi ng_f ol der option, defined as a directory path under the

[DEFAULT] section in the configuration file. The logging file is named nysql r out er . | og. For example:
[DEFAULT]

Logs are sent to /path/to/fol der/ nmysqlrouter.|og

| oggi ng_f ol der = /path/tol/fol der

[l ogger]
| evel = DEBUG

Setting | oggi ng_f ol der to an empty string sends logs to the console (stdout).
Two common logging levels are | NFO (default) and DEBUG,
» | NFQ includes informational messages like those shown above, and is the default.

« DEBUG includes messages generated inside Router's source code for use in diagnostics. DEBUG
presents verbose information concerning the inner workings of Router. While it may not be of interest to

110

Log Rotation

the application, use of DEBUG may be helpful if you encounter a problem or when Router is not behaving
as you expect.

The following example shows what the messages look like for the DEBUG logging level; compare the | NFO
and DEBUG messages:

2019- 04- 07 18: 25:56 | NFO [0x700009673000] Connections using ssl_nobde ' PREFERRED

2019- 04- 07 18: 25:56 | NFO [0x700009673000] Connected with netadata server running on 127.0.0. 1: 3310
2019- 04- 07 18: 25: 56 DEBUG [0x700009673000] Updating nmetadata information for cluster 'devC uster'

2019- 04- 07 18: 25:56 DEBUG [0x700009673000] Updating replicaset status from GR for 'default

2019- 04- 07 18:25:56 DEBUG [0x700009673000] Replicaset 'default' has 3 nmenbers in netadata, 3 in status t:
2019- 04- 07 18: 25: 56 DEBUG [0x700009673000] End updating replicaset for 'default

2019- 04- 07 18: 25:56 | NFO [0x700009673000] Changes detected in cluster 'devCuster' after netadata refre
2019- 04- 07 18: 25:56 | NFO [0x700009673000] Metadata for cluster 'devC uster' has 1 replicasets

Log Rotation

Router supports log rotation; listed here are scenarios with example implementations.

Note
@ This functionality is not supported on Windows.

Rotation On Demand

Log rotation on demand can be accomplished in two steps: rename the log file, and then notify Router so it
creates and switches to a new log file.

Execute log rotation either directly from the system's shell, or from a script that could be called
automatically as a scheduled task. For example:

sudo nv /var/| og/ nysql router/nysqglrouter.log /var/log/nysqlrouter/nysqglrouter.!|og.old
kill -HUP $(pidof nysqlrouter)

logrotate

The logrotate mechanism can also rotate Router's log file. After rotating, Router would be notified to
reopen the log file and this is accomplished by sending HUP to the Router process. An example logrotate
configuration file:

/var /| og/ nmysql router/nysql router.|og {
rotate 9
size 10M
create 0755 nysql router nysqlrouter
postrotate
kill -HUP $(pidof nysqlrouter)
endscri pt

}

The example rotates the logs as mysqlrouter.log, mysqlrouter.log.1, ..., mysqlrouter.log.9. The rotation
is triggered based on the size of the current mysqlrouter.log file, only if the size is greater than 10MB.
Assuming this configuration is saved as / et ¢/ nysql rout er/ | ogr ot at e. conf, it might be executed
periodically (added to cron) as follows:

[sudo] logrotate /etc/nysqlrouter/|ogrotate.conf

111

https://linux.die.net/man/8/logrotate

112

Chapter 6 MySQL Router REST API

Table of Contents

6.1 A Simple MySQL Router REST AP GUITEcvuuiiiiieiie e e e e e et e e e e 113
6.2 MySQL Router REST APl REEIENCEcvvuiiii et e e e ans 115

MySQL Router REST API interface.

6.1 A Simple MySQL Router REST API Guide

This guide sets up a basic Router REST API, adds basic authentication, and exposes a route to check
Router's status. The REST API is configured using configuration sections and options are required to
enable and use the REST API. For example, here's a minimal MySQL Router configuration file that
enables the most basic REST API functionality:

[DEFAULT]
| oggi ng_f ol der =

Exposes http://127.0.0. 1: 8081
[http_server]

Exposes /api/ 20190715/ swagger.j son
[rest _api]

A typical Router configuration file contains other options but this guide focuses on the REST API.
Save this file (our guide assumes (/ f oo/ mysql r out er . conf), start Router loading this file (such
as nysql router -c /foo/ nmysqglrouter.conf,andconfirmthathttp://127.0.0.1: 8081/
api / 20190715/ swagger . j son exists. Example swagger . j son content;

{

"swagger": "2.0",

"info": {

"title": "MySQL Router",
"description": "APlI of MySQL Router",
"version": "20190715"

Jic
"basePat h": "/api/20190715",
"tags": [],

"paths": {},
"definitions": {}

}

This demonstrates that the Router REST API plugin is loaded, and that additional plugins exposing routes
and paths are not enabled. Authentication is not required to retrieve swagger . j son.

