MySQL Restrictions and Limitations

Abstract
This is the MySQL Restrictions and Limitations extract from the MySQL 5.7 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2023-09-19 (revision: 76694)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
1 ResStrictions 0N StOred PrOGIaIMSciieuiieiiiiiie ettt ettt et e e e e e e e era e eenaans 1
2 RESLIICHONS ON VIBWS ...ttt ettt ettt ettt e et et e e et e e ea e e et e e e e e ean e e eetn e aeanaaeanas 5
3 Restrictions on Condition HANGINGcoouueiiiiii et 7
4 ReStrictioNS 0N SEIVEI-SIAE CUISOISuiiii ittt e et et e e et e e et e e et e aean e eenaeenns 9
5 RESLIICHONS ON SUDGQUETIES ... ittt ettt ettt e et e e 11
6 ReStrictions 0N XA TranNSACHONSuiiitiiii et e e e e et e et e e et e e et eeean e eannas 13
7 ReStriCtionS 0N CRAraCler SISuiiiiiiiii e et e e e e e eaaeeees 15
8 Restrictions on Performance SChema 17
9 Restrictions on Pluggable AUTNENtICAtIONiiiiiiiiiei e 19
10 Restrictions and Limitations on Partitioningveieiuiiiiiiiieeii e e 21
10.1 Partitioning Keys, Primary Keys, and Unique KeYScoiveiiiiiiiiiiiiiiieiiiieeeei e 27
10.2 Partitioning Limitations Relating to Storage ENQINEScccouviiiiiiiiiiiiiiiiieceiieeeiiieees 31
10.3 Partitioning Limitations Relating to FUNCLIONSuuiiiiiiiiiiiiii e 32
10.4 Partitioning and LOCKINGcceuuuiiiiiiieieii ettt ettt eaan s 33
11 Windows PIatform RESIHCHONSc..u it e e e e eanas 35
12 LIMIES TN MYSQL ..ttt ettt ettt ettt e et e s 37
12.1 Identifier Length LIMILSoiiiiiiiiii e e 37
12.2 Grant Table Scope Column Propertiesoociiiuiiieiiiiiieiei e e 38
12.3 Limits on Number of Databases and Tables ... 38
12.4 LimitS ON TabIe SIZE ..o e 38
12.5 Limits on Table Column Count and ROW SiZeiiiuiiiiiiiiiiiei e 39
12.6 Limits Imposed by .frm File StrUCIUIec.oooiiiiii e 42
13 MySQL Differences from Standard SQL ... 45
13.1 SELECT INTO TABLE DIffEIrENCESciiiiiieiiiiie ettt 45
13.2 UPDATE DIffEIENCES .. .eeeiieiit et e e e e e e e e e e e ean s 45
13.3 FOREIGN KEY Constraint DifferenCesooouiiiiiiiiiii e 45
13.4 '--' as the Start of @ COMMENTnii e ean e a7
14 KNOWN ISSUES 1N IMYSQL .. oiiuiiiiii ettt ettt et ettt e e e aa e e e nean s 49

Preface and Legal Notices

This is the MySQL Restrictions and Limitations extract from the MySQL 5.7 Reference Manual.

Licensing information—MySQL 5.7. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.7, see the MySQL 5.7 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 5.7, see the MySQL 5.7 Community Release License Information User Manual

for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Licensing information—MySQL NDB Cluster 7.5. This product may include third-party software,
used under license. If you are using a Commercial release of NDB Cluster 7.5, see the MySQL NDB
Cluster 7.5 Commercial Release License Information User Manual for licensing information relating

to third-party software that may be included in this Commercial release. If you are using a Community
release of NDB Cluster 7.5, see the MySQL NDB Cluster 7.5 Community Release License Information
User Manual for licensing information relating to third-party software that may be included in this
Community release.

Licensing information—MySQL NDB Cluster 7.6. If you are using a Commercial release of
MySQL NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Commercial Release License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL NDB
Cluster 7.6, see the MySQL NDB Cluster 7.6 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices

Copyright © 1997, 2023, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated

https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-gpl-en.pdf

Documentation Accessibility

on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support for Accessibility

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/
t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

viii

Chapter 1 Restrictions on Stored Programs

» SQL Statements Not Permitted in Stored Routines
* Restrictions for Stored Functions

» Restrictions for Triggers

» Name Conflicts within Stored Routines

* Replication Considerations

» Debugging Considerations

e Unsupported Syntax from the SQL:2003 Standard
» Stored Routine Concurrency Considerations

» Event Scheduler Restrictions

» Stored Programs in NDB Cluster

These restrictions apply to the features described in Stored Objects.

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures
and stored functions. There are also some restrictions specific to stored functions but not to stored
procedures.

The restrictions for stored functions also apply to triggers. There are also some restrictions specific to
triggers.

The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions.
There are also some restrictions specific to events.

SQL Statements Not Permitted in Stored Routines

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:
» The locking statements LOCK TABLES and UNLOCK TABLES.

e ALTER VI EW

 LOAD DATAand LOAD XM..

» SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored
procedures, but not stored functions or triggers. Thus, stored functions and triggers cannot use
dynamic SQL (where you construct statements as strings and then execute them).

» Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Prepared Statements.
Exceptions are SI GNAL, RESI GNAL, and GET DI AGNOSTI CS, which are not permissible as
prepared statements but are permitted in stored programs.

» Because local variables are in scope only during stored program execution, references to them
are not permitted in prepared statements created within a stored program. Prepared statement
scope is the current session, not the stored program, so the statement could be executed after the
program ends, at which point the variables would no longer be in scope. For example, SELECT . . .
I NTO | ocal _var cannot be used as a prepared statement. This restriction also applies to stored
procedure and function parameters. See PREPARE Statement.

» Within all stored programs (stored procedures and functions, triggers, and events), the parser treats
BEG N [WORK] as the beginning of a BEG N ... END block. To begin a transaction in this context,
use START TRANSACTI ON instead.

https://dev.mysql.com/doc/refman/5.7/en/stored-objects.html
https://dev.mysql.com/doc/refman/5.7/en/do.html
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.7/en/alter-view.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/load-xml.html
https://dev.mysql.com/doc/refman/5.7/en/prepare.html
https://dev.mysql.com/doc/refman/5.7/en/execute.html
https://dev.mysql.com/doc/refman/5.7/en/deallocate-prepare.html
https://dev.mysql.com/doc/refman/5.7/en/sql-prepared-statements.html
https://dev.mysql.com/doc/refman/5.7/en/signal.html
https://dev.mysql.com/doc/refman/5.7/en/resignal.html
https://dev.mysql.com/doc/refman/5.7/en/get-diagnostics.html
https://dev.mysql.com/doc/refman/5.7/en/prepare.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/begin-end.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html

Restrictions for Stored Functions

Restrictions for Stored Functions

The following additional statements or operations are not permitted within stored functions. They are
permitted within stored procedures, except stored procedures that are invoked from within a stored
function or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot
be called from a stored function or trigger.

Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit
them.

Statements that return a result set. This includes SELECT statements that do not have an | NTO

var _|i st clause and other statements such as SHOW EXPLAI N, and CHECK TABLE. A function
can process a result set either with SELECT ... | NTO var _|i st or by using a cursor and FETCH
statements. See SELECT ... INTO Statement, and Cursors.

FLUSH statements.
Stored functions cannot be used recursively.

A stored function or trigger cannot modify a table that is already being used (for reading or writing) by
the statement that invoked the function or trigger.

If you refer to a temporary table multiple times in a stored function under different aliases, a Can' t
reopen table: 'tbl _nane' error occurs, even if the references occur in different statements
within the function.

HANDLER ... READ statements that invoke stored functions can cause replication errors and are
disallowed.

Restrictions for Triggers

For triggers, the following additional restrictions apply:

Triggers are not activated by foreign key actions.

When using row-based replication, triggers on the replica are not activated by statements originating
on the source. The triggers on the replica are activated when using statement-based replication. For
more information, see Replication and Triggers.

The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

Triggers are not permitted on tables in the nysql database. Nor are they permitted on
| NFORVATI ON_SCHENA or per f or mance_schena tables. Those tables are actually views and
triggers are not permitted on views.

The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger
operates using the outdated metadata.

Name Conflicts within Stored Routines

The same identifier might be used for a routine parameter, a local variable, and a table column. Also,
the same local variable name can be used in nested blocks. For example:

CREATE PROCEDURE p (i |NT)
BEG N

DECLARE i | NT DEFAULT O;
SELECT i FROM t;

https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/show.html
https://dev.mysql.com/doc/refman/5.7/en/explain.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/fetch.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/cursors.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/handler.html
https://dev.mysql.com/doc/refman/5.7/en/replication-features-triggers.html
https://dev.mysql.com/doc/refman/5.7/en/return.html
https://dev.mysql.com/doc/refman/5.7/en/leave.html

Replication Considerations

BEG N
DECLARE i | NT DEFAULT 1,
SELECT i FROM t;
END;
END;

In such cases, the identifier is ambiguous and the following precedence rules apply:

» A local variable takes precedence over a routine parameter or table column.

« A routine parameter takes precedence over a table column.

» Alocal variable in an inner block takes precedence over a local variable in an outer block.

The behavior that variables take precedence over table columns is nonstandard.

Replication Considerations

Use of stored routines can cause replication problems. This issue is discussed further in Stored
Program Binary Logging.

The --replicate-w | d-do-tabl e=db_nane. t bl _nane option applies to tables, views, and
triggers. It does not apply to stored procedures and functions, or events. To filter statements operating
on the latter objects, use one or more of the - -r epl i cat e- *- db options.

Debugging Considerations

There are no stored routine debugging facilities.

Unsupported Syntax from the SQL:2003 Standard

The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that
standard are not currently supported:

* UNDO handlers

* FORIoops

Stored Routine Concurrency Considerations

To prevent problems of interaction between sessions, when a client issues a statement, the server
uses a snapshot of routines and triggers available for execution of the statement. That is, the server
calculates a list of procedures, functions, and triggers that may be used during execution of the
statement, loads them, and then proceeds to execute the statement. While the statement executes, it
does not see changes to routines performed by other sessions.

For maximum concurrency, stored functions should minimize their side-effects; in particular, updating
a table within a stored function can reduce concurrent operations on that table. A stored function
acquires table locks before executing, to avoid inconsistency in the binary log due to mismatch of the
order in which statements execute and when they appear in the log. When statement-based binary
logging is used, statements that invoke a function are recorded rather than the statements executed
within the function. Consequently, stored functions that update the same underlying tables do not
execute in parallel. In contrast, stored procedures do not acquire table-level locks. All statements
executed within stored procedures are written to the binary log, even for statement-based binary
logging. See Stored Program Binary Logging.

Event Scheduler Restrictions

The following limitations are specific to the Event Scheduler:

https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-wild-do-table
https://dev.mysql.com/doc/refman/5.7/en/stored-programs-logging.html

Stored Programs in NDB Cluster

» Event names are handled in case-insensitive fashion. For example, you cannot have two events in
the same database with the names anEvent and AnEvent.

» An event may not be created, altered, or dropped from within a stored program, if the event name
is specified by means of a variable. An event also may not create, alter, or drop stored routines or
triggers.

DDL statements on events are prohibited while a LOCK TABLES statement is in effect.

Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR MONTH are resolved in months;
those using any other interval are resolved in seconds. There is no way to cause events scheduled
to occur at the same second to execute in a given order. In addition—due to rounding, the nature of
threaded applications, and the fact that a nonzero length of time is required to create events and to
signal their execution—events may be delayed by as much as 1 or 2 seconds. However, the time
shown in the Information Schema EVENTS table's LAST EXECUTED column or the nysql . event
table's | ast _execut ed column is always accurate to within one second of the actual event
execution time. (See also Bug #16522.)

» Each execution of the statements contained in the body of an event takes place in a new connection;
thus, these statements have no effect in a given user session on the server's statement counts such
as Com sel ect and Com i nsert that are displayed by SHON STATUS. However, such counts are
updated in the global scope. (Bug #16422)

» Events do not support times later than the end of the Unix Epoch; this is approximately the beginning
of the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)

» References to stored functions, loadable functions, and tables in the ON SCHEDULE clauses of
CREATE EVENT and ALTER EVENT statements are not supported. These sorts of references are not
permitted. (See Bug #22830 for more information.)

Stored Programs in NDB Cluster

While stored procedures, stored functions, triggers, and scheduled events are all supported by tables
using the NDB storage engine, you must keep in mind that these do not propagate automatically
between MySQL Servers acting as Cluster SQL nodes. This is because of the following:

 Stored routine definitions are kept in tables in the nysql system database using the Myl SAMstorage
engine, and so do not participate in clustering.

» The . TRNand . TRGfiles containing trigger definitions are not read by the NDB storage engine, and
are not copied between Cluster nodes.

Any stored routine or trigger that interacts with NDB Cluster tables must be re-created by running the
appropriate CREATE PROCEDURE, CREATE FUNCTI ON, or CREATE TRI GCER statements on each
MySQL Server that participates in the cluster where you wish to use the stored routine or trigger.
Similarly, any changes to existing stored routines or triggers must be carried out explicitly on all Cluster
SQL nodes, using the appropriate ALTER or DROP statements on each MySQL Server accessing the
cluster.

Warning

Do not attempt to work around the issue described in the first item mentioned
previously by converting any nmysql database tables to use the NDB storage
engine. Altering the system tables in the nysql database is not supported and
is very likely to produce undesirable results.

https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/create-event.html
https://dev.mysql.com/doc/refman/5.7/en/alter-event.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/create-procedure.html
https://dev.mysql.com/doc/refman/5.7/en/create-function.html
https://dev.mysql.com/doc/refman/5.7/en/create-trigger.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html

Chapter 2 Restrictions on Views

The maximum number of tables that can be referenced in the definition of a view is 61.
View processing is not optimized:
* Itis not possible to create an index on a view.

