
MySQL Replication

Abstract

This is the MySQL Replication extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2024-03-12 (revision: 78062)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. vii
1 Replication .. 1
2 Configuring Replication .. 3

2.1 Binary Log File Position Based Replication Configuration Overview ... 4
2.2 Setting Up Binary Log File Position Based Replication ... 4

2.2.1 Setting the Replication Source Configuration ... 6
2.2.2 Setting the Replica Configuration ... 6
2.2.3 Creating a User for Replication .. 7
2.2.4 Obtaining the Replication Source Binary Log Coordinates .. 8
2.2.5 Choosing a Method for Data Snapshots ... 9
2.2.6 Setting Up Replicas ... 12
2.2.7 Setting the Source Configuration on the Replica .. 14
2.2.8 Adding Replicas to a Replication Environment ... 15

2.3 Replication with Global Transaction Identifiers ... 17
2.3.1 GTID Format and Storage .. 18
2.3.2 GTID Life Cycle ... 22
2.3.3 GTID Auto-Positioning .. 27
2.3.4 Setting Up Replication Using GTIDs ... 28
2.3.5 Using GTIDs for Failover and Scaleout ... 31
2.3.6 Replication From a Source Without GTIDs to a Replica With GTIDs 34
2.3.7 Restrictions on Replication with GTIDs ... 35
2.3.8 Stored Function Examples to Manipulate GTIDs .. 37

2.4 Changing GTID Mode on Online Servers ... 41
2.4.1 Replication Mode Concepts .. 41
2.4.2 Enabling GTID Transactions Online .. 43
2.4.3 Disabling GTID Transactions Online ... 45
2.4.4 Verifying Replication of Anonymous Transactions .. 47

2.5 MySQL Multi-Source Replication ... 48
2.5.1 Configuring Multi-Source Replication ... 48
2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication 49
2.5.3 Adding GTID-Based Sources to a Multi-Source Replica ... 51
2.5.4 Adding Binary Log Based Replication Sources to a Multi-Source Replica 51
2.5.5 Starting Multi-Source Replicas .. 52
2.5.6 Stopping Multi-Source Replicas .. 52
2.5.7 Resetting Multi-Source Replicas ... 52
2.5.8 Monitoring Multi-Source Replication .. 53

2.6 Replication and Binary Logging Options and Variables ... 54
2.6.1 Replication and Binary Logging Option and Variable Reference 56
2.6.2 Replication Source Options and Variables ... 65
2.6.3 Replica Server Options and Variables ... 78
2.6.4 Binary Logging Options and Variables .. 136
2.6.5 Global Transaction ID System Variables ... 170

2.7 Common Replication Administration Tasks ... 177
2.7.1 Checking Replication Status ... 178
2.7.2 Pausing Replication on the Replica ... 180
2.7.3 Skipping Transactions .. 181

3 Replication Solutions ... 185
3.1 Using Replication for Backups ... 185

3.1.1 Backing Up a Replica Using mysqldump ... 186
3.1.2 Backing Up Raw Data from a Replica ... 187
3.1.3 Backing Up a Source or Replica by Making It Read Only ... 188

iii

MySQL Replication

3.2 Handling an Unexpected Halt of a Replica ... 189
3.3 Monitoring Row-based Replication ... 192
3.4 Using Replication with Different Source and Replica Storage Engines 192
3.5 Using Replication for Scale-Out ... 194
3.6 Replicating Different Databases to Different Replicas ... 195
3.7 Improving Replication Performance .. 196
3.8 Switching Sources During Failover .. 198
3.9 Switching Sources and Replicas with Asynchronous Connection Failover 200

3.9.1 Asynchronous Connection Failover for Sources ... 201
3.9.2 Asynchronous Connection Failover for Replicas .. 203

3.10 Semisynchronous Replication .. 204
3.10.1 Installing Semisynchronous Replication ... 206
3.10.2 Configuring Semisynchronous Replication ... 208
3.10.3 Semisynchronous Replication Monitoring ... 209

3.11 Delayed Replication .. 210
4 Replication Notes and Tips .. 215

4.1 Replication Features and Issues .. 215
4.1.1 Replication and AUTO_INCREMENT .. 216
4.1.2 Replication and BLACKHOLE Tables .. 217
4.1.3 Replication and Character Sets .. 217
4.1.4 Replication and CHECKSUM TABLE .. 217
4.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER 217
4.1.6 Replication of CREATE ... IF NOT EXISTS Statements .. 217
4.1.7 Replication of CREATE TABLE ... SELECT Statements ... 218
4.1.8 Replication of CURRENT_USER() .. 218
4.1.9 Replication with Differing Table Definitions on Source and Replica 219
4.1.10 Replication and DIRECTORY Table Options .. 223
4.1.11 Replication of DROP ... IF EXISTS Statements .. 224
4.1.12 Replication and Floating-Point Values ... 224
4.1.13 Replication and FLUSH .. 224
4.1.14 Replication and System Functions .. 224
4.1.15 Replication and Fractional Seconds Support .. 226
4.1.16 Replication of Invoked Features .. 226
4.1.17 Replication of JSON Documents ... 228
4.1.18 Replication and LIMIT .. 228
4.1.19 Replication and LOAD DATA .. 229
4.1.20 Replication and max_allowed_packet .. 229
4.1.21 Replication and MEMORY Tables ... 230
4.1.22 Replication of the mysql System Schema .. 231
4.1.23 Replication and the Query Optimizer ... 231
4.1.24 Replication and Partitioning .. 231
4.1.25 Replication and REPAIR TABLE ... 231
4.1.26 Replication and Reserved Words .. 232
4.1.27 Replication and Row Searches ... 232
4.1.28 Replication and Source or Replica Shutdowns ... 233
4.1.29 Replica Errors During Replication ... 234
4.1.30 Replication and Server SQL Mode .. 235
4.1.31 Replication and Temporary Tables .. 235
4.1.32 Replication Retries and Timeouts .. 236
4.1.33 Replication and Time Zones ... 236
4.1.34 Replication and Transaction Inconsistencies .. 237
4.1.35 Replication and Transactions .. 239
4.1.36 Replication and Triggers ... 241
4.1.37 Replication and TRUNCATE TABLE ... 242

iv

MySQL Replication

4.1.38 Replication and User Name Length ... 242
4.1.39 Replication and Variables ... 242
4.1.40 Replication and Views .. 244

4.2 Replication Compatibility Between MySQL Versions ... 244
4.3 Upgrading a Replication Topology ... 245
4.4 Troubleshooting Replication .. 247
4.5 How to Report Replication Bugs or Problems ... 249

5 Replication Implementation .. 251
5.1 Replication Formats .. 252

5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 253
5.1.2 Usage of Row-Based Logging and Replication .. 256
5.1.3 Determination of Safe and Unsafe Statements in Binary Logging 257

5.2 Replication Channels .. 260
5.2.1 Commands for Operations on a Single Channel .. 260
5.2.2 Compatibility with Previous Replication Statements .. 261
5.2.3 Startup Options and Replication Channels .. 262
5.2.4 Replication Channel Naming Conventions ... 263

5.3 Replication Threads .. 264
5.3.1 Monitoring Replication Main Threads .. 264
5.3.2 Monitoring Replication Applier Worker Threads .. 265

5.4 Relay Log and Replication Metadata Repositories .. 266
5.4.1 The Relay Log ... 267
5.4.2 Replication Metadata Repositories .. 268

5.5 How Servers Evaluate Replication Filtering Rules ... 274
5.5.1 Evaluation of Database-Level Replication and Binary Logging Options 275
5.5.2 Evaluation of Table-Level Replication Options ... 276
5.5.3 Interactions Between Replication Filtering Options ... 278
5.5.4 Replication Channel Based Filters .. 280

v

vi

Preface and Legal Notices
This is the MySQL Replication extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to third-
party software that may be included in this Commercial release. If you are using a Community release
of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other

vii

https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Replication
Replication enables data from one MySQL database server (known as a source) to be copied to one or
more MySQL database servers (known as replicas). Replication is asynchronous by default; replicas do
not need to be connected permanently to receive updates from a source. Depending on the configuration,
you can replicate all databases, selected databases, or even selected tables within a database.

Advantages of replication in MySQL include:

• Scale-out solutions - spreading the load among multiple replicas to improve performance. In this
environment, all writes and updates must take place on the source server. Reads, however, may take
place on one or more replicas. This model can improve the performance of writes (since the source
is dedicated to updates), while dramatically increasing read speed across an increasing number of
replicas.

• Data security - because the replica can pause the replication process, it is possible to run backup
services on the replica without corrupting the corresponding source data.

• Analytics - live data can be created on the source, while the analysis of the information can take place on
the replica without affecting the performance of the source.

• Long-distance data distribution - you can use replication to create a local copy of data for a remote site
to use, without permanent access to the source.

For information on how to use replication in such scenarios, see Chapter 3, Replication Solutions.

MySQL 8.0 supports different methods of replication. The traditional method is based on replicating events
from the source's binary log, and requires the log files and positions in them to be synchronized between
source and replica. The newer method based on global transaction identifiers (GTIDs) is transactional
and therefore does not require working with log files or positions within these files, which greatly simplifies
many common replication tasks. Replication using GTIDs guarantees consistency between source and
replica as long as all transactions committed on the source have also been applied on the replica. For
more information about GTIDs and GTID-based replication in MySQL, see Section 2.3, “Replication with
Global Transaction Identifiers”. For information on using binary log file position based replication, see
Chapter 2, Configuring Replication.

Replication in MySQL supports different types of synchronization. The original type of synchronization
is one-way, asynchronous replication, in which one server acts as the source, while one or more other
servers act as replicas. This is in contrast to the synchronous replication which is a characteristic of
NDB Cluster (see MySQL NDB Cluster 8.0). In MySQL 8.0, semisynchronous replication is supported in
addition to the built-in asynchronous replication. With semisynchronous replication, a commit performed
on the source blocks before returning to the session that performed the transaction until at least one
replica acknowledges that it has received and logged the events for the transaction; see Section 3.10,
“Semisynchronous Replication”. MySQL 8.0 also supports delayed replication such that a replica
deliberately lags behind the source by at least a specified amount of time; see Section 3.11, “Delayed
Replication”. For scenarios where synchronous replication is required, use NDB Cluster (see MySQL NDB
Cluster 8.0).

There are a number of solutions available for setting up replication between servers, and the best method
to use depends on the presence of data and the engine types you are using. For more information on the
available options, see Section 2.2, “Setting Up Binary Log File Position Based Replication”.

There are two core types of replication format, Statement Based Replication (SBR), which replicates entire
SQL statements, and Row Based Replication (RBR), which replicates only the changed rows. You can
also use a third variety, Mixed Based Replication (MBR). For more information on the different replication
formats, see Section 5.1, “Replication Formats”.

1

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Replication is controlled through a number of different options and variables. For more information, see
Section 2.6, “Replication and Binary Logging Options and Variables”. Additional security measures can be
applied to a replication topology, as described in Replication Security.

You can use replication to solve a number of different problems, including performance, supporting the
backup of different databases, and as part of a larger solution to alleviate system failures. For information
on how to address these issues, see Chapter 3, Replication Solutions.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and potential problems and their resolution,
see Chapter 4, Replication Notes and Tips. For answers to some questions often asked by those who are
new to MySQL Replication, see MySQL 8.0 FAQ: Replication.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are recorded
and replicated, see Chapter 5, Replication Implementation.

2

https://dev.mysql.com/doc/refman/8.0/en/replication-security.html
https://dev.mysql.com/doc/refman/8.0/en/faqs-replication.html

Chapter 2 Configuring Replication

Table of Contents
2.1 Binary Log File Position Based Replication Configuration Overview ... 4
2.2 Setting Up Binary Log File Position Based Replication ... 4

2.2.1 Setting the Replication Source Configuration ... 6
2.2.2 Setting the Replica Configuration ... 6
2.2.3 Creating a User for Replication .. 7
2.2.4 Obtaining the Replication Source Binary Log Coordinates .. 8
2.2.5 Choosing a Method for Data Snapshots ... 9
2.2.6 Setting Up Replicas ... 12
2.2.7 Setting the Source Configuration on the Replica .. 14
2.2.8 Adding Replicas to a Replication Environment ... 15

2.3 Replication with Global Transaction Identifiers ... 17
2.3.1 GTID Format and Storage .. 18
2.3.2 GTID Life Cycle ... 22
2.3.3 GTID Auto-Positioning .. 27
2.3.4 Setting Up Replication Using GTIDs ... 28
2.3.5 Using GTIDs for Failover and Scaleout ... 31
2.3.6 Replication From a Source Without GTIDs to a Replica With GTIDs 34
2.3.7 Restrictions on Replication with GTIDs ... 35
2.3.8 Stored Function Examples to Manipulate GTIDs .. 37

2.4 Changing GTID Mode on Online Servers ... 41
2.4.1 Replication Mode Concepts .. 41
2.4.2 Enabling GTID Transactions Online .. 43
2.4.3 Disabling GTID Transactions Online ... 45
2.4.4 Verifying Replication of Anonymous Transactions .. 47

2.5 MySQL Multi-Source Replication ... 48
2.5.1 Configuring Multi-Source Replication ... 48
2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication .. 49
2.5.3 Adding GTID-Based Sources to a Multi-Source Replica ... 51
2.5.4 Adding Binary Log Based Replication Sources to a Multi-Source Replica 51
2.5.5 Starting Multi-Source Replicas .. 52
2.5.6 Stopping Multi-Source Replicas .. 52
2.5.7 Resetting Multi-Source Replicas ... 52
2.5.8 Monitoring Multi-Source Replication .. 53

2.6 Replication and Binary Logging Options and Variables ... 54
2.6.1 Replication and Binary Logging Option and Variable Reference .. 56
2.6.2 Replication Source Options and Variables ... 65
2.6.3 Replica Server Options and Variables ... 78
2.6.4 Binary Logging Options and Variables .. 136
2.6.5 Global Transaction ID System Variables ... 170

2.7 Common Replication Administration Tasks ... 177
2.7.1 Checking Replication Status ... 178
2.7.2 Pausing Replication on the Replica ... 180
2.7.3 Skipping Transactions .. 181

This section describes how to configure the different types of replication available in MySQL and includes
the setup and configuration required for a replication environment, including step-by-step instructions for
creating a new replication environment. The major components of this section are:

3

Binary Log File Position Based Replication Configuration Overview

• For a guide to setting up two or more servers for replication using binary log file positions, Section 2.2,
“Setting Up Binary Log File Position Based Replication”, deals with the configuration of the servers and
provides methods for copying data between the source and replicas.

• For a guide to setting up two or more servers for replication using GTID transactions, Section 2.3,
“Replication with Global Transaction Identifiers”, deals with the configuration of the servers.

• Events in the binary log are recorded using a number of formats. These are referred to as statement-
based replication (SBR) or row-based replication (RBR). A third type, mixed-format replication (MIXED),
uses SBR or RBR replication automatically to take advantage of the benefits of both SBR and RBR
formats when appropriate. The different formats are discussed in Section 5.1, “Replication Formats”.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 2.6, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However,
for advice on common tasks that you may want to execute, see Section 2.7, “Common Replication
Administration Tasks”.

2.1 Binary Log File Position Based Replication Configuration
Overview

This section describes replication between MySQL servers based on the binary log file position method,
where the MySQL instance operating as the source (where the database changes take place) writes
updates and changes as “events” to the binary log. The information in the binary log is stored in different
logging formats according to the database changes being recorded. Replicas are configured to read the
binary log from the source and to execute the events in the binary log on the replica's local database.

Each replica receives a copy of the entire contents of the binary log. It is the responsibility of the replica to
decide which statements in the binary log should be executed. Unless you specify otherwise, all events in
the source's binary log are executed on the replica. If required, you can configure the replica to process
only events that apply to particular databases or tables.

Important

You cannot configure the source to log only certain events.

Each replica keeps a record of the binary log coordinates: the file name and position within the file that it
has read and processed from the source. This means that multiple replicas can be connected to the source
and executing different parts of the same binary log. Because the replicas control this process, individual
replicas can be connected and disconnected from the server without affecting the source's operation. Also,
because each replica records the current position within the binary log, it is possible for replicas to be
disconnected, reconnect and then resume processing.

The source and each replica must be configured with a unique ID (using the server_id system variable).
In addition, each replica must be configured with information about the source's host name, log file name,
and position within that file. These details can be controlled from within a MySQL session using a CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before
MySQL 8.0.23) on the replica. The details are stored within the replica's connection metadata repository
(see Section 5.4, “Relay Log and Replication Metadata Repositories”).

2.2 Setting Up Binary Log File Position Based Replication
This section describes how to set up a MySQL server to use binary log file position based replication.
There are a number of different methods for setting up replication, and the exact method to use depends

4

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Setting Up Binary Log File Position Based Replication

on how you are setting up replication, and whether you already have data in the database on the source
that you want to replicate.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which enables
you to easily administer a group of MySQL server instances in MySQL Shell.
InnoDB Cluster wraps MySQL Group Replication in a programmatic environment
that enables you easily deploy a cluster of MySQL instances to achieve high
availability. In addition, InnoDB Cluster interfaces seamlessly with MySQL Router,
which enables your applications to connect to the cluster without writing your own
failover process. For similar use cases that do not require high availability, however,
you can use InnoDB ReplicaSet. Installation instructions for MySQL Shell can be
found here.

There are some generic tasks that are common to all setups:

• On the source, you must ensure that binary logging is enabled, and configure a unique server ID. This
might require a server restart. See Section 2.2.1, “Setting the Replication Source Configuration”.

• On each replica that you want to connect to the source, you must configure a unique server ID. This
might require a server restart. See Section 2.2.2, “Setting the Replica Configuration”.

• Optionally, create a separate user for your replicas to use during authentication with the source when
reading the binary log for replication. See Section 2.2.3, “Creating a User for Replication”.

• Before creating a data snapshot or starting the replication process, on the source you should record
the current position in the binary log. You need this information when configuring the replica so that the
replica knows where within the binary log to start executing events. See Section 2.2.4, “Obtaining the
Replication Source Binary Log Coordinates”.

• If you already have data on the source and want to use it to synchronize the replica, you need to create
a data snapshot to copy the data to the replica. The storage engine you are using has an impact on how
you create the snapshot. When you are using MyISAM, you must stop processing statements on the
source to obtain a read-lock, then obtain its current binary log coordinates and dump its data, before
permitting the source to continue executing statements. If you do not stop the execution of statements,
the data dump and the source status information become mismatched, resulting in inconsistent or
corrupted databases on the replicas. For more information on replicating a MyISAM source, see
Section 2.2.4, “Obtaining the Replication Source Binary Log Coordinates”. If you are using InnoDB, you
do not need a read-lock and a transaction that is long enough to transfer the data snapshot is sufficient.
For more information, see InnoDB and MySQL Replication.

• Configure the replica with settings for connecting to the source, such as the host name, login credentials,
and binary log file name and position. See Section 2.2.7, “Setting the Source Configuration on the
Replica”.

• Implement replication-specific security measures on the sources and replicas as appropriate for your
system. See Replication Security.

Note

Certain steps within the setup process require the SUPER privilege. If you do not
have this privilege, it might not be possible to enable replication.

After configuring the basic options, select your scenario:

• To set up replication for a fresh installation of a source and replicas that contain no data, see
Section 2.2.6.1, “Setting Up Replication with New Source and Replicas”.

5

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication-security.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super

Setting the Replication Source Configuration

• To set up replication of a new source using the data from an existing MySQL server, see Section 2.2.6.2,
“Setting Up Replication with Existing Data”.

• To add replicas to an existing replication environment, see Section 2.2.8, “Adding Replicas to a
Replication Environment”.

Before administering MySQL replication servers, read this entire chapter and try all statements mentioned
in SQL Statements for Controlling Source Servers, and SQL Statements for Controlling Replica Servers.
Also familiarize yourself with the replication startup options described in Section 2.6, “Replication and
Binary Logging Options and Variables”.

2.2.1 Setting the Replication Source Configuration

To configure a source to use binary log file position based replication, you must ensure that binary logging
is enabled, and establish a unique server ID.

Each server within a replication topology must be configured with a unique server ID, which you can
specify using the server_id system variable. This server ID is used to identify individual servers within
the replication topology, and must be a positive integer between 1 and (232)−1. The default server_id
value from MySQL 8.0 is 1. You can change the server_id value dynamically by issuing a statement like
this:

SET GLOBAL server_id = 2;

How you organize and select the server IDs is your choice, so long as each server ID is different from
every other server ID in use by any other server in the replication topology. Note that if a value of 0 (which
was the default in earlier releases) was set previously for the server ID, you must restart the server to
initialize the source with your new nonzero server ID. Otherwise, a server restart is not needed when you
change the server ID, unless you make other configuration changes that require it.

Binary logging is required on the source because the binary log is the basis for replicating changes from
the source to its replicas. Binary logging is enabled by default (the log_bin system variable is set to ON).
The --log-bin option tells the server what base name to use for binary log files. It is recommended
that you specify this option to give the binary log files a non-default base name, so that if the host name
changes, you can easily continue to use the same binary log file names (see Known Issues in MySQL). If
binary logging was previously disabled on the source using the --skip-log-bin option, you must restart
the server without this option to enable it.

Note

The following options also have an impact on the source:

• For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the source's
my.cnf file.

• Ensure that the skip_networking system variable is not enabled on the
source. If networking has been disabled, the replica cannot communicate with the
source and replication fails.

2.2.2 Setting the Replica Configuration

Each replica must have a unique server ID, as specified by the server_id system variable. If you are
setting up multiple replicas, each one must have a unique server_id value that differs from that of the
source and from any of the other replicas. If the replica's server ID is not already set, or the current value
conflicts with the value that you have chosen for the source or another replica, you must change it.

6

https://dev.mysql.com/doc/refman/8.0/en/replication-statements-master.html
https://dev.mysql.com/doc/refman/8.0/en/replication-statements-replica.html
https://dev.mysql.com/doc/refman/8.0/en/known-issues.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

Creating a User for Replication

The default server_id value is 1. You can change the server_id value dynamically by issuing a
statement like this:

SET GLOBAL server_id = 21;

Note that a value of 0 for the server ID prevents a replica from connecting to a source. If that server ID
value (which was the default in earlier releases) was set previously, you must restart the server to initialize
the replica with your new nonzero server ID. Otherwise, a server restart is not needed when you change
the server ID, unless you make other configuration changes that require it. For example, if binary logging
was disabled on the server and you want it enabled for your replica, a server restart is required to enable
this.

If you are shutting down the replica server, you can edit the [mysqld] section of the configuration file to
specify a unique server ID. For example:

[mysqld]
server-id=21

Binary logging is enabled by default on all servers. A replica is not required to have binary logging enabled
for replication to take place. However, binary logging on a replica means that the replica's binary log can
be used for data backups and crash recovery. Replicas that have binary logging enabled can also be used
as part of a more complex replication topology. For example, you might want to set up replication servers
using this chained arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C. For this
to work, B must be both a source and a replica. Updates received from A must be logged by B to
its binary log, in order to be passed on to C. In addition to binary logging, this replication topology
requires the system variable log_replica_updates (from MySQL 8.0.26) or log_slave_updates
(before MySQL 8.0.26) to be enabled. With replica updates enabled, the replica writes updates that are
received from a source and performed by the replica's SQL thread to the replica's own binary log. The
log_replica_updates or log_slave_updates system variable is enabled by default.

If you need to disable binary logging or replica update logging on a replica, you can do this by specifying
the --skip-log-bin and --log-replica-updates=OFF or --log-slave-updates=OFF options
for the replica. If you decide to re-enable these features on the replica, remove the relevant options and
restart the server.

2.2.3 Creating a User for Replication

Each replica connects to the source using a MySQL user name and password, so there must be a
user account on the source that the replica can use to connect. The user name is specified by the
SOURCE_USER | MASTER_USER option of the CHANGE REPLICATION SOURCE TO statement (from
MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) when you set up a replica. Any
account can be used for this operation, providing it has been granted the REPLICATION SLAVE privilege.
You can choose to create a different account for each replica, or connect to the source using the same
account for each replica.

Although you do not have to create an account specifically for replication, you should be aware that the
replication user name and password are stored in plain text in the replica's connection metadata repository
mysql.slave_master_info (see Section 5.4.2, “Replication Metadata Repositories”). Therefore, you
may want to create a separate account that has privileges only for the replication process, to minimize the
possibility of compromise to other accounts.

To create a new account, use CREATE USER. To grant this account the privileges required for replication,
use the GRANT statement. If you create an account solely for the purposes of replication, that account

7

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Obtaining the Replication Source Binary Log Coordinates

needs only the REPLICATION SLAVE privilege. For example, to set up a new user, repl, that can
connect for replication from any host within the example.com domain, issue these statements on the
source:

mysql> CREATE USER 'repl'@'%.example.com' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.example.com';

See Account Management Statements, for more information on statements for manipulation of user
accounts.

Important

To connect to the source using a user account that authenticates with the
caching_sha2_password plugin, you must either set up a secure connection
as described in Setting Up Replication to Use Encrypted Connections, or enable
the unencrypted connection to support password exchange using an RSA key pair.
The caching_sha2_password authentication plugin is the default for new users
created from MySQL 8.0 (for details, see Caching SHA-2 Pluggable Authentication).
If the user account that you create or use for replication (as specified by the
MASTER_USER option) uses this authentication plugin, and you are not using a
secure connection, you must enable RSA key pair-based password exchange for a
successful connection.

2.2.4 Obtaining the Replication Source Binary Log Coordinates

To configure the replica to start the replication process at the correct point, you need to note the source's
current coordinates within its binary log.

Warning

This procedure uses FLUSH TABLES WITH READ LOCK, which blocks COMMIT
operations for InnoDB tables.

If you are planning to shut down the source to create a data snapshot, you can optionally skip this
procedure and instead store a copy of the binary log index file along with the data snapshot. In that
situation, the source creates a new binary log file on restart. The source binary log coordinates where the
replica must start the replication process are therefore the start of that new file, which is the next binary log
file on the source following after the files that are listed in the copied binary log index file.

To obtain the source binary log coordinates, follow these steps:

1. Start a session on the source by connecting to it with the command-line client, and flush all tables and
block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

Warning

Leave the client from which you issued the FLUSH TABLES statement running
so that the read lock remains in effect. If you exit the client, the lock is released.

2. In a different session on the source, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql> SHOW MASTER STATUS\G
*************************** 1. row ***************************
 File: mysql-bin.000003
 Position: 73
 Binlog_Do_DB: test

8

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/replication-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html

Choosing a Method for Data Snapshots

 Binlog_Ignore_DB: manual, mysql
Executed_Gtid_Set: 3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5
1 row in set (0.00 sec)

The File column shows the name of the log file and the Position column shows the position within
the file. In this example, the binary log file is mysql-bin.000003 and the position is 73. Record
these values. You need them later when you are setting up the replica. They represent the replication
coordinates at which the replica should begin processing new updates from the source.

If the source has been running previously with binary logging disabled, the log file name and position
values displayed by SHOW MASTER STATUS or mysqldump --master-data are empty. In that case,
the values that you need to use later when specifying the source's binary log file and position are the
empty string ('') and 4.

You now have the information you need to enable the replica to start reading from the source's binary log
in the correct place to start replication.

The next step depends on whether you have existing data on the source. Choose one of the following
options:

• If you have existing data that needs be to synchronized with the replica before you start replication, leave
the client running so that the lock remains in place. This prevents any further changes being made, so
that the data copied to the replica is in synchrony with the source. Proceed to Section 2.2.5, “Choosing a
Method for Data Snapshots”.

• If you are setting up a new source and replica combination, you can exit the first session to release
the read lock. See Section 2.2.6.1, “Setting Up Replication with New Source and Replicas” for how to
proceed.

2.2.5 Choosing a Method for Data Snapshots

If the source database contains existing data it is necessary to copy this data to each replica. There are
different ways to dump the data from the source database. The following sections describe possible
options.

To select the appropriate method of dumping the database, choose between these options:

• Use the mysqldump tool to create a dump of all the databases you want to replicate. This is the
recommended method, especially when using InnoDB.

• If your database is stored in binary portable files, you can copy the raw data files to a replica. This can
be more efficient than using mysqldump and importing the file on each replica, because it skips the
overhead of updating indexes as the INSERT statements are replayed. With storage engines such as
InnoDB this is not recommended.

• Use MySQL Server's clone plugin to transfer all the data from an existing replica to a clone. For
instructions to use this method, see Cloning for Replication.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which enables
you to easily administer a group of MySQL server instances in MySQL Shell.
InnoDB Cluster wraps MySQL Group Replication in a programmatic environment
that enables you easily deploy a cluster of MySQL instances to achieve high
availability. In addition, InnoDB Cluster interfaces seamlessly with MySQL Router,
which enables your applications to connect to the cluster without writing your own
failover process. For similar use cases that do not require high availability, however,

9

https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-replication.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/

Choosing a Method for Data Snapshots

you can use InnoDB ReplicaSet. Installation instructions for MySQL Shell can be
found here.

2.2.5.1 Creating a Data Snapshot Using mysqldump

To create a snapshot of the data in an existing source database, use the mysqldump tool. Once the data
dump has been completed, import this data into the replica before starting the replication process.

The following example dumps all databases to a file named dbdump.db, and includes the --master-
data option which automatically appends the CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO statement required on the replica to start the replication process:

$> mysqldump --all-databases --master-data > dbdump.db

Note

If you do not use --master-data, then it is necessary to lock all tables in a
separate session manually. See Section 2.2.4, “Obtaining the Replication Source
Binary Log Coordinates”.

It is possible to exclude certain databases from the dump using the mysqldump tool. If you want to choose
which databases to include in the dump, do not use --all-databases. Choose one of these options:

• Exclude all the tables in the database using --ignore-table option.

• Name only those databases which you want dumped using the --databases option.

Note

By default, if GTIDs are in use on the source (gtid_mode=ON), mysqldump
includes the GTIDs from the gtid_executed set on the source in the dump
output to add them to the gtid_purged set on the replica. If you are dumping only
specific databases or tables, it is important to note that the value that is included
by mysqldump includes the GTIDs of all transactions in the gtid_executed
set on the source, even those that changed suppressed parts of the database, or
other databases on the server that were not included in the partial dump. Check
the description for mysqldump's --set-gtid-purged option to find the outcome
of the default behavior for the MySQL Server versions you are using, and how to
change the behavior if this outcome is not suitable for your situation.

For more information, see mysqldump — A Database Backup Program.

To import the data, either copy the dump file to the replica, or access the file from the source when
connecting remotely to the replica.

2.2.5.2 Creating a Data Snapshot Using Raw Data Files

This section describes how to create a data snapshot using the raw files which make up the database.
Employing this method with a table using a storage engine that has complex caching or logging algorithms
requires extra steps to produce a perfect “point in time” snapshot: the initial copy command could leave
out cache information and logging updates, even if you have acquired a global read lock. How the storage
engine responds to this depends on its crash recovery abilities.

If you use InnoDB tables, you can use the mysqlbackup command from the MySQL Enterprise
Backup component to produce a consistent snapshot. This command records the log name and offset
corresponding to the snapshot to be used on the replica. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription. See MySQL Enterprise Backup
Overview for detailed information.

10

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_all-databases
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_ignore-table
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-enterprise-backup.html

Choosing a Method for Data Snapshots

This method also does not work reliably if the source and replica have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having full-
text indexes.

Assuming the above exceptions do not apply to your database, use the cold backup technique to obtain a
reliable binary snapshot of InnoDB tables: do a slow shutdown of the MySQL Server, then copy the data
files manually.

To create a raw data snapshot of MyISAM tables when your MySQL data files exist on a single file system,
you can use standard file copy tools such as cp or copy, a remote copy tool such as scp or rsync, an
archiving tool such as zip or tar, or a file system snapshot tool such as dump. If you are replicating only
certain databases, copy only those files that relate to those tables. For InnoDB, all tables in all databases
are stored in the system tablespace files, unless you have the innodb_file_per_table option enabled.

The following files are not required for replication:

• Files relating to the mysql database.

• The replica's connection metadata repository file master.info, if used; the use of this file is now
deprecated (see Section 5.4, “Relay Log and Replication Metadata Repositories”).

• The source's binary log files, with the exception of the binary log index file if you are going to use this to
locate the source binary log coordinates for the replica.

• Any relay log files.

Depending on whether you are using InnoDB tables or not, choose one of the following:

If you are using InnoDB tables, and also to get the most consistent results with a raw data snapshot, shut
down the source server during the process, as follows:

1. Acquire a read lock and get the source's status. See Section 2.2.4, “Obtaining the Replication Source
Binary Log Coordinates”.

2. In a separate session, shut down the source server:

$> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

4. Restart the source server.

If you are not using InnoDB tables, you can get a snapshot of the system from a source without shutting
down the server as described in the following steps:

1. Acquire a read lock and get the source's status. See Section 2.2.4, “Obtaining the Replication Source
Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

$> tar cf /tmp/db.tar ./data
$> zip -r /tmp/db.zip ./data
$> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

11

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ft_stopword_file
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ft_min_word_len
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ft_max_word_len
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_cold_backup
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_slow_shutdown
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Setting Up Replicas

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, copy the files to each replica before starting
the replication process.

2.2.6 Setting Up Replicas

The following sections describe how to set up replicas. Before you proceed, ensure that you have:

• Configured the source with the necessary configuration properties. See Section 2.2.1, “Setting the
Replication Source Configuration”.

