MySQL Router 9.5

Abstract

MySQL Router is part of InnoDB Cluster, and is lightweight middleware that provides transparent routing between
your application and back-end MySQL Servers. It can be used for a wide variety of use cases, such as providing
high availability and scalability by effectively routing database traffic to appropriate back-end MySQL Servers. The
pluggable architecture also enables developers to extend MySQL Router for custom use cases. For additional
details about how MySQL Router is part of InnoDB Cluster, see MySQL AdminAPI.

MySQL Router 9.5 is highly recommended for use with MySQL Server 9.5.
For notes detailing the changes in each release, see the MySQL Router Release Notes.
If you have not yet installed MySQL Router, download it from the download site.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using

a Commercial release of MySQL Router, see MySQL Router Commercial License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in this
Commercial release. If you are using a Community release of MySQL Router, see MySQL Router Community

License Information User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2025-10-21 (revision: 83823)

https://dev.mysql.com/doc/mysql-shell/9.5/en/admin-api-userguide.html
https://dev.mysql.com/doc/relnotes/mysql-router/9.5/en/
https://dev.mysql.com/downloads/router
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysql-router-9.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.5-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
1 General INFOMMALIONuuii ittt e et e et e e et e et et e e e e ana s 1
1.1 Routing for MySQL INNODB CIUSTEIuuiiiiiieieiii ettt 1

1.2 Cluster Metadata and STALEc..uuiiiiiiiiiiiiii e ettt e e e e e eees 2
1.2.1 MySQL Router Read RepliCa SUPPOITccuvuiiiiiiiieeiiii et 3

1.3 CONNECLION ROULING «.evtuneiiiiie ettt ettt et e et e e e e et e e e e ana s 3

1.4 Application CONSIAEIALIONSuuuiiiiii et e e 4

2 InStalling MYSQL ROULETuiiiii ettt ettt e et e e e b 7
2.1 Installing MySQL ROULET ON LINUX .c.vuueiiiiieiiiiie ettt e e 7

2.2 Installing MySQL Router With DOCKETcoouiiiiiiiiieeeie e e e 9

2.3 Installing MySQL Router 0n MAaCOSiiiiiiiieiiiii et 11

2.4 Installing MySQL Router 0n WINAOWScouuiiiiiiiiieiiiii e e e e 11

2.5 Installing MySQL Router from SOUICe COUEccoiuuuiieiiiiiieeiiiie e 11

2.6 Upgrading MYSQL ROULETccuuuiiiiitieieii ettt e e e e e e eeaans 13

3 Deploying MYSQL ROULETiiiiiiieiiit ettt et et e e et e e e 15
3.1 Bootstrapping MYSQL ROULETccoouiiiiiiiiii ettt e e e 16

3.2 Trying out MySQL Router in @ SandboX ..o 18

3.3 BasiC CONNECHON ROULINGcvvetiieiiitie ettt ettt ettt e e e e e enaans 22

3.4 Connection Sharing and REUSEcooiiiiiiiiii e 22

3.5 ReA/WIILE SPIIING ...ceereneeiiiii ettt e e e e e 24
ST O] 01 1o [] = 11 (o] o I PP PPPTTR 24

3.5.2 STAEMENTS ..oeiiiiiiiii et 25

3.6 MySQL Router TLS SesSion CaCheiiiiiiiiii e 26

3.7 MYSQL ROULEN SEE TIACE .. cvuiiiiiiiiiee ettt 27

o] a1 1o U] = 11 (o] o PP PP PP POUPPTTRUPPIN 35
4.1 Configuration File SYNMTAXccouuuiiiiiiieiiii e e e eeaans 35

4.2 Configuration LOCALIONScoouuiiiiiiii ettt ettt e e e e e 37

4.3 Configuration OPLIONSuiiieiiieiieii et et et e e e e e e 40
4.3.1 Defining Options Using the Command LiNeccoviiiiiiiiniiiiiiieiii e 40

4.3.2 MySQL Router Command Line Programscooceeuuiiieiiiiiiieiiii e eeeineeeenns 41

4.3.3 Configuration File OPLIONSiiiiiiiiiiiii e 64

4.3.4 Configuration File EXamPple ..o 100

4.4 TLS CONfIQUIALION ...eiteiieiit ettt ettt e e et ettt e e e et e e e enta e eeenes 102

5 MySQL RoOULEr APPICALION ...ceevtiiieiiiee et ettt e e e e e e 105
5.1 Starting MYSQL ROULETcceiiiiiieii ettt et e e et e e e e e s 105

5.2 USiNg the LOgQiNg FEALUIEccooutiiiiiiii ettt 106

6 MYSQL ROULET REST AP ..ottt ettt ettt e e et e et e e enaens 109
6.1 A Simple MySQL Router REST API GUITEoiiiiiiiiiiiii e 109

6.2 MySQL Router REST APl REfEIeNCEeiiiiiiiiiiiii e 111

A MySQL Router Frequently ASked QUESTIONScvieuuuiiiiiiiieieii et 131

Preface and Legal Notices

This is the MySQL Router manual. This document covers MySQL Router.

Licensing information. This product may include third-party software, used under license. If

you are using a Commercial release of MySQL Router, see MySQL Router Commercial License
Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL Router, see MySQL Router Community License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 2006, 2025, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in

the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

https://downloads.mysql.com/docs/licenses/mysql-router-9.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-router-9.5-gpl-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://lwww.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / waww. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=accé& d=tr s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 General Information

Table of Contents

1.1 Routing for MySQL INNODB CIUSTETuiiiiiiieiiiii ettt eeeeanns 1
1.2 Cluster Metadata @and STATEouuiiiiiiii e et e et e et e e e et eeeees 2

1.2.1 MySQL Router Read RepliCa SUPPOITuuniiiiiiiieiiiii e 3
1.3 CONNECLION ROULING ..evtuiiiiiiee ettt ettt ettt et e e et e e e e et e e e e e nb e e e eban s 3
1.4 Application CONSIAEIALIONSuiiiiii ettt ettt e et et e et e e e s 4

MySQL Router is a building block for high availability (HA) solutions. It simplifies application
development by intelligently routing connections to MySQL servers for increased performance and
reliability.

MySQL Router officially supports active MySQL Server versions equal to or below the MySQL Router
version. For example, MySQL Router 9.5 officially supports MySQL 8.0, 8.4, and 9.5. MySQL Router
does not support versions from a newer series; for example, MySQL Router 9.4 cannot be used with

MySQL Server 9.5.

1.1 Routing for MySQL InnoDB Cluster

MySQL Router is part of InnoDB Cluster and is lightweight middleware that provides transparent
routing between your application and back-end MySQL Servers. It is used for a wide variety of use
cases, such as providing high availability and scalability by routing database traffic to appropriate back-
end MySQL servers. The pluggable architecture also enables developers to extend MySQL Router for
custom use cases.

For additional details about how Router is part of InnoDB Cluster, see MySQL AdminAPI.

Introduction

For client applications to handle failover, they need to be aware of the InnoDB cluster topology and
know which MySQL instance is the PRIMARY. While it is possible for applications to implement that
logic, MySQL Router can provide and handle this functionality for you.

MySQL uses Group Replication to replicate databases across multiple servers while performing
automatic failover in the event of a server failure. When used with a MySQL InnoDB Cluster,
MySQL Router acts as a proxy to hide the multiple MySQL instances on your network and map

the data requests to one of the cluster instances. As long as there are enough online replicas and
communication between the components is intact, applications will be able to contact one of them.
MySQL Router also makes this possible by having applications connect to MySQL Router instead of
directly to MySQL.

Deploying Router with MySQL InnoDB Cluster

The recommended deployment model for MySQL Router is with InnoDB Cluster, with Router sitting on
the same host as the application.

The steps for deploying MySQL Router with an InnoDB Cluster after configuring the cluster are:
1. Install MySQL Router.
2. Bootstrap InnoDB Cluster, and test.

Bootstrapping automatically configures MySQL Router for an existing InnoDB Cluster by using - -
boot st r ap and other command-line options. During bootstrap, Router connects to the cluster,
fetches its metadata, and configures itself for use. Bootstrapping is optional.

https://dev.mysql.com/doc/mysql-shell/9.5/en/admin-api-userguide.html

Cluster Metadata and State

For additional information, see Chapter 3, Deploying MySQL Router.
3. Set up MySQL Router for automatic startup.

Configure your system to automatically start MySQL Router when the host is rebooted, a process
similar to how the MySQL server is configured to start automatically. For additional details, see
Section 5.1, “Starting MySQL Router”.

For example, after creating a MySQL InnoDB Cluster, you might configure MySQL Router using:

$> nysqlrouter --bootstrap |ocal host:3310 --directory /opt/nyrouter --user snoopy
This example bootstraps MySQL Router to an existing InnoDB Cluster where:

* | ocal host : 3310 is a member of an InnoDB cluster, and either the PRIMARY or bootstrap will
redirect to a PRIMARY in the cluster.

» Because the optional - - di r ect or y bootstrap option was used, this example creates a self-
contained installation with all generated directories and files at / opt / nyr out er /. These files
include st art. sh, stop. sh, | og/, and a fully functional MySQL Router configuration file named
nmysql rout er. conf.

* Only the host's system user named snoopy will have access to / opt / nyrouter/ *.

See - - boot st r ap and related options for ways to modify the bootstrap configuration process. For
example, passing in - - conf - use- socket s enables Unix domain socket connections because only
TCP/IP connections are enabled by default.

1.2 Cluster Metadata and State

MySQL Router works by sitting in between applications and MySQL servers. Applications connect to
Router normally as if they were connecting to an ordinary MySQL server. Whenever an application
connects to Router, Router chooses a suitable MySQL server from the pool of candidates that it knows
about, and then connects to it. From that moment on, Router forwards all network traffic between the
application and MySQL, including responses coming back from it.

MySQL Router keeps a cached list of the online MySQL servers, or the topology and state of the
configured InnoDB cluster. Initially, the list is loaded from Router's configuration file when Router is
started. This list was generated with InnoDB Cluster servers when Router was bootstrapped using the
- - boot st r ap option.

To keep the cache updated, the metadata cache component keeps an open connection to one of the
InnoDB Cluster servers that contains metadata. It does so by querying the metadata database and live
state information from MySQL's performance schema. The cluster metadata is changed whenever the
InnoDB Cluster is modified, such as adding or removing a MySQL server using the MySQL Shell, and
the performance_schema tables are updated in real-time by the MySQL server's Group Replication
plugin whenever a cluster state change is detected.

When Router detects that a connected MySQL server shuts down, for example because the metadata
cache has lost its connection and can not connect again, it attempts to connect to a different MySQL
server to fetch metadata and InnoDB Cluster state from the new MySQL server.

dba. dr opMet adat aSchena(), causes Router to drop all current connections

Note
@ Dropping cluster metadata using MySQL Shell, such as
and forbid new connections. This causes a full outage.

Application connections to a MySQL server that shuts down are automatically closed. They must then
reconnect to Router, which redirects them to an online MySQL server.

MySQL Router Read Replica Support

1.2.1 MySQL Router Read Replica Support

MySQL Router reads the values defined in the metadata field,
v2 router_options.router_options.read only targets, toretrieve routing information for
read-only traffic.

v2_router_options.router_options.read_only_targets is populated by the AminAPI
method cl ust er. set Rout i ngOpt i on() which sets the routing policy to one of the following values
using the r ead_onl y_t ar get s option:

» al | : all Read Replicas and Secondary cluster members are used for read-only traffic.
» read_replicas: only Read Replicas are used for read-only traffic.

e secondari es: only Secondary cluster members are used for read-only traffic.

read_replicas, orsecondari es, MySQL Router defaults to secondari es

Note
@ Ifread_onl y_t ar get s is not present, or set to a value other than al | ,
and logs a warning message.

MySQL Router does not use Read Replicas as a source for Cluster metadata. Also, it is not possible
to use a Read Replica in a MySQL Router bootstrap command. An error is returned for any attempt to
bootstrap with a Read Replica.

Failure Handling
MySQL Router does not route connections to Read Replicas in the following situations:
* If there is no quorum in the Cluster.
« If all Cluster members are in OFFLINE state.
« If no Cluster members can be reached when checking their Group Replication state.
MySQL Router routing policy is affected by configuration in the following ways:

« If the Cluster state is INVALID and the i nval i dated _cl uster policyissettodrop_all,
Read Replicas are not used for new read-only connections and all existing connections to the Read
Replicas are dropped.

« If the Cluster state is INVALID and the i nval i dat ed_cl uster _policyissettoal | ow ro, Read
Replicas are used for new read-only connections and existing connections to the Read Replicas are
unaffected.

MySQL Router uses the standard quarantine mechanism for Read Replicas, as defined by the
desi nati on_st at us configuration parameters. See Destination Status Options.

1.3 Connection Routing

Connection routing means redirecting MySQL connections to an available MySQL server. MySQL
packets are routed in their entirety without inspection. For an example deployment using basic
connection routing, see Section 3.3, “Basic Connection Routing”.

Applications connect to MySQL Router and not directly to MySQL Server, and if the connection fails
then applications are designed to retry the connection because MySQL Router selects a new MySQL
server after failed attempts. This is also called simple redirect connection routing because it requires
the application to retry the connection. That is, if a connection from MySQL Router to the MySQL
server is interrupted, the application encounters a connection failure. However, a new connection
attempt triggers Router to find and connect to another MySQL server.

Application Considerations

Routed servers and routing strategies are defined in a configuration file. For example, the following
section tells MySQL Router to listen for connections on port 7002 of the localhost, and then

redirect those connections to a MySQL instance defined by the dest i nat i ons option, including
servers running on the localhost listening on ports 3306, 3307, and 3308. We also use the
routing_strategy option to use the round robin form of load-balancing. For additional information,
see Section 4.3, “Configuration Options”

[routing: sinple_redirect]

bi nd_port = 7002

routing_strategy = round-robin
destinations = | ocal host: 3306, | ocal host: 3307, | ocal host : 3308

This example section is titled r out i ng: si npl e_r edi r ect . The first part, r out i ng, is the section
name used internally to determine which plugin to load. The second part, si npl e_redi rect, isan
optional section key to differentiate between other routing strategies.

When a server is no longer reachable, MySQL Router moves to the next server destination in the list
and circles back to the first server destination if the list is exhausted as per the round-robin strategy.

1.4 Application Considerations

MySQL Router usage does not require specific libraries or interfaces. Aside from managing the MySQL
Router instance, write your application as if MySQL Router was a typical MySQL instance.

The only difference when using MySQL Router is how you make connections to the MySQL server.
Applications using a single MySQL connection at startup that does not test for connection errors
must be updated. This is because MySQL Router redirects connections when the connection is
attempted and does not read packets or perform an analysis. If a MySQL server fails, Router returns
the connection error to the application.

For these reasons, the application should be written to test for connection errors and, if encountered,
retry the connection. If this technique or one similar is employed in your application then using MySQL
Router will not require any extra effort.

The following gives a better sense of why you may want to use MySQL Router and looks into how it is
used from an application's point of view.

Scenarios
There are several possible scenarios for MySQL Router, including:

» As a developer, | want my application to connect to a service so it gets a connection to, by default,
the current primary of a group replication cluster.

« As an administrator, | want to set up multiple services so MySQL Router listens on a different port for
each highly available replica set.

» As an administrator, | want to be able to run a connection routing service on port 3306 so it is more
transparent to a user or application.

» As an administrator, | want to configure a routing strategy for each connection routing service so |
can specify whether a primary or secondary is returned.

Workflow with MySQL Router
The workflow for using MySQL Router is as follows:
1. MySQL Client or Connector connects to MySQL Router to, for example, port 6446.

2. Router checks for an available MySQL server.

Connections using MySQL Router

3. Router opens a connection to a suitable MySQL server.
4. Router forwards packets back and forth, between the application and the MySQL server

5. Router disconnects the application if the connected MySQL server fails. The application can then
retry connecting to Router, and Router then chooses a different and available MySQL server.

Connections using MySQL Router

An application connects to MySQL Router, and Router connects the application to an available MySQL
server.

This example demonstrates that a connection transparently connects to one of the InnoDB Cluster
instances. Because this example uses a sandboxed InnoDB Cluster where all instances run on the
same host, we check the port status variable to see which MySQL instance is connected.

Make a connection to MySQL Router using the MySQL client, for example:
$> nysqgl -u root -h 127.0.0.1 -P 6446 -p
These port numbers depend on your configuration, but compare ports in this example:

nysqgl > sel ect @®ort;

S +
| @@ort |
S +
| 3310 |
S +

1 rowin set (0.00 sec)

To summarize, the client (application) connected to port 6446 but is connected to a MySQL instance on
port 3310.

Recommendations

The following are recommendations for using MySQL Router.

« Install and run MySQL Router on the same host as the application. For a list of reasons, see
Chapter 3, Deploying MySQL Router.

» Bind Router to localhost using bi nd_port = 127.0. 0. 1: <port > in the configuration file.
Alternatively, on Linux, disable TCP connections (see - - conf - ski p-t cp) and limit this to only
using Unix socket connections (see - - conf - use- socket s).

Chapter 2 Installing MySQL Router

Table of Contents

2.1 Installing MySQL ROULEN ON LINUX ...uiuuiiiiiieiieeci e e e e e e s e s e e e e st e e san e esanseeanneeannaees 7
2.2 Installing MySQL RouUter With DOCKETciuuieiiii i e e e e e e e e e aens 9
2.3 Installing MySQL RoOUtEr 0N MACOScouuiiiiiii e e e e e e e e aaas 11
2.4 Installing MySQL RoUter 0N WINAOWSuiiiiiiiiiiieii e e e e e e e e e e e e e e et e e e e aanas 11
2.5 Installing MySQL Router from SOUrce COOEcovuiiiiiiiiii e e 11
2.6 Upgrading MYSQL ROULETuuiiiiiciii e e e e e e e e e et e et e e et e e st r e et e e et e e et e eennaaees 13

This chapter describes how to obtain and install MySQL Router. Downloads are available from the
download site.

System Requirements

* MySQL Router supports the same platforms as MySQL Server, as listed here: https://
www.mysgl.com/support/supportedplatforms/database.html

e Har dwar e: Minimum requirement is 1 CPU Core and 256 MB of RAM. 4+ CPU Cores and 4+ GB of
RAM is recommended.

e Di sk Space: Minimum requirement is 100 MB.

 External |ibraries:Mostexternal dependencies, such as protobuf and rapidjson, are bundled
within the MySQL Router packages. One exception is OpenSSL, which is only bundled for Windows
builds. Package managers should resolve the OpenSSL dependency and install the proper
OpenSSL version as required.

2.1 Installing MySQL Router on Linux

There are binary distributions of MySQL Router available for several variants of Linux, including
Fedora, Oracle Linux, Red Hat, and Ubuntu.

Installation options include:

» Official MySQL Yum or APT repository packages: These binaries are built by the MySQL Release
team. For additional information about installing these, see the quick guides for installing them using
Yum or APT.

» Download official MySQL packages: Downloads are available at https://dev.mysqgl.com/downloads/
router. Download and install using your preferred package manager.

» Download the source code and compile yourself: The source code is available as part of MySQL
Server at https://dev.mysgl.com/downloads/mysqgl. Alternatively, the source code is also available on
GitHub (specifically in the r out er directory).

For information about compiling MySQL Router, see Installing MySQL Router from Source Code.
The procedure for installing on Linux depends on your Linux distribution.

Installing MySQL Router using an official DEB or RPM package creates a local system user and group
named "mysqlrouter" on the host that MySQL Router runs as by default. For additional information, see
the system user 's configuration option.

Installing DEB packages

On Ubuntu, and other systems that use the Debian package scheme, you can either download and
install .deb packages or use the APT package manager.

https://dev.mysql.com/downloads/router
https://www.mysql.com/support/supportedplatforms/database.html
https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/router
https://dev.mysql.com/downloads/mysql
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server

Installing RPM packages

Using the APT Package Manager

1.

3.

Install the MySQL APT repository as described in the MySQL APT Repository documentation. For
example:

Note
@ Download the APT configuration package from here.

$> sudo dpkg -i nysql-apt-config_0.8.30-1 all.deb

Choose the desired MySQL Server series to install, such as MySQL Server 8.4. Choose Innovation
to install and upgrade to the latest Innovation series, which today installs MySQL 9.5. This choice
also determines the MySQL Router version that is installed from the MySQL repository.

Update your APT repository:

$> sudo apt-get update

Install MySQL Router. For example:

$> sudo apt-get install mysql-router

Manually Installing a Package

You can also download the .deb package and install it from the command line similarly to

$> sudo dpkg -i package. deb

package. deb is the MySQL Router package name; for example, mysqgl - r out er -
conmuni ty-ver si on- lubunt u23. 04_and64. deb, where ver si on is the MySQL Router version
number.

Installing RPM packages

On RPM-based systems, you can either download and install RPM packages or use the Yum package
manager.

Using the Yum Package Manager

First, install the MySQL Yum repository as described in the MySQL Yum Repository documentation.
For example:

Note
3 Download the Yum configuration package from here.

$> sudo rpm -Uvh nysql 84-conmmuni ty-rel ease-el 7- 1. noarch. r pm

Next, optionally change the active MySQL Server version, which defaults to MySQL 8.4 LTS. For
example, to install and upgrade to the latest Innovation version (which is MySQL 9.5 today) from
both the MySQL Server (mysqgl) and MySQL Router (part of mysqgl-tools) subrepositories:

$> sudo yum confi g- manager --disable nysql-8.4-|ts-community
$> sudo yum confi g- manager --enable nysql-innovation-community

$> sudo yum confi g- nanager --disable nysql-tools-8.4-Its-comunity
$> sudo yum confi g-manager --enable nysql-tools-innovation-conmmunity

Now both installations and upgrades will use the latest version from the current Innovation series.

Next, install MySQL Router. For example:

http://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/apt/
http://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/
https://dev.mysql.com/downloads/repo/yum/

Uninstalling

$> sudo yuminstall nysql-router-conmmunity
Manually Installing an RPM Package
$> sudo rpm-i package.rpm

package. r pmis the MySQL Router package name; for example, mysqgl - r out er -
conmuni ty-version-el 7. x86_64. r pm where ver si on is the MySQL Router version number.

Uninstalling

The procedure for uninstalling MySQL Router on Linux depends on the package you are using.
Uninstalling DEB packages

To uninstall a Debian package, use this command:

$> sudo dpkg -r nysql -router

This command does not remove the configuration files. To also remove them and the data directory,
use:

$> sudo dpkg --purge nysql-router

Note
@ Alternatively, use apt - get renove nysql -rout er orapt-get purge
nysql -router.

Uninstalling RPM packages

To uninstall an RPM package, use this command:

$> sudo rpm-e nysql-router-comunity

Note
@ Similarly, use yum r enove nysql -rout er-conmunity.

This command does not remove the configuration files.

What Is Not Removed

When not purging, the uninstallation process does not remove your configuration files. On Debian
systems, this might include files such as:

/etc/init.d/ nysqlrouter

/ et c/ mysql rout er/ mysql rout er. conf
/ et ¢/ appar nor . d/ usr. shi n. nysql r out er

2.2 Installing MySQL Router with Docker

The Docker deployment framework supports easy installation and configuration of MySQL Router. This
section explains how to use a MySQL Router Docker image.

You need to have Docker installed on your system before you can use a MySQL Router Docker image.
See Install Docker for instructions.

Important

group, and then add to it any users who want to run docker commands. See

A You need to either run docker commands with sudo, or create a docker user
details here. Because Docker containers are always run with root privileges, you

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/linux/linux-postinstall/

Basic Steps for MySQL Router Deployment with Docker

should understand the Docker daemon attack surface and properly mitigate the
related risks.

Basic Steps for MySQL Router Deployment with Docker

specifically for Linux platforms. Other platforms are not supported, and users

Warning
O The MySQL Docker images maintained by the MySQL team are built
using these MySQL Docker images on them are doing so at their own risk.

Downloading a MySQL Router Docker Image

Downloading the server image in a separate step is not strictly necessary; however, performing this
step before you create your Docker container ensures your local image is up to date. To download the
MySQL Community Edition image, run this command:

$> docker pull container-registry.oracle.conm nysqgl/comunity-router:tag

The t ag is the label for the image version you want to pull (for example, 8. 0). If : t ag is omitted,
the | at est label is used, and the image for the latest GA version of MySQL Community Router is
downloaded. Refer to Oracle Container Registry and navigate to the MySQL Router image in the
MySQL repository for a complete list of tags for available versions.

Table 2.1 Variables

Variable Description

MYSQ._HOST Required. MySQL host to connect to.

MYSQ._PORT Required. MySQL server listening port.

MYSQL_USER Required. MySQL user to connect with.

MYSQL_ PASSWORD Required. String. MySQL user's password.

MYSQL_| NNODB_CLUSTER MEMBERS Optional. Integer. Wait for this number of cluster
instances to be online.

MYSQL_CREATE _ROUTER_USER Optional. Boolean. Whether to create a new

account for MySQL Router to use when running.
Default value is enabled (1). Set to O (zero) to
disable.

MYSQL_ROUTER BOOTSTRAP_EXTRA OPTI ONS |Optional. Comma-separated list of additional
command line options to apply during
bootstrapping.

Running in a container requires a working InnoDB cluster. If supplied, the run script waits for the
given mysgl host to start, the InnoDB cluster to have the MYSQL_| NNCDB_CLUSTER _MENMBERS-

defined number of members, and then uses the supplied host for bootstrapping. See Section 3.1,
“Bootstrapping MySQL Router”.

For example:

$> docker run \

-e MYSQ._HOST=l ocal host \

-e MYSQ._PORT=3306 \

-e MYSQL_USER=nysql \

-e MYSQL_PASSWORD=nysql \

-e MYSQL_| NNODB_CLUSTER MEMBERS=3 \

-e MYSQL_ROUTER _BOOTSTRAP_EXTRA OPTI ONS="- - conf - use- socket --conf-use-gr-notification" \
-ti container-registry.oracle.conl nmysql/comunity-router

To use a specific version of MySQL Router, add a tag to the - t i value. For example: - t i
container-registry.oracle.con nysqgl/comunity-router:9.0.0 for MySQL Router
9.0.0. To use the latest version, do not add a tag.

10

https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
https://container-registry.oracle.com/

Installing MySQL Router on macOS

Checking the status:

$> docker ps

For additional details, see Oracle Container Registry and navigate to the MySQL Router image in the
MySQL repository.

2.3 Installing MySQL Router on macOS

Download the DMG archive from https://dev.mysqgl.com/downloads/router/, and execute it to install
MySQL Router.

Alternatively, download, unpack, and manually install the compressed . t ar . gz file.

2.4 Installing MySQL Router on Windows

MySQL Router for Windows can be installed using the MySQL Installer that installs and updates all
MySQL products on Windows, or by downloading the ZIP Archive.

Windows Prerequisites

For the Community version of MySQL Router: The Visual C++ Redistributable for Visual Studio 2015
(available at the Microsoft Download Center) is required. Install it before installing MySQL Router on
Windows.

Installing Using MSI
To install MySQL Router on Microsoft Windows using the MSI Installer, do the following:

1. Download the Windows (x86, 64-bit), MSI Installer package from http://dev.mysqgl.com/
downloads/router/.

2. When prompted, click Run.

3. Follow the steps in the Setup Wizard.

Installing the ZIP Archive

The ZIP Archive download is available at https://dev.mysql.com/downloads/router/.

Unlike installing with MySQL Installer, unpacking the MySQL Router ZIP archive does not check for
dependencies on your system, such as the required VC++ 2015 runtime. When installing MySQL
Router using the ZIP archive, download and install Visual C++ Redistributable for Visual Studio 2015
before using MySQL Router.

After installing the prerequisites, unzip the ZIP Archive and execute bi n/ nysql r out er . exe as you
normally would.

For information about installing and using MySQL Router as a Windows service, see Section 5.1,
“Starting MySQL Router”.

2.5 Installing MySQL Router from Source Code

MySQL Router is part of the MySQL Server source code tree; compiling MySQL Server also compiles
MySQL Router. This assumes - DW TH_ROUTER=O0N, which is enabled by default. The instructions here
are brief, see Installing MySQL from Source for specific prerequisites and additional details.

Note
@ MySQL Router source code can be found in the r out er directory inside the
MySQL Server source code repository.