Note

s The API version number may change in a future release; and future releases may
include functionality to retrieve this API integer.

Next, let's enable the simple r est _r out er plugin to expose the router/status path. Authentication is
required, and enabling authentication requires additional configuration options. For example:

[DEFAULT]
| oggi ng_f ol der =

Exposes http://127.0.0.1: 8081

113

A Simple MySQL Router REST API Guide

[http_server]

Exposes /api/ 20190715/ swagger . j son
[rest _api]

Exposes /api/ 20190715/ rout er/ st at us
[rest _router]
require_real mrsoner eal m

Exposes /api/ 20190715/ rout es/*
#[rest _routi ng]
#requi re_r eal nFsoner eal m

Exposes /api/ 20190715/ met adat a/ *
#[rest _net adat a_cache]
#requi re_r eal nFsoner eal m

Define our realm

[http_aut h_real m soner eal ni
backend=sonebackend

met hod=basi c

nane=Sone Real m

Define our backend; this file nust exist and validate
[htt p_aut h_backend: somebackend]

backend=fil e

fil enane=/ et c/ nysql rout er/ nysql r out er. pwd

Router uses realms for authentication, and the nmysql r out er _passwd command-line utility generates and
manages these users. For example, this creates a user named someuser and saves it as a new file named

/etc/ mysql router/nysql router. pwd:

CGenerate and save the user/pass

$> nysql router _passwd set /etc/nysqlrouter/nysqlrouter. pwd soneuser

Pl ease enter password:

Optionally |ist usernames and salted passwords in the file:
$> nysql router_passwd |ist /etc/nysqlrouter/nysqlrouter. pwd

soneuser : $5$43t f YEwobPBLK YDB$XnHy COuXY1F4f 6r yd8Vj 5CUnEqcH3t qf 4pud9kql ji 3

Restarting Router with our new configuration file generates a different swagger . j son that now contains

[rest_router] plugin information for its /router/status route:

{

"swagger": "2.0",

"info": {

“title": "MySQL Router",
"description": "APl of MySQL Router",
"version": "20190715"

b
"basePat h": "/api/20190715"
"tags": [

{

"nane": "app",
"description": "Application"
}
Il
"paths": {
"/router/status": {
"get": {
"tags": [
" app"
]

escription": "Get status of the application”
"responses": {

114

MySQL Router REST API Reference

"200": {
"description": "status of application",
"schema": {
"$ref": "#/ definitions/RouterStatus"

}
}
}
}
}
}

"definitions": {
"Router Status": {
"type": "object",
"properties": {
"timeStarted": {
"type": "string",
"format": "data-tinme"

}

"

rocessld": {
"type": "integer"
}

"version": {
"type": "string"
}

"

ost name": {

"type": "string"
b
"product Edi tion": {
"type": "string"

Loading http://127.0.0.1:8081/api/20190715/router/status prompts for a username and password (that we
created in our example) and on success returns Router's current status. For example:

{
"processld": 1883
"product Edi tion": "MySQ. Comunity - GPL",
"tinmeStarted": "2022-01-25T21: 23:50. 442399Z"
"version": "9.6.0",
"host nane": "boat"

}

We set up a basic Router REST API with an authenticated backend; a REST API with two of the REST API
plugins enabled.

6.2 MySQL Router REST API Reference

Knowing the basePath prefix is assumed. The basePath contains the API version, such as "/
api/20190715". For example, if the endpoint is "/metadata" then the URL is similar to "https://
localhost:8443/api/20190715/metadata”. See Section 6.1, “A Simple MySQL Router REST API Guide” for
related information.