• Obtained the source status information, or a copy of the source's binary log index file made during
a shutdown for the data snapshot. See Section 2.2.4, “Obtaining the Replication Source Binary Log
Coordinates”.

• On the source, released the read lock:

mysql> UNLOCK TABLES;

• On the replica, edited the MySQL configuration. See Section 2.2.2, “Setting the Replica Configuration”.

The next steps depend on whether you have existing data to import to the replica or not. See Section 2.2.5,
“Choosing a Method for Data Snapshots” for more information. Choose one of the following:

• If you do not have a snapshot of a database to import, see Section 2.2.6.1, “Setting Up Replication with
New Source and Replicas”.

• If you have a snapshot of a database to import, see Section 2.2.6.2, “Setting Up Replication with Existing
Data”.

2.2.6.1 Setting Up Replication with New Source and Replicas

When there is no snapshot of a previous database to import, configure the replica to start replication from
the new source.

To set up replication between a source and a new replica:

1. Start up the replica.

2. Execute a CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement on the replica to set
the source configuration. See Section 2.2.7, “Setting the Source Configuration on the Replica”.

Perform these replica setup steps on each replica.

This method can also be used if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading the
data into a new source, the data is automatically replicated to the replicas.

If you are setting up a new replication environment using the data from a different existing database server
to create a new source, run the dump file generated from that server on the new source. The database
updates are automatically propagated to the replicas:

$> mysql -h source < fulldb.dump

2.2.6.2 Setting Up Replication with Existing Data

When setting up replication with existing data, transfer the snapshot from the source to the replica before
starting replication. The process for importing data to the replica depends on how you created the snapshot
of data on the source.

12

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Setting Up Replicas

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which enables
you to easily administer a group of MySQL server instances in MySQL Shell.
InnoDB Cluster wraps MySQL Group Replication in a programmatic environment
that enables you easily deploy a cluster of MySQL instances to achieve high
availability. In addition, InnoDB Cluster interfaces seamlessly with MySQL Router,
which enables your applications to connect to the cluster without writing your own
failover process. For similar use cases that do not require high availability, however,
you can use InnoDB ReplicaSet. Installation instructions for MySQL Shell can be
found here.

Note

If the replication source server or existing replica that you are copying to create the
new replica has any scheduled events, ensure that these are disabled on the new
replica before you start it. If an event runs on the new replica that has already run
on the source, the duplicated operation causes an error. The Event Scheduler is
controlled by the event_scheduler system variable, which defaults to ON from
MySQL 8.0, so events that are active on the original server run by default when
the new replica starts up. To stop all events from running on the new replica, set
the event_scheduler system variable to OFF or DISABLED on the new replica.
Alternatively, you can use the ALTER EVENT statement to set individual events to
DISABLE or DISABLE ON SLAVE to prevent them from running on the new replica.
You can list the events on a server using the SHOW statement or the Information
Schema EVENTS table. For more information, see Section 4.1.16, “Replication of
Invoked Features”.

As an alternative to creating a new replica in this way, MySQL Server's clone plugin can be used to
transfer all the data and replication settings from an existing replica to a clone. For instructions to use this
method, see Cloning for Replication.

Follow this procedure to set up replication with existing data:

1. If you used MySQL Server's clone plugin to create a clone from an existing replica (see Cloning for
Replication), the data is already transferred. Otherwise, import the data to the replica using one of the
following methods.

a. If you used mysqldump, start the replica server, ensuring that replication does not start by using the
--skip-slave-start option, or from MySQL 8.0.24, the skip_slave_start system variable.
Then import the dump file:

$> mysql < fulldb.dump

b. If you created a snapshot using the raw data files, extract the data files into your replica's data
directory. For example:

$> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the replica server can access
and modify them. Then start the replica server, ensuring that replication does not start by using the
--skip-slave-start option, or from MySQL 8.0.24, the skip_slave_start system variable.

2. Configure the replica with the replication coordinates from the source. This tells the replica the binary
log file and position within the file where replication needs to start. Also, configure the replica with the
login credentials and host name of the source. For more information on the CHANGE REPLICATION

13

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_event_scheduler
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_event_scheduler
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-replication.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-replication.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-replication.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Setting the Source Configuration on the Replica

SOURCE TO | CHANGE MASTER TO statement required, see Section 2.2.7, “Setting the Source
Configuration on the Replica”.

3. Start the replication threads by issuing a START REPLICA (or before MySQL 8.0.22, START SLAVE)
statement.

After you have performed this procedure, the replica connects to the source and replicates any updates
that have occurred on the source since the snapshot was taken. Error messages are issued to the replica's
error log if it is not able to replicate for any reason.

The replica uses information logged in its connection metadata repository and applier metadata repository
to keep track of how much of the source's binary log it has processed. From MySQL 8.0, by default,
these repositories are tables named slave_master_info and slave_relay_log_info in the mysql
database. Do not remove or edit these tables unless you know exactly what you are doing and fully
understand the implications. Even in that case, it is preferred that you use the CHANGE REPLICATION
SOURCE TO | CHANGE MASTER TO statement to change replication parameters. The replica uses the
values specified in the statement to update the replication metadata repositories automatically. See
Section 5.4, “Relay Log and Replication Metadata Repositories”, for more information.

Note

The contents of the replica's connection metadata repository override some of
the server options specified on the command line or in my.cnf. See Section 2.6,
“Replication and Binary Logging Options and Variables”, for more details.

A single snapshot of the source suffices for multiple replicas. To set up additional replicas, use the same
source snapshot and follow the replica portion of the procedure just described.

2.2.7 Setting the Source Configuration on the Replica

To set up the replica to communicate with the source for replication, configure the replica with the
necessary connection information. To do this, on the replica, execute the CHANGE REPLICATION
SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23),
replacing the option values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='source_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;
Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_host_name',
 -> SOURCE_USER='replication_user_name',
 -> SOURCE_PASSWORD='replication_password',
 -> SOURCE_LOG_FILE='recorded_log_file_name',
 -> SOURCE_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the source
MySQL server using TCP/IP.

The CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement has other options as
well. For example, it is possible to set up secure replication using SSL. For a full list of options, and
information about the maximum permissible length for the string-valued options, see CHANGE MASTER
TO Statement.

14

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Adding Replicas to a Replication Environment

Important

As noted in Section 2.2.3, “Creating a User for Replication”, if you are not
using a secure connection and the user account named in the SOURCE_USER |
MASTER_USER option authenticates with the caching_sha2_password plugin
(the default from MySQL 8.0), you must specify the SOURCE_PUBLIC_KEY_PATH
| MASTER_PUBLIC_KEY_PATH or GET_SOURCE_PUBLIC_KEY |
GET_MASTER_PUBLIC_KEY option in the CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO statement to enable RSA key pair-based password
exchange.

2.2.8 Adding Replicas to a Replication Environment

You can add another replica to an existing replication configuration without stopping the source server. To
do this, you can set up the new replica by copying the data directory of an existing replica, and giving the
new replica a different server ID (which is user-specified) and server UUID (which is generated at startup).

Note

If the replication source server or existing replica that you are copying to create the
new replica has any scheduled events, ensure that these are disabled on the new
replica before you start it. If an event runs on the new replica that has already run
on the source, the duplicated operation causes an error. The Event Scheduler is
controlled by the event_scheduler system variable, which defaults to ON from
MySQL 8.0, so events that are active on the original server run by default when
the new replica starts up. To stop all events from running on the new replica, set
the event_scheduler system variable to OFF or DISABLED on the new replica.
Alternatively, you can use the ALTER EVENT statement to set individual events to
DISABLE or DISABLE ON SLAVE to prevent them from running on the new replica.
You can list the events on a server using the SHOW statement or the Information
Schema EVENTS table. For more information, see Section 4.1.16, “Replication of
Invoked Features”.

As an alternative to creating a new replica in this way, MySQL Server's clone plugin can be used to
transfer all the data and replication settings from an existing replica to a clone. For instructions to use this
method, see Cloning for Replication.

To duplicate an existing replica without cloning, follow these steps:

1. Stop the existing replica and record the replica status information, particularly the source binary log
file and relay log file positions. You can view the replica status either in the Performance Schema
replication tables (see Performance Schema Replication Tables), or by issuing SHOW REPLICA
STATUS as follows:

mysql> STOP SLAVE;
mysql> SHOW SLAVE STATUS\G
Or from MySQL 8.0.22:
mysql> STOP REPLICA;
mysql> SHOW REPLICA STATUS\G

2. Shut down the existing replica:

$> mysqladmin shutdown

3. Copy the data directory from the existing replica to the new replica, including the log files and relay log
files. You can do this by creating an archive using tar or WinZip, or by performing a direct copy using
a tool such as cp or rsync.

15

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_event_scheduler
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_event_scheduler
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-replication.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Adding Replicas to a Replication Environment

Important

• Before copying, verify that all the files relating to the existing replica actually
are stored in the data directory. For example, the InnoDB system tablespace,
undo tablespace, and redo log might be stored in an alternative location.
InnoDB tablespace files and file-per-table tablespaces might have been
created in other directories. The binary logs and relay logs for the replica
might be in their own directories outside the data directory. Check through
the system variables that are set for the existing replica and look for any
alternative paths that have been specified. If you find any, copy these
directories over as well.

• During copying, if files have been used for the replication metadata
repositories (see Section 5.4, “Relay Log and Replication Metadata
Repositories”), ensure that you also copy these files from the existing replica
to the new replica. If tables have been used for the repositories, which is the
default from MySQL 8.0, the tables are in the data directory.

• After copying, delete the auto.cnf file from the copy of the data directory on
the new replica, so that the new replica is started with a different generated
server UUID. The server UUID must be unique.

A common problem that is encountered when adding new replicas is that the new replica fails with a
series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a replica and has his hostname
changed!! Please use '--relay-log=new_replica_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_replica_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This situation can occur if the relay_log system variable is not specified, as the relay log files
contain the host name as part of their file names. This is also true of the relay log index file if the
relay_log_index system variable is not used. For more information about these variables, see
Section 2.6, “Replication and Binary Logging Options and Variables”.

To avoid this problem, use the same value for relay_log on the new replica that was
used on the existing replica. If this option was not set explicitly on the existing replica, use
existing_replica_hostname-relay-bin. If this is not possible, copy the existing replica's relay
log index file to the new replica and set the relay_log_index system variable on the new replica to
match what was used on the existing replica. If this option was not set explicitly on the existing replica,
use existing_replica_hostname-relay-bin.index. Alternatively, if you have already tried to
start the new replica after following the remaining steps in this section and have encountered errors like
those described previously, then perform the following steps:

a. If you have not already done so, issue STOP REPLICA on the new replica.

If you have already started the existing replica again, issue STOP REPLICA on the existing replica
as well.

b. Copy the contents of the existing replica's relay log index file into the new replica's relay log index
file, making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

16

https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html

Replication with Global Transaction Identifiers

4. When copying is complete, restart the existing replica.

5. On the new replica, edit the configuration and give the new replica a unique server ID (using the
server_id system variable) that is not used by the source or any of the existing replicas.

6. Start the new replica server, ensuring that replication does not start yet by specifying the --skip-
slave-start option, or from MySQL 8.0.24, the skip_slave_start system variable. Use the
Performance Schema replication tables or issue SHOW REPLICA STATUS to confirm that the new
replica has the correct settings when compared with the existing replica. Also display the server ID and
server UUID and verify that these are correct and unique for the new replica.

7. Start the replica threads by issuing a START REPLICA statement. The new replica now uses the
information in its connection metadata repository to start the replication process.

2.3 Replication with Global Transaction Identifiers
This section explains transaction-based replication using global transaction identifiers (GTIDs). When
using GTIDs, each transaction can be identified and tracked as it is committed on the originating server
and applied by any replicas; this means that it is not necessary when using GTIDs to refer to log files
or positions within those files when starting a new replica or failing over to a new source, which greatly
simplifies these tasks. Because GTID-based replication is completely transaction-based, it is simple
to determine whether sources and replicas are consistent; as long as all transactions committed on a
source are also committed on a replica, consistency between the two is guaranteed. You can use either
statement-based or row-based replication with GTIDs (see Section 5.1, “Replication Formats”); however,
for best results, we recommend that you use the row-based format.

GTIDs are always preserved between source and replica. This means that you can always determine
the source for any transaction applied on any replica by examining its binary log. In addition, once a
transaction with a given GTID is committed on a given server, any subsequent transaction having the same
GTID is ignored by that server. Thus, a transaction committed on the source can be applied no more than
once on the replica, which helps to guarantee consistency.

This section discusses the following topics:

• How GTIDs are defined and created, and how they are represented in a MySQL server (see
Section 2.3.1, “GTID Format and Storage”).

• The life cycle of a GTID (see Section 2.3.2, “GTID Life Cycle”).

• The auto-positioning function for synchronizing a replica and source that use GTIDs (see Section 2.3.3,
“GTID Auto-Positioning”).

• A general procedure for setting up and starting GTID-based replication (see Section 2.3.4, “Setting Up
Replication Using GTIDs”).

• Suggested methods for provisioning new replication servers when using GTIDs (see Section 2.3.5,
“Using GTIDs for Failover and Scaleout”).

• Restrictions and limitations that you should be aware of when using GTID-based replication (see
Section 2.3.7, “Restrictions on Replication with GTIDs”).

• Stored functions that you can use to work with GTIDs (see Section 2.3.8, “Stored Function Examples to
Manipulate GTIDs”).

For information about MySQL Server options and variables relating to GTID-based replication, see
Section 2.6.5, “Global Transaction ID System Variables”. See also Functions Used with Global Transaction
Identifiers (GTIDs), which describes SQL functions supported by MySQL 8.0 for use with GTIDs.

17

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html

GTID Format and Storage

2.3.1 GTID Format and Storage

A global transaction identifier (GTID) is a unique identifier created and associated with each transaction
committed on the server of origin (the source). This identifier is unique not only to the server on which it
originated, but is unique across all servers in a given replication topology.

GTID assignment distinguishes between client transactions, which are committed on the source, and
replicated transactions, which are reproduced on a replica. When a client transaction is committed on
the source, it is assigned a new GTID, provided that the transaction was written to the binary log. Client
transactions are guaranteed to have monotonically increasing GTIDs without gaps between the generated
numbers. If a client transaction is not written to the binary log (for example, because the transaction was
filtered out, or the transaction was read-only), it is not assigned a GTID on the server of origin.

Replicated transactions retain the same GTID that was assigned to the transaction on the server of
origin. The GTID is present before the replicated transaction begins to execute, and is persisted even
if the replicated transaction is not written to the binary log on the replica, or is filtered out on the replica.
The MySQL system table mysql.gtid_executed is used to preserve the assigned GTIDs of all the
transactions applied on a MySQL server, except those that are stored in a currently active binary log file.

The auto-skip function for GTIDs means that a transaction committed on the source can be applied no
more than once on the replica, which helps to guarantee consistency. Once a transaction with a given
GTID has been committed on a given server, any attempt to execute a subsequent transaction with the
same GTID is ignored by that server. No error is raised, and no statement in the transaction is executed.

If a transaction with a given GTID has started to execute on a server, but has not yet committed or rolled
back, any attempt to start a concurrent transaction on the server with the same GTID blocks. The server
neither begins to execute the concurrent transaction nor returns control to the client. Once the first attempt
at the transaction commits or rolls back, concurrent sessions that were blocking on the same GTID may
proceed. If the first attempt rolled back, one concurrent session proceeds to attempt the transaction,
and any other concurrent sessions that were blocking on the same GTID remain blocked. If the first
attempt committed, all the concurrent sessions stop being blocked, and auto-skip all the statements of the
transaction.

A GTID is represented as a pair of coordinates, separated by a colon character (:), as shown here:

GTID = source_id:transaction_id

The source_id identifies the originating server. Normally, the source's server_uuid is used for
this purpose. The transaction_id is a sequence number determined by the order in which the
transaction was committed on the source. For example, the first transaction to be committed has 1 as its
transaction_id, and the tenth transaction to be committed on the same originating server is assigned
a transaction_id of 10. It is not possible for a transaction to have 0 as a sequence number in a
GTID. For example, the twenty-third transaction to be committed originally on the server with the UUID
3E11FA47-71CA-11E1-9E33-C80AA9429562 has this GTID:

3E11FA47-71CA-11E1-9E33-C80AA9429562:23

The upper limit for sequence numbers for GTIDs on a server instance is the number of non-negative
values for a signed 64-bit integer (2 to the power of 63 minus 1, or 9,223,372,036,854,775,807). If the
server runs out of GTIDs, it takes the action specified by binlog_error_action. From MySQL 8.0.23, a
warning message is issued when the server instance is approaching the limit.

The GTID for a transaction is shown in the output from mysqlbinlog, and it is used to identify
an individual transaction in the Performance Schema replication status tables, for example,
replication_applier_status_by_worker. The value stored by the gtid_next system variable
(@@GLOBAL.gtid_next) is a single GTID.

18

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html

GTID Format and Storage

GTID Sets

A GTID set is a set comprising one or more single GTIDs or ranges of GTIDs. GTID sets are used
in a MySQL server in several ways. For example, the values stored by the gtid_executed and
gtid_purged system variables are GTID sets. The START REPLICA (or before MySQL 8.0.22, START
SLAVE) clauses UNTIL SQL_BEFORE_GTIDS and UNTIL SQL_AFTER_GTIDS can be used to make a
replica process transactions only up to the first GTID in a GTID set, or stop after the last GTID in a GTID
set. The built-in functions GTID_SUBSET() and GTID_SUBTRACT() require GTID sets as input.

A range of GTIDs originating from the same server can be collapsed into a single expression, as shown
here:

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-5

The above example represents the first through fifth transactions originating on the MySQL server whose
server_uuid is 3E11FA47-71CA-11E1-9E33-C80AA9429562. Multiple single GTIDs or ranges of
GTIDs originating from the same server can also be included in a single expression, with the GTIDs or
ranges separated by colons, as in the following example:

3E11FA47-71CA-11E1-9E33-C80AA9429562:1-3:11:47-49

A GTID set can include any combination of single GTIDs and ranges of GTIDs, and it can include GTIDs
originating from different servers. This example shows the GTID set stored in the gtid_executed system
variable (@@GLOBAL.gtid_executed) of a replica that has applied transactions from more than one
source:

2174B383-5441-11E8-B90A-C80AA9429562:1-3, 24DA167-0C0C-11E8-8442-00059A3C7B00:1-19

When GTID sets are returned from server variables, UUIDs are in alphabetical order, and numeric intervals
are merged and in ascending order.

The syntax for a GTID set is as follows:

gtid_set:
 uuid_set [, uuid_set] ...
 | ''

uuid_set:
 uuid:interval[:interval]...

uuid:
 hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh

h:
 [0-9|A-F]

interval:
 n[-n]

 (n >= 1)

mysql.gtid_executed Table

GTIDs are stored in a table named gtid_executed, in the mysql database. A row in this table contains,
for each GTID or set of GTIDs that it represents, the UUID of the originating server, and the starting and
ending transaction IDs of the set; for a row referencing only a single GTID, these last two values are the
same.

The mysql.gtid_executed table is created (if it does not already exist) when MySQL Server is installed
or upgraded, using a CREATE TABLE statement similar to that shown here:

19

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subset
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subtract
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

GTID Format and Storage

CREATE TABLE gtid_executed (
 source_uuid CHAR(36) NOT NULL,
 interval_start BIGINT(20) NOT NULL,
 interval_end BIGINT(20) NOT NULL,
 PRIMARY KEY (source_uuid, interval_start)
)

Warning

As with other MySQL system tables, do not attempt to create or modify this table
yourself.

The mysql.gtid_executed table is provided for internal use by the MySQL server. It enables a replica
to use GTIDs when binary logging is disabled on the replica, and it enables retention of the GTID state
when the binary logs have been lost. Note that the mysql.gtid_executed table is cleared if you issue
RESET MASTER.

GTIDs are stored in the mysql.gtid_executed table only when gtid_mode is ON or ON_PERMISSIVE.
If binary logging is disabled (log_bin is OFF), or if log_replica_updates or log_slave_updates
is disabled, the server stores the GTID belonging to each transaction together with the transaction
in the buffer when the transaction is committed, and the background thread adds the contents of the
buffer periodically as one or more entries to the mysql.gtid_executed table. In addition, the table
is compressed periodically at a user-configurable rate, as described in mysql.gtid_executed Table
Compression.

If binary logging is enabled (log_bin is ON), from MySQL 8.0.17 for the InnoDB storage engine only,
the server updates the mysql.gtid_executed table in the same way as when binary logging or
replica update logging is disabled, storing the GTID for each transaction at transaction commit time.
However, in releases before MySQL 8.0.17, and for other storage engines, the server only updates
the mysql.gtid_executed table when the binary log is rotated or the server is shut down. At these
times, the server writes GTIDs for all transactions that were written into the previous binary log into the
mysql.gtid_executed table. This situation applies on a source prior to MySQL 8.0.17, or on a replica
prior to MySQL 8.0.17 where binary logging is enabled, or with storage engines other than InnoDB, it has
the following consequences:

• In the event of the server stopping unexpectedly, the set of GTIDs from the current binary log file is not
saved in the mysql.gtid_executed table. These GTIDs are added to the table from the binary log
file during recovery so that replication can continue. The exception to this is if you disable binary logging
when the server is restarted (using --skip-log-bin or --disable-log-bin). In that case, the
server cannot access the binary log file to recover the GTIDs, so replication cannot be started.

• The mysql.gtid_executed table does not hold a complete record of the GTIDs for all executed
transactions. That information is provided by the global value of the gtid_executed system
variable. In releases before MySQL 8.0.17 and with storage engines other than InnoDB, always use
@@GLOBAL.gtid_executed, which is updated after every commit, to represent the GTID state for the
MySQL server, instead of querying the mysql.gtid_executed table.

The MySQL server can write to the mysql.gtid_executed table even when the server is in read
only or super read only mode. In releases before MySQL 8.0.17, this ensures that the binary log file
can still be rotated in these modes. If the mysql.gtid_executed table cannot be accessed for
writes, and the binary log file is rotated for any reason other than reaching the maximum file size
(max_binlog_size), the current binary log file continues to be used. An error message is returned to the
client that requested the rotation, and a warning is logged on the server. If the mysql.gtid_executed
table cannot be accessed for writes and max_binlog_size is reached, the server responds according to
its binlog_error_action setting. If IGNORE_ERROR is set, an error is logged on the server and binary
logging is halted, or if ABORT_SERVER is set, the server shuts down.

20

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html

GTID Format and Storage

mysql.gtid_executed Table Compression

Over the course of time, the mysql.gtid_executed table can become filled with many rows referring to
individual GTIDs that originate on the same server, and whose transaction IDs make up a range, similar to
what is shown here:

+--------------------------------------+----------------+--------------+
| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
3E11FA47-71CA-11E1-9E33-C80AA9429562	37	37
3E11FA47-71CA-11E1-9E33-C80AA9429562	38	38
3E11FA47-71CA-11E1-9E33-C80AA9429562	39	39
3E11FA47-71CA-11E1-9E33-C80AA9429562	40	40
3E11FA47-71CA-11E1-9E33-C80AA9429562	41	41
3E11FA47-71CA-11E1-9E33-C80AA9429562	42	42
3E11FA47-71CA-11E1-9E33-C80AA9429562	43	43
...

To save space, the MySQL server can compress the mysql.gtid_executed table periodically by
replacing each such set of rows with a single row that spans the entire interval of transaction identifiers,
like this:

+--------------------------------------+----------------+--------------+
| source_uuid | interval_start | interval_end |
|--------------------------------------+----------------+--------------|
| 3E11FA47-71CA-11E1-9E33-C80AA9429562 | 37 | 43 |
...

The server can carry out compression using a dedicated foreground thread named thread/sql/
compress_gtid_table. This thread is not listed in the output of SHOW PROCESSLIST, but it can be
viewed as a row in the threads table, as shown here:

mysql> SELECT * FROM performance_schema.threads WHERE NAME LIKE '%gtid%'\G
*************************** 1. row ***************************
 THREAD_ID: 26
 NAME: thread/sql/compress_gtid_table
 TYPE: FOREGROUND
 PROCESSLIST_ID: 1
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: Daemon
 PROCESSLIST_TIME: 1509
 PROCESSLIST_STATE: Suspending
 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 18677

When binary logging is enabled on the server, this compression method is not used, and instead the
mysql.gtid_executed table is compressed on each binary log rotation. However, when binary
logging is disabled on the server, the thread/sql/compress_gtid_table thread sleeps until
a specified number of transactions have been executed, then wakes up to perform compression of
the mysql.gtid_executed table. It then sleeps until the same number of transactions have taken
place, then wakes up to perform the compression again, repeating this loop indefinitely. The number of
transactions that elapse before the table is compressed, and thus the compression rate, is controlled
by the value of the gtid_executed_compression_period system variable. Setting that value to 0
means that the thread never wakes up, meaning that this explicit compression method is not used. Instead,
compression occurs implicitly as required.

21

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html

GTID Life Cycle

From MySQL 8.0.17, InnoDB transactions are written to the mysql.gtid_executed table by a
separate process to non-InnoDB transactions. This process is controlled by a different thread, innodb/
clone_gtid_thread. This GTID persister thread collects GTIDs in groups, flushes them to the
mysql.gtid_executed table, then compresses the table. If the server has a mix of InnoDB transactions
and non-InnoDB transactions, which are written to the mysql.gtid_executed table individually, the
compression carried out by the compress_gtid_table thread interferes with the work of the GTID
persister thread and can slow it significantly. For this reason, from that release it is recommended that you
set gtid_executed_compression_period to 0, so that the compress_gtid_table thread is never
activated.

From MySQL 8.0.23, the gtid_executed_compression_period default value is 0, and both InnoDB
and non-InnoDB transactions are written to the mysql.gtid_executed table by the GTID persister
thread.

For releases before MySQL 8.0.17, the default value of 1000 for
gtid_executed_compression_period can be used, meaning that compression of the table is
performed after each 1000 transactions, or you can choose an alternative value. In those releases,
if you set a value of 0 and binary logging is disabled, explicit compression is not performed on the
mysql.gtid_executed table, and you should be prepared for a potentially large increase in the amount
of disk space that may be required by the table if you do this.

When a server instance is started, if gtid_executed_compression_period is set to a nonzero value
and the thread/sql/compress_gtid_table thread is launched, in most server configurations, explicit
compression is performed for the mysql.gtid_executed table. In releases before MySQL 8.0.17 when
binary logging is enabled, compression is triggered by the fact of the binary log being rotated at startup. In
releases from MySQL 8.0.20, compression is triggered by the thread launch. In the intervening releases,
compression does not take place at startup.

2.3.2 GTID Life Cycle

The life cycle of a GTID consists of the following steps:

1. A transaction is executed and committed on the source. This client transaction is assigned a GTID
composed of the source's UUID and the smallest nonzero transaction sequence number not yet used
on this server. The GTID is written to the source's binary log (immediately preceding the transaction
itself in the log). If a client transaction is not written to the binary log (for example, because the
transaction was filtered out, or the transaction was read-only), it is not assigned a GTID.

2. If a GTID was assigned for the transaction, the GTID is persisted atomically at commit time by writing it
to the binary log at the beginning of the transaction (as a Gtid_log_event). Whenever the binary log
is rotated or the server is shut down, the server writes GTIDs for all transactions that were written into
the previous binary log file into the mysql.gtid_executed table.

3. If a GTID was assigned for the transaction, the GTID is externalized non-atomically (very shortly after
the transaction is committed) by adding it to the set of GTIDs in the gtid_executed system variable
(@@GLOBAL.gtid_executed). This GTID set contains a representation of the set of all committed
GTID transactions, and it is used in replication as a token that represents the server state. With binary
logging enabled (as required for the source), the set of GTIDs in the gtid_executed system variable
is a complete record of the transactions applied, but the mysql.gtid_executed table is not, because
the most recent history is still in the current binary log file.

4. After the binary log data is transmitted to the replica and stored in the replica's relay log (using
established mechanisms for this process, see Chapter 5, Replication Implementation, for details), the
replica reads the GTID and sets the value of its gtid_next system variable as this GTID. This tells the
replica that the next transaction must be logged using this GTID. It is important to note that the replica
sets gtid_next in a session context.

22

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

GTID Life Cycle

5. The replica verifies that no thread has yet taken ownership of the GTID in gtid_next in order to
process the transaction. By reading and checking the replicated transaction's GTID first, before
processing the transaction itself, the replica guarantees not only that no previous transaction having
this GTID has been applied on the replica, but also that no other session has already read this GTID
but has not yet committed the associated transaction. So if multiple clients attempt to apply the same
transaction concurrently, the server resolves this by letting only one of them execute. The gtid_owned
system variable (@@GLOBAL.gtid_owned) for the replica shows each GTID that is currently in use
and the ID of the thread that owns it. If the GTID has already been used, no error is raised, and the
auto-skip function is used to ignore the transaction.

6. If the GTID has not been used, the replica applies the replicated transaction. Because gtid_next is
set to the GTID already assigned by the source, the replica does not attempt to generate a new GTID
for this transaction, but instead uses the GTID stored in gtid_next.

7. If binary logging is enabled on the replica, the GTID is persisted atomically at commit time by writing it
to the binary log at the beginning of the transaction (as a Gtid_log_event). Whenever the binary log
is rotated or the server is shut down, the server writes GTIDs for all transactions that were written into
the previous binary log file into the mysql.gtid_executed table.

8. If binary logging is disabled on the replica, the GTID is persisted atomically by writing it directly into the
mysql.gtid_executed table. MySQL appends a statement to the transaction to insert the GTID into
the table. From MySQL 8.0, this operation is atomic for DDL statements as well as for DML statements.
In this situation, the mysql.gtid_executed table is a complete record of the transactions applied on
the replica.

9. Very shortly after the replicated transaction is committed on the replica, the GTID is externalized
non-atomically by adding it to the set of GTIDs in the gtid_executed system variable
(@@GLOBAL.gtid_executed) for the replica. As for the source, this GTID set contains a
representation of the set of all committed GTID transactions. If binary logging is disabled on the replica,
the mysql.gtid_executed table is also a complete record of the transactions applied on the replica.
If binary logging is enabled on the replica, meaning that some GTIDs are only recorded in the binary
log, the set of GTIDs in the gtid_executed system variable is the only complete record.

Client transactions that are completely filtered out on the source are not assigned a GTID, therefore
they are not added to the set of transactions in the gtid_executed system variable, or added to the
mysql.gtid_executed table. However, the GTIDs of replicated transactions that are completely filtered
out on the replica are persisted. If binary logging is enabled on the replica, the filtered-out transaction is
written to the binary log as a Gtid_log_event followed by an empty transaction containing only BEGIN
and COMMIT statements. If binary logging is disabled, the GTID of the filtered-out transaction is written
to the mysql.gtid_executed table. Preserving the GTIDs for filtered-out transactions ensures that
the mysql.gtid_executed table and the set of GTIDs in the gtid_executed system variable can
be compressed. It also ensures that the filtered-out transactions are not retrieved again if the replica
reconnects to the source, as explained in Section 2.3.3, “GTID Auto-Positioning”.

On a multithreaded replica (with replica_parallel_workers > 0 or slave_parallel_workers
> 0), transactions can be applied in parallel, so replicated transactions can commit out of order (unless
replica_preserve_commit_order=1 or slave_preserve_commit_order=1 is set). When that
happens, the set of GTIDs in the gtid_executed system variable contains multiple GTID ranges with
gaps between them. (On a source or a single-threaded replica, there are monotonically increasing GTIDs
without gaps between the numbers.) Gaps on multithreaded replicas only occur among the most recently
applied transactions, and are filled in as replication progresses. When replication threads are stopped
cleanly using the STOP REPLICA statement, ongoing transactions are applied so that the gaps are filled
in. In the event of a shutdown such as a server failure or the use of the KILL statement to stop replication
threads, the gaps might remain.

23

https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/kill.html

GTID Life Cycle

What changes are assigned a GTID?

The typical scenario is that the server generates a new GTID for a committed transaction. However, GTIDs
can also be assigned to other changes besides transactions, and in some cases a single transaction can
be assigned multiple GTIDs.

Every database change (DDL or DML) that is written to the binary log is assigned a GTID. This includes
changes that are autocommitted, and changes that are committed using BEGIN and COMMIT or START
TRANSACTION statements. A GTID is also assigned to the creation, alteration, or deletion of a database,
and of a non-table database object such as a procedure, function, trigger, event, view, user, role, or grant.

Non-transactional updates as well as transactional updates are assigned GTIDs. In addition, for a non-
transactional update, if a disk write failure occurs while attempting to write to the binary log cache and a
gap is therefore created in the binary log, the resulting incident log event is assigned a GTID.

When a table is automatically dropped by a generated statement in the binary log, a GTID is assigned
to the statement. Temporary tables are dropped automatically when a replica begins to apply
events from a source that has just been started, and when statement-based replication is in use
(binlog_format=STATEMENT) and a user session that has open temporary tables disconnects. Tables
that use the MEMORY storage engine are deleted automatically the first time they are accessed after the
server is started, because rows might have been lost during the shutdown.

When a transaction is not written to the binary log on the server of origin, the server does not assign
a GTID to it. This includes transactions that are rolled back and transactions that are executed while
binary logging is disabled on the server of origin, either globally (with --skip-log-bin specified in the
server's configuration) or for the session (SET @@SESSION.sql_log_bin = 0). This also includes no-
op transactions when row-based replication is in use (binlog_format=ROW).