11

https://container-registry.oracle.com/
https://dev.mysql.com/downloads/router/
http://www.microsoft.com/en-us/download/default.aspx
http://dev.mysql.com/downloads/router/
http://dev.mysql.com/downloads/router/
https://dev.mysql.com/downloads/router/
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://dev.mysql.com/doc/refman/9.5/en/source-installation.html

Get Source Code

Get Source Code

To compile MySQL Router, download the MySQL Server source code from https://dev.mysgl.com/
downloads/mysql. Alternatively, git clone mysql-server on GitHub.

Download and unpack the MySQL Server source files, for example:

$> tar xzf nysgl-9.5.0.tar.gz
$> cd nysqgl-9.5.0

Once this is complete, you need to configure using cmake as you would for MySQL Server.
Configure

The CMake program provides control over how you configure a source distribution. Typically, you do
this using options on the CMake command line. The CMake options are not documented here, see
MySQL Source-Configuration Options.

To compile the source code, create a folder to contain the compiled binaries and executables, run
cmake to create the make file, and then compile the code. See Installing MySQL Server from Source
for additional details, including platform specific prerequisites and concerns.

Note
@ If you change anything and need to recompile from scratch, be sure to delete
the CMakeCache. t xt file before executing the cmake command.

Begin by executing the cnrake command to create the make file. The following commands are run from
the root of the MySQL Server source code tree:

$> nkdir build & cd build
$> cnmke ..

Executing cmake may yield errors related to missing libraries or tools. For example, macOS builds may
need to reference a newer bi son executable:

$> cneke .. -DBI SON_EXECUTABLE=/usr/ | ocal / opt/ bi son/ bi n/ bi son
Compile

You can compile MySQL Server as you normally would (simply make) as it also compiles MySQL
Router, or build MySQL Router specific targets. For example, to only build MySQL Router with its
libraries, plugins, and tests:

$> make nysqlrouter_all
Optionally execute the MySQL Router specific tests with ct est :
$> ctest -Rroutertest_

Installation

There is not a make option to only install MySQL Router from source because executing nake
i nstal | initiates a full MySQL Server build.

Developer Related Notes

Notes related to using and testing a locally compiled MySQL Router version for development purposes:

e To run a local build without meke i nst al | , configure Router to find the newly built
pl ugi n_f ol der as compiling generates a non-standard installation directory structure. Either

12

https://dev.mysql.com/downloads/mysql
https://dev.mysql.com/downloads/mysql
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/9.5/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/9.5/en/source-installation.html

Upgrading MySQL Router

manually edit the generated nysql r out er. conf or set it during bootstrap, for example with: - -
conf - set - opti on=DEFAULT. pl ugi n_fol der=../plugin_output_directory

Similarly, also set r unt i me_f ol der accordingly, for example: - - conf - set -
opti on=DEFAULT. runtine_fol der=../runtine_output _directory

» While individual targets do produce binaries, such as make nysqgl r out er _passwor d, building all
Router targets is recommended

e To avoid building unit tests, also configure with - DW TH_UNI T_TESTS=0
2.6 Upgrading MySQL Router

MySQL Router as a part of InnoDB Cluster

MySQL Router is most commonly used as an InnoDB Cluster component; with Router bootstrapped
against the cluster. For related information, see Section 3.1, “Bootstrapping MySQL Router”.

If No Metadata Upgrade Needed

MySQL Router can be upgraded independently of the InnoDB Cluster components if a metadata
upgrade is not needed.

Since the assumption is that the Router configuration file and state file remain backward compatible,
the simplest upgrade scenario is to install a new version using an installer/upgrade package for the
system. In most cases, the installer handles stopping and restarting the running instance after the
upgrade. If that is not the case (such as installing from the source or a tar.gz archive) then the running
Router instance must be manually stopped and restarted after the installation/upgrade process.

If a Metadata Upgrade Needed

When the InnoDB Cluster requires a cluster metadata schema upgrade, MySQL Router must be
upgraded as a part of the metadata upgrade procedure described in the MySQL Shell guide at
Upgrade Metadata Schema.

MySQL Router logs indicate if existing metadata is incompatible with the new version with an error,
such as:

This version of MySQL Router is not conpatible with the provided MySQ | nnoDB cl uster netadata

Bootstrapping Router after installing a new version
Usually bootstrapping is not needed after the upgrade. The exceptions to this are:

« If the new Router version introduces new capabilities, another bootstrap operation is required to use
them. For example, if an active cluster is part of a ClusterSet, bootstrapping sets up the appropriate
configuration options to work with a ClusterSet.

« If the new MySQL Router is installed at a different location than the previous version; in that case the
configuration file will contain paths (such as pl ugi n_f ol der) to the previous installation. Manually
changing the existing configuration file is an alternative.

Standalone MySQL Router (not a part of InnoDB Cluster)

Since the assumption is that the Router configuration file and state file remain backward compatible,
the simplest upgrade scenario is to install a new version using an installer/upgrade package for the
system. In most cases, the installer handles stopping and restarting the running instance after the
upgrade. If that is not the case (such as installing from the source or a tar.gz archive) then the running
Router instance must be manually stopped and restarted after the installation/upgrade process.

13

https://dev.mysql.com/doc/mysql-shell/9.5/en/mysql-innodb-dba-upgrade-metadata.html

Standalone MySQL Router (not a part of InnoDB Cluster)

The existing configuration file is likely compatible with the new version but would require adjusting to
set newly added options.

14

Chapter 3 Deploying MySQL Router

Table of Contents

3.1 Bootstrapping MYSQL ROULETccouuiiiiiiiieeeii ettt e e e e 16
3.2 Trying out MySQL RouUter in @ SAnTDOXccuuuiiiiiieiiiii e 18
3.3 BasiC CONNECHON ROULINGcceuuuueieiii ettt ettt ettt ettt e e e e e s 22
3.4 Connection Sharing and REUSEcoouuiiiiiiii e e e e e e e e e eees 22
3.5 REAA/WIILE SPIILEING ..oeeereieeeeit ettt e et e e e e e e ene e 24

ST O] o116 [] r= L1 (o] o E T PSPPSR 24

3.5.2 STALEMEBNTS ..oeeiiiieii et ettt 25
3.6 MySQL Router TLS SeSSION CACNEuuiiiiiiiiei et 26
3.7 MYSQL ROULEN SEE TIACE ...ceuiiiiiiieii ittt ettt e e e e enans 27

Performance Recommendations

For best performance, MySQL Router is typically installed on the same host as the application that
uses it. Possible reasons include:

» To allow local UNIX domain socket connections to the application, instead of TCP/IP.

Note
@ Unix domain sockets can function with applications connecting to MySQL
Router, but not for MySQL Router connecting to a MySQL Server.

» To decrease network latency.

* To allow MySQL Router to connect to MySQL without requiring extra accounts for the
Router's host, for MySQL accounts that are created specifically for application hosts such as
myapp@198.51.100.45 instead of a value like myapp@%.

» Typically application servers are easiest to scale.

You can run multiple MySQL Router instances on your network, and you do not need to isolate MySQL
Router to a single machine. This is because MySQL Router has no affinity for any particular server or
host.

15

Bootstrapping MySQL Router

Figure 3.1 Example MySQL Router Deployment

Application Application
MySQL Connector ' MySQL Connector '

MySQL Shell

“.._ Group Replication .

3.1 Bootstrapping MySQL Router

Here is a brief example to demonstrate how MySQL Router can be deployed to use an InnoDB Cluster
using bootstrapping. For additional information, see - - boot st r ap and the other bootstrap options.

This example creates a standalone MySQL Router instance using the - - di r ect or y option, enables
sockets, uses - - account to customize Router's MySQL username, and sets - - account - cr eat e to
al ways to only bootstrap if the account does not already exist. This example assumes that an InnoDB
Cluster named nyCl ust er already exists.

$> nysql router --bootstrap root@ocal host: 3310 --directory /tnp/ nyrouter
--conf-use-sockets --account routerfriend --account-create always

Pl ease enter MySQL password for root:

Boot strappi ng My/SQL Router instance at '/tnp/nyrouter'...

Pl ease enter MySQL password for routerfriend:

- Creating account(s)

- Verifying account (using it to run SQL queries that would be run by Router)

- Storing account in keyring

- Adjusting perm ssions of generated files

- Creating configuration /tnp/ myrouter/nysqlrouter.conf

MySQL Router configured for the InnoDB C uster 'nyd uster'

After this M/SQL Router has been started with the generated configuration
$ nysqlrouter -c /tnp/ nyrouter/nysqlrouter. conf

the cluster 'nyCduster' can be reached by connecting to:

MySQL d assic protocol

16

Bootstrapping MySQL Router

- Read/Wite Connections: |ocal host: 6446, /tnp/nyrouter/nysql.sock
- Read/ Only Connections: |ocal host: 6447, /tnp/nyrouter/nysqlro.sock

MySQL X protocol

- Read/Wite Connections: |ocal host: 6448, /tnp/nyrouter/mnmysqlx. sock
- Read/ Only Connections: |ocal host: 6449, /tnp/nyrouter/mnmysqglxro.sock

At this point the bootstrap process has created a nmysql r out er . conf file with the required files at the
directory specified, and the result shows you how to start this MySQL Router instance. A generated
MySQL Router directory looks similar to:

$>1s -1 | awk '{print $9}'

dat a/

| og/

nmysql rout er. conf
nmysql rout er. key

run/
start.sh
st op. sh

A generated MySQL Router configuration file (mysql r out er . conf) looks similar to:

File automatically generated during M/SQL Router bootstrap
[DEFAULT]

| oggi ng_f ol der =/t np/ nmyrout er/ | og

runti me_f ol der =/t np/ myrout er/run

dat a_f ol der =/t np/ nyrout er/ dat a

keyri ng_pat h=/t np/ nyr out er / dat a/ keyri ng

mast er _key_pat h=/t np/ myr out er/ nysql r out er . key

connect _ti neout =15

read_ti meout =30

dynami c_st at e=/t np/ myrout er/ dat a/ st ate. j son

[l ogger]
I evel = I NFO

[met adat a_cache: nyCl ust er]

cl uster_type=gr

router _id=1

user=routerfriend

met adat a_cl ust er =nyCl ust er
tt1=0.5

auth_cache_ttl=-1

aut h_cache_refresh_interval =2
use_gr_noti ficati ons=0

[routing: myd uster_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =6446

socket =/t np/ myr out er/ nysql . sock

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =cl assi ¢

[routing: myd uster_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6447

socket =/t np/ myr out er / nysqgl r 0. sock

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=SECONDARY
routing_strategy=round-robin-wth-fall back

pr ot ocol =cl assi ¢

[routing: myCd uster_x_rw

bi nd_addr ess=0. 0. 0.0

bi nd_port =6448

socket =/t np/ myr out er / nysql x. sock

desti nati ons=met adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =x

17

Trying out MySQL Router in a Sandbox

[routing: myd uster_x_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6449

socket =/t np/ myr out er / nysql x. sock

dest i nati ons=net adat a- cache: // myC ust er/ ?r ol e=SECONDARY
routing_strategy=round-robin-wth-fall back

pr ot ocol =x

In this example, MySQL Router configured four ports and four sockets. Ports are added by default, and
sockets were added by passing in - - conf - use- socket s. The InnoDB Cluster named "myCluster” is
the source of the metadata, and the dest i nat i ons are using the InnoDB Cluster metadata cache to
dynamically configure host information. The related command line options:

e --conf-use-socket s: Optionally enable UNIX domain sockets for all four connection types, as
demonstrated in the example.

e --conf-ski p-tcp: Optionally disable TCP ports, an option to pass in with - - conf - use- socket s
if you only want sockets.

e --conf-base- port : Optionally change the range of ports rather than using the default ports. This
sets the port for classic read-write (PRIMARY) connections, and defaults to 6446.

e --conf-bi nd- addr ess: Optionally change the bind_address value for each route.

To demonstrate MySQL Router's behavior, the following client (application) connects to port 6446 but is
connected to a MySQL instance on port 3310.

$> nysqgl -u root -h 127.0.0.1 -P 6446 -p

nysql > sel ect @®ort;

oo +
| @port |
oo +
| 3310 |
oo +

1 rowin set (0.00 sec)

For additional examples, see Set Up a MySQL Server Sandbox and Deploying a Production InnoDB
Cluster.

3.2 Trying out MySQL Router in a Sandbox

Test a MySQL Router installation by setting up a Router sandbox with InnoDB Cluster. In this case,
Router acts as an intermediate node redirecting client connections to a list of servers. If one server
fails, clients are redirected to the next available server in the list.

Set Up a MySQL Server Sandbox

Begin by starting three MySQL Servers. You can do this in a variety of ways, including:

» Using the MySQL Shell AdminAPI interface that InnoDB Cluster provides. This is the recommended
and simplest approach, and is documented in this section. For additional information, see MySQL
AdminAPI.

For a scripted approach, see Scripting AdminAPI.
» By installing three MySQL Server instances on three different hosts, or on the same host.

» Using the nysql -t est - run. pl script that is part of the MySQL Test Suite framework. For
additional information, see The MySQL Test Suite.

The following example uses the AdminAPI method to set up our cluster sandbox. This is a brief
overview, so see MySQL InnoDB Cluster in the InnoDB Cluster manual for additional details. The

18

https://dev.mysql.com/doc/mysql-shell/9.5/en/deploying-production-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/9.5/en/deploying-production-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/9.5/en/admin-api-userguide.html
https://dev.mysql.com/doc/mysql-shell/9.5/en/admin-api-userguide.html
https://dev.mysql.com/doc/mysql-shell/9.5/en/use-mysql-shell-execute-script.html
https://dev.mysql.com/doc/extending-mysql/9.5/en/mysql-test-suite.html
https://dev.mysql.com/doc/mysql-shell/9.5/en/mysql-innodb-cluster.html

Set Up a MySQL Server Sandbox

following assumes you have a current version of MySQL Shell, MySQL Server, and MySQL Router
installed.

Deploy a Sandbox cluster

This example uses MySQL Shell AdminAPI to set up a InnoDB Cluster with three MySQL instances
(one primary and two secondaries), and a bootstrapped standalone MySQL Router with a generate
configuration file. Output was shortened using "...".

$> nysql sh
nmysql -j s> dba. depl oySandbox| nst ance(3310)
nmysql -j s> dba. depl oySandbox| nst ance(3320)

nmysql -j s> dba. depl oySandbox| nst ance(3330)
nmysql -j s> \connect root @ocal host: 3310
nmysql -j s> cluster = dba.createC uster("nyCl uster")

nmysql -j s> cl uster. addl nst ance("r oot @ ocal host : 3320")

nmysql -j s> cl uster. addl nst ance("root @ ocal host : 3330")

nysql -j s> cluster.status()
{
“clusterNane": "nyC uster",
"defaul t ReplicaSet": {
“name": "defaul t",
“primary": "127.0.0.1:3310",
"ssl": "REQUI RED',
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",
“mode": "RI'W,
"readReplicas": {},
“replicationLag": null,

"role": "HA",
"status": "ONLI NE",
"version": "8.0.27"

b

"127.0.0.1:3320": {
"address": "127.0.0.1: 3320",
"menber Rol e": " SECONDARY",
"node": "R O,
"readReplicas": {},
“replicationLag": null,
"role": "HA",
"status": "ONLI NE",
"version": "8.0.27"

b

"127.0.0.1:3330": {
"address": "127.0.0.1:3330",
"menber Rol e": " SECONDARY",
"node": "R O,
"readReplicas": {},
“replicationLag": null,
"role": "HA",
"status": "ONLI NE",
"version": "8.0.27"

}

}

opol ogyMode": "Single-Primry"

Set Up the Router

Set Up

b
"groupl nf or mati onSour ceMenber": "127.0.0. 1: 3310"
}
nysql-js>\q

Bye!

the Router

Next, set up MySQL Router to redirect to these MySQL instances. We'll use bootstrapping (using - -
boot st r ap), and create a self-contained MySQL Router installation using - - di r ect or y. This uses
the metadata cache plugin to securely store the credentials.

$> nysql router --bootstrap root@ocal host: 3310 --directory /tnp/router

Pl ease enter MySQL password for root:
Bootstrapping MySQL Router instance at '/tnp/router'...

- Creating account(s) (only those that are needed, if any)
- Verifying account (using it to run SQL queries that would be run by Router)
- Storing account in keyring
- Adjusting perm ssions of generated files
- Creating configuration /tnp/router/nmysqlrouter.conf
MySQL Router configured for the InnoDB Custer 'nyd uster'
After this M/SQL Router has been started with the generated configuration
$ nysqlrouter -c /tnp/router/ mysqlrouter.conf
InnoDB Cluster 'myC uster' can be reached by connecting to:

MySQL d assic protocol

- Read/Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

MySQL X prot ocol

- Read/Wite Connections: |ocal host: 6448
- Read/ Only Connections: |ocal host: 6449

$> cd /tnp/router

$> ./start.sh

MySQL Router is now configured and running, and is using the myCluster cluster that we set up
earlier.

Testing the Router

Now connect to MySQL Router as you would any other MySQL Server by connecting to a configured
MySQL Router port.

The following example connects to MySQL Router on port 6446, the port we configured for read-write
connections:

$> nysql -u root -h 127.0.0.1 -P 6446 -p
nysql > SELECT @m@ort;

foocmcooo +
| @@ort |
foocmcooo +
| 3310 |
foocmcooo +

As demonstrated, we connected to MySQL Router using port 6446 but see we are connected to our
MySQL instance on port 3310 (our PRIMARY). Next let's connect to a read-only MySQL instance:

20

Testing the Router

$> nysql -u root -h 127.0.0.1 -P 6447 -p
nysql > SELECT @@ort ;

fooccoooo +
| @@ort |
fooccoooo +
| 3320 |
fooccoooo +

As demonstrated, we connected to MySQL Router using port 6447 but are connected to the MySQL
instance on port 3320, one of the secondaries. The read-only mode defaults to the round-robin strategy
where the next connection refers to a different secondary:

$> nysql -u root -h 127.0.0.1 -P 6447 -p
nmysql > SELECT @m@ort;

R +
| @@ort |
R +
| 3330 |
R +

As demonstrated, our second read-only connection to port 6447 connected to a different MySQL
secondary, in this case to port 3330 instead of 3320.

Now test failover by first killing the primary MySQL instance (port 3310) that we connected to above.
$> nysql sh --uri root@27.0.0.1: 6446
nysql -j s> dba. ki | | Sandbox| nst ance(3310)

The MySQL sandbox instance on this host in
/ hone/ phi | i p/ nysql - sandboxes/ 3310 wi Il be killed

Killing M/SQL instance. ..

I nst ance | ocal host: 3310 successfully kill ed.

You can continue using MySQL Shell to check the connection but let us use the same nysql client
example we did above:

$> nysqgl -u root -h 127.0.0.1 -P 6446 -p
nysql > SELECT @mort;

D +
| @@ort |
D +
| 3320 |
D +

$> nysqgl -u root -h 127.0.0.1 -P 6447 -p
nysql > SELECT @mort;

D +
| @@ort |
D +
| 3330 |
D +

As shown, despite connecting to the same ports (6446 for the primary and 6447 for a secondary),
the underlying ports changed. Our new primary server changed from port 3310 to 3320 while our
secondary changed from 3320 to 3330.

We have now demonstrated MySQL Router performing simple redirects to a list of primary and
secondary MySQL instances.

Router also enables a REST API by default in the generated nysql r out er . conf at
bootstrap, and by default the following URL displays a swagger . j son for your local setup:

21

Basic Connection Routing

https://127.0.0. 1: 8443/ api / 20190715/ swagger . j son. See also Chapter 6, MySQL Router
REST API.

3.3 Basic Connection Routing

The Connection Routing plugin performs connection-based routing, meaning it forwards packets to
the server without inspecting them. This is a simplistic approach that provides high throughput. For
additional general information about connection routing, see Section 1.3, “Connection Routing”.

A simple connection-based routing setup is shown below. These and additional options are
documented under Section 4.3.3, “Configuration File Options”.

[1 ogger]
| evel = | NFO

[routing: secondary]

bi nd_address = | ocal host

bi nd_port = 7001

destinati ons = foo. exanpl e. org: 3306, bar. exanpl e. or g: 3306, baz. exanpl e. or g: 3306
routing_strategy = round-robin

[routing: primary]

bi nd_address = | ocal host

bi nd_port = 7002

destinati ons = foo. exanpl e. org: 3306, bar . exanpl e. or g: 3306
routing_strategy = first-available

Here we use connection routing to round-robin MySQL connections to three MySQL servers on port
7001 as defined by round-robin r out i ng_st r at egy. This example also configures the first-available
strategy for two of the servers using port 7002. The first-available strategy uses the first available
server from the destinations list. The number of MySQL instances assigned to each dest i nati ons
is up to you as this is only an example. Router does not inspect the packets and does not restrict
connections based on routing strategy, so it is up the application to determine where to send read and
write requests, which is either port 7001 or 7002 in our example.

Assuming all three MySQL instances are running, next start MySQL Router by passing in the
configuration file:

$> ./bin/nysqgl router -config=/etc/nysqlrouter-config.conf

Now MySQL Router is listening to ports 7001 and 7002 and sends requests to the appropriate MySQL
instances. For example:

$> ./bin/nysql --user=root --port 7001 --protocol =TCP

That will first connect to foo.example.org, and then bar.example.org next, then baz.example.org, and
the fourth call goes back to foo.example.org. Instead, we configured port 7002 behavior differently:

$> . /bin/nysql --user=root --port 7002 --protocol =TCP

That first connects to foo.example.org, and additional requests will continue connecting to
foo.example.org until there is a failure, at which point bar.example.org is now used. For additional
information about this behavior, see r out i ng_st r at egy.

3.4 Connection Sharing and Reuse

MySQL Router enables server connections to be pooled and shared. If a client disconnects, the server
connection is moved to the connection pool, where it is available for reuse. If the client connection

is idle for more than a specified time, the server connection idles until a new client connection is
established. This lowers the number of connections the server has to maintain and frees up resources
normally bound to idling connections.

MySQL Router tracks the statements executed by the client and the SQL state of the session to ensure
client connections do not lose their session state. If a connection is shared, the reconnected session is
in the state the client left it. If that is not possible, the connection is not shared.

22

Limitations

Warnings and errors generated by statements are captured and returned when requested by the client.

As are session variables.

supported by the host and can be configured with the t hr eads configuration

Note
@ The default number of I/O threads is the same as the number of CPU threads
option.

Limitations
» Connection sharing is not supported in PASSTHROUGH mode or if ser ver - ssl -
node=AS CLI ENT and cl i ent - ssl - nrode=PREFERRED.
» Connection sharing is only supported for classic connections.

e SQL statements that depend on previous session state will not work when connection sharing is
active, unless inside a transaction.

 Certain features will leave the connection in a state that blocks it from being shared when idle.
Closing or resetting the connection (COM_RESET_CONNECTION) will allow the connection to be
reused again.

Unsupported SQL Features

The following statements and functions are not supported when connection sharing is active, except
inside a transaction.

« GET DI AGNOSTI CS
e LAST_I NSERT_| DY)

SQL Features which Prevent Sharing

The following SQL features prevent the connection from being pooled until the connection is closed or

reset by the client.

« SQL_CALC_FOUND_ROVS,

GET_LOCK(),service_get_wite | ocks().and SQ._CALC FOUND ROA5

User variables
» Temporary tables

+ Prepared statements

Note
3 Transactions and LOCK TABLES also block connection sharing until the
transaction is closed, or the lock released.

Configuration
Connection sharing is configured using the following options:
e connection_sharing
» connection_sharing_del ay
« max_i dl e_server_connecti ons

o idle_tinmeout

23

https://dev.mysql.com/doc/refman/9.5/en/lock-tables.html

Read/Write Splitting

The following is an example of configuring connection sharing during bootstrap:

--conf-set-option=routing: bootstrap_rw. connecti on_shari ng=1
--conf-set-option=routing: bootstrap_ro.connecti on_sharing=1
--conf -set-opti on=connecti on_pool . max_i dl e_server_connecti ons=32

3.5 Read/Write Splitting

MySQL Router supports Read-Write splitting. This configuration enables you to direct all read traffic to
read-only instances, and all write traffic to read-write instances.

Read-write instances are primaries or sources. Read-only instances are secondaries in an InnoDB
Cluster or the primary or secondary instances in a Replica Cluster.

MySQL Router classifies each query as read or write and directs it to the appropriate backend. It
is also possible to manually, or programmatically, specify the type of query using ROUTER SET or
query_attri butes.

Note
g Each client session can communicate with one read_write and one read_only
destination.

3.5.1 Configuration
To enable read-write splitting, the following r out er options must be enabled:

e access_node: must be set to aut o.

Note
@ It is possible to define read_write andread_only access_node values
per session, only. See Per-Session Configuration.

e connection_sharing: must be setto 1.
e protocol : must be setto cl assi c.

e desti nati ons: must be set to a net adat a- cache URL with the role set to
PRI MARY _AND SECONDARY.

Per-Session Configuration
Read-write splitting configuration can be defined per session, using one of the following:
« ROUTER SET opti onNanme='val ue'
e query_attributes router.optionNane val ue
The following are the possible opt i onNanes and values:
» access_node set to one of the following values:
e« read_writ e: all session traffic is sent to a read_write server.
« read_onl y: all session traffic is sent to a read_only server.

e aut o: the server is selected based on the type of transaction, reads are targetted to read_only
servers, writes to read_write servers.

e wait for my wites [O | 1]:Ifenabled, 1, read-only queries wait for the last written
transaction of the session.

24

Statements

e wait for _nmy wites tineout [O | 4294967295]:Maximum time in seconds to wait for a
read_only destination to apply the written transaction, before falling back to a read_write destination.

Default is 1.
Note
@ Session variables are reset to their initial values if the client sends a
change_user orreset _connecti on.
For example:

SQ.> ROUTER SET access_npde='read wite

SQ.> query_attribute router.access_node read_wite

Bootstrapping

When MySQL Router is bootstrapped, the default configuration is created with the following values:

[DEFAULT]
max_i dl e_server_connecti ons=64

[routing:read_wite_split]

bi nd_port =6450

desti nati ons=met adat a- cache: // nycl ust er/ ?r ol e=PRI MARY_AND_SECONDARY
routing_strategy=round-robin

access_node=aut o

pr ot ocol =cl assi ¢

connecti on_shari ng=1

To disable this configuration, you must bootstrap with - - di sabl e-rwsplit.

3.5.2 Statements

» The following describes read-only statements:
« Statements are read-only if they start with:

o SELECT
« DO
¢ VALUES
 TABLE
« W THthat is not followed by UPDATE or DELETE.
+ EXPLAI N, DESCRI BE, or DESC which are not followed by UPDATE or DELETE.
e HELP
* USE
¢ CHECKSUM
» Parenthesized Query Expressions.

« If they start with any of the above and do not contain functions or keywords which must be
executed on a read-write server. Such as:

25

https://dev.mysql.com/doc/refman/9.5/en/select.html
https://dev.mysql.com/doc/refman/9.5/en/do.html
https://dev.mysql.com/doc/refman/9.5/en/table.html
https://dev.mysql.com/doc/refman/9.5/en/with.html
https://dev.mysql.com/doc/refman/9.5/en/explain.html
https://dev.mysql.com/doc/refman/9.5/en/describe.html
https://dev.mysql.com/doc/refman/9.5/en/help.html
https://dev.mysql.com/doc/refman/9.5/en/use.html
https://dev.mysql.com/doc/refman/9.5/en/parenthesized-query-expressions.html

MySQL Router TLS Session Cache

o GET_LOCK()
* FOR UPDATE| SHARE
« LOCK I N SHARE MODE

« Some functions can produce a write from within a read-only statement. Such statements fail with
an error similar to the following

The MySQL server is running with the --super-read-only option so it cannot execute this statenent.

Such statements can be explicitly routed to a read-write server, with ROUTER SET or
query_attribut es. See Per-Session Configuration. You can also wrap the statement in a
START TRANSACTION ... COW T.

» The following describes read-write statements:
» Data Definition Statements.

e The following DML: CALL, | NSERT, UPDATE, DELETE, REPLACE, | MPORT TABLE, LOAD DATA,
LOAD XM., W TH. . . UPDATE/ DELETE.