Table 6.1 MySQL Router REST API Endpoints

Endpoint Description Plugin Method

/metadata Get metadata instance names |rest_metadata |@GERe

/metadata/{metadataName}/config Get metadata configuration rest_metadata_|cEfe
details

115

metadata

Endpoint Description Plugin Method
/metadata/{metadataName}/status Check metadata status rest_metadata |GEfe
[/router/status Check Router status rest_router GET
/routes Get list of routes rest_routing GET
/routes/{routeName}/blockedHosts Get list of blocked IPs rest_routing GET
/routes/{routeName}/config Get route configuration details |rest_routing GET
/routes/{routeName}/connections Get route connections rest_routing GET
/routes/{routeName}/destinations Get route destinations rest_routing GET
/routes/{routeName}/health Check route health rest_routing GET
/routes/{routeName}/status Check route status rest_routing GET
/connection_pool/{name}/config Check connection_pool config [rest_connectionGioo|
/connection_pool/{name}/status Check connection_pool status |rest_connectionGioo|
swagger.json Get swagger file containing rest_api GET

available paths and

information

metadata

GET / net adat a

Get list of the metadata cache instances

Available Responses

200

Example 200 response data:

{
"items": [

{

}
]
}

"nane": "nyCuster"

Description: List of metadata cache instances

Response Schema

items array

Contains 'name'’ fields; the name of
the metadata instance

GET / net adat a/ { net adat aNane}/ confi g

Get configuration of the metadata cache of a cluster's replicaset

Available Responses

200

Description: Config of metadata cache

Response Schema

clusterName string

116

metadata

timeRefreshinMs

groupReplicationld

nodes
404 Description: Cache not found
Path Parameters
metadataName (required) string

Name of cluster

Example 200 response data:

{
"clusterName": "myC uster"”,
"ti meRef reshl nMs": 500,
"groupReplicationld': "e57e9cll-abfe-1lea-b747-0800278566¢ch",
"nodes": [
{
"host nane": "127.0.0.1",
"port": 3310
Jic
{
"host nane": "127.0.0.1",
"port": 3320
Jic
{
"host nane": "127.0.0.1",
"port": 3330
}
]
}

GET / net adat a/ { ret adat aNane} / st at us

Get metadata cache status for a cluster's replicaset

Available Responses

Optional, name of the replication
group

integer

TTL number
string
Optional
array

An array; items include the hostname
(string) and port (integer) properties

200 Description: Status of the metadata cache

Response Schema

lastRefreshHostname

lastRefreshPort

string

integer

117

router

router

timeLastRefreshFailed string
timeLastRefreshSucceeded string
refreshSucceeded integer
refreshFailed integer

404 Description: Cache not found

Path Parameters

metadataName (required) string

Name of the cluster

Example 200 response data:

{

"refreshFail ed": 0,

"refreshSucceeded": 798,

"ti meLast Ref reshSucceeded": "2020-06-11T21:17:37.270303Z2",
"| ast Ref r eshHost nane": "127.0.0.1",

"l ast RefreshPort": 3310

GET /router/status

Get status of router

Available Responses
200 Description: Status of Router

Response Content-Type: application/json

Response Schema
hostname string

Name of the host the application is
running on; it may be empty if a host
is not configured

processld integer
Process ID of the application
productEdition string

Product edition, such as "MySQL
Community - GPL"

timeStarted string

118

routes

routes

version

Example 200 response data:

{
"processld": 6435,
"productEdi tion": "MySQL Community - GPL",
"tineStarted": "2020-06-11T21:10: 49. 420619Z2",
"version": "8.0.20",
"host nane": "boat"

}

GET /routes

Get list (hames) of the routes supported by MySQL Router

Available Responses

A date-time string that the
application was started, such as
"2020-06-11T22:08:30.978640Z"

string

Version of the application, such as
"8.0.22"

200 Description: List of the supported routes

Response Schema

items

Example 200 response data:

{
"items": [
{
"name": "myCl uster_ro"
I
{
"nanme": "nyCluster_rw'
I
{
"nane": "nyCl uster_x_ro"
I
{
"nane": "nyCluster_x_rw'
}
]
}

GET /rout es/ {rout eNane}/config

Get config of a route

Available Responses

200 Description: Config of a route

array

A list of routes

119

routes

404
Path Parameters

routeName (required)

Example 200 response data:

{

Response Schema

bindAddress

bindPort

clientConnectTimeoutinMs

destinationConnectTimeoutinMs

maxActiveConnections

maxConnectErrors

protocol

socket

routingStrategy

Description: Route not found

string

Name of a route

string

Address the route is listening on
integer

TCP port the router is listening on
integer

Connection timeout for incoming
connections

integer

Connection timeout for outgoing
connections

integer

Maximum number of active
connections

integer

Maximum number of adjacent
connection errors before the client
gets blocked

string

Protocol, either ‘classic' or 'X'
string

Listening socket or named pipe
string

The routing strategy used; such as
"round-robin”, "round-robin-with-
fallback"”, "first-available", or "next-
available" as defined by Router's

strategy configuration option

120

routes

"bi ndAddress": "0.0.0.0",

"bi ndPort": 6446,

"cl i ent Connect Ti neout | nMs": 9000,
"desti nati onConnect Ti meout | nMs": 15000,
"maxAct i veConnecti ons": 512,
"maxConnect Errors": 100,