XA transactions are assigned separate GTIDs for the XA PREPARE phase of the transaction and the XA
COMMIT or XA ROLLBACK phase of the transaction. XA transactions are persistently prepared so that
users can commit them or roll them back in the case of a failure (which in a replication topology might
include a failover to another server). The two parts of the transaction are therefore replicated separately,
so they must have their own GTIDs, even though a non-XA transaction that is rolled back would not have a
GTID.

In the following special cases, a single statement can generate multiple transactions, and therefore be
assigned multiple GTIDs:

• A stored procedure is invoked that commits multiple transactions. One GTID is generated for each
transaction that the procedure commits.

• A multi-table DROP TABLE statement drops tables of different types. Multiple GTIDs can be generated
if any of the tables use storage engines that do not support atomic DDL, or if any of the tables are
temporary tables.

• A CREATE TABLE ... SELECT statement is issued when row-based replication is in use
(binlog_format=ROW). One GTID is generated for the CREATE TABLE action and one GTID is
generated for the row-insert actions.

The gtid_next System Variable

By default, for new transactions committed in user sessions, the server automatically generates and
assigns a new GTID. When the transaction is applied on a replica, the GTID from the server of origin is
preserved. You can change this behavior by setting the session value of the gtid_next system variable:

24

https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

GTID Life Cycle

• When gtid_next is set to AUTOMATIC, which is the default, and a transaction is committed and written
to the binary log, the server automatically generates and assigns a new GTID. If a transaction is rolled
back or not written to the binary log for another reason, the server does not generate and assign a GTID.

• If you set gtid_next to a valid GTID (consisting of a UUID and a transaction sequence number,
separated by a colon), the server assigns that GTID to your transaction. This GTID is assigned and
added to gtid_executed even when the transaction is not written to the binary log, or when the
transaction is empty.

Note that after you set gtid_next to a specific GTID, and the transaction has been committed or rolled
back, an explicit SET @@SESSION.gtid_next statement must be issued before any other statement.
You can use this to set the GTID value back to AUTOMATIC if you do not want to assign any more GTIDs
explicitly.

When replication applier threads apply replicated transactions, they use this technique, setting
@@SESSION.gtid_next explicitly to the GTID of the replicated transaction as assigned on the server of
origin. This means the GTID from the server of origin is retained, rather than a new GTID being generated
and assigned by the replica. It also means the GTID is added to gtid_executed on the replica even
when binary logging or replica update logging is disabled on the replica, or when the transaction is a no-op
or is filtered out on the replica.

It is possible for a client to simulate a replicated transaction by setting @@SESSION.gtid_next to a
specific GTID before executing the transaction. This technique is used by mysqlbinlog to generate a
dump of the binary log that the client can replay to preserve GTIDs. A simulated replicated transaction
committed through a client is completely equivalent to a replicated transaction committed through a
replication applier thread, and they cannot be distinguished after the fact.

The gtid_purged System Variable

The set of GTIDs in the gtid_purged system variable (@@GLOBAL.gtid_purged) contains the GTIDs
of all the transactions that have been committed on the server, but do not exist in any binary log file on
the server. gtid_purged is a subset of gtid_executed. The following categories of GTIDs are in
gtid_purged:

• GTIDs of replicated transactions that were committed with binary logging disabled on the replica.

• GTIDs of transactions that were written to a binary log file that has now been purged.

• GTIDs that were added explicitly to the set by the statement SET @@GLOBAL.gtid_purged.

You can change the value of gtid_purged in order to record on the server that the transactions in a
certain GTID set have been applied, although they do not exist in any binary log on the server. When you
add GTIDs to gtid_purged, they are also added to gtid_executed. An example use case for this
action is when you are restoring a backup of one or more databases on a server, but you do not have the
relevant binary logs containing the transactions on the server. Before MySQL 8.0, you could only change
the value of gtid_purged when gtid_executed (and therefore gtid_purged) was empty. From
MySQL 8.0, this restriction does not apply, and you can also choose whether to replace the whole GTID
set in gtid_purged with a specified GTID set, or to add a specified GTID set to the GTIDs already in
gtid_purged. For details of how to do this, see the description for gtid_purged.

The sets of GTIDs in the gtid_executed and gtid_purged system variables are initialized when
the server starts. Every binary log file begins with the event Previous_gtids_log_event, which
contains the set of GTIDs in all previous binary log files (composed from the GTIDs in the preceding file's
Previous_gtids_log_event, and the GTIDs of every Gtid_log_event in the preceding file itself).
The contents of Previous_gtids_log_event in the oldest and most recent binary log files are used to
compute the gtid_executed and gtid_purged sets at server startup:

25

GTID Life Cycle

• gtid_executed is computed as the union of the GTIDs in Previous_gtids_log_event in the
most recent binary log file, the GTIDs of transactions in that binary log file, and the GTIDs stored in the
mysql.gtid_executed table. This GTID set contains all the GTIDs that have been used (or added
explicitly to gtid_purged) on the server, whether or not they are currently in a binary log file on the
server. It does not include the GTIDs for transactions that are currently being processed on the server
(@@GLOBAL.gtid_owned).

• gtid_purged is computed by first adding the GTIDs in Previous_gtids_log_event in the most
recent binary log file and the GTIDs of transactions in that binary log file. This step gives the set of
GTIDs that are currently, or were once, recorded in a binary log on the server (gtids_in_binlog).
Next, the GTIDs in Previous_gtids_log_event in the oldest binary log file are subtracted from
gtids_in_binlog. This step gives the set of GTIDs that are currently recorded in a binary log on the
server (gtids_in_binlog_not_purged). Finally, gtids_in_binlog_not_purged is subtracted
from gtid_executed. The result is the set of GTIDs that have been used on the server, but are not
currently recorded in a binary log file on the server, and this result is used to initialize gtid_purged.

If binary logs from MySQL 5.7.7 or older are involved in these computations, it is possible for incorrect
GTID sets to be computed for gtid_executed and gtid_purged, and they remain incorrect even if
the server is later restarted. For details, see the description for the binlog_gtid_simple_recovery
system variable, which controls how the binary logs are iterated to compute the GTID sets. If one of the
situations described there applies on a server, set binlog_gtid_simple_recovery=FALSE in the
server's configuration file before starting it. That setting makes the server iterate all the binary log files (not
just the newest and oldest) to find where GTID events start to appear. This process could take a long time
if the server has a large number of binary log files without GTID events.

Resetting the GTID Execution History

If you need to reset the GTID execution history on a server, use the RESET MASTER statement. For
example, you might need to do this after carrying out test queries to verify a replication setup on new
GTID-enabled servers, or when you want to join a new server to a replication group but it contains some
unwanted local transactions that are not accepted by Group Replication.

Warning

Use RESET MASTER with caution to avoid losing any wanted GTID execution
history and binary log files.

Before issuing RESET MASTER, ensure that you have backups of the server's binary log files and binary
log index file, if any, and obtain and save the GTID set held in the global value of the gtid_executed
system variable (for example, by issuing a SELECT @@GLOBAL.gtid_executed statement and saving
the results). If you are removing unwanted transactions from that GTID set, use mysqlbinlog to examine
the contents of the transactions to ensure that they have no value, contain no data that must be saved or
replicated, and did not result in data changes on the server.

When you issue RESET MASTER, the following reset operations are carried out:

• The value of the gtid_purged system variable is set to an empty string ('').

• The global value (but not the session value) of the gtid_executed system variable is set to an empty
string.

• The mysql.gtid_executed table is cleared (see mysql.gtid_executed Table).

• If the server has binary logging enabled, the existing binary log files are deleted and the binary log index
file is cleared.

26

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html

GTID Auto-Positioning

Note that RESET MASTER is the method to reset the GTID execution history even if the server is a replica
where binary logging is disabled. RESET REPLICA has no effect on the GTID execution history.

2.3.3 GTID Auto-Positioning

GTIDs replace the file-offset pairs previously required to determine points for starting, stopping, or
resuming the flow of data between source and replica. When GTIDs are in use, all the information that the
replica needs for synchronizing with the source is obtained directly from the replication data stream.

To start a replica using GTID-based replication, you need to enable the SOURCE_AUTO_POSITION |
MASTER_AUTO_POSITION option in the CHANGE REPLICATION SOURCE TO statement (from MySQL
8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). The alternative SOURCE_LOG_FILE |
MASTER_LOG_FILE and SOURCE_LOG_POS | MASTER_LOG_POS options specify the name of the log file
and the starting position within the file, but with GTIDs the replica does not need this nonlocal data.. For full
instructions to configure and start sources and replicas using GTID-based replication, see Section 2.3.4,
“Setting Up Replication Using GTIDs”.

The SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option is disabled by default. If multi-source
replication is enabled on the replica, you need to set the option for each applicable replication channel.
Disabling the SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option again causes the replica
to revert to position-based replication; this means that, when GTID_ONLY=ON, some positions may be
marked as invalid, in which case you must also specify both SOURCE_LOG_FILE | MASTER_LOG_FILE
and SOURCE_LOG_POS | MASTER_LOG_POS when disabling SOURCE_AUTO_POSITION |
MASTER_AUTO_POSITION.

When a replica has GTIDs enabled (GTID_MODE=ON, ON_PERMISSIVE, or OFF_PERMISSIVE
) and the MASTER_AUTO_POSITION option enabled, auto-positioning is activated for connection
to the source. The source must have GTID_MODE=ON set in order for the connection to succeed.
In the initial handshake, the replica sends a GTID set containing the transactions that it has
already received, committed, or both. This GTID set is equal to the union of the set of GTIDs
in the gtid_executed system variable (@@GLOBAL.gtid_executed), and the set of GTIDs
recorded in the Performance Schema replication_connection_status table as received
transactions (the result of the statement SELECT RECEIVED_TRANSACTION_SET FROM
PERFORMANCE_SCHEMA.replication_connection_status).

The source responds by sending all transactions recorded in its binary log whose GTID is not included
in the GTID set sent by the replica. To do this, the source first identifies the appropriate binary log file to
begin working with, by checking the Previous_gtids_log_event in the header of each of its binary
log files, starting with the most recent. When the source finds the first Previous_gtids_log_event
which contains no transactions that the replica is missing, it begins with that binary log file. This method is
efficient and only takes a significant amount of time if the replica is behind the source by a large number of
binary log files. The source then reads the transactions in that binary log file and subsequent files up to the
current one, sending the transactions with GTIDs that the replica is missing, and skipping the transactions
that were in the GTID set sent by the replica. The elapsed time until the replica receives the first missing
transaction depends on its offset in the binary log file. This exchange ensures that the source only sends
the transactions with a GTID that the replica has not already received or committed. If the replica receives
transactions from more than one source, as in the case of a diamond topology, the auto-skip function
ensures that the transactions are not applied twice.

If any of the transactions that should be sent by the source have been purged from the source's binary log,
or added to the set of GTIDs in the gtid_purged system variable by another method, the source sends
the error ER_MASTER_HAS_PURGED_REQUIRED_GTIDS to the replica, and replication does not start. The
GTIDs of the missing purged transactions are identified and listed in the source's error log in the warning
message ER_FOUND_MISSING_GTIDS. The replica cannot recover automatically from this error because

27

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_master_has_purged_required_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_found_missing_gtids

Setting Up Replication Using GTIDs

parts of the transaction history that are needed to catch up with the source have been purged. Attempting
to reconnect without the MASTER_AUTO_POSITION option enabled only results in the loss of the purged
transactions on the replica. The correct approach to recover from this situation is for the replica to replicate
the missing transactions listed in the ER_FOUND_MISSING_GTIDS message from another source, or
for the replica to be replaced by a new replica created from a more recent backup. Consider revising the
binary log expiration period (binlog_expire_logs_seconds) on the source to ensure that the situation
does not occur again.

If during the exchange of transactions it is found that the replica has received or committed transactions
with the source's UUID in the GTID, but the source itself does not have a record of them, the source sends
the error ER_SLAVE_HAS_MORE_GTIDS_THAN_MASTER to the replica and replication does not start. This
situation can occur if a source that does not have sync_binlog=1 set experiences a power failure or
operating system crash, and loses committed transactions that have not yet been synchronized to the
binary log file, but have been received by the replica. The source and replica can diverge if any clients
commit transactions on the source after it is restarted, which can lead to the situation where the source
and replica are using the same GTID for different transactions. The correct approach to recover from
this situation is to check manually whether the source and replica have diverged. If the same GTID is
now in use for different transactions, you either need to perform manual conflict resolution for individual
transactions as required, or remove either the source or the replica from the replication topology. If the
issue is only missing transactions on the source, you can make the source into a replica instead, allow it to
catch up with the other servers in the replication topology, and then make it a source again if needed.

For a multi-source replica in a diamond topology (where the replica replicates from two or more sources,
which in turn replicate from a common source), when GTID-based replication is in use, ensure that any
replication filters or other channel configuration are identical on all channels on the multi-source replica.
With GTID-based replication, filters are applied only to the transaction data, and GTIDs are not filtered
out. This happens so that a replica’s GTID set stays consistent with the source’s, meaning GTID auto-
positioning can be used without re-acquiring filtered out transactions each time. In the case where the
downstream replica is multi-source and receives the same transaction from multiple sources in a diamond
topology, the downstream replica now has multiple versions of the transaction, and the result depends
on which channel applies the transaction first. The second channel to attempt it skips the transaction
using GTID auto-skip, because the transaction’s GTID was added to the gtid_executed set by the first
channel. With identical filtering on the channels, there is no problem because all versions of the transaction
contain the same data, so the results are the same. However, with different filtering on the channels, the
database can become inconsistent and replication can hang.

2.3.4 Setting Up Replication Using GTIDs

This section describes a process for configuring and starting GTID-based replication in MySQL 8.0. This
is a “cold start” procedure that assumes either that you are starting the source server for the first time, or
that it is possible to stop it; for information about provisioning replicas using GTIDs from a running source
server, see Section 2.3.5, “Using GTIDs for Failover and Scaleout”. For information about changing GTID
mode on servers online, see Section 2.4, “Changing GTID Mode on Online Servers”.

The key steps in this startup process for the simplest possible GTID replication topology, consisting of one
source and one replica, are as follows:

1. If replication is already running, synchronize both servers by making them read-only.

2. Stop both servers.

3. Restart both servers with GTIDs enabled and the correct options configured.

The mysqld options necessary to start the servers as described are discussed in the example that
follows later in this section.

28

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_found_missing_gtids
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_slave_has_more_gtids_than_master

Setting Up Replication Using GTIDs

4. Instruct the replica to use the source as the replication data source and to use auto-positioning. The
SQL statements needed to accomplish this step are described in the example that follows later in this
section.

5. Take a new backup. Binary logs containing transactions without GTIDs cannot be used on servers
where GTIDs are enabled, so backups taken before this point cannot be used with your new
configuration.

6. Start the replica, then disable read-only mode on both servers, so that they can accept updates.

In the following example, two servers are already running as source and replica, using MySQL's binary log
position-based replication protocol. If you are starting with new servers, see Section 2.2.3, “Creating a User
for Replication” for information about adding a specific user for replication connections and Section 2.2.1,
“Setting the Replication Source Configuration” for information about setting the server_id variable. The
following examples show how to store mysqld startup options in server's option file, see Using Option
Files for more information. Alternatively you can use startup options when running mysqld.

Most of the steps that follow require the use of the MySQL root account or another MySQL user
account that has the SUPER privilege. mysqladmin shutdown requires either the SUPER privilege or the
SHUTDOWN privilege.

Step 1: Synchronize the servers. This step is only required when working with servers which are
already replicating without using GTIDs. For new servers proceed to Step 3. Make the servers read-only by
setting the read_only system variable to ON on each server by issuing the following:

mysql> SET @@GLOBAL.read_only = ON;

Wait for all ongoing transactions to commit or roll back. Then, allow the replica to catch up with the source.
It is extremely important that you make sure the replica has processed all updates before continuing.

If you use binary logs for anything other than replication, for example to do point in time backup and
restore, wait until you do not need the old binary logs containing transactions without GTIDs. Ideally, wait
for the server to purge all binary logs, and wait for any existing backup to expire.

Important

It is important to understand that logs containing transactions without GTIDs cannot
be used on servers where GTIDs are enabled. Before proceeding, you must be
sure that transactions without GTIDs do not exist anywhere in the topology.

Step 2: Stop both servers. Stop each server using mysqladmin as shown here, where username is
the user name for a MySQL user having sufficient privileges to shut down the server:

$> mysqladmin -uusername -p shutdown

Then supply this user's password at the prompt.

Step 3: Start both servers with GTIDs enabled. To enable GTID-based replication, each server
must be started with GTID mode enabled by setting the gtid_mode variable to ON, and with the
enforce_gtid_consistency variable enabled to ensure that only statements which are safe for GTID-
based replication are logged. For example:

gtid_mode=ON
enforce-gtid-consistency=ON

Start each replica with the --skip-slave-start option, or from MySQL 8.0.24, the
skip_slave_start system variable, to ensure that replication does not start until you have configured

29

https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only

Setting Up Replication Using GTIDs

the replica settings. From MySQL 8.0.26, use --skip-replica-start or skip_replica_start
instead. For more information on GTID related options and variables, see Section 2.6.5, “Global
Transaction ID System Variables”.

It is not mandatory to have binary logging enabled in order to use GTIDs when using the
mysql.gtid_executed Table. Source servers must always have binary logging enabled in order to be able to
replicate. However, replica servers can use GTIDs but without binary logging. If you need to disable binary
logging on a replica server, you can do this by specifying the --skip-log-bin and --log-replica-
updates=OFF or --log-slave-updates=OFF options for the replica.

Step 4: Configure the replica to use GTID-based auto-positioning. Tell the replica to use the
source with GTID based transactions as the replication data source, and to use GTID-based auto-
positioning rather than file-based positioning. Issue a CHANGE REPLICATION SOURCE TO statement
(from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) on the replica, including
the SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option in the statement to tell the replica that
the source's transactions are identified by GTIDs.

You may also need to supply appropriate values for the source's host name and port number as well as
the user name and password for a replication user account which can be used by the replica to connect
to the source; if these have already been set prior to Step 1 and no further changes need to be made, the
corresponding options can safely be omitted from the statement shown here.

mysql> CHANGE MASTER TO
 > MASTER_HOST = host,
 > MASTER_PORT = port,
 > MASTER_USER = user,
 > MASTER_PASSWORD = password,
 > MASTER_AUTO_POSITION = 1;

Or from MySQL 8.0.23:

mysql> CHANGE REPLICATION SOURCE TO
 > SOURCE_HOST = host,
 > SOURCE_PORT = port,
 > SOURCE_USER = user,
 > SOURCE_PASSWORD = password,
 > SOURCE_AUTO_POSITION = 1;

Step 5: Take a new backup. Existing backups that were made before you enabled GTIDs can no
longer be used on these servers now that you have enabled GTIDs. Take a new backup at this point, so
that you are not left without a usable backup.

For instance, you can execute FLUSH LOGS on the server where you are taking backups. Then either
explicitly take a backup or wait for the next iteration of any periodic backup routine you may have set up.

Step 6: Start the replica and disable read-only mode. Start the replica like this:

mysql> START SLAVE;
Or from MySQL 8.0.22:
mysql> START REPLICA;

The following step is only necessary if you configured a server to be read-only in Step 1. To allow the
server to begin accepting updates again, issue the following statement:

mysql> SET @@GLOBAL.read_only = OFF;

GTID-based replication should now be running, and you can begin (or resume) activity on the source as
before. Section 2.3.5, “Using GTIDs for Failover and Scaleout”, discusses creation of new replicas when
using GTIDs.

30

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs

Using GTIDs for Failover and Scaleout

2.3.5 Using GTIDs for Failover and Scaleout

There are a number of techniques when using MySQL Replication with Global Transaction Identifiers
(GTIDs) for provisioning a new replica which can then be used for scaleout, being promoted to source as
necessary for failover. This section describes the following techniques:

• Simple replication

• Copying data and transactions to the replica

• Injecting empty transactions

• Excluding transactions with gtid_purged

• Restoring GTID mode replicas

Global transaction identifiers were added to MySQL Replication for the purpose of simplifying in general
management of the replication data flow and of failover activities in particular. Each identifier uniquely
identifies a set of binary log events that together make up a transaction. GTIDs play a key role in applying
changes to the database: the server automatically skips any transaction having an identifier which the
server recognizes as one that it has processed before. This behavior is critical for automatic replication
positioning and correct failover.

The mapping between identifiers and sets of events comprising a given transaction is captured in the
binary log. This poses some challenges when provisioning a new server with data from another existing
server. To reproduce the identifier set on the new server, it is necessary to copy the identifiers from the old
server to the new one, and to preserve the relationship between the identifiers and the actual events. This
is necessary for restoring a replica that is immediately available as a candidate to become a new source on
failover or switchover.

Simple replication. The easiest way to reproduce all identifiers and transactions on a new server is to
make the new server into the replica of a source that has the entire execution history, and enable global
transaction identifiers on both servers. See Section 2.3.4, “Setting Up Replication Using GTIDs”, for more
information.

Once replication is started, the new server copies the entire binary log from the source and thus obtains all
information about all GTIDs.

This method is simple and effective, but requires the replica to read the binary log from the source; it can
sometimes take a comparatively long time for the new replica to catch up with the source, so this method is
not suitable for fast failover or restoring from backup. This section explains how to avoid fetching all of the
execution history from the source by copying binary log files to the new server.

Copying data and transactions to the replica. Executing the entire transaction history can be time-
consuming when the source server has processed a large number of transactions previously, and this can
represent a major bottleneck when setting up a new replica. To eliminate this requirement, a snapshot
of the data set, the binary logs and the global transaction information the source server contains can be
imported to the new replica. The server where the snapshot is taken can be either the source or one of its
replicas, but you must ensure that the server has processed all required transactions before copying the
data.

There are several variants of this method, the difference being in the manner in which data dumps and
transactions from binary logs are transferred to the replica, as outlined here:

Data Set 1. Create a dump file using mysqldump on the source server. Set the
mysqldump option --master-data (with the default value of 1) to

31

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_master-data

Using GTIDs for Failover and Scaleout

include a CHANGE REPLICATION SOURCE TO | CHANGE MASTER
TO statement with binary logging information. Set the --set-gtid-
purged option to AUTO (the default) or ON, to include information
about executed transactions in the dump. Then use the mysql client
to import the dump file on the target server.

2. Alternatively, create a data snapshot of the source server
using raw data files, then copy these files to the target server,
following the instructions in Section 2.2.5, “Choosing a Method
for Data Snapshots”. If you use InnoDB tables, you can use the
mysqlbackup command from the MySQL Enterprise Backup
component to produce a consistent snapshot. This command
records the log name and offset corresponding to the snapshot to
be used on the replica. MySQL Enterprise Backup is a commercial
product that is included as part of a MySQL Enterprise subscription.
See MySQL Enterprise Backup Overview for detailed information.

3. Alternatively, stop both the source and target servers, copy the
contents of the source's data directory to the new replica's data
directory, then restart the replica. If you use this method, the replica
must be configured for GTID-based replication, in other words with
gtid_mode=ON. For instructions and important information for
this method, see Section 2.2.8, “Adding Replicas to a Replication
Environment”.

Transaction History If the source server has a complete transaction history in its binary logs
(that is, the GTID set @@GLOBAL.gtid_purged is empty), you can use
these methods.

1. Import the binary logs from the source server to the new replica
using mysqlbinlog, with the --read-from-remote-server,
--read-from-remote-source, and --read-from-remote-
master options.

2. Alternatively, copy the source server's binary log files to the replica.
You can make copies from the replica using mysqlbinlog with the
--read-from-remote-server and --raw options. These can be
read into the replica by using mysqlbinlog > file (without the --
raw option) to export the binary log files to SQL files, then passing
these files to the mysql client for processing. Ensure that all of the
binary log files are processed using a single mysql process, rather
than multiple connections. For example:

$> mysqlbinlog copied-binlog.000001 copied-binlog.000002 | mysql -u root -p

For more information, see Using mysqlbinlog to Back Up Binary Log
Files.

This method has the advantage that a new server is available almost immediately; only those transactions
that were committed while the snapshot or dump file was being replayed still need to be obtained from the
existing source. This means that the replica's availability is not instantaneous, but only a relatively short
amount of time should be required for the replica to catch up with these few remaining transactions.

Copying over binary logs to the target server in advance is usually faster than reading the entire
transaction execution history from the source in real time. However, it may not always be feasible to move
these files to the target when required, due to size or other considerations. The two remaining methods

32

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_set-gtid-purged
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_set-gtid-purged
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-enterprise-backup.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-server
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-source
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-master
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-master
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_read-from-remote-server
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_raw
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_raw
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_raw
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-backup.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-backup.html

Using GTIDs for Failover and Scaleout

for provisioning a new replica discussed in this section use other means to transfer information about
transactions to the new replica.

Injecting empty transactions. The source's global gtid_executed variable contains the set of all
transactions executed on the source. Rather than copy the binary logs when taking a snapshot to provision
a new server, you can instead note the content of gtid_executed on the server from which the snapshot
was taken. Before adding the new server to the replication chain, simply commit an empty transaction on
the new server for each transaction identifier contained in the source's gtid_executed, like this:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';

BEGIN;
COMMIT;

SET GTID_NEXT='AUTOMATIC';

Once all transaction identifiers have been reinstated in this way using empty transactions, you must flush
and purge the replica's binary logs, as shown here, where N is the nonzero suffix of the current binary log
file name:

FLUSH LOGS;
PURGE BINARY LOGS TO 'source-bin.00000N';

You should do this to prevent this server from flooding the replication stream with false transactions in the
event that it is later promoted to the source. (The FLUSH LOGS statement forces the creation of a new
binary log file; PURGE BINARY LOGS purges the empty transactions, but retains their identifiers.)

This method creates a server that is essentially a snapshot, but in time is able to become a source as its
binary log history converges with that of the replication stream (that is, as it catches up with the source or
sources). This outcome is similar in effect to that obtained using the remaining provisioning method, which
we discuss in the next few paragraphs.

Excluding transactions with gtid_purged. The source's global gtid_purged variable contains the
set of all transactions that have been purged from the source's binary log. As with the method discussed
previously (see Injecting empty transactions), you can record the value of gtid_executed on the server
from which the snapshot was taken (in place of copying the binary logs to the new server). Unlike the
previous method, there is no need to commit empty transactions (or to issue PURGE BINARY LOGS);
instead, you can set gtid_purged on the replica directly, based on the value of gtid_executed on the
server from which the backup or snapshot was taken.

As with the method using empty transactions, this method creates a server that is functionally a snapshot,
but in time is able to become a source as its binary log history converges with that of the source and other
replicas.

Restoring GTID mode replicas. When restoring a replica in a GTID based replication setup that has
encountered an error, injecting an empty transaction may not solve the problem because an event does
not have a GTID.

Use mysqlbinlog to find the next transaction, which is probably the first transaction in the next log file
after the event. Copy everything up to the COMMIT for that transaction, being sure to include the SET
@@SESSION.gtid_next. Even if you are not using row-based replication, you can still run binary log row
events in the command line client.

Stop the replica and run the transaction you copied. The mysqlbinlog output sets the delimiter to /*!
*/;, so set it back:

mysql> DELIMITER ;

Restart replication from the correct position automatically:

33

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html

Replication From a Source Without GTIDs to a Replica With GTIDs

mysql> SET GTID_NEXT=automatic;
mysql> RESET SLAVE;
mysql> START SLAVE;
Or from MySQL 8.0.22:
mysql> SET GTID_NEXT=automatic;
mysql> RESET REPLICA;
mysql> START REPLICA;

2.3.6 Replication From a Source Without GTIDs to a Replica With GTIDs

From MySQL 8.0.23, you can set up replication channels to assign a GTID to replicated transactions that
do not already have one. This feature enables replication from a source server that does not have GTIDs
enabled and does not use GTID-based replication, to a replica that has GTIDs enabled. If it is possible
to enable GTIDs on the replication source server, as described in Section 2.4, “Changing GTID Mode on
Online Servers”, use that approach instead. This feature is designed for replication source servers where
you cannot enable GTIDs. Note that as is standard for MySQL replication, this feature does not support
replication from MySQL source servers earlier than the previous release series, so MySQL 5.7 is the
earliest supported source for a MySQL 8.0 replica.

You can enable GTID assignment on a replication channel using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE TO
statement. LOCAL assigns a GTID including the replica's own UUID (the server_uuid setting). uuid
assigns a GTID including the specified UUID, such as the server_uuid setting for the replication source
server. Using a nonlocal UUID lets you differentiate between transactions that originated on the replica
and transactions that originated on the source, and for a multi-source replica, between transactions that
originated on different sources. If any of the transactions sent by the source do have a GTID already, that
GTID is retained.

Important

A replica set up with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS on any
channel cannot be promoted to replace the replication source server in the event
that a failover is required, and a backup taken from the replica cannot be used to
restore the replication source server. The same restriction applies to replacing or
restoring other replicas that use ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS
on any channel.

The replica must have gtid_mode=ON set, and this cannot be changed afterwards, unless you remove
the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS=ON setting. If the replica server is started without
GTIDs enabled and with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS set for any replication
channels, the settings are not changed, but a warning message is written to the error log explaining how to
change the situation.

For a multi-source replica, you can have a mix of channels that use
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, and channels that do not. Channels specific to
Group Replication cannot use ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, but an asynchronous
replication channel for another source on a server instance that is a Group Replication group member can
do so. For a channel on a Group Replication group member, do not specify the Group Replication group
name as the UUID for creating the GTIDs.

Using ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS on a replication channel is not the same
as introducing GTID-based replication for the channel. The GTID set (gtid_executed) from a
replica set up with ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS should not be transferred to
another server or compared with another server's gtid_executed set. The GTIDs that are assigned
to the anonymous transactions, and the UUID you choose for them, only have significance for that
replica's own use. The exception to this is any downstream replicas of the replica where you enabled

34

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Restrictions on Replication with GTIDs

ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, and any servers that were created from a backup of
that replica.

If you set up any downstream replicas, these servers do not have
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS enabled. Only the replica that
is receiving transactions directly from the non-GTID source server needs to have
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS set on the relevant replication channel. Among that
replica and its downstream replicas, you can compare GTID sets, fail over from one replica to another,
and use backups to create additional replicas, as you would in any GTID-based replication topology.
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS is used where transactions are received from a non-
GTID server outside this group.

A replication channel using ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS has the following behavior
differences to GTID-based replication:

• GTIDs are assigned to the replicated transactions when they are applied (unless they already had a
GTID). A GTID would normally be assigned on the replication source server when the transaction is
committed, and sent to the replica along with the transaction. On a multi-threaded replica, this means the
order of the GTIDs does not necessarily match the order of the transactions, even if slave-preserve-
commit-order=1 is set.

• The SOURCE_LOG_FILE and SOURCE_LOG_POS options of the CHANGE REPLICATION
SOURCE TO statement are used to position the replication I/O (receiver) thread, rather than the
SOURCE_AUTO_POSITION option.

• The SET GLOBAL sql_replica_skip_counter or SET GLOBAL sql_slave_skip_counter
statement is used to skip transactions on a replication channel set up with
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS, rather than the method of committing empty
transactions. For instructions, see Section 2.7.3, “Skipping Transactions”.

• The UNTIL SQL_BEFORE_GTIDS and UNTIL_SQL_AFTER_GTIDS options of the START REPLICA
statement cannot be used for the channel.

• The function WAIT_UNTIL_SQL_THREAD_AFTER_GTIDS(), which is deprecated from MySQL
8.0.18, cannot be used with the channel. Its replacement WAIT_FOR_EXECUTED_GTID_SET(),
which works across the server, can be used to wait for any downstream replicas of the server that
has ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS enabled. To wait for the channel with
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS enabled to catch up with the source, which does not
use GTIDs, use the SOURCE_POS_WAIT() function (from MySQL 8.0.26) or the MASTER_POS_WAIT()
function.

The Performance Schema replication_applier_configuration table shows whether GTIDs
are assigned to anonymous transactions on a replication channel, what the UUID is, and whether
it is the UUID of the replica server (LOCAL) or a user-specified UUID (UUID). The information is
also recorded in the applier metadata repository. A RESET REPLICA ALL statement resets the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS setting, but a RESET REPLICA statement does not.

2.3.7 Restrictions on Replication with GTIDs

Because GTID-based replication is dependent on transactions, some features otherwise available in
MySQL are not supported when using it. This section provides information about restrictions on and
limitations of replication with GTIDs.

Updates involving nontransactional storage engines. When using GTIDs, updates to tables using
nontransactional storage engines such as MyISAM cannot be made in the same statement or transaction
as updates to tables using transactional storage engines such as InnoDB.

35

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-configuration-table.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Restrictions on Replication with GTIDs

This restriction is due to the fact that updates to tables that use a nontransactional storage engine mixed
with updates to tables that use a transactional storage engine within the same transaction can result in
multiple GTIDs being assigned to the same transaction.

Such problems can also occur when the source and the replica use different storage engines for their
respective versions of the same table, where one storage engine is transactional and the other is not. Also
be aware that triggers that are defined to operate on nontransactional tables can be the cause of these
problems.

In any of the cases just mentioned, the one-to-one correspondence between transactions and GTIDs is
broken, with the result that GTID-based replication cannot function correctly.