» Indexes can be used for views processed using the merge algorithm. However, a view that is
processed with the temptable algorithm is unable to take advantage of indexes on its underlying
tables (although indexes can be used during generation of the temporary tables).

Before MySQL 5.7.7, subqueries cannot be used in the FROMclause of a view.

There is a general principle that you cannot modify a table and select from the same table in a
subquery. See Chapter 5, Restrictions on Subqueries.

The same principle also applies if you select from a view that selects from the table, if the view selects
from the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VI EWv1 AS
SELECT * FROMt2 WHERE EXI STS (SELECT 1 FROMt1 WHERE t1.a = t2.a);
UPDATE t1, v2 SET tl.a =1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery
and still modify that table in the outer query. In this case the view is stored in a temporary table and
thus you are not really selecting from the table in a subquery and modifying it “at the same time.”
(This is another reason you might wish to force MySQL to use the temptable algorithm by specifying
ALGORI THM = TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition.
No warning results from the DROP or ALTER operation, even though this invalidates the view. Instead,
an error occurs later, when the view is used. CHECK TABLE can be used to check for views that have
been invalidated by DROP or ALTER operations.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable,
it should be updatable in practice. Many theoretically updatable views can be updated now, but
limitations still exist. For details, see Updatable and Insertable Views.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VI EWand SELECT privileges), that user cannot call
SHOW CREATE VI EWon that object unless the user is also granted the SHOW VI EWprivilege.

That shortcoming can lead to problems backing up a database with mysql dunp, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VI EWprivilege to
users who are granted CREATE VI EW since MySQL doesn't grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view
is not permitted.

SHOW CREATE VI EWdisplays view definitions using an AS al i as_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
Aliases for column names in CREATE VI EWstatements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters). As a result, views created
from the output of SHOW CREATE VI EWfalil if any column alias exceeds 64 characters. This can cause
problems in the following circumstances for views with too-long aliases:

» View definitions fail to replicate to newer replicas that enforce the column-length restriction.

https://dev.mysql.com/doc/refman/5.7/en/drop-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/view-updatability.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-view
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/5.7/en/show-create-view.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-view
https://dev.mysql.com/doc/refman/5.7/en/show-create-view.html
https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/show-create-view.html

e Dump files created with mysql dunp cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that
provide shorter column names. Then the view replicates properly, and can be dumped and reloaded
without causing an error. To modify the definition, drop and create the view again with DROP VI EWand
CREATE VI EW or replace the definition with CREATE OR REPLACE VI EW

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VI EWstatements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

https://dev.mysql.com/doc/refman/5.7/en/drop-view.html
https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/create-view.html

Chapter 3 Restrictions on Condition Handling

SI GNAL, RESI GNAL, and GET DI AGNOSTI CS are not permissible as prepared statements. For
example, this statement is invalid:

PREPARE stnt1 FROM ' SI GNAL SQLSTATE "02000"';

SQLSTATE values in class ' 04' are not treated specially. They are handled the same as other
exceptions.

In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL
statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:

GET DI AGNOSTICS CONDI TION 1 @rrno = MYSQL_ERRNG,

Instead, do this:

CGET DI AGNCSTI CS @no = NUMBER;
GET DI AGNOSTI CS CONDI TION @no @rrno = MYSQL_ERRNO

https://dev.mysql.com/doc/refman/5.7/en/signal.html
https://dev.mysql.com/doc/refman/5.7/en/resignal.html
https://dev.mysql.com/doc/refman/5.7/en/get-diagnostics.html

Chapter 4 Restrictions on Server-Side Cursors

Server-side cursors are implemented in the C APl using the nysql _stnt _attr_set () function. The
same implementation is used for cursors in stored routines. A server-side cursor enables a result set
to be generated on the server side, but not transferred to the client except for those rows that the client
requests. For example, if a client executes a query but is only interested in the first row, the remaining
rows are not transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
VEMORY table, but is converted to a Myl SAMtable when its size exceeds the minimum value of the
max_heap_tabl e_sizeandtnp_t abl e_si ze system variables. The same restrictions apply

to internal temporary tables created to hold the result set for a cursor as for other uses of internal
temporary tables. See Internal Temporary Table Use in MySQL. One limitation of the implementation is
that for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported
in prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW
Bl NLOG EVENTS.

https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-attr-set.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_tmp_table_size
https://dev.mysql.com/doc/refman/5.7/en/internal-temporary-tables.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html

10

Chapter 5 Restrictions on Subqueries

» In general, you cannot modify a table and select from the same table in a subquery. For example,
this limitation applies to statements of the following forms:

DELETE FROMt VWHERE ... (SELECT ... FROMt ...);
UPDATE t ... WHERE col = (SELECT ... FROMt ...);
{1 NSERT| REPLACE} INTOt (SELECT ... FROMt ...):

Exception: The preceding prohibition does not apply if for the modified table you are using a derived
table and that derived table is materialized rather than merged into the outer query. (See Optimizing
Derived Tables and View References with Merging or Materialization.) Example:

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROMt...) AS dt ...);

Here the result from the derived table is materialized as a temporary table, so the relevant rows in t
have already been selected by the time the update to t takes place.

» Row comparison operations are only partially supported:

e Forexpr [NOT] I N subquery, expr can be an n-tuple (specified using row constructor
syntax) and the subquery can return rows of n-tuples. The permitted syntax is therefore more
specifically expressed as r ow_const ructor [NOT] | N tabl e _subquery

e Forexpr op {ALL|ANY| SOVE} subquery, expr must be a scalar value and the subquery
must be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL| ANY| SOVE} subquery

The reason for supporting row comparisons for | N but not for the others is that | N is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for
ALL, ANY, or SOVE.

e Subqueries in the FROMclause cannot be correlated subqueries. They are materialized in whole
(evaluated to produce a result set) during query execution, so they cannot be evaluated per row of
the outer query. The optimizer delays materialization until the result is needed, which may permit
materialization to be avoided. See Optimizing Derived Tables and View References with Merging or
Materialization.

» MySQL does not support LI M T in subqueries for certain subquery operators:

nysql > SELECT * FROM t 1

WHERE s1 | N (SELECT s2 FROM t2 ORDER BY s1 LIMT 1);
ERROR 1235 (42000): This version of MySQ. doesn't yet support
"LIMT & | N ALL/ ANY/ SOVE subquery’

* MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f () inserts rows, the following query can modify data:

SELECT ... WHERE x IN (SELECT f() ...):

This behavior is an extension to the SQL standard. In MySQL, it can produce nondeterministic
results because f () might be executed a different number of times for different executions of a given
query depending on how the optimizer chooses to handle it.

For statement-based or mixed-format replication, one implication of this indeterminism is that such a
query can produce different results on the source and its replicas.

11

https://dev.mysql.com/doc/refman/5.7/en/derived-table-optimization.html
https://dev.mysql.com/doc/refman/5.7/en/derived-table-optimization.html
https://dev.mysql.com/doc/refman/5.7/en/comparison-operators.html#operator_equal
https://dev.mysql.com/doc/refman/5.7/en/logical-operators.html#operator_and
https://dev.mysql.com/doc/refman/5.7/en/derived-table-optimization.html
https://dev.mysql.com/doc/refman/5.7/en/derived-table-optimization.html

12

Chapter 6 Restrictions on XA Transactions

XA transaction support is limited to the | nnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as
Transaction Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and

the server itself acts as a TM. Internal XA support is limited by the capabilities of individual storage
engines. Internal XA is required for handling XA transactions that involve more than one storage
engine. The implementation of internal XA requires that a storage engine support two-phase commit at
the table handler level, and currently this is true only for | nnoDB.

For XA START, the JO N and RESUVME clauses are recognized but have no effect.
For XA ENDthe SUSPEND [FOR M GRATE] clause is recognized but has no effect.

The requirement that the bqual part of the xi d value be different for each XA transaction within
a global transaction is a limitation of the current MySQL XA implementation. It is not part of the XA
specification.

Prior to MySQL 5.7.7, XA transactions were not compatible with replication. This was because an
XA transaction that was in PREPARED state would be rolled back on clean server shutdown or client
disconnect. Similarly, an XA transaction that was in PREPARED state would still exist in PREPARED
state in case the server was shutdown abnormally and then started again, but the contents of the
transaction could not be written to the binary log. In both of these situations the XA transaction could
not be replicated correctly.

In MySQL 5.7.7 and later, there is a change in behavior and an XA transaction is written to the binary
log in two parts. When XA PREPARE is issued, the first part of the transaction up to XA PREPARE is
written using an initial GTID. A XA _prepare_| og_event is used to identify such transactions in the
binary log. When XA COVM T or XA ROLLBACK is issued, a second part of the transaction containing
only the XA COWM T or XA ROLLBACK statement is written using a second GTID. Note that the initial
part of the transaction, identified by XA prepare_| og_event, is not necessarily followed by its XA
COW T or XA ROLLBACK, which can cause interleaved binary logging of any two XA transactions.
The two parts of the XA transaction can even appear in different binary log files. This means that an
XA transaction in PREPARED state is now persistent until an explicit XA COVM T or XA ROLLBACK
statement is issued, ensuring that XA transactions are compatible with replication.

On a replica, immediately after the XA transaction is prepared, it is detached from the replica applier
thread, and can be committed or rolled back by any thread on the replica. This means that the same
XA transaction can appear in the event s_t ransacti ons_current table with different states on
different threads. The event s_transacti ons_current table displays the current status of the
most recent monitored transaction event on the thread, and does not update this status when the
thread is idle. So the XA transaction can still be displayed in the PREPARED state for the original applier
thread, after it has been processed by another thread. To positively identify XA transactions that are
still in the PREPARED state and need to be recovered, use the XA RECOVER statement rather than the
Performance Schema transaction tables.

The following restrictions exist for using XA transactions in MySQL 5.7.7 and later:

» XA transactions are not fully resilient to an unexpected halt with respect to the binary log. If there is
an unexpected halt while the server is in the middle of executing an XA PREPARE, XA COVM T, XA
ROLLBACK, or XA COM T ... ONE PHASE statement, the server might not be able to recover
to a correct state, leaving the server and the binary log in an inconsistent state. In this situation, the
binary log might either contain extra XA transactions that are not applied, or miss XA transactions
that are applied. Also, if GTIDs are enabled, after recovery @5 OBAL. GTI D_EXECUTED might
not correctly describe the transactions that have been applied. Note that if an unexpected halt
occurs before XA PREPARE, between XA PREPARE and XA COVM T (or XA ROLLBACK), or after
XA COW T (or XA ROLLBACK), the server and binary log are correctly recovered and taken to a
consistent state.

13

https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-events-transactions-current-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-events-transactions-current-table.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html

e The use of replication filters or binary log filters in combination with XA transactions is not

supported. Filtering of tables could cause an XA transaction to be empty on a replica, and empty XA
transactions are not supported. Also, with the settings nast er i nfo_reposi t or y=TABLE and
relay | og info_repository=TABLE on a replica, which became the defaults in MySQL 8.0, the
internal state of the data engine transaction is changed following a filtered XA transaction, and can
become inconsistent with the replication transaction context state.

The error ER_XA REPLI CATI ON_FI LTERS is logged whenever an XA transaction is impacted by a
replication filter, whether or not the transaction was empty as a result. If the transaction is not empty,
the replica is able to continue running, but you should take steps to discontinue the use of replication
filters with XA transactions in order to avoid potential issues. If the transaction is empty, the replica
stops. In that event, the replica might be in an undetermined state in which the consistency of the
replication process might be compromised. In particular, the gt i d_execut ed set on a replica of
the replica might be inconsistent with that on the source. To resolve this situation, isolate the source
and stop all replication, then check GTID consistency across the replication topology. Undo the XA
transaction that generated the error message, then restart replication.

Prior to MySQL 5.7.19, FLUSH TABLES W TH READ LOCK is not compatible with XA transactions.

XA transactions are considered unsafe for statement-based replication. If two XA transactions
committed in parallel on the source are being prepared on the replica in the inverse order, locking
dependencies can occur that cannot be safely resolved, and it is possible for replication to fail with
deadlock on the replica. This situation can occur for a single-threaded or multithreaded replica.
When bi nl og_f or nat =STATEMENT is set, a warning is issued for DML statements inside XA
transactions. When bi nl og_f or mat =M XED or bi nl og_f or nat =ROWis set, DML statements
inside XA transactions are logged using row-based replication, and the potential issue is not present.

14

https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_master_info_repository
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_relay_log_info_repository
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_xa_replication_filters
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#sysvar_binlog_format

Chapter 7 Restrictions on Character Sets

« lIdentifiers are stored in mysql database tables (user, db, and so forth) using ut f 8, but identifiers
can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

 Theucs2,utf 16, utf 16l e, and ut f 32 character sets have the following restrictions:
« None of them can be used as the client character set. See Impermissible Client Character Sets.
« Itis currently not possible to use LOAD DATA to load data files that use these character sets.

« FULLTEXT indexes cannot be created on a column that uses any of these character sets.
However, you can perform | N BOOLEAN MODE searches on the column without an index.

e The use of ENCRYPT() with these character sets is not recommended because the underlying
system call expects a string terminated by a zero byte.