"protocol ": "classic",
"routingStrategy": "first-avail abl e"

}
GET /rout es/ {rout eNane}/ st at us

Get status of a route

Available Responses

200 Description: Status of a route

Response Schema

activeConnections

totalConnections

blockedHosts

404 Description: Route not found
Example 200 response data:
{

"activeConnections": 1,

"t ot al Connections": 1,

"bl ockedHosts": 0
}
Path Parameters
routeName (required) string

Name of a route
GET /routes/ {routeNane}/ heal th

Get health of a route

Available Responses

200 Description: Health of a route

Response Schema

isAlive

integer

Number of active connections on the
route

integer

Number of connections handled by
the route

integer

Number of blocked hosts

boolean

121

routes

404 Description: Route not found
Path Parameters
routeName (required) string

Name of a route

Example 200 response data:
{

"isAlive": true

}
GET /rout es/ {rout eNane}/ desti nati ons

Get destinations of a route

Available Responses

200 Description: Destinations of a route

Response Schema

items
404 Description: Route not found
Path Parameters
routeName (required) string

Name of a route

Example 200 response data:

{
"items": [
{
"address": "127.0.0.1",
"port": 3320
I
{
"address": "127.0.0.1",
"port": 3330
}
]
}

GET /rout es/ {rout eNane}/ connecti ons

Get connections of a route

Available Responses

array

Contains 'address’ (string, IP
address of the destination node), and
'port' (integer, port of the destination
node)

200 Description: Connections of a route

122

routes

Response Schema

items
404 Description: Route not found
Path Parameters
routeName (required) string

Name of a route

Example 200 response data:

{
"items": [
{
"byt esFronBerver": 2952,
"byt esToServer": 743,
"sour ceAddress": "127.0.0. 1: 54098",
"destinati onAddress": "127.0.0.1:3310",
“tinmeStarted": "2020-06-11T21:28: 20. 882204Z",

array

Each items entry contains the
following:

bytesFromServer: integer, number
of bytes sent from server to the
client over the given connection

BytesToServer: integer, number
of bytes sent from the client to the
server over the given connection

sourceAddress: string,
adddress:port pair of the
connection source (client)

destinationAddress: string,
adddress:port pair of the
connection destination (server)

timeStarted: string, timepoint of the
connection initialization

timeConnectedToServer: string,
timepoint when the connection
successfully established

timeLastSentToServer: string,
timepoint when there was last data
sent from client to server on the
given connection

timeLastReceivedFromServer:
string, timepoint when there was
last data sent from server to client
on the given connection

123

connection_pool

"ti meConnect edToServer": "2020-06-11T21: 28: 20. 882513Z",
"timeLast Sent ToServer": "2020-06-11T21: 28: 20. 886969Z",
"ti meLast Recei vedFronServer": "2020-06-11T21: 28: 20. 8869682"

}
]
}

GET /rout es/ {rout eNane}/ bl ockedHost s

Get blocked host list for a route

Available Responses

200 Description: Blocked host list for a route

Response Schema
items array

IP addresses that are currently
blocked by the routing core

404 Description: Route not found
Path Parameters
routeName (required) string

Name of a route

Example 200 response data:

{
"items": []

}
connection_pool

GET / connecti on_pool / {nane}/config

Shows max| dl eSer ver Connect i ons as defined by the max_i dl e_server _connecti on
configuration option. This is the maximum number (integer) of idling server connections in the connection
pool.

Shows i dl eTi neout as defined by the i dl e_t i neout configuration option. This is the timeout in
seconds (integer) before connections in the connection pool are closed.

GET / connecti on_pool / {nane}/ st at us

Shows r eusedConnect i ons as a count (integer) of client connections that reused a server connection
since the application started.

Shows i dl eSer ver Connect i ons as a count (integer) of idling server connections currently in the
connection pool.

swagger.json

GET / swagger . j son

124

swagger.json

Get a swagger (OpenAPl) file for the local REST API instance. Accessing the file does not require
authentication; anyone with access to the REST API can generate and view it. The OpenAPI content

depends on the active REST API plugins.