CREATE TABLE ... SELECT statements. Prior to MySQL 8.0.21, CREATE TABLE ... SELECT
statements are not allowed when using GTID-based replication. When binlog_format is set to
STATEMENT, a CREATE TABLE ... SELECT statement is recorded in the binary log as one transaction
with one GTID, but if ROW format is used, the statement is recorded as two transactions with two GTIDs. If
a source used STATEMENT format and a replica used ROW format, the replica would be unable to handle
the transaction correctly, therefore the CREATE TABLE ... SELECT statement is disallowed with GTIDs
to prevent this scenario. This restriction is lifted in MySQL 8.0.21 on storage engines that support atomic
DDL. In this case, CREATE TABLE ... SELECT is recorded in the binary log as one transaction. For
more information, see Atomic Data Definition Statement Support.

Temporary tables. When binlog_format is set to STATEMENT, CREATE TEMPORARY TABLE and
DROP TEMPORARY TABLE statements cannot be used inside transactions, procedures, functions, and
triggers when GTIDs are in use on the server (that is, when the enforce_gtid_consistency system
variable is set to ON). They can be used outside these contexts when GTIDs are in use, provided that
autocommit=1 is set. From MySQL 8.0.13, when binlog_format is set to ROW or MIXED, CREATE
TEMPORARY TABLE and DROP TEMPORARY TABLE statements are allowed inside a transaction,
procedure, function, or trigger when GTIDs are in use. The statements are not written to the binary log and
are therefore not replicated to replicas. The use of row-based replication means that the replicas remain in
sync without the need to replicate temporary tables. If the removal of these statements from a transaction
results in an empty transaction, the transaction is not written to the binary log.

Preventing execution of unsupported statements. To prevent execution of statements that
would cause GTID-based replication to fail, all servers must be started with the --enforce-gtid-
consistency option when enabling GTIDs. This causes statements of any of the types discussed
previously in this section to fail with an error.

Note that --enforce-gtid-consistency only takes effect if binary logging takes place for a statement.
If binary logging is disabled on the server, or if statements are not written to the binary log because they
are removed by a filter, GTID consistency is not checked or enforced for the statements that are not
logged.

For information about other required startup options when enabling GTIDs, see Section 2.3.4, “Setting Up
Replication Using GTIDs”.

Skipping transactions. sql_replica_skip_counter or sql_slave_skip_counter is not
available when using GTID-based replication. If you need to skip transactions, use the value of the
source's gtid_executed variable instead. If you have enabled GTID assignment on a replication channel
using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION
SOURCE TO statement, sql_replica_skip_counter or sql_slave_skip_counter is available. For
more information, see Section 2.7.3, “Skipping Transactions”.

Ignoring servers. The IGNORE_SERVER_IDS option of the CHANGE REPLICATION SOURCE TO
| CHANGE MASTER TO statement is deprecated when using GTIDs, because transactions that have

36

https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Stored Function Examples to Manipulate GTIDs

already been applied are automatically ignored. Before starting GTID-based replication, check for and
clear all ignored server ID lists that have previously been set on the servers involved. The SHOW REPLICA
STATUS statement, which can be issued for individual channels, displays the list of ignored server IDs if
there is one. If there is no list, the Replicate_Ignore_Server_Ids field is blank.

GTID mode and mysql_upgrade. Prior to MySQL 8.0.16, when the server is running with
global transaction identifiers (GTIDs) enabled (gtid_mode=ON), do not enable binary logging by
mysql_upgrade (the --write-binlog option). As of MySQL 8.0.16, the server performs the entire
MySQL upgrade procedure, but disables binary logging during the upgrade, so there is no issue.

2.3.8 Stored Function Examples to Manipulate GTIDs

This section provides examples of stored functions (see Stored Objects) which you can create using some
of the built-in functions provided by MySQL for use with GTID-based replication, listed here:

• GTID_SUBSET(): Shows whether one GTID set is a subset of another.

• GTID_SUBTRACT(): Returns the GTIDs from one GTID set that are not in another.

• WAIT_FOR_EXECUTED_GTID_SET(): Waits until all transactions in a given GTID set have been
executed.

See Functions Used with Global Transaction Identifiers (GTIDs), more more information about the
functions just listed.

Note that in these stored functions, the delimiter command has been used to change the MySQL statement
delimiter to a vertical bar, like this:

mysql> delimiter |

All of the stored functions shown in this section take string representations of GTID sets as arguments, so
GTID sets must always be quoted when used with them.

This function returns nonzero (true) if two GTID sets are the same set, even if they are not formatted in the
same way:

CREATE FUNCTION GTID_IS_EQUAL(gs1 LONGTEXT, gs2 LONGTEXT)
 RETURNS INT
 RETURN GTID_SUBSET(gs1, gs2) AND GTID_SUBSET(gs2, gs1)
|

This function returns nonzero (true) if two GTID sets are disjoint:

CREATE FUNCTION GTID_IS_DISJOINT(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS INT
 RETURN GTID_SUBSET(gs1, GTID_SUBTRACT(gs1, gs2))
|

This function returns nonzero (true) if two GTID sets are disjoint and sum is their union:

CREATE FUNCTION GTID_IS_DISJOINT_UNION(gs1 LONGTEXT, gs2 LONGTEXT, sum LONGTEXT)
RETURNS INT
 RETURN GTID_IS_EQUAL(GTID_SUBTRACT(sum, gs1), gs2) AND
 GTID_IS_EQUAL(GTID_SUBTRACT(sum, gs2), gs1)
|

This function returns a normalized form of the GTID set, in all uppercase, with no whitespace and no
duplicates, with UUIDs in alphabetic order and intervals in numeric order:

37

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-upgrade.html#option_mysql_upgrade_write-binlog
https://dev.mysql.com/doc/refman/8.0/en/stored-objects.html
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subset
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subtract
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html

Stored Function Examples to Manipulate GTIDs

CREATE FUNCTION GTID_NORMALIZE(gs LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, '')
|

This function returns the union of two GTID sets:

CREATE FUNCTION GTID_UNION(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_NORMALIZE(CONCAT(gs1, ',', gs2))
|

This function returns the intersection of two GTID sets.

CREATE FUNCTION GTID_INTERSECTION(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs1, GTID_SUBTRACT(gs1, gs2))
|

This function returns the symmetric difference between two GTID sets, that is, the GTIDs that exist in gs1
but not in gs2, as well as the GTIDs that exist in gs2 but not in gs1.

CREATE FUNCTION GTID_SYMMETRIC_DIFFERENCE(gs1 LONGTEXT, gs2 LONGTEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(CONCAT(gs1, ',', gs2), GTID_INTERSECTION(gs1, gs2))
|

This function removes from a GTID set all the GTIDs with the specified origin, and returns the remaining
GTIDs, if any. The UUID is the identifier used by the server where the transaction originated, which is
normally the value of server_uuid.

CREATE FUNCTION GTID_SUBTRACT_UUID(gs LONGTEXT, uuid TEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, CONCAT(UUID, ':1-', (1 << 63) - 2))
|

This function acts as the reverse of the previous one; it returns only those GTIDs from the GTID set that
originate from the server with the specified identifier (UUID).

CREATE FUNCTION GTID_INTERSECTION_WITH_UUID(gs LONGTEXT, uuid TEXT)
RETURNS LONGTEXT
 RETURN GTID_SUBTRACT(gs, GTID_SUBTRACT_UUID(gs, uuid))
|

Example 2.1 Verifying that a replica is up to date

The built-in functions GTID_SUBSET() and GTID_SUBTRACT() can be used to check that a replica has
applied at least every transaction that a source has applied.

To perform this check with GTID_SUBSET(), execute the following statement on the replica:

SELECT GTID_SUBSET(source_gtid_executed, replica_gtid_executed);

If the returns value is 0 (false), this means that some GTIDs in source_gtid_executed are not present
in replica_gtid_executed, and that the replica has not yet applied transactions that were applied on
the source, which means that the replica is not up to date.

To perform the same check with GTID_SUBTRACT(), execute the following statement on the replica:

SELECT GTID_SUBTRACT(source_gtid_executed, replica_gtid_executed);

38

https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subset
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subtract

Stored Function Examples to Manipulate GTIDs

This statement returns any GTIDs that are in source_gtid_executed but not in
replica_gtid_executed. If any GTIDs are returned, the source has applied some transactions that the
replica has not applied, and the replica is therefore not up to date.

Example 2.2 Backup and restore scenario

The stored functions GTID_IS_EQUAL(), GTID_IS_DISJOINT(), and GTID_IS_DISJOINT_UNION()
can be used to verify backup and restore operations involving multiple databases and servers. In this
example scenario, server1 contains database db1, and server2 contains database db2. The goal is
to copy database db2 to server1, and the result on server1 should be the union of the two databases.
The procedure used is to back up server2 using mysqldump, then to restore this backup on server1.

Provided that mysqldump was run with --set-gtid-purged set to ON or AUTO (the default), the output
contains a SET @@GLOBAL.gtid_purged statement which adds the gtid_executed set from server2
to the gtid_purged set on server1. gtid_purged contains the GTIDs of all the transactions that
have been committed on a given server but which do not exist in any binary log file on the server. When
database db2 is copied to server1, the GTIDs of the transactions committed on server2, which are
not in the binary log files on server1, must be added to gtid_purged for server1 to make the set
complete.

The stored functions can be used to assist with the following steps in this scenario:

• Use GTID_IS_EQUAL() to verify that the backup operation computed the correct GTID set for the SET
@@GLOBAL.gtid_purged statement. On server2, extract that statement from the mysqldump output,
and store the GTID set into a local variable, such as $gtid_purged_set. Then execute the following
statement:

server2> SELECT GTID_IS_EQUAL($gtid_purged_set, @@GLOBAL.gtid_executed);

If the result is 1, the two GTID sets are equal, and the set has been computed correctly.

• Use GTID_IS_DISJOINT() to verify that the GTID set in the mysqldump output does not overlap with
the gtid_executed set on server1. Having identical GTIDs present on both servers causes errors
when copying database db2 to server1. To check, on server1, extract and store gtid_purged from
the output into a local variable as done previously, then execute the following statement:

server1> SELECT GTID_IS_DISJOINT($gtid_purged_set, @@GLOBAL.gtid_executed);

If the result is 1, there is no overlap between the two GTID sets, so no duplicate GTIDs are present.

• Use GTID_IS_DISJOINT_UNION() to verify that the restore operation resulted in the correct GTID
state on server1. Before restoring the backup, on server1, obtain the existing gtid_executed set
by executing the following statement:

server1> SELECT @@GLOBAL.gtid_executed;

Store the result in a local variable $original_gtid_executed, as well as the set from gtid_purged
in another local variable as described previously. When the backup from server2 has been restored
onto server1, execute the following statement to verify the GTID state:

server1> SELECT
 -> GTID_IS_DISJOINT_UNION($original_gtid_executed,
 -> $gtid_purged_set,
 -> @@GLOBAL.gtid_executed);

If the result is 1, the stored function has verified that the original gtid_executed set from server1
($original_gtid_executed) and the gtid_purged set that was added from server2
($gtid_purged_set) have no overlap, and that the updated gtid_executed set on server1 now

39

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_set-gtid-purged

Stored Function Examples to Manipulate GTIDs

consists of the previous gtid_executed set from server1 plus the gtid_purged set from server2,
which is the desired result. Ensure that this check is carried out before any further transactions take
place on server1, otherwise the new transactions in gtid_executed cause it to fail.

Example 2.3 Selecting the most up-to-date replica for manual failover

The stored function GTID_UNION() can be used to identify the most up-to-date replica from a set of
replicas, in order to perform a manual failover operation after a source server has stopped unexpectedly.
If some of the replicas are experiencing replication lag, this stored function can be used to compute
the most up-to-date replica without waiting for all the replicas to apply their existing relay logs, and
therefore to minimize the failover time. The function can return the union of gtid_executed on each
replica with the set of transactions received by the replica, which is recorded in the Performance Schema
replication_connection_status table. You can compare these results to find which replica's record
of transactions is the most up to date, even if not all of the transactions have been committed yet.

On each replica, compute the complete record of transactions by issuing the following statement:

SELECT GTID_UNION(RECEIVED_TRANSACTION_SET, @@GLOBAL.gtid_executed)
 FROM performance_schema.replication_connection_status
 WHERE channel_name = 'name';

You can then compare the results from each replica to see which one has the most up-to-date record of
transactions, and use this replica as the new source.

Example 2.4 Checking for extraneous transactions on a replica

The stored function GTID_SUBTRACT_UUID() can be used to check whether a replica has received
transactions that did not originate from its designated source or sources. If it has, there might be an issue
with your replication setup, or with a proxy, router, or load balancer. This function works by removing from
a GTID set all the GTIDs from a specified originating server, and returning the remaining GTIDs, if any.

For a replica with a single source, issue the following statement, giving the identifier of the originating
source, which is normally the same as server_uuid:

SELECT GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed, server_uuid_of_source);

If the result is not empty, the transactions returned are extra transactions that did not originate from the
designated source.

For a replica in a multisource topology, include the server UUID of each source in the function call, like this:

SELECT
 GTID_SUBTRACT_UUID(GTID_SUBTRACT_UUID(@@GLOBAL.gtid_executed,
 server_uuid_of_source_1),
 server_uuid_of_source_2);

If the result is not empty, the transactions returned are extra transactions that did not originate from any of
the designated sources.

Example 2.5 Verifying that a server in a replication topology is read-only

The stored function GTID_INTERSECTION_WITH_UUID() can be used to verify that a server has
not originated any GTIDs and is in a read-only state. The function returns only those GTIDs from the
GTID set that originate from the server with the specified identifier. If any of the transactions listed in
gtid_executed from this server use the server's own identifier, the server itself originated those
transactions. You can issue the following statement on the server to check:

SELECT GTID_INTERSECTION_WITH_UUID(@@GLOBAL.gtid_executed, my_server_uuid);

40

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html

Changing GTID Mode on Online Servers

Example 2.6 Validating an additional replica in multisource replication

The stored function GTID_INTERSECTION_WITH_UUID() can be used to find out if a replica attached
to a multisource replication setup has applied all the transactions originating from one particular source.
In this scenario, source1 and source2 are both sources and replicas and replicate to each other.
source2 also has its own replica. The replica also receives and applies transactions from source1
if source2 is configured with log_replica_updates=ON, but it does not do so if source2 uses
log_replica_updates=OFF. Whichever the case, we currently want only to find out if the replica
is up to date with source2. In this situation, GTID_INTERSECTION_WITH_UUID() can be used to
identify the transactions that source2 originated, discarding the transactions that source2 has replicated
from source1. The built-in function GTID_SUBSET() can then be used to compare the result with the
gtid_executed set on the replica. If the replica is up to date with source2, the gtid_executed set
on the replica contains all the transactions in the intersection set (the transactions that originated from
source2).

To carry out this check, store the values of gtid_executed and the server UUID from source2 and the
value of gtid_executed from the replica into user variables as follows:

source2> SELECT @@GLOBAL.gtid_executed INTO @source2_gtid_executed;

source2> SELECT @@GLOBAL.server_uuid INTO @source2_server_uuid;

replica> SELECT @@GLOBAL.gtid_executed INTO @replica_gtid_executed;

Then use GTID_INTERSECTION_WITH_UUID() and GTID_SUBSET() with these variables as input, as
follows:

SELECT
 GTID_SUBSET(
 GTID_INTERSECTION_WITH_UUID(@source2_gtid_executed,
 @source2_server_uuid),
 @replica_gtid_executed);

The server identifier from source2 (@source2_server_uuid) is used with
GTID_INTERSECTION_WITH_UUID() to identify and return only those GTIDs from the set of GTIDs
that originated on source2, omitting those that originated on source1. The resulting GTID set is then
compared with the set of all executed GTIDs on the replica, using GTID_SUBSET(). If this statement
returns nonzero (true), all the identified GTIDs from source2 (the first set input) are also found in
gtid_executed from the replica, meaning that the replica has received and executed all the transactions
that originated from source2.

2.4 Changing GTID Mode on Online Servers
This section describes how to change the mode of replication from and to GTID mode without having to
take the server offline.

2.4.1 Replication Mode Concepts

Before setting the replication mode of an online server, it is important to understand some key concepts of
replication. This section explains these concepts and is essential reading before attempting to modify the
replication mode of an online server.

The modes of replication available in MySQL rely on different techniques for identifying logged
transactions. The types of transactions used by replication are listed here:

• GTID transactions are identified by a global transaction identifier (GTID) which takes the form
UUID:NUMBER. Every GTID transaction in the binary log is preceded by a Gtid_log_event. A GTID

41

https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subset

Replication Mode Concepts

transaction can be addressed either by its GTID, or by the name of the file in which it is logged and its
position within that file.

• An anonymous transaction has no GTID; MySQL 8.0 ensures that every anonymous transaction in a
log is preceded by an Anonymous_gtid_log_event. (In previous versions of MySQL, an anonymous
transaction was not preceded by any particular event.) An anonymous transaction can be addressed by
file name and position only.

When using GTIDs you can take advantage of GTID auto-positioning and automatic failover, and use
WAIT_FOR_EXECUTED_GTID_SET(), session_track_gtids, and Performance Schema tables to
monitor replicated transactions (see Performance Schema Replication Tables).

A transaction in a relay log from a source running a previous version of MySQL might not be preceded by
any particular event, but after being replayed and recorded in the replica's binary log, it is preceded with an
Anonymous_gtid_log_event.

To change the replication mode online, it is necessary to set the gtid_mode and
enforce_gtid_consistency variables using an account that has privileges sufficient to set global
system variables; see System Variable Privileges. Permitted values for gtid_mode are listed here, in
order, with their meanings:

• OFF: Only anonymous transactions can be replicated.

• OFF_PERMISSIVE: New transactions are anonymous; replicated transactions may be either GTID or
anonymous.

• ON_PERMISSIVE: New transactions use GTIDs; replicated transactions may be either GTID or
anonymous.

• ON: All transaction must have GTIDs; anonymous transactions cannot be replicated.

It is possible to have servers using anonymous and servers using GTID transactions in the same
replication topology. For example, a source where gtid_mode=ON can replicate to a replica where
gtid_mode=ON_PERMISSIVE.

gtid_mode can be changed only one step at a time, based on the order of the values as shown in the
previous list. For example, if gtid_mode is set to OFF_PERMISSIVE, it is possible to change it to OFF
or ON_PERMISSIVE, but not to ON. This is to ensure that the process of changing from anonymous
transactions to GTID transactions online is handled correctly by the server; the GTID state (in other words
the value of gtid_executed) is persistent. This ensures that the GTID setting applied by the server is
always retained and is correct, regardless of any changes in the value of gtid_mode.

System variables which display GTID sets, such as gtid_executed and
gtid_purged, the RECEIVED_TRANSACTION_SET column of the Performance Schema
replication_connection_status table, and results relating to GTIDs in the output of SHOW
REPLICA STATUS all return empty strings when there are no GTIDs present. Sources of information
about a single GTID, such as the information shown in the CURRENT_TRANSACTION column of the
Performance Schema replication_applier_status_by_worker table, show ANONYMOUS when
GTID transactions are not in use.

Replication from a source using gtid_mode=ON provides the ability to use GTID auto-positioning,
configured using the SOURCE_AUTO_POSITION option of the CHANGE REPLICATION SOURCE TO
statement. The replication topology in use has an impact on whether it is possible to enable auto-
positioning or not, since this feature relies on GTIDs and is not compatible with anonymous transactions. It
is strongly recommended to ensure there are no anonymous transactions remaining in the topology before
enabling auto-positioning; see Section 2.4.2, “Enabling GTID Transactions Online”.

42

https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_wait-for-executed-gtid-set
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Enabling GTID Transactions Online

Valid combinations of gtid_mode and auto-positioning on source and replica are shown in the next table.
The meaning of each entry is as follows:

• Y: The values of gtid_mode on the source and on the replica are compatible.

• N: The values of gtid_mode on the source and on the replica are not compatible.

• *: Auto-positioning can be used with this combination of values.

Table 2.1 Valid Combinations of Source and Replica gtid_mode

gtid_mode Source OFF Source
OFF_PERMISSIVE

Source
ON_PERMISSIVE

Source ON

Replica OFF Y Y N N

Replica
OFF_PERMISSIVE

Y Y Y Y*

Replica
ON_PERMISSIVE

Y Y Y Y*

Replica ON N N Y Y*

The current value of gtid_mode also affects gtid_next. The next table shows the behavior of the server
for combinations of different values of gtid_mode and gtid_next. The meaning of each entry is as
follows:

• ANONYMOUS: Generate an anonymous transaction.

• Error: Generate an error, and do not execute SET GTID_NEXT.

• UUID:NUMBER: Generate a GTID with the specified UUID:NUMBER.

• New GTID: Generate a GTID with an automatically generated number.

Table 2.2 Valid Combinations of gtid_mode and gtid_next

gtid_next
AUTOMATIC

binary log on

gtid_next
AUTOMATIC

binary log off

gtid_next
ANONYMOUS

gtid_next
UUID:NUMBER

gtid_mode OFF ANONYMOUS ANONYMOUS ANONYMOUS Error

gtid_mode
OFF_PERMISSIVE

ANONYMOUS ANONYMOUS ANONYMOUS UUID:NUMBER

gtid_mode
ON_PERMISSIVE

New GTID ANONYMOUS ANONYMOUS UUID:NUMBER

gtid_mode ON New GTID ANONYMOUS Error UUID:NUMBER

When binary logging is not in use and gtid_next is AUTOMATIC, then no GTID is generated, which is
consistent with the behavior of previous versions of MySQL.

2.4.2 Enabling GTID Transactions Online

This section describes how to enable GTID transactions, and optionally auto-positioning, on servers that
are already online and using anonymous transactions. This procedure does not require taking the server
offline and is suited to use in production. However, if you have the possibility to take the servers offline
when enabling GTID transactions that process is easier.

43

Enabling GTID Transactions Online

Beginning with MySQL 8.0.23, you can set up replication channels to assign GTIDs to replicated
transactions that do not already have any. This feature enables replication from a source server that does
not use GTID-based replication, to a replica that does. If it is possible to enable GTIDs on the replication
source server, as described in this procedure, use this approach instead. Assigning GTIDs is designed
for replication source servers where you cannot enable GTIDs. For more information on this option, see
Section 2.3.6, “Replication From a Source Without GTIDs to a Replica With GTIDs”.

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot enable GTID transactions online
on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to the default value OFF.

The following procedure can be paused at any time and later resumed where it was, or reversed by
jumping to the corresponding step of Section 2.4.3, “Disabling GTID Transactions Online”, the online
procedure to disable GTIDs. This makes the procedure fault-tolerant because any unrelated issues that
may appear in the middle of the procedure can be handled as usual, and then the procedure continued
where it was left off.

Note

It is crucial that you complete every step before continuing to the next step.

To enable GTID transactions:

1. On each server, execute:

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = WARN;

Let the server run for a while with your normal workload and monitor the logs. If this step causes any
warnings in the log, adjust your application so that it only uses GTID-compatible features and does not
generate any warnings.

Important

This is the first important step. You must ensure that no warnings are being
generated in the error logs before going to the next step.

2. On each server, execute:

SET @@GLOBAL.ENFORCE_GTID_CONSISTENCY = ON;

3. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;

It does not matter which server executes this statement first, but it is important that all servers complete
this step before any server begins the next step.

4. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;

It does not matter which server executes this statement first.

5. On each server, wait until the status variable ONGOING_ANONYMOUS_TRANSACTION_COUNT is zero.
This can be checked using:

44

Disabling GTID Transactions Online

SHOW STATUS LIKE 'ONGOING_ANONYMOUS_TRANSACTION_COUNT';

Note

On a replica, it is theoretically possible that this shows zero and then nonzero
again. This is not a problem, it suffices that it shows zero once.

6. Wait for all transactions generated up to step 5 to replicate to all servers. You can do this without
stopping updates: the only important thing is that all anonymous transactions get replicated.

See Section 2.4.4, “Verifying Replication of Anonymous Transactions” for one method of checking that
all anonymous transactions have replicated to all servers.

7. If you use binary logs for anything other than replication, for example point in time backup and restore,
wait until you do not need the old binary logs having transactions without GTIDs.

For instance, after step 6 has completed, you can execute FLUSH LOGS on the server where you are
taking backups. Then either explicitly take a backup or wait for the next iteration of any periodic backup
routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 6 was completed. Also wait for
any backup taken before step 6 to expire.

Important

This is the second important point. It is vital to understand that binary logs
containing anonymous transactions, without GTIDs cannot be used after the
next step. After this step, you must be sure that transactions without GTIDs do
not exist anywhere in the topology.

8. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON;

9. On each server, add gtid_mode=ON and enforce_gtid_consistency=ON to my.cnf.

You are now guaranteed that all transactions have a GTID (except transactions generated in step 5
or earlier, which have already been processed). To start using the GTID protocol so that you can later
perform automatic fail-over, execute the following on each replica. Optionally, if you use multi-source
replication, do this for each channel and include the FOR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL 'channel'];
CHANGE MASTER TO MASTER_AUTO_POSITION = 1 [FOR CHANNEL 'channel'];
START SLAVE [FOR CHANNEL 'channel'];

Or from MySQL 8.0.22 / 8.0.23:
STOP REPLICA [FOR CHANNEL 'channel'];
CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION = 1 [FOR CHANNEL 'channel'];
START REPLICA [FOR CHANNEL 'channel'];

2.4.3 Disabling GTID Transactions Online

This section describes how to disable GTID transactions on servers that are already online. This procedure
does not require taking the server offline and is suited to use in production. However, if you have the
possibility to take the servers offline when disabling GTIDs mode that process is easier.

The process is similar to enabling GTID transactions while the server is online, but reversing the steps. The
only thing that differs is the point at which you wait for logged transactions to replicate.

45

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs

Disabling GTID Transactions Online

Before you start, ensure that the servers meet the following pre-conditions:

• All servers in your topology must use MySQL 5.7.6 or later. You cannot disable GTID transactions online
on any single server unless all servers which are in the topology are using this version.

• All servers have gtid_mode set to ON.

• The --replicate-same-server-id option is not set on any server. You cannot disable GTID
transactions if this option is set together with the --log-slave-updates option (which is the default)
and binary logging is enabled (which is also the default). Without GTIDs, this combination of options
causes infinite loops in circular replication.

1. Execute the following on each replica, and if you are using multi-source replication, do it for each
channel and include the FOR CHANNEL channel clause:

STOP SLAVE [FOR CHANNEL 'channel'];
CHANGE MASTER TO MASTER_AUTO_POSITION = 0, MASTER_LOG_FILE = file, \
MASTER_LOG_POS = position [FOR CHANNEL 'channel'];
START SLAVE [FOR CHANNEL 'channel'];

Or from MySQL 8.0.22 / 8.0.23:
STOP REPLICA [FOR CHANNEL 'channel'];
CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION = 0, SOURCE_LOG_FILE = file, \
SOURCE_LOG_POS = position [FOR CHANNEL 'channel'];
START REPLICA [FOR CHANNEL 'channel'];

2. On each server, execute:

SET @@GLOBAL.GTID_MODE = ON_PERMISSIVE;

3. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF_PERMISSIVE;

4. On each server, wait until the variable @@GLOBAL.GTID_OWNED is equal to the empty string. This
can be checked using:

SELECT @@GLOBAL.GTID_OWNED;

On a replica, it is theoretically possible that this is empty and then nonempty again. This is not a
problem, it suffices that it is empty once.

5. Wait for all transactions that currently exist in any binary log to replicate to all replicas. See
Section 2.4.4, “Verifying Replication of Anonymous Transactions” for one method of checking that all
anonymous transactions have replicated to all servers.

6. If you use binary logs for anything else than replication, for example to do point in time backup or
restore: wait until you do not need the old binary logs having GTID transactions.

For instance, after step 5 has completed, you can execute FLUSH LOGS on the server where you are
taking the backup. Then either explicitly take a backup or wait for the next iteration of any periodic
backup routine you may have set up.

Ideally, wait for the server to purge all binary logs that existed when step 5 was completed. Also wait for
any backup taken before step 5 to expire.

Important

This is the one important point during this procedure. It is important to
understand that logs containing GTID transactions cannot be used after the next

46

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs

Verifying Replication of Anonymous Transactions

step. Before proceeding you must be sure that GTID transactions do not exist
anywhere in the topology.

7. On each server, execute:

SET @@GLOBAL.GTID_MODE = OFF;

8. On each server, set gtid_mode=OFF in my.cnf.

If you want to set enforce_gtid_consistency=OFF, you can do so now. After setting it, you should
add enforce_gtid_consistency=OFF to your configuration file.

If you want to downgrade to an earlier version of MySQL, you can do so now, using the normal downgrade
procedure.

2.4.4 Verifying Replication of Anonymous Transactions

This section explains how to monitor a replication topology and verify that all anonymous transactions have
been replicated. This is helpful when changing the replication mode online as you can verify that it is safe
to change to GTID transactions.

There are several possible ways to wait for transactions to replicate:

The simplest method, which works regardless of your topology but relies on timing is as follows: if you are
sure that the replica never lags more than N seconds, just wait for a bit more than N seconds. Or wait for a
day, or whatever time period you consider safe for your deployment.

A safer method in the sense that it does not depend on timing: if you only have a source with one or more
replicas, do the following:

1. On the source, execute:

SHOW MASTER STATUS;

Note down the values in the File and Position column.

2. On every replica, use the file and position information from the source to execute:

SELECT MASTER_POS_WAIT(file, position);

Or from MySQL 8.0.26:
SELECT SOURCE_POS_WAIT(file, position);

If you have a source and multiple levels of replicas, or in other words you have replicas of replicas, repeat
step 2 on each level, starting from the source, then all the direct replicas, then all the replicas of replicas,
and so on.

If you use a circular replication topology where multiple servers may have write clients, perform step 2 for
each source-replica connection, until you have completed the full circle. Repeat the whole process so that
you do the full circle twice.

For example, suppose you have three servers A, B, and C, replicating in a circle so that A -> B -> C -> A.
The procedure is then:

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

• Do step 1 on C and step 2 on A.

47

MySQL Multi-Source Replication

• Do step 1 on A and step 2 on B.

• Do step 1 on B and step 2 on C.

• Do step 1 on C and step 2 on A.

2.5 MySQL Multi-Source Replication
MySQL multi-source replication enables a replica to receive transactions from multiple immediate sources
in parallel. In a multi-source replication topology, a replica creates a replication channel for each source
that it should receive transactions from. For more information on how replication channels function, see
Section 5.2, “Replication Channels”.

You might choose to implement multi-source replication to achieve goals like these:

• Backing up multiple servers to a single server.

• Merging table shards.

• Consolidating data from multiple servers to a single server.

Multi-source replication does not implement any conflict detection or resolution when applying transactions,
and those tasks are left to the application if required.

Note

Each channel on a multi-source replica must replicate from a different source. You
cannot set up multiple replication channels from a single replica to a single source.
This is because the server IDs of replicas must be unique in a replication topology.
The source distinguishes replicas only by their server IDs, not by the names of the
replication channels, so it cannot recognize different replication channels from the
same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the system variable
replica_parallel_workers (from MySQL 8.0.26) or slave_parallel_workers to a value greater
than 0. When you do this on a multi-source replica, each channel on the replica has the specified number
of applier threads, plus a coordinator thread to manage them. You cannot configure the number of applier
threads for individual channels.

From MySQL 8.0, multi-source replicas can be configured with replication filters on specific replication
channels. Channel specific replication filters can be used when the same database or table is present on
multiple sources, and you only need the replica to replicate it from one source. For GTID-based replication,
if the same transaction might arrive from multiple sources (such as in a diamond topology), you must
ensure the filtering setup is the same on all channels. For more information, see Section 5.5.4, “Replication
Channel Based Filters”.

This section provides tutorials on how to configure sources and replicas for multi-source replication, how to
start, stop and reset multi-source replicas, and how to monitor multi-source replication.

2.5.1 Configuring Multi-Source Replication

A multi-source replication topology requires at least two sources and one replica configured. In these
tutorials, we assume that you have two sources source1 and source2, and a replica replicahost. The
replica replicates one database from each of the sources, db1 from source1 and db2 from source2.

Sources in a multi-source replication topology can be configured to use either GTID-based replication, or
binary log position-based replication. See Section 2.3.4, “Setting Up Replication Using GTIDs” for how

48

Provisioning a Multi-Source Replica for GTID-Based Replication

to configure a source using GTID-based replication. See Section 2.2.1, “Setting the Replication Source
Configuration” for how to configure a source using file position based replication.

Replicas in a multi-source replication topology require TABLE repositories for the replica's connection
metadata repository and applier metadata repository, which are the default in MySQL 8.0. Multi-source
replication is not compatible with the deprecated alternative file repositories.

Create a suitable user account on all the sources that the replica can use to connect. You can use the
same account on all the sources, or a different account on each. If you create an account solely for the
purposes of replication, that account needs only the REPLICATION SLAVE privilege. For example, to set
up a new user, ted, that can connect from the replica replicahost, use the mysql client to issue these
statements on each of the sources:

mysql> CREATE USER 'ted'@'replicahost' IDENTIFIED BY 'password';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'ted'@'replicahost';

For more details, and important information on the default authentication plugin for new users from MySQL
8.0, see Section 2.2.3, “Creating a User for Replication”.

2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication

If the sources in the multi-source replication topology have existing data, it can save time to provision the
replica with the relevant data before starting replication. In a multi-source replication topology, cloning
or copying of the data directory cannot be used to provision the replica with data from all of the sources,
and you might also want to replicate only specific databases from each source. The best strategy for
provisioning such a replica is therefore to use mysqldump to create an appropriate dump file on each
source, then use the mysql client to import the dump file on the replica.