» The REGEXP and RLI KE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

15

https://dev.mysql.com/doc/refman/5.7/en/charset-connection.html#charset-connection-impermissible-client-charset
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/encryption-functions.html#function_encrypt
https://dev.mysql.com/doc/refman/5.7/en/regexp.html#operator_regexp
https://dev.mysql.com/doc/refman/5.7/en/regexp.html#operator_regexp

16

Chapter 8 Restrictions on Performance Schema

The Performance Schema avoids using mutexes to collect or produce data, so there are no guarantees
of consistency and results can sometimes be incorrect. Event values in per f or nence_schena tables

are nondeterministic and nonrepeatable.

If you save event information in another table, you should not assume that the original events are still

available later. For example, if you select events from a per f or mance_schenma table into a temporary

table, intending to join that table with the original table later, there might be no matches.
nysql dunp and BACKUP DATABASE ignore tables in the per f or nance_schena database.

Tables in the per f or mance_schena database cannot be locked with LOCK TABLES, except the
set up_xxx tables.

Tables in the per f or mance_schena database cannot be indexed.

Results for queries that refer to tables in the per f or mance_schena database are not saved in the
guery cache.

Tables in the per f or mance_schena database are not replicated.
The Performance Schema is not available in | i brmysql d, the embedded server.

The types of timers might vary per platform. The per f or rance_t i ner s table shows which event
timers are available. If the values in this table for a given timer name are NULL, that timer is not
supported on your platform.

Instruments that apply to storage engines might not be implemented for all storage engines.
Instrumentation of each third-party engine is the responsibility of the engine maintainer.

17

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-performance-timers-table.html

18

Chapter 9 Restrictions on Pluggable Authentication

The first part of this section describes general restrictions on the applicability of the pluggable
authentication framework described at Pluggable Authentication. The second part describes how third-
party connector developers can determine the extent to which a connector can take advantage of
pluggable authentication capabilities and what steps to take to become more compliant.

The term “native authentication” used here refers to authentication against passwords stored in

the nysql . user system table. This is the same authentication method provided by older MySQL
servers, before pluggable authentication was implemented. “Windows native authentication” refers to
authentication using the credentials of a user who has already logged in to Windows, as implemented
by the Windows Native Authentication plugin (“Windows plugin” for short).

» General Pluggable Authentication Restrictions

» Pluggable Authentication and Third-Party Connectors

General Pluggable Authentication Restrictions

» Connector/C++: Clients that use this connector can connect to the server only through accounts that
use native authentication.

Exception: A connector supports pluggable authentication if it was built to link to | i bnysqgl cl i ent
dynamically (rather than statically) and it loads the current version of | i brysql cl i ent if that
version is installed, or if the connector is recompiled from source to link against the current

i brmysqglclient.

e Connector/NET: Clients that use Connector/NET can connect to the server through accounts that
use native authentication or Windows native authentication.

» Connector/PHP: Clients that use this connector can connect to the server only through accounts
that use native authentication, when compiled using the MySQL native driver for PHP (mysqgl nd).

* Windows native authentication: Connecting through an account that uses the Windows plugin
requires Windows Domain setup. Without it, NTLM authentication is used and then only local
connections are possible; that is, the client and server must run on the same computer.

» Proxy users: Proxy user support is available to the extent that clients can connect through accounts
authenticated with plugins that implement proxy user capability (that is, plugins that can return a
user name different from that of the connecting user). For example, the PAM and Windows plugins
support proxy users. The mysqgl _nati ve_password and sha256_passwor d authentication
plugins do not support proxy users by default, but can be configured to do so; see Server Support for
Proxy User Mapping.

» Replication: Replicas can employ not only source accounts using native authentication, but can
also connect through source accounts that use nonnative authentication if the required client-side
plugin is available. If the plugin is builtinto | i brmysql cl i ent, it is available by default. Otherwise,
the plugin must be installed on the replica side in the directory named by the replica pl ugi n_di r
system variable.

» FEDERATED tables: A FEDERATED table can access the remote table only through accounts on the
remote server that use native authentication.

Pluggable Authentication and Third-Party Connectors

Third-party connector developers can use the following guidelines to determine readiness of a
connector to take advantage of pluggable authentication capabilities and what steps to take to become
more compliant:

» An existing connector to which no changes have been made uses native authentication and
clients that use the connector can connect to the server only through accounts that use native

19

https://dev.mysql.com/doc/refman/5.7/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/5.7/en/proxy-users.html#proxy-users-server-user-mapping
https://dev.mysql.com/doc/refman/5.7/en/proxy-users.html#proxy-users-server-user-mapping
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/5.7/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/federated-storage-engine.html

Pluggable Authentication and Third-Party Connectors

authentication. However, you should test the connector against a recent version of the server to
verify that such connections still work without problem.

Exception: A connector might work with pluggable authentication without any changes if it links
toli bnysql cl i ent dynamically (rather than statically) and it loads the current version of
I'i bmysqgl cl i ent if that version is installed.

To take advantage of pluggable authentication capabilities, a connector thatis | i brmysql cl i ent -
based should be relinked against the current version of | i bnysql cl i ent . This enables the
connector to support connections though accounts that require client-side plugins now built into

i bmysgl cli ent (such as the cleartext plugin needed for PAM authentication and the Windows
plugin needed for Windows native authentication). Linking with a current | i brmysqgl cl i ent also
enables the connector to access client-side plugins installed in the default MySQL plugin directory
(typically the directory named by the default value of the local server's pl ugi n_di r system
variable).

If a connector links to | i brrysql ¢l i ent dynamically, it must be ensured that the newer version of
I'i bmysgl cli ent isinstalled on the client host and that the connector loads it at runtime.

Another way for a connector to support a given authentication method is to implement it directly in
the client/server protocol. Connector/NET uses this approach to provide support for Windows native
authentication.

If a connector should be able to load client-side plugins from a directory different from the default
plugin directory, it must implement some means for client users to specify the directory. Possibilities
for this include a command-line option or environment variable from which the connector can obtain
the directory name. Standard MySQL client programs such as nysql and nmysql adni n implement a
- - pl ugi n-di r option. See also C API Client Plugin Interface.

Proxy user support by a connector depends, as described earlier in this section, on whether the
authentication methods that it supports permit proxy users.

20

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/c-api/5.7/en/c-api-plugin-interface.html

Chapter 10 Restrictions and Limitations on Partitioning

Table of Contents

10.1 Partitioning Keys, Primary Keys, and Unique KEYSiviiiiiiiiiiiiiiiieeciii e 27
10.2 Partitioning Limitations Relating to Storage ENQINEScoouuiiiiiiiiiiiiii e 31
10.3 Partitioning Limitations Relating to FUNCLONSiiiiiiiiiiiii e 32
10.4 Partitioning and LOCKINGcccuuuieiiiiii ettt e e e et e e e e e e eaaes 33

This section discusses current restrictions and limitations on MySQL partitioning support.
Prohibited constructs. The following constructs are not permitted in partitioning expressions:
» Stored procedures, stored functions, loadable functions, or plugins.

» Declared variables or user variables.

For a list of SQL functions which are permitted in partitioning expressions, see Section 10.3,
“Partitioning Limitations Relating to Functions”.

Arithmetic and logical operators. Use of the arithmetic operators +, - , and * is permitted in
partitioning expressions. However, the result must be an integer value or NULL (except in the case of
[LI NEAR] KEY partitioning, as discussed elsewhere in this chapter; see Partitioning Types, for more
information).

The DI V operator is also supported, and the / operator is not permitted. (Bug #30188, Bug #33182)
The bit operators | , & ", <<, >>, and ~ are not permitted in partitioning expressions.

HANDLER statements. Previously, the HANDLER statement was not supported with partitioned
tables. This limitation is removed beginning with MySQL 5.7.1.

Server SQL mode. Tables employing user-defined partitioning do not preserve the SQL mode

in effect at the time that they were created. As discussed in Server SQL Modes, the results of many
MySQL functions and operators may change according to the server SQL mode. Therefore, a change
in the SQL mode at any time after the creation of partitioned tables may lead to major changes in the
behavior of such tables, and could easily lead to corruption or loss of data. For these reasons, it is
strongly recommended that you never change the server SQL mode after creating partitioned tables.

Examples. The following examples illustrate some changes in behavior of partitioned tables due to
a change in the server SQL mode:

1. Error handling. Suppose that you create a partitioned table whose partitioning expression is
one such as col utm DIV 0 or col utm MOD 0, as shown here:

nysql > CREATE TABLE tn (cl INT)

o> PARTI TION BY LIST(1 DIV c1) (
o> PARTI TI ON pO VALUES | N (NULL),
o> PARTI TI ON p1 VALUES I N (1)

_>);
Query OK, 0 rows affected (0.05 sec)

The default behavior for MySQL is to return NULL for the result of a division by zero, without
producing any errors:

mysql > SELECT @®ql _node;

fiecccccccc==o +
| @gl _node |
fiecccccccc==o +
| |
fiecccccccc==o +

21

https://dev.mysql.com/doc/refman/5.7/en/arithmetic-functions.html#operator_plus
https://dev.mysql.com/doc/refman/5.7/en/arithmetic-functions.html#operator_minus
https://dev.mysql.com/doc/refman/5.7/en/arithmetic-functions.html#operator_times
https://dev.mysql.com/doc/refman/5.7/en/partitioning-types.html
https://dev.mysql.com/doc/refman/5.7/en/arithmetic-functions.html#operator_div
https://dev.mysql.com/doc/refman/5.7/en/arithmetic-functions.html#operator_divide
https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html#operator_bitwise-or
https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html#operator_bitwise-and
https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html#operator_bitwise-xor
https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html#operator_left-shift
https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html#operator_right-shift
https://dev.mysql.com/doc/refman/5.7/en/bit-functions.html#operator_bitwise-invert
https://dev.mysql.com/doc/refman/5.7/en/handler.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html

1 rowin set (0.00 sec)

nmysql > I NSERT I NTO tn VALUES (NULL), (0), (1);
Query OK, 3 rows affected (0.00 sec)

Records: 3 Duplicates: 0 Warnings: O

However, changing the server SQL mode to treat division by zero as an error and to enforce strict
error handling causes the same | NSERT statement to fail, as shown here:

nysql > SET sql _node=" STRI CT_ALL_TABLES, ERROR_FOR DI VI S| ON_BY_ZERO ;
Query OK, O rows affected (0.00 sec)

nmysql > I NSERT I NTO tn VALUES (NULL), (0), (1);

ERROR 1365 (22012): Division by O

2. Table accessibility. Sometimes a change in the server SQL mode can make partitioned tables
unusable. The following CREATE TABLE statement can be executed successfully only if the
NO_UNSI GNED_SUBTRACTI ON mode is in effect:

mysql > SELECT @®ql _node;

doccccccccocc +
| @®ql _node |
doccccccccocc +
| |
doccccccccocc +

1 rowin set (0.00 sec)
nmysql > CREATE TABLE tu (cl1 Bl G NT UNSI GNED)
-> PARTITION BY RANGE(c1 - 10) (

-> PARTI TI ON pO VALUES LESS THAN (-5),

-> PARTI TI ON pl VALUES LESS THAN (0),

-> PARTI TI ON p2 VALUES LESS THAN (5),

-> PARTI TI ON p3 VALUES LESS THAN (10),

-> PARTI TI ON p4 VALUES LESS THAN (MAXVALUE)
->);

ERROR 1563 (HYO00): Partition constant is out of partition function domain
nysql > SET sqgl _npde=" NO UNSI GNED_SUBTRACTI ON ;

Query OK, 0 rows affected (0.00 sec)

nysql > SELECT @@ql _node;

Fem e e eemeeaaaaaa +
| @®ql _node |
Fem e e eemeeaaaaaa +
| NO_UNSI GNED_SUBTRACTI ON |
Fem e e eemeeaaaaaa +

1 rowin set (0.00 sec)
nmysql > CREATE TABLE tu (cl1 Bl G NT UNSI GNED)
-> PARTITION BY RANGE(c1 - 10) (

-> PARTI TI ON pO VALUES LESS THAN (-5),

-> PARTI TI ON pl VALUES LESS THAN (0),

-> PARTI TI ON p2 VALUES LESS THAN (5),

-> PARTI TI ON p3 VALUES LESS THAN (10),

-> PARTI TI ON p4 VALUES LESS THAN (MAXVALUE)
->);

Query OK, 0 rows affected (0.05 sec)

If you remove the NO_UNS|I GNED SUBTRACTI ON server SQL mode after creating t u, you may no
longer be able to access this table:

nysqgl > SET sql _node="";

Query OK, 0 rows affected (0.00 sec)

nysql > SELECT * FROM t u;

ERROR 1563 (HYO00): Partition constant is out of partition function domain
nysql > | NSERT | NTO tu VALUES (20);

ERROR 1563 (HYO00): Partition constant is out of partition function domain

See also Server SQL Modes.

Server SQL modes also impact replication of partitioned tables. Disparate SQL modes on source and
replica can lead to partitioning expressions being evaluated differently; this can cause the distribution of
data among partitions to be different in the source's and replica's copies of a given table, and may even
cause inserts into partitioned tables that succeed on the source to fail on the replica. For best results,
you should always use the same server SQL mode on the source and on the replica.

22

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_no_unsigned_subtraction
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html#sqlmode_no_unsigned_subtraction
https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html

Performance considerations. Some effects of partitioning operations on performance are given in
the following list:

» File system operations. Partitioning and repartitioning operations (such as ALTER TABLE
with PARTI TI ON BY ..., REORGANI ZE PARTI Tl ON, or REMOVE PARTI TI ONI NG) depend on
file system operations for their implementation. This means that the speed of these operations
is affected by such factors as file system type and characteristics, disk speed, swap space, file
handling efficiency of the operating system, and MySQL server options and variables that relate
to file handling. In particular, you should make sure that | ar ge_fi | es_support is enabled
and that open_files |imt issetproperly. For partitioned tables using the Myl SAMstorage
engine, increasing nyi sam max_sort _fil e_si ze may improve performance; partitioning
and repartitioning operations involving | nnoDB tables may be made more efficient by enabling
i nnodb_file_per_table.