¢ The following Account Management statements: GRANT, REVOKE, RENAVE USER, CREATE RCLE,
CREATE USER, DROP ROLE, DROP USER, SET PASSWORD, SET ROLE, SET DEFAULT ROLE.

e The following Transaction and Locking statements: BEG N, START TRANSACTI ON, XA,
SAVEPO NT, ROLLBACK, COWM T.

¢ The following database administration statements: SHOWV CREATE. . . , SHOW VARI ABLES, SHOW
STATUS, SET TRANSACTI ON (including SET SESSI ON .. .), SET NAMES, SET CHARACTER
SET, FLUSH PRI VI LEGES.

« The following utility statements: EXPLAI N, DESCRI BE, DESC.

¢ The following table maintenance statements: ANALYZE TABLE, OPTI M ZE TABLE, CHECK
TABLE, REPAI R TABLE.

» The following statements are not supported if access_node=aut o:

« Any statement which is not read-only or read-write. This includes ALTER RESOURCE GROUP
Statement, Replication Statements, and Other Administrative Statements.

3.6 MySQL Router TLS Session Cache

TLS sessions from client to router and router to server can be cached and resumed when needed. This
shortens the connection handshake, saving time and resources.

MySQL Router uses the following caches:
 Client TLS session cache: Caches TLS session from the client to MySQL Router.

» Server TLS session cache: Caches TLS sessions from the MySQL Router to the server.

The following configuration options control the session caching:
» Client TLS session cache:

e client_ssl _session_cache_node: Enables or disables the cache for client-router TLS
sessions.

26

https://dev.mysql.com/doc/refman/9.5/en/commit.html
https://dev.mysql.com/doc/refman/9.5/en/sql-data-definition-statements.html
https://dev.mysql.com/doc/refman/9.5/en/call.html
https://dev.mysql.com/doc/refman/9.5/en/insert.html
https://dev.mysql.com/doc/refman/9.5/en/update.html
https://dev.mysql.com/doc/refman/9.5/en/delete.html
https://dev.mysql.com/doc/refman/9.5/en/replace.html
https://dev.mysql.com/doc/refman/9.5/en/import-table.html
https://dev.mysql.com/doc/refman/9.5/en/load-data.html
https://dev.mysql.com/doc/refman/9.5/en/load-xml.html
https://dev.mysql.com/doc/refman/9.5/en/grant.html
https://dev.mysql.com/doc/refman/9.5/en/revoke.html
https://dev.mysql.com/doc/refman/9.5/en/rename-user.html
https://dev.mysql.com/doc/refman/9.5/en/create-role.html
https://dev.mysql.com/doc/refman/9.5/en/create-user.html
https://dev.mysql.com/doc/refman/9.5/en/drop-role.html
https://dev.mysql.com/doc/refman/9.5/en/drop-user.html
https://dev.mysql.com/doc/refman/9.5/en/set-password.html
https://dev.mysql.com/doc/refman/9.5/en/set-role.html
https://dev.mysql.com/doc/refman/9.5/en/set-default-role.html
https://dev.mysql.com/doc/refman/9.5/en/commit.html
https://dev.mysql.com/doc/refman/9.5/en/commit.html
https://dev.mysql.com/doc/refman/9.5/en/savepoint.html
https://dev.mysql.com/doc/refman/9.5/en/commit.html
https://dev.mysql.com/doc/refman/9.5/en/commit.html
https://dev.mysql.com/doc/refman/9.5/en/show-variables.html
https://dev.mysql.com/doc/refman/9.5/en/show-status.html
https://dev.mysql.com/doc/refman/9.5/en/show-status.html
https://dev.mysql.com/doc/refman/9.5/en/set-transaction.html
https://dev.mysql.com/doc/refman/9.5/en/set-names.html
https://dev.mysql.com/doc/refman/9.5/en/set-character-set.html
https://dev.mysql.com/doc/refman/9.5/en/set-character-set.html
https://dev.mysql.com/doc/refman/9.5/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/9.5/en/explain.html
https://dev.mysql.com/doc/refman/9.5/en/describe.html
https://dev.mysql.com/doc/refman/9.5/en/analyze-table.html
https://dev.mysql.com/doc/refman/9.5/en/optimize-table.html
https://dev.mysql.com/doc/refman/9.5/en/check-table.html
https://dev.mysql.com/doc/refman/9.5/en/check-table.html
https://dev.mysql.com/doc/refman/9.5/en/repair-table.html
https://dev.mysql.com/doc/refman/9.5/en/alter-resource-group.html
https://dev.mysql.com/doc/refman/9.5/en/alter-resource-group.html
https://dev.mysql.com/doc/refman/9.5/en/sql-replication-statements.html
https://dev.mysql.com/doc/refman/9.5/en/other-administrative-statements.html

MySQL Router Set Trace

Note
g Enabled by default. If this parameter is not set, the cache is enabled. To
disable the cache, you must explicitly define it.

e client_ssl _session_cache_si ze: Defines the maximum number of sessions cached.

e client_ssl_session_cache_tinmeout: Defines the maximum amount of time, in seconds, a
session remains in the cache. If the timeout is reached, and this session is not reused, the session
is removed from the cache and the connection is closed.

» Server TLS Cache:

e server_ssl _session_cache_node: Enables or disables the cache for router-server sessions.

Note
g Enabled by default. If this parameter is not set, the cache is enabled. To
disable the cache, you must explicitly define it.

e server_ssl _session_cache_si ze: Defines the maximum number of sessions cached.

e server_ssl _session_cache_ti nmeout : Defines the maximum amount of time, in seconds, a
session remains in the cache. If the timeout is reached, and this session is not reused, the session
is removed from the cache and the connection is closed.

3.7 MySQL Router Set Trace

MySQL Router supports tracing of statements as they are processed by MySQL Router from client to
server and the response to the client. The trace is returned as JSON.

This enables debugging, testing, application connection comparisons, and so on.

Configuration
To configure ROUTER SET tr ace you must add the following to your MySQL Router configuration file:
 max_idl e_server_connecti ons: add to the DEFAULT section. This must be set to at least 1.

» The following values can be added to the DEFAULT section and apply to all connections, or you can
add them to the individual ROUTI NG ... sections of connections you want to examine in detail.

« client_ssl _node: Setto PREFERRED or REQUI RED.
e server_ssl _node: Set to PREFERRED,REQUI RED, or DI SABLED.
e connection_sharing: Setto 1to enable connection sharing.

For example:

[DEFAULT]
max_i dl e_server_connecti ons=64

[routing:{...}]

client_ssl _nmde=PREFERRED
server _ssl _nmode=PREFERRED
connecti on_shari ng=1

Enable ROUTER TRACE

ROUTER TRACE can be enabled per session or per statement on the command line of your MySQL
client.

27

Trace Format

» Enable per session:

ROUTER SET TRACE = 1,

» Disable per session:
ROUTER SET TRACE = O0;
» Enable per statement:

query_attributes router.trace 1;

» Disable per statement:

query_attributes router.trace O;

Trace Format

The trace is returned in a JSON object with the following properties:
» start _tine: Date and time string denoting the start of the span.
e end_ti nme: Date and time string denoting the end of the span.

» el apsed_i n_span_us: Microseconds spent in the current span. This value is end_t i me minus

start _tine.

» stat us_code: Represents the canonical status code of a finished Span. Default value is empty.

» nane: Name of the event.

o attributes: Attributes of the event.

* event s: An array of events. These contain the following:
e tinest anp: Date and time string.
* name: Name of the event.
e attri butes: Attributes of the event.

For example:

> nysql --host=127.0.0.1 --port=6446 --show warni ngs
> ROUTER SET trace = 1;
> SELECT @®ort ;

D +
| @@ort |
D +
| 3306 |
D +

1 rowin set, 1 warning (0,02 sec)
Not e (code 4600): {
"start_time": "2023-03-23T15: 31: 08. 052442Z",
“end_tinme": "2023-03-23T15: 31: 08. 052653Z",
"el apsed_i n_span_us": 211,
"name": "mysql/query",
"attributes": {
"mysql . shari ng_bl ocked": false

"events": [

{
“timestanp”: "2023-03-23T15: 31: 08. 052444Z",
"name": "mysql/query_cl assify",
"attributes": {

"mysql . query. classification": "change_on_tracker"

}

Jic

{

28

Trace Events

"start_tinme": "2023-03-23T15: 31: 08. 052455Z2",
"end_tinme": "2023-03-23T15: 31: 08. 052495Z",
"el apsed_i n_span_us": 39,
"name": "nysql/connect _and_f orward",
"attributes": {

"nmysqgl . renote.is_connected": true,

"nmysql . renot e. endpoi nt": "I ocal host: 3306",
"nysql . renot e. connection_id": 17,
“db. name": "'
iE
"events": [
{

"start_tinme": "2023-03-23T15: 31: 08. 0524582",
"end_time": "2023-03-23T15: 31: 08. 052495Z",
"el apsed_i n_span_us": 36,

“name": "mysql/forward"
}
]
iE
{
"start_tinme": "2023-03-23T15: 31: 08. 0526232",
"end_tinme": "2023-03-23T15: 31: 08. 0526272",
"el apsed_i n_span_us": 3,
"nanme": "nysql/response",
“"attributes":
"mysql . sessi on. @BESSI ON. st at enent _i d": " 84"
}
}

]
}

Trace Events

The following trace events and attributes are supported:

nysql / query

MySQL Router receives a query.
Attributes:

e mysqgl . shari ng_bl ocked: Boolean. If connection sharing is
blocked, nysql . shari ng_bl ocked_by is displayed along with
a reason why sharing is blocked.

e nysql . sharing_bl ocked_by: String. Displays the reason why
connection sharing is blocked. This can be one of the following
values:

e trx-state:Atransaction is active.

e trx-characteristics: Transaction state is set. For
example, SET TRANSACTI ON READ ONLY.

e sone- st at e- changed: The session is in an unrecoverable
state.

e session-track-gtids:session_track gtids does not
contain the expected value.

e session-track-state-change:
session_track_state_change does not contain the
expected value.

e session-track-transaction-info:
session_track_state_change does not contain the
expected value.

29

https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_session_track_state_change
https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_session_track_state_change

Trace Events

nysql / query_cl assify Describes how MySQL Router analyzed the statement in the context
of connection-sharing.

Attributes:

e nmysql . query. cl assi ficati on: comma-separated list of
none or more of the following:

e accept _session_state from session_tracker: The
statement resulted in a notification from the session tracker
which was accepted as is.

e ignore_session_tracker_sone_state_changed: The
statement resulted in a notification from the session tracker
which was ignored.

e session_not _sharabl e on_error: Statements such as
SET known_variable = 1, unknown_variable = 2can
cause a session state change, although the statement failed.
The server responds with an error, but no session tracker, even
though the session state changed.

e session_not _sharabl e_on_success: Set if a statement
modifies the session state, but the session tracker does not
report it.

e forbidden_function_w th_connection_sharing:
The statement contains functions or keywords which are not
possible with connection sharing. Such as GET DI AGNOSTI CS
or LAST_| NSERT_I D() .

e forbidden_set w th _connection_sharing: The
statement attempted to set the session tracker information
required for connection sharing.

nysql / Attributes:

connect _and_forward))
 nmysqgl .renmpte. i s_connect ed: Boolean. If f al e, there is no

connection. If t r ue, the following values are returned:

* nysql . renot e. endpoi nt : Name of the server connection
endpoint.

e nysqgl . renot e. connecti on_i d: Connection ID of the
server connection.

e db. nane: Name of the schema.
nysql / Attributes:
from pool or_connect]]
e nmysqgl . renot e. candi dat es: Comma-separated list of
endpoints.

e net. peer. name: Hostname of the endpoint this connection
connected to in its previous session.

e net. peer. port: Port of the endpoint this connection connected
to in its previous session.

nysql / from pool Attributes:

30

https://dev.mysql.com/doc/refman/9.5/en/get-diagnostics.html
https://dev.mysql.com/doc/refman/9.5/en/information-functions.html#function_last-insert-id

Trace Events

nmysql / connect

nmysql / aut henti cat e

nysql / server _greeting

nysql /client_greeting

nysqgl /tls_connect

nmysql / response

nmysql / set _var

« nmysql . error_nessage: Displayed if st at us_code is ERROR.

e mysql . renot e. connecti on_i d: Connection ID of the server
connection.

Attributes:

e net. peer. nane: Hosthame of the endpoint.
e net. peer. port: Port of the endpoint.
Attributes:

e nysql . renote. needs_full _authenticati on: Boolean. If
a full handshake is required (t r ue) or if a fast reset-connection is
possible (f al se).

If t rue, followed by nysql / change_user . If f al se, followed by
nmysql / reset _connect ed.

Attributes:

e mysql . renot e. connecti on_i d: Connection ID of the server
connection.

Attributes:

e db. nane: Name of the schema.

Attributes:

e tls.version: TLS version in use.

e tls.cipher:TLS cipher used for the connection.

e tls.session_resused: Boolean. Tr ue if the TLS session was
reused.

Attributes:

e nmysql . sessi on. @IBESSI ON. *: Session variables changed
according to the server session tracker.

e nmysqgl . session.transacti on_st at e: Comma-separated list
of transaction states.

e nmysqgl . session.transaction_characteristics:
Statement required to restore the transaction state.

Attributes:

e nmysql . sessi on. @IBESSI ON. *: Session variables restored
after a reconnect.

The following events have the same attributes as nmysql / query:

* nysql /ping
e nysql/stnt_prepare

* nysql/stnt_execute

e nysql/kill

31

Trace Examples

* mysql/statistics

* nysql/set_option

nysql / rel oad

e nysqgl/list_fields

The following events have no attributes:

e mysql / prepare_server_connecti on:
* mysql /reset _connecti on:

* nysql/greeting:

e mysql /forward:

Trace Examples

Simple Query Forwarding
The following example shows a trace of a simple forwarding of a query:
1. MySQL Router receives a query.
2. MySQL Router forwards the query to the server.
3. MySQL Router waits for the result.
4. MySQL Router forwards the result to the client.

$ nysql --host=127.0.0.1 --port=6446 --show war ni ngs
> ROUTER SET trace = 1;
> SELECT @mort ;

doooooooo +
| @@ort |
doooooooo +
| 3306 |
doooooooo +

1 rowin set, 1 warning (0,02 sec)
Not e (code 4600): {
“start_time": "2023-03-23T15: 31: 08. 0524422",
"end_time": "2023-03-23T15: 31: 08. 0526532",
"el apsed_i n_span_us": 211,
“name": "mysql/query",
"attributes": {
"mysql . shari ng_bl ocked": false

Jic
"events": [
{
“timestanp": "2023-03-23T15: 31: 08. 0524442",
“name": "mysql/query_cl assify",
"attributes": {
"mysql . query.classification": "accept_session_state_from session_tracker"
Jic
{

“start_time": "2023-03-23T15: 31: 08. 0524552",
"end_time": "2023-03-23T15: 31: 08. 052495Z",
"el apsed_i n_span_us": 39,
“name": "mysql/connect_and_forward",
"attributes": {
"mysqgl .renmpte.is_connected": true,
"mysql . renot e. endpoi nt": "l ocal host: 3306",
"mysql . renot e. connection_id": 17,

32

Trace Examples

}

]

"db. name":
iE
"events": [
{
"start_tinme": "2023-03-23T15: 31: 08. 052458Z2",
"end_tinme": "2023-03-23T15: 31: 08. 052495Z",
"el apsed_i n_span_us": 36,
"nanme": "nysql/forward"
}
]
iE
{
"start_tinme": "2023-03-23T15: 31: 08. 0526232",
"end_tinme": "2023-03-23T15: 31: 08. 0526272",
"el apsed_i n_span_us": 3,
"nanme": "nysql/response",
"attributes": {
"mysql . sessi on. @@BESSI ON. st at enent _i d": " 84"
}
}

33

34

Chapter 4 Configuration

Table of Contents

4.1 Configuration File SYNTAXuiiiuiiiiieii ettt e et e et e e et e e e eaaaees 35
4.2 Configuration LOCALIONSuiiiiiiiie ittt et et e et e e e e et e e e e eenas 37
4.3 CoNfigUratioN OPLIONSc.uiitieiii et et e et e et e et e et e e e e e tn e e et e eeaneaeans 40
4.3.1 Defining Options Using the Command LiNeccoiiiiiiiiiiii e 40
4.3.2 MySQL Router Command LiNe Programsveeuuoeiuieiieeieeei e e e eenne 41
4.3.3 Configuration File OPLIONSccuuiiiiiii et eans 64
4.3.4 Configuration File EXamMPIE ... 100
o ISR @ oo 18T > o PP 102

MySQL Router is configured using a required configuration file, additional optional configuration files,
and options available from the command line.

Bootstrapping is the preferred and common approach to generating a MySQL Router configuration
file. For additional information, see - - boot st r ap. Bootstrapping generates a fully functional
nysqgl rout er. conf file.

For command-line syntax related information and options, see Section 4.3.1, “Defining Options Using
the Command Line”.

4.1 Configuration File Syntax

The configuration file format resembles the traditional INI file format with sections and options, but with
a few additional extensions.

Note
@ Both forward slashes and backslashes are supported. Backslashes are
unconditionally copied, as they do not escape characters.

Comments

The configuration file can contain comment lines. Comment lines start with a hash (#) or semicolon (;)
and continue to the end of the line. Trailing comments are not supported.

Sections

Each configuration file consists of a list of configuration sections where each section contains a
sequence of configuration options. Each configuration option has a name and value. For example:

[section nane]

option = val ue
option = val ue
option = val ue

[section nane: optional section key]

option = val ue
option = val ue
option = val ue

A configuration file section header starts with an opening bracket ([) and ends with a closing bracket
(1)- There can be leading and trailing space characters on the line, which are ignored, but no space
inside the section brackets.

The section header inside the brackets consists of a section name and an optional section key that is
separated from the section header with a colon (:). The combination of section name and section key
is unique for a configuration.

35

Default Section

The section names and section keys consist of a sequence of one or more letters, digits, or
underscores (). No other characters are allowed in the section name or section key.

A section is similar to a namespace. For example, the user option's meaning depends on its
associated section. A user in the [DEFAULT] section refers to the system user that MySQL Router is
run as, which is also controlled by the - - user command line option. Unrelated to that is defining user
in the [metadata_cache] section, which refers to the MySQL user that accesses a MySQL server's
metadata.

Default Section

The special section name DEFAULT (any case) is used for default values for options. Options not found
in a section are looked up in the default section. The default section does not accept a section key.

Options

After a section's start header, there can be a sequence of zero or more option lines where each option
line is of the form:

nane = val ue

Any leading or trailing blank characters on the option name or option value are removed before being
handled. Option names are case-insensitive. Trailing comments are not supported, so in this example
the option r out i ng_str at egy is given the value round-robin # Circles back to first
server and generates an error when starting the router.

[routi ng: round- r obi n]
Trailing comments are not supported so the following is incorrect
routing_strategy=round-robin # G rcles back to first server

Variable Interpolation

Option values support (variable interpolation) using an option name given within braces { and } .
Interpolation is done on retrieval of the option value and not when it is read from the configuration file. If
a variable is not defined then no substitutions are done and the option value is read literally.

Consider this sample configuration file:

[DEFAULT]
prefix = /usr/

[sanpl e]

bin = {prefix}bin/{nane}

lib = {prefix}lib/{nane}

name = magic

directory = C \foo\bar\{3a339172- 6898- 11e6- 8540- 9f 7b235af b23}

Here the value of bi n is "/usr/bin/magic”, the value of | i b is "/usr/lib/magic”, and the value of
di rect ory is "C:\foo\bar\{3a339172-6898-11e6-8540-9f7b235afbh23}" because a variable named
"{3a339172-6898-11e6-8540-9f7b235afb23}" is not defined.

Predefined variables

MySQL Router defines predefined variables that are available to the configuration file. Variables use
braces, such as { pr ogr an} for the pr ogr ampredefined variable.

Table 4.1 Predefined variables

Name Description

program Name of the program, normally nmysql r out er
origin Path to directory where binary is located

| oggi ng_f ol der Path to folder for log files

36

Command Line Related Details

Name Description

pl ugi n_f ol der Path to folder for plugins
runtime_f ol der Path to folder for runtime data
config folder Path to folder for configuration files

Command Line Related Details

For command-line syntax related information and options, see Section 4.3.1, “Defining Options Using
the Command Line”.

4.2 Configuration Locations

MySQL Router scans for the default configuration files at startup, and optionally loads user-defined
configuration files at runtime from the command line.

» Default Configuration File Locations

» User-Defined and Extra Configuration Files

» Default Configuration File Locations (Linux)

» Default Configuration File Locations (Windows)

* MySQL Router Configuration in Cluster Metadata

Default Configuration File Locations

By default, MySQL Router scans specific locations for its configuration files that depend on the platform
and how MySQL Router was set up.

You can alter the default locations at compile time by using the - DROUTER_CONFI GDI R=<pat h>
option. You could also edit cmeke/ set ti ngs. cmake to change the default locations before compiling
MySQL Router, thus adding new locations or exceptions for specific platforms.

Execute mysql rout er --hel p to see the default configuration file locations (and their availability) on
your system. For example:

$> nysqlrouter --help

Start MySQ. Router.

Configuration read fromthe following files in the given order (enclosed
in parentheses nmeans not avail able for reading):
(/usr/local /nysql -router/nysql router.conf)
/ Users/ philip/.nysqlrouter.conf
Pl ugi ns Pat h:
lusr/|ocal/lib/nysqlrouter
Default Log Directory:
/usr /| ocal / mysqgl -rout er
Default Persistent Data Directory:
/usr/ | ocal /mysqgl -router/data
Default Runtine State Directory:
/usr /| ocal /mysqgl -router/run

Usage: nysqlrouter [-v]|--version] [-h]|--help]

Important

A The default configuration file is not loaded if a user-defined configuration file is
passed in with the - - conf i g option.

37

User-Defined and Extra Configuration Files

On Linux, MySQL Router scans the following locations by default, although these locations are system
dependent:

1. /etc/ nysql router/nmysql router. conf

Note
@ Unlike MySQL server, the backward compatible path "/ et c/
nysql r out er. conf " is not supported.

2. $HOVE/ . nysql rout er. conf

directory. In doing so, Router looks in the initial directory for the .conf version,
then checks for a .ini version, and then repeats the process in the next directory

Note
@ For backward compatibility, MySQL Router also looks for the .ini variant in each
which is typically the user's home directory on the system.

User-Defined and Extra Configuration Files

Two command line options help control these configuration file locations:

» --confi g (or - c): Read the base configuration from this file, and do not use or scan the default file
paths.

Example use: when generating a standalone MySQL Router installation with the - - di rect ory
bootstrap option, the generated st ar t . sh passes this option to the generated nysql r out er . conf
inside that directory.

» --extra-confi g (or - a): Read this additional configuration file after the configuration files are read
from either the default locations, or from files specified using the - - conf i g option.

For example:

$> nysqlrouter --config /custom path/to/router.conf --extra-config /another/config.conf

Multiple extra configuration options can be passed in and the files are loaded in the order they are
entered, with - - conf i g options being loaded before the - - ext r a- conf i g options. For example:

$> nysqglrouter --extra-config a.conf --config b.conf --extra-config c.conf

In the above example, b. conf is loaded first, and then a. conf and c. conf, in that order. Also, the
default configuration file, such as / et ¢/ nysql r out er / nysql r out er. conf, is not loaded because
--confi g was used.

Each loaded configuration file overrides configuration settings from the previously read configuration
files.

Default Configuration File Locations (Linux)

The following lists default file location for the router to read configuration files on popular Linux
platforms.

Note
@ Execute mysql rout er --hel p to see the default configuration file locations
(and their availability) on your system.

» Default system-wide installation under / usr/1 ocal :/usr/ | ocal/etc/ nysqlrouter.conf

 RPM and Debian : / et ¢/ nysql rout er/ nysql r out er. conf

38

Default Configuration File Locations (Windows)

» On all systems, a bootstrapped standalone installation using - - di r ect or y adds
nysql rout er. conf into the directory defined by --directory.

Default Configuration File Locations (Windows)

Default file locations that MySQL Router searches for configuration files on Windows.

Note
@ Execute mysql rout er. exe --hel p to see the default configuration file
locations (and their availability) on your system.

Default system-wide installation under C: \ Pr ogr anDat a\ MySQL\ M\ySQL Rout er : C
\ Progr anDat a\ MySQL\ MySQL Rout er\ nysql r out er. conf

In addition: C: \ User s\ user nane\ AppDat a\ Roanm ng\ nysqgl r out er. conf where user nane is
replaced with your system's user.

In addition to mysglrouter.conf, for backwards compatibility the system also looks for mysglrouter.ini

» With - - di rect or y: a bootstrapped standalone installation using - - di r ect or y adds
nysql rout er. conf into the directory defined by --directory.

MySQL Router Configuration in Cluster Metadata

The full configuration of routers bootstrapped against a InnoDB Cluster is stored in the InnoDB Cluster
Metadata Schema and can be read by the MySQL Shell operation, obj ect . r out er Opt i ons, for
Cluster, ClusterSet, and ReplicaSets.

The configuration is stored per router as JSON in the
nysgl _i nnodb_cl ust er _net adat a. r out er s table with one row per router. Each router's row is
updated by the router on startup or restart.

For example:
nysql > sel ect JSON PRETTY(attributes->>'$. Configuration') as Configuration from nysql _i nnodb_c

Configuration: {

"io":
"backend": "poll",
“"threads": 0

Jic

"comon": {
"nanme": "systent,
“user": ""
"read_tineout": 30,
"client_ssl_key": "/Users/areligaldev/server/ mysql-trunk/buil d/ pt/datal/router-key.pent,
"client_ssl_cert": "/Users/areligaldev/server/mysql-trunk/build/pt/datal/router-cert.pent,
“client_ssl_node": "PREFERRED',
“connect _timeout": 5,
"server_ss|l _node": "PREFERRED',
"server_ssl _verify": "Dl SABLED",
"max_total connections": 512,
"unknown_config_option": "error",
"router_require_enforce": true,
"max_i dl e_server _connections": 64

"l oggers": {
"filelog": {
"level": "info",
"filename": "nysqglrouter.log",
"destination": ""
“timestanp_precision": "second"
}

Jic

"endpoi nts": {

"bootstrap_ro": {

39

Configuration Options

See Viewing Router Configurations with MySQL Shell for more information.

For backward compatibility, MySQL Router continues to store some configuration parameters in the
attributes JSONinnysql _i nnodb_cl ust er _netadat a.routers.

For example:

sel ect JSON PRETTY(attributes) from nmysqgl _i nnodb_cl uster_net adata.routers;

I {
"RCEndpoi nt": "6447",

" RWEndpoi nt": "6446",

" ROXEndpoi nt": "6449",

" RWKEndpoi nt": "6448",

" RWBpl i t Endpoi nt": "6450",

"Met adat aUser": "mysqgl _routerl_plje99d",

"Configuration": { /*...*/ },

"boot strapTar get Type": "cluster"

o

4.3 Configuration Options

Configuration file options and command-line options serve different purposes and are documented in
separate locations.

When boot st r appi ng, the generated configuration file's settings depend on the bootstrap options
passed into mysql r out er . For example, passing in - - conf - use- socket s enables socket
connections by defining socket for each route in the generated configuration file. Or, - - di rect ory
adds all generated files and subdirectories to a single directory and adjusts the generated configuration
file values accordingly.

4.3.1 Defining Options Using the Command Line

Options can be configured and overridden at runtime using these different methods:

» Using standard runtime options as shown by nmysql r out er - - hel p; how it affects the generated
configuration file depends on the option. For example:

$> nysql router --bootstrap foo@ar.com --connect-ti nmeout =20

e Using the form - - secti on[: secti on_key] . opti on_nanme=opti on_val ue at runtime;
this does not affect the generated configuration file. This is typically used for testing as using a
configuration file is preferred. For example:

$> nysqgl router -c nysqgrouter.conf --1ogger.|evel =debug

» Using the - - conf - set - opti on=secti on[: section_key].opti on_nanme=opti on_val ue
option that does alter the generated configuration file. This is used while bootstrapping to add or
override a configuration option. It has precedence over other forms.