If you are using GTID-based replication, you need to pay attention to the SET @@GLOBAL.gtid_purged
statement that mysqldump places in the dump output. This statement transfers the GTIDs for the
transactions executed on the source to the replica, and the replica requires this information. However, for
any case more complex than provisioning one new, empty replica from one source, you need to check
what effect the statement has in the version of MySQL used by the replica, and handle the statement
accordingly. The following guidance summarizes suitable actions, but for more details, see the mysqldump
documentation.

The behavior of the SET @@GLOBAL.gtid_purged statement written by mysqldump is different in
releases from MySQL 8.0 compared to MySQL 5.6 and 5.7. In MySQL 5.6 and 5.7, the statement replaces
the value of gtid_purged on the replica, and also in those releases that value can only be changed
when the replica's record of transactions with GTIDs (the gtid_executed set) is empty. In a multi-source
replication topology, you must therefore remove the SET @@GLOBAL.gtid_purged statement from the
dump output before replaying the dump files, because you cannot apply a second or subsequent dump
file including this statement. Also note that for MySQL 5.6 and 5.7, this limitation means all the dump files
from the sources must be applied in a single operation on a replica with an empty gtid_executed set.
You can clear a replica's GTID execution history by issuing RESET MASTER on the replica, but if you have
other, wanted transactions with GTIDs on the replica, choose an alternative method of provisioning from
those described in Section 2.3.5, “Using GTIDs for Failover and Scaleout”.

From MySQL 8.0, the SET @@GLOBAL.gtid_purged statement adds the GTID set from the dump
file to the existing gtid_purged set on the replica. The statement can therefore potentially be left in
the dump output when you replay the dump files on the replica, and the dump files can be replayed at
different times. However, it is important to note that the value that is included by mysqldump for the SET
@@GLOBAL.gtid_purged statement includes the GTIDs of all transactions in the gtid_executed set on
the source, even those that changed suppressed parts of the database, or other databases on the server
that were not included in a partial dump. If you replay a second or subsequent dump file on the replica that

49

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html

Provisioning a Multi-Source Replica for GTID-Based Replication

contains any of the same GTIDs (for example, another partial dump from the same source, or a dump from
another source that has overlapping transactions), any SET @@GLOBAL.gtid_purged statement in the
second dump file fails, and must therefore be removed from the dump output.

For sources from MySQL 8.0.17, as an alternative to removing the SET @@GLOBAL.gtid_purged
statement, you may set mysqldump's --set-gtid-purged option to COMMENTED to include the
statement but commented out, so that it is not actioned when you load the dump file. If you are provisioning
the replica with two partial dumps from the same source, and the GTID set in the second dump is the same
as the first (so no new transactions have been executed on the source in between the dumps), you can
set mysqldump's --set-gtid-purged option to OFF when you output the second dump file, to omit the
statement.

In the following provisioning example, we assume that the SET @@GLOBAL.gtid_purged statement
cannot be left in the dump output, and must be removed from the files and handled manually. We also
assume that there are no wanted transactions with GTIDs on the replica before provisioning starts.

1. To create dump files for a database named db1 on source1 and a database named db2 on source2,
run mysqldump for source1 as follows:

mysqldump -u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db1 > dumpM1.sql

Then run mysqldump for source2 as follows:

mysqldump -u<user> -p<password> --single-transaction --triggers --routines --set-gtid-purged=ON --databases db2 > dumpM2.sql

2. Record the gtid_purged value that mysqldump added to each of the dump files. For example, for
dump files created on MySQL 5.6 or 5.7, you can extract the value like this:

cat dumpM1.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''
cat dumpM2.sql | grep GTID_PURGED | cut -f2 -d'=' | cut -f2 -d$'\''

From MySQL 8.0, where the format has changed, you can extract the value like this:

cat dumpM1.sql | grep GTID_PURGED | perl -p0 -e 's#/*.*?*/##sg' | cut -f2 -d'=' | cut -f2 -d$'\''
cat dumpM2.sql | grep GTID_PURGED | perl -p0 -e 's#/*.*?*/##sg' | cut -f2 -d'=' | cut -f2 -d$'\''

The result in each case should be a GTID set, for example:

source1: 2174B383-5441-11E8-B90A-C80AA9429562:1-1029
source2: 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695

3. Remove the line from each dump file that contains the SET @@GLOBAL.gtid_purged statement. For
example:

sed '/GTID_PURGED/d' dumpM1.sql > dumpM1_nopurge.sql
sed '/GTID_PURGED/d' dumpM2.sql > dumpM2_nopurge.sql

4. Use the mysql client to import each edited dump file into the replica. For example:

mysql -u<user> -p<password> < dumpM1_nopurge.sql
mysql -u<user> -p<password> < dumpM2_nopurge.sql

5. On the replica, issue RESET MASTER to clear the GTID execution history (assuming, as explained
above, that all the dump files have been imported and that there are no wanted transactions
with GTIDs on the replica). Then issue a SET @@GLOBAL.gtid_purged statement to set the
gtid_purged value to the union of all the GTID sets from all the dump files, as you recorded in Step
2. For example:

mysql> RESET MASTER;
mysql> SET @@GLOBAL.gtid_purged = "2174B383-5441-11E8-B90A-C80AA9429562:1-1029, 224DA167-0C0C-11E8-8442-00059A3C7B00:1-2695";

50

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html

Adding GTID-Based Sources to a Multi-Source Replica

If there are, or might be, overlapping transactions between the GTID sets in the dump files, you can use
the stored functions described in Section 2.3.8, “Stored Function Examples to Manipulate GTIDs” to
check this beforehand and to calculate the union of all the GTID sets.

2.5.3 Adding GTID-Based Sources to a Multi-Source Replica

These steps assume you have enabled GTIDs for transactions on the sources using gtid_mode=ON,
created a replication user, ensured that the replica is using TABLE based replication applier metadata
repositories, and provisioned the replica with data from the sources if appropriate.

Use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO
statement (before MySQL 8.0.23) to configure a replication channel for each source on the replica (see
Section 5.2, “Replication Channels”). The FOR CHANNEL clause is used to specify the channel. For GTID-
based replication, GTID auto-positioning is used to synchronize with the source (see Section 2.3.3, “GTID
Auto-Positioning”). The SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option is set to specify the
use of auto-positioning.

For example, to add source1 and source2 as sources to the replica, use the mysql client to issue the
statement twice on the replica, like this:

mysql> CHANGE MASTER TO MASTER_HOST="source1", MASTER_USER="ted", \
MASTER_PASSWORD="password", MASTER_AUTO_POSITION=1 FOR CHANNEL "source_1";
mysql> CHANGE MASTER TO MASTER_HOST="source2", MASTER_USER="ted", \
MASTER_PASSWORD="password", MASTER_AUTO_POSITION=1 FOR CHANNEL "source_2";

Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source1", SOURCE_USER="ted", \
SOURCE_PASSWORD="password", SOURCE_AUTO_POSITION=1 FOR CHANNEL "source_1";
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source2", SOURCE_USER="ted", \
SOURCE_PASSWORD="password", SOURCE_AUTO_POSITION=1 FOR CHANNEL "source_2";

To make the replica replicate only database db1 from source1, and only database db2 from source2,
use the mysql client to issue the CHANGE REPLICATION FILTER statement for each channel, like this:

mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db1.%') FOR CHANNEL "source_1";
mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db2.%') FOR CHANNEL "source_2";

For the full syntax of the CHANGE REPLICATION FILTER statement and other available options, see
CHANGE REPLICATION FILTER Statement.

2.5.4 Adding Binary Log Based Replication Sources to a Multi-Source Replica

These steps assume that binary logging is enabled on the source (which is the default), the replica is using
TABLE based replication applier metadata repositories (which is the default in MySQL 8.0), and that you
have enabled a replication user and noted the current binary log file name and position.

Use the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER
TO statement (before MySQL 8.0.23) to configure a replication channel for each source on the replica
(see Section 5.2, “Replication Channels”). The FOR CHANNEL clause is used to specify the channel. For
example, to add source1 and source2 as sources to the replica, use the mysql client to issue the
statement twice on the replica, like this:

mysql> CHANGE MASTER TO MASTER_HOST="source1", MASTER_USER="ted", MASTER_PASSWORD="password", \
MASTER_LOG_FILE='source1-bin.000006', MASTER_LOG_POS=628 FOR CHANNEL "source_1";
mysql> CHANGE MASTER TO MASTER_HOST="source2", MASTER_USER="ted", MASTER_PASSWORD="password", \
MASTER_LOG_FILE='source2-bin.000018', MASTER_LOG_POS=104 FOR CHANNEL "source_2";

Or from MySQL 8.0.23:
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source1", SOURCE_USER="ted", SOURCE_PASSWORD="password", \

51

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Starting Multi-Source Replicas

SOURCE_LOG_FILE='source1-bin.000006', SOURCE_LOG_POS=628 FOR CHANNEL "source_1";
mysql> CHANGE REPLICATION SOURCE TO SOURCE_HOST="source2", SOURCE_USER="ted", SOURCE_PASSWORD="password", \
SOURCE_LOG_FILE='source2-bin.000018', SOURCE_LOG_POS=104 FOR CHANNEL "source_2";

To make the replica replicate only database db1 from source1, and only database db2 from source2,
use the mysql client to issue the CHANGE REPLICATION FILTER statement for each channel, like this:

mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db1.%') FOR CHANNEL "source_1";
mysql> CHANGE REPLICATION FILTER REPLICATE_WILD_DO_TABLE = ('db2.%') FOR CHANNEL "source_2";

For the full syntax of the CHANGE REPLICATION FILTER statement and other available options, see
CHANGE REPLICATION FILTER Statement.

2.5.5 Starting Multi-Source Replicas

Once you have added channels for all of the replication sources, issue a START REPLICA (or before
MySQL 8.0.22, START SLAVE) statement to start replication. When you have enabled multiple channels
on a replica, you can choose to either start all channels, or select a specific channel to start. For example,
to start the two channels separately, use the mysql client to issue the following statements:

mysql> START SLAVE FOR CHANNEL "source_1";
mysql> START SLAVE FOR CHANNEL "source_2";
Or from MySQL 8.0.22:
mysql> START REPLICA FOR CHANNEL "source_1";
mysql> START REPLICA FOR CHANNEL "source_2";

For the full syntax of the START REPLICA command and other available options, see START REPLICA
Statement.

To verify that both channels have started and are operating correctly, you can issue SHOW REPLICA
STATUS statements on the replica, for example:

mysql> SHOW SLAVE STATUS FOR CHANNEL "source_1"\G
mysql> SHOW SLAVE STATUS FOR CHANNEL "source_2"\G
Or from MySQL 8.0.22:
mysql> SHOW REPLICA STATUS FOR CHANNEL "source_1"\G
mysql> SHOW REPLICA STATUS FOR CHANNEL "source_2"\G

2.5.6 Stopping Multi-Source Replicas

The STOP REPLICA statement can be used to stop a multi-source replica. By default, if you use the STOP
REPLICA statement on a multi-source replica all channels are stopped. Optionally, use the FOR CHANNEL
channel clause to stop only a specific channel.

• To stop all currently configured replication channels:

mysql> STOP SLAVE;
Or from MySQL 8.0.22:
mysql> STOP REPLICA;

• To stop only a named channel, use a FOR CHANNEL channel clause:

mysql> STOP SLAVE FOR CHANNEL "source_1";
Or from MySQL 8.0.22:
mysql> STOP REPLICA FOR CHANNEL "source_1";

For the full syntax of the STOP REPLICA command and other available options, see STOP REPLICA
Statement.

2.5.7 Resetting Multi-Source Replicas

52

https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html

Monitoring Multi-Source Replication

The RESET REPLICA statement can be used to reset a multi-source replica. By default, if you use the
RESET REPLICA statement on a multi-source replica all channels are reset. Optionally, use the FOR
CHANNEL channel clause to reset only a specific channel.

• To reset all currently configured replication channels:

mysql> RESET SLAVE;
Or from MySQL 8.0.22:
mysql> RESET REPLICA;

• To reset only a named channel, use a FOR CHANNEL channel clause:

mysql> RESET SLAVE FOR CHANNEL "source_1";
Or from MySQL 8.0.22:
mysql> RESET REPLICA FOR CHANNEL "source_1";

For GTID-based replication, note that RESET REPLICA has no effect on the replica's GTID execution
history. If you want to clear this, issue RESET MASTER on the replica.

RESET REPLICA makes the replica forget its replication position, and clears the relay log, but it does not
change any replication connection parameters (such as the source host name) or replication filters. If you
want to remove these for a channel, issue RESET REPLICA ALL.

For the full syntax of the RESET REPLICA command and other available options, see RESET REPLICA
Statement.

2.5.8 Monitoring Multi-Source Replication

To monitor the status of replication channels the following options exist:

• Using the replication Performance Schema tables. The first column of these tables is Channel_Name.
This enables you to write complex queries based on Channel_Name as a key. See Performance
Schema Replication Tables.

• Using SHOW REPLICA STATUS FOR CHANNEL channel. By default, if the FOR CHANNEL channel
clause is not used, this statement shows the replica status for all channels with one row per channel.
The identifier Channel_name is added as a column in the result set. If a FOR CHANNEL channel
clause is provided, the results show the status of only the named replication channel.

Note

The SHOW VARIABLES statement does not work with multiple replication channels.
The information that was available through these variables has been migrated
to the replication performance tables. Using a SHOW VARIABLES statement in a
topology with multiple channels shows the status of only the default channel.

The error codes and messages that are issued when multi-source replication is enabled specify the
channel that generated the error.

2.5.8.1 Monitoring Channels Using Performance Schema Tables

This section explains how to use the replication Performance Schema tables to monitor channels. You can
choose to monitor all channels, or a subset of the existing channels.

To monitor the connection status of all channels:

mysql> SELECT * FROM replication_connection_status\G;
*************************** 1. row ***************************
CHANNEL_NAME: source_1
GROUP_NAME:

53

https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Replication and Binary Logging Options and Variables

SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
*************************** 2. row ***************************
CHANNEL_NAME: source_2
GROUP_NAME:
SOURCE_UUID: 7475e474-a223-11e4-a978-0811960cc264
THREAD_ID: 26
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 7475e474-a223-11e4-a978-0811960cc264:4-6
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
2 rows in set (0.00 sec)

In the above output there are two channels enabled, and as shown by the CHANNEL_NAME field they are
called source_1 and source_2.

The addition of the CHANNEL_NAME field enables you to query the Performance Schema tables
for a specific channel. To monitor the connection status of a named channel, use a WHERE
CHANNEL_NAME=channel clause:

mysql> SELECT * FROM replication_connection_status WHERE CHANNEL_NAME='source_1'\G
*************************** 1. row ***************************
CHANNEL_NAME: source_1
GROUP_NAME:
SOURCE_UUID: 046e41f8-a223-11e4-a975-0811960cc264
THREAD_ID: 24
SERVICE_STATE: ON
COUNT_RECEIVED_HEARTBEATS: 0
LAST_HEARTBEAT_TIMESTAMP: 0000-00-00 00:00:00
RECEIVED_TRANSACTION_SET: 046e41f8-a223-11e4-a975-0811960cc264:4-37
LAST_ERROR_NUMBER: 0
LAST_ERROR_MESSAGE:
LAST_ERROR_TIMESTAMP: 0000-00-00 00:00:00
1 row in set (0.00 sec)

Similarly, the WHERE CHANNEL_NAME=channel clause can be used to monitor the other replication
Performance Schema tables for a specific channel. For more information, see Performance Schema
Replication Tables.

2.6 Replication and Binary Logging Options and Variables
The following sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on sources and replicas are
covered separately, as are options and variables relating to binary logging and global transaction identifiers
(GTIDs). A set of quick-reference tables providing basic information about these options and variables is
also included.

Of particular importance is the server_id system variable.

Command-Line Format --server-id=#

System Variable server_id

54

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-tables.html

Replication and Binary Logging Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 4294967295

This variable specifies the server ID. server_id is set to 1 by default. The server can be started with
this default ID, but when binary logging is enabled, an informational message is issued if you did not set
server_id explicitly to specify a server ID.

For servers that are used in a replication topology, you must specify a unique server ID for each replication
server, in the range from 1 to 232 − 1. “Unique” means that each ID must be different from every other ID in
use by any other source or replica in the replication topology. For additional information, see Section 2.6.2,
“Replication Source Options and Variables”, and Section 2.6.3, “Replica Server Options and Variables”.

If the server ID is set to 0, binary logging takes place, but a source with a server ID of 0 refuses any
connections from replicas, and a replica with a server ID of 0 refuses to connect to a source. Note
that although you can change the server ID dynamically to a nonzero value, doing so does not enable
replication to start immediately. You must change the server ID and then restart the server to initialize the
replica.

For more information, see Section 2.2.2, “Setting the Replica Configuration”.

server_uuid

The MySQL server generates a true UUID in addition to the default or user-supplied server ID set in the
server_id system variable. This is available as the global, read-only variable server_uuid.

Note

The presence of the server_uuid system variable does not change the
requirement for setting a unique server_id value for each MySQL server as part
of preparing and running MySQL replication, as described earlier in this section.

System Variable server_uuid

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

When starting, the MySQL server automatically obtains a UUID as follows:

1. Attempt to read and use the UUID written in the file data_dir/auto.cnf (where data_dir is the
server's data directory).

2. If data_dir/auto.cnf is not found, generate a new UUID and save it to this file, creating the file if
necessary.

The auto.cnf file has a format similar to that used for my.cnf or my.ini files. auto.cnf has only a
single [auto] section containing a single server_uuid setting and value; the file's contents appear
similar to what is shown here:

55

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication and Binary Logging Option and Variable Reference

[auto]
server_uuid=8a94f357-aab4-11df-86ab-c80aa9429562

Important

The auto.cnf file is automatically generated; do not attempt to write or modify this
file.

When using MySQL replication, sources and replicas know each other's UUIDs. The value of a replica's
UUID can be seen in the output of SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS).
Once START REPLICA has been executed, the value of the source's UUID is available on the replica
in the output of SHOW REPLICA STATUS. (In MySQL 8.0.22, the SLAVE keyword was replaced by
REPLICA.)

Note

Issuing a STOP REPLICA or RESET REPLICA statement does not reset the
source's UUID as used on the replica.

A server's server_uuid is also used in GTIDs for transactions originating on that server. For more
information, see Section 2.3, “Replication with Global Transaction Identifiers”.

When starting, the replication I/O (receiver) thread generates an error and aborts if its source's UUID
is equal to its own unless the --replicate-same-server-id option has been set. In addition, the
replication receiver thread generates a warning if either of the following is true:

• No source having the expected server_uuid exists.

• The source's server_uuid has changed, although no CHANGE REPLICATION SOURCE TO | CHANGE
MASTER TO statement has ever been executed.

2.6.1 Replication and Binary Logging Option and Variable Reference

The following two sections provide basic information about the MySQL command-line options and system
variables applicable to replication and the binary log.

Replication Options and Variables

The command-line options and system variables in the following list relate to replication source servers
and replicas. Section 2.6.2, “Replication Source Options and Variables” provides more detailed information
about options and variables relating to replication source servers. For more information about options and
variables relating to replicas, see Section 2.6.3, “Replica Server Options and Variables”.

• abort-slave-event-count: Option used by mysql-test for debugging and testing of replication.

• auto_increment_increment: AUTO_INCREMENT columns are incremented by this value.

• auto_increment_offset: Offset added to AUTO_INCREMENT columns.

• Com_change_master: Count of CHANGE REPLICATION SOURCE TO and CHANGE MASTER TO
statements.

• Com_change_replication_source: Count of CHANGE REPLICATION SOURCE TO and CHANGE
MASTER TO statements.

• Com_replica_start: Count of START REPLICA and START SLAVE statements.

• Com_replica_stop: Count of STOP REPLICA and STOP SLAVE statements.

56

https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx

Replication and Binary Logging Option and Variable Reference

• Com_show_master_status: Count of SHOW MASTER STATUS statements.

• Com_show_replica_status: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements.

• Com_show_replicas: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements.

• Com_show_slave_hosts: Count of SHOW REPLICAS and SHOW SLAVE HOSTS statements.

• Com_show_slave_status: Count of SHOW REPLICA STATUS and SHOW SLAVE STATUS
statements.

• Com_slave_start: Count of START REPLICA and START SLAVE statements.

• Com_slave_stop: Count of STOP REPLICA and STOP SLAVE statements.

• disconnect-slave-event-count: Option used by mysql-test for debugging and testing of
replication.

• enforce_gtid_consistency: Prevents execution of statements that cannot be logged in
transactionally safe manner.

• expire_logs_days: Purge binary logs after this many days.

• gtid_executed: Global: All GTIDs in binary log (global) or current transaction (session). Read-only.

• gtid_executed_compression_period: Compress gtid_executed table each time this many
transactions have occurred. 0 means never compress this table. Applies only when binary logging is
disabled.

• gtid_mode: Controls whether GTID based logging is enabled and what type of transactions logs can
contain.

• gtid_next: Specifies GTID for subsequent transaction or transactions; see documentation for details.

• gtid_owned: Set of GTIDs owned by this client (session), or by all clients, together with thread ID of
owner (global). Read-only.

• gtid_purged: Set of all GTIDs that have been purged from binary log.

• immediate_server_version: MySQL Server release number of server which is immediate
replication source.

• init_replica: Statements that are executed when replica connects to source.

• init_slave: Statements that are executed when replica connects to source.

• log_bin_trust_function_creators: If equal to 0 (default), then when --log-bin is used, stored
function creation is allowed only to users having SUPER privilege and only if function created does not
break binary logging.

• log_statements_unsafe_for_binlog: Disables error 1592 warnings being written to error log.

• master-info-file: Location and name of file that remembers source and where I/O replication thread
is in source's binary log.

• master-retry-count: Number of tries replica makes to connect to source before giving up.

• master_info_repository: Whether to write connection metadata repository, containing source
information and replication I/O thread location in source's binary log, to file or table.

57

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx

Replication and Binary Logging Option and Variable Reference

• max_relay_log_size: If nonzero, relay log is rotated automatically when its size exceeds this value. If
zero, size at which rotation occurs is determined by value of max_binlog_size.

• original_commit_timestamp: Time when transaction was committed on original source.

• original_server_version: MySQL Server release number of server on which transaction was
originally committed.

• relay_log: Location and base name to use for relay logs.

• relay_log_basename: Complete path to relay log, including file name.

• relay_log_index: Location and name to use for file that keeps list of last relay logs.

• relay_log_info_file: File name for applier metadata repository in which replica records information
about relay logs.

• relay_log_info_repository: Whether to write location of replication SQL thread in relay logs to file
or table.

• relay_log_purge: Determines whether relay logs are purged.

• relay_log_recovery: Whether automatic recovery of relay log files from source at startup is enabled;
must be enabled for crash-safe replica.

• relay_log_space_limit: Maximum space to use for all relay logs.

• replica_checkpoint_group: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster.

• replica_checkpoint_period: Update progress status of multithreaded replica and flush relay log
info to disk after this number of milliseconds. Not supported by NDB Cluster.

• replica_compressed_protocol: Use compression of source/replica protocol.

• replica_exec_mode: Allows for switching replication thread between IDEMPOTENT mode (key and
some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB Cluster,
where IDEMPOTENT is always used.

• replica_load_tmpdir: Location where replica should put its temporary files when replicating LOAD
DATA statements.

• replica_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet.

• replica_net_timeout: Number of seconds to wait for more data from source/replica connection
before aborting read.

• Replica_open_temp_tables: Number of temporary tables that replication SQL thread currently has
open.

• replica_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or
database partitioning (DATABASE) to parallelize transactions.

• replica_parallel_workers: Number of applier threads for executing replication transactions; when
this is 0 or 1, there is only one applier thread. NDB Cluster: see documentation.

• replica_pending_jobs_size_max: Maximum size of replica worker queues holding events not yet
applied.

58

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Replica_open_temp_tables

Replication and Binary Logging Option and Variable Reference

• replica_preserve_commit_order: Ensures that all commits by replica workers happen in same
order as on source to maintain consistency when using parallel applier threads.

• Replica_rows_last_search_algorithm_used: Search algorithm most recently used by this
replica to locate rows for row-based replication (index, table, or hash scan).

• replica_skip_errors: Tells replication thread to continue replication when query returns error from
provided list.

• replica_transaction_retries: Number of times replication SQL thread retries transaction in case
it failed with deadlock or elapsed lock wait timeout, before giving up and stopping.

• replica_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica.

• replicate-do-db: Tells replication SQL thread to restrict replication to specified database.

• replicate-do-table: Tells replication SQL thread to restrict replication to specified table.

• replicate-ignore-db: Tells replication SQL thread not to replicate to specified database.

• replicate-ignore-table: Tells replication SQL thread not to replicate to specified table.

• replicate-rewrite-db: Updates to database with different name from original.

• replicate-same-server-id: In replication, if enabled, do not skip events having our server id.

• replicate-wild-do-table: Tells replication SQL thread to restrict replication to tables that match
specified wildcard pattern.

• replicate-wild-ignore-table: Tells replication SQL thread not to replicate to tables that match
given wildcard pattern.

• replication_optimize_for_static_plugin_config: Shared locks for semisynchronous
replication.

• replication_sender_observe_commit_only: Limited callbacks for semisynchronous replication.

• report_host: Host name or IP of replica to be reported to source during replica registration.

• report_password: Arbitrary password which replica server should report to source; not same as
password for replication user account.

• report_port: Port for connecting to replica reported to source during replica registration.

• report_user: Arbitrary user name which replica server should report to source; not same as name
used for replication user account.

• rpl_read_size: Set minimum amount of data in bytes which is read from binary log files and relay log
files.

• Rpl_semi_sync_master_clients: Number of semisynchronous replicas.

• rpl_semi_sync_master_enabled: Whether semisynchronous replication is enabled on source.

• Rpl_semi_sync_master_net_avg_wait_time: Average time source has waited for replies from
replica.

• Rpl_semi_sync_master_net_wait_time: Total time source has waited for replies from replica.

59

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Replica_rows_last_search_algorithm_used
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_avg_wait_time
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_wait_time

Replication and Binary Logging Option and Variable Reference

• Rpl_semi_sync_master_net_waits: Total number of times source waited for replies from replica.

• Rpl_semi_sync_master_no_times: Number of times source turned off semisynchronous replication.

• Rpl_semi_sync_master_no_tx: Number of commits not acknowledged successfully.

• Rpl_semi_sync_master_status: Whether semisynchronous replication is operational on source.

• Rpl_semi_sync_master_timefunc_failures: Number of times source failed when calling time
functions.

• rpl_semi_sync_master_timeout: Number of milliseconds to wait for replica acknowledgment.

• rpl_semi_sync_master_trace_level: Semisynchronous replication debug trace level on source.

• Rpl_semi_sync_master_tx_avg_wait_time: Average time source waited for each transaction.

• Rpl_semi_sync_master_tx_wait_time: Total time source waited for transactions.

• Rpl_semi_sync_master_tx_waits: Total number of times source waited for transactions.

• rpl_semi_sync_master_wait_for_slave_count: Number of replica acknowledgments source
must receive per transaction before proceeding.

• rpl_semi_sync_master_wait_no_slave: Whether source waits for timeout even with no replicas.

• rpl_semi_sync_master_wait_point: Wait point for replica transaction receipt acknowledgment.

• Rpl_semi_sync_master_wait_pos_backtraverse: Total number of times source has waited for
event with binary coordinates lower than events waited for previously.

• Rpl_semi_sync_master_wait_sessions: Number of sessions currently waiting for replica replies.

• Rpl_semi_sync_master_yes_tx: Number of commits acknowledged successfully.

• rpl_semi_sync_replica_enabled: Whether semisynchronous replication is enabled on replica.

• Rpl_semi_sync_replica_status: Whether semisynchronous replication is operational on replica.

• rpl_semi_sync_replica_trace_level: Semisynchronous replication debug trace level on replica.

• rpl_semi_sync_slave_enabled: Whether semisynchronous replication is enabled on replica.

• Rpl_semi_sync_slave_status: Whether semisynchronous replication is operational on replica.

• rpl_semi_sync_slave_trace_level: Semisynchronous replication debug trace level on replica.

• Rpl_semi_sync_source_clients: Number of semisynchronous replicas.

• rpl_semi_sync_source_enabled: Whether semisynchronous replication is enabled on source.

• Rpl_semi_sync_source_net_avg_wait_time: Average time source has waited for replies from
replica.

• Rpl_semi_sync_source_net_wait_time: Total time source has waited for replies from replica.

• Rpl_semi_sync_source_net_waits: Total number of times source waited for replies from replica.

• Rpl_semi_sync_source_no_times: Number of times source turned off semisynchronous replication.

• Rpl_semi_sync_source_no_tx: Number of commits not acknowledged successfully.

60

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_net_waits
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_times
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_timefunc_failures
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_avg_wait_time
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_wait_time
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_tx_waits
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_wait_pos_backtraverse
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_wait_sessions
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_replica_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_clients
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_net_avg_wait_time
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_net_wait_time
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_net_waits
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_no_times
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_no_tx

Replication and Binary Logging Option and Variable Reference

• Rpl_semi_sync_source_status: Whether semisynchronous replication is operational on source.

• Rpl_semi_sync_source_timefunc_failures: Number of times source failed when calling time
functions.

• rpl_semi_sync_source_timeout: Number of milliseconds to wait for replica acknowledgment.

• rpl_semi_sync_source_trace_level: Semisynchronous replication debug trace level on source.

• Rpl_semi_sync_source_tx_avg_wait_time: Average time source waited for each transaction.

• Rpl_semi_sync_source_tx_wait_time: Total time source waited for transactions.

• Rpl_semi_sync_source_tx_waits: Total number of times source waited for transactions.

• rpl_semi_sync_source_wait_for_replica_count: Number of replica acknowledgments source
must receive per transaction before proceeding.

• rpl_semi_sync_source_wait_no_replica: Whether source waits for timeout even with no
replicas.

• rpl_semi_sync_source_wait_point: Wait point for replica transaction receipt acknowledgment.

• Rpl_semi_sync_source_wait_pos_backtraverse: Total number of times source has waited for
event with binary coordinates lower than events waited for previously.

• Rpl_semi_sync_source_wait_sessions: Number of sessions currently waiting for replica replies.

• Rpl_semi_sync_source_yes_tx: Number of commits acknowledged successfully.

• rpl_stop_replica_timeout: Number of seconds that STOP REPLICA waits before timing out.

• rpl_stop_slave_timeout: Number of seconds that STOP REPLICA or STOP SLAVE waits before
timing out.

• server_uuid: Server's globally unique ID, automatically (re)generated at server start.

• show-replica-auth-info: Show user name and password in SHOW REPLICAS on this source.

• show-slave-auth-info: Show user name and password in SHOW REPLICAS and SHOW SLAVE
HOSTS on this source.

• skip-replica-start: If set, replication is not autostarted when replica server starts.

• skip-slave-start: If set, replication is not autostarted when replica server starts.

• slave-skip-errors: Tells replication thread to continue replication when query returns error from
provided list.

• slave_checkpoint_group: Maximum number of transactions processed by multithreaded replica
before checkpoint operation is called to update progress status. Not supported by NDB Cluster.

• slave_checkpoint_period: Update progress status of multithreaded replica and flush relay log info
to disk after this number of milliseconds. Not supported by NDB Cluster.

• slave_compressed_protocol: Use compression of source/replica protocol.

• slave_exec_mode: Allows for switching replication thread between IDEMPOTENT mode (key and
some other errors suppressed) and STRICT mode; STRICT mode is default, except for NDB Cluster,
where IDEMPOTENT is always used.

61

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_timefunc_failures
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_tx_avg_wait_time
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_tx_wait_time
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_tx_waits
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_wait_pos_backtraverse
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_wait_sessions
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_yes_tx

Replication and Binary Logging Option and Variable Reference

• slave_load_tmpdir: Location where replica should put its temporary files when replicating LOAD
DATA statements.

• slave_max_allowed_packet: Maximum size, in bytes, of packet that can be sent from replication
source server to replica; overrides max_allowed_packet.

• slave_net_timeout: Number of seconds to wait for more data from source/replica connection before
aborting read.

• Slave_open_temp_tables: Number of temporary tables that replication SQL thread currently has
open.

• slave_parallel_type: Tells replica to use timestamp information (LOGICAL_CLOCK) or database
partioning (DATABASE) to parallelize transactions.

• slave_parallel_workers: Number of applier threads for executing replication transactions in
parallel; 0 or 1 disables replica multithreading. NDB Cluster: see documentation.

• slave_pending_jobs_size_max: Maximum size of replica worker queues holding events not yet
applied.

• slave_preserve_commit_order: Ensures that all commits by replica workers happen in same order
as on source to maintain consistency when using parallel applier threads.

• Slave_rows_last_search_algorithm_used: Search algorithm most recently used by this replica
to locate rows for row-based replication (index, table, or hash scan).

• slave_rows_search_algorithms: Determines search algorithms used for replica update batching.
Any 2 or 3 from this list: INDEX_SEARCH, TABLE_SCAN, HASH_SCAN.

• slave_transaction_retries: Number of times replication SQL thread retries transaction in case it
failed with deadlock or elapsed lock wait timeout, before giving up and stopping.

• slave_type_conversions: Controls type conversion mode on replica. Value is list of zero or
more elements from this list: ALL_LOSSY, ALL_NON_LOSSY. Set to empty string to disallow type
conversions between source and replica.

• sql_log_bin: Controls binary logging for current session.

• sql_replica_skip_counter: Number of events from source that replica should skip. Not compatible
with GTID replication.

• sql_slave_skip_counter: Number of events from source that replica should skip. Not compatible
with GTID replication.