See also Maximum number of partitions.

* MyISAM and partition file descriptor usage.
For a partitioned Myl SAMtable, MySQL uses 2 file descriptors for each partition, for each such
table that is open. This means that you need many more file descriptors to perform operations on
a partitioned My| SAMtable than on a table which is identical to it except that the latter table is not
partitioned, particularly when performing ALTER TABLE operations.

Assume a Myl SAMtable t with 100 partitions, such as the table created by this SQL statement:

CREATE TABLE t (cl VARCHAR(50))
PARTI TI ON BY KEY (cl) PARTITI ONS 100
ENGI NE=MYl SAM

Note

For brevity, we use KEY partitioning for the table shown in this example, but
file descriptor usage as described here applies to all partitioned Myl SAM
tables, regardless of the type of partitioning that is employed. Partitioned
tables using other storage engines such as | nnoDB are not affected by this
issue.

Now assume that you wish to repartition t so that it has 101 partitions, using the statement shown
here:

ALTER TABLE t PARTI TI ON BY KEY (cl) PARTI TI ONS 101;

To process this ALTER TABLE statement, MySQL uses 402 file descriptors—that is, two for
each of the 100 original partitions, plus two for each of the 101 new partitions. This is because all
partitions (old and new) must be opened concurrently during the reorganization of the table data.
It is recommended that, if you expect to perform such operations, you should make sure that the
open_files_limt system variable is not set too low to accommodate them.

» Tablelocks. Generally, the process executing a partitioning operation on a table takes a write
lock on the table. Reads from such tables are relatively unaffected; pending | NSERT and UPDATE
operations are performed as soon as the partitioning operation has completed. For | nnoDB-specific
exceptions to this limitation, see Partitioning Operations.

» Storage engine. Partitioning operations, queries, and update operations generally tend to be
faster with Myl SAMtables than with | nnoDB or NDB tables.

* Indexes; partition pruning. As with nonpartitioned tables, proper use of indexes can speed
up queries on partitioned tables significantly. In addition, designing partitioned tables and queries
on these tables to take advantage of partition pruning can improve performance dramatically. See
Partition Pruning, for more information.

Previously, index condition pushdown was not supported for partitioned tables. This limitation was
removed in MySQL 5.7.3. See Index Condition Pushdown Optimization.

23

https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_large_files_support
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_open_files_limit
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_myisam_max_sort_file_size
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_open_files_limit
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-online-ddl-operations.html#online-ddl-partitioning
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-pruning.html
https://dev.mysql.com/doc/refman/5.7/en/index-condition-pushdown-optimization.html

e Performance with LOAD DATA. In MySQL 5.7, LOAD DATA uses buffering to improve
performance. You should be aware that the buffer uses 130 KB memory per partition to achieve this.

Maximum number of partitions.
The maximum possible number of partitions for a given table not using the NDB storage engine is 8192.
This number includes subpartitions.

The maximum possible number of user-defined partitions for a table using the NDB storage engine
is determined according to the version of the NDB Cluster software being used, the number of data
nodes, and other factors. See NDB and user-defined partitioning, for more information.

If, when creating tables with a large number of partitions (but less than the maximum), you encounter
an error message suchas Got error ... fromstorage engine: Qut of resources
when opening fil e, youmay be able to address the issue by increasing the value of the
open_files_ |imt system variable. However, this is dependent on the operating system, and
may not be possible or advisable on all platforms; see File Not Found and Similar Errors, for more
information. In some cases, using large numbers (hundreds) of partitions may also not be advisable
due to other concerns, so using more partitions does not automatically lead to better results.

See also File system operations.

Query cache not supported.
The query cache is not supported for partitioned tables, and is automatically disabled for queries
involving partitioned tables. The query cache cannot be enabled for such queries.

Per-partition key caches.

In MySQL 5.7, key caches are supported for partitioned Myl SAMtables, using the CACHE | NDEX and
LOAD | NDEX | NTO CACHE statements. Key caches may be defined for one, several, or all partitions,
and indexes for one, several, or all partitions may be preloaded into key caches.

Foreign keys not supported for partitioned InnoDB tables.
Partitioned tables using the | nnoDB storage engine do not support foreign keys. More specifically, this
means that the following two statements are true:

1. No definition of an | nnoDB table employing user-defined partitioning may contain foreign key
references; no | nnoDB table whose definition contains foreign key references may be partitioned.

2. No | nnoDB table definition may contain a foreign key reference to a user-partitioned table; no
| nnoDB table with user-defined partitioning may contain columns referenced by foreign keys.

The scope of the restrictions just listed includes all tables that use the | nnoDB storage engine. CREATE
TABLE and ALTER TABLE statements that would result in tables violating these restrictions are not
allowed.

ALTER TABLE ... ORDER BY. AnALTER TABLE ... ORDER BY col unm statement run against
a partitioned table causes ordering of rows only within each partition.

Effects on REPLACE statements by modification of primary keys. It can be desirable in some
cases (see Section 10.1, “Partitioning Keys, Primary Keys, and Unique Keys”) to modify a table's
primary key. Be aware that, if your application uses REPLACE statements and you do this, the results
of these statements can be drastically altered. See REPLACE Statement, for more information and an
example.

FULLTEXT indexes.
Partitioned tables do not support FULLTEXT indexes or searches, even for partitioned tables employing
the | nnoDB or Myl SAMstorage engine.

Spatial columns. Columns with spatial data types such as PO NT or GEOVETRY cannot be used in
partitioned tables.

Temporary tables.
Temporary tables cannot be partitioned. (Bug #17497)

24

https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-nodes-groups.html#mysql-cluster-nodes-groups-user-partitioning
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_open_files_limit
https://dev.mysql.com/doc/refman/5.7/en/not-enough-file-handles.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/cache-index.html
https://dev.mysql.com/doc/refman/5.7/en/load-index.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html

Log tables. Itis not possible to partition the log tables; an ALTER TABLE ... PARTI TI ON
BY ... statement on such a table fails with an error.

Data type of partitioning key.

A partitioning key must be either an integer column or an expression that resolves to an integer.
Expressions employing ENUMcolumns cannot be used. The column or expression value may also be
NULL. (See How MySQL Partitioning Handles NULL.)

There are two exceptions to this restriction:

1. When partitioning by [L1 NEAR] KEY, it is possible to use columns of any valid MySQL data type
other than TEXT or BLOB as partitioning keys, because MySQL's internal key-hashing functions
produce the correct data type from these types. For example, the following two CREATE TABLE
statements are valid:

CREATE TABLE tkc (cl CHAR)
PARTI TI ON BY KEY(c1)

PARTI TI ONS 4;
CREATE TABLE t ke
(cl ENUM'red', 'orange', 'yellow, 'green', 'blue', 'indigo', 'violet'))
PARTI TI ON BY LI NEAR KEY(c1l)
PARTI Tl ONS 6;

2. When partitioning by RANGE COLUWMNS or LI ST COLUMWMNS, it is possible to use string, DATE, and
DATETI ME columns. For example, each of the following CREATE TABLE statements is valid:

CREATE TABLE rc (cl INT, c2 DATE)

PARTI TI ON BY RANGE COLUMNS(c2) (
PARTI TI ON pO VALUES LESS THAN(' 1990-01-01")
PARTI TI ON pl1 VALUES LESS THAN(' 1995-01-01")
PARTI TI ON p2 VALUES LESS THAN(' 2000-01-01'),
PARTI TI ON p3 VALUES LESS THAN(' 2005-01-01")
PARTI TI ON p4 VALUES LESS THAN(MAXVALUE)

)5
CREATE TABLE | c (cl INT, c2 CHAR(1))
PARTI TI ON BY LI ST COLUMNS(c2) (

PARTI TION pO VALUES IN('a', 'd', 'g", 'j', 'm, 'p', 's' v,y
PARTI TION pl1 VALUES IN('b', ‘e, 'h', 'k', 'n'", 'q, 't' w, 'z'),
PARTI TION p2 VALUES IN('c', "f', "i', 'I', "o, 'r', 'u, 'x', NULL)

)5
Neither of the preceding exceptions applies to BLOB or TEXT column types.

Subqueries.

A partitioning key may not be a subquery, even if that subquery resolves to an integer value or NULL.

Column index prefixes not supported for key partitioning. When creating a table that is
partitioned by key, any columns in the partitioning key which use column prefixes are not used in
the table's partitioning function. Consider the following CREATE TABLE statement, which has three
VARCHAR columns, and whose primary key uses all three columns and specifies prefixes for two of
them:

CREATE TABLE t1 (
a VARCHAR(10000),
b VARCHAR(25),
¢ VARCHAR(10),
PRI MARY KEY (a(10), b, c(2))
) PARTI TI ON BY KEY() PARTITIONS 2;

This statement is accepted, but the resulting table is actually created as if you had issued the following

statement, using only the primary key column which does not include a prefix (column b) for the
partitioning key:

CREATE TABLE t1 (
a VARCHAR(10000),
b VARCHAR(25),
¢ VARCHAR(10),

25

https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-handling-nulls.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/char.html

PRI MARY KEY (a(10), b, c(2))
) PARTI TI ON BY KEY(b) PARTI TI ONS 2;

No warning is issued or any other indication provided that this has occurred, except in the event that all
columns specified for the partitioning key use prefixes, in which case the statement fails with the error
message shown here:

nysql > CREATE TABLE t2 (

o> a VARCHAR(10000) ,

-> b VARCHAR(25),

-> ¢ VARCHAR(10),

-> PRI MARY KEY (a(10), b(5), c(2))

->) PARTITION BY KEY() PARTITIONS 2;
ERROR 1503 (HY000): A PRI MARY KEY nust include all colums in the
table's partitioning function

This also occurs when altering or upgrading such tables, and includes cases in which the columns
used in the partitioning function are defined implicitly as those in the table's primary key by employing
an empty PARTI TI ON BY KEY() clause.

This is a known issue which is addressed in MySQL 8.0 by deprecating the permissive behavior; in
MYSQL 8.0, if any columns using prefixes are included in a table's partitioning function, the server logs
an appropriate warning for each such column, or raises a descriptive error if necessary. (Allowing the
use of columns with prefixes in partitioning keys is subject to removal altogether in a future version of

MySQL.)
For general information about partitioning tables by key, see KEY Partitioning.

Issues with subpartitions.
Subpartitions must use HASH or KEY partitioning. Only RANGE and LI ST partitions may be
subpartitioned; HASH and KEY partitions cannot be subpartitioned.

SUBPARTI TI ON BY KEY requires that the subpartitioning column or columns be specified explicitly,
unlike the case with PARTI TI ON BY KEY, where it can be omitted (in which case the table's primary
key column is used by default). Consider the table created by this statement:

CREATE TABLE ts (
id INT NOT NULL AUTO_| NCREMENT PRI MARY KEY,
nane VARCHAR(30)

)

You can create a table having the same columns, partitioned by KEY, using a statement such as this
one:

CREATE TABLE ts (
id INT NOT NULL AUTO_| NCREMENT PRI MARY KEY,
nane VARCHAR(30)

)
PARTI TI ON BY KEY()

PARTI TI ONS 4;

The previous statement is treated as though it had been written like this, with the table's primary key
column used as the partitioning column:

CREATE TABLE ts (
id INT NOT NULL AUTO_ | NCREMENT PRI MARY KEY,
name VARCHAR(30)

)
PARTI TI ON BY KEY(i d)

PARTI TI ONS 4;

However, the following statement that attempts to create a subpartitioned table using the default
column as the subpartitioning column fails, and the column must be specified for the statement to
succeed, as shown here:

nmysql > CREATE TABLE ts (

26

https://dev.mysql.com/doc/refman/5.7/en/partitioning-key.html

Partitioning Keys, Primary Keys, and Unique Keys

-> id INT NOT NULL AUTO_| NCREMENT PRI MARY KEY,
-> nanme VARCHAR(30)

->)

-> PARTI TI ON BY RANGE(d)

-> SUBPARTI TI ON BY KEY()

-> SUBPARTI Tl ONS 4

-> (

-> PARTI TI ON pO VALUES LESS THAN (100),

-> PARTI TI ON p1 VALUES LESS THAN (MAXVALUE)
->) ;

ERROR 1064 (42000): You have an error in your SQ syntax; check the manual that
corresponds to your MySQ. server version for the right syntax to use near ')
nmysql > CREATE TABLE ts (

-> id INT NOT NULL AUTO_| NCREMENT PRI MARY KEY,
-> nane VARCHAR(30)
->)

-> PARTI TI ON BY RANGE(d)
-> SUBPARTI TI ON BY KEY(i d)
-> SUBPARTI Tl ONS 4

-> (

-> PARTI TI ON pO VALUES LESS THAN (100),

-> PARTI TI ON p1 VALUES LESS THAN (MAXVALUE)
->) ;

Query OK, O rows affected (0.07 sec)
This is a known issue (see Bug #51470).

DATA DIRECTORY and INDEX DIRECTORY options. DATA DI RECTORY and | NDEX
DI RECTORY are subject to the following restrictions when used with partitioned tables:

» Table-level DATA DI RECTORY and | NDEX DI RECTCORY options are ignored (see Bug #32091).

* On Windows, the DATA DI RECTORY and | NDEX DI RECTORY options are not supported for
individual partitions or subpatrtitions of Myl SAMtables. However, you can use DATA DI RECTORY for
individual partitions or subpatrtitions of | nnoDB tables.