$> nysqgl router --bootstrap foo@ar.com\
--conf -set-option=l ogger. | evel =debug \
--conf -set - opti on=DEFAULT. unknown_confi g_opti on=warni ng \
--conf - set-opti on=DEFAULT. connect _ti meout =20 \
--connect -ti meout =10

This sets connect _t i meout to 20 in the generated nysql r out er. conf because - - conf - set -
opt i on always takes precedence.

40

https://dev.mysql.com/doc/mysql-shell/9.5/en/registered-routers.html#registered-routers-configuration

MySQL Router Command Line Programs

4.3.2 MySQL Router Command Line Programs

This section describes the MySQL Router commands. The nysql r out er command is used for most
tasks, including bootstrapping and running MySQL Router, and nysql rout er _pl ugi n_i nfois an

optional debugging tool.

4.3.2.1 mysqlrouter — Command Line Options

* mysqlrouter Option Summaries

» mysglrouter Option Descriptions

MySQL Router accepts command line options that are passed into nysql r out er to affect its
behavior, or to bootstrap router based on an InnoDB Cluster.

When starting Router, you can optionally use - - conf i g to pass in the main configuration file's location
(otherwise the default location is used) and - - ext r a- conf i g for an additional configuration file.

Bootstrapping command line options affect the generated files and directories that are used when

starting MySQL Router.

mysgqglrouter Option Summaries

Table 4.2 General Options

Option Name

Description

--conf-set-option

Sets a value for a generated configuration option
during bootstrap

--config

Read configuration options from the provided file

--core-file

Write core file on Router crashes

--extra-config

Read this file after configuration files are read from
either default locations or from files specified by
the --config option

--help Display help text and exit

--pid-file Location to store the PID file

--user Run mysqlrouter as the user having the defined
user name or numeric user id

--version Display version information and exit

Table 4.3 Bootstrapping Options

Option Name

Description

--account

The MySQL user account used by Router after
bootstrapping

--account-create

Bootstrapped account creation behavior

--account-host

The host pattern used for bootstrapped accounts

--bootstrap

Bootstrap and configure Router for operation with
a MySQL InnoDB cluster

--bootstrap-socket

Connect to the MySQL metadata server through
a Unix domain socket, used in conjunction with --
bootstrap

--conf-base-port

Base port to use for listening Router ports

--conf-bind-address

IP address of the interface to which router's
listening sockets should bind

41

MySQL Router Command Line Programs

Option Name

Description

--conf-skip-tcp

Whether to disable binding of a TCP port for
incoming connections

--conf-target-cluster

Sets the target_cluster metadata option to a
cluster type

--conf-target-cluster-by-name

Sets the target_cluster metadata option to a
specific cluster name

--conf-use-gr-notifications

Enables Group Replication notifications

--conf-use-sockets

Whether to use Unix domain sockets

--connect-timeout

Number of seconds before connection attempts to
a metadata server are considered timed out

--directory Creates a self-contained directory for a new
instance of the Router
--disable-rest Disables generation of REST API configuration

details into the generated mysqglrouter.conf file

--disable-rw-split

Disables generation of read-write splitting
configuration details into the generated
mysqlrouter.conf file

--force

Force reconfiguration of a possibly existing
instance of the router

--force-password-validation

When creating a user account automatically, do
not skip the validate_password mechanism

--https-port

MySQL Router REST APl HTTP server port

--master-key-reader

Script that returns the master key to STDOUT

--master-key-writer

Script that reads the master key from STDIN

--name

Gives a symbolic name for the router instance

--password-retries

The number of retries to use for generating the
Router's user password

--read-timeout

Number of seconds before read operations to a
metadata server are considered timed out

--report-host

Router's hostname; overrides auto-detection

--strict

Enables bootstrap strict mode

Table 4.4 SSL Options

Option Name

Description

--client-ssl-ca

The path to the Certificate Authority (CA)
certificate file in PEM format

--client-ssl-capath

The path to the directory that contains the trusted
SSL Certificate Authority (CA) certificate files in
PEM format.

--client-ssl-cert

The path to the SSL public key certificate file,
in PEM format, used to encrypt client-to-router
connections

--client-ssl-cipher

Which ciphers are allowed between client and
MySQL Router, defaults to a secure list of SSL
ciphers

--client-ssl-crl

The path to the file containing the certificate
revocation lists in PEM format

42

MySQL Router Command Line Programs

Option Name

Description

--client-ssl-crlpath

The path to the directory that contains the
certificate revocation list files in PEM format

--client-ssl-curves

Which curves are allowed between the client and
MySQL Router, defaults to a secure list of SSL
curves

--client-ssl-dh-params

Filename of the DH parameter file. Not set by
default

--client-ssl-key

The path name of the SSL private key file, in
PEM format, used to encrypt client-to-router
connections

--client-ssl-mode

Controls if connections from the client to
MySQL Router must be encrypted, defaults to
PREFERRED if not set

--server-ssl-ca

The path to the Certificate Authority (CA)
certificate file in PEM format

--server-ssl-capath

The path to the directory that contains the trusted
SSL Certificate Authority (CA) certificate files in
PEM format.

--server-ssl-cipher

SSL Cipher for Server

--server-ssl|-crl

The path to the file containing the certificate
revocation lists in PEM format

--server-ssl-crlpath

The path to the directory that contains the
certificate revocation list files in PEM format

--server-ssl-curves

SSL Curves for Server

--server-ssl-mode

Controls if connections from router to server must
be encrypted.

--server-ssl-verify

Verification of the SSL certificates presented to
the router by the server

--ssl-ca Path to SSL Certificate Authority file to verify
server's certificate against

--ssl-capath Directory that contains trusted SSL Certificate
Authority certificate files

--ssl-cert The client-side SSL certificate to facilitate client-
side authentication during bootstrap

--ssl-cipher A colon-separated list of SSL ciphers to allow, if
SSL is enabled

--ssl-crl Path to SSL CRL file to use when verifying server
certificate

--ssl-crlpath Path to directory containing SSL CRL files to use
when verifying server certificate

--ssl-key The private SSL key to facilitate client-side
authentication during bootstrap

--ssl-mode Desired security state when connecting to the
metadata server during bootstrap and normal
operation. Analogous to --ssl-mode in mysql client

--tls-version Comma-separated list of TLS versions to request,

if SSL is enabled

43

MySQL Router Command Line Programs

Table 4.5 Windows Services Options

Option Name

Description

--clear-all-credentials

Clear all stored credentials

--install-service

Install MySQL Router as service and set it to
automatically start when Windows restarts; service
name defaults to MySQLRouter (Windows only)

--install-service-manual

Install MySQL Router as service that can be
manually started; service name defaults to
MySQLRouter (Windows only)

--remove-credentials-section

Remove a section's credentials

--remove-service

Remove MySQL Router as a Windows service;
service name defaults to MySQLRouter

--service

Start MySQL Router as a Windows service

--update-credentials-section

Update a section's credentials

mysqlrouter Option Descriptions

e --version,-V

Command-Line Format

--version , -V

Displays the version number and related information of the application, and exits. For example:

$> nysql router --version

MySQ. Router v9.5.0 on Linux (64-bit) (GPL community edition)

e --help,-?

Command-Line Format

--help , -7

Display help and informative information, and exit.

The - - hel p option has an added benefit. Along with the explanation of each of the options, the - -
hel p option also displays the paths used to find the configuration file, and also several default paths.
The following excerpt of the - - hel p output shows an example from a Ubuntu 16.04 machine:

$> nysql router --help

Start MySQL Router.

Configuration read fromthe following files in the given order (enclosed
i n parent heses neans not avail able for reading):
(/etc/nysql rout er/ mysql rout er. conf)
/ hore/ phi | i p/ . mysql r out er. conf
Pl ugi n Pat h:
/usr/lib/x86_64-1inux-gnu/ mysql router
Default Log Directory:
/var /| og/ mysql r out er
Default Persistent Data Directory:
/var/lib/ mysqlrouter
Default Runtine State Directory:
/run/ mysql r out er

Usage: nysqlrouter [-V|--version] [-?]--help]

The configuration section shows the order for the paths that may be used for reading the
configuration file. In this case, only the second file is accessible.

44

MySQL Router Command Line Programs

e --bootstrap URI,-B URI

Command-Line Format --bootstrap URI, -B UR
Type String

The main option to perform a bootstrap of MySQL Router by connecting to the InnoDB Cluster
metadata server at the URI provided. MySQL Router configures itself based on the information
retrieved from the InnoDB Cluster metadata server. A password is prompted for if needed. If

a username is not provided as part of the URI then the default user name "root" is used. See
Connecting Using URI-Like Connection Strings for information on using a path to specify a server
instance.

Note

3 While - - boot st r ap accepts a URI for TCP/IP connections, using the - -
boot st rap- socket option with a local Unix domain socket name replaces
the "host:port" part of the URI passed to the - - boot st r ap option with the
socket on the same machine.

By default, the bootstrap process performs a system-wide configuration of MySQL Router. Only

one instance of MySQL Router can be configured for system-wide operation. The system instance

of MySQL Router has arout er _nane of "system". If additional instances are desired, use the - -

di r ect ory option to create self-contained MySQL Router installations.

URI : a server instance from an InnoDB Cluster to fetch metadata information from. If the provided
URI is a read-only instance, MySQL Router automatically reconnects to a read-write instance in the
InnoDB Cluster so it can register MySQL Router.

If a configuration file already exists when you start MySQL Router with the - - boot st r ap, the
existing r out er _i d in that file is reused, and a reconfiguration process occurs. The configuration
file is regenerated from scratch and the MySQL Router's metadata server account is recreated,
although with the same name.

During the reconfiguration process, all changes made to an existing configuration file are
discarded. To customize a configuration file and still retain the ability of automatic reconfiguration
(bootstrapping), you can use the - - ext r a- conf i g command line option to specify an additional
configuration file that is read after the main configuration file. These configuration options are used
because this extra configuration file is loaded after the main configuration file.

The bootstrap process creates a new MySQL user account with a randomly generated password

to use by that specific MySQL Router instance. This account is used by MySQL Router when
connecting to the metadata server and InnoDB cluster to fetch information about its current state. For
detailed information about this user including how its password is stored and the MySQL privilege it
requires, see documentation for the MySQL user opti on.

The generated configuration file is named nmysql r out er . conf , and its location depends on the
type of instance being configured, the system, and the package. For system-wide installations,
the generated configuration file is added to the system's configuration directory such as / et c or
YPROGRANMDATAY My SQL\ MySQL Rout er\ . Executing nysql rout er - - hel p will display this
location.

The - - user option is required if executing a bootstrap with a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument such as --
user=root.

The minimum GRANT permissions required to execute - - boot st r ap are:

GRANT CREATE USER ON *.* TO ' bootstrapuser' @% W TH GRANT OPTI O\
GRANT SELECT, | NSERT, UPDATE, DELETE, EXECUTE ON nysql _i nnodb_cl uster_mnetadata.* TO 'bootstrapuser' @

GRANT SELECT ON nysql . user TO "bootstrapuser @% ; 45

https://dev.mysql.com/doc/refman/9.5/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-uri

MySQL Router Command Line Programs

GRANT SELECT ON perfornance_schema. replicati on_group_nmenbers TO ' boot strapuser' @% ;
GRANT SELECT ON perfornmance_schena. replicati on_group_nenber_stats TO ' bootstrapuser' @% ;
GRANT SELECT ON perfornmance_schema. gl obal _vari abl es TO ' boot strapuser' @ % ;

Using - - boot st r ap adds default values to the generated MySQL Router configuration file, and
some of these default values depend on other conditions. Listed below are some of the conditions
that affect the generated default values, where default is defined by passing in - - boot st r ap by
itself.

Table 4.6 Conditions that affect default --bootstrap values

Condition Description
--conf - base- port Modifies generated bi nd_port values for each connection
type.

By default, generated bi nd_port values are as follows: For
the classic protocol, Read-Write uses 6446 and Read-Only uses
6447, and for the X protocol Read-Write uses 6448 and Read-
Only uses 6449.

Setting - - conf - base- port to 0 changes the default

bi nd_port values to the following defaults: For the classic
protocol, Read-Write uses 6446 and Read-Only uses 6447, and
for the X protocol Read-Write uses 64460 and Read-Only uses

64470.
--conf -use-sockets Inserts socket definitions for each connection type.
--conf-skip-tcp TCP/IP connection definitions are not defined.
--directory Affects all file paths, and also generates additional files.
Other This list is not exhaustive, other options and conditions also

affect the generated values.

* --bootstrap-socket socket_ nane
Command-Line Format --boot st rap-socket socket nane
Platform Specific Linux

Used in conjunction with - - boot st r ap to bootstrap using a local Unix domain socket instead

of TCP/IP. The - - boot st r ap- socket value replaces the "host:port" part in the - - boot str ap
definition with the assigned socket name for connecting to the MySQL metadata server using Unix
domain sockets. This is the MySQL instance that is being bootstrapped from, and this instance must
be on the same machine if sockets are used. For additional details about how bootstrapping works,
see - - boot strap.

This option is different than the - - conf - use- socket s command line option that sets the socket
configuration file option during the bootstrap process.

This option is not available on Windows.

e --core-file

Command-Line Format --core-file[={0]1}]
Type Boolean
Default Value 0

Write a core file if nysql r out er dies. The name and location of the core file is system dependent.

— ——Ontinux,acore fite namedcore pi diswritten-to the current working directory of the process———
46

pi d represents the process ID of the server process. On macOS, a core file named cor e. pi d is

MySQL Router Command Line Programs

written to the / cor es directory, if the process has the com appl e. security. get-task-al |l ow
entitlement. On Solaris, use the cor eadmcommand to specify where to write the core file and how
to name it. On Windows, a minidump file named nysql r out er . { pi d} . dnp is written to the current
working directory of the process.

--directory dir_path,-d dir_path

Command-Line Format --directory dir_path, -d dir_path
Type String

Specifies that a self-contained MySQL Router installation will be created at the defined directory
instead of configuring the system-wide router instance. This also allows multiple router instances to
be created on the same system.

The self-contained directory structure for Router is:

$path/start. sh
$pat h/ st op. sh

$pat h/ mysql rout er . pi d
$pat h/ nysql r out er . conf
$pat h/ mysql rout er . key
$pat h/ run

$pat h/ run/ keyri ng
$pat h/ dat a

$pat h/ | og

$pat h/ | og/ nysql router. | og

If this option is specified, the keyring file is stored under the runtime state directory of that instance,
under r un/ in the specified directory, as opposed to the system-wide runtime state directory.

If - - conf - use- socket s is also enabled then the generated socket files are also added to this
directory.

--master-key-witer

Command-Line Format --master-key-witer file_path
Type String

This optional bootstrap option accepts a script that reads the master key from STDIN. It also uses
the ROUTER_ID environment variable set by MySQL Router before the nast er - key-wri t er
script is called.

The nast er - key-wri t er and nast er - key-r eader options must be used together, and using
them means the nast er _key fil e option must not be defined in mysql r out er. conf as the
master key is not written to the mysql r out er . key master key file.

This is also written to the generated MySQL Router configuration file as the nast er - key-wri t er
[DEFAULT] option.

Example contents of a bash script named wr i t er . sh used in our example:

#!/ bi n/ bash

KI D =$(keyct| padd user ${ROUTER |D} @s <&0)

Example usage:

$> nysql router --bootstrap=127.0.0.1: 3310 --naster-key-reader=./reader.sh
--nmaster-key-witer=./witer.sh

This also affects the generated nysql r out er . conf , for example:

47

MySQL Router Command Line Programs

[DEFAULT]

mast er - key- r eader =r eader . sh
mast er - key-writer=writer.sh

- -mast er - key-r eader

Command-Line Format --master-key-reader file path

Type String

This optional bootstrap option accepts a script that writes the master key to STDOUT. It also uses
the ROUTER_ID environment variable set by MySQL Router before the nast er - key- r eader
script is called.

The nast er - key-reader and nast er - key-wri t er options must be used together, and using
them means the nast er _key fil e option must not be defined in mysql r out er. conf as the
master key is not written to the nysql r out er . key master key file, and instead uses the value

provided by this option's script.

This is also written to the generated MySQL Router configuration file as the nast er - key- r eader
[DEFAULT] option.

Example contents of a bash script named r eader . sh used in our example:

#! / bi n/ bash
KI D_=$(keyct| search @s user ${ROUTER | D} 2>/dev/null)
if [! -z $KID_]; then

keyct| pipe $KID_
fi

Example usage:

$> nysql router --bootstrap=127.0.0.1: 3310 --naster-key-reader=./reader.sh
O, nmultiple hosts--master-key-witer=./witer.sh

This also affects the generated nysql r out er . conf, for example:

[DEFAULT]

nast er - key- r eader =r eader . sh
nmaster-key-writer=witer.sh

--strict
Command-Line Format --strict
Type String

Enables strict mode, which for example causes the bootstrap - - account user verification check to
stop the bootstrap process rather than only emit a warning and continue if the supplied user does not
pass the check.

--account

Command-Line Format --account usernane

48

MySQL Router Command Line Programs

Type String

A bootstrap option to specify the MySQL user to use, which either reuses an existing MySQL user
account or creates one; behavior controlled by the related - - account - cr eat e option.

With - - account , usage favors ease of management over ease of deployment as multiple routers
may share the same account, and the username and password are manually defined rather than
auto-generated.

Setting this option triggers a password prompt for this account regardless of whether the password is
available in the keyring.

Bootstrapping without passing - - account does not recreate an existing MySQL server account.

Using this option assumes the user has sufficient access rights for Router because the bootstrap
process does not attempt to add missing grants to existing accounts. The bootstrap process does
verify the permissions and outputs information to the console of the failed check. The bootstrap
process continues despite these failed checks unless the optional - - st ri ct option is also used.
Example required permissions:

GRANT USAGE ON *.* TO "theuser @ %

GRANT SELECT, EXECUTE ON "nysql _i nnodb_cl uster_netadata .* TO "theuser @ %

GRANT | NSERT, UPDATE, DELETE ON "nysql _i nnodb_cl uster_netadata . routers’ TO "theuser @ %
GRANT | NSERT, UPDATE, DELETE ON "nysql _i nnodb_cl uster_netadata . v2_routers’ TO "theuser @ %
GRANT SELECT ON " performance_schema' . gl obal _vari abl es™ TO "theuser @ %

GRANT SELECT ON " performance_schema' . ‘replicati on_group_nenber_stats™ TO "theuser @ %

GRANT SELECT ON " performance_schema’ . ‘replicati on_group_nenbers™ TO "theuser @ %

A password is not accepted from the command-line. For example, passing in "foo:bar" assumes
"foo:bar" is the desired username rather than user foo with the password bar.

--account-create

Command-Line Format --account -creat e behavi or
Type String
Default Value i f-not-exists
Valid Values i f-not-exists
al ways
never

Specify the account creation policy to help guard against accidentally bootstrapping with the wrong
user account. Potential values are:

e i f-not-exists (default): Bootstrap either way; reuse the account if it exists, otherwise create it.
« al ways: Only bootstrap if the account does not already exist; and create it.

e never : Only bootstrap if the account already exists; and reuse it.

This option requires that the - - account option is also used, and that - - account - host is not
used.

--account - host

Command-Line Format --account - host host_pattern

Type String

49

MySQL Router Command Line Programs

Default Value %

The host pattern used for accounts created by MySQL Router during the bootstrap process. This is
optional and defaults to '%'.

Pass in this option multiple times to define multiple patterns, in which case the generated MySQL
accounts use the same password.

Note
@ Router does not perform sanity checking and does not ensure that the pattern
authorizes Router to connect.
Note
@ Bootstrapping reuses existing Router accounts by dropping and recreating
the user, and this user recreation process applies to every host.
Examples:
One host

$> nysqlrouter --bootstrap |ocal host: 3310 --account-host host1l

O, nmultiple hosts
$> nysqgl router --bootstrap |ocal host: 3310 --account-host hostl --account-host host2
--account - host host3

e --conf-use-sockets
Command-Line Format --conf-use-sockets
Platform Specific Linux

Enables local Unix domain sockets.

This option is used while bootstrapping, and enabling it adds the socket option to the generated
configuration file.

The name of the generated socket file depends on the pr ot ocol option. With the classic protocol
enabled, the file is named nysql . sock for read-write connections, and nmysql r o. sock for read-
only connections. With the X Protocol enabled, the file is named nysql x. sock for read-write
connections, and nysql xr o. sock for read-only connections.

This option is not available on Windows.

e --conf-use-gr-notifications

Command-Line Format ‘ -conf-use-gr-notifications

Enables the use_gr _noti fi cati ons [metadata_cache] option during bootstrap.

When enabled, Router is asynchronously notified about most cluster changes. See
use_gr_notifications for more information. In addition, using this option setst t | =60 and
auth _cache_refresh_i nterval =60.

e --pid-file path

Command-Line Format --pid-file path

MySQL Router Command Line Programs

Type String ‘

Sets location of the PID file. This can be set in three different ways (in order of precedence): this
--pi d-fil e command-line option, setting pi d_f i | e in Router's configuration file, or defining the
ROUTER_PI D environment variable.

If - - boot st r ap is specified, then setting --pid-file causes Router to fail. This is unlike ROUTER_PID
and the pid_file configuration option, which are ignored if --bootstrap is specified.

If - - boot st r ap is not specified, then the following cause Router to fail: the --pid-file already exists,
pid_file or ROUTER_PID are set but empty, or if Router can't write the PID file.

e --report-host

Command-Line Format --report-host hostnane

Type String

Optionally define Router's hostname instead of relying on auto-detection to determine the externally
visible hostname registered to metadata during the bootstrap process.

Router does not check or confirm that the supplied hostname is reachable, but does use RFC 1123
to validate host names, and RFC 2181 to validate addresses.

The supplied hostname is written to the host_name field of the
mysql_innodb_cluster_metadata.hosts table in the MySQL InnoDB cluster metadata store.

e --conf-skip-tcp

Command-Line Format --conf-skip-tcp

Platform Specific Linux

Skips configuration of a TCP port for listening to incoming connections. See also - - conf - use-
socket s.

This option is not available on Windows.

- - conf - base- port

port_num

Command-Line Format --conf-base-port port_num
Type Integer
Default Value 0

Base (first) value used for the listening TCP ports by setting bi nd_port for each bootstrapped

route.

This value is used for the classic read-write route, and each additional allocated port is incremented
by a value of one. The port order set is classic read-write / read-only, and then x read-write / read-

only.

Setting - - conf - base- port to 0 changes the default bi nd_port values to the following defaults,
which were as follows: For the classic protocol, Read-Write uses 6446 and Read-Only uses 6447,
and for the X protocol Read-Write uses 64460 and Read-Only uses 64470.

Example usage:

Exanpl e without --conf-base-port

$> nysql router --bootstrap root @ ocal host: 3310

Classic MySQL protocol connections to cluster 'devC uster':

51

MySQL Router Command Line Programs

- Read/ Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

X protocol connections to cluster 'devC uster':

- Read/ Wite Connections: |ocal host: 6448
- Read/ Only Connections: |ocal host: 6449

Exanpl e denonstrating --conf-base-port set to O
$> nysql router --bootstrap root @ ocal host: 3310 --conf-base-port 0

Classic MySQL protocol connections to cluster 'devC uster':

- Read/ Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

X protocol connections to cluster 'devC uster':

- Read/ Wite Connections: |ocal host: 64460
- Read/ Only Connections: |ocal host: 64470

--conf - bi nd- addr ess addr ess

Command-Line Format

--conf - bi nd- addr ess addr ess

Type

String

Default Value

0.0.0.0

Modifies the bi nd_addr ess value set by - - boot st r ap in the generated Router configuration file.
By default, bootstrapping sets bi nd_addr ess=0. 0. 0. O for each route, and this option changes

that value.

Note
@ The default bi nd_addr ess value is 127.0.0.1 if bi nd_addr ess is not

defined.

--read-tinmeout num seconds

Command-Line Format

--read-tineout num seconds

Type

Integer

Default Value

30

Number of seconds before read operations to a metadata server are considered timed out.

This affects read operations during both the bootstrap process, and also affects normal
MySQL Router operations by setting the associated r ead _t i meout option in the generated

nysql rout er. conf.

This option is set under the [DEFAULT] namespace.

--connect-ti meout num seconds

Command-Line Format

--connect-tinmeout num seconds

Type

Integer

52

MySQL Router Command Line Programs

Default Value 30

Number of seconds before connection attempts to a metadata server are considered timed out.

This affects connections during both the bootstrap process, and also affects normal MySQL
Router operations by setting the associated connect ti nmeout option in the generated
nysql rout er. conf.

There are two connect_timeout variants. The metadata server variant is defined under the
[DEFAULT] namespace, while the MySQL server variant is defined under the [r out i ng]
namespace.

--user {user_nane|user_id},-u {user_name| user_id}

Command-Line Format --user {user_nane|user_id}, -u
{user _nane| user i d}

Platform Specific Linux

Type String

Run nysql r out er as the user having the name user _nane or the numeric user ID user _i d.
“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.
When bootstrapping, all generated files are owned by this user, and this also sets the associated

user option.

This system user is defined in the configuration file under the [DEFAULT] namespace. For
additional information, see the user option's documentation that - - user configures.

The - - user option is required if executing a bootstrap as a super user (uid=0). Although not
recommended, forcing the super user is possible by passing its name as an argument, such as --
user=root.

This option is not available on Windows.

--nane router_nane

Command-Line Format --name router_nane
Type String
Default Value system

On initial bootstrap, specifies a symbolic name for a self-contained Router instance. This option is
optional, and is used with - - di r ect or y. When creating multiple instances, the names must be

unigue.

--force-password-validation

Command-Line Format --force-password-validation

Platform Specific Linux

By default, MySQL Router skips the MySQL Server's validate_password mechanism and instead
Router generates and uses a STRONG password based on known validate password default
settings. This is because validate_password can be configured by the user and Router can not take
into account unusual custom settings.

This option ensures that password validation (validate_password) is not skipped for generated
passwords, and it is disabled by default.

53

MySQL Router Command Line Programs

--password-retries numretries

Command-Line Format --password-retries numretries
Type Integer

Default Value 20

Minimum Value 1

Maximum Value 10000

Specifies the number of times MySQL Router should attempt to generate a password when creating
user account with the password validation rules. The default value is 20. The valid range is 1 to

10000.

The most likely reason for failure is due to custom validate password settings with unusual
requirements such as a 50 character minimum. In that fail scenario, it is likely that - - f or ce-

passwor d-val i dati on is set to true.

--force

Command-Line Format

--force

Force a reconfiguration over a previously configured router instance on the host.

--ssl -nmode node

Command-Line Format --ssl -nmode node
Type String
Default Value PREFERRED
Valid Values PREFERRED
DI SABLED
REQUI RED
VERI FY_CA
VERI FY_| DENTI TY

SSL connection mode for use during bootstrap and normal operation when connecting to the
metadata server. Analogous to - - ssl - node in the nysql client.

During bootstrap, all connections to metadata servers made by the Router will use the SSL options
specified. If ss| _node is not specified in the configuration, it will default to PREFERRED. During
normal operation, after Router is launched, its Metadata Cache plugin will read and honor all
configured SSL settings.

When set to a value other than the default (PREFERRED), an ssl _node entry is inserted under the
[ret adat a_cache] section in the generated configuration file.

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
PREFERRED is the default value. As with the mysqgl client, this value is case-insensitive.

The configuration file equivalent is documented separately at ssl _node.

e --ssl-cert file_path

Command-Line Format

--ssl-cert file_path

Type

String

54

https://dev.mysql.com/doc/refman/9.5/en/connection-options.html#option_general_ssl-mode

MySQL Router Command Line Programs

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-

side authentication during the bootstrap process. This directly matches and uses functionality of the

MySQL client's - - ssl - cert option.

Like - - ssl - key, this option is only used during bootstrap that uses a root account. It is useful when

the root account was created with REQUIRE X509, and therefore logging in as root requires the

client to authenticate itself.

--ssl-key file path

Command-Line Format

--ssl-key file _path

Type

String

The path name of the SSL private key file in PEM format. This is used to facilitate client-side
authentication during the bootstrap process. This directly matches and uses functionality of the

MySQL client's - - ssl - key option.

Like - - ssl - cer t, this option is only used during a bootstrap process that uses a root account. It
is useful when the root account was created with REQUIRE X509, and therefore logging in as root

requires the client to authenticate itself.