Example 200 response data:

{
"swagger": "2.0",
"info": {
"title": "MySQL Router",
"description": "APl of MySQL Router",
"version": "20190715"
b
"basePat h": "/api/20190715",
"tags": [
{
"nane": "connectionpool ",
"description": "Connection Pool"
b
{
"name": "cluster"”,
"description": "lInnoDB Cluster"
b
{
"name": "app",
"description": "Application"
b
{
"name": "routes",
"description": "Routes"
}
Il
"paths": {
"/ connect i on_pool / {connecti onPool Nane}/status": {
"get": {
"tags": [
"connect i onpool "
Il
"description": "Get status of a route",
"responses": {
"200": {
"description": "status of a route",
"schema": {
"$ref": "#/ definitions/ConnectionPool Status"
}
b
"404": {
"description": "route not found"
}
}
b
"paranmeters": [
"$ref": "#/ paraneters/connecti onPool NanePar ant
}
]
b
"/ connecti on_pool / {connect i onPool Nane}/ config": {
"get": {
"tags": [
"connect i onpool "
Il
"description": "Get config of a route",
"responses": {
"200": {
"description": "config of a route",

125

swagger.json

"schema": {
"$ref": "#/ definitions/ConnectionPool Config"
}
iE
"404": {
"description": "route not found"
}
}
iE

"paranmeters": [

"$ref": "#/ paraneters/connecti onPool NanePar ant

}
]
iE
"/ connection_pool ": {
"get": {
"tags": [
"connect i onpool "
Il
"description": "Get |list of the connection pool s",
"responses": {
"200": {
"description": "list of the connection pools",
"schema": {
"$ref": "#/ definitions/ConnectionPool List"

}
}
}
}
}

met adat a/ { net adat aNane}/ config": {
"get": {
"tags": [
"cluster"
Il
"description": "Get config of the netadata cache of a replicaset of a cluster",
"responses": {
"200": {
"description": "config of metadata cache",
"schema": {
"$ref": "#/ definitions/MtadataConfig"

}
iE
"404": {
"description": "cache not found"
}
}
iE
"paranmeters": [
{
"$ref": "#/ paraneters/ netadat aNanePar ant
}
]
iE
"/ met adat a/ { ret adat aNane}/status": {
"get": {
"tags": [
“cluster"
Il
"description": "Get status of the netadata cache of a replicaset of a cluster",
"responses": {
"200": {
"description": "status of metadata cache",

"schema": {
"$ref": "#/ definitions/MetadataStatus"

}

126

swagger.json

I
"404": {
"description": "cache not found"
}
}
b

"paranmeters": [

"$ref": "#/ paraneters/ netadat aNanePar ant

}
]
iE
"/nmetadata": {
"get": {
"tags": [
“cluster"
Il
"description": "Get list of the netadata cache instances",
"responses": {
"200": {
"description": "list of the netadata cache instances",
"schema": {
"$ref": "#/ definitions/MetadataList"

}
}
}
}
}

router/status": {
"get": {
"tags": [
" app"
Il
"description": "Get status of the application",
"responses": {
"200": {
"description": "status of application",
"schema": {
"$ref": "#/ definitions/RouterStatus"

}
}
}
}
}

routing/status": {
"get": {
"tags": [
"routing"

]

escription": "Get status of the routing plugin"
"responses": {
"200": {
"description": "status of the routing plugin",
"schema": {
"$ref": "#/ definitions/Routingd obal Status"
}
}
}
}
iE
"/routes/{routeNane}/config": {
"get": {
"tags": [
"routes”
Il
"description": "Get config of a route",
"responses": {

127

swagger.json

"200": {
"description": "config of a route",
"schema": {
"$ref": "#/ definitions/RouteConfig"

}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
{
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/routes/{routeNane}/status": {
"get": {
"tags": [
"routes”
Il
"description": "Get status of a route",
"responses": {
"200": {
"description": "status of a route",

"schema": {
"$ref": "#/ definitions/RouteStatus"”

}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
{
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/routes/{routeNane}/health": {
"get": {
"tags": [
"routes”
Il
"description": "Get health of a route",
"responses": {
"200": {
"description": "health of a route",
"schema": {
"$ref": "#/ definitions/RouteHealth"
}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
{
"$ref": "#/ paraneters/routeNanePar anf
}
]
}

rout es/ {rout eNane}/ desti nati ons": {
"get": {

128

swagger.json

"tags": [
"routes”
Il
"description": "Get destinations of a route",
"responses": {
"200": {
"description": "destinations of a route",