Repairing and rebuilding partitioned tables. The statements CHECK TABLE, OPTI M ZE TABLE,
ANALYZE TABLE, and REPAI R TABLE are supported for partitioned tables.

In addition, you can use ALTER TABLE ... REBUI LD PARTI Tl ONto rebuild one or more partitions
of a partitioned table; ALTER TABLE ... RECRGANI ZE PARTI Tl ON also causes partitions to be
rebuilt. See ALTER TABLE Statement, for more information about these two statements.

Starting in MySQL 5.7.2, ANALYZE, CHECK, OPTI M ZE, REPAI R, and TRUNCATE operations are
supported with subpartitions. REBUI LD was also accepted syntax prior to MySQL 5.7.5, although this
had no effect. (Bug #19075411, Bug #73130) See also ALTER TABLE Partition Operations.

nysql check, nmyi santhk, and nyi sanpack are not supported with partitioned tables.

FOR EXPORT option (FLUSH TABLES). The FLUSH TABLES statement's FOR EXPORT option is
not supported for partitioned | nnoDB tables in MySQL 5.7.4 and earlier. (Bug #16943907)

File name delimiters for partitions and subpartitions. Table partition and subpartition file names
include generated delimiters such as #P# and #SP#. The lettercase of such delimiters can vary and
should not be depended upon.

10.1 Partitioning Keys, Primary Keys, and Unique Keys

This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule
governing this relationship can be expressed as follows: All columns used in the partitioning expression
for a partitioned table must be part of every unique key that the table may have.

In other words, every unigue key on the table must use every column in the table's partitioning
expression. (This also includes the table's primary key, since it is by definition a unique key. This
particular case is discussed later in this section.) For example, each of the following table creation
statements is invalid:

27

https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/check-table.html
https://dev.mysql.com/doc/refman/5.7/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.7/en/analyze-table.html
https://dev.mysql.com/doc/refman/5.7/en/repair-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-for-export-with-list

Partitioning Keys, Primary Keys, and Unique Keys

CREATE TABLE t1 (

col 1 I NT NOT NULL,

col 2 DATE NOT NULL,

col 3 INT NOT NULL,

col 4 I NT NOT NULL,

UNI QUE KEY (col 1, col 2)
)
PARTI TI ON BY HASH(col 3)
PARTI TI ONS 4;
CREATE TABLE t2 (

col 1 I NT NOT NULL,

col 2 DATE NOT NULL,

col 3 INT NOT NULL,

col 4 I NT NOT NULL,

UNI QUE KEY (col 1),

UNI QUE KEY (col 3)
)
PARTI TI ON BY HASH(col 1 + col 3)
PARTI TI ONS 4;

In each case, the proposed table would have at least one unique key that does not include all columns
used in the partitioning expression.

Each of the following statements is valid, and represents one way in which the corresponding invalid
table creation statement could be made to work:

CREATE TABLE t1 (
col 1 INT NOT NULL,
col 2 DATE NOT NULL,
col 3 INT NOT NULL,
col 4 I NT NOT NULL,
UNI QUE KEY (col 1, col 2, col 3)

)
PARTI TI ON BY HASH(col 3)
PARTI TI ONS 4;
CREATE TABLE t2 (
col 1 INT NOT NULL,
col 2 DATE NOT NULL,
col 3 INT NOT NULL,
col 4 I NT NOT NULL,
UNI QUE KEY (col 1, col 3)

)
PARTI TI ON BY HASH(col 1 + col 3)
PARTI TI ONS 4;

This example shows the error produced in such cases:

nysql > CREATE TABLE t3 (

-> col 1 I NT NOT NULL,

-> col 2 DATE NOT NULL,

-> col 3 I NT NOT NULL,

-> col 4 | NT NOT NULL,

-> UNI QUE KEY (col 1, col 2),
-> UNI QUE KEY (col 3)

->)

-> PARTI TI ON BY HASH(col 1 + col 3)
-> PARTI TI ONS 4;
ERROR 1491 (HY000): A PRI MARY KEY nust include all colums in the table's partitioning function

The CREATE TABLE statement fails because both col 1 and col 3 are included in the proposed
partitioning key, but neither of these columns is part of both of unique keys on the table. This shows
one possible fix for the invalid table definition:

nysql > CREATE TABLE t3 (

-> col 1 I NT NOT NULL,

-> col 2 DATE NOT NULL,

-> col 3 I NT NOT NULL,

-> col 4 I NT NOT NULL,

-> UNI QUE KEY (col 1, col 2, col 3),
-> UNI QUE KEY (col 3)

28

https://dev.mysql.com/doc/refman/5.7/en/create-table.html

Partitioning Keys, Primary Keys, and Unique Keys

->)
-> PARTI TI ON BY HASH(col 3)
-> PARTI TI ONS 4;
Query OK, O rows affected (0.05 sec)

In this case, the proposed partitioning key col 3 is part of both unique keys, and the table creation
statement succeeds.

The following table cannot be partitioned at all, because there is no way to include in a partitioning key
any columns that belong to both unique keys:

CREATE TABLE t4 (

col 1 | NT NOT NULL,

col 2 | NT NOT NULL,

col 3 | NT NOT NULL,

col 4 | NT NOT NULL,

UNI QUE KEY (col 1, col 3),

UNI QUE KEY (col 2, col 4)
)

Since every primary key is by definition a unique key, this restriction also includes the table's primary
key, if it has one. For example, the next two statements are invalid:

CREATE TABLE t5 (
col 1 | NT NOT NULL,
col 2 DATE NOT NULL,
col 3 | NT NOT NULL,
col 4 | NT NOT NULL,
PRI MARY KEY(col 1, col 2)
)
PARTI TI ON BY HASH(col 3)
PARTI TI ONS 4;
CREATE TABLE t6 (
col 1 | NT NOT NULL,
col 2 DATE NOT NULL,
col 3 | NT NOT NULL,
col 4 | NT NOT NULL,
PRI MARY KEY(col 1, col 3),
UNI QUE KEY(col 2)
)
PARTI TI ON BY HASH(YEAR(col 2))
PARTI TI ONS 4;

In both cases, the primary key does not include all columns referenced in the partitioning expression.
However, both of the next two statements are valid:

CREATE TABLE t7 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 INT NOT NULL,
col 4 I NT NOT NULL,
PRI MARY KEY(col 1, col 2)
)
PARTI TI ON BY HASH(col 1 + YEAR(col 2))
PARTI TI ONS 4;
CREATE TABLE t8 (
col 1 I NT NOT NULL,
col 2 DATE NOT NULL,
col 3 INT NOT NULL,
col 4 I NT NOT NULL,
PRI MARY KEY(col 1, col 2, col 4),
UNI QUE KEY(col 2, col 1)
)
PARTI TI ON BY HASH(col 1 + YEAR(col 2))
PARTI TI ONS 4;

If a table has no unique keys—this includes having no primary key—then this restriction does not
apply, and you may use any column or columns in the partitioning expression as long as the column
type is compatible with the partitioning type.

29

Partitioning Keys, Primary Keys, and Unique Keys

For the same reason, you cannot later add a unique key to a partitioned table unless the key includes
all columns used by the table's partitioning expression. Consider the partitioned table created as shown
here:

nmysql > CREATE TABLE t_no_pk (cl INT, c2 |NT)

o> PARTI TI ON BY RANGE(c1) (

o> PARTI TI ON pO VALUES LESS THAN (10),
o> PARTI TI ON p1 VALUES LESS THAN (20),
o> PARTI TI ON p2 VALUES LESS THAN (30),
o> PARTI TI ON p3 VALUES LESS THAN (40)

Query OK, 0 rows affected (0.12 sec)

It is possible to add a primary key tot _no_pk using either of these ALTER TABLE statements:

possible PK

nysql > ALTER TABLE t _no_pk ADD PRI MARY KEY(c1l);
Query OK, 0 rows affected (0.13 sec)

Records: O Duplicates: 0 Warnings: O

drop this PK

nmysqgl > ALTER TABLE t_no_pk DROP PRI MARY KEY;
Query OK, 0 rows affected (0.10 sec)

Records: O Duplicates: 0 Wrnings: O

use anot her possible PK

nmysql > ALTER TABLE t_no_pk ADD PRI MARY KEY(cl, c2);
Query OK, 0 rows affected (0.12 sec)

Records: O Duplicates: 0 Warnings: O

drop this PK

nmysqgl > ALTER TABLE t_no_pk DROP PRI MARY KEY;
Query OK, 0 rows affected (0.09 sec)

Records: O Duplicates: 0 Warnings: O

However, the next statement fails, because c1 is part of the partitioning key, but is not part of the
proposed primary key:
fails with error 1503

mysql > ALTER TABLE t_no_pk ADD PRI MARY KEY(c2);
ERROR 1503 (HY000): A PRI MARY KEY nust include all colums in the table's partitioning function

Sincet _no_pk has only c1 in its partitioning expression, attempting to adding a unique key on c2
alone fails. However, you can add a unique key that uses both c1 and c2.

These rules also apply to existing nonpartitioned tables that you wish to partition using ALTER

TABLE ... PARTI TI ON BY. Consider a table np_pk created as shown here:
nmysql > CREATE TABLE np_pk (

-> id INT NOT NULL AUTO | NCREMENT,

-> name VARCHAR(50),

-> added DATE,

-> PRI MARY KEY (i d)

-~) :

Query OK, 0 rows affected (0.08 sec)

The following ALTER TABLE statement fails with an error, because the added column is not part of
any unique key in the table:

mysql > ALTER TABLE np_pk
-> PARTI TI ON BY HASH(TO _DAYS(added))
-> PARTI TI ONS 4;
ERROR 1503 (HY000): A PRI MARY KEY nust include all colums in the table's partitioning function

However, this statement using the i d column for the partitioning column is valid, as shown here:

mysql > ALTER TABLE np_pk

-> PARTI TI ON BY HASH(i d)

-> PARTI TI ONS 4;
Query OK, 0 rows affected (0.11 sec)
Records: O Duplicates: 0 Warnings: O

30

https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html

Partitioning Limitations Relating to Storage Engines

In the case of np_pk, the only column that may be used as part of a partitioning expression is i d; if
you wish to partition this table using any other column or columns in the partitioning expression, you
must first modify the table, either by adding the desired column or columns to the primary key, or by
dropping the primary key altogether.

10.2 Partitioning Limitations Relating to Storage Engines

The following limitations apply to the use of storage engines with user-defined partitioning of tables.

MERGE storage engine. User-defined partitioning and the MERGE storage engine are not
compatible. Tables using the VERGE storage engine cannot be partitioned. Partitioned tables cannot be
merged.

FEDERATED storage engine. Partitioning of FEDERATED tables is not supported; it is not possible
to create partitioned FEDERATED tables.

CSV storage engine. Partitioned tables using the CSV storage engine are not supported,; it is not
possible to create partitioned CSV tables.

InnoDB storage engine. | nnoDB foreign keys and MySQL partitioning are not compatible.
Partitioned | nnoDB tables cannot have foreign key references, nor can they have columns referenced
by foreign keys. | nnoDB tables which have or which are referenced by foreign keys cannot be
partitioned.

I nnoDB does not support the use of multiple disks for subpartitions. (This is currently supported only
by Myl SAM)

In addition, ALTER TABLE ... OPTI M ZE PARTI TI ON does not work correctly with partitioned
tables that use the | nnoDB storage engine. Use ALTER TABLE ... REBUI LD PARTI Tl ONand
ALTER TABLE ... ANALYZE PARTI Tl QN, instead, for such tables. For more information, see
ALTER TABLE Partition Operations.

User-defined partitioning and the NDB storage engine (NDB Cluster). Partitioning by KEY
(including LI NEAR KEY) is the only type of partitioning supported for the NDB storage engine. It is
not possible under normal circumstances in NDB Cluster to create an NDB Cluster table using any
partitioning type other than [L1 NEAR] KEY, and attempting to do so fails with an error.

Exception (not for production): It is possible to override this restriction by setting the new system
variable on NDB Cluster SQL nodes to ON. If you choose to do this, you should be aware that tables
using partitioning types other than [LI NEAR] KEY are not supported in production. In such cases,
you can create and use tables with partitioning types other than KEY or LI NEAR KEY, but you do this
entirely at your own risk.

The maximum number of partitions that can be defined for an NDB table depends on the number of
data nodes and node groups in the cluster, the version of the NDB Cluster software in use, and other
factors. See NDB and user-defined partitioning, for more information.

As of MySQL NDB Cluster 7.5.2, the maximum amount of fixed-size data that can be stored per
partition in an NDB table is 128 TB. Previously, this was 16 GB.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDB table not to
meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.
2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDB table is created using an empty column-list (that is, using
PARTI TI ON BY KEY() or PARTI TI ON BY LI NEAR KEY()), then no explicit primary key is required.

31

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_new
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-nodes-groups.html#mysql-cluster-nodes-groups-user-partitioning
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html

Partitioning Limitations Relating to Functions

Partition selection. Partition selection is not supported for NDB tables. See Partition Selection, for
more information.

Upgrading partitioned tables. When performing an upgrade, tables which are partitioned by KEY
and which use any storage engine other than NDB must be dumped and reloaded.

Same storage engine for all partitions. All partitions of a partitioned table must use the same
storage engine and it must be the same storage engine used by the table as a whole. In addition, if one
does not specify an engine on the table level, then one must do either of the following when creating or
altering a partitioned table:

» Do not specify any engine for any partition or subpartition

» Specify the engine for all partitions or subpartitions

10.3 Partitioning Limitations Relating to Functions

This section discusses limitations in MySQL Partitioning relating specifically to functions used in
partitioning expressions.