• sync_master_info: Synchronize source information after every #th event.

• sync_relay_log: Synchronize relay log to disk after every #th event.

• sync_relay_log_info: Synchronize relay.info file to disk after every #th event.

• sync_source_info: Synchronize source information after every #th event.

• terminology_use_previous: Use terminology from before specified version where changes are
incompatible.

• transaction_write_set_extraction: Defines algorithm used to hash writes extracted during
transaction.

62

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Slave_rows_last_search_algorithm_used

Replication and Binary Logging Option and Variable Reference

For a listing of all command-line options, system variables, and status variables used with mysqld, see
Server Option, System Variable, and Status Variable Reference.

Binary Logging Options and Variables

The command-line options and system variables in the following list relate to the binary log. Section 2.6.4,
“Binary Logging Options and Variables”, provides more detailed information about options and variables
relating to binary logging. For additional general information about the binary log, see The Binary Log.

• binlog-checksum: Enable or disable binary log checksums.

• binlog-do-db: Limits binary logging to specific databases.

• binlog-ignore-db: Tells source that updates to given database should not be written to binary log.

• binlog-row-event-max-size: Binary log max event size.

• Binlog_cache_disk_use: Number of transactions which used temporary file instead of binary log
cache.

• binlog_cache_size: Size of cache to hold SQL statements for binary log during transaction.

• Binlog_cache_use: Number of transactions that used temporary binary log cache.

• binlog_checksum: Enable or disable binary log checksums.

• binlog_direct_non_transactional_updates: Causes updates using statement format to
nontransactional engines to be written directly to binary log. See documentation before using.

• binlog_encryption: Enable encryption for binary log files and relay log files on this server.

• binlog_error_action: Controls what happens when server cannot write to binary log.

• binlog_expire_logs_auto_purge: Controls automatic purging of binary log files; can be overridden
when enabled, by setting both binlog_expire_logs_seconds and expire_logs_days to 0.

• binlog_expire_logs_seconds: Purge binary logs after this many seconds.

• binlog_format: Specifies format of binary log.

• binlog_group_commit_sync_delay: Sets number of microseconds to wait before synchronizing
transactions to disk.

• binlog_group_commit_sync_no_delay_count: Sets maximum number of transactions to wait for
before aborting current delay specified by binlog_group_commit_sync_delay.

• binlog_gtid_simple_recovery: Controls how binary logs are iterated during GTID recovery.

• binlog_max_flush_queue_time: How long to read transactions before flushing to binary log.

• binlog_order_commits: Whether to commit in same order as writes to binary log.

• binlog_rotate_encryption_master_key_at_startup: Rotate binary log master key at server
startup.

• binlog_row_image: Use full or minimal images when logging row changes.

• binlog_row_metadata: Whether to record all or only minimal table related metadata to binary log
when using row-based logging.

63

https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_cache_disk_use
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_cache_use

Replication and Binary Logging Option and Variable Reference

• binlog_row_value_options: Enables binary logging of partial JSON updates for row-based
replication.

• binlog_rows_query_log_events: When enabled, enables logging of rows query log events when
using row-based logging. Disabled by default. Do not enable when producing logs for pre-5.6 replicas/
readers.

• Binlog_stmt_cache_disk_use: Number of nontransactional statements that used temporary file
instead of binary log statement cache.

• binlog_stmt_cache_size: Size of cache to hold nontransactional statements for binary log during
transaction.

• Binlog_stmt_cache_use: Number of statements that used temporary binary log statement cache.

• binlog_transaction_compression: Enable compression for transaction payloads in binary log
files.

• binlog_transaction_compression_level_zstd: Compression level for transaction payloads in
binary log files.

• binlog_transaction_dependency_history_size: Number of row hashes kept for looking up
transaction that last updated some row.

• binlog_transaction_dependency_tracking: Source of dependency information (commit
timestamps or transaction write sets) from which to assess which transactions can be executed in
parallel by replica's multithreaded applier.

• Com_show_binlog_events: Count of SHOW BINLOG EVENTS statements.

• Com_show_binlogs: Count of SHOW BINLOGS statements.

• log-bin: Base name for binary log files.

• log-bin-index: Name of binary log index file.

• log_bin: Whether binary log is enabled.

• log_bin_basename: Path and base name for binary log files.

• log_bin_use_v1_row_events: Whether server is using version 1 binary log row events.

• log_replica_updates: Whether replica should log updates performed by its replication SQL thread
to its own binary log.

• log_slave_updates: Whether replica should log updates performed by its replication SQL thread to
its own binary log.

• master_verify_checksum: Cause source to examine checksums when reading from binary log.

• max-binlog-dump-events: Option used by mysql-test for debugging and testing of replication.

• max_binlog_cache_size: Can be used to restrict total size in bytes used to cache multi-statement
transactions.

• max_binlog_size: Binary log is rotated automatically when size exceeds this value.

• max_binlog_stmt_cache_size: Can be used to restrict total size used to cache all nontransactional
statements during transaction.

64

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_stmt_cache_disk_use
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_stmt_cache_use
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx

Replication Source Options and Variables

• replica_sql_verify_checksum: Cause replica to examine checksums when reading from relay log.

• slave-sql-verify-checksum: Cause replica to examine checksums when reading from relay log.

• slave_sql_verify_checksum: Cause replica to examine checksums when reading from relay log.

• source_verify_checksum: Cause source to examine checksums when reading from binary log.

• sporadic-binlog-dump-fail: Option used by mysql-test for debugging and testing of replication.

• sync_binlog: Synchronously flush binary log to disk after every #th event.

For a listing of all command-line options, system and status variables used with mysqld, see Server
Option, System Variable, and Status Variable Reference.

2.6.2 Replication Source Options and Variables

This section describes the server options and system variables that you can use on replication source
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the source and each replica, you must set the server_id system variable to establish a unique
replication ID. For each server, you should pick a unique positive integer in the range from 1 to 232 − 1,
and each ID must be different from every other ID in use by any other source or replica in the replication
topology. Example: server-id=3.

For options used on the source for controlling binary logging, see Section 2.6.4, “Binary Logging Options
and Variables”.

Startup Options for Replication Source Servers

The following list describes startup options for controlling replication source servers. Replication-related
system variables are discussed later in this section.

• --show-replica-auth-info

Command-Line Format --show-replica-auth-info[={OFF|ON}]

Introduced 8.0.26

Type Boolean

Default Value OFF

From MySQL 8.0.26, use --show-replica-auth-info, and before MySQL 8.0.26, use --show-
slave-auth-info. Both options have the same effect. The options display replication user names and
passwords in the output of SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS) on the
source for replicas started with the --report-user and --report-password options.

• --show-slave-auth-info

Command-Line Format --show-slave-auth-info[={OFF|ON}]

Deprecated 8.0.26

Type Boolean

Default Value OFF

Use this option before MySQL 8.0.26 rather than --show-replica-auth-info. Both options have
the same effect.

65

https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/command-line-options.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-hosts.html

Replication Source Options and Variables

System Variables Used on Replication Source Servers

The following system variables are used for or by replication source servers:

• auto_increment_increment

Command-Line Format --auto-increment-increment=#

System Variable auto_increment_increment

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

auto_increment_increment and auto_increment_offset are intended for use with circular
(source-to-source) replication, and can be used to control the operation of AUTO_INCREMENT columns.
Both variables have global and session values, and each can assume an integer value between 1
and 65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
auto_increment_increment or auto_increment_offset to a noninteger value produces an
error, and the actual value of the variable remains unchanged.

Note

auto_increment_increment is also supported for use with NDB tables.

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted operation.

When Group Replication is started on a server, the value of auto_increment_increment is changed
to the value of group_replication_auto_increment_increment, which defaults to 7, and the
value of auto_increment_offset is changed to the server ID. The changes are reverted when Group
Replication is stopped. These changes are only made and reverted if auto_increment_increment
and auto_increment_offset each have their default value of 1. If their values have already been
modified from the default, Group Replication does not alter them. From MySQL 8.0, the system variables
are also not modified when Group Replication is in single-primary mode, where only one server writes.

auto_increment_increment and auto_increment_offset affect AUTO_INCREMENT column
behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

66

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_auto_increment_increment

Replication Source Options and Variables

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column value.
Consider the following, assuming that these statements are executed during the same session as the
example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+

67

Replication Source Options and Variables

4 rows in set (0.02 sec)

When the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

If either of these variables is changed, and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column, and
the next value inserted is the least value in the series that is greater than the maximum existing value in
the AUTO_INCREMENT column. The series is calculated like this:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate the
series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The highest value present in the col column prior to the
INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the inserted values
for col begin at that point and the results are as shown for the SELECT query.

It is not possible to restrict the effects of these two variables to a single table; these variables control the
behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global value of either
variable is set, its effects persist until the global value is changed or overridden by setting the session

68

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Replication Source Options and Variables

value, or until mysqld is restarted. If the local value is set, the new value affects AUTO_INCREMENT
columns for all tables into which new rows are inserted by the current user for the duration of the
session, unless the values are changed during that session.

The default value of auto_increment_increment is 1. See Section 4.1.1, “Replication and
AUTO_INCREMENT”.

• auto_increment_offset

Command-Line Format --auto-increment-offset=#

System Variable auto_increment_offset

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies Yes

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

This variable has a default value of 1. If it is left with its default value, and Group Replication is started
on the server in multi-primary mode, it is changed to the server ID. For more information, see the
description for auto_increment_increment.

Note

auto_increment_offset is also supported for use with NDB tables.

As of MySQL 8.0.18, setting the session value of this system variable is no longer a restricted operation.

• immediate_server_version

Introduced 8.0.14

System Variable immediate_server_version

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 999999

Minimum Value 0

Maximum Value 999999

For internal use by replication. This session system variable holds the MySQL Server release number
of the server that is the immediate source in a replication topology (for example, 80014 for a MySQL
8.0.14 server instance). If this immediate server is at a release that does not support the session system
variable, the value of the variable is set to 0 (UNKNOWN_SERVER_VERSION).

The value of the variable is replicated from a source to a replica. With this information the replica
can correctly process data originating from a source at an older release, by recognizing where
syntax changes or semantic changes have occurred between the releases involved and handling 69

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication Source Options and Variables

these appropriately. The information can also be used in a Group Replication environment where
one or more members of the replication group is at a newer release than the others. The value of
the variable can be viewed in the binary log for each transaction (as part of the Gtid_log_event,
or Anonymous_gtid_log_event if GTIDs are not in use on the server), and could be helpful in
debugging cross-version replication issues.

Setting the session value of this system variable is a restricted operation. The session user must have
either the REPLICATION_APPLIER privilege (see Replication Privilege Checks), or privileges sufficient
to set restricted session variables (see System Variable Privileges). However, note that the variable is
not intended for users to set; it is set automatically by the replication infrastructure.

• original_server_version

Introduced 8.0.14

System Variable original_server_version

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 999999

Minimum Value 0

Maximum Value 999999

For internal use by replication. This session system variable holds the MySQL Server release number
of the server where a transaction was originally committed (for example, 80014 for a MySQL 8.0.14
server instance). If this original server is at a release that does not support the session system variable,
the value of the variable is set to 0 (UNKNOWN_SERVER_VERSION). Note that when a release number
is set by the original server, the value of the variable is reset to 0 if the immediate server or any other
intervening server in the replication topology does not support the session system variable, and so does
not replicate its value.

The value of the variable is set and used in the same ways as for the immediate_server_version
system variable. If the value of the variable is the same as that for the immediate_server_version
system variable, only the latter is recorded in the binary log, with an indicator that the original server
version is the same.

In a Group Replication environment, view change log events, which are special transactions queued
by each group member when a new member joins the group, are tagged with the server version of the
group member queuing the transaction. This ensures that the server version of the original donor is
known to the joining member. Because the view change log events queued for a particular view change
have the same GTID on all members, for this case only, instances of the same GTID might have a
different original server version.

Setting the session value of this system variable is a restricted operation. The session user must have
either the REPLICATION_APPLIER privilege (see Replication Privilege Checks), or privileges sufficient
to set restricted session variables (see System Variable Privileges). However, note that the variable is
not intended for users to set; it is set automatically by the replication infrastructure.

• rpl_semi_sync_master_enabled

Command-Line Format --rpl-semi-sync-master-enabled[={OFF|
ON}]

70

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html

Replication Source Options and Variables

System Variable rpl_semi_sync_master_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Controls whether semisynchronous replication is enabled on the source server. To enable or disable the
plugin, set this variable to ON or OFF (or 1 or 0), respectively. The default is OFF.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_timeout

Command-Line Format --rpl-semi-sync-master-timeout=#

System Variable rpl_semi_sync_master_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

A value in milliseconds that controls how long the source waits on a commit for acknowledgment from
a replica before timing out and reverting to asynchronous replication. The default value is 10000 (10
seconds).

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_trace_level

Command-Line Format --rpl-semi-sync-master-trace-level=#

System Variable rpl_semi_sync_master_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

The semisynchronous replication debug trace level on the source server. Four levels are defined:

• 1 = general level (for example, time function failures)
71

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication Source Options and Variables

• 16 = detail level (more verbose information)

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_for_slave_count

Command-Line Format --rpl-semi-sync-master-wait-for-
slave-count=#

System Variable rpl_semi_sync_master_wait_for_slave_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

The number of replica acknowledgments the source must receive per transaction before proceeding.
By default rpl_semi_sync_master_wait_for_slave_count is 1, meaning that semisynchronous
replication proceeds after receiving a single replica acknowledgment. Performance is best for small
values of this variable.

For example, if rpl_semi_sync_master_wait_for_slave_count is 2, then 2 replicas
must acknowledge receipt of the transaction before the timeout period configured by
rpl_semi_sync_master_timeout for semisynchronous replication to proceed. If fewer replicas
acknowledge receipt of the transaction during the timeout period, the source reverts to normal
replication.

Note

This behavior also depends on rpl_semi_sync_master_wait_no_slave

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_no_slave

Command-Line Format --rpl-semi-sync-master-wait-no-
slave[={OFF|ON}]

System Variable rpl_semi_sync_master_wait_no_slave

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

72

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication Source Options and Variables

Default Value ON

Controls whether the source waits for the timeout period configured by
rpl_semi_sync_master_timeout to expire, even if the replica count drops to less than the number
of replicas configured by rpl_semi_sync_master_wait_for_slave_count during the timeout
period.

When the value of rpl_semi_sync_master_wait_no_slave is ON (the default), it is permissible
for the replica count to drop to less than rpl_semi_sync_master_wait_for_slave_count during
the timeout period. As long as enough replicas acknowledge the transaction before the timeout period
expires, semisynchronous replication continues.

When the value of rpl_semi_sync_master_wait_no_slave is OFF, if the replica count drops to
less than the number configured in rpl_semi_sync_master_wait_for_slave_count at any time
during the timeout period configured by rpl_semi_sync_master_timeout, the source reverts to
normal replication.

This variable is available only if the source-side semisynchronous replication plugin is installed.

• rpl_semi_sync_master_wait_point

Command-Line Format --rpl-semi-sync-master-wait-
point=value

System Variable rpl_semi_sync_master_wait_point

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value AFTER_SYNC

Valid Values AFTER_SYNC

AFTER_COMMIT

This variable controls the point at which a semisynchronous replication source server waits for replica
acknowledgment of transaction receipt before returning a status to the client that committed the
transaction. These values are permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica, and
syncs the binary log to disk. The source waits for replica acknowledgment of transaction receipt after
the sync. Upon receiving acknowledgment, the source commits the transaction to the storage engine
and returns a result to the client, which then can proceed.

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs the binary
log, and commits the transaction to the storage engine. The source waits for replica acknowledgment

73

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication Source Options and Variables

of transaction receipt after the commit. Upon receiving acknowledgment, the source returns a result to
the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients see
the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source server and failover to the replica is
lossless because the replica is up to date. Note, however, that the source cannot be restarted in this
scenario and must be discarded, because its binary log might contain uncommitted transactions that
would cause a conflict with the replica when externalized after binary log recovery.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before
replica acknowledgment, other clients can see the committed transaction before the committing client.

If something goes wrong such that the replica does not process the transaction, then in the event of an
unexpected source server exit and failover to the replica, it is possible for such clients to see a loss of
data relative to what they saw on the source.

This variable is available only if the source-side semisynchronous replication plugin is installed.

With the addition of rpl_semi_sync_master_wait_point in MySQL 5.7, a version compatibility
constraint was created because it increments the semisynchronous interface version: Servers for
MySQL 5.7 and higher do not work with semisynchronous replication plugins from older versions, nor do
servers from older versions work with semisynchronous replication plugins for MySQL 5.7 and higher.

• rpl_semi_sync_source_enabled

Command-Line Format --rpl-semi-sync-source-enabled[={OFF|
ON}]

Introduced 8.0.26

System Variable rpl_semi_sync_source_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

rpl_semi_sync_source_enabled is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_enabled is available instead.

rpl_semi_sync_source_enabled controls whether semisynchronous replication is enabled on the
source server. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0), respectively.
The default is OFF.

74

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication Source Options and Variables

• rpl_semi_sync_source_timeout

Command-Line Format --rpl-semi-sync-source-timeout=#

Introduced 8.0.26

System Variable rpl_semi_sync_source_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

Unit milliseconds

rpl_semi_sync_source_timeout is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_timeout is available instead.

rpl_semi_sync_source_timeout controls how long the source waits on a commit for
acknowledgment from a replica before timing out and reverting to asynchronous replication. The value is
specified in milliseconds, and the default value is 10000 (10 seconds).

• rpl_semi_sync_source_trace_level

Command-Line Format --rpl-semi-sync-source-trace-level=#

Introduced 8.0.26

System Variable rpl_semi_sync_source_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

rpl_semi_sync_source_trace_level is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_trace_level is available instead.

rpl_semi_sync_source_trace_level specifies the semisynchronous replication debug trace level
on the source server. Four levels are defined:

• 1 = general level (for example, time function failures)

• 16 = detail level (more verbose information)

75

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication Source Options and Variables

• 32 = net wait level (more information about network waits)

• 64 = function level (information about function entry and exit)

• rpl_semi_sync_source_wait_for_replica_count

Command-Line Format --rpl-semi-sync-source-wait-for-
replica-count=#

Introduced 8.0.26

System Variable rpl_semi_sync_source_wait_for_replica_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 65535

rpl_semi_sync_source_wait_for_replica_count is available when the
rpl_semi_sync_source (semisync_source.so library) plugin was installed on the replica to set up
semisynchronous replication. If the rpl_semi_sync_master plugin (semisync_master.so library)
was installed, rpl_semi_sync_master_wait_for_slave_count is available instead.

rpl_semi_sync_source_wait_for_replica_count specifies the number of replica
acknowledgments the source must receive per transaction before proceeding. By default
rpl_semi_sync_source_wait_for_replica_count is 1, meaning that semisynchronous
replication proceeds after receiving a single replica acknowledgment. Performance is best for small
values of this variable.

For example, if rpl_semi_sync_source_wait_for_replica_count is 2, then 2
replicas must acknowledge receipt of the transaction before the timeout period configured by
rpl_semi_sync_source_timeout for semisynchronous replication to proceed. If fewer replicas
acknowledge receipt of the transaction during the timeout period, the source reverts to normal
replication.

Note

This behavior also depends on rpl_semi_sync_source_wait_no_replica.

• rpl_semi_sync_source_wait_no_replica

Command-Line Format --rpl-semi-sync-source-wait-no-
replica[={OFF|ON}]

Introduced 8.0.26

System Variable rpl_semi_sync_source_wait_no_replica

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

76

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replication Source Options and Variables

Type Boolean

Default Value ON

rpl_semi_sync_source_wait_no_replica is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_source_wait_no_replica is available instead.

rpl_semi_sync_source_wait_no_replica controls whether the source waits
for the timeout period configured by rpl_semi_sync_source_timeout to expire,
even if the replica count drops to less than the number of replicas configured by
rpl_semi_sync_source_wait_for_replica_count during the timeout period.

When the value of rpl_semi_sync_source_wait_no_replica is ON (the default), it is permissible
for the replica count to drop to less than rpl_semi_sync_source_wait_for_replica_count
during the timeout period. As long as enough replicas acknowledge the transaction before the timeout
period expires, semisynchronous replication continues.

When the value of rpl_semi_sync_source_wait_no_replica is OFF, if the replica count drops
to less than the number configured in rpl_semi_sync_source_wait_for_replica_count at any
time during the timeout period configured by rpl_semi_sync_source_timeout, the source reverts to
normal replication.

• rpl_semi_sync_source_wait_point

Command-Line Format --rpl-semi-sync-source-wait-
point=value

Introduced 8.0.26

System Variable rpl_semi_sync_source_wait_point

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value AFTER_SYNC

Valid Values AFTER_SYNC

AFTER_COMMIT

rpl_semi_sync_source_wait_point is available when the rpl_semi_sync_source
(semisync_source.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_master plugin (semisync_master.so library) was installed,
rpl_semi_sync_master_wait_point is available instead.

rpl_semi_sync_source_wait_point controls the point at which a semisynchronous replication
source server waits for replica acknowledgment of transaction receipt before returning a status to the
client that committed the transaction. These values are permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica, and
syncs the binary log to disk. The source waits for replica acknowledgment of transaction receipt after
the sync. Upon receiving acknowledgment, the source commits the transaction to the storage engine
and returns a result to the client, which then can proceed.

77

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs the binary
log, and commits the transaction to the storage engine. The source waits for replica acknowledgment
of transaction receipt after the commit. Upon receiving acknowledgment, the source returns a result to
the client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time: After it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients see
the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source server and failover to the replica is
lossless because the replica is up to date. Note, however, that the source cannot be restarted in this
scenario and must be discarded, because its binary log might contain uncommitted transactions that
would cause a conflict with the replica when externalized after binary log recovery.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server
commits to the storage engine and receives replica acknowledgment. After the commit and before
replica acknowledgment, other clients can see the committed transaction before the committing client.

If something goes wrong such that the replica does not process the transaction, then in the event of an
unexpected source server exit and failover to the replica, it is possible for such clients to see a loss of
data relative to what they saw on the source.

2.6.3 Replica Server Options and Variables

This section explains the server options and system variables that apply to replica servers and contains the
following:

• Startup Options for Replica Servers

• System Variables Used on Replica Servers

Specify the options either on the command line or in an option file. Many of the options can be set while
the server is running by using the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or
CHANGE MASTER TO statement (before MySQL 8.0.23). Specify system variable values using SET.

Server ID. On the source and each replica, you must set the server_id system variable to establish
a unique replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be different from
every other ID in use by any other source or replica in the replication topology. Example my.cnf file:

[mysqld]
server-id=3

Startup Options for Replica Servers

This section explains startup options for controlling replica servers. Many of these options can be set while
the server is running by using the CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23)
or CHANGE MASTER TO statement (before MySQL 8.0.23). Others, such as the --replicate-* options,
can be set only when the replica server starts. Replication-related system variables are discussed later in
this section.

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

78

https://dev.mysql.com/doc/refman/8.0/en/command-line-options.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Replica Server Options and Variables

Deprecated 8.0.18

Type File name

Default Value master.info

The use of this option is now deprecated. It was used to set the file name for the replica's connection
metadata repository if master_info_repository=FILE was set. --master-info-file and the
use of the master_info_repository system variable are deprecated because the use of a file for the
connection metadata repository has been superseded by crash-safe tables. For information about the
connection metadata repository, see Section 5.4.2, “Replication Metadata Repositories”.

• --master-retry-count=count

Command-Line Format --master-retry-count=#

Deprecated Yes

Type Integer

Default Value 86400

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

The number of times that the replica tries to reconnect to the source before giving up. The default
value is 86400 times. A value of 0 means “infinite”, and the replica attempts to connect forever.
Reconnection attempts are triggered when the replica reaches its connection timeout (specified
by the replica_net_timeout or slave_net_timeout system variable) without receiving
data or a heartbeat signal from the source. Reconnection is attempted at intervals set by the
SOURCE_CONNECT_RETRY | MASTER_CONNECT_RETRY option of the CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO statement (which defaults to every 60 seconds).

This option is deprecated; expect it to be removed in a future MySQL release. Use the
SOURCE_RETRY_COUNT | MASTER_RETRY_COUNT option of the CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement instead.

• --max-relay-log-size=size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

79

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Block Size 4096

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay log is
rotated automatically when its size exceeds this value. If this value is zero (the default), the size at which
relay log rotation occurs is determined by the value of max_binlog_size. For more information, see
Section 5.4.1, “The Relay Log”.

• --relay-log-purge={0|1}

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N. Disabling purging of relay logs when enabling the --relay-log-recovery
option risks data consistency and is therefore not crash-safe.

• --relay-log-space-limit=size

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

This option places an upper limit on the total size in bytes of all relay logs on the replica. A value of 0
means “no limit”. This is useful for a replica server host that has limited disk space. When the limit is
reached, the I/O (receiver) thread stops reading binary log events from the source server until the SQL
thread has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are
cases where the SQL (applier) thread needs more events before it can delete relay logs. In that case,
the receiver thread exceeds the limit until it becomes possible for the applier thread to delete some relay
logs because not doing so would cause a deadlock. You should not set --relay-log-space-limit
to less than twice the value of --max-relay-log-size (or --max-binlog-size if --max-relay-
log-size is 0). In that case, there is a chance that the receiver thread waits for free space because --
relay-log-space-limit is exceeded, but the applier thread has no relay log to purge and is unable
to satisfy the receiver thread. This forces the receiver thread to ignore --relay-log-space-limit
temporarily.

• --replicate-do-db=db_name

80

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Command-Line Format --replicate-do-db=name

Type String

Creates a replication filter using the name of a database. Such filters can also be created using CHANGE
REPLICATION FILTER REPLICATE_DO_DB.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-do-db:channel_1:db_name. In this case, the first colon is
interpreted as a separator and subsequent colons are literal colons. See Section 5.5.4, “Replication
Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state. Channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery
channels.

The precise effect of this replication filter depends on whether statement-based or row-based replication
is in use.

Statement-based replication. Tell the replication SQL thread to restrict replication to statements
where the default database (that is, the one selected by USE) is db_name. To specify more than one
database, use this option multiple times, once for each database; however, doing so does not replicate
cross-database statements such as UPDATE some_db.some_table SET foo='bar' while a
different database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list is treated as the name of a single database.

An example of what does not work as you might expect when using statement-based replication: If the
replica is started with --replicate-do-db=sales and you issue the following statements on the
source, the UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Row-based replication. Tells the replication SQL thread to restrict replication to database db_name.
Only tables belonging to db_name are changed; the current database has no effect on this. Suppose

81

https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Replica Server Options and Variables

that the replica is started with --replicate-do-db=sales and row-based replication is in effect, and
then the following statements are run on the source:

USE prices;
UPDATE sales.february SET amount=amount+100;

The february table in the sales database on the replica is changed in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, issuing the following
statements on the source has no effect on the replica when using row-based replication and --
replicate-do-db=sales:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the statement USE prices were changed to USE sales, the UPDATE statement's effects would
still not be replicated.

Another important difference in how --replicate-do-db is handled in statement-based replication
as opposed to row-based replication occurs with regard to statements that refer to multiple databases.
Suppose that the replica is started with --replicate-do-db=db1, and the following statements are
executed on the source:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based replication, then both tables are updated on the replica. However,
when using row-based replication, only table1 is affected on the replica; since table2 is in a different
database, table2 on the replica is not changed by the UPDATE. Now suppose that, instead of the USE
db1 statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement would have no effect on the replica when using statement-based
replication. However, if you are using row-based replication, the UPDATE would change table1 on the
replica, but not table2—in other words, only tables in the database named by --replicate-do-db
are changed, and the choice of default database has no effect on this behavior.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-do-db affects
binary logging, and the effects of the replication format on how --replicate-
do-db affects replication behavior are the same as those of the logging format on
the behavior of --binlog-do-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

82

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html

Replica Server Options and Variables

Type String

Creates a replication filter using the name of a database. Such filters can also be created using CHANGE
REPLICATION FILTER REPLICATE_IGNORE_DB.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-ignore-db:channel_1:db_name. In this case, the first colon is
interpreted as a separator and subsequent colons are literal colons. See Section 5.5.4, “Replication
Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state. Channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery
channels.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, if you supply a comma-separated list, it is treated as the
name of a single database.

As with --replicate-do-db, the precise effect of this filtering depends on whether statement-based
or row-based replication is in use, and are described in the next several paragraphs.

Statement-based replication. Tells the replication SQL thread not to replicate any statement where
the default database (that is, the one selected by USE) is db_name.

Row-based replication. Tells the replication SQL thread not to update any tables in the database
db_name. The default database has no effect.

When using statement-based replication, the following example does not work as you might expect.
Suppose that the replica is started with --replicate-ignore-db=sales and you issue the following
statements on the source:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is replicated in such a case because --replicate-ignore-db applies
only to the default database (determined by the USE statement). Because the sales database was
specified explicitly in the statement, the statement has not been filtered. However, when using row-
based replication, the UPDATE statement's effects are not propagated to the replica, and the replica's
copy of the sales.january table is unchanged; in this instance, --replicate-ignore-db=sales

83

https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Replica Server Options and Variables

causes all changes made to tables in the source's copy of the sales database to be ignored by the
replica.

You should not use this option if you are using cross-database updates and you do not want these
updates to be replicated. See Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.%
instead. See Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

Note

This option affects replication in the same manner that --binlog-ignore-
db affects binary logging, and the effects of the replication format on how --
replicate-ignore-db affects replication behavior are the same as those of
the logging format on the behavior of --binlog-ignore-db.

This option has no effect on BEGIN, COMMIT, or ROLLBACK statements.

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Type String

Creates a replication filter by telling the replication SQL thread to restrict replication to a given table.
To specify more than one table, use this option multiple times, once for each table. This works for both
cross-database updates and default database updates, in contrast to --replicate-do-db. See
Section 5.5, “How Servers Evaluate Replication Filtering Rules”. You can also create such a filter by
issuing a CHANGE REPLICATION FILTER REPLICATE_DO_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-do-table:channel_1:db_name.tbl_name. In this case, the
first colon is interpreted as a separator and subsequent colons are literal colons. See Section 5.5.4,
“Replication Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state. Channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery
channels.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

84

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html

Replica Server Options and Variables

Type String

Creates a replication filter by telling the replication SQL thread not to replicate any statement that
updates the specified table, even if any other tables might be updated by the same statement. To specify
more than one table to ignore, use this option multiple times, once for each table. This works for cross-
database updates, in contrast to --replicate-ignore-db. See Section 5.5, “How Servers Evaluate
Replication Filtering Rules”. You can also create such a filter by issuing a CHANGE REPLICATION
FILTER REPLICATE_IGNORE_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-ignore-table:channel_1:db_name.tbl_name. In this case,
the first colon is interpreted as a separator and subsequent colons are literal colons. See Section 5.5.4,
“Replication Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state. Channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery
channels.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name-
>new_name

Type String

Tells the replica to create a replication filter that translates the specified database to to_name if it was
from_name on the source. Only statements involving tables are affected, not statements such as
CREATE DATABASE, DROP DATABASE, and ALTER DATABASE.

To specify multiple rewrites, use this option multiple times. The server uses the first one with a
from_name value that matches. The database name translation is done before the --replicate-
* rules are tested. You can also create such a filter by issuing a CHANGE REPLICATION FILTER
REPLICATE_REWRITE_DB statement.

If you use the --replicate-rewrite-db option on the command line and the > character is special
to your command interpreter, quote the option value. For example:

$> mysqld --replicate-rewrite-db="olddb->newdb"

The effect of the --replicate-rewrite-db option differs depending on whether statement-based or
row-based binary logging format is used for the query. With statement-based format, DML statements
are translated based on the current database, as specified by the USE statement. With row-based
format, DML statements are translated based on the database where the modified table exists. DDL

85

https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/use.html

Replica Server Options and Variables

statements are always filtered based on the current database, as specified by the USE statement,
regardless of the binary logging format.

To ensure that rewriting produces the expected results, particularly in combination with other replication
filtering options, follow these recommendations when you use the --replicate-rewrite-db option:

• Create the from_name and to_name databases manually on the source and the replica with different
names.

• If you use statement-based or mixed binary logging format, do not use cross-database queries, and do
not specify database names in queries. For both DDL and DML statements, rely on the USE statement
to specify the current database, and use only the table name in queries.

• If you use row-based binary logging format exclusively, for DDL statements, rely on the USE statement
to specify the current database, and use only the table name in queries. For DML statements, you can
use a fully qualified table name (db.table) if you want.

If these recommendations are followed, it is safe to use the --replicate-rewrite-db option in
combination with table-level replication filtering options such as --replicate-do-table.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. Specify the channel name followed by a colon, followed by the filter
specification. The first colon is interpreted as a separator, and any subsequent colons are interpreted
as literal colons. For example, to configure a channel specific replication filter on a channel named
channel_1, use:

$> mysqld --replicate-rewrite-db=channel_1:db_name1->db_name2

If you use a colon but do not specify a channel name, the option configures the replication filter for the
default replication channel. See Section 5.5.4, “Replication Channel Based Filters” for more information.

Note

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state. Channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery
channels.

• --replicate-same-server-id

Command-Line Format --replicate-same-server-id[={OFF|ON}]

Type Boolean

Default Value OFF

This option is for use on replicas. The default is 0 (FALSE). With this option set to 1 (TRUE), the
replica does not skip events that have its own server ID. This setting is normally useful only in rare
configurations.