--ssl -ci pher ciphers

Command-Line Format

--ssl -ci pher ciphers

Type

String

Default Value

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

--tls-version versions

Command-Line Format

--tl s-version versions

Type

String

Default Value

A comma-separated (",") list of TLS versions to request, if SSL is enabled.

--ssl-ca file_path

Command-Line Format

--ssl-ca file_path

Type

String

Default Value

Path to the SSL CA file to verify a server's certificate against.

--ssl-capath dir_path

Command-Line Format

--ssl-capath dir_path

Type

String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

--ssl-crl file_path

55

https://dev.mysql.com/doc/refman/9.5/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/9.5/en/connection-options.html#option_general_ssl-key

MySQL Router Command Line Programs

Command-Line Format

--ssl-crl file_path

Type

String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

--ssl-crlpath dir_path

Command-Line Format

--ssl-crlpath dir_path

Type

String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

--client-ssl-node node

Command-Line Format

--client-ssl-npde

Type String

Default Value PREFERRED

Valid Values PREFERRED
DI SABLED
PASSTHROUGH
REQUI RED

SSL connection mode for use during bootstrap and normal operation when connecting between

MySQL Router and client.

During bootstrap, all connections to clients made by the Router will use the SSL options specified. If

client_ssl _node is not specified in the configuration, it defaults to PREFERRED.

The configuration file equivalent is documented separately at cl i ent _ssl _node.

--client-ssl-cert file_path

Command-Line Format

--client-ssl-cert file_path

Type

String

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-

side authentication during the bootstrap process.

Like - - cl i ent - ssl - key, this option is only used during bootstrap that uses a root account. It is
useful when the root account was created with REQUIRE X509, and therefore logging in as root

requires the client to authenticate itself.

client-ssl-curves

Command-Line Format

--client-ssl-curves

Type

String

56

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

MySQL Router Command Line Programs

--client-ssl-key file_path

Command-Line Format

--client-ssl-key file_path

Type

String

The path name of the SSL private key file in PEM format. This is used to facilitate client-side

authentication during the bootstrap process.

Like --cl i ent -ssl -cert, this option is only used during a bootstrap process that uses a root
account. It is useful when the root account was created with REQUIRE X509, and therefore logging

in as root requires the client to authenticate itself.

--client-ssl-cipher ciphers

Command-Line Format

--client-ssl-cipher

Type

String

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

client-ssl-dh-parans

Command-Line Format

--client-ssl-dh-params=fil epath

Type

String

Filename of the DH parameter file. If specified and not empty, the DH parameters from this file are
used instead of internal default DH parameters. Format the DH param file in PEM format.

e --client-ssl-ca file_path

Command-Line Format

--client-ssl-ca file_path

Type

String

Default Value

Path to the SSL CA file to verify a server's certificate against.

e --client-ssl-capath dir_path

Command-Line Format

--client-ssl-capath dir_path

Type

String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

e --client-ssl-crl file_path

Command-Line Format

--client-ssl-crl file_path

Type

String

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

57

———=ctient=sst=cripathdir—path

Command-Line Format

--client-ssl-crlpath dir_path

P

——

MySQL Router Command Line Programs

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

--server-ssl - node node

Command-Line Format

--server-ssl - nnde

Type String

Default Value PREFERRED

Valid Values AS CLI ENT
DI SABLED
PREFERRED
REQUI RED

SSL connection mode for use during bootstrap and normal operation when connecting between

MySQL Router and server.

During bootstrap, all connections to servers made by the Router will use the SSL options specified. If

server _ssl _node is not specified in the configuration, it defaults to PREFERRED.

The configuration file equivalent is documented separately at ser ver _ssl _node.

--server-ssl-cipher ciphers

Command-Line Format

--server-ssl -ci pher

Type

String

A colon-separated (":") list of SSL ciphers to allow, if SSL is enabled.

--server-ssl-ca file_path

Command-Line Format

--server-ssl-ca file_path

Type

String

Default Value

Path to the SSL CA file to verify a server's certificate against.

--server-ssl-capath dir_path

Command-Line Format

--server-ssl-capath dir_path

Type

String

Default Value

Path to directory containing the SSL CA files to verify a server's certificate against.

--server-ssl-crl file_path

Command-Line Format

--server-ssl-crl file_path

Type

String

58

Default Value

Path to the SSL CRL file to use when verifying a server's certificate.

MySQL Router Command Line Programs

--server-ssl-crlpath dir_path

Command-Line Format

--server-ssl-crlpath dir_path

Type

String

Default Value

Path to the directory containing SSL CRL files to use when verifying a server's certificate.

server-ssl -curves

Command-Line Format

--server-ssl -curves

Type

String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

--server-ssl-verify string

Command-Line Format

--server-ssl-verify

Type String

Default Value DI SABLED

Valid Values DI SABLED
VERI FY_CA

VERI FY_I| DENTI TY

Verification of the SSL certificates presented to the router by the server
« DI SABLED: the connection fails if the server does not provide a certificate in the handshake.

« VERI FY_CA: the connection fails if the server's certificate does not match a CA trusted by MySQL
Router.

« VERI FY_I DENTI TY: the connection fails if the server's certificate does not match a CA trusted
by MySQL Router, or the server certificate's subject does not match the hostname or IP address
MySQL Router connected to.

--config file_path,-c file_path

Command-Line Format --config file_path, -c file_path

Used to provide a path and file name for the configuration file to use. Use this option if you want to
use a configuration file located in a folder other than the default locations.

When used with - - boot st r ap, and if the configuration file already exists, a copy of the current file
is saved with a .bak extension if the generated configuration file contents is different than the original.
Existing .bak files are overwritten.

59

MySQL Router Command Line Programs

--extra-config file_path,-a file_path

--extra-config file _path, -a

Command-Line Format
file_path

Used to provide an optional, additional configuration file to use. Use this option if you want to split the
configuration file into two parts for testing, multiple instances of the application running on the same

machine, etc.
This configuration file is read after the main configuration file. If there are conflicts (an option is set in
multiple configuration files), values from the file that is loaded last is used.

--install -service

Command-Line Format --install-service [service_nane]

Platform Specific

Windows

Install Router as a Windows service that automatically starts when Windows starts. The service
name defaults to MySQLRouter.

This installation process does not validate configuration files passed in via - - conf i g.

This option is only available on Windows.

--install -servi ce- manual

--install-servi ce- manual
[servi ce_nane]

Windows

Command-Line Format

Platform Specific

Install MySQL Router as a Windows service that can be manually started. The service name defaults
to MySQLRouter.

This option is only available on Windows.

e --renove-service

Command-Line Format --renove-service [service_nane]

Platform Specific

Windows

Remove the Router Windows service; service name defaults to MySQLRouter.

This option is only available on Windows.

e --service
Command-Line Format --service
Platform Specific Windows

Start Router as a Windows service. This is a private option, meaning it is only meant to be used by
the Windows Service when launching Router as a service.

This option is only available on Windows.

60

e --update-credential s-section

--updat e-credenti al s-section

P

Command-Line Format

~ o~~~ 1

MySQL Router Command Line Programs

Platform Specific Windows

This option is only available on Windows, and refers to its password vault.

e --conf-target-cluster
Command-Line Format --conf-target-cluster val ue
Type String
Valid Values current
primary

Setsthe t ar get _cl ust er metadata MySQL Router option. Accepts one of the following strings:

e current:setstarget cl uster tothe cluster containing the node being bootstrapped against.
It defines it as the cluster's UUID value.

If this is also the Primary, it does not dynamically follow role changes like the pri mary does;
instead it remains static.

e primary:setstarget cluster tothe primary cluster, including when it changes at runtime.

See also - - confi g-target -cl ust er - by- nane, which sets the t ar get _cl ust er to a specific
static cluster name.

Note
@ Bootstrapping against a ClusterSet requires the cl ust er _t ype Router
configuration option set to gr.
e --conf-set-option
Command-Line Format --conf-set-option
section_name[: optional _section_key].option=
Type String

Sets a value for a generated configuration option during bootstrap; this can set a value for any
bootstrapped option, for example:
$> nysqgl router -B 127.0.0. 1: 5000 \

--directory=dirl \

--conf-set-option=l ogger. | evel =debug \

--conf-set-option=routing:test_rw max_connect_errors=0 \
--conf-set-option=routing:test_ro.max_connect_errors=0

Those commands alter the default values for those specific options by defining them as such:

[1 ogger]
| evel =debug

[routing:test_rw

max_connect _error s=0

[routing:test_ro]

max_connect _error s=0

set specific value. For example, if both - - connect -t i neout =X and - - conf - set - 61

https://dev.mysql.com/doc/mysql-shell/9.5/en/innodb-clusterset.html

MySQL Router Command Line Programs

opt i on=DEFAULT. connect ti neout =Y are specified when bootstrapping, the
connect _ti meout is setto Y in the generated configuration file.

e --conf-target-cluster-by-nane

Command-Line Format

--conf-target-cl uster-by-nane
cl ust er Nane

Type

String

Setsthet arget cl ust er metadata MySQL Router option to a specific cluster name.

Or, instead use - - conf -t ar get - ¢l ust er to assign a dynamic cluster type, such as primary.

e --renove-credential s-section section_nane

Command-Line Format

--renpve-credenti al s-section
section_nane

Platform Specific

Windows

Remove the credentials for a given section.

This option is only available on Windows, and refers to its password vault.

e --clear-all-credentials

Command-Line Format

--clear-all-credentials

Platform Specific

Windows

Clear the password vault by removing all credentials stored in it.

This option is only available on Windows, and refers to its password vault.

e --disabl e-rest

Command-Line Format

--di sabl e-rest

By default, configuration details for the MySQL Router REST API web service functionality are added
to the generated mysql r out er . conf file at bootstrap; and this parameter means those details
are not added. This does not disable REST API functionality, as the REST API functionality can be

manually configured (to enable it) later on.

e --https-port

Command-Line Format --https-port val ue
Type Integer

Default Value 8443

Minimum Value 1

Maximum Value 65535

Optionally define the HTTP server's por t for the MySQL Router REST API under the [http_server]
section in generated nmysql r out er. conf at bootstrap. It defaults to 8443. Availability of the port is

not checked.
4.3.2.2 mysqlrouter_plugin_info — Command Line Options

The nysql rout er _pl ugi n_i nf o utility is a debugging tool that inspects a MySQL Router plugin for
potential conflicts and general problems.

62

MySQL Router Command Line Programs

Usage information:

$> ./nysqlrouter_plugin_info --help

Usage:
.I'nysql rout er _pl ugi n_i nfo <nysql router_pl ugi n_file> <nysql _pl ugi n_nane>

Exanpl e:
.Inysqlrouter_plugin_info /usr/lib/nysqlrouter/routing.so routing

To print help information:
.Inysql router_plugin_info --help
To print application version:
.I'nysql router_plugin_info --version
$> ./ bin/nysql router_plugin_info --version

M/SQLRout er Plugin Info App 9.4.0

Example usage:

$> ./ bin/nysqlrouter_plugin_info Iib/mysqglrouter/routing.so routing

{
"abi-version": "2.0",
"arch-descriptor": "i386/darwin//",
"brief": "Routing MySQL connections between MySQL clients/connectors and servers",
"plugi n-version": "0.0.1",
"requires": [],
"conflicts": []
}

4.3.2.3 mysqlrouter_passwd — Command Line Options

The nysql rout er _passwd utility is a command line application to manage the accounts in the
passwd file. For example usage, see Section 6.1, “A Simple MySQL Router REST API Guide”.

Usage information:

Usage
bi n/ nysql rout er _passwd [opts] <cmd> <fil ename> [<user nane>]
bi n/ nysql rout er _passwd - - hel p
bi n/ nysql rout er _passwd --version

Commands

del ete
Del ete usernane (if it exists) from<fil enane>.
list
list one or all accounts of <filenanme>.
set
add or overwite account of <username> in <fil ename>.
verify
verify if password nmatches <usernanme>'s credentials in <fil enane>.

Opti ons

-?, --help
Di splay this help and exit.
- - kdf <nane>
Key Derivation Function for 'set'. One of pbkdf2-sha256, pbkdf2-sha512,
sha256-crypt, sha512-crypt. default: sha256-crypt
-V, --version
Di spl ay version infornation and exit.
--wor k-factor <nune
Work-factor hint for KDF if account is updated.

4.3.2.4 mysqlrouter_keyring — Command Line Options

Configuration File Options

The nysql rout er _keyr i ng utility is a command line application to manage MySQL Router key
rings.

Usage information:

Generic commands

* --hel p: usage information.

e --versi on: the tool's version.

Keyring commands; all commands also accept --master-key-reader and --master-key-writer instead of
--master-key-file.

* i nit: Initialize keyring with a master-key-file.

Creates a keyring and master-key-file if they do not exist; and adds keyring to master-key-file if it
does not yet exist there.

| i st: List usernames stored in the keyring; or list properties of a user stored in the keyring.

get : Get property of user from the keyring.

expor t : Export all entries of the keyring as JSON.

set : Add or overwrite account of the user in the keyring file

del et e: Delete user from the keyring.

Master-key commands

* mast er-key-1i st: List keyring-ids from master-key-file.

* mast er - key- del et e: Delete master-key from "keyring" from master-key-file.

* nmast er - key-r enane: Rename keyring-id in a master-key-file.

Examples:

$>

$>
$>

$>
$>
$>

$>
$>

$>
$>

nysql rout er _keyri

nysql rout er _keyri
nysql rout er _keyri

nysql rout er _keyri
nysql rout er _keyri
nysql rout er _keyri

nysql rout er _keyri
nysql rout er _keyri

nysql rout er _keyri

nysql rout er _keyri

ng

ng
ng

ng

ng

ng

ng
ng

ng

ng

$> nysql router _keyring

init --master-key-file=nysqlrouter.key datal/keyring

list --master-key-file=nysqlrouter.key datal/keyring
list --master-key-file=nysqlrouter.key datal/keyring user

get --master-key-fil e=nysqlrouter.key datal/keyring soneuser key
export --nmaster-key-file=nmysqlrouter.key data/keyring
set --master-key-fil e=nysqlrouter.key datal/keyring user key val ue

del ete --master-key-fil e=nysql router. key data/keyring user
del ete --master-key-fil e=mysql router. key datal/keyring user key

mast er- key-1ist --master-key-file=nysqlrouter.key
mast er - key-del ete --nmaster-key-file=nysqlrouter.key datalkeyring

mast er - key-renanme --nmaster-key-file=nysqlrouter.key datal/keyring other/datal/keyring

4.3.3 Configuration File Options

When started, MySQL Router reads a list of configuration files that together make up the configuration
of the router. At least one configuration file is required.

MySQL Router reads options from configuration files that closely resemble the traditional INI file format,
with sections and options. These specify the options set when MySQL Router starts. For file syntax
information, see Section 4.1, “Configuration File Syntax”.

64

Configuration File Options

Options are defined under sections, that dictate the option's meaning. For example, user under the
[DEFAULT] section refers to the system user running router, while user under the [metadata_cache]
section refers to the MySQL user that accesses metadata.

The following tables are separated by section, and summarize the MySQL Router options defined
in a MySQL Router configuration file. Detailed information about each of these options, such as
descriptions and allowed values, is documented below these tables.

* General Options

* Routing Options

 Destination Status Options

» Metadata Cache Options
» Logging Options

e HTTP Server Options

* MySQL Router Configuration File Option Descriptions

General Options

Table 4.7 [DEFAULT]

to each thread stack

Option Name Description Type
confi g_fol der Path to configuration files String
connect _ti meout Number of seconds before Integer
connection attempts to a
metadata server are considered
timed out
event _source_nane Microsoft Windows platforms String
only. Defines the service name
used by MySQL Router when it
is run as a service on Microsoft
Windows.
keyring_path Path to keyring file String
| oggi ng_f ol der Path to router logs String
mast er _key_path Path to master keyring file String
mast er _key_reader Script that returns the master key | String
to STDOUT
master _key witer Script that reads the master key |String
from STDIN
max_total connections Total maximum number of Integer
allowed client connections from
the router
pid_file Location to store the PID file String
pl ugi n_f ol der Path to router plugins String
runtime_fol der Path to runtime files String
si nks Logging method(s) to receive String
configured log data
t hread_stack_si ze Size in KB of memory allocated |Integer

65

Configuration File Options

Option Name

Description

Type

unknown_config_option

Error type sent if an unknown
configuration option is
encountered

String

user

System user MySQL Router is
run as

String

Routing Options

Table 4.8 [routing]

Option Name

Description

Type

access_node

Splits reads and writes according
to the category of transaction.

String

bi nd_address

Address router is bound to, also
uses bind_port if a port is not
defined

String

bi nd_port

Default port used by
bind_address

Integer

client_connect _ti meout

Maximum number of seconds
to receive packets from MySQL
server

Integer

client _ssl _ca

The path to the Certificate
Authority (CA) certificate file in
PEM format

String

client_ssl _capath

The path to the directory that
contains the trusted SSL
Certificate Authority (CA)
certificate files in PEM format.

String

client_ssl_cert

The path to the SSL certificate
(PEM) used to encrypt client-to-
router communications

String

client_ssl _cipher

Which ciphers are allowed
between client and MySQL
Router, defaults to a secure list
of SSL ciphers

String

client_ssl _crl

The path to the file containing the
certificate revocation lists in PEM
format

String

client_ssl _crlpath

The path to the directory
that contains the certificate
revocation list files in PEM format

String

client_ssl_curves

Which curves are allowed
between the client and MySQL
Router, defaults to a secure list
of SSL curves

String

client_ssl _dh_parans

Filename of the DH parameter
file. Not set by default

String

O

i ent _ssl _key

The path to the SSL private
key certificate file (PEM) used
to encrypt client-to-router
communications

String

66

Configuration File Options

Option Name

Description

Type

client_ssl_node

Controls if connections from
the client to MySQL Router
must be encrypted, defaults to
PREFERRED if not set

String

client_ssl _session_cache_|

rErtables or disables the
TLS session cache for client
connections

Boolean

client _ssl _session_cache |

Nuraber of entries in the
TLS session cache for client
connections

Integer

client _ssl _session_cache |

tTimedntseconds until TLS
sessions are removed from the
client TLS session cache

Integer

connect _retry_ti nmeout

Number of seconds MySQL
Router waits before retrying a
connection to a backend

Integer

connect _ti nmeout

Number of seconds before
connection attempts to a MySQL
server are considered timed out

Integer

connection_sharing

Whether to enable connection
sharing.

Integer

connection_sharing_del ay

Seconds to wait before moving
an idle connection to the
connection pool.

Integer

desti nations

Routing destinations as either a
comma-separated list of MySQL
servers, or a metadata-cache
definition

String

dynanmic_state

Path to generated JSON

file used to track and store
active MySQL InnoDB Cluster
Metadata server addresses

String

max_connect _errors

Maximum number of failed
MySQL server connections
before giving up

Integer

max_connecti ons

Maximum number of connections
assigned to a routed destination
MySQL server

Integer

net _buffer | ength

Set net_buffer_length

Integer

pr ot ocol

Protocol for connecting to
MySQL Server

String

read_ti neout

Number of seconds before read
operations to a metadata server
are considered timed out

Integer

router_require_enforce

If enabled, retrieves the
attributes for the current user and
enforces them

Boolean

routing_strategy

Routing strategy, how router
chooses destination MySQL
servers

String

67

Configuration File Options

Option Name

Description

Type

server_ssl _ca

The path to the Certificate
Authority (CA) certificate file in
PEM format

String

server_ssl _capath

The path to the directory that
contains the trusted SSL
Certificate Authority (CA)
certificate files in PEM format.

String

server_ssl _cert

The path to the SSL certificate
(PEM) used to encrypt router-to-
server communications

String

server _ssl _ci pher

SSL Cipher for Server

String

server_ssl _crl

The path to the file containing the
certificate revocation lists in PEM
format

String

server_ssl _crlpath

The path to the directory
that contains the certificate
revocation list files in PEM format

String

server_ssl _curves

SSL Curves for Server

String

server_ssl _key

The path to the SSL private
key certificate file (PEM) used
to encrypt router-to-server
communications

String

server_ssl _node

Controls if connections from
router to server must be
encrypted

String

server_ssl _session_cache_

rErtables or disables the TLS
session cache for server
connections

Boolean

server_ssl _session_cache_|

Number of entries in the TLS
session cache for server
connections

Integer

server_ssl _session_cache_|

tTimedntseconds until TLS
sessions are removed from the
server TLS session cache

Integer

server_ssl _verify

Verification of the SSL
certificates presented to the
router by the server

String

socket

Path to Unix domain socket file

String

wait _for_nmy wites

Read-only queries wait for the
last written transaction.

Integer

wait _for_my_wites_ tineou

fMaximum time in seconds to
wait for a read_only destination
to apply the written transaction,
before falling back to a
read_write destination.

Integer

68

Configuration File Options

Destination Status Options

Table 4.9 [destination_status]

Option Name

Description

Type

error_quarantine_interval

Defines the interval, in seconds,
between checks on quarantined
destination connectivity. If a
connection is possible, the
destination is moved out of
quarantine and made available
for connections.

Integer

error_quarantine_threshol

Mefines the threshold of
consecutive, failed attempts to
connect to a routing destination
before MySQL Router adds
the destination to quarantine
and stops using it as a
destination until it is cleared

by the quarantine mechanism.
For example, if set to 5, the
destination is quarantined after
5 consecutive, failed attempts to

connect to it.

Integer

Table 4.10 [connection_pool]

Option Name

Description

Type

idl e tineout

Seconds to keep the idling
connection in the collection pool
before closing it

Integer

mex_i dl e_server _connectio

rGonnections to keep open after
the client disconnects

Integer

Metadata Cache Options

Table 4.11 [metadata_cache]

Option Name

Description

Type

auth_cache_refresh_interv

dlime between auth-cache
refresh attempts

Numeric

aut h_cache_ttl

Time until the cache becomes
invalid if not refreshed

Numeric

cl ose_connection_after _re

fWhether metadata_cache
connection to a MySQL server
should be closed after a
metadata refresh

Integer

cluster_type

Object Router was bootstrapped
against

String

nmet adat a_cl uster

InnoDB Cluster name

String

router_id

Router ID

Integer

ssl _ca

SSL CA file to verify server's
certificate against

String

69

Configuration File Options

Logging Options

Option Name Description Type
ssl _capath Directory containing SSL CA String
files to verify server's certificate
against
ssl _crl SSL CRL file to verify server's String
certificate against
ssl _crlpath Directory containing SSL CRL String
files to verify server's certificate
against
ssl _node SSL connection mode for String
connecting to the metadata
server, defaults to PREFERRED
if not set
tls_version Comma-separated list of TLS String
versions to request, if SSL is
enabled
ttl Time To Live, in seconds Integer
use_gr_notifications Group Replication notifications |Integer
behavior
user MySQL user that accesses String
the MySQL Server's metadata
schema
Table 4.12 [logger]
Option Name Description Type
destination Name of device to log to; String
optionally used with [consolelog]
fil enane Log file name; optionally used String
with [logger] and [filelog]
| evel Logging level String
ti mestanp_preci sion Logger timestamp precision String
HTTP Server Options
Table 4.13 [http_server]
Option Name Description Type
bi nd_addr ess IP address bound to the HTTP | String
port
port HTTP server TCP port Integer
requi re_realm [http_auth_realm] name String
ssl _cert SSL certification file name String
ssl _ci pher Approved SSL ciphers String
ssl _dh_param DH parameter file name String
ssl Enables TLSv1.2 or later support |Integer
ssl _key SSL key filename String

70

Configuration File Options

executions (runs), or 0 for no
limit

Option Name Description Type

static_fol der Directory for HTTP server static | String
file requests

Table 4.14 [http_auth_realm]

Option Name Description Type
backend Name of the [http_auth_backend]|String
section
met hod The HTTP authentication method | String
nane Realm name for authenticated String

user
require Require authentication validation | String
Table 4.15 [http_auth_backend]
Option Name Description Type
backend Backend type String
filenane Backend storage file name String
Table 4.16 [io]
Option Name Description Type
backend The 10 backend String
t hr eads The 10 thread count Integer
Table 4.17 [keepalive]
Option Name Description Type
i nterval The keepalive ping frequency Integer
interval, in seconds
runs Limits the number of keepalive |Integer

» access_node

MySQL Router Configuration File Option Descriptions

Type String
Default Value
Valid Values aut o

Defines how MySQL Router treats read-only and read-write queries. If enabled, read-only queries
are directed to read-only servers, and read-write queries are directed to read-write servers. See
Section 3.5, “Read/Write Splitting”.

e wait for_ny wites

Type Integer
Default Value 1
Minimum Value 0
Maximum Value 1

Read-only queries wait for the last written transaction.

71

Configuration File Options

See Section 3.5, “Read/Write Splitting”.

e wait _for_nmy wites_tineout

Type Integer
Default Value 1

Minimum Value 0

Maximum Value 4294967295

Maximum time in seconds to wait for a read_only destination to apply the written transaction, before
falling back to a read_write destination.

See Section 3.5, “Read/Write Splitting”.

router_require_enforce

Type Boolean
Default Value 0

If enabled, MySQL Router retrieves the values defined in the user's r out er _requi r es attribute in
the USER_ATTRI BUTES table.

The attribute must take the following format:

{router_require: {val ue}}

The following are the possible values:
* {}:no requirements.

e {ssl: true}: MySQL Router requires SSL from the client.

{x509: true}: MySQL Router requires SSL and an x509 certificate from the client.

e {issuer: ""}:MySQL Router requires SSL, an x509 certificate, and the certificate issuer from
the client.

e {ssl: true}: MySQL Router requires SSL, an x509 certificate, and the certificate subject from
the client.

event _source_nane

Type String

Default Value

Microsoft Windows platforms only. Defines the service name used by MySQL Router when it is run
as a service on Microsoft Windows. This enables you to differentiate between services when running
multiple instances of MySQL Router and between their messages in the Event Log.

For example:

[DEFAULT]
event _source_nanme = MySQLRout er Servi ce

| oggi ng_f ol der

Type String

72

https://dev.mysql.com/doc/refman/9.5/en/information-schema-user-attributes-table.html

Configuration File Options

Default Value

$rout er _basepath

Path to the MySQL Router log file directory. The log file is named nmysql r out er . | og, and itis
either generated or appended to if this file already exists.

Setting | oggi ng_f ol der to an empty value sends the messages to the console (stdout).

Note

K

in MySQL Router 2.1.

The default | oggi ng_f ol der value changed from " to Router's base path

An example that sends logs to / var /| og/ mysql rout er/ mysql rout er. | 0g:

[DEFAULT]
| oggi ng_fol der = /var/| og/ nysql rout er

When the - - di r ect or y bootstrap option is used, the generated configuration file sets it to

$directory/log/.

pl ugi n_f ol der

Type

String

Default Value (Windows)

Default Value (Other)

/usr/local/lib/nmysqlrouter

Path to the MySQL Router plugins. This folder must match the MySQL Router installation directory.
You should only set this if you have a custom installation where the plugins are not in the standard

installation location.

Default value: / usr/ | ocal /1 'i b/ mysql rout er

runtine_fol der

Type

String

Default Value (Windows)

Default Value (Other)

/ run/ nmysql r out er

Path to the MySQL Router runtime files.

Default value: / r un/ nysql r out er

mast er - key-writer

Command-Line Format

--master-key-witer file_path

Type

String

Script that reads the master key from STDIN. Set using the - - nast er - key-w i t er command-line

bootstrap option.

nmast er - key-r eader

Command-Line Format

--mast er-key-reader file_path

Type

String

line bootstrap option.

Script that returns the master key to STDOUT. Set using the - - mast er - key- r eader command- 3

Configuration File Options

config_folder

Type String
Default Value (Windows)
Default Value (Other) /usr/local/etc/nmysql router

Path to the MySQL Router configuration files.

Note
@ The confi g_f ol der is currently set at compile time. The option could be
used by future plugins when they have their own configuration files.

Default value: / usr/ | ocal / et c/ mysql r out er

si nks

Type String

Valid Values (Windows) consol el og
filelog
event | og

Valid Values (Other) consol el og
filelog
sysl og

The sink(s) (different logging methods) that a defined log level are sent to.