"schema": {
"$ref": "#/ definitions/RouteDestinationList"

}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/routes/{rout eNane}/connections": {
"get": {
"tags": [
"routes”
Il
"description": "Get connections of a route",
"responses": {
"200": {
“description": "connections of a route",
"schema": {
"$ref": "#/ definitions/RouteConnectionsList"
}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/ routes/{rout eNane}/ bl ockedHosts": {
"get": {
"tags": [
"routes”
Il
“description": "Get blocked host list for a route",
"responses": {
"200": {
"description": "blocked host list for a route",
"schema": {
"$ref": "#/ definitions/RouteBl ockedHost Li st "
}
iE
"404": {
"description": "route not found"
}
}
iE

"paranmeters": [

"$ref": "#/ paraneters/routeNanePar anf

129

swagger.json

}
]
iE
"/routes": {
"get": {
"tags": [
"routes”
Il
"“description": "Get list of the routes",
"responses": {
"200": {
"description": "list of the routes”,
"schema": {
"$ref": "#/ definitions/RouteList"

}

"definitions": {

" Connect i onPool Status": {
"type": "object",
"properties": {

"reusedServer Connecti ons": {
"type": "integer"

b

"idl eServer Connections": {
"type": "integer"

}

}
}

nnect i onPool Config": {
"type": "object",
"properties": {
"idl eTi meout | nMs": {
"type": "integer"
}

x| dl eSer ver Connecti ons": {
"type": "integer"
}
}
}

nnect i onPool Summary": {
"type": "object",
"properties": {

"name": {

"type": "string"

}
}
}

nnect i onPool Li st": {
"type": "object",
"properties": {
"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/ConnectionPool Summary"
}
}
}
iE
"Met adat aSt at us": {
"type": "object",
"properties": {
"| ast Ref r eshHost nanme": {
"type": "string"

130

swagger.json

b

"l ast RefreshPort": {
"type": "integer"

b

"tinmeLast RefreshFail ed": {
"type": "string",
“format": "data-tinme"

b

"tinmeLast RefreshSucceeded": {
"type": "string",
“format": "data-tinme"

b

"refreshSucceeded": {
"type": "integer"

b

"refreshFail ed": {
"type": "integer"

}

}
iE
" Met adat aConfig": {
"type": "object",
"properties": {
"clusterName": {
"type": "string"

iE
"ti meRefreshl nMs": {
"type": "integer"
iE
"groupReplicationld": {
"type": "string"
iE
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"host name": {
"type": "string"
iE
"port": {
"type": "integer"
}
}
}
}

}

Met adat aSummar y": {
"type": "object",
"properties": {

"name": {

"type": "string"
}
}

iE

"Met adat aLi st": {

"type": "object",

"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/MetadataSummary"
}

131

swagger.json

" C ust er NodeSummary": {
"type": "object",
"properties": {

"groupUui d": {
"type": "string"
b

"serverUuid": {

"type": "string"

}
}
b
"C ust er NodeLi st": {
"type": "object",
"properties": {
"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/d usterNodeSunmary"
}
}
}
b
"C usterSunmary": {
"type": "object",
"properties": {
"name": {
"type": "string"
}
}
b

"ClusterList": {
"type": "object"”,
"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/d usterSummary"
}

}
}
b
"RouterStatus": {
"type": "object",
"properties": {
"timeStarted": {
"type": "string",
"format": "data-tine"

}

rocessld": {
"type": "integer"
}

"version": {
"type": "string"

b

"host name": {
"type": "string"

b

"product Edi tion": {
“"type": "string"

}
}
b
"Rout i ngd obal Status": {
"t ot al MaxConnecti ons": "nunber of total connections allowed",
"current MaxConnecti ons": "nunber of current total connections"
}

"Rout eHeal t h": {

132

swagger.json

"type": "object"”,
"properties": {
"isAlive": {
"type": "bool ean"

}
}
iE
"RouteStatus": {
"type": "object"”,
"properties": {
"activeConnections": {

"type": "integer"

b

"total Connections": {
"type": "integer"

b

"bl ockedHosts": {
"type": "integer"