When binary logging is enabled on a replica, the combination of the --replicate-same-server-id
and --log-slave-updates options on the replica can cause infinite loops in replication if the server
is part of a circular replication topology. (In MySQL 8.0, binary logging is enabled by default, and replica

86

https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/use.html

Replica Server Options and Variables

update logging is the default when binary logging is enabled.) However, the use of global transaction
identifiers (GTIDs) prevents this situation by skipping the execution of transactions that have already
been applied. If gtid_mode=ON is set on the replica, you can start the server with this combination of
options, but you cannot change to any other GTID mode while the server is running. If any other GTID
mode is set, the server does not start with this combination of options.

By default, the replication I/O (receiver) thread does not write binary log events to the relay log if they
have the replica's server ID (this optimization helps save disk usage). If you want to use --replicate-
same-server-id, be sure to start the replica with this option before you make the replica read its own
events that you want the replication SQL (applier) thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Type String

Creates a replication filter by telling the replication SQL (applier) thread to restrict replication to
statements where any of the updated tables match the specified database and table name patterns.
Patterns can contain the % and _ wildcard characters, which have the same meaning as for the LIKE
pattern-matching operator. To specify more than one table, use this option multiple times, once for each
table. This works for cross-database updates. See Section 5.5, “How Servers Evaluate Replication
Filtering Rules”. You can also create such a filter by issuing a CHANGE REPLICATION FILTER
REPLICATE_WILD_DO_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-wild-do-table:channel_1:db_name.tbl_name. In this case,
the first colon is interpreted as a separator and subsequent colons are literal colons. See Section 5.5.4,
“Replication Channel Based Filters” for more information.

Important

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state. Channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery
channels.

The replication filter specified by the --replicate-wild-do-table option applies to tables, views,
and triggers. It does not apply to stored procedures and functions, or events. To filter statements
operating on the latter objects, use one or more of the --replicate-*-db options.

As an example, --replicate-wild-do-table=foo%.bar% replicates only updates that use a table
where the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-level
statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if you use

87

https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html

Replica Server Options and Variables

--replicate-wild-do-table=foo%.%, database-level statements are replicated if the database
name matches the pattern foo%.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that are
implicitly updated by the query. For example, a GRANT statement, which updates
the mysql.user system table but does not mention that table, is not affected by
a filter that specifies mysql.% as the wildcard pattern.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not replicate
tables from the my1ownAABCdb database, you should escape the _ and % characters like this: --
replicate-wild-do-table=my_own\%db. If you use the option on the command line, you might
need to double the backslashes or quote the option value, depending on your command interpreter. For
example, with the bash shell, you would need to type --replicate-wild-do-table=my_own\\
%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Type String

Creates a replication filter which keeps the replication SQL thread from replicating a statement in which
any table matches the given wildcard pattern. To specify more than one table to ignore, use this option
multiple times, once for each table. This works for cross-database updates. See Section 5.5, “How
Servers Evaluate Replication Filtering Rules”. You can also create such a filter by issuing a CHANGE
REPLICATION FILTER REPLICATE_WILD_IGNORE_TABLE statement.

This option supports channel specific replication filters, enabling multi-source replicas to use specific
filters for different sources. To configure a channel specific replication filter on a channel named
channel_1 use --replicate-wild-ignore:channel_1:db_name.tbl_name. In this case, the
first colon is interpreted as a separator and subsequent colons are literal colons. See Section 5.5.4,
“Replication Channel Based Filters” for more information.

Important

Global replication filters cannot be used on a MySQL server instance that is
configured for Group Replication, because filtering transactions on some servers
would make the group unable to reach agreement on a consistent state. Channel
specific replication filters can be used on replication channels that are not
directly involved with Group Replication, such as where a group member also
acts as a replica to a source that is outside the group. They cannot be used on
the group_replication_applier or group_replication_recovery
channels.

As an example, --replicate-wild-ignore-table=foo%.bar% does not replicate updates
that use a table where the database name starts with foo and the table name starts with bar. For
information about how matching works, see the description of the --replicate-wild-do-table

88

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html

Replica Server Options and Variables

option. The rules for including literal wildcard characters in the option value are the same as for --
replicate-wild-ignore-table as well.

Important

Table-level replication filters are only applied to tables that are explicitly
mentioned and operated on in the query. They do not apply to tables that are
implicitly updated by the query. For example, a GRANT statement, which updates
the mysql.user system table but does not mention that table, is not affected by
a filter that specifies mysql.% as the wildcard pattern.

If you need to filter out GRANT statements or other administrative statements, a possible workaround is
to use the --replicate-ignore-db filter. This filter operates on the default database that is currently
in effect, as determined by the USE statement. You can therefore create a filter to ignore statements for
a database that is not replicated, then issue the USE statement to switch the default database to that one
immediately before issuing any administrative statements that you want to ignore. In the administrative
statement, name the actual database where the statement is applied.

For example, if --replicate-ignore-db=nonreplicated is configured on the replica server,
the following sequence of statements causes the GRANT statement to be ignored, because the default
database nonreplicated is in effect:

USE nonreplicated;
GRANT SELECT, INSERT ON replicated.t1 TO 'someuser'@'somehost';

• --skip-replica-start

Command-Line Format --skip-replica-start[={OFF|ON}]

Introduced 8.0.26

System Variable skip_replica_start

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use --skip-replica-start in place of --skip-slave-start, which is
deprecated from that release. In releases before MySQL 8.0.26, use --skip-slave-start.

--skip-replica-start tells the replica server not to start the replication I/O (receiver) and SQL
(applier) threads when the server starts. To start the threads later, use a START REPLICA statement.

You can use the skip_replica_start system variable in place of the command line option to allow
access to this feature using MySQL Server’s privilege structure, so that database administrators do not
need any privileged access to the operating system.

• --skip-slave-start

Command-Line Format --skip-slave-start[={OFF|ON}]

Deprecated 8.0.26

System Variable skip_slave_start

Scope Global

89

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Replica Server Options and Variables

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, --skip-slave-start is deprecated and the alias --skip-replica-start
should be used instead. In releases before MySQL 8.0.26, use --skip-slave-start.

Tells the replica server not to start the replication I/O (receiver) and SQL (applier) threads when the
server starts. To start the threads later, use a START REPLICA statement.

From MySQL 8.0.24, you can use the skip_slave_start system variable in place of the command
line option to allow access to this feature using MySQL Server’s privilege structure, so that database
administrators do not need any privileged access to the operating system.

• --slave-skip-errors=[err_code1,err_code2,...|all|ddl_exist_errors]

Command-Line Format --slave-skip-errors=name

Deprecated 8.0.26

System Variable slave_skip_errors

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This option causes the replication SQL thread to continue
replication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no bugs in
your replication setup and client programs, and no bugs in MySQL itself, an error that stops replication
should never occur. Indiscriminate use of this option results in replicas becoming hopelessly out of
synchrony with the source, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in your replica's error log
and in the output of SHOW REPLICA STATUS. Error Messages and Common Problems, lists server error
codes.

The shorthand value ddl_exist_errors is equivalent to the error code list
1007,1008,1050,1051,1054,1060,1061,1068,1094,1146.

You can also (but should not) use the very nonrecommended value of all to cause the replica to ignore
all error messages and keeps going regardless of what happens. Needless to say, if you use all, there

90

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/error-handling.html

Replica Server Options and Variables

are no guarantees regarding the integrity of your data. Please do not complain (or file bug reports) in this
case if the replica's data is not anywhere close to what it is on the source. You have been warned.

This option does not work in the same way when replicating between NDB Clusters, due to the internal
NDB mechanism for checking epoch sequence numbers; normally, as soon as NDB detects an epoch
number that is missing or otherwise out of sequence, it immediately stops the replica applier thread.
Beginning with NDB 8.0.28, you can override this behavior by also specifying --ndb-applier-allow-
skip-epoch together with --slave-skip-errors; doing so causes NDB to ignore skipped epoch
transactions.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all
--slave-skip-errors=ddl_exist_errors

• --slave-sql-verify-checksum={0|1}

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

Type Boolean

Default Value ON

When this option is enabled, the replica examines checksums read from the relay log. In the event of a
mismatch, the replica stops with an error.

The following options are used internally by the MySQL test suite for replication testing and debugging.
They are not intended for use in a production setting.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Deprecated 8.0.29

Type Integer

Default Value 0

Minimum Value 0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the replication SQL thread has started, value log events are permitted
to be executed; after that, the replication SQL thread does not receive any more events, just as if
the network connection from the source were cut. The replication SQL thread continues to run, and
the output from SHOW REPLICA STATUS displays Yes in both the Replica_IO_Running and the
Replica_SQL_Running columns, but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting. Beginning with MySQL 8.0.29, it is deprecated, and subject to
removal in a future version of MySQL.

• --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Deprecated 8.0.29

Type Integer

91

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#option_mysqld_ndb-applier-allow-skip-epoch
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#option_mysqld_ndb-applier-allow-skip-epoch
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Replica Server Options and Variables

Default Value 0

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting. Beginning with MySQL 8.0.29, it is deprecated, and subject to
removal in a future version of MySQL.

System Variables Used on Replica Servers

The following list describes system variables for controlling replica servers. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used with replicas are
listed earlier in this section.

• init_replica

Command-Line Format --init-replica=name

Introduced 8.0.26

System Variable init_replica

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

From MySQL 8.0.26, use init_replica in place of init_slave, which is deprecated from that
release. In releases before MySQL 8.0.26, use init_slave.

init_replica is similar to init_connect, but is a string to be executed by a replica server each
time the replication SQL thread starts. The format of the string is the same as for the init_connect
variable. The setting of this variable takes effect for subsequent START REPLICA statements.

Note

The replication SQL thread sends an acknowledgment to the client before it
executes init_replica. Therefore, it is not guaranteed that init_replica
has been executed when START REPLICA returns. See START REPLICA
Statement for more information.

• init_slave

Command-Line Format --init-slave=name

Deprecated 8.0.26

System Variable init_slave

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

From MySQL 8.0.26, init_slave is deprecated and the alias init_replica should be used instead.
In releases before MySQL 8.0.26, use init_slave.

92

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

init_slave is similar to init_connect, but is a string to be executed by a replica server each
time the replication SQL thread starts. The format of the string is the same as for the init_connect
variable. The setting of this variable takes effect for subsequent START REPLICA statements.

Note

The replication SQL thread sends an acknowledgment to the client before it
executes init_slave. Therefore, it is not guaranteed that init_slave has
been executed when START REPLICA returns. See START REPLICA Statement
for more information.

• log_slow_replica_statements

Command-Line Format --log-slow-replica-statements[={OFF|
ON}]

Introduced 8.0.26

System Variable log_slow_replica_statements

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use log_slow_replica_statements in place of
log_slow_slave_statements, which is deprecated from that release. In releases before MySQL
8.0.26, use log_slow_slave_statements.

When the slow query log is enabled, log_slow_replica_statements enables logging for queries
that have taken more than long_query_time seconds to execute on the replica. Note that if row-
based replication is in use (binlog_format=ROW), log_slow_replica_statements has no effect.
Queries are only added to the replica's slow query log when they are logged in statement format in the
binary log, that is, when binlog_format=STATEMENT is set, or when binlog_format=MIXED is
set and the statement is logged in statement format. Slow queries that are logged in row format when
binlog_format=MIXED is set, or that are logged when binlog_format=ROW is set, are not added to
the replica's slow query log, even if log_slow_replica_statements is enabled.

Setting log_slow_replica_statements has no immediate effect. The state of the variable applies
on all subsequent START REPLICA statements. Also note that the global setting for long_query_time
applies for the lifetime of the SQL thread. If you change that setting, you must stop and restart the
replication SQL thread to implement the change there (for example, by issuing STOP REPLICA and
START REPLICA statements with the SQL_THREAD option).

• log_slow_slave_statements

Command-Line Format --log-slow-slave-statements[={OFF|
ON}]

Deprecated 8.0.26

System Variable log_slow_slave_statements

Scope Global

Dynamic Yes

93

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_connect
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Replica Server Options and Variables

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, log_slow_slave_statements is deprecated and the alias
log_slow_replica_statements should be used instead. In releases before MySQL 8.0.26, use
log_slow_slave_statements.

When the slow query log is enabled, log_slow_slave_statements enables logging for queries
that have taken more than long_query_time seconds to execute on the replica. Note that if row-
based replication is in use (binlog_format=ROW), log_slow_slave_statements has no effect.
Queries are only added to the replica's slow query log when they are logged in statement format in the
binary log, that is, when binlog_format=STATEMENT is set, or when binlog_format=MIXED is
set and the statement is logged in statement format. Slow queries that are logged in row format when
binlog_format=MIXED is set, or that are logged when binlog_format=ROW is set, are not added to
the replica's slow query log, even if log_slow_slave_statements is enabled.

Setting log_slow_slave_statements has no immediate effect. The state of the variable applies on
all subsequent START REPLICA statements. Also note that the global setting for long_query_time
applies for the lifetime of the SQL thread. If you change that setting, you must stop and restart the
replication SQL thread to implement the change there (for example, by issuing STOP REPLICA and
START REPLICA statements with the SQL_THREAD option).

• master_info_repository

Command-Line Format --master-info-repository={FILE|TABLE}

Deprecated 8.0.23

System Variable master_info_repository

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value TABLE

Valid Values FILE

TABLE

The use of this system variable is now deprecated. The setting TABLE is the default, and is required
when multiple replication channels are configured. The alternative setting FILE was previously
deprecated.

With the default setting, the replica records metadata about the source, consisting of status
and connection information, to an InnoDB table in the mysql system database named
mysql.slave_master_info. For more information on the connection metadata repository, see
Section 5.4, “Relay Log and Replication Metadata Repositories”.

The FILE setting wrote the replica's connection metadata repository to a file, which was named
master.info by default. The name could be changed using the --master-info-file option.

94

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_long_query_time
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

• max_relay_log_size

Command-Line Format --max-relay-log-size=#

System Variable max_relay_log_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write by a replica to its relay log causes the current log file size to exceed the value of this
variable, the replica rotates the relay logs (closes the current file and opens the next one). If
max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and the relay
log. If max_relay_log_size is greater than 0, it constrains the size of the relay log, which enables you
to have different sizes for the two logs. You must set max_relay_log_size to between 4096 bytes
and 1GB (inclusive), or to 0. The default value is 0. See Section 5.3, “Replication Threads”.

• relay_log

Command-Line Format --relay-log=file_name

System Variable relay_log

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

The base name for relay log files. For the default replication channel, the default base name for relay
logs is host_name-relay-bin. For non-default replication channels, the default base name for relay
logs is host_name-relay-bin-channel, where channel is the name of the replication channel
recorded in this relay log.

The server writes the file in the data directory unless the base name is given with a leading absolute path
name to specify a different directory. The server creates relay log files in sequence by adding a numeric
suffix to the base name.

The relay log and relay log index on a replication server cannot be given the same names as the binary
log and binary log index, whose names are specified by the --log-bin and --log-bin-index
options. The server issues an error message and does not start if the binary log and relay log file base
names would be the same.

Due to the manner in which MySQL parses server options, if you specify this variable at server startup,
you must supply a value; the default base name is used only if the option is not actually specified. If
you specify the relay_log system variable at server startup without specifying a value, unexpected
behavior is likely to result; this behavior depends on the other options used, the order in which they are

95

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

specified, and whether they are specified on the command line or in an option file. For more information
about how MySQL handles server options, see Specifying Program Options.

If you specify this variable, the value specified is also used as the base name for the relay log index
file. You can override this behavior by specifying a different relay log index file base name using the
relay_log_index system variable.

When the server reads an entry from the index file, it checks whether the entry contains a relative path. If
it does, the relative part of the path is replaced with the absolute path set using the relay_log system
variable. An absolute path remains unchanged; in such a case, the index must be edited manually to
enable the new path or paths to be used.

You may find the relay_log system variable useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

You can obtain the relay log file name (and path) from the relay_log_basename system variable.

• relay_log_basename

System Variable relay_log_basename

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value datadir + '/' + hostname + '-relay-
bin'

Holds the base name and complete path to the relay log file. The maximum variable length is 256. This
variable is set by the server and is read only.

• relay_log_index

Command-Line Format --relay-log-index=file_name

System Variable relay_log_index

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value *host_name*-relay-bin.index

The name for the relay log index file. The maximum variable length is 256. If you do not specify this
variable, but the relay_log system variable is specified, its value is used as the default base name for
the relay log index file. If relay_log is also not specified, then for the default replication channel, the
default name is host_name-relay-bin.index, using the name of the host machine. For non-default

96

https://dev.mysql.com/doc/refman/8.0/en/program-options.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

replication channels, the default name is host_name-relay-bin-channel.index, where channel
is the name of the replication channel recorded in this relay log index.

The default location for relay log files is the data directory, or any other location that was specified using
the relay_log system variable. You can use the relay_log_index system variable to specify an
alternative location, by adding a leading absolute path name to the base name to specify a different
directory.

The relay log and relay log index on a replication server cannot be given the same names as the binary
log and binary log index, whose names are specified by the --log-bin and --log-bin-index
options. The server issues an error message and does not start if the binary log and relay log file base
names would be the same.

Due to the manner in which MySQL parses server options, if you specify this variable at server startup,
you must supply a value; the default base name is used only if the option is not actually specified. If you
specify the relay_log_index system variable at server startup without specifying a value, unexpected
behavior is likely to result; this behavior depends on the other options used, the order in which they are
specified, and whether they are specified on the command line or in an option file. For more information
about how MySQL handles server options, see Specifying Program Options.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

Deprecated 8.0.18

System Variable relay_log_info_file

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Default Value relay-log.info

The use of this system variable is now deprecated. It was used to set the file name for the
replica's applier metadata repository if relay_log_info_repository=FILE was set.
relay_log_info_file and the use of the relay_log_info_repository system variable are
deprecated because the use of a file for the applier metadata repository has been superseded by crash-
safe tables. For information about the applier metadata repository, see Section 5.4.2, “Replication
Metadata Repositories”.

• relay_log_info_repository

Command-Line Format --relay-log-info-repository=value

Deprecated 8.0.23

System Variable relay_log_info_repository

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value TABLE

Valid Values FILE
97

https://dev.mysql.com/doc/refman/8.0/en/program-options.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

TABLE

The use of this system variable is now deprecated. The setting TABLE is the default, and is required
when multiple replication channels are configured. The TABLE setting for the replica's applier metadata
repository is also required to make replication resilient to unexpected halts. See Section 3.2, “Handling
an Unexpected Halt of a Replica” for more information. The alternative setting FILE was previously
deprecated.

With the default setting, the replica stores its applier metadata repository as an InnoDB table in the
mysql system database named mysql.slave_relay_log_info. For more information on the applier
metadata repository, see Section 5.4, “Relay Log and Replication Metadata Repositories”.

The FILE setting wrote the replica's applier metadata repository to a file, which was named relay-
log.info by default. The name could be changed using the relay_log_info_file system variable.

• relay_log_purge

Command-Line Format --relay-log-purge[={OFF|ON}]

System Variable relay_log_purge

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Disables or enables automatic purging of relay log files as soon as they are not needed any more. The
default value is 1 (ON).

• relay_log_recovery

Command-Line Format --relay-log-recovery[={OFF|ON}]

System Variable relay_log_recovery

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

If enabled, this variable enables automatic relay log recovery immediately following server startup. The
recovery process creates a new relay log file, initializes the SQL (applier) thread position to this new
relay log, and initializes the I/O (receiver) thread to the applier thread position. Reading of the relay log
from the source then continues. If SOURCE_AUTO_POSITION=1 was set for the replication channel using
the CHANGE REPLICATION SOURCE TO option, the source position used to start replication might be
the one received in the connection and not the ones assigned in this process.

This global variable is read-only at runtime. Its value can be set with the --relay-log-recovery
option at replica server startup, which should be used following an unexpected halt of a replica to ensure
that no possibly corrupted relay logs are processed, and must be used in order to guarantee a crash-

98

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Replica Server Options and Variables

safe replica. The default value is 0 (disabled). For information on the combination of settings on a replica
that is most resilient to unexpected halts, see Section 3.2, “Handling an Unexpected Halt of a Replica”.

For a multithreaded replica (where replica_parallel_workers or slave_parallel_workers is
greater than 0), setting --relay-log-recovery at startup automatically handles any inconsistencies
and gaps in the sequence of transactions that have been executed from the relay log. These gaps can
occur when file position based replication is in use. (For more details, see Section 4.1.34, “Replication
and Transaction Inconsistencies”.) The relay log recovery process deals with gaps using the same
method as the START REPLICA UNTIL SQL_AFTER_MTS_GAPS statement would. When the replica
reaches a consistent gap-free state, the relay log recovery process goes on to fetch further transactions
from the source beginning at the SQL (applier) thread position. When GTID-based replication is in use,
from MySQL 8.0.18 a multithreaded replica checks first whether MASTER_AUTO_POSITION is set to ON,
and if it is, omits the step of calculating the transactions that should be skipped or not skipped, so that
the old relay logs are not required for the recovery process.

Note

This variable does not affect the following Group Replication channels:

• group_replication_applier

• group_replication_recovery

Any other channels running on a group are affected, such as a channel which is
replicating from an outside source or another group.

• relay_log_space_limit

Command-Line Format --relay-log-space-limit=#

System Variable relay_log_space_limit

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 18446744073709551615

Unit bytes

The maximum amount of space to use for all relay logs.

• replica_checkpoint_group

Command-Line Format --replica-checkpoint-group=#

Introduced 8.0.26

System Variable replica_checkpoint_group

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

99

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Type Integer

Default Value 512

Minimum Value 32

Maximum Value 524280

Block Size 8

From MySQL 8.0.26, use replica_checkpoint_group in place of slave_checkpoint_group,
which is deprecated from that release. In releases before MySQL 8.0.26, use
slave_checkpoint_group.

replica_checkpoint_group sets the maximum number of transactions that can be processed
by a multithreaded replica before a checkpoint operation is called to update its status as shown by
SHOW REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading is not
enabled. Setting this variable has no immediate effect. The state of the variable applies to all subsequent
START REPLICA statements.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the setting
for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the replica_checkpoint_period system variable in such
a way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG, in
which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to a value
that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before storing the
value. (Exception: No such rounding is performed by the debug server.) Regardless of how the server
was built, the default value is 512, and the maximum allowed value is 524280.

• replica_checkpoint_period

Command-Line Format --replica-checkpoint-period=#

Introduced 8.0.26

System Variable replica_checkpoint_period

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 4294967295

Unit milliseconds

In MySQL 8.0.26 and later, use replica_checkpoint_period in place of
slave_checkpoint_period, which is deprecated from that release; prior to MySQL 8.0.26, use
slave_checkpoint_period.

replica_checkpoint_period sets the maximum time (in milliseconds) that is allowed to pass
before a checkpoint operation is called to update the status of a multithreaded replica as shown by

100

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_debug
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

SHOW REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading is not
enabled. Setting this variable takes effect for all replication channels immediately, including running
channels.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the setting
for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the replica_checkpoint_group system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is 300
milliseconds, and the maximum possible value is 4294967295 milliseconds (approximately 49.7 days).

• replica_compressed_protocol

Command-Line Format --replica-compressed-protocol[={OFF|
ON}]

Introduced 8.0.26

System Variable replica_compressed_protocol

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use replica_compressed_protocol in place of
slave_compressed_protocol, which is deprecated. In releases before MySQL 8.0.26, use
slave_compressed_protocol.

replica_compressed_protocol specifies whether to use compression of the source/replica
connection protocol if both source and replica support it. If this variable is disabled (the default),
connections are uncompressed. Changes to this variable take effect on subsequent connection
attempts; this includes after issuing a START REPLICA statement, as well as reconnections made by a
running replication I/O (receiver) thread.

Binary log transaction compression (available as of MySQL 8.0.20), which is activated by the
binlog_transaction_compression system variable, can also be used to save bandwidth. If you
use binary log transaction compression in combination with protocol compression, protocol compression
has less opportunity to act on the data, but can still compress headers and those events and transaction
payloads that are uncompressed. For more information on binary log transaction compression, see
Binary Log Transaction Compression.

If replica_compressed_protocol is enabled, it takes precedence over any
SOURCE_COMPRESSION_ALGORITHMS option specified for the CHANGE REPLICATION SOURCE
TO statement. In this case, connections to the source use zlib compression if both the source
and replica support that algorithm. If replica_compressed_protocol is disabled, the value of
SOURCE_COMPRESSION_ALGORITHMS applies. For more information, see Connection Compression
Control.

101

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_debug
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

Replica Server Options and Variables

• replica_exec_mode

Command-Line Format --replica-exec-mode=mode

Introduced 8.0.26

System Variable replica_exec_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value IDEMPOTENT (NDB)

STRICT (Other)

Valid Values STRICT

IDEMPOTENT

From MySQL 8.0.26, use replica_exec_mode in place of slave_exec_mode, which is deprecated
from that release. In releases before MySQL 8.0.26, use slave_exec_mode.

replica_exec_mode controls how a replication thread resolves conflicts and errors during replication.
IDEMPOTENT mode causes suppression of duplicate-key and no-key-found errors; STRICT means no
such suppression takes place.

IDEMPOTENT mode is intended for use in multi-source replication, circular replication, and some other
special replication scenarios for NDB Cluster Replication. (See NDB Cluster Replication: Bidirectional
and Circular Replication, and NDB Cluster Replication Conflict Resolution, for more information.) NDB
Cluster ignores any value explicitly set for replica_exec_mode, and always treats it as IDEMPOTENT.

In MySQL Server 8.0, STRICT mode is the default value.

Setting this variable takes immediate effect for all replication channels, including running channels.

For storage engines other than NDB, IDEMPOTENT mode should be used only when you are absolutely
sure that duplicate-key errors and key-not-found errors can safely be ignored. It is meant to be used in
fail-over scenarios for NDB Cluster where multi-source replication or circular replication is employed, and
is not recommended for use in other cases.

• replica_load_tmpdir

Command-Line Format --replica-load-tmpdir=dir_name

Introduced 8.0.26

System Variable replica_load_tmpdir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

102

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-conflict-resolution.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Default Value Value of --tmpdir

From MySQL 8.0.26, use replica_load_tmpdir in place of slave_load_tmpdir, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_load_tmpdir.

replica_load_tmpdir specifies the name of the directory where the replica creates temporary files.
Setting this variable takes effect for all replication channels immediately, including running channels. The
variable value is by default equal to the value of the tmpdir system variable, or the default that applies
when that system variable is not specified.

When the replication SQL thread replicates a LOAD DATA statement, it extracts the file to be loaded
from the relay log into temporary files, and then loads these into the table. If the file loaded on the
source is huge, the temporary files on the replica are huge, too. Therefore, it might be advisable to use
this option to tell the replica to put temporary files in a directory located in some file system that has a
lot of available space. In that case, the relay logs are huge as well, so you might also want to set the
relay_log system variable to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-based
file system) so that the temporary files used to replicate LOAD DATA statements can survive machine
restarts. The directory also should not be one that is cleared by the operating system during the system
startup process. However, replication can now continue after a restart if the temporary files have been
removed.

• replica_max_allowed_packet

Command-Line Format --replica-max-allowed-packet=#

Introduced 8.0.26

System Variable replica_max_allowed_packet

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

Block Size 1024

From MySQL 8.0.26, use replica_max_allowed_packet in place of
slave_max_allowed_packet, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_max_allowed_packet.

replica_max_allowed_packet sets the maximum packet size in bytes that the replication SQL
(applier)and I/O (receiver) threads can handle. Setting this variable takes effect for all replication
channels immediately, including running channels. It is possible for a source to write binary log events
longer than its max_allowed_packet setting once the event header is added. The setting for

103

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tmpdir
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Replica Server Options and Variables

replica_max_allowed_packet must be larger than the max_allowed_packet setting on the
source, so that large updates using row-based replication do not cause replication to fail.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or used;
setting replica_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning is issued
in all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is 1024.

• replica_net_timeout

Command-Line Format --replica-net-timeout=#

Introduced 8.0.26

System Variable replica_net_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

From MySQL 8.0.26, use replica_net_timeout in place of slave_net_timeout, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_net_timeout.

replica_net_timeout specifies the number of seconds to wait for more data or a heartbeat
signal from the source before the replica considers the connection broken, aborts the read, and tries
to reconnect. Setting this variable has no immediate effect. The state of the variable applies on all
subsequent START REPLICA commands.

The default value is 60 seconds (one minute). The first retry occurs immediately after the timeout.
The interval between retries is controlled by the SOURCE_CONNECT_RETRY option for the CHANGE
REPLICATION SOURCE TO statement, and the number of reconnection attempts is limited by the
SOURCE_RETRY_COUNT option.

The heartbeat interval, which stops the connection timeout occurring in the absence of data if
the connection is still good, is controlled by the SOURCE_HEARTBEAT_PERIOD option for the
CHANGE REPLICATION SOURCE TO statement. The heartbeat interval defaults to half the value of
replica_net_timeout, and it is recorded in the replica's connection metadata repository and shown
in the replication_connection_configuration Performance Schema table. Note that a change
to the value or default setting of replica_net_timeout does not automatically change the heartbeat
interval, whether that has been set explicitly or is using a previously calculated default. If the connection
timeout is changed, you must also issue CHANGE REPLICATION SOURCE TO to adjust the heartbeat
interval to an appropriate value so that it occurs before the connection timeout.

• replica_parallel_type

Command-Line Format --replica-parallel-type=value

Introduced 8.0.26

Deprecated 8.0.29
104

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-configuration-table.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Replica Server Options and Variables

System Variable replica_parallel_type

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value (≥ 8.0.27) LOGICAL_CLOCK

Default Value (8.0.26) DATABASE

Valid Values DATABASE

LOGICAL_CLOCK

From MySQL 8.0.26, use replica_parallel_type in place of slave_parallel_type, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_parallel_type.

For multithreaded replicas (replicas on which replica_parallel_workers or
slave_parallel_workers is set to a value greater than 0), replica_parallel_type specifies the
policy used to decide which transactions are allowed to execute in parallel on the replica. The variable
has no effect on replicas for which multithreading is not enabled. The possible values are:

• LOGICAL_CLOCK: Transactions are applied in parallel on the replica, based on timestamps which the
replication source writes to the binary log. Dependencies between transactions are tracked based on
their timestamps to provide additional parallelization where possible.

• DATABASE: Transactions that update different databases are applied in parallel. This value is only
appropriate if data is partitioned into multiple databases which are being updated independently and
concurrently on the source. There must be no cross-database constraints, as such constraints may be
violated on the replica.

When replica_preserve_commit_order or slave_preserve_commit_order is enabled, you
must use LOGICAL_CLOCK. Before MySQL 8.0.27, DATABASE is the default. From MySQL 8.0.27,
multithreading is enabled by default for replica servers (replica_parallel_workers=4 by default),
and LOGICAL_CLOCK is the default. (In MySQL 8.0.27 and later, replica_preserve_commit_order
is also enabled by default.)

When the replication topology uses multiple levels of replicas, LOGICAL_CLOCK may achieve less
parallelization for each level the replica is away from the source. To compensate for this effect, you
should set binlog_transaction_dependency_tracking to WRITESET or WRITESET_SESSION
on the source as well as on every intermediate replica to specify that write sets are used instead of
timestamps for parallelization where possible.

When binary log transaction compression is enabled using the binlog_transaction_compression
system variable, if replica_parallel_type is set to DATABASE, all the databases affected by
the transaction are mapped before the transaction is scheduled. The use of binary log transaction
compression with the DATABASE policy can reduce parallelism compared to uncompressed transactions,
which are mapped and scheduled for each event.

replica_parallel_type is deprecated beginning with MySQL 8.0.29, as is support for parallelization
of transactions using database partitioning. Expect support for these to be removed in a future release,
and for LOGICAL_CLOCK to be used exclusively thereafter.

105

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

• replica_parallel_workers

Command-Line Format --replica-parallel-workers=#

Introduced 8.0.26

System Variable replica_parallel_workers

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 4

Default Value (8.0.26) 0

Minimum Value 0

Maximum Value 1024

Beginning with MySQL 8.0.26, slave_parallel_workers is deprecated, and you
should use replica_parallel_workers instead. (Prior to MySQL 8.0.26, you must use
slave_parallel_workers to set the number of applier threads.)

replica_parallel_workers enables multithreading on the replica and sets the number of applier
threads for executing replication transactions in parallel. When the value is greater than or equal to 1, the
replica uses the specified number of worker threads to execute transactions, plus a coordinator thread
that reads transactions from the relay log and schedules them to workers. When the value is 0, there
is only one thread that reads and applies transactions sequentially. If you are using multiple replication
channels, the value of this variable applies to the threads used by each channel.

Prior to MySQL 8.0.27, the default value of this system variable is 0, so replicas use a single worker
thread by default. Beginning with MySQL 8.0.27, the default value is 4, which means that replicas are
multithreaded by default.

As of MySQL 8.0.30, setting this variable to 0 is deprecated, raises a warning, and is subject to removal
in a future MySQL release. For a single worker, set replica_parallel_workers to 1 instead.

When replica_preserve_commit_order (or slave_preserve_commit_order) is set to ON
(the default in MySQL 8.0.27 and later), transactions on a replica are externalized on the replica in
the same order as they appear in the replica's relay log. The way in which transactions are distributed
among applier threads is determined by replica_parallel_type (MySQL 8.0.26 and later) or
slave_parallel_type (prior to MySQL 8.0.26). Starting with MySQL 8.0.27, these system variables
also have appropriate defaults for multithreading.