Supported sink values are: consol el og, fi | el og, event | og (on Windows), and sysl| og (on
Unix-based systems). Use a comma-separated list to define multiple values.

Default value: fi | el og if the | oggi ng_f ol der option is not empty in the "[DEFAULT]" section,
otherwise consol el og.

For example, to configure logger to use the file, console and the event log each using the debug log
level configured in the [logger] section:

[1 ogger]

| evel =debug
si nks=consol el og, event |l og, fil el og

keyring_path

Type String

Default Value (Windows) %PROGRAMDATA% My SQL\ MySQL Rout er
\ keyring-data

Default Value (Other) /run/ nysql -rout er/ keyri ng-data

Points to the keyring file's location.

A system-wide bootstrap does not add this option to the generated configuration file, and assumes
the keyring file is located in the system-wide runtime state directory. If - - di r ect or y is also used,
then the keyring file is stored under the runtime state directory of that instance, under r un/ in the
specified directory.

System-wide default paths are used if this option is not defined.

74

Configuration File Options

Example usage:

keyring_path = /opt/nyrouter/datalkeyring
mast er _key_path = /opt/nyrouter/nmysql router.key

e master_key path

Type String

Default Value (Windows) YPROGRAMDATA% My SQL\ MySQL Rout er
\ mysql rout er . key

Default Value (Other) /run/ nmysql -rout er/ mysql rout er. key

The master key file's location. This option allows unattended decryption, as otherwise its location is
requested at startup.

System-wide default paths are used if this option is not specified.

Example usage:

keyring_path = /opt/nyrouter/datalkeyring
nmast er _key_path = /opt/nyrouter/nysql router. key

* unknown_config_option

Type String

Default Value war ni ng

Valid Values war ni ng
error

Determines MySQL Router behavior for handling unknown configuration options, such as typos.

A warning is default behavior, and bootstrapping defines it as error in the generated configuration
file. Warning logs a warning message but does not halt, whereas an error means MySQL Router fails
to initialize and exits.

[DEFAULT]
unknown_conf i g_opti on=war ni ng

e user (system

‘ Type String

Run nysql r out er as the user having the name user _nane or the numeric user ID user _i d.
“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.
This can also be assigned at runtime using the - - user command line option.

On Linux, installing Router with official DEB or RPM packages creates a local system user and group
named "mysqlrouter" on the host, and MySQL Router runs as this user by default. This account does
not have shell access and its home directory points to the directory where the default configuration
file is stored.

The purpose of this option is to run MySQL Router as a user with restricted system privileges. If the
user does not exist on the system, or if an attempt to start Router as root is made, an error is emitted
and Router exits.

MySQL Router can be bootstrapped and executed under any Operating System user and does

I I I g ' 75

Configuration File Options

include plugins (read/execute), configuration file, logs, UNIX domain socket files (if enabled), and
more.

By default, the configuration and log files are written to a system-wide location such as/ et ¢ and /
var /| og. Alternatively, Router can be bootstrapped to a self-contained directory of its own by using
the - - di r ect ory option. For example:

$> sudo nysqlrouter --bootstrap |ocal host:3310 --directory /a/path/myrouter --user snoopy

In this example, Router creates / a/ pat h/ myr out er and adds all of the generated files and
directories here, and these are only writable by the system user snoopy. Additionally, user is
defined in the generated configuration file / a/ pat h/ nyr out er / mysqgl r out er. conf :

[DEFAULT]
user =snoopy
Note
@ This is different from the user definition defined in the [net adat a_cache]
section, which is a MySQL user.
ssl _ca
‘Type String ‘

Path to the SSL CA file to verify server's certificate against when connecting to the metadata servers.
Can optionally be set with the - - ssl - ca bootstrap option.

ssl _capath

Type ‘ String

Path to directory containing SSL CA files to verify server's certificate against when connecting to the
metadata servers.

Can optionally be set with the - - ssl - capat h bootstrap option.

ssl _crl

Type String

Path to SSL CRL file to use when connecting to metadata servers and verifying their SSL certificate.
Can optionally be set with the - - ssl - cr | bootstrap option.

ssl _crlpath

Type String ‘

Path to directory containing SSL CRL files to use when connecting to metadata servers and verifying
their SSL certificate.

Can optionally be set with the - - ssl - cr | pat h bootstrap option.

tls_version

Type String

Comma-separated list of TLS versions to request, such as 'TLSv1.2,TLSv1.3', if SSL is enabled.

Can optionally be set with the - -t | s- ver si on bootstrap option.

76

Configuration File Options

bi nd_addr ess

Type String

Default Value 127.0.0.1

Information related to the optional bi nd_addr ess option:

* Routing entries can be bound to a network interface (NIC). The default bi nd_addr ess is
127.0.0.1. If a port is not defined here, then setting bi nd_port is required.

* By default, - - boot st r ap sets bi nd_addr ess=0. 0. 0. 0 for each route in the generated Router
configuration file. This value can be changed using - - conf - bi nd- addr ess.

< Binding to a specific IPv4 or IPv6 address allows and ensures that MySQL Router is not starting
and routing the service on an NIC on which nothing is allowed to execute.

* Itis not possible to specify more than one binding address per routing configuration group.
However, using 0.0.0.0:$por t (where you define $port) binds all network interfaces (IPs) on the
host. IPv6 addresses can also be used.

Example usage:

bi nd_address = 127.0.0. 1: 7001

Note
@ The bi nd_addr ess cannot be listed in the dest i nat i ons list.
bi nd_port
Type Integer

Optionally, you can define a default port for bi nd_addr ess using bi nd_port . If a port is not
configured in bi nd_addr ess, then bi nd_port is required and used.

Optionally set these values by using the - - conf - base- port bootstrap option.

The three examples below all result in bind_address = 127.0.0.1:7001

[routing: exanpl e_1]
bi nd_port = 7001

[routing: exanpl e_2]
bi nd_port = 7001
bi nd_address = 127.0.0.1

[routing: exanpl e_3]
bi nd_address = 127.0.0. 1: 7001

socket
Platform Specific Linux
Type String

Sockets are enabled using the socket option, which can be specified with or without the TCP
bi nd_port and bi nd_addr ess options. An example:

[routing]
socket = /tnp/ nysql router. sock

77

Configuration File Options

destinations = a.exanpl e. com 3306, b. exanpl e. com 3307

When launching MySQL Router, Router will refuse to run if either the socket file already exists or it
cannot be written to.

Relative paths are acceptable and based on the current working directory where Router is launched.

Router can listen to both TCP sockets and Unix sockets simultaneously. For example, the following
[routing] configuration example is valid and configures Router to listen for connections on both
localhost:1234 and / t np/ nysql r out er. sock:

[routing: my_redirect]

bi nd_address = | ocal host: 1234

socket = /tnp/ nysql router. sock

destinations = | ocal host: 57121, |ocal host: 57122, |ocal host: 57123

Note
@ A Unix domain socket length limit is platform-specific and should not exceed
the system's allowed length.

e protocol

Type String

Default Value classic

Valid Values classic
X

Used by the routing plugin when connecting to the destination MySQL server, and can be set to
either "classic" (default), or "x" (X Protocol).

Example usage:

[routing: basic_fail over]

bi nd_port = 7001

destinations = 10.20.200. 1: 33060, 10.20.200. 2: 33060
protocol = x

The pr ot ocol option also affects the default port used by each destination. If a destination port is
not configured, then the default port is 3306 for "classic" (default), 33060 for "x" (X Protocol).

o pid_file

Type ‘ String

Sets location of the PID file. This can be set in three different ways (in order of precedence): the
- - pi d-fil e command-line option, setting this pi d_f i | e option in Router's configuration file, or
defining the ROUTER_PI D environment variable.

If - - boot st r ap is specified, then the pi d_fi | e and ROUTER_PID definitions are ignored. This is
unlike the - - pi d- f i | e command-line option which causes Router to fail.

If - - boot st r ap is not specified, then the following cause Router to fail: the --pid-file already exists,
pid_file or ROUTER_PID are set but empty, or if Router can't write the PID file.

e connect timeout

Type Integer

Default Value 5

Minimum Value 1

Configuration File Options

Maximum Value 65536

Timeout value used by the MySQL Router when connecting to the destination MySQL server. The
value cannot be unlimited, and an invalid value results in a configuration error. The valid range is
between 1 and 65536. You should keep this value low.

Example usage:

[routing]
connect _tinmeout = 5

Can be set at bootstrap using - - conf - set - opt i on=r out i ng. connect _ti neout .

connect _ti neout

Type Integer

Default Value 5

Timeout value used by the MySQL Router when connecting to the MySQL metadata server.

Example usage:

[DEFAULT]
connect _tineout = 5

Can be set at bootstrap using either - - connect - t i neout or - - conf - set -
opti on=DEFAULT. connect _ti meout.

read_ti neout

Type Integer

Default Value 30

Timeout value used by the MySQL Router when reading from the MySQL metadata server. The
default value is 30 seconds.

Example usage:

[DEFAULT]
read_ti meout = 30

destinati ons

Type ‘ String

Provides host information for establishing connections. It accepts either a comma-separated list of
destination addresses or a metadata-cache link to an InnoDB cluster. The destination addresses can
be a mix of hostname[:port], ip-address[:port], or local: URIs for Unix sockets.

Example usage with specific hosts (static routing):

destinati ons = a.exanpl e. com b. exanpl e. com c. exanpl e. com

Note

@ If a destination's port is not explicitly set, then the default port is 3306 if
pr ot ocol is setto "classic" or not set (default), or port 33060 if pr ot ocol is
set to "x".

Example usage with a Unix socket:

destinations=l ocal : /t np/ nysql . sock

79

Configuration File Options

The Unix socket support specifics are:

e The accepted format is local:absol ut e- pat h or local://absol ut e- pat h where absol ut e-
pat h must start with a /", which means the format is local: followed by one or three slashes.

* Accepts zero or more Unix domain socket (local: URI) destinations.
« On Windows, MySQL Router fails to start if a Unix socket (local: URI) is defined as a destination.
« MySQL Router fails to start if both a metadata-cache: and local: URI is present.

* Because a the comma is the destinations separator, a comma in a local: URI must be URI-
encoded (%2C).

« If the server_ssl_mode option is set to PREFERRED and the protocol is classic, then connections
over Unix domain sockets are unencrypted.

¢ Unix socket support was added in MySQL Router 9.2.0.

Example usage with InnoDB cluster metadata cache:

desti nati ons=net adat a- cache: // mycl ust er/ def aul t ?r ol e=PRI MARY

The net adat a- cache URI options are:

» rol e: Determines the type of instances available to the connection. Acceptable values are
PRIMARY, SECONDARY, or PRIMARY_AND_SECONDARY.

Therouting_strategy nmysql rout er. conf option defines the specific strategy, and the
default metadata-cache routing strategy is round-robin.

e di sconnect _on_pronoted_to_pri mary: Controls whether existing client connections to a
secondary are closed when the secondary is promoted as a primary. The default value is "no",
meaning existing client connections to the promoted secondary are not closed after promotion. Set
disconnect_on_promoted_to_primary=yes in the URI to close these existing connections.

e di sconnect _on_net adat a_unavai | abl e: Controls whether existing client
connections are closed when the group is overloaded. The default value is "no",
meaning existing client connections are not closed when the group is overloaded. Set
disconnect_on_metadata_unavailable=yes in the URI to close these existing connections.

after the primary is downgraded to a secondary, and connections to a node

Note
@ Related, these conditions cause disconnections: connections to a primary
that are no longer part of the cluster.

dynam c_state

Type String

This option tracks and stores active MySQL InnoDB Cluster Metadata server addresses and loads
them if Router is restarted. This functionality is activated by - - boot st r ap.

Bootstrapping defines the dynami c_st at e option in nysql rout er. conf file under the
[DEFAULT] section. The value is a path to a JSON file named st at e. j son, which is created when
Router has been bootstrapped. The st at e. j son is initialized with InnoDB Cluster Metadata server

80

Configuration File Options

addresses and the Group Replication ID (the group_replication_name returned by the InnoDB
Cluster); additional information is added and updated while Router is running.

Example nysql r out er. conf entry:

[DEFAULT]
dynami c_st at e=/ opt/ myrout er/ dat a/ st at e. j son

Example st at e.] son generated by - - boot st r ap:

{
"met adat a- cache": {
"group-replication-id": "4b9e817a-0254-11e9-9cc0-080027bb5030"
"cl uster-netadata-servers": [
"mysql ://Il ocal host: 3310",
"mysql ://Il ocal host: 3320",
"mysql :/ /| ocal host : 3330"
]
i

"version": "1.0.0"

e routing_strategy

Type String

Valid Values first-avail abl e

next - avai | abl e

round-robin

Configuration File Options

round-robin-w th-fall back

The routing strategy defines how MySQL Router chooses MySQL servers to connect to.

Available strategies:

Note
@ The role documentation following this section describes the available r ol e
and r out i ng_strat egy combinations and conflicts.

Unreachable destinations are quarantined and skipped, and are probed for availability every
error _quarantine_interval seconds. All routing strategies except for next - avai | abl e
utilize this behavior.

e round- r obi n: for load-balancing, each new connection is made to the next available server in a
round-robin fashion.

e round-robi n-wi t h-fall back: for load-balancing, each new connection is made to the next
available secondary server in a round-robin fashion. If a secondary server is not available then
servers from the primary list are used in round-robin fashion.

e first-avail abl e: the new connection is routed to the first available server from the
destinations list. In case of failure, the next available server is used. This cycle continues until all
servers are unavailable.

* next-avail abl e: likefirst-avail abl e, in that the new connection is routed to the first
available server from the destinations list. Unlike f i r st - avai | abl e, if a server is marked as
unreachable then it gets discarded and is never used again as a destination.

Limitations include:

« After all nodes of the selection are discarded, there is no way to add servers back to the list.

Unlike other strategies, unreachable destinations are not probed for availability every
error _quarantine_interval seconds.

 After restarting MySQL Router, all knowledge of what servers are discarded is lost and all
servers are available again.

« Metadata cache does not support the next-available routing policy, as next-available only
functions with static routing.

The r ol e defaults and available combinations:

< PRI MARY: r ound- r obi n is default behavior (if routing_strategy is not set), whereas bootstrapping
adds routing_strategy=first-avail abl e to the generated MySQL Router configuration
file. The available strategy values are first-available and round-robin.

« SECONDARY: r ound- r obi n is default behavior (if routing_strategy is not set), whereas
bootstrapping adds r out i ng_st r at egy=r ound- r obi n-wi t h-f al | back to the generated
MySQL Router configuration file. The available strategy values are first-available, round-robin and
round-robin-with-fallback.

e PRI MARY_AND_ SECONDARY: r ound- r obi n is default behavior (if routing_strategy is not set). The
available strategy values are first-available, round-robin.

max_connecti ons

Type Integer

82

Configuration File Options

Default Value 512
Minimum Value 1
Maximum Value 65536

Each routing can limit the number of routes or connections. One possible use is to help prevent
possible Denial-Of-Service (DOS) attacks. The default value is 512, and the valid range is between 1
and 65536.

This is similar to MySQL Server's max_connections server system variable.

[routing: nycl uster_defaul t_rw
max_connections = 512

Alternatively, use the newer max_t ot al _connect i ons configuration option that sets one value for
all Router sections combined.

The maximum depends both on the system's poll (or linux_epoll) limitations and the number of
available CPU cores/threads. See also the [I0] backend and t hr eads configuration options.

Optionally setting max_connect i ons in the [DEFAULT] section sets the default value for each
routing destination.

max_t otal _connecti ons

Type Integer

Default Value 512

Minimum Value 1

Maximum Value 9223372036854775807

The maximum number of client connections handled by Router, to help prevent running out of the file
descriptors.

This is similar to MySQL Server's max_connections server system variable.

[DEFAULT]
max_t otal _connections = 512

such as one value for read-only, and another for write-only. The
max_total connecti ons option sets one value for all routing instances

Note
@ The legacy max_connect i ons option sets a value per routing instance,
combined.

The default value is 512, and it's set under the [DEFAULT] section.

t hread_st ack_si ze

Type Integer
Default Value 64
Minimum Value 1
Maximum Value 65535

The stack size allocated for each thread. It is measured in kilobytes, and defaults to 64.

[DEFAULT]

thread_st ack_si ze=128 83

https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_max_connections

Configuration File Options

net _buffer | ength

Type Integer

Sets the net _buf f er _| engt h MySQL server option.

max_connect _errors

Type Integer
Default Value 100
Minimum Value 1

Maximum Value 4294967295

The default value is 100, and the valid range is between 1 and 2/32 (4294967295, an unsigned int).
This is similar to MySQL Server's max_connect_errors server system variable.

This can cause a slight performance penalty if an application performs frequent reconnections,
because MySQL Router attempts to discover if connection-related errors are present.

A successful connection resets the error counter.

Each routing has its own list of blocked hosts. Blocked clients receive the MySQL Server error
1129 code with a slightly different error message: "1129: Too many connection errors from
fail.example.com". The Router logs contain extra information for blocked clients, such as: INFO
[...] 1 authentication errors for fail.example.com (max 100) WARNING [...] blocking client host
fail.example.com

max_connect _errors = 100

client _connect tinmeout

Type Integer
Default Value 9
Minimum Value 2
Maximum Value 31536000

This is similar to MySQL Server's connect_timeout server system variable.

The default value is 9, which is one less than the MySQL 5.7 default. The valid range is between 2
and 31536000.

client_connect _timout = 9

auth _cache_refresh_interval

Type Numeric
Default Value 2
Minimum Value 0. 001
Maximum Value 3600

Time (in seconds) between the auth-cache refresh attempts. Defaults to 2. The value must be
smaller than aut h_cache_ttl andlargerthantt| else Router won't start.

84

This option is applied if the http_auth_backend section's backend option is set to metadata_cache;
which is a Router REST API feature.

https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_net_buffer_length
https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/9.5/en/server-system-variables.html#sysvar_connect_timeout

Configuration File Options

auth_cache_ttl

Type Numeric
Default Value -1
Minimum Value 0. 001
Maximum Value 3600

Time (in seconds) until the cache becomes invalid if not refreshed. Defaults to -1 (infinite). The value
must be larger than aut h_cache_refresh_interval andtt| else Router won't start.

This option is applied if the http_auth_backend section's backend option is set to metadata_cache;

which is a Router REST API feature.

cl ose_connection_after_refresh

Type Integer
Default Value 0
Minimum Value 0
Maximum Value 1

Determines whether a metadata_cache connection to a MySQL server should be closed after the

metadata is refreshed. Defaults to 0.

If close_connection_after_refresh=0, the metadata_cache keeps the connection established
after a metadata refresh if it knows that the next refresh goes to the same server and the refresh

succeeded.

If close_connection_after_refresh=0 and either the metadata_cache knows that the next connection
will go to another server or that the refresh failed, then the connection is closed after the refresh. A
maximum of one connection is kept open even if connections to multiple servers is needed, like with

a cluster set.

If close_connection_after_refresh=1, the metadata_cache connection is closed after a metadata
refresh. The related t t | option controls the frequency that the metadata cache is checked.

[met adat a_cache]
cl ose_connection_after_refresh=0

K

Note

This option was added in MySQL Router 9.2.0, and the connection is always

closed after a refresh in previous versions.

router _id

Type Integer
Maximum Value 4294967295
The MySQL Router ID.

server_ssl _cert

Type String

Default Value

85

The path name of the SSL public key certificate file in PEM format. This is used to facilitate server-

side authentication during the bootstrap process.

Configuration File Options

server_ssl _key

Type String

Default Value

The path name of the SSL private key file in PEM format used to encrypt router-to-server
connections. See also Section 4.4, “TLS Configuration” .

server_ssl _curves

Type String

Defaults to a secure list of SSL curves. Format this string as a colon separated list of curve names.

server_ssl _ci pher

Type String

Defaults to a secure list of SSL ciphers. Format this string as a colon separated list of cipher names.

server_ssl _verify

Type String
Default Value DI SABLED
Valid Values DI SABLED
VERI FY_CA
VERI FY_| DENTI TY

Verification of the SSL certificates presented to the router by the server.
< DI SABLED: the connection fails if the server does not provide a certificate in the handshake.

* VERI FY_CA: the connection fails if the server's certificate does not match a CA trusted by MySQL
Router.

e VERI FY_I DENTI TY: the connection fails if the server's certificate does not match a CA trusted
by MySQL Router, or the server certificate's subject does not match the hostname or IP address
MySQL Router connected to.

server _ssl _node

Type String

Default Value AS CLI ENT

Valid Values AS_CLI ENT
DI SABLED
PREFERRED
REQUI RED

SSL connection mode to use when connecting between MySQL Router and server. See also
Section 4.4, “TLS Configuration” .

86

Configuration File Options

server_ssl _ca

Command-Line Format

--server-ssl-ca file_path

Type

String

Default Value

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list

of trusted SSL Certificate Authorities. See also Section 4.4, “TLS Configuration” .

server_ss|l _capath

Command-Line Format

--server-ssl-capath dir_path

Type

String

Default Value

The path name of the directory that contains trusted SSL Certificate Authority (CA) certificate files in

PEM format. See also Section 4.4, “TLS Configuration” .

client _ssl cert

Command-Line Format

--client-ssl-cert file_path

Type

String

Default Value

The path name of the SSL public key certificate file in PEM format. This is used to facilitate client-

side authentication during the bootstrap process.

Like -cl i ent _ssl _key, this option is only used during bootstrap that uses a root account. It is
useful when the root account was created with REQUIRE X509, and therefore logging in as root

requires the client to authenticate itself.

server_ssl _crlpath

Command-Line Format

--server-ssl-crlpath dir_path

Type

String

Default Value

The path of the directory that contains certificate revocation-list files in PEM format. See also

Section 4.4, “TLS Configuration” .

e server_ssl _crl

Command-Line Format

--server-ssl-crl file_path

Type

String

Default Value

The path name of the file containing certificate revocation lists in PEM format. See also Section 4.4,

“TLS Configuration” .

e client_ssl_key

87

Command-Line Format

--client-ssl-key file_ path

Type

String

Configuration File Options

Default Value

The path name of the SSL private key file in PEM format used to encrypt client-to-router connections.
See also Section 4.4, “TLS Configuration” .

e client_ssl_dh_parans

Type String

Filename of the DH parameter file. If specified and not empty, the DH parameters from this file are
used instead of internal default DH parameters. Format the DH param file in PEM format.

e client_ssl _curves

Type String

Which curves are allowed between the client and MySQL Router, defaults to a secure list of SSL
curves. Format this string as a colon separated list of curve names.

 client_ssl_cipher

Type String

Which ciphers are allowed between client and MySQL Router, defaults to a secure list of SSL
ciphers. Format this string as a colon separated list of cipher names.

e client_ssl _node

Type String

Default Value PREFERRED

Valid Values PREFERRED
DI SABLED
PASSTHROUGH
REQUI RED

Controls if connections from the client to MySQL Router must be encrypted. See also Section 4.4,
“TLS Configuration” .

e ss|l_node

Type String
Default Value PREFERRED
Valid Values PREFERRED

DI SABLED
REQUI RED
VERI FY_CA

VERI FY_I DENTI TY

SSL mode for connecting to the MySQL metadata server. It defaults to PREFERRED if not set.

When set to PREFERRED (the default), bootstrapping will warn when SSL is not used and
connection to the metadata server is unencrypted.

Configuration File Options

Available values are DISABLED, PREFERRED, REQUIRED, VERIFY_CA, and VERIFY_IDENTITY.
As with the nysql client, this value is case-insensitive.

There is also a runtime option for bootstrapping; see - - ssl - node.

 user (MySQ)

‘ Type String

A generated MySQL user with privileges to access the MySQL server's metadata schema. This
user's password is auto-generated and stored in an encrypted keyring. By default, the encryption
key for this keyring is stored in a read protected master key store file, which is defined in the
configuration file. Most commonly, this user and associated password are automatically generated
during bootstrap. Related command line options are - - f or ce- passwor d- val i dati on and - -
passwor d-r et ri es. By default, the generated password passes the STRONG validate_password
strength.

The password is entirely managed by Router and never exposed, and is stored in a local keyring
system using the operating system's account that MySQL Router is running as. It can then be used
by Router to connect to InnoDB Cluster and retrieve current topology information. Sessions between
Router and metadata server are encrypted with SSL by default.

Where the generated keyring files are stored depends on how bootstrap is configured. For
self-contained installations (when - - di r ect or y is used), it is stored under r un/ in the self-
contained directory. For system-wide installations, it is stored in the system-wide runtime state
directory, and that path is platform specific. For additional information, see mast er _key pat h and
keyring_path

This user is assigned (and requires) the following privileges:
Privil eges needed by the Router account:
On Metadata Server:
SELECT ON nysql _i nnodb_cl ust er _net adat a. *
On Target Replica Sets:

SELECT ON performance_schenm. replicati on_group_nenbers
SELECT ON performance_schenm. replicati on_group_nenber_stats

The generated username follows this pattern: mysql_router {router id} [0-9a-z]{7}, where
{router_id} is the numeric router id and [0-9a-z]{7} is 7 random lowercase alphanumeric characters.
The router id is reused if already present in nysql r out er. conf and its value can not exceed
4294967295 (2/32-1).

Note
@ This user is different from the user definition defined in the [DEFAULT]
section, which is a system user.

« netadata_ cluster

‘ Type String

Name of the InnoDB Cluster.

Note
@ SQL query to list the MySQL InnoDB cluster names: SELECT * FROM

mysql_innodb_cluster_metadata.ciusters; 89

Configuration File Options

use_gr_notifications

Type Integer
Default Value 0
Valid Values 0

1

Enables Group Replication notifications. When enabled, Router is asynchronously notified about
most cluster changes. It can be enabled manually in nysqgl r out er . conf or enabled there using
the - - conf - use- gr-noti fi cati ons command-line option during bootstrap.

When Router receives any of the following notifications from Group Replication, it refreshes the
cluster metadata:

e group_replication/membership/quorum_loss
» group_replication/membership/view
» group_replication/status/role_change

e group_replication/status/state_change

Note

@ The Group Replication notifications feature requires an X Protocol connection
from Router to each instance, which must be running X Plugin. If an X
Protocol connection is not available, the metadata refresh is carried out at
ttl intervals as though the notifications feature was not enabled.

Although the Group Replication notifications rely on an X Protocol connection,
received notifications trigger a metadata refresh which uses a classic MySQL
protocol connection to the instance.

When enabled, the Group Replication notification feature allows a higher t t | value because the
metadata refreshes carried out att t | intervals become an additional safeguard, rather than the
primary means of keeping the information about the cluster state up to date. When disabled, a low
ttl value (such as 0.5s, the default) is recommended to avoid the overhead of reconnecting to the
instances and querying them for metadata changes often.

ttl

Type Numeric
Default Value 0.5
Minimum Value 0
Maximum Value 3600

Time to live (in seconds) of information in the metadata cache.

Accepts either an integer or a floating point value. The granularity is limited to milliseconds, where
0.001 equates to one millisecond. Precision is truncated to the supported range; for example

Configuration File Options

TTL=0.0119 is treated as 11 milliseconds. The value 0 means that the metadata cache module

queries the metadata continuously in a tight loop.

The related cl ose_connecti on_after _refresh option controls whether the metadata_cache
connection to a MySQL server should close or remain open after a successful metadata refresh.

The value must be smaller than aut h_cache_refresh_interval andauth_cache_ttl else

Router won't start.

The only supported decimal separator is '.' (a period) regardless of locale, and scientific notation,

such as TTL=1.6E-2, is supported.

desti nation

Type

String

Default Value (Windows)

CON

Default Value (Other)

/ dev/ st derr

Valid Values (Windows)

CON

NUL

Valid Values (Other)

/ dev/ nul |
/ dev/ st derr

/ dev/ st dout

Direct console log output to this device destination; set under the [consolelog] section. Defaults to /

dev/stderr and an empty value uses the default.

Available values are: / dev/ st dout , / dev/ stderr, and / dev/ nul | ; or CONand NUL on Windows.

[DEFAULT]
| oggi ng_f ol der =

[consol el og]
desti nati on=/ dev/ nul

filenanme

‘ Type

String

Redirect log output to a specific file named f i | enane that resides in the | oggi ng_f ol der
directory. It must be defined as a file name and not a file path, and works with both the [logger] and

[filelog] sections.