}

}

b
"Rout eConfig": {

"type": "object",
"properties": {
"bi ndAddress": {
"type": "string"

b

"bindPort": {
"type": "integer"

b

"cl i ent Connect Ti meout | nMs": {
"type": "integer"

b

"desti nati onConnect Ti neout | nMs": {
"type": "integer"

b

"maxAct i veConnecti ons": {
"type": "integer"

b

"maxConnect Errors": {
"type": "integer"

b

"protocol ": {
"type": "string"

b

"socket": {
"type": "string"

b

"routingStrategy": {
"type": "string"

b

}

b
" Rout eSummary": {

"type": "object",
"properties": {
"name": {
"type": "string"
}
}
b
"Rout eLi st": {
"type": "object",
"properties": {

"items": {
"type": "array",
"items": {

133

swagger.json

"$ref": "#/ definitions/RouteSummary"
}
}
}
}

Rout eDest i nati onSummary": {
"type": "object",
"properties": {

"name": {
"type": "string"
}
}

iE

"Rout eDest i nati onList": {

"type": "object",

"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/RouteDestinati onSummary"
}

}
}
iE
" Rout eBl ockedHost Summar y": {
"type": "object",
"properties": {
"name": {
"type": "string"
}
}
iE
" Rout eBl ockedHost Li st": {
"type": "object",
"properties": {

"items": {
"type": "array",
"items": {

"$ref": "#/ definitions/RouteBl ockedHost Summary"
}
}
}
iE
" Rout eConnecti onsSummary": {
"type": "object"”,
"properties": {
"timeStarted": {
"type": "string",
“format": "date-time",

"description": "timepoint when connection to server

b

"ti meConnect edToServer": {
"type": "string",
“"format": "date-time",

"description": "timepoint when connection to server

b
"tinmeLast Sent ToServer": {

"type": "string",
"format": "date-tinme",

was initiated"

succeeded"

"description": "timepoint when there was |ast data sent fromclient to server"

}

"ti neLast Recei vedFr onerver": {
"type": "string",
“format": "date-time",

"description": "timepoint when there was | ast data sent fromserver to client"

}

yt esFronterver": {

134

swagger.json

“"type": "integer",
"description": "bytes sent to destination"
b
"byt esToServer": {
"type": "integer",
"description": "bytes received from destination"

b

"destinationAddress": {
"type": "string",
"description": "address of the destination of the connection”
iE
"sour ceAddress": {
"type": "string",
"description": "address of the source of the connection”
}
}
b
" Rout eConnecti onsList": {
"type": "object"”,
"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/RouteConnectionsSummary"
}

}
}
}
b
"paraneters": {
"connect i onPool NanmePar ani': {

"nanme": "connecti onPool Nanme",
"in": "path",
"description": "name of a connection pool",

"required": true,
"type": "string"

iE
" met adat aNanmePar ani': {
"name": "metadat aName",
"in": "path",
"description": "name of cluster",
"required": true,
"type": "string"
iE
"cl ust er NamePar ani': {
“name": "cl usterName",
"in": "path",
"description": "name of cluster",
"required": true,
"type": "string"
iE
"rout eNanePar ant': {
"name": "routeNane",
"in": "path",
"description": "name of a route",
"required": true,
"type": "string"
}

}

135

136

Appendix A MySQL Router Frequently Asked Questions

A.1 Where do | install MySQL ROULEI? ...ttt e e e et e e e e eeanas 137
A.2 Can | run more than one instance of the router application?ccoooiiiiiiiiiiii e, 137
A.3 How do | make the router application highly available? ..., 137
A.4 Does the router INSPECE PACKEIS?eui e e et e e e eanns 137
A.5 Does the router impact PErfOrMENCETiiie it e e e e aanas 137
A.6 Please explain the different MySQL Router versions, especially why Router went from 2.1.4 to

S0 TSP TOUPPPPPPTIN 137
A.7 Can | bind the router to multiple 1P addreSSES?cceuuiiiiiiii e 138
A.8 What is the difference between the different scheduling modes and strategies?ccoceeeun.e. 138
A.9 How many concurrent connections does each MySQL Router instance support?c.cooceeeeeennnes 138

A.10 How can | configure MySQL Router to use a non-default directory on a system using

Al

A.2.

A.3.

A.4.

A.5.

A.6.

PN o] 0N 1 110} o PP PP UPPP 138
Where do | install MySQL Router?

For best performance, MySQL Router is typically installed on the same host as the application that
uses it. Doing so can decrease network latency, allow a local unix domain socket connection to the
application instead of TCP/IP, and typically application servers are easiest to scale. But, this is not a
requirement as Router can be installed on any host, even its own.