Only the MySQL functions shown in the following list are allowed in partitioning expressions:
« ABS()

« CEILING) (see CEILING() and FLOOR())

« DATEDI FF()

« DAY()

« DAYOFMONTH()

« DAYOFWEEK()

« DAYOFYEAR()

* EXTRACT() (see EXTRACT() function with WEEK specifier)
* FLOOR() (see CEILING() and FLOOR())

e HOUR()

« M CROSECOND()

« M NUTE()

« MOX()

* MONTH()

« QUARTER()

¢ SECOND()

« TI ME_TO SEC()

« TO DAYS()

« TO SECONDS()

o UNI X_TI MESTAMP() (with TI MESTAMP columns)

o \EEKDAY()

32

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/partitioning-selection.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_abs
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_ceiling
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_datediff
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_day
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_dayofmonth
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_dayofweek
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_dayofyear
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_extract
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_floor
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_hour
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_microsecond
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_minute
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html#function_mod
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_month
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_quarter
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_second
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_time-to-sec
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_to-days
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_to-seconds
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_unix-timestamp
https://dev.mysql.com/doc/refman/5.7/en/datetime.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_weekday

Partitioning and Locking

. YEAR()
« YEARWEEK()

In MySQL 5.7, partition pruning is supported for the TO DAYS(), TO SECONDS(), YEAR() , and
UNI X_TI MESTAMP() functions. See Partition Pruning, for more information.

CEILING() and FLOOR(). Each of these functions returns an integer only if it is passed an argument
of an exact numeric type, such as one of the | NT types or DECI MAL. This means, for example, that the
following CREATE TABLE statement fails with an error, as shown here:

nysql > CREATE TABLE t (c FLOAT) PARTITI ON BY LI ST(FLOOR(c))(

S PARTI TI ON pO VALUES IN (1,3,5),
S PARTI TI ON p1 VALUES IN (2,4, 6)
->)

ERROR 1490 (HY000): The PARTITION function returns the wong type

EXTRACT() function with WEEK specifier. The value returned by the EXTRACT() function, when
used as EXTRACT(WEEK FROM col), depends on the value of the def aul t _week f or mat system
variable. For this reason, EXTRACT() is not permitted as a partitioning function when it specifies the
unit as VEEK. (Bug #54483)

See Mathematical Functions, for more information about the return types of these functions, as well as
Numeric Data Types.

10.4 Partitioning and Locking

For storage engines such as Myl SAMthat actually execute table-level locks when executing DML

or DDL statements, such a statement in older versions of MySQL (5.6.5 and earlier) that affected a
partitioned table imposed a lock on the table as a whole; that is, all partitions were locked until the
statement was finished. In MySQL 5.7, partition lock pruning eliminates unneeded locks in many cases,
and most statements reading from or updating a partitioned Myl SAMtable cause only the effected
partitions to be locked. For example, a SELECT from a partitioned Myl SAMtable locks only those
partitions actually containing rows that satisfy the SELECT statement's WHERE condition are locked.

For statements affecting partitioned tables using storage engines such as | nnoDB, that employ row-
level locking and do not actually perform (or need to perform) the locks prior to partition pruning, this is
not an issue.

The next few paragraphs discuss the effects of partition lock pruning for various MySQL statements on
tables using storage engines that employ table-level locks.

Effects on DML statements

SELECT statements (including those containing unions or joins) lock only those partitions that actually
need to be read. This also applies to SELECT ... PARTI TI O\.

An UPDATE prunes locks only for tables on which no partitioning columns are updated.

REPLACE and | NSERT lock only those partitions having rows to be inserted or replaced. However, if an
AUTO | NCREMENT value is generated for any partitioning column then all partitions are locked.

| NSERT ... ON DUPLI CATE KEY UPDATE is pruned as long as no partitioning column is updated.

| NSERT ... SELECT locks only those partitions in the source table that need to be read, although all
partitions in the target table are locked.

Locks imposed by LOAD DATA statements on partitioned tables cannot be pruned.

The presence of BEFORE | NSERT or BEFORE UPDATE triggers using any partitioning column of a
partitioned table means that locks on | NSERT and UPDATE statements updating this table cannot

33

https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_year
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_yearweek
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_to-days
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_to-seconds
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_year
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_unix-timestamp
https://dev.mysql.com/doc/refman/5.7/en/partitioning-pruning.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_extract
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_extract
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_default_week_format
https://dev.mysql.com/doc/refman/5.7/en/date-and-time-functions.html#function_extract
https://dev.mysql.com/doc/refman/5.7/en/mathematical-functions.html
https://dev.mysql.com/doc/refman/5.7/en/numeric-types.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

Affected DDL statements

be pruned, since the trigger can alter its values: A BEFORE | NSERT trigger on any of the table's
partitioning columns means that locks set by | NSERT or REPLACE cannot be pruned, since the BEFORE
I NSERT trigger may change a row's partitioning columns before the row is inserted, forcing the row

into a different partition than it would be otherwise. A BEFORE UPDATE trigger on a partitioning column
means that locks imposed by UPDATE or | NSERT ... ON DUPLI CATE KEY UPDATE cannot be
pruned.

Affected DDL statements

CREATE VI EWdoes not cause any locks.

ALTER TABLE ... EXCHANGE PARTI Tl ON prunes locks; only the exchanged table and the
exchanged partition are locked.

ALTER TABLE ... TRUNCATE PARTI Tl ON prunes locks; only the partitions to be emptied are
locked.

In addition, ALTER TABLE statements take metadata locks on the table level.

Other statements

LOCK TABLES cannot prune partition locks.
CALL stored_procedure(expr) supports lock pruning, but evaluating expr does not.

DOand SET statements do not support partitioning lock pruning.

34

https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.7/en/call.html
https://dev.mysql.com/doc/refman/5.7/en/do.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html

Chapter 11 Windows Platform Restrictions

The following restrictions apply to use of MySQL on the Windows platform:
* Process memory

On Windows 32-bit platforms, it is not possible by default to use more than 2GB of RAM within a
single process, including MySQL. This is because the physical address limit on Windows 32-bit
is 4GB and the default setting within Windows is to split the virtual address space between kernel
(2GB) and user/applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the
kernel application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

» File system aliases

When using Myl SAMtables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL dat adi r location.

This facility is often used to move the data and index files to a RAID or other fast solution, while
retaining the main . f r mfiles in the default data directory configured with the dat adi r option.

e Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be
used up before closed ports become available again. If this happens, the MySQL server appears to
be unresponsive even though it is running. Ports may be used by other applications running on the
machine as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see https://support.microsoft.com/kb/196271.
» DATA DI RECTORY and | NDEX DI RECTORY

The DATA DI RECTORY clause of the CREATE TABLE statement is supported on Windows for

| nnoDB tables only, as described in Creating Tables Externally. For Myl SAMand other storage
engines, the DATA DI RECTORY and | NDEX DI RECTORY clauses for CREATE TABLE are ignored on
Windows and any other platforms with a nonfunctional r eal pat h() call.

+ DROP DATABASE
You cannot drop a database that is in use by another session.
+ Case-insensitive names

File names are not case-sensitive on Windows, so MySQL database and table names are also not
case-sensitive on Windows. The only restriction is that database and table names must be specified
using the same case throughout a given statement. See Identifier Case Sensitivity.

» Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the
current ANSI code pages. For example, the following Japanese directory name does not work in the
Western locale (code page 1252):

datadir="C /LSOOI I MNODTF—ZR"

The same limitation applies to directory and file names referred to in SQL statements, such as the
data file path name in LOAD DATA.

* The\ path name separator character

35

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_datadir
https://support.microsoft.com/kb/196271
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-create-table-external.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/drop-database.html
https://dev.mysql.com/doc/refman/5.7/en/identifier-case-sensitivity.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html

Path name components in Windows are separated by the \ character, which is also the escape
character in MySQL. If you are using LOAD DATA or SELECT ... | NTO OUTFI LE, use Unix-style
file names with / characters:

nysql > LOAD DATA INFILE ' C./tnp/skr.txt' |NTO TABLE skr;
nysql > SELECT * | NTO QUTFI LE ' C:/tnp/skr.txt' FROM skr;

Alternatively, you must double the \ character:

nysqgl > LOAD DATA I NFILE ' C:\\tnp\\skr.txt' |NTO TABLE skr
nysqgl > SELECT * | NTO OUTFILE ' C:\\tnp\\skr.txt' FROM skr

Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character
NZ | CHAR(24) , Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:
C.\> nysqgl binlog binary_log_ file | mysqgl --user=root

If you have a problem applying the log and suspect that it is because of a *Z / CHAR(24) character,
you can use the following workaround:

C:\> nysqgl binlog binary log file --result-file=/tnp/bin.sq
C. \> nysqgl --user=root --execute "source /tnp/bin.sqgl"

The latter command also can be used to reliably read any SQL file that may contain binary data.

36

https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html

Chapter 12 Limits in MySQL

Table of Contents

12.1 Identifier LENGt LIMILS ...uuuiiiiiiee et et e e et e eaanas 37
12.2 Grant Table Scope ColumN ProPertieSociiuiiiiiiiiie et eenes 38
12.3 Limits on Number of Databases and Tablesooooiiiiiiiiiii e 38
12.4 LiMItS ON TaADIE SIZE ..ovuiiiiiiei et e e e 38
12.5 Limits on Table Column Count and ROW SiZ€cc.uiiiiiiiiiiiiiiiii e 39
12.6 Limits Imposed by .frm File STrUCIUIEooiiiiiiiiii e 42

This chapter lists current limits in MySQL 5.7.

12.1 Identifier Length Limits

The following table describes the maximum length for each type of identifier.

Identifier Type Maximum Length (characters)
Database 64 (NDB storage engine: 63)
Table 64 (NDB storage engine: 63)
Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Tablespace 64

Server 64

Log File Group 64

Alias 256 (see exception following table)
Compound Statement Label 16

User-Defined Variable 64

Aliases for column names in CREATE VI EWstatements are checked against the maximum column
length of 64 characters (not the maximum alias length of 256 characters).

For constraint definitions that include no constraint name, the server internally generates a name
derived from the associated table name. For example, internally generated foreign key constraint
names consist of the table name plus _i bf k_ and a number. If the table name is close to the length
limit for constraint names, the additional characters required for the constraint name may cause that
name to exceed the limit, resulting in an error.

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are
stored in . f r mfiles and to identifiers stored in the grant tables in the nysql database. The sizes of
the identifier string columns in the grant tables are measured in characters. You can use multibyte
characters without reducing the number of characters permitted for values stored in these columns.

NDB Cluster imposes a maximum length of 63 characters for names of databases and tables. See
Limits Associated with Database Objects in NDB Cluster.

37

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/create-view.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-limitations-database-objects.html

Grant Table Scope Column Properties

Values such as user name and host names in MySQL account names are strings rather than
identifiers. For information about the maximum length of such values as stored in grant tables, see
Section 12.2, “Grant Table Scope Column Properties”.

12.2 Grant Table Scope Column Properties

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 12.1 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters
Host, Proxi ed_host 60
User, Proxi ed_user 32
Passwor d 41
Db 64
Tabl e_nane 64
Col um_nane 64
Rout i ne_nane 64

Host and Pr oxi ed_host values are converted to lowercase before being stored in the grant tables.

For access-checking purposes, comparisons of User , Pr oxi ed_user, Passwor d,
aut hentication_string, Db, and Tabl e_nane values are case-sensitive. Comparisons of Host ,
Proxi ed_host, Col unm_nane, and Rout i ne_nane values are not case-sensitive.

12.3 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

MySQL has no limit on the number of tables. The underlying file system may have a limit on the
number of files that represent tables. Individual storage engines may impose engine-specific
constraints. | nnoDB permits up to 4 billion tables.

12.4 Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. For up-to-date information operating system file
size limits, refer to the documentation specific to your operating system.

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production
use with MySQL. Use NTFS instead.

If you encounter a full-table error, there are several reasons why it might have occurred:
* The disk might be full.

* You are using | nnoDB tables and have run out of room in an | nnoDB tablespace file. The maximum
tablespace size is also the maximum size for a table. For tablespace size limits, see InnoDB Limits.

Generally, partitioning of tables into multiple tablespace files is recommended for tables larger than
1TB in size.

38

https://dev.mysql.com/doc/refman/5.7/en/innodb-limits.html

Limits on Table Column Count and Row Size

* You have hit an operating system file size limit. For example, you are using My| SAMtables on an
operating system that supports files only up to 2GB in size and you have hit this limit for the data file
or index file.

* You are using a Myl SAMtable and the space required for the table exceeds what is permitted by the
internal pointer size. Myl SAMpermits data and index files to grow up to 256TB by default, but this
limit can be changed up to the maximum permissible size of 65,536TB (2567 - 1 bytes).

If you need a Myl SAMtable that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW LENGTH and MAX_ROWS options. See
CREATE TABLE Statement. The server uses these options to determine how large a table to permit.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See ALTER TABLE Statement.

ALTER TABLE t bl _nane MAX_ROA5=1000000000 AVG_ROW LENGTH=nnn;

You have to specify AVG_ROW _LENGTH only for tables with BLOB or TEXT columns; in this case,
MySQL cannot optimize the space required based only on the number of rows.

To change the default size limit for Myl SAMtables, set the nyi sam dat a_poi nt er _si ze, which
sets the number of bytes used for internal row pointers. The value is used to set the pointer size for
new tables if you do not specify the MAX_ROWS option. The value of myi sam dat a_poi nter _si ze
can be from 2 to 7. For example, for tables that use the dynamic storage format, a value of 4 permits
tables up to 4GB; a value of 6 permits tables up to 256TB. Tables that use the fixed storage format
have a larger maximum data length. For storage format characteristics, see MyISAM Table Storage
Formats.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_nane LIKE 'tbl _nane';

You also can use nyi santhk -dv /path/to/table-index-file.See SHOW Statements, or
myisamchk — MyISAM Table-Maintenance Utility.