Using f i | enane with [logger] to define the default value for the [filelog] section, and it also changes
Router's log file from mysql r out er . | og to this new value.

[DEFAULT]
| oggi ng_f ol der =/ pat h/ t o/ | ogs/

[ogger]
filename = router_error.|og

Router does not report an error if filename is set under [logger] but no file-based logger is used.

Using f i | enane with [filelog]:

[DEFAULT]
| oggi ng_f ol der =/ pat h/ t o/ | ogs/

[filelog:al

91

Configuration File Options

filename = a_router_error.|og

[filelog:b]
filename = b_router_error.|og

If filename is empty or not set under [filelog] then the filename definition under [logger] is used; and
the default log file is used (mysql r out er . | og) if filename is not set under [logger] either.

Related, directing console output to / dev/ nul | :

[DEFAULT]
| oggi ng_f ol der =

[consol el og]
desti nati on=/ dev/ nul |

| evel

Type String

Default Value I NFO

Valid Values DEBUG
NOTE

I NFO
WARNI NG
ERROR
SYSTEM

FATAL

Use the logger plugin to log notices, errors, and debugging information. The available log levels are
DEBUG, NOTE, INFO (default), WARNING, ERROR, SYSTEM, and FATAL. These values are case-
insensitive.

The INFO level displays all informational messages, warnings, and error messages. The DEBUG
level displays additional diagnostic information from the Router code, including successful routes.
SYSTEM includes messages such as startup messages.

[1 ogger]
| evel = DEBUG

Output behavior depends on the | oggi ng_f ol der option. Setting | oggi ng_f ol der to a folder
saves a log file named nmysql r out er . | og to that folder. Setting | oggi ng_f ol der to an empty
value, or not setting it, outputs the log to the console. It is set in the [DEFAULT] section.

Bootstrapping accepts a configuration file using - - conf i g and utilizes the logger level definition.

92

Configuration File Options

ti mestanp_precision

Type String

The logger timestamp precision; the available definitions with example values are:
e second, sec, or s:2019-05-1012:10:25

e mllisecond, nmsec, or mns:2019-05-10 12:10:25.428

e mcrosecond, usec, or us:2019-05-10 12:10:25.428754

e nanosecond, nsec, ns:2019-05-10 12:10:25.428754000

port
Type Integer
Default Value 8081

The TCP port listening for HTTP requests; it defaults to 8081.

bi nd_addr ess

Type String
Default Value 0.0.0.0

IP address bound to the HTTP por t ; it defaults to 0.0.0.0.

static_folder

Type String

Base directory for static file requests; it's empty by default. An empty value means no static files are
served.

require_realm

Type String

Name of the [http_auth_realm] instance.

ssl
Type Integer
Default Value 1
Valid Values 1
0

The value 1 enables SSL, and 0 disables it. TLS clients supporting TLSv1.2 or later are required.
This is defined under the [http_server] section.

ssl _cert

Q2

Type String w‘

File name of the certificate and its chain certifications in PEM format; required if ssl=1. This is defined

Configuration File Options

ssl _key

Type String ‘

File name of the key in PEM format; required if ssl=1. This is defined under the [http_server] section.

ssl _ci pher

Type ‘ String ‘

The cipher-spec (see openssl's 'ciphers' list). Defaults to a comma-separated list of all approved
ciphers. Unknown ciphers are silently ignored. Fails if list of ciphers is empty and ssl=1. This is
defined under the [http_server] section.

ssl _dh_param

Type ‘ String

Read the DH parameter from this file in PEM format. Uses the dh-param from RFC 5114 by default if
ssl=1. This is defined under the [http_server] section.

i nt erval
Type Integer
Default Value 60

Determines the frequency (in seconds) that MySQL Router sends a keepalive ping message. The
total number of pings is determiend by the r uns configuration option.

[keepal i ve]
interval = 42
runs = 0
Note
@ The keepalive plugin exists for testing purposes and is safe to remove after
MySQL Router is configured. Because at least one active plugin is required to
launch, the default configuration file enables the keepalive plugin so MySQL
Router does not immediately exit. The keepalive plugin is not active if another
plugin is enabled.
runs
Type Integer
Default Value 0

Limits the number of intervals MySQL Router sends a keepalive ping message. Setting it to 0
(default) means it executes until MySQL Router is shut down. The frequency is determined by the
i nterval option.

[keepal i ve]
interval = 42
runs = 0

94

Note

g The keepalive plugin exists for testing purposes and is safe to remove after
MySQL Router is configured. Because at least one active plugin is required to
launch, the default configuration file enables the keepalive plugin so MySQL

Configuration File Options

Router does not immediately exit. The keepalive plugin is not active if another
plugin is enabled.

backend

Type String

Default Value (Windows) pol |

Default Value (Other) i nux_epol I

Valid Values (Windows) pol |

Valid Values (Other) i nux_epol |
pol |

The 10 backend that handles async operations. The generic poll backend is available on all
platforms, while each platform may provide alternative backends.

Options are pol | (all platforms) and | i nux_epol | (Linux). Defaults to | i nux_epol | on Linux.

[io]

backend=l i nux_epol

t hr eads=32
Note
@ This is one of several backend options, each in a different [sect i on] with a
different purpose:
e [0] backend for async operations.
e [http_auth_real m backend defines a custom name for a backend
associated with a particular realm
e [http_aut h_backend] backend type of auth backend
t hr eads
Type Integer
Default Value 0
Minimum Value 0
Maximum Value 1024

The number of 10 threads that handles connections.

Defaults to 0 (uses all available CPU cores/threads) but also accepts a number between 1 and 1024.
At runtime the system may restrict the upper limit beyond this value.

[io]

backend=l i nux_epol
t hr eads=32

connection_sharing_del ay

Type Integer
Default Value 1
Minimum Value 0
Maximum Value 2763-1

Seconds to wait before an idle server connection is available for reuse by another client connection.

95

Configuration File Options

See Section 3.4, “Connection Sharing and Reuse”.

connection_sharing

Type Integer
Default Value 0
Minimum Value 0
Maximum Value 1
Whether to enable connection sharing.
See Section 3.4, “Connection Sharing and Reuse”.
idle_timeout
Type Integer
Default Value 5
Minimum Value 1
Maximum Value 4294967296

Seconds to keep the idling connection in the connection pool before closing it. This is set in the
[connection_pool] section, and affects all routes in the connection pool. Defaults to 5, accepts a

value between 1 and 4294967296.

max_idl e _server_connections

Type Integer
Default Value 0

Minimum Value 0

Maximum Value 4294967296

Connections to keep open in the connection pool after the client disconnects; and is set in the
[connecti on_pool] section. The default is 0, which disables connection pooling.

client_ssl _session _cache node

Type

Boolean

Default Value

1

Enables or disables the cache for client-router TLS sessions.

Note
@ Enabled by default. If this parameter is not set, the cache is enabled. To
disable the cache, you must explicitly define it.

client_ssl_session_cache_size

Type Integer
Default Value 1024
Minimum Value 1

96

Configuration File Options

Maximum Value 2731-1

Defines the maximum number of sessions cached. If adding a new session to the cache causes the
number of cached sessions to exceed the defined maximum, the oldest cached session is dropped

to allow the newest to be cached.

client _ssl_session_cache_tinmeout

Type Integer
Default Value 300
Minimum Value 1
Maximum Value 84600

Defines the maximum amount of time, in seconds, a session remains in the cache. If the timeout is
reached, and this season is not reused, the session is removed from the cache and the connection is

closed.

server _ssl _session_cache_node

Type Boolean

Default Value 1

Enables or disables the cache for router-server TLS sessions.

K

server_ssl _session_cache_size

Note

Enabled by default. If this parameter is not set, the cache is enabled. To
disable the cache, you must explicitly define it.

Type Integer
Default Value 1024
Minimum Value 1
Maximum Value 27"31-1

Defines the maximum number of sessions cached. If adding a new session to the cache causes the
number of cached sessions to exceed the defined maximum, the oldest cached session is dropped

to allow the newest to be cached.

server_ssl _session_cache_ti neout

Type Integer
Default Value 300
Minimum Value 1
Maximum Value 84600

Time in seconds until TLS sessions are removed from the server TLS session cache.

connect _retry_tinmeout

Type Integer

97
Default Value 7
Minimum Value 1

Configuration File Options

Maximum Value 3600

If a classic connection fails with a transient error, such as max- connecti ons reached, MySQL
Router waits the defined number of seconds before retrying the connection. The connection is retried
according to the defined routing strategy.

If connect _retry_tinmeout is not defined, it defaults to 7 seconds. If the value of

connect _retry_ tinmeout is defined outside of the valid range of values, MySQL Router will fail to
start.

Note
@ If connection sharing is enabled, the retried connection is to the same server
as the initial connection attempt.

If a connection fails with a transient error after authentication has occurred, the connection can only
be retried if the client-router connection is TLS encrypted or has a public key.

Table 4.18 SSL Modes and Retry

client_ssl_mode server_ssl_mode Supports Retry
PASSTHROUGH Any No
DISABLED Any No
PREFERRED AS_CLIENT No
PREFERRED Any other mode Yes
REQUIRED Any Yes

* backend
‘Type String
Name of the [ht t p_aut h_backend] section.

Note

@ This is one of several backend options, each in a different [sect i on] with a

different purpose:
e [io] backend for async operations.

e [http_auth_real m backend defines a custom name for a backend
associated with a particular realm

e [http_aut h_backend] backend type of auth backend

e nethod
Type String
Default Value basi c

The HTTP authentication method; defaults to basic.

* hane

Type String

Name of the realm presented to the authentication user.

Configuration File Options

require

Type String

val i d- user

Default Value

Requires that the user validates with the authentication backend; defaults to val i d- user, which
enables this check.

backend
Type String
Default Value file

Name of the backend implementation; accepted values are f i | e (default) or net adat a_cache.

[htt p_aut h_backend: nane]
backend=net adat a_cache

[met adat a_cache]

aut h_cache_refresh_interval =2
auth_cache_ttl=-1

Note

This is one of several backend options, each in a different [sect i on] with a
different purpose:

e [i0] backend for async operations.

e [http_auth_real mM backend defines a custom name for a backend

associated with a particular realm
e [http_aut h_backend] backend type of auth backend

filenanme

Type ‘ String

Name of the backend storage file, is relative to the dat a_f ol der directory.

cluster_type

Type String
Valid Values gr
rs

The type of AdminAPI object that the Router was bootstrapped against, which is either an InnoDB
ReplicaSet (rs) or InnoDB Cluster (gr). Use 'gr' for cluster sets.

Bootstrapping evaluates the target instance and sets this option accordingly in the generated
configuration file.

error_quarantine_interval

Type Integer
Default Value 1
Minimum Value 1
Maximum Value 3600

99

Configuration File Example

Defines the interval, in seconds, between checks on quarantined destination connectivity. If
a connection is possible, the destination is moved out of quarantine and made available for
connections.

If an invalid value is defined, MySQL Router fails to start and an error is logged.

For example:

[destinati on_st at us]
error_quarantine_t hreshol d=5
error_quarantine_interval =20

Note
@ If undefined in the configuration file, the default value, 1, is used.

e error_quarantine_threshold

Type Integer
Default Value 1
Minimum Value 1
Maximum Value 65535

Defines the threshold of consecutive, failed attempts to connect to a routing destination before
MySQL Router adds the destination to quarantine and stops using it as a destination until it is
cleared by the quarantine mechanism. For example, if set to 5, the destination is quarantined after 5
consecutive, failed attempts to connect to it.

If an invalid value is defined, MySQL Router fails to start and an error is logged.

For example:

[desti nati on_st at us]
error_quarantine_t hreshol d=5
error_quarantine_interval =20

Note
@ If undefined in the configuration file, the default value, 1, is used.

4.3.4 Configuration File Example

Here is a basic connection routing example to a MySQL InnoDB Cluster named nmyCl ust er . Both
classic MySQL protocol and X Protocol are enabled, it uses TCP/IP connections instead of Unix
domain sockets, and it was generated using - - boot st r ap as a standalone configuration with - -
directory setto/tnp/router.

In this example, read-write (primary) traffic is sent to port 6446 (classic) or 6448 (X Protocol), and read-
only (secondaries) are accessed using port 6447 (classic) or 6449 (X Protocol).

The routing section keys (such as myCluster_rw) are optional but descriptive section keys help while
debugging and also allows multiple configuration sections for the same plugin.

The dest i nat i ons option references metadata-cache to utilize InnoDB cluster's metadata cache that
dynamically configures host information. Alternatively, dest i nat i ons could be a comma-separated
list of hosts to accommodate basic connection routing without InnoDB cluster.

100

Configuration File Example

The options starting with [ht t p_ser ver] reference the REST API that is enabled by default. For

additional details, see Chapter 6, MySQL Router REST API

File automatically generated during M/SQL Router bootstrap

[DEFAULT]

| oggi ng_f ol der=/tnp/router/l og
runtime_f ol der=/tnp/router/run

dat a_f ol der=/tnp/router/data

keyri ng_pat h=/t np/ r out er/ dat a/ keyri ng

mast er _key_pat h=/t np/ rout er/ mysqgl r out er . key
connect _t i neout =15

read_ti meout =30

dynami c_state=/tnp/router/datal/state.json
client_ssl _cert=/tnp/router/data/router-cert.pem
client_ssl_key=/tnp/router/datalrouter-key. pem
cl i ent_ssl _nmode=PREFERRED

server_ssl _nmode=AS_CLI ENT
server_ssl _veri f y=Dl SABLED

[l ogger]
I evel = I NFO

[met adat a_cache: nyCl ust er]

cl uster_type=gr

router_id=1

user =nysql _routerl x9v4uklOnbcd
met adat a_cl ust er =nyCl ust er
tt1=0.5

aut h_cache_ttl=-1

aut h_cache_refresh_i nterval =2
use_gr_noti ficati ons=0

[routing: myd uster_rw

bi nd_addr ess=0.0.0.0

bi nd_port =6446

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =cl assi ¢

[routing: myd uster_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6447

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=SECONDARY
routing_strategy=round-robin-wth-fall back

pr ot ocol =cl assi ¢

[routing: myd uster_x_rw

bi nd_addr ess=0.0.0.0

bi nd_port =6448

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=PRI MARY
routing_strategy=first-avail abl e

pr ot ocol =x

[routing: myd uster_x_ro]

bi nd_addr ess=0.0.0.0

bi nd_port =6449

desti nati ons=net adat a- cache: // myC ust er/ ?r ol e=SECONDARY
routing_strategy=round-robin-wth-fall back

pr ot ocol =x

[http_server]

port =8443

ssl =1

ssl _cert=/tnp/router/data/router-cert.pem
ssl _key=/tnp/router/datalrouter-key. pem

[http_auth_real mdefaul t _auth_real nj
backend=def aul t _aut h_backend

nmet hod=basi c

name=def aul t _real m

[rest _router]

101

TLS Configuration

require_real medef aul t _aut h_r eal m
[rest _api]

[http_aut h_backend: def aul t _aut h_backend]
backend=net adat a_cache

[rest _routing]
require_real medef aul t _aut h_r eal m

[rest _met adat a_cache]
require_real medef aul t _aut h_r eal m

4.4 TLS Configuration

Important
A This section is a draft and subject to change.

The default behavior is:

PREFERRED
AS_CLI ENT

client_ssl_node
server_ssl _node

This establishes TLS connections between the client and Router if the client desires switching to TLS
and the server supports TLS. This also matches the existing behavior for client and server without the
Router in-between.

TLS Endpoint Configuration

MySQL Router accepts the TLS session and opens a hew TLS session to the server. For example:

client <-> router /1 TCP
router <-> server /1 TCP
client <-> router /1 TLS

router <-> server /1 TLS

To accept a TLS session from a client, Router has to present a TLS client with the certificate using
client_ssl _cert andclient_ssl_key.

To connect a TLS session to a server, MySQL Router verifies the server's certificates using
server _ssl _verify,server_ssl _ca,server_ssl _capath,server_ssl _crl,and
server _ssl _crl path.

Note
@ The TLSv1 and TLSv1.1 connection protocols are deprecated as of MySQL
Router 8.0.26 and support for them is subject to removal in a future version.

SSL Modes

Because there are two TLS sessions (between client and Router; Router and server) there can also be
two independent states of the connection.

Both cl i ent _ssl _node and server _ssl _node accept DISABLED, PREFERRED, or
REQUIRED. In addition, server _ssl| _node accepts AS_CLIENT, and cl i ent _ssl| _node accepts
PASSTHROUGH.

» DI SABLED: Router does not offer encryption to the client, and the client can't switch the client-router
connection to TLS. The client may abort the connection if it must switch to TLS.

102

Additional Related Options

» PREFERRED (default): Router accepts a TLS connection from the client, but is also okay if the client
does not switch to encryption.

» REQUI RED: Router accepts a TLS connection from the client, and will fail if the connection is not
switched to TLS before authentication finishes.

» PASSTHROUGH: Means ‘forward everything to the server' and lets the client and server decide if they
want to switch to TLS or not. This was default behavior before Router 8.0.23, and is only accepted by
client_ssl_node.

e AS CLI ENT (default): if the client-router connection is encrypted then also encrypt the router-server
connection, otherwise do not. This option is only accepted by server _ssl _node.

Additional Related Options

The server _ssl _veri fy option splits out 'VERIFY_CA' and 'VERIFY_IDENTITY" from the
'ssl_mode' that is known from the MySQL client and MySQL server. In the MySQL client's case,
VERIFY_CA means ssl_mode=REQUIRED and to verify the CA[IDENTITY. In Router's case, Router
verifies certificates independent of ser ver _ssl _node; instead it's purely based on whether the
connection is encrypted and if ser ver _ssl _veri fy is not DISABLED, in which case it is verified.

Additional options include server _ssl _dh_parans, client_ssl _dh_parans,
server_ssl _curves,andclient_ssl _curves.

All routing options and additional information is available at Routing Options.

103

104

Chapter 5 MySQL Router Application

Table of Contents

5.1 Starting MYSQL ROULEToeeiieiiiii ettt ettt ettt e et e e e e e e e eaa s 105
5.2 USINg the LOgQING FEALUIEccoeitiiiiiii ettt e e e e 106

The MySQL Router is an executable that typically runs on the same machine as the application that
uses it. This chapter describes the application including available options, how to start the application,
and how to use the logging feature.

There are a number of options available for controlling the application when executing nmysql r out er .
See the nysql r out er documentation for information about the command-line options.

5.1 Starting MySQL Router

MySQL Router requires a configuration file. Although Router searches a predetermined list of default
paths for the configuration file, it is common to start Router by passing in a configuration file with the - -
confi g option.

The process of configuring MySQL Router to automatically start when the host reboots is similar to the
steps needed for MySQL server, which is described at Starting and Stopping MySQL Automatically.

For example, when using systemd:

$> sudo systenttl start nysqlrouter.service
$> sudo systenttl enable nysqlrouter.service

Example Log Output

Starting MySQL Router generates several log entries, for example when connecting to a sandboxed
InnoDB Cluster:

$> nysqlrouter --config=/path/to/file/ ny_router.conf
~C

$> less /path/to/log/ nysqlrouter.|og

2019- 04- 07 16:30:49 | NFO [0x7000022f c000] [routing: devd uster_default_ro] started: |listening on 0.0.
2019- 04- 07 16:30:49 | NFO [0x70000237f 000] [routing:devd uster_default_rw] started: |istening on 0.0.
2019- 04- 07 16:30:49 | NFO [0x700002402000] [routing: devd uster_default_x_ro] started: |istening on O.
2019- 04- 07 16:30:49 | NFO [0x700002485000] [routing: devd uster_default_x_rw] started: |istening on O.

2019- 04- 07 16: 30: 49 | NFO [0x700002279000] Starting Metadata Cache
2019- 04- 07 16:30:49 | NFO [0x700002279000] Connections using ssl_node ' PREFERRED

2019- 04- 07 16: 30:49 | NFO [0x700002279000] Connected wi th netadata server running on 127.0.0. 1: 3310
2019- 04- 07 16:30:49 | NFO [0x700002279000] Changes detected in cluster 'devCuster' after netadata re

2019- 04- 07 16:30:49 | NFO [0x700002279000] Metadata for cluster 'devC uster' has 1 replicasets:
2019- 04- 07 16:30:49 | NFO [0x700002279000] ' default' (3 nenmbers, single-master)

2019- 04- 07 16:30:49 | NFO [0x700002714000] Connected with netadata server running on 127.0.0. 1: 3310

The log shows that MySQL Router is listening on four ports, lists the active routing strategies by name,
InnoDB Cluster information, and more.

For example, the first line lists the active routing strategy named
routing: devCl uster_default_ro,is listening on port 6447, and its mode is r ead- onl y. The
corresponding section in the MySQL Router configuration file looks similar to:

[routing: devC uster_default_ro]

bi nd_addr ess=0. 0. 0.0

bi nd_port =6447

desti nati ons=net adat a- cache: // devC ust er/ def aul t ?r ol e=SECONDARY
pr ot ocol =cl assi c

105

https://dev.mysql.com/doc/refman/9.5/en/automatic-start.html

Example Start and Stop Scripts

See how the name and port were taken directly from the configuration file. In this way, you can quickly
determine which routing strategies are active. This could be particularly useful if running several
instances of MySQL Router, or if multiple configuration files are loaded.

On Windows, MySQL Router can install, remove, or start the service. By default, the service name is
MySQLRouter. For additional information, see the - - ser vi ce and related command line options for
Windows services.

Example Start and Stop Scripts

Bootstrapping MySQL Router with the - - di r ect or y option generates bash scripts to start and stop
MySQL Router, which look similar to the following:

[] *** gstart.sh ******kkkxxkkkkkxkkhkkxx [/

#! / bi n/ bash

basedi r =/ opt / myr out er

ROUTER_PI D=$basedi r/ nysql rout er. pid /usr/bin/nysqlrouter -c $basedir/nysqlrouter.conf &
di sown %

[] *** StOp Qh **AE xR KKKk KRR XKk KKK XK KKK [[

if [-f /opt/myrouter/nysqglrouter.pid]; then
kill -HUP “cat /opt/nyrouter/nysqglrouter.pid
rm-f /opt/nyrouter/nysqlrouter.pid

f

5.2 Using the Logging Feature

The logging feature can be handy for developing and testing your application and deployment of the
MySQL Router. To use logging, enable the logging | evel option in the configuration file under the
section named [| ogger] . For example:

[l ogger]
I evel = | NFO

Set the log file's location with the | oggi ng_f ol der option, defined as a directory path under the
[DEFAULT] section in the configuration file. The logging file is named nysql rout er . | og. For
example:

[DEFAULT]

Logs are sent to /path/to/fol der/ nmysqlrouter.|og
| oggi ng_fol der = /path/tol/fol der

[l ogger]
| evel = DEBUG

Setting | oggi ng_f ol der to an empty string sends logs to the console (stdout).
Two common logging levels are | NFO (default) and DEBUG,
* | NFQ includes informational messages like those shown above, and is the default.

» DEBUG includes messages generated inside Router's source code for use in diagnostics. DEBUG
presents verbose information concerning the inner workings of Router. While it may not be of interest
to the application, use of DEBUG may be helpful if you encounter a problem or when Router is not
behaving as you expect.

The following example shows what the messages look like for the DEBUG logging level; compare the
I NFOand DEBUG messages:

2019- 04- 07 18: 25:56 | NFO [0x700009673000] Connections using ssl_node ' PREFERRED
2019- 04- 07 18:25:56 | NFO [0x700009673000] Connected with netadata server running on 127.0.0. 1: 3310

106

Log Rotation

2019- 04- 07 18:25:56 DEBUG [0x700009673000] Updating nmetadata information for cluster 'devC uster'
2019- 04- 07 18: 25:56 DEBUG [0x700009673000] Updating replicaset status from GR for 'default

2019- 04- 07 18:25:56 DEBUG [0x700009673000] Replicaset 'default' has 3 nmenbers in netadata, 3 in statu
2019- 04- 07 18:25:56 DEBUG [0x700009673000] End updating replicaset for 'default

2019- 04- 07 18: 25:56 | NFO [0x700009673000] Changes detected in cluster 'devCuster' after netadata re
2019- 04- 07 18: 25:56 | NFO [0x700009673000] Metadata for cluster 'devC uster' has 1 replicasets

Log Rotation

Router supports log rotation; listed here are scenarios with example implementations.

Note
@ This functionality is not supported on Windows.

Rotation On Demand

Log rotation on demand can be accomplished in two steps: rename the log file, and then notify Router
so it creates and switches to a new log file.

Execute log rotation either directly from the system's shell, or from a script that could be called
automatically as a scheduled task. For example:

sudo nmv /var/l og/ nmysqgl router/ mysqglrouter.log /var/log/ mysqglrouter/mysqglrouter.|og.old
kill -HUP $(pidof nysqlrouter)

logrotate

The logrotate mechanism can also rotate Router's log file. After rotating, Router would be notified
to reopen the log file and this is accomplished by sending HUP to the Router process. An example
logrotate configuration file:

/var/| og/ nysql router/ nysql router.|og {
rotate 9
size 10M
create 0755 nysql router nysqlrouter
postrotate
kill -HUP $(pidof nysqlrouter)
endscri pt

}

The example rotates the logs as mysqglrouter.log, mysqlrouter.log.1, ..., mysqlrouter.log.9. The rotation
is triggered based on the size of the current mysqlrouter.log file, only if the size is greater than 10MB.
Assuming this configuration is saved as / et ¢/ mysql rout er/ | ogr ot at e. conf, it might be
executed periodically (added to cron) as follows:

[sudo] logrotate /etc/nysqlrouter/|ogrotate.conf

107

https://linux.die.net/man/8/logrotate

108

Chapter 6 MySQL Router REST API

Table of Contents

6.1 A Simple MySQL Router REST APl GUIAEcciiuiiiiiiiiii e 109
6.2 MySQL Router REST APl REfEIENCEcoviiiie e 111

MySQL Router REST API interface.

6.1 A Simple MySQL Router REST API Guide

This guide sets up a basic Router REST API, adds basic authentication, and exposes a route to check
Router's status. The REST API is configured using configuration sections and options are required to
enable and use the REST API. For example, here's a minimal MySQL Router configuration file that
enables the most basic REST API functionality:

[DEFAULT]
| oggi ng_f ol der =

Exposes http://127.0.0.1: 8081
[http_server]

Exposes /api/ 20190715/ swagger.j son
[rest _api]

A typical Router configuration file contains other options but this guide focuses on the REST API.
Save this file (our guide assumes (/ f oo/ nysql r out er . conf), start Router loading this file (such
asnysql router -c /foo/ nmysqlrouter.conf,andconfiirmthathttp://127.0.0.1:8081/
api / 20190715/ swagger .] son exists. Example swagger . j son content:

{
"swagger": "2.0",
"info": {
"title": "MySQL Router",
"description": "APlI of MySQL Router",
"version": "20190715"

I
"basePat h": "/api/20190715",
"tags": [],

"paths": {},

"definitions": {}

}

This demonstrates that the Router REST API plugin is loaded, and that additional plugins exposing
routes and paths are not enabled. Authentication is not required to retrieve swagger . j son.

Note
@ The API version number may change in a future release; and future releases
may include functionality to retrieve this API integer.