Note
@ Unix domain sockets can function with applications connecting to MySQL
Router, but not for MySQL Router connecting to a MySQL Server.

Can | run more than one instance of the router application?

Yes, see also the - - di r ect or y bootstrap option.

How do | make the router application highly available?

Use MySQL Router as part of InnoDB Cluster. For additional details, see MySQL AdminAPI.
Does the router inspect packets?

No.

Does the router impact performance?

Introducing a component in a communication stream incurs a certain amount of overhead,; this is
affected heavily by workload. Fortunately, performance testing on the current release has shown
approximately 1% within the same speed as a direct connection for simple redirect connection
routing.

Please explain the different MySQL Router versions, especially why Router went from 2.1.4 to 8.0.3.

MySQL Router 2.0 was the initial version and is meant for MySQL Fabric users. It has since been
deprecated and is no longer supported.

MySQL Router 2.1 was introduced to support MySQL InnoDB cluster, and it also added new
features such as bootstrapping.

MySQL Router 8.0 expands on MySQL Router 2.1 but with a version number that aligns with
MySQL Server. In other words, Router 2.1.5 was released as Router 8.0.3 (along with MySQL
Server 8.0.3), and the 2.1.x branch was replaced by 8.0.x. The two branches are fully compatible.

137

https://dev.mysql.com/doc/mysql-shell/9.6/en/admin-api-userguide.html

A.7.

A.8.

A.9.

A.10.

Can | bind the router to multiple IP addresses?

No, the bi nd_addr ess option in the configuration file accepts only one address. However, it is
possible to use bi nd_addres = 0. 0. 0. 0 to bind to all ports on the localhost.

What is the difference between the different scheduling modes and strategies?

Router 8.0 introduced the r out i ng_st r at egy option. It offers the first-available, next-available,
round-robin and round-robin-with-fallback strategies. See the r out i ng_st r at egy documentation
for additional details.

How many concurrent connections does each MySQL Router instance support?

Over 50,000 as of MySQL Router 8.0.22, depending on the system's poll (poll or linux_epoll) limits
and also depending on the number of available CPU cores/threads.

Earlier MySQL Router versions had had a limit closer to 5000, depending on the operating system's
poll() limits.

How can | configure MySQL Router to use a non-default directory on a system using AppArmor?

If you use the - - di r ect or y option on a system using AppArmor, for example Ubuntu, you could
encounter a permissions error related to MySQL Router accessing the non-default directory. In
this case, add the path you pass to - - di r ect or y to the AppArmor file as suggested, and restart
AppArmor.

138

	MySQL Router 9.6
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 Routing for MySQL InnoDB Cluster
	1.2 Cluster Metadata and State
	1.2.1 MySQL Router Read Replica Support

	1.3 Connection Routing
	1.4 Application Considerations

	Chapter 2 Installing MySQL Router
	2.1 Installing MySQL Router on Linux
	2.2 Installing MySQL Router with Docker
	2.3 Installing MySQL Router on macOS
	2.4 Installing MySQL Router on Windows
	2.5 Installing MySQL Router from Source Code
	2.6 Upgrading MySQL Router

	Chapter 3 Deploying MySQL Router
	3.1 Bootstrapping MySQL Router
	3.2 Trying out MySQL Router in a Sandbox
	3.3 Basic Connection Routing
	3.4 Connection Sharing and Reuse
	3.5 Read/Write Splitting
	3.5.1 Configuration
	3.5.2 Statements

	3.6 MySQL Router TLS Session Cache
	3.7 MySQL Router Set Trace

	Chapter 4 Configuration
	4.1 Configuration File Syntax
	4.2 Configuration Locations
	4.3 Configuration Options
	4.3.1 Defining Options Using the Command Line
	4.3.2 MySQL Router Command Line Programs
	4.3.2.1 mysqlrouter — Command Line Options
	4.3.2.2 mysqlrouter_plugin_info — Command Line Options
	4.3.2.3 mysqlrouter_passwd — Command Line Options
	4.3.2.4 mysqlrouter_keyring — Command Line Options

	4.3.3 Configuration File Options
	4.3.4 Configuration File Example

	4.4 TLS Configuration

	Chapter 5 MySQL Router Application
	5.1 Starting MySQL Router
	5.2 Using the Logging Feature

	Chapter 6 MySQL Router REST API
	6.1 A Simple MySQL Router REST API Guide
	6.2 MySQL Router REST API Reference

	Appendix A MySQL Router Frequently Asked Questions