Other ways to work around file-size limits for My| SAMtables are as follows:

« If your large table is read only, you can use nyi sanpack to compress it. nyi sanpack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. nyi sanpack
also can merge multiple tables into a single table. See myisampack — Generate Compressed,
Read-Only MyISAM Tables.

* MySQL includes a MERCE library that enables you to handle a collection of Myl SAMtables that
have identical structure as a single MERCE table. See The MERGE Storage Engine.

* You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_t abl e_si ze system variable. See Server System Variables.

12.5 Limits on Table Column Count and Row Size

This section describes limits on the number of columns in tables and the size of individual rows.
e Column Count Limits

¢ Row Size Limits

Column Count Limits

MySQL has hard limit of 4096 columns per table, but the effective maximum may be less for a given
table. The exact column limit depends on several factors:

39

https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_myisam_data_pointer_size
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_myisam_data_pointer_size
https://dev.mysql.com/doc/refman/5.7/en/myisam-table-formats.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-table-formats.html
https://dev.mysql.com/doc/refman/5.7/en/show.html
https://dev.mysql.com/doc/refman/5.7/en/myisamchk.html
https://dev.mysql.com/doc/refman/5.7/en/myisampack.html
https://dev.mysql.com/doc/refman/5.7/en/myisampack.html
https://dev.mysql.com/doc/refman/5.7/en/merge-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

Row Size Limits

The maximum row size for a table constrains the number (and possibly size) of columns because the
total length of all columns cannot exceed this size. See Row Size Limits.

The storage requirements of individual columns constrain the number of columns that fit within a
given maximum row size. Storage requirements for some data types depend on factors such as
storage engine, storage format, and character set. See Data Type Storage Requirements.

Storage engines may impose additional restrictions that limit table column count. For example,
| nnoDB has a limit of 1017 columns per table. See InnoDB Limits. For information about other
storage engines, see Alternative Storage Engines.

Each table has an . f r mfile that contains the table definition. The definition affects the content of this
file in ways that may affect the number of columns permitted in the table. See Section 12.6, “Limits
Imposed by .frm File Structure”.

Row Size Limits

The maximum row size for a given table is determined by several factors:

The internal representation of a MySQL table has a maximum row size limit of 65,535 bytes, even if
the storage engine is capable of supporting larger rows. BLOB and TEXT columns only contribute 9
to 12 bytes toward the row size limit because their contents are stored separately from the rest of the
row.

The maximum row size for an | nnoDB table, which applies to data stored locally within a database
page, is slightly less than half a page for 4KB, 8KB, 16KB, and 32KB i nnodb_page_si ze settings.
For example, the maximum row size is slightly less than 8KB for the default 16KB | nnoDB page size.
For 64KB pages, the maximum row size is slightly less than 16KB. See InnoDB Limits.

If a row containing variable-length columns exceeds the | nnoDB maximum row size, | nnoDB selects
variable-length columns for external off-page storage until the row fits within the | nnoDB row size
limit. The amount of data stored locally for variable-length columns that are stored off-page differs by
row format. For more information, see InnoDB Row Formats.

Different storage formats use different amounts of page header and trailer data, which affects the
amount of storage available for rows.

* For information about | nnoDB row formats, see InnoDB Row Formats.

¢ For information about Myl SAMstorage formats, see MyISAM Table Storage Formats.

Row Size Limit Examples

The MySQL maximum row size limit of 65,535 bytes is demonstrated in the following | nnoDB and
M| SAMexamples. The limit is enforced regardless of storage engine, even though the storage
engine may be capable of supporting larger rows.

mysql > CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),

¢ VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),

f VARCHAR(10000), g VARCHAR(6000)) ENG NE=I nnoDB CHARACTER SET | ati ni;
ERROR 1118 (42000): Row size too |arge. The maxi mum row size for the used
tabl e type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual . You have to change sone colums to TEXT or BLOBs

nysql > CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),

¢ VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),

f VARCHAR(10000), g VARCHAR(6000)) ENG NE=Myl SAM CHARACTER SET | ati ni;
ERROR 1118 (42000): Row size too |arge. The maxi mum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual . You have to change sone colums to TEXT or BLOBs

In the following My SAMexample, changing a column to TEXT avoids the 65,535-byte row size limit
and permits the operation to succeed because BLOB and TEXT columns only contribute 9 to 12 bytes
toward the row size.

40

https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-limits.html
https://dev.mysql.com/doc/refman/5.7/en/storage-engines.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/5.7/en/innodb-limits.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_variable_length_type
https://dev.mysql.com/doc/refman/5.7/en/innodb-row-format.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-row-format.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-table-formats.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/blob.html

Row Size Limits

mysql > CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),

¢ VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),

f VARCHAR(10000), g TEXT(6000)) ENG NE=Myl SAM CHARACTER SET | ati ni;
Query OK, O rows affected (0.02 sec)

The operation succeeds for an | nnoDB table because changing a column to TEXT avoids the
MySQL 65,535-byte row size limit, and | nnoDB off-page storage of variable-length columns avoids
the | nnoDB row size limit.

nmysql > CREATE TABLE t (a VARCHAR(10000), b VARCHAR(10000),

¢ VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),

f VARCHAR(10000), g TEXT(6000)) ENG NE=I nnoDB CHARACTER SET | ati ni;
Query OK, 0 rows affected (0.02 sec)

Storage for variable-length columns includes length bytes, which are counted toward the row size.
For example, a VARCHAR(255) CHARACTER SET ut f 8nb3 column takes two bytes to store the
length of the value, so each value can take up to 767 bytes.

The statement to create table t 1 succeeds because the columns require 32,765 + 2 bytes and
32,766 + 2 bytes, which falls within the maximum row size of 65,535 bytes:

nysql > CREATE TABLE t1
(cl VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
ENG NE = | nnoDB CHARACTER SET | ati ni;

Query OK, 0 rows affected (0.02 sec)

The statement to create table t 2 fails because, although the column length is within the maximum
length of 65,535 bytes, two additional bytes are required to record the length, which causes the row
size to exceed 65,535 bytes:

nysql > CREATE TABLE t 2

(cl VARCHAR(65535) NOT NULL)

ENG NE = | nnoDB CHARACTER SET | ati nl;
ERROR 1118 (42000): Row size too |arge. The maxi mum row size for the used
table type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change sone col ums to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

mysql > CREATE TABLE t2

(cl1 VARCHAR(65533) NOT NULL)

ENG NE = | nnoDB CHARACTER SET | atinil;
Query OK, 0 rows affected (0.01 sec)

For Myl SAMtables, NULL columns require additional space in the row to record whether their values
are NULL. Each NULL column takes one hit extra, rounded up to the nearest byte.

The statement to create table t 3 fails because Myl SAMrequires space for NULL columns in addition
to the space required for variable-length column length bytes, causing the row size to exceed 65,535
bytes:

mysql > CREATE TABLE t3

(cl1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)

ENG NE = Myl SAM CHARACTER SET | ati ni;
ERROR 1118 (42000): Row size too |arge. The maxi mum row size for the used
tabl e type, not counting BLOBs, is 65535. This includes storage overhead,
check the manual. You have to change some colums to TEXT or BLOBs

For information about | nnoDB NULL column storage, see InnoDB Row Formats.

41

https://dev.mysql.com/doc/refman/5.7/en/blob.html
https://dev.mysql.com/doc/refman/5.7/en/char.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-row-format.html

Limits Imposed by .frm File Structure

» | nnoDB restricts row size (for data stored locally within the database page) to slightly less than half
a database page for 4KB, 8KB, 16KB, and 32KB i nnodb_page_si ze settings, and to slightly less
than 16KB for 64KB pages.

The statement to create table t 4 fails because the defined columns exceed the row size limit for a
16KB | nnoDB page.

nysql > CREATE TABLE t4 (

cl CHAR(255), c2 CHAR(255), c3 CHAR(255),

c4 CHAR(255), c5 CHAR(255), c6 CHAR(255),

c7 CHAR(255), c8 CHAR(255),c9 CHAR(255),

c10 CHAR(255), c1l CHAR(255), cl12 CHAR(255),

c13 CHAR(255), c14 CHAR(255), c15 CHAR(255),

€16 CHAR(255), cl17 CHAR(255), c18 CHAR(255),

c19 CHAR(255),c20 CHAR(255),c21 CHAR(255),

€22 CHAR(255), c23 CHAR(255), c24 CHAR(255),

c25 CHAR(255), c26 CHAR(255),c27 CHAR(255),

€28 CHAR(255), c29 CHAR(255),c30 CHAR(255),

c31 CHAR(255), c32 CHAR(255), c33 CHAR(255)

) ENG NE=I nnoDB ROW FORMAT=COVPACT DEFAULT CHARSET | ati ni;
ERROR 1118 (42000): Row size too |arge (> 8126). Changi ng sone columms to TEXT or BLOB or using
ROW_FORVMAT=DYNAM C or ROW FORMAT=COVPRESSED may hel p. In current row format, BLOB prefix of 768
bytes is stored inline.

12.6 Limits Imposed by .frm File Structure

As described previously, each table has an . f r mfile that contains the table definition. The server uses
the following expression to check some of the table information stored in the file against an upper limit
of 64KB:

if (info_length+(ulong) create_fields. el ement s* FCOVP+288+
n_| engt h+i nt _| engt h+com | ength > 65535L || int_count > 255)

The portion of the information stored in the . f r mfile that is checked against the expression cannot
grow beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.

The relevant factors in the expression are:

e info_| engt h is space needed for “screens.” This is related to MySQL's Unireg heritage.

» create fields. el ements is the number of columns.

e« FCOWis 17.

e n_| engt h is the total length of all column names, including one byte per name as a separator.

* int_| engthis related to the list of values for ENUMand SET columns. In this context, “int” does not
mean “integer.” It means “interval,” a term that refers collectively to ENUMand SET columns.

e int_count isthe number of unique ENUMand SET definitions.
e com | engt h is the total length of column comments.
The expression just described has several implications for permitted table definitions:

 Using long column names can reduce the maximum number of columns, as can the inclusion of
ENUMor SET columns, or use of column comments.

» Atable can have no more than 255 unique ENUMand SET definitions. Columns with identical element
lists are considered the same against this limt. For example, if a table contains these two columns,
they count as one (not two) toward this limit because the definitions are identical:

el ENUM'a',’

b','c')
e2 ENIM'a','b','¢')

42

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html

Limits Imposed by .frm File Structure

e The sum of the length of element names in the unique ENUMand SET definitions counts toward the
64KB limit, so although the theoretical limit on number of elements in a given ENUMcolumn is 65,535,
the practical limit is less than 3000.

43

https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html
https://dev.mysql.com/doc/refman/5.7/en/enum.html

44

Chapter 13 MySQL Differences from Standard SQL

Table of Contents

13.1 SELECT INTO TABLE DIiffErENCESvnieiieeeiee e e e e e e e e e 45
13.2 UPDATE DiIffEIrENCES ...viiviiiiiii ettt ettt e e e e e e e e e et e e e et e e anees 45
13.3 FOREIGN KEY Constraint DIiffErE€NCESuvuiiniiiiii e ens 45
13.4 '--' @S the Start 0f @ COMMENTueiii e e e e e e e e e aeans 47

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

e There are several differences between the MySQL and standard SQL privilege systems. For
example, in MySQL, privileges for a table are not automatically revoked when you delete a table.
You must explicitly issue a REVOKE statement to revoke privileges for a table. For more information,
see REVOKE Statement.

e The CAST() function does not support cast to REAL or Bl G NT. See Cast Functions and Operators.

13.1 SELECT INTO TABLE Differences

MySQL Server doesn't support the SELECT ... | NTO TABLE Sybase SQL extension. Instead,
MySQL Server supports the | NSERT | NTO ... SELECT standard SQL syntax, which is basically the
same thing. See INSERT ... SELECT Statement. For example:

I NSERT I NTO thl _tenp2 (fld_id)
SELECT tbl _tenpl.fld_order_id
FROM t bl _tenpl WHERE tbl _tenpl.fld_order_id > 100;

Alternatively, you can use SELECT ... | NTO OUTFI LE or CREATE TABLE ... SELECT.

You can use SELECT ... | NTOwith user-defined variables. The same syntax can also be used
inside stored routines using cursors and local variables. See SELECT ... INTO Statement.

13.2 UPDATE Differences

If you access a column from the table to be updated in an expression, UPDATE uses the current value
of the column. The second assignment in the following statement sets col 2 to the current (updated)
col 1 value, not the original col 1 value. The result is that col 1 and col 2 have the same value. This
behavior differs from standard SQL.

UPDATE t1 SET coll = coll + 1, col2 = col 1;

13.3 FOREIGN KEY Constraint Differences

The MySQL implementation of foreign key constraints differs from the SQL standard in the following
key respects:

« If there are several rows in the parent table with the same referenced key value, | nnoDB performs
a foreign key check as if the other parent rows with the same key value do not exist. For example, if
you define a RESTRI CT type constraint, and there is a child row with several parent rows, | nnoDB
does not permit the deletion of any of the parent rows.

e If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has
previously updated during the same cascade, it acts like RESTRI CT. This means that you cannot

45

https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/cast-functions.html#function_cast
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/cast-functions.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/select-into.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html

FOREIGN KEY Constraint Differences

use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent
infinite loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the
other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not
be nested more than 15 levels deep.

In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, | nnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire
SQL statement has been processed. This means that it is not possible to delete a row that refers to
itself using a foreign key.