Next, let's enable the simple r est _r out er plugin to expose the router/status path. Authentication is
required, and enabling authentication requires additional configuration options. For example:

[DEFAULT]
| oggi ng_f ol der =

Exposes http://127.0.0.1: 8081
[http_server]

Exposes /api/ 20190715/ swagger.j son
[rest _api]

Exposes /api/ 20190715/ rout er/ st at us
[rest _router]

109

A Simple MySQL Router REST API Guide

require_real mrsoner eal m

Exposes /api/ 20190715/ rout es/*
#[rest _routing]
#requi re_r eal nFsoner eal m

Exposes /api/ 20190715/ met adat a/ *
#[rest _net adat a_cache]
#requi re_r eal nFsoner eal m

Define our realm

[http_aut h_real m soner eal ni
backend=sonebackend

met hod=basi c

nane=Sone Real m

Define our backend; this file nust exist and validate
[htt p_aut h_backend: somebackend]

backend=fil e

fil enane=/ et c/ nysql rout er/ nysql r out er. pwd

Router uses realms for authentication, and the mysqgl r out er _passwd command-line utility generates
and manages these users. For example, this creates a user named someuser and saves it as a new
file named / et ¢/ nmysql rout er/ mysql r out er . pwd:

CGenerate and save the user/pass
$> nysql rout er _passwd set /etc/nysqlrouter/nysqlrouter.pwd someuser
Pl ease enter password:

Optionally |ist usernames and salted passwords in the file:
$> nysql router_passwd |ist /etc/nysqlrouter/nysqlrouter.pwd

soneuser : $5$43t f YEwobPBLK YDB$XnHy COuXY1F4f 6r yd8Vj 5CUnEqcH3t qf 4pud9kql ji 3

Restarting Router with our new configuration file generates a different swagger . j son that now
contains [rest_router] plugin information for its /router/status route:

{
"swagger": "2.0",
"info": {
“title": "MySQL Router",
“description": "APl of MySQL Router",
“version": "20190715"

IE
"basePat h": "/api/20190715"
"tags": [
{
"nanme": "app",
“description": "Application"
}
Il
"paths": {
“/router/status": {
"get": {
"tags": [
" app”
Il
"description": "Get status of the application”,
"responses": {
"200": {
"description": "status of application”,
"schema": {
"$ref": "#/ definitions/RouterStatus"
}
}
}
}
}
}

efinitions": {
"Rout er Status": {

110

MySQL Router REST API Reference

"type": "object"
"properties": {
"timeStarted": {
"type": "string",

"format": "data-tinme"
b
"processld": {
"type": "integer"
b
"version": {
"type": "string"

}

"

ost name": {

"type": "string"
i
"product Edi tion": {
"type": "string"

Loading http://127.0.0.1:8081/api/20190715/router/status prompts for a username and password (that
we created in our example) and on success returns Router's current status. For example:

{
"processld": 1883
"product Edition": "MySQ. Community - GPL",
"timeStarted": "2022-01-25T21:23:50. 442399Z"
"version": "9.5.0",
"host nane": "boat"

}

We set up a basic Router REST API with an authenticated backend; a REST API with two of the REST
API plugins enabled.

6.2 MySQL Router REST API Reference

Knowing the basePath prefix is assumed. The basePath contains the API version, such as "/
api/20190715". For example, if the endpoint is "/metadata” then the URL is similar to "https://
localhost:8443/api/20190715/metadata”. See Section 6.1, “A Simple MySQL Router REST API Guide”
for related information.

Table 6.1 MySQL Router REST API Endpoints

Endpoint Description Plugin Method

rest_metadata | Géche

Get metadata instance
names

/metadata

/metadata/{metadataName}/config Get metadata configuration

details

rest_metadata | G&che

/metadata/{metadataName}/status Check metadata status rest_metadata | G&€he

[router/status Check Router status rest_router GET]
/routes Get list of routes rest_routing |GET|
/routes/{routeName}/blockedHosts Get list of blocked IPs rest_routing |GET]
/routes/{routeName}/config Get route configuration rest_routing |GET|
details
/routes/{routeName}/connections Get route connections rest_routing |GET]
/routes/{routeName}/destinations Get route destinations rest_routing |GET|
/routes/{routeName}/health Check route health rest_routing |GET]
/routes/{routeName}/status Check route status rest_routing |GET|

111

metadata

Endpoint Description Plugin Method

/connection_pool/{name}/config Check connection_pool rest_connectionGRdol
config

/connection_pool/{name}/status Check connection_pool rest_connectionGadol
status

swagger.json Get swagger file containing |rest_api GET]
available paths and
information

metadata

GET / net adat a

Get list of the metadata cache instances

Available Responses

200

Example 200 response data:

{

"items": [
{
“name": "nmyC uster"
}

]
}

Description: List of metadata cache instances

Response Schema

items

GET / net adat a/ { ret adat aNane}/ confi g

array

Contains 'name'’ fields; the name
of the metadata instance

Get configuration of the metadata cache of a cluster's replicaset

Available Responses

200

Description: Config of metadata cache

Response Schema

clusterName

group
timeRefreshinMs integer

TTL number
groupReplicationld string

Optional
nodes array

string

Optional, name of the replication

An array; items include the
hostname (string) and port
(integer) properties

112

metadata

404
Path Parameters

metadataName (required)

Example 200 response data:

{

"ti meRefreshl nMs": 500,

"clusterNanme": "nyC uster",

"groupReplicationld": "e57e9cll-abfe-1lea-b747-0800278566ch",

"nodes": [

{
"host nane": "127.0.0.1",
"port": 3310

i

{
"host nane": "127.0.0.1",
"port": 3320

i

{
"host nane": "127.0.0.1",
"port": 3330

}

]
}

Description: Cache not found

string

Name of cluster

GET / net adat a/ { et adat aNane}/ st at us

Get metadata cache status for a cluster's replicaset

Available Responses

200

404
Path Parameters

metadataName (required)

Example 200 response data:

{

Description: Status of the metadata cache

Response Schema

lastRefreshHostname

lastRefreshPort

timeLastRefreshFailed

timeLastRefreshSucceeded

refreshSucceeded

refreshFailed

Description: Cache not found

string

Name of the cluster

string

integer

string

string

integer

integer

113

router

"refreshFail ed": 0,

"refreshSucceeded": 798,

"ti meLast Ref reshSucceeded": "2020-06-11T21:17:37.270303Z2",
"| ast Ref r eshHost nane": "127.0.0.1",

"l ast RefreshPort": 3310

}
router
GET /router/status
Get status of router
Available Responses
200 Description: Status of Router
Response Content-Type: application/json
Response Schema
hostname string
Name of the host the application
is running on; it may be empty if
a host is not configured
processld integer
Process ID of the application
productEdition string
Product edition, such as "MySQL
Community - GPL"
timeStarted string
A date-time string that the
application was started, such as
"2020-06-11T22:08:30.978640Z"
version string
Version of the application, such
as "8.0.22"
Example 200 response data:
{
"processld": 6435,
"productEdition": "MySQ. Community - GPL",
"timeStarted": "2020-06-11T21:10: 49. 420619Z",
"version": "8.0.20",
"host nane": "boat"
}
routes
GET /routes
Get list (hames) of the routes supported by MySQL Router
Available Responses
200 Description: List of the supported routes

114

routes

Response Schema
items array
A list of routes

Example 200 response data:

{
"items": [
{
“name": "myCl uster_ro"
I
{
"nanme": "nyCluster_rw'
I
{
"nanme": "nyCl uster_x_ro"
I
{
"name": "nyCluster_x_rw'
}
]
}

GET /routes/ {routeNane}/config

Get config of a route

Available Responses

200 Description: Config of a route

Response Schema
bindAddress string

Address the route is listening on
bindPort integer

TCP port the router is listening on
clientConnectTimeoutinMs integer

Connection timeout for incoming
connections

destinationConnectTimeoutinMs integer

Connection timeout for outgoing
connections

maxActiveConnections integer

Maximum number of active
connections

maxConnectErrors integer

Maximum number of adjacent
connection errors before the
client gets blocked

protocol string

115

routes

Protocol, either ‘classic' or X'
socket string

Listening socket or named pipe
routingStrategy string

The routing strategy used; such
as "round-robin”, "round-robin-
with-fallback", "first-available",
or "next-available" as defined by

Router's strategy configuration

option
404 Description: Route not found
Path Parameters
routeName (required) string
Name of a route
Example 200 response data:
{
"bi ndAddress": "0.0.0.0",
"bi ndPort": 6446,
"cli ent Connect Ti neout | nMs": 9000,
"desti nati onConnect Ti meout | nMs": 15000,
"maxAct i veConnecti ons": 512,
"maxConnect Errors": 100,
"protocol ": "classic",
"routingStrategy": "first-avail abl e"
}
GET /rout es/ {rout eNane}/ st at us
Get status of a route
Available Responses
200 Description: Status of a route
Response Schema
activeConnections integer
Number of active connections on
the route
totalConnections integer

Number of connections handled
by the route

blockedHosts integer
Number of blocked hosts
404 Description: Route not found

Example 200 response data:

{

"activeConnections": 1,

116

routes

"t ot al Connections": 1,
"bl ockedHosts": 0

}

Path Parameters
routeName (required) string

Name of a route
GET /routes/ {routeNane}/ heal th

Get health of a route
Available Responses

200 Description: Health of a route
Response Schema

isAlive boolean
404 Description: Route not found
Path Parameters
routeName (required) string

Name of a route

Example 200 response data:
{

"isAlive": true
}
GET /rout es/ {rout eNane}/ desti nati ons
Get destinations of a route
Available Responses

200 Description: Destinations of a route
Response Schema

items array

Contains 'address’ (string, IP
address of the destination node),
and 'port’ (integer, port of the
destination node)

404 Description: Route not found
Path Parameters
routeName (required) string
Name of a route
Example 200 response data:
{
"items": [

{
"address": "127.0.0.1",

"port": 3320
b

117

routes

{

"port": 3330
}
]
}

"address": "127.0.0.1",

GET /rout es/ {rout eNane}/ connecti ons

Get connections of a route
Available Responses

200

404
Path Parameters

routeName (required)

Description: Connections of a route

Response Schema

items

Description: Route not found

string

array

Each items entry contains the
following:

bytesFromServer: integer,
number of bytes sent from
server to the client over the
given connection

BytesToServer: integer,
number of bytes sent from the
client to the server over the
given connection

sourceAddress: string,
adddress:port pair of the
connection source (client)

destinationAddress: string,
adddress:port pair of the
connection destination (server)

timeStarted: string, timepoint of
the connection initialization

timeConnectedToServer:
string, timepoint when the
connection successfully
established

timeLastSentToServer: string,
timepoint when there was last
data sent from client to server
on the given connection

timeLastReceivedFromServer:
string, timepoint when there
was last data sent from

server to client on the given
connection

118

connection_pool

Name of a route

Example 200 response data:

{
"items": [
{
"byt esFronServer": 2952,
"byt esToServer": 743,
"sour ceAddress": "127.0.0. 1: 54098",
"desti nati onAddress": "127.0.0.1:3310",
"timeStarted": "2020-06-11T21: 28: 20. 882204Z",
"ti meConnect edToServer": "2020-06-11T21: 28: 20. 882513Z",
"timeLast Sent ToServer": "2020-06-11T21: 28: 20. 886969Z",
"ti meLast Recei vedFronServer": "2020-06-11T21: 28: 20. 886968Z2"
}
|
}

GET /rout es/ {rout eNane}/ bl ockedHost s

Get blocked host list for a route

Available Responses

200 Description: Blocked host list for a route

Response Schema
items array

IP addresses that are currently
blocked by the routing core

404 Description: Route not found
Path Parameters
routeName (required) string

Name of a route

Example 200 response data:
{

"items": []

}
connection_pool

GET / connecti on_pool / {nane}/config

Shows max| dl eSer ver Connect i ons as defined by the mex_i dl e_server _connecti on
configuration option. This is the maximum number (integer) of idling server connections in the
connection pool.

Shows i dl eTi neout as defined by the i dl e_t i neout configuration option. This is the timeout in
seconds (integer) before connections in the connection pool are closed.

GET / connecti on_pool / {nane}/ st at us

Shows r eusedConnect i ons as a count (integer) of client connections that reused a server
connection since the application started.

Shows i dl eSer ver Connect i ons as a count (integer) of idling server connections currently in the
connection pool.

119

swagger.json

swagger.json
GET / swagger . j son

Get a swagger (OpenAPI) file for the local REST API instance. Accessing the file does not require
authentication; anyone with access to the REST API can generate and view it. The OpenAPI content
depends on the active REST API plugins.

Example 200 response data:

{
"swagger": "2.0",
"info": {
“title": "MySQL Router",
"description": "APl of MySQL Router",
“version": "20190715"
B
"basePat h": "/api/20190715"
“tags": [
{
“panme": "connectionpool "
“description": "Connection Pool"
B
{
“name": "cluster"”,
"description": "lInnoDB Cluster"
B
{
"nanme": "app",
“description": "Application”
B
{
"nanme": "routes"
"description": "Routes"
}
Il
"paths": {
"/ connecti on_pool / {connecti onPool Nane}/status": {
"get": {
“"tags": [
"connecti onpool "
Il
"description": "Get status of a route",
"responses": {
"200": {
"description": "status of a route",
"schema": {
"$ref": "#/ definitions/ConnectionPool Status"
}
iE
"404": {
“description": "route not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/connecti onPool NanePar ant
}
]
IiE
"/ connecti on_pool / {connect i onPool Nane}/ config": {
"get": {
“tags": [
"connecti onpool "
Il
"description": "Get config of a route",
"responses": {
"200": {
"description": "config of a route",

"schema": {

120

swagger.json

"$ref": "#/ definitions/ConnectionPool Config"

}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
{
"$ref": "#/ paraneters/connecti onPool NanePar ant
}
]
iE
"/ connection_pool ": {
"get": {
"tags": [
"connect i onpool "
Il
"description": "Get |list of the connection pool s",
"responses": {
"200": {
"description": "list of the connection pools",
"schema": {
"$ref": "#/ definitions/ConnectionPool List"
}
}
}
}
iE
"/ met adat a/ { met adat aNane}/ confi g": {
"get": {
"tags": [
“cluster"
Il
"description": "Get config of the netadata cache of a replicaset of a cluster",
"responses": {
"200": {
"description": "config of metadata cache",
"schema": {
"$ref": "#/ definitions/MtadataConfig"
}
iE
"404": {
"description": "cache not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/ netadat aNanmePar ant
}
]
iE
"/ met adat a/ { ret adat aNane}/status": {
"get": {
"tags": [
“cluster"
Il
"description": "Get status of the netadata cache of a replicaset of a cluster",
"responses": {
"200": {
"description": "status of metadata cache",

"schema": {
"$ref": "#/ definitions/MetadataStatus"

}
}
"404": {
"description": "cache not found"

}

121

swagger.json

"paranmeters": [

"$ref": "#/ paraneters/ netadat aNanePar ant

}
]
iE
"/nmetadata": {
"get": {
"tags": [
“cluster"
Il
"description": "Get list of the nmetadata cache instances",
"responses": {
"200": {
"description": "list of the netadata cache instances",
"schema": {
"$ref": "#/ definitions/MetadataList"

}
}
}
}
}

router/status": {
"get": {
"tags": [
" app"
Il
"description": "Get status of the application",
"responses": {
"200": {
"description": "status of application",
"schema": {
"$ref": "#/ definitions/RouterStatus"
}
}
}
}
}

routing/status": {
"get": {
"tags": [
"routing"

]

escription": "Get status of the routing plugin"
"responses": {
"200": {
"description": "status of the routing plugin",
"schema": {
"$ref": "#/ definitions/Routingd obal Status"
}
}
}
}
iE
"/routes/{routeNane}/config": {
"get": {
"tags": [
"routes”
Il
"description": "Get config of a route",
"responses": {
"200": {
"description": "config of a route",
"schema": {
"$ref": "#/ definitions/RouteConfig"
}
iE
"404": {
"description": "route not found"

}

122

swagger.json

"paranmeters": [

"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/routes/{routeNane}/status": {
"get": {
"tags": [
"routes”
Il
"description": "Get status of a route",
"responses": {
"200": {
"description": "status of a route",
"schema": {
"$ref": "#/ definitions/RouteStatus"
}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/routes/{routeNane}/health": {
"get": {
"tags": [
"routes”
Il
"description": "Get health of a route",
"responses": {
"200": {
"description": "health of a route",
"schema": {
"$ref": "#/ definitions/RouteHealth"
}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/routes/{routeNane}/destinations": {
"get": {
"tags": [
"routes”
Il
"description": "Get destinations of a route",
"responses": {
"200": {
"description": "destinations of a route",
"schema": {
"$ref": "#/ definitions/RouteDestinationList"
}
iE
"404": {
"description": "route not found"
}
}
iE

123

swagger.json

"paranmeters": [

"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/ routes/{routeNane}/connections": {
"get": {
"tags": [
"routes”
Il
"description": "Get connections of a route",
"responses": {
"200": {
“description": "connections of a route",
"schema": {
"$ref": "#/ definitions/RouteConnectionsList"
}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/ routes/{rout eNane}/ bl ockedHosts": {
"get": {
"tags": [
"routes”
Il
“description": "Get blocked host list for a route",
"responses": {
"200": {
"description": "blocked host list for a route",
"schema": {
"$ref": "#/ definitions/RouteBl ockedHost Li st "
}
iE
"404": {
"description": "route not found"
}
}
iE
"paranmeters": [
"$ref": "#/ paraneters/routeNanePar anf
}
]
iE
"/routes": {
"get": {
"tags": [
"routes”
Il
"description": "Get list of the routes",
"responses": {
"200": {
"description": "list of the routes”,
"schema": {
"$ref": "#/ definitions/RouteList"
}
}
}
}
}

}

efinitions": {

124

swagger.json

" Connect i onPool Status": {
"type": "object"”,
"properties": {

"reusedServer Connecti ons": {
"type": "integer"

b

"idl eServer Connections": {
"type": "integer"

}

}
}

nnect i onPool Confi g": {
"type": "object",
"properties": {
"idl eTi meout | nMs": {
"type": "integer"
}

x| dl eSer ver Connecti ons": {
"type": "integer"
}
}
}

nnect i onPool Summary": {
"type": "object",
"properties": {

"name": {

"type": "string"

}
}
}

nnect i onPool Li st": {
"type": "object",
"properties": {
"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/ConnectionPool Summary"
}
}
}
b
"Met adat aSt at us": {
"type": "object",
"properties": {
"| ast Ref r eshHost name": {
"type": "string"

b

"l ast RefreshPort": {
"type": "integer"

b

"tinmeLast RefreshFail ed": {
"type": "string",
"format": "data-tinme"

b

"tinmeLast RefreshSucceeded": {
"type": "string",
"format": "data-tinme"

}

ef reshSucceeded": {
"type": "integer"
iE
"refreshFail ed": {
"type": "integer"
}
}
iE
" Met adat aConfig": {
"type": "object",
"properties": {
"clusterNanme": {
"type": "string"
iE

125

swagger.json

"ti meRefreshl nMs": {
"type": "integer"
}

roupReplicationld": {
"type": "string"

iE
"nodes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"host name": {
"type": "string"
iE
"port": {
"type": "integer"
}
}
}
}

}

Met adat aSummar y": {
"type": "object",
"properties": {

"name": {
"type": "string"
}
}

iE

"Met adat aLi st": {

"type": "object",

"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/MetadataSummary"
}
}
}
b
" C ust er NodeSummary": {
"type": "object",
"properties": {
"groupUui d": {
"type": "string"
b
"serverUuid": {
"type": "string"
}
}
b
"C ust er NodeLi st": {
"type": "object",
"properties": {
"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/d usterNodeSunmary"
}
}
}
b

"C usterSunmary": {
"type": "object",
"properties": {

"name": {
"type": "string"
}
}
}

usterList": {

126

swagger.json

"type": "object",
"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/d usterSummary"
}
}

}
iE
"RouterStatus": {
"type": "object",
"properties": {
"timeStarted": {
"type": "string",

"format": "data-tine"
i
"processld": {
"type": "integer"
i
"version": {
"type": "string"
i

"host name": {
"type": "string"

b
"product Edi tion": {
"type": "string"
}
}
b
"Rout i ngd obal Status": {
"t ot al MaxConnecti ons": "nunber of total connections allowed",
"current MaxConnecti ons": "nunber of current total connections"
}

"Rout eHeal t h": {
"type": "object",
"properties": {
"isAlive": {
"type": "bool ean"
}
}
I
"RouteStatus": {
"type": "object",
"properties": {
"activeConnections": {

"type": "integer"

b

"total Connections": {
"type": "integer"

b

"bl ockedHost s": {
"type": "integer"

}

}
}

"Rout eConfig": {
"type": "object",
"properties": {
"bi ndAddress": {
"type": "string"

b

"bi ndPort": {
"type": "integer"

b

"cl i ent Connect Ti meout | nMs": {
"type": "integer"

b

"desti nati onConnect Ti neout | nMs": {
"type": "integer"

I

127

swagger.json

"maxAct i veConnecti ons": {

"type": "integer"
b
"maxConnect Errors": {
"type": "integer"
b
"protocol ": {
"type": "string"
b
"socket": {
"type": "string"
}

outingStrategy": {
"type": "string"
b
}
}

Rout eSunmary": {
"type": "object",
"properties": {

"name": {
"type": "string"
}
}

iE

"Rout eList": {

"type": "object",

"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/RouteSummary"
}

}
}
}

Rout eDest i nati onSummary": {
"type": "object",
"properties": {

"name": {
"type": "string"
}
}

iE

"Rout eDest i nati onList": {

"type": "object",

"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/RouteDestinati onSummary"
}

}
}
iE
" Rout eBl ockedHost Summar y": {
"type": "object",
"properties": {
"name": {
"type": "string"
}
}
iE
" Rout eBl ockedHost Li st": {
"type": "object",
"properties": {

"items": {
"type": "array",
"items": {

"$ref": "#/ definitions/RouteBl ockedHost Summar y"

}
}

128

swagger.json

}
}

Rout eConnect i onsSummary": {
"type": "object"”,
"properties": {
"timeStarted": {
"type": "string",
“"format": "date-time",
"description": "timepoint when connection to server was initiated"
iE
"ti meConnect edToServer": {
"type": "string",
“"format": "date-time",
"description": "timepoint when connection to server succeeded"
iE
"tinmeLast Sent ToServer": {
"type": "string",
“"format": "date-time",
"description": "timepoint when there was | ast data sent fromclient to server"

}

i meLast Recei vedFronServer": {
"type": "string",
“"format": "date-time",
"description": "timepoint when there was | ast data sent fromserver to client"
b
"byt esFrontServer": {
"type": "integer",
"description": "bytes sent to destination"

}

yt esToServer": {
"type": "integer",
"description": "bytes received from destination"
iE
"destinationAddress": {
"type": "string",
"description": "address of the destination of the connection”
iE
"sour ceAddress”: {
"type": "string",
"description": "address of the source of the connection"
}
}
iE
" Rout eConnecti onsList": {
"type": "object"”,
"properties": {

"items": {
"type": "array",
"items": {
"$ref": "#/ definitions/RouteConnectionsSummary"
}

}
}
}
b
"paraneters": {
"connect i onPool NamePar ani': {

name": "connecti onPool Nane",
"in": "path",
"description": "name of a connection pool",

"required": true,
"type": "string"
b

" met adat aNamePar ani': {

"name": "netadataNanme",
"in": "path",
"description": "name of cluster",

"required": true,
"type": "string"

b

"cl ust er NamePar ani': {
" "cl ust er Nane",

name " :

129

swagger.json

130

Appendix A MySQL Router Frequently Asked Questions

A.1 Where do | install MySQL ROULEI?iiiiiieiiii et e et e e e e e e 131
A.2 Can | run more than one instance of the router application?ccocveviiieiiiiiiiiiii e, 131
A.3 How do | make the router application highly available? ..., 131
A.4 Does the router iINSPECT PACKETS?iieii ittt ettt 131
A.5 Does the router impact PErforManCE?coouuiiiiiii e 131
A.6 Please explain the different MySQL Router versions, especially why Router went from 2.1.4

(TS IR TP UPPP PP 131
A.7 Can | bind the router to multiple 1P @ddreSSES?ccuuiiiiiiiiiieiet et 131
A.8 What is the difference between the different scheduling modes and strategies?c........ 132
A.9 How many concurrent connections does each MySQL Router instance support? 132

A.10 How can | configure MySQL Router to use a non-default directory on a system using

Al

A.2.

A.3.

A4

A.5.

A.6.

A.7.

F Y o] oYY 1 1o o PP 132
Where do | install MySQL Router?

For best performance, MySQL Router is typically installed on the same host as the application
that uses it. Doing so can decrease network latency, allow a local unix domain socket
connection to the application instead of TCP/IP, and typically application servers are easiest to
scale. But, this is not a requirement as Router can be installed on any host, even its own.

Note
@ Unix domain sockets can function with applications connecting to MySQL
Router, but not for MySQL Router connecting to a MySQL Server.

Can | run more than one instance of the router application?

Yes, see also the - - di r ect or y bootstrap option.

How do | make the router application highly available?

Use MySQL Router as part of InnoDB Cluster. For additional details, see MySQL AdminAPI.
Does the router inspect packets?

No.

Does the router impact performance?

Introducing a component in a communication stream incurs a certain amount of overhead; this is
affected heavily by workload. Fortunately, performance testing on the current release has shown
approximately 1% within the same speed as a direct connection for simple redirect connection
routing.

Please explain the different MySQL Router versions, especially why Router went from 2.1.4 to
8.0.3.

MySQL Router 2.0 was the initial version and is meant for MySQL Fabric users. It has since
been deprecated and is no longer supported.

MySQL Router 2.1 was introduced to support MySQL InnoDB cluster, and it also added new
features such as bootstrapping.

MySQL Router 8.0 expands on MySQL Router 2.1 but with a version number that aligns

with MySQL Server. In other words, Router 2.1.5 was released as Router 8.0.3 (along with
MySQL Server 8.0.3), and the 2.1.x branch was replaced by 8.0.x. The two branches are fully
compatible.

Can | bind the router to multiple IP addresses?

131

https://dev.mysql.com/doc/mysql-shell/9.5/en/admin-api-userguide.html

No, the bi nd_addr ess option in the configuration file accepts only one address. However, it is
possible to use bi nd_addres = 0. 0. 0. 0 to bind to all ports on the localhost.

A.8. What is the difference between the different scheduling modes and strategies?

Router 8.0 introduced the r out i ng_st r at egy option. It offers the first-available, next-
available, round-robin and round-robin-with-fallback strategies. See the r out i ng_str at egy
documentation for additional details.

A.9. How many concurrent connections does each MySQL Router instance support?

Over 50,000 as of MySQL Router 8.0.22, depending on the system's poll (poll or linux_epoll)
limits and also depending on the number of available CPU cores/threads.

Earlier MySQL Router versions had had a limit closer to 5000, depending on the operating
system's poll() limits.

A.10. How can | configure MySQL Router to use a non-default directory on a system using AppArmor?

If you use the - - di r ect ory option on a system using AppArmor, for example Ubuntu, you
could encounter a permissions error related to MySQL Router accessing the non-default
directory. In this case, add the path you pass to - - di r ect or y to the AppArmor file as
suggested, and restart AppArmor.

132

	MySQL Router 9.5
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 Routing for MySQL InnoDB Cluster
	1.2 Cluster Metadata and State
	1.2.1 MySQL Router Read Replica Support

	1.3 Connection Routing
	1.4 Application Considerations

	Chapter 2 Installing MySQL Router
	2.1 Installing MySQL Router on Linux
	2.2 Installing MySQL Router with Docker
	2.3 Installing MySQL Router on macOS
	2.4 Installing MySQL Router on Windows
	2.5 Installing MySQL Router from Source Code
	2.6 Upgrading MySQL Router

	Chapter 3 Deploying MySQL Router
	3.1 Bootstrapping MySQL Router
	3.2 Trying out MySQL Router in a Sandbox
	3.3 Basic Connection Routing
	3.4 Connection Sharing and Reuse
	3.5 Read/Write Splitting
	3.5.1 Configuration
	3.5.2 Statements

	3.6 MySQL Router TLS Session Cache
	3.7 MySQL Router Set Trace

	Chapter 4 Configuration
	4.1 Configuration File Syntax
	4.2 Configuration Locations
	4.3 Configuration Options
	4.3.1 Defining Options Using the Command Line
	4.3.2 MySQL Router Command Line Programs
	4.3.2.1 mysqlrouter — Command Line Options
	4.3.2.2 mysqlrouter_plugin_info — Command Line Options
	4.3.2.3 mysqlrouter_passwd — Command Line Options
	4.3.2.4 mysqlrouter_keyring — Command Line Options

	4.3.3 Configuration File Options
	4.3.4 Configuration File Example

	4.4 TLS Configuration

	Chapter 5 MySQL Router Application
	5.1 Starting MySQL Router
	5.2 Using the Logging Feature

	Chapter 6 MySQL Router REST API
	6.1 A Simple MySQL Router REST API Guide
	6.2 MySQL Router REST API Reference

	Appendix A MySQL Router Frequently Asked Questions