No storage engine, including | nnoDB, recognizes or enforces the MATCH clause used in referential-
integrity constraint definitions. Use of an explicit MATCH clause does not have the specified effect,
and it causes ON DELETE and ON UPDATE clauses to be ignored. Specifying the MATCH should be
avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite (multiple-column)
foreign key are handled when comparing to a primary key in the referenced table. MySQL essentially
implements the semantics defined by MATCH SI MPLE, which permits a foreign key to be all or
partially NULL. In that case, a (child table) row containing such a foreign key can be inserted even
though it does not match any row in the referenced (parent) table. (It is possible to implement other
semantics using triggers.)

MySQL requires that the referenced columns be indexed for performance reasons. However, MySQL
does not enforce a requirement that the referenced columns be UNI QUE or be declared NOT NULL.

A FOREI GN KEY constraint that references a non-UNI QUE key is not standard SQL but rather an
I nnoDB extension. The NDB storage engine, on the other hand, requires an explicit unique key (or
primary key) on any column referenced as a foreign key.

The handling of foreign key references to nonunique keys or keys that contain NULL values is not
well defined for operations such as UPDATE or DELETE CASCADE. You are advised to use foreign
keys that reference only UNI QUE (including PRI MARY) and NOT NULL keys.

For storage engines that do not support foreign keys (such as Myl SAM), MySQL Server parses and
ignores foreign key specifications.

MySQL parses but ignores “inline REFERENCES specifications” (as defined in the SQL standard)
where the references are defined as part of the column specification. MySQL accepts REFERENCES
clauses only when specified as part of a separate FORElI GN KEY specification.

Defining a column to use a REFERENCES t bl _nane(col nane) clause has no actual effect
and serves only as a memo or comment to you that the column which you are currently defining is
intended to refer to a column in another table. It is important to realize when using this syntax that:

* MySQL does not perform any sort of check to make sure that col _nane actually exists in
t bl _nane (or even thatt bl _nane itself exists).

* MySQL does not perform any sort of action on t bl _nane such as deleting rows in response to
actions taken on rows in the table which you are defining; in other words, this syntax induces no
ON DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON
UPDATE clause as part of the REFERENCES clause, it is also ignored.)

< This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
id SMALLI NT UNSI GNED NOT NULL AUTO_| NCREMENT,

46

https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/myisam-storage-engine.html

'--' as the Start of a Comment

nane CHAR(60) NOT NULL,
PRI MARY KEY (i d)

Nk

CREATE TABLE shirt (
id SMALLI NT UNSI GNED NOT NULL AUTO | NCREMENT,
style ENUM't-shirt', 'polo', 'dress') NOT NULL,
color ENUM'red', 'blue', 'orange', 'white', 'black') NOT NULL,
owner SMALLI NT UNSI GNED NOT NULL REFERENCES person(id),
PRI MARY KEY (i d)

NE

I NSERT | NTO person VALUES (NULL, 'Antonio Paz');

SELECT @ast := LAST_INSERT_|D();

I NSERT | NTO shirt VALUES

(NULL, 'polo', 'blue', @ast),

(NULL, 'dress', 'white', @ast),

(NULL, "t-shirt', 'blue', @ast);

I NSERT | NTO person VALUES (NULL, ‘Lilliana Angel ovska');

SELECT @ast := LAST_INSERT_ID();

I NSERT | NTO shirt VALUES

(NULL, 'dress', 'orange', @ast),

(NULL, 'polo', 'red, @ast),

(NULL, 'dress', 'blue', @ast),

(NULL, "t-shirt', '"white', @ast);

SELECT * FROM per son;

o e e e e m e e e e e e e +
| id | name |
o e e e e m e e e e e e e +

| 1| Antonio Paz |

| 2| Lilliana Angel ovska |
o e e e e m e e e e e e e +
SELECT * FROM shirt;

- et e e e e e +---ee- oo +---e-- +
| id | style | color | owner |
- et e e e e e +---ee- oo +---e-- +
| 1| polo | blue | 1|
| 2| dress | white | 1|
| 3| t-shirt | blue | 1|
| 4 | dress | orange | 2 |
| 5| polo | red | 2 |
| 6 | dress | blue | 2 |
| 7] t-shirt | white | 2 |
- et e e e e e +---ee- oo +---e-- +

SELECT s.* FROM person p INNER JON shirt s
ON s.owner = p.id

WHERE p. nanme LIKE 'Lilliana%
AND s.color <> "white';

o ee e e e e +---ee- oo +---e-- +
| id| style | color | owner |
o ee e e e e +---ee- oo +---e-- +
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
o ee e e e e +---ee- oo +---e-- +

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOWV CREATE
TABLE or DESCRI BE:

SHOW CREATE TABLE shirt\ G

R R 1. I'OW R R
Tabl e: shirt

Create Tabl e: CREATE TABLE “shirt™ (

“id smallint(5) unsigned NOT NULL auto_increnent,

“style’ enun('t-shirt','polo','dress') NOT NULL,

“color® enun('red','blue','orange', ' white','black') NOT NULL,
“owner” smallint(5) unsigned NOT NULL,

PRI MARY KEY ('id")

) ENG NE=Myl| SAM DEFAULT CHARSET=l ati nl

For information about foreign key constraints, see FOREIGN KEY Constraints.

13.4'--' as the Start of a Comment

47

https://dev.mysql.com/doc/refman/5.7/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.7/en/describe.html
https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html

'--' as the Start of a Comment

Standard SQL uses the Csyntax/* this is a conmment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment, as described in Comments.

Standard SQL uses “- - " as a start-comment sequence. MySQL Server uses # as the start comment
character. MySQL Server also supports a variant of the - - comment style. That is, the - - start-
comment sequence must be followed by a space (or by a control character such as a newline). The
space is required to prevent problems with automatically generated SQL queries that use constructs
such as the following, where we automatically insert the value of the payment for paynent :

UPDATE account SET credit=credit-paynent

Consider about what happens if paynent has a negative value such as - 1:

UPDATE account SET credit=credit--1

credit--1isavalid expression in SQL, but - - is interpreted as the start of a comment, part of
the expression is discarded. The result is a statement that has a completely different meaning than
intended:

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that permitting comments to start with
- - can have serious consequences.

Using our implementation requires a space following the - - for it to be recognized as a start-comment
sequence in MySQL Server. Therefore, credi t - - 1 is safe to use.

48

https://dev.mysql.com/doc/refman/5.7/en/comments.html

Chapter 14 Known Issues in MySQL

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and debugging instructions in
General Installation Guidance, and Debugging MySQL.

The following problems are known:

Subquery optimization for | N is not as effective as for =.

Even if you use | ower _case_t abl e_nanes=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for
the function DATABASE() or within the various logs (on case-insensitive systems).

Dropping a FOREI GN KEY constraint does not work in replication because the constraint may have
another name on the replica.

REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

DI STI NCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only
those columns that are in the DI STI NCT list.

When inserting a big integer value (between 2%% and 264—1) into a decimal or string column, it is
inserted as a negative value because the number is evaluated in signed integer context.

With statement-based binary logging, the source server writes the executed queries to the binary
log. This is a very fast, compact, and efficient logging method that works perfectly in most cases.
However, it is possible for the data on the source and replica to become different if a query is
designed in such a way that the data modification is nondeterministic (generally not a recommended
practice, even outside of replication).

For example:

« CREATE TABLE ... SELECT or| NSERT ... SELECT statements that insert zero or NULL
values into an AUTO | NCREMENT column.

» DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

e REPLACE ... SELECT, | NSERT | GNORE ... SELECT if you have duplicate key values in the
inserted data.

If and only if the preceding queries have no CRDER BY clause guaranteeing a deterministic
order.

For example, for | NSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO | NCREMENT column), depending on the choices made by the optimizers on the source and
replica.

A query is optimized differently on the source and replica only if:

e The table is stored using a different storage engine on the source than on the replica. (It is
possible to use different storage engines on the source and replica. For example, you can use
| nnoDB on the source, but Myl SAMon the replica if the replica has less available disk space.)

« MySQL buffer sizes (key_buf f er _si ze, and so on) are different on the source and replica.

e The source and replica run different MySQL versions, and the optimizer code differs between
these versions.

49

https://dev.mysql.com/doc/refman/5.7/en/general-installation-issues.html
https://dev.mysql.com/doc/refman/5.7/en/debugging-mysql.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_database
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/aggregate-functions.html#function_group-concat
https://dev.mysql.com/doc/refman/5.7/en/create-table-select.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/replace.html
https://dev.mysql.com/doc/refman/5.7/en/insert-select.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_key_buffer_size

This problem may also affect database restoration using nysql bi nl og| nysql .

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order.
Using row-based or mixed logging format also avoids the problem.

Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you must
explicitly use options such as - - | og- bi n=ol d_host _nane- bi n. See Server Command Options.
Alternatively, rename the old files to reflect your host name change. If these are binary logs, you
must edit the binary log index file and fix the binary log file names there as well. (The same is true for
the relay logs on a replica.)

nysql bi nl og does not delete temporary files left after a LOAD DATA statement. See mysqlbinlog
— Utility for Processing Binary Log Files.

RENANE does not work with TEMPORARY tables or tables used in a VERGE table.

When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

You cannot use _ or %with ESCAPE in LI KE ... ESCAPE.

The server uses only the first mrax_sort | engt h bytes when comparing data values. This means
that values cannot reliably be used in GROUP BY, ORDER BY, or DI STI NCT if they differ only after
the first max_sort | engt h bytes. To work around this, increase the variable value. The default
value of nax_sort | engt his 1024 and can be changed at server startup time or at runtime.

Numeric calculations are done with Bl G NT or DOUBLE (both are normally 64 bits long). Which
precision you get depends on the function. The general rule is that bit functions are performed with

Bl G NT precision, | F() and ELT() with Bl G NT or DOUBLE precision, and the rest with DOUBLE
precision. You should try to avoid using unsigned long long values if they resolve to be larger than 63
bits (9223372036854775807) for anything other than bit fields.

You can have up to 255 ENUMand SET columns in one table.

In M N(), MAX(), and other aggregate functions, MySQL currently compares ENUMand SET
columns by their string value rather than by the string's relative position in the set.

In an UPDATE statement, columns are updated from left to right. If you refer to an updated column,
you get the updated value instead of the original value. For example, the following statement
increments KEY by 2, not 1:

nysql > UPDATE t bl _nane SET KEY=KEY+1, KEY=KEY+1;

You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

nysqgl > SELECT * FROM tenp_table, tenp_table AS t2;
ERROR 1137: Can't reopen table: 'tenp_table'

The optimizer may handle DI STI NCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DI STI NCT comparison.

An example of this is:

SELECT DI STI NCT np3i d FROM band_downl oads
WHERE userid = 9 ORDER BY id DESC,

and

SELECT DI STI NCT band_downl oads. np3i d

50

https://dev.mysql.com/doc/refman/5.7/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.7/en/server-options.html
https://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_sort_length
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_sort_length
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_sort_length
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/flow-control-functions.html#function_if
https://dev.mysql.com/doc/refman/5.7/en/string-functions.html#function_elt
https://dev.mysql.com/doc/refman/5.7/en/integer-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/floating-point-types.html
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html
https://dev.mysql.com/doc/refman/5.7/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/5.7/en/aggregate-functions.html#function_max
https://dev.mysql.com/doc/refman/5.7/en/enum.html
https://dev.mysql.com/doc/refman/5.7/en/set.html
https://dev.mysql.com/doc/refman/5.7/en/update.html

FROM band_downl oads, band_np3

WHERE band_downl oads. userid = 9

AND band_mp3.id = band_downl oads. np3i d
ORDER BY band_downl oads. i d DESC,

In the second case, you may get two identical rows in the result set (because the values in the
hidden i d column may differ).

Note that this happens only for queries that do not have the ORDER BY columns in the result.

If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE
does not transform the columns.

Creation of a table of type MVERGE does not check whether the underlying tables are compatible
types.

If you use ALTER TABLE to add a UNI QUE index to a table used in a MERGE table and then add

a normal index on the VERGCE table, the key order is different for the tables if there was an old,
non-UNI QUE key in the table. This is because ALTER TABLE puts UNI QUE indexes before normal
indexes to be able to detect duplicate keys as early as possible.

51

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

52

	MySQL Restrictions and Limitations
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Restrictions on Stored Programs
	Chapter 2 Restrictions on Views
	Chapter 3 Restrictions on Condition Handling
	Chapter 4 Restrictions on Server-Side Cursors
	Chapter 5 Restrictions on Subqueries
	Chapter 6 Restrictions on XA Transactions
	Chapter 7 Restrictions on Character Sets
	Chapter 8 Restrictions on Performance Schema
	Chapter 9 Restrictions on Pluggable Authentication
	Chapter 10 Restrictions and Limitations on Partitioning
	10.1 Partitioning Keys, Primary Keys, and Unique Keys
	10.2 Partitioning Limitations Relating to Storage Engines
	10.3 Partitioning Limitations Relating to Functions
	10.4 Partitioning and Locking

	Chapter 11 Windows Platform Restrictions
	Chapter 12 Limits in MySQL
	12.1 Identifier Length Limits
	12.2 Grant Table Scope Column Properties
	12.3 Limits on Number of Databases and Tables
	12.4 Limits on Table Size
	12.5 Limits on Table Column Count and Row Size
	12.6 Limits Imposed by .frm File Structure

	Chapter 13 MySQL Differences from Standard SQL
	13.1 SELECT INTO TABLE Differences
	13.2 UPDATE Differences
	13.3 FOREIGN KEY Constraint Differences
	13.4 '--' as the Start of a Comment

	Chapter 14 Known Issues in MySQL