To disable parallel execution, set replica_parallel_workers to 1, in which case the replica uses
one coordinator thread which reads transactions, and one worker thread which applies them, which
means that transactions are applied sequentially. When replica_parallel_workers is equal to 1,
the replica_parallel_type (slave_parallel_type) and replica_preserve_commit_order
(slave_preserve_commit_order) system variables have no effect and are ignored. If
replica_parallel_workers is equal to 0 while the CHANGE REPLICATION SOURCE TO
option GTID_ONLY is enabled, the replica has one coordinator thread and one worker thread,
exactly as if replica_parallel_workers had been set to 1. (GTID_ONLY is available in

106

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html#crs-opt-gtid_only

Replica Server Options and Variables

MySQL 8.0.27 and later.) With one parallel worker, the replica_preserve_commit_order
(slave_preserve_commit_order) system variable also has no effect.

Setting replica_parallel_workers has no immediate effect but rather applies to all subsequent
START REPLICA statements.

Multithreaded replicas are supported by NDB Cluster beginning with NDB 8.0.33. (Previously, NDB
silently ignored any setting for replica_parallel_workers.) See NDB Cluster Replication Using the
Multithreaded Applier, for more information.

Increasing the number of workers improves the potential for parallelism. Typically, this improves
performance up to a certain point, beyond which increasing the number of workers reduces performance
due to concurrency effects such as lock contention. The ideal number depends on both hardware and
workload; it can be difficult to predict and typically has to be found by testing. Tables without primary
keys, which always harm performance, may have even greater negative performance impact on replicas
having replica_parallel_workers > 1; so make sure that all tables have primary keys before
enabling this option.

• replica_pending_jobs_size_max

Command-Line Format --replica-pending-jobs-size-max=#

Introduced 8.0.26

System Variable replica_pending_jobs_size_max

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 128M

Minimum Value 1024

Maximum Value 16EiB

Unit bytes

Block Size 1024

From MySQL 8.0.26, use replica_pending_jobs_size_max in place of
slave_pending_jobs_size_max, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_pending_jobs_size_max.

For multithreaded replicas, this variable sets the maximum amount of memory (in bytes) available to
applier queues holding events not yet applied. Setting this variable has no effect on replicas for which
multithreading is not enabled. Setting this variable has no immediate effect. The state of the variable
applies on all subsequent START REPLICA statements.

The minimum possible value for this variable is 1024 bytes; the default is 128MB. The maximum
possible value is 18446744073709551615 (16 exbibytes). Values that are not exact multiples of 1024
bytes are rounded down to the next lower multiple of 1024 bytes prior to being stored.

The value of this variable is a soft limit and can be set to match the normal workload. If an unusually
large event exceeds this size, the transaction is held until all the worker threads have empty queues, and
then processed. All subsequent transactions are held until the large transaction has been completed.

107

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-mta.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-mta.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Replica Server Options and Variables

• replica_preserve_commit_order

Command-Line Format --replica-preserve-commit-
order[={OFF|ON}]

Introduced 8.0.26

System Variable replica_preserve_commit_order

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.27) ON

Default Value (8.0.26) OFF

From MySQL 8.0.26, use replica_preserve_commit_order in place of
slave_preserve_commit_order, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_preserve_commit_order.

For multithreaded replicas (replicas on which replica_parallel_workers is set to a value greater
than 0), setting replica_preserve_commit_order=ON ensures that transactions are executed and
committed on the replica in the same order as they appear in the replica's relay log. This prevents gaps
in the sequence of transactions that have been executed from the replica's relay log, and preserves the
same transaction history on the replica as on the source (with the limitations listed below). This variable
has no effect on replicas for which multithreading is not enabled.

Before MySQL 8.0.27, the default for this system variable is OFF, meaning that transactions may be
committed out of order. From MySQL 8.0.27, multithreading is enabled by default for replica servers
(replica_parallel_workers=4 by default), so replica_preserve_commit_order=ON
is the default, and the setting replica_parallel_type=LOGICAL_CLOCK is also the default.
Also from MySQL 8.0.27, the setting for replica_preserve_commit_order is ignored if
replica_parallel_workers is set to 1, because in that situation the order of transactions is
preserved anyway.

Binary logging and replica update logging are not required on the replica to set
replica_preserve_commit_order=ON, and can be disabled if wanted. Setting
replica_preserve_commit_order=ON requires that replica_parallel_type is set to
LOGICAL_CLOCK, which is not the default setting before MySQL 8.0.27. Before changing the value of
replica_preserve_commit_order and replica_parallel_type, the replication SQL thread (for
all replication channels if you are using multiple replication channels) must be stopped.

When replica_preserve_commit_order=OFF is set, the transactions that a multithreaded
replica applies in parallel may commit out of order. Therefore, checking for the most recently executed
transaction does not guarantee that all previous transactions from the source have been executed on
the replica. There is a chance of gaps in the sequence of transactions that have been executed from the
replica's relay log. This has implications for logging and recovery when using a multithreaded replica.
See Section 4.1.34, “Replication and Transaction Inconsistencies” for more information.

When replica_preserve_commit_order=ON is set, the executing worker thread waits until all
previous transactions are committed before committing. While a given thread is waiting for other worker
threads to commit their transactions, it reports its status as Waiting for preceding transaction
to commit. With this mode, a multithreaded replica never enters a state that the source was not in.

108

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

This supports the use of replication for read scale-out. See Section 3.5, “Using Replication for Scale-
Out”.

Note

• replica_preserve_commit_order=ON does not prevent source binary
log position lag, where Exec_master_log_pos is behind the position up to
which transactions have been executed. See Section 4.1.34, “Replication and
Transaction Inconsistencies”.

• replica_preserve_commit_order=ON does not preserve the commit
order and transaction history if the replica uses filters on its binary log, such as
--binlog-do-db.

• replica_preserve_commit_order=ON does not preserve the order of
non-transactional DML updates. These might commit before transactions that
precede them in the relay log, which might result in gaps in the sequence of
transactions that have been executed from the replica's relay log.

• A limitation to preserving the commit order on the replica can occur if
statement-based replication is in use, and both transactional and non-
transactional storage engines participate in a non-XA transaction that is rolled
back on the source. Normally, non-XA transactions that are rolled back on
the source are not replicated to the replica, but in this particular situation,
the transaction might be replicated to the replica. If this does happen, a
multithreaded replica without binary logging does not handle the transaction
rollback, so the commit order on the replica diverges from the relay log order of
the transactions in that case.

• replica_sql_verify_checksum

Command-Line Format --replica-sql-verify-checksum[={OFF|
ON}]

Introduced 8.0.26

System Variable replica_sql_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

From MySQL 8.0.26, use replica_sql_verify_checksum in place of
slave_sql_verify_checksum, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_sql_verify_checksum.

slave_sql_verify_checksum causes the replication SQL (applier) thread to verify data using the
checksums read from the relay log. In the event of a mismatch, the replica stops with an error. Setting
this variable takes effect for all replication channels immediately, including running channels.

Note

The replication I/O (receiver)thread always reads checksums if possible when
accepting events from over the network.

109

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

• replica_transaction_retries

Command-Line Format --replica-transaction-retries=#

Introduced 8.0.26

System Variable replica_transaction_retries

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 18446744073709551615

From MySQL 8.0.26, use replica_transaction_retries in place of
slave_transaction_retries, which is deprecated from that release. In releases before MySQL
8.0.26, use slave_transaction_retries.

replica_transaction_retries sets the maximum number of times for replication SQL threads
on a single-threaded or multithreaded replica to automatically retry failed transactions before stopping.
Setting this variable takes effect for all replication channels immediately, including running channels. The
default value is 10. Setting the variable to 0 disables automatic retrying of transactions.

If a replication SQL thread fails to execute a transaction because of an InnoDB deadlock or because
the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout or NDB's
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout, it automatically
retries replica_transaction_retries times before stopping with an error. Transactions with a non-
temporary error are not retried.

The Performance Schema table replication_applier_status shows the number of retries
that took place on each replication channel, in the COUNT_TRANSACTIONS_RETRIES column. The
Performance Schema table replication_applier_status_by_worker shows detailed information
on transaction retries by individual applier threads on a single-threaded or multithreaded replica, and
identifies the errors that caused the last transaction and the transaction currently in progress to be
reattempted.

• replica_type_conversions

Command-Line Format --replica-type-conversions=set

Introduced 8.0.26

System Variable replica_type_conversions

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value

Valid Values ALL_LOSSY

ALL_NON_LOSSY
110

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactiondeadlockdetectiontimeout
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactioninactivetimeout
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

ALL_SIGNED

ALL_UNSIGNED

From MySQL 8.0.26, use replica_type_conversions in place of slave_type_conversions,
which is deprecated from that release. In releases before MySQL 8.0.26, use
slave_type_conversions.

replica_type_conversions controls the type conversion mode in effect on the replica when
using row-based replication. Its value is a comma-delimited set of zero or more elements from the list:
ALL_LOSSY, ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty string to
disallow type conversions between the source and the replica. Setting this variable takes effect for all
replication channels immediately, including running channels.

For additional information on type conversion modes applicable to attribute promotion and demotion in
row-based replication, see Row-based replication: attribute promotion and demotion.

• replication_optimize_for_static_plugin_config

Command-Line Format --replication-optimize-for-static-
plugin-config[={OFF|ON}]

Introduced 8.0.23

System Variable replication_optimize_for_static_plugin_config

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Use shared locks, and avoid unnecessary lock acquisitions, to improve performance for
semisynchronous replication. This setting and replication_sender_observe_commit_only help
as the number of replicas increases, because contention for locks can slow down performance. While
this system variable is enabled, the semisynchronous replication plugin cannot be uninstalled, so you
must disable the system variable before the uninstall can complete.

This system variable can be enabled before or after installing the semisynchronous replication plugin,
and can be enabled while replication is running. Semisynchronous replication source servers can
also get performance benefits from enabling this system variable, because they use the same locking
mechanisms as the replicas.

replication_optimize_for_static_plugin_config can be enabled when Group Replication is
in use on a server. In that scenario, it might benefit performance when there is contention for locks due
to high workloads.

• replication_sender_observe_commit_only

Command-Line Format --replication-sender-observe-commit-
only[={OFF|ON}]

Introduced 8.0.23

System Variable replication_sender_observe_commit_only

111

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Limit callbacks to improve performance for semisynchronous replication. This setting and
replication_optimize_for_static_plugin_config help as the number of replicas increases,
because contention for locks can slow down performance.

This system variable can be enabled before or after installing the semisynchronous replication plugin,
and can be enabled while replication is running. Semisynchronous replication source servers can
also get performance benefits from enabling this system variable, because they use the same locking
mechanisms as the replicas.

• report_host

Command-Line Format --report-host=host_name

System Variable report_host

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The host name or IP address of the replica to be reported to the source during replica registration. This
value appears in the output of SHOW REPLICAS on the source server. Leave the value unset if you do
not want the replica to register itself with the source.

Note

It is not sufficient for the source to simply read the IP address of the replica server
from the TCP/IP socket after the replica connects. Due to NAT and other routing
issues, that IP may not be valid for connecting to the replica from the source or
other hosts.

• report_password

Command-Line Format --report-password=name

System Variable report_password

Scope Global

Dynamic No

SET_VAR Hint Applies No

112

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Type String

The account password of the replica to be reported to the source during replica registration. This value
appears in the output of SHOW REPLICAS on the source server if the source was started with --show-
replica-auth-info or --show-slave-auth-info.

Although the name of this variable might imply otherwise, report_password is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the password
for the MySQL replication user account.

• report_port

Command-Line Format --report-port=port_num

System Variable report_port

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value [slave_port]

Minimum Value 0

Maximum Value 65535

The TCP/IP port number for connecting to the replica, to be reported to the source during replica
registration. Set this only if the replica is listening on a nondefault port or if you have a special tunnel
from the source or other clients to the replica. If you are not sure, do not use this option.

The default value for this option is the port number actually used by the replica. This is also the default
value displayed by SHOW REPLICAS.

• report_user

Command-Line Format --report-user=name

System Variable report_user

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

The account user name of the replica to be reported to the source during replica registration. This value
appears in the output of SHOW REPLICAS on the source server if the source was started with --show-
replica-auth-info or --show-slave-auth-info.

Although the name of this variable might imply otherwise, report_user is not connected to the MySQL
user privilege system and so is not necessarily (or even likely to be) the same as the name of the
MySQL replication user account.

• rpl_read_size

Command-Line Format --rpl-read-size=# 113

https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html

Replica Server Options and Variables

System Variable rpl_read_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8192

Minimum Value 8192

Maximum Value 4294959104

Unit bytes

Block Size 8192

The rpl_read_size system variable controls the minimum amount of data in bytes that is read from
the binary log files and relay log files. If heavy disk I/O activity for these files is impeding performance
for the database, increasing the read size might reduce file reads and I/O stalls when the file data is not
currently cached by the operating system.

The minimum and default value for rpl_read_size is 8192 bytes. The value must be a multiple of
4KB. Note that a buffer the size of this value is allocated for each thread that reads from the binary log
and relay log files, including dump threads on sources and coordinator threads on replicas. Setting a
large value might therefore have an impact on memory consumption for servers.

• rpl_semi_sync_replica_enabled

Command-Line Format --rpl-semi-sync-replica-
enabled[={OFF|ON}]

Introduced 8.0.26

System Variable rpl_semi_sync_replica_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

rpl_semi_sync_replica_enabled is available when the rpl_semi_sync_replica
(semisync_replica.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_slave plugin (semisync_slave.so library) was installed,
rpl_semi_sync_slave_enabled is available instead.

rpl_semi_sync_replica_enabled controls whether semisynchronous replication is enabled on the
replica server. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0), respectively. The
default is OFF.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_replica_trace_level

Command-Line Format --rpl-semi-sync-replica-trace-level=#

Introduced 8.0.26

114

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

System Variable rpl_semi_sync_replica_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

rpl_semi_sync_replica_trace_level is available when the rpl_semi_sync_replica
(semisync_replica.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_slave plugin (semisync_slave.so library) was installed,
rpl_semi_sync_slave_trace_level is available instead.

rpl_semi_sync_replica_trace_level controls the semisynchronous replication debug trace level
on the replica server. See rpl_semi_sync_master_trace_level for the permissible values.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_enabled

Command-Line Format --rpl-semi-sync-slave-enabled[={OFF|
ON}]

System Variable rpl_semi_sync_slave_enabled

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

rpl_semi_sync_slave_enabled is available when the rpl_semi_sync_slave
(semisync_slave.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_replica plugin (semisync_replica.so library) was installed,
rpl_semi_sync_replica_enabled is available instead.

rpl_semi_sync_slave_enabled controls whether semisynchronous replication is enabled on the
replica server. To enable or disable the plugin, set this variable to ON or OFF (or 1 or 0), respectively. The
default is OFF.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_semi_sync_slave_trace_level

Command-Line Format --rpl-semi-sync-slave-trace-level=#

System Variable rpl_semi_sync_slave_trace_level

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
115

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Type Integer

Default Value 32

Minimum Value 0

Maximum Value 4294967295

rpl_semi_sync_slave_trace_level is available when the rpl_semi_sync_slave
(semisync_slave.so library) plugin was installed on the replica to set up semisynchronous
replication. If the rpl_semi_sync_replica plugin (semisync_replica.so library) was installed,
rpl_semi_sync_replica_trace_level is available instead.

rpl_semi_sync_slave_trace_level controls the semisynchronous replication debug trace level on
the replica server. See rpl_semi_sync_master_trace_level for the permissible values.

This variable is available only if the replica-side semisynchronous replication plugin is installed.

• rpl_stop_replica_timeout

Command-Line Format --rpl-stop-replica-timeout=#

Introduced 8.0.26

System Variable rpl_stop_replica_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 31536000

Minimum Value 2

Maximum Value 31536000

Unit seconds

From MySQL 8.0.26, use rpl_stop_replica_timeout in place of rpl_stop_slave_timeout,
which is deprecated from that release. In releases before MySQL 8.0.26, use
rpl_stop_slave_timeout.

You can control the length of time (in seconds) that STOP REPLICA waits before timing out by setting
this variable. This can be used to avoid deadlocks between STOP REPLICA and other SQL statements
using different client connections to the replica.

The maximum and default value of rpl_stop_replica_timeout is 31536000 seconds (1 year). The
minimum is 2 seconds. Changes to this variable take effect for subsequent STOP REPLICA statements.

This variable affects only the client that issues a STOP REPLICA statement. When the timeout is
reached, the issuing client returns an error message stating that the command execution is incomplete.
The client then stops waiting for the replication I/O (receiver)and SQL (applier) threads to stop, but the
replication threads continue to try to stop, and the STOP REPLICA statement remains in effect. Once the
replication threads are no longer busy, the STOP REPLICA statement is executed and the replica stops.

• rpl_stop_slave_timeout

Command-Line Format --rpl-stop-slave-timeout=#

116

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html

Replica Server Options and Variables

Deprecated 8.0.26

System Variable rpl_stop_slave_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 31536000

Minimum Value 2

Maximum Value 31536000

Unit seconds

From MySQL 8.0.26, rpl_stop_slave_timeout is deprecated and the alias
rpl_stop_replica_timeout should be used instead. In releases before MySQL 8.0.26, use
rpl_stop_slave_timeout.

You can control the length of time (in seconds) that STOP REPLICA waits before timing out by setting
this variable. This can be used to avoid deadlocks between STOP REPLICA and other SQL statements
using different client connections to the replica.

The maximum and default value of rpl_stop_slave_timeout is 31536000 seconds (1 year). The
minimum is 2 seconds. Changes to this variable take effect for subsequent STOP REPLICA statements.

This variable affects only the client that issues a STOP REPLICA statement. When the timeout is
reached, the issuing client returns an error message stating that the command execution is incomplete.
The client then stops waiting for the replication I/O (receiver) and SQL (applier) threads to stop, but the
replication threads continue to try to stop, and the STOP REPLICA instruction remains in effect. Once
the replication threads are no longer busy, the STOP REPLICA statement is executed and the replica
stops.

• skip_replica_start

Command-Line Format --skip-replica-start[={OFF|ON}]

Introduced 8.0.26

System Variable skip_replica_start

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use skip_replica_start in place of skip_slave_start, which is deprecated
from that release. In releases before MySQL 8.0.26, use skip_slave_start.

skip_replica_start tells the replica server not to start the replication I/O (receiver) and SQL
(applier) threads when the server starts. To start the threads later, use a START REPLICA statement.

This system variable is read-only and can be set by using the PERSIST_ONLY keyword or the
@@persist_only qualifier with the SET statement. The --skip-replica-start command line

117

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/set.html

Replica Server Options and Variables

option also sets this system variable. You can use the system variable in place of the command line
option to allow access to this feature using MySQL Server’s privilege structure, so that database
administrators do not need any privileged access to the operating system.

• skip_slave_start

Command-Line Format --skip-slave-start[={OFF|ON}]

Deprecated 8.0.26

System Variable skip_slave_start

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, skip_slave_start is deprecated and the alias skip_replica_start should
be used instead. In releases before MySQL 8.0.26, use skip_slave_start.

Tells the replica server not to start the replication I/O (receiver) and SQL (applier) threads when the
server starts. To start the threads later, use a START REPLICA statement.

This system variable is available from MySQL 8.0.24. It is read-only and can be set by using the
PERSIST_ONLY keyword or the @@persist_only qualifier with the SET statement. The --skip-
slave-start command line option also sets this system variable. You can use the system variable
in place of the command line option to allow access to this feature using MySQL Server’s privilege
structure, so that database administrators do not need any privileged access to the operating system.

• slave_checkpoint_group

Command-Line Format --slave-checkpoint-group=#

Deprecated 8.0.26

System Variable slave_checkpoint_group

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 512

Minimum Value 32

Maximum Value 524280

Block Size 8

From MySQL 8.0.26, slave_checkpoint_group is deprecated and the alias
replica_checkpoint_group should be used instead. In releases before MySQL 8.0.26, use
slave_checkpoint_group.

slave_checkpoint_group sets the maximum number of transactions that can be processed
by a multithreaded replica before a checkpoint operation is called to update its status as shown by
SHOW REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading is

118

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Replica Server Options and Variables

not enabled. Setting this variable has no immediate effect. The state of the variable applies on all
subsequent START REPLICA statements.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the setting
for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the slave_checkpoint_period system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 32, unless the server was built using -DWITH_DEBUG, in
which case the minimum value is 1. The effective value is always a multiple of 8; you can set it to a value
that is not such a multiple, but the server rounds it down to the next lower multiple of 8 before storing the
value. (Exception: No such rounding is performed by the debug server.) Regardless of how the server
was built, the default value is 512, and the maximum allowed value is 524280.

• slave_checkpoint_period

Command-Line Format --slave-checkpoint-period=#

Deprecated 8.0.26

System Variable slave_checkpoint_period

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 300

Minimum Value 1

Maximum Value 4294967295

Unit milliseconds

As of MySQL 8.0.26, slave_checkpoint_period is deprecated, and
replica_checkpoint_period should be used instead; prior to MySQL 8.0.26, use
slave_checkpoint_period.

slave_checkpoint_period sets the maximum time (in milliseconds) that is allowed to pass before
a checkpoint operation is called to update the status of a multithreaded replica as shown by SHOW
REPLICA STATUS. Setting this variable has no effect on replicas for which multithreading is not
enabled. Setting this variable takes effect for all replication channels immediately, including running
channels.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the setting
for this variable. This restriction was lifted in MySQL 8.0.33.

This variable works in combination with the slave_checkpoint_group system variable in such a
way that, when either limit is exceeded, the checkpoint is executed and the counters tracking both the
number of transactions and the time elapsed since the last checkpoint are reset.

The minimum allowed value for this variable is 1, unless the server was built using -DWITH_DEBUG,
in which case the minimum value is 0. Regardless of how the server was built, the default value is 300
milliseconds, and the maximum possible value is 4294967295 milliseconds (approximately 49.7 days).

• slave_compressed_protocol

119

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_debug
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_debug

Replica Server Options and Variables

Command-Line Format --slave-compressed-protocol[={OFF|
ON}]

Deprecated 8.0.18

System Variable slave_compressed_protocol

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

slave_compressed_protocol is deprecated, and from MySQL 8.0.26, the alias
replica_compressed_protocol should be used instead. In releases before MySQL 8.0.26, use
slave_compressed_protocol.

slave_compressed_protocol controls whether to use compression of the source/replica connection
protocol if both source and replica support it. If this variable is disabled (the default), connections are
uncompressed. Changes to this variable take effect on subsequent connection attempts; this includes
after issuing a START REPLICA statement, as well as reconnections made by a running replication I/O
(receiver) thread.

Binary log transaction compression (available as of MySQL 8.0.20), which is activated by the
binlog_transaction_compression system variable, can also be used to save bandwidth. If you
use binary log transaction compression in combination with protocol compression, protocol compression
has less opportunity to act on the data, but can still compress headers and those events and transaction
payloads that are uncompressed. For more information on binary log transaction compression, see
Binary Log Transaction Compression.

As of MySQL 8.0.18, if slave_compressed_protocol is enabled, it takes precedence over any
SOURCE_COMPRESSION_ALGORITHMS | MASTER_COMPRESSION_ALGORITHMS option specified
for the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement. In this case,
connections to the source use zlib compression if both the source and replica support that algorithm.
If slave_compressed_protocol is disabled, the value of SOURCE_COMPRESSION_ALGORITHMS |
MASTER_COMPRESSION_ALGORITHMS applies. For more information, see Connection Compression
Control.

As of MySQL 8.0.18, this system variable is deprecated. You should expect it to be removed in a future
version of MySQL. See Configuring Legacy Connection Compression.

• slave_exec_mode

Command-Line Format --slave-exec-mode=mode

System Variable slave_exec_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value IDEMPOTENT (NDB)

STRICT (Other)

120

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html#connection-compression-legacy-configuration
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Valid Values STRICT

IDEMPOTENT

From MySQL 8.0.26, slave_exec_mode is deprecated and the alias replica_exec_mode should be
used instead. In releases before MySQL 8.0.26, use slave_exec_mode.

slave_exec_mode controls how a replication thread resolves conflicts and errors during replication.
IDEMPOTENT mode causes suppression of duplicate-key and no-key-found errors; STRICT means no
such suppression takes place.

IDEMPOTENT mode is intended for use in multi-source replication, circular replication, and some other
special replication scenarios for NDB Cluster Replication. (See NDB Cluster Replication: Bidirectional
and Circular Replication, and NDB Cluster Replication Conflict Resolution, for more information.) NDB
Cluster ignores any value explicitly set for slave_exec_mode, and always treats it as IDEMPOTENT.

In MySQL Server 8.0, STRICT mode is the default value.

Setting this variable takes immediate effect for all replication channels, including running channels.

For storage engines other than NDB, IDEMPOTENT mode should be used only when you are absolutely
sure that duplicate-key errors and key-not-found errors can safely be ignored. It is meant to be used in
fail-over scenarios for NDB Cluster where multi-source replication or circular replication is employed, and
is not recommended for use in other cases.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

Deprecated 8.0.26

System Variable slave_load_tmpdir

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Directory name

Default Value Value of --tmpdir

From MySQL 8.0.26, slave_load_tmpdir is deprecated and the alias replica_load_tmpdir
should be used instead. In releases before MySQL 8.0.26, use slave_load_tmpdir.

slave_load_tmpdir specifies the name of the directory where the replica creates temporary files.
Setting this variable takes effect for all replication channels immediately, including running channels. The
variable value is by default equal to the value of the tmpdir system variable, or the default that applies
when that system variable is not specified.

When the replication SQL thread replicates a LOAD DATA statement, it extracts the file to be loaded
from the relay log into temporary files, and then loads these into the table. If the file loaded on the
source is huge, the temporary files on the replica are huge, too. Therefore, it might be advisable to use
this option to tell the replica to put temporary files in a directory located in some file system that has a

121

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-conflict-resolution.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tmpdir
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Replica Server Options and Variables

lot of available space. In that case, the relay logs are huge as well, so you might also want to set the
relay_log system variable to place the relay logs in that file system.

The directory specified by this option should be located in a disk-based file system (not a memory-based
file system) so that the temporary files used to replicate LOAD DATA statements can survive machine
restarts. The directory also should not be one that is cleared by the operating system during the system
startup process. However, replication can now continue after a restart if the temporary files have been
removed.

• slave_max_allowed_packet

Command-Line Format --slave-max-allowed-packet=#

Deprecated 8.0.26

System Variable slave_max_allowed_packet

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 1024

Maximum Value 1073741824

Unit bytes

Block Size 1024

From MySQL 8.0.26, slave_max_allowed_packet is deprecated and the alias
replica_max_allowed_packet should be used instead. In releases before MySQL 8.0.26, use
slave_max_allowed_packet.

slave_max_allowed_packet sets the maximum packet size in bytes that the replication SQL
(applier) and I/O (receiver) threads can handle. Setting this variable takes effect for all replication
channels immediately, including running channels. It is possible for a source to write binary log events
longer than its max_allowed_packet setting once the event header is added. The setting for
slave_max_allowed_packet must be larger than the max_allowed_packet setting on the source,
so that large updates using row-based replication do not cause replication to fail.

This global variable always has a value that is a positive integer multiple of 1024; if you set it to some
value that is not, the value is rounded down to the next highest multiple of 1024 for it is stored or used;
setting slave_max_allowed_packet to 0 causes 1024 to be used. (A truncation warning is issued in
all such cases.) The default and maximum value is 1073741824 (1 GB); the minimum is 1024.

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

Deprecated 8.0.26

System Variable slave_net_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

122

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Type Integer

Default Value 60

Minimum Value 1

Maximum Value 31536000

Unit seconds

From MySQL 8.0.26, slave_net_timeout is deprecated and the alias replica_net_timeout
should be used instead. In releases before MySQL 8.0.26, use slave_net_timeout.

slave_net_timeout specifies the number of seconds to wait for more data or a heartbeat signal from
the source before the replica considers the connection broken, aborts the read, and tries to reconnect.
Setting this variable has no immediate effect. The state of the variable applies on all subsequent START
REPLICA commands.

The default value is 60 seconds (one minute). The first retry occurs immediately after the timeout. The
interval between retries is controlled by the SOURCE_CONNECT_RETRY | MASTER_CONNECT_RETRY
option for the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement, and the number
of reconnection attempts is limited by the SOURCE_RETRY_COUNT | MASTER_RETRY_COUNT option.

The heartbeat interval, which stops the connection timeout occurring in the absence of
data if the connection is still good, is controlled by the SOURCE_HEARTBEAT_PERIOD |
MASTER_HEARTBEAT_PERIOD option for the CHANGE REPLICATION SOURCE TO | CHANGE
MASTER TO statement. The heartbeat interval defaults to half the value of slave_net_timeout,
and it is recorded in the replica's connection metadata repository and shown in the
replication_connection_configuration Performance Schema table. Note that a change to the
value or default setting of slave_net_timeout does not automatically change the heartbeat interval,
whether that has been set explicitly or is using a previously calculated default. If the connection timeout
is changed, you must also issue CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO to adjust
the heartbeat interval to an appropriate value so that it occurs before the connection timeout.

• slave_parallel_type

Command-Line Format --slave-parallel-type=value

Deprecated 8.0.26

System Variable slave_parallel_type

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value (≥ 8.0.27) LOGICAL_CLOCK

Default Value (≤ 8.0.26) DATABASE

Valid Values DATABASE

LOGICAL_CLOCK

From MySQL 8.0.26, slave_parallel_type is deprecated and the alias replica_parallel_type
should be used instead. In releases before MySQL 8.0.26, use slave_parallel_type.

For multithreaded replicas (replicas on which replica_parallel_workers or
slave_parallel_workers is set to a value greater than 0), slave_parallel_type specifies the

123

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-configuration-table.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

policy used to decide which transactions are allowed to execute in parallel on the replica. The variable
has no effect on replicas for which multithreading is not enabled. The possible values are:

• LOGICAL_CLOCK: Transactions that are part of the same binary log group commit on a source
are applied in parallel on a replica. The dependencies between transactions are tracked based on
their timestamps to provide additional parallelization where possible. When this value is set, the
binlog_transaction_dependency_tracking system variable can be used on the source to
specify that write sets are used for parallelization in place of timestamps, if a write set is available for
the transaction and gives improved results compared to timestamps.

• DATABASE: Transactions that update different databases are applied in parallel. This value is only
appropriate if data is partitioned into multiple databases which are being updated independently and
concurrently on the source. There must be no cross-database constraints, as such constraints may be
violated on the replica.

When replica_preserve_commit_order=ON or slave_preserve_commit_order=ON is set, you
can only use LOGICAL_CLOCK. Before MySQL 8.0.27, DATABASE is the default. From MySQL 8.0.27,
multithreading is enabled by default for replica servers (replica_parallel_workers=4 by default),
so LOGICAL_CLOCK is the default, and the setting replica_preserve_commit_order=ON is also
the default.

When your replication topology uses multiple levels of replicas, LOGICAL_CLOCK may achieve less
parallelization for each level the replica is away from the source. You can reduce this effect by using
binlog_transaction_dependency_tracking on the source to specify that write sets are used
instead of timestamps for parallelization where possible.

When binary log transaction compression is enabled using the binlog_transaction_compression
system variable, if replica_parallel_type or slave_parallel_type is set to DATABASE, all
the databases affected by the transaction are mapped before the transaction is scheduled. The use
of binary log transaction compression with the DATABASE policy can reduce parallelism compared to
uncompressed transactions, which are mapped and scheduled for each event.

• slave_parallel_workers

Command-Line Format --slave-parallel-workers=#

Deprecated 8.0.26

System Variable slave_parallel_workers

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27) 4

Default Value (≤ 8.0.26) 0

Minimum Value 0

124

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Maximum Value 1024

From MySQL 8.0.26, slave_parallel_workers is deprecated and the alias
replica_parallel_workers should be used instead. In releases before MySQL 8.0.26, use
slave_parallel_workers.

slave_parallel_workers enables multithreading on the replica and sets the number of applier
threads for executing replication transactions in parallel. When the value is a number greater than 0, the
replica is a multithreaded replica with the specified number of applier threads, plus a coordinator thread
to manage them. If you are using multiple replication channels, each channel has this number of threads.

Before MySQL 8.0.27, the default for this system variable is 0, so replicas are not multithreaded by
default. From MySQL 8.0.27, the default is 4, so replicas are multithreaded by default.

Retrying of transactions is supported when multithreading is enabled on a replica. When
replica_preserve_commit_order=ON or slave_preserve_commit_order=ON is set,
transactions on a replica are externalized on the replica in the same order as they appear in the
replica's relay log. The way in which transactions are distributed among applier threads is configured by
replica_parallel_type (from MySQL 8.0.26) or slave_parallel_type (before MySQL 8.0.26).
From MySQL 8.0.27, these system variables also have appropriate defaults for multithreading.

To disable parallel execution, set replica_parallel_workers to 0, which gives
the replica a single applier thread and no coordinator thread. With this setting, the
replica_parallel_type or slave_parallel_type and replica_preserve_commit_order
or slave_preserve_commit_order system variables have no effect and are ignored. From
MySQL 8.0.27, if parallel execution is disabled when the CHANGE REPLICATION SOURCE TO option
GTID_ONLY is enabled on a replica, the replica actually uses one parallel worker to take advantage of
the method for retrying transactions without accessing the file positions. With one parallel worker, the
replica_preserve_commit_order (slave_preserve_commit_order) system variable also has
no effect.

Setting replica_parallel_workers has no immediate effect. The state of the variable applies on all
subsequent START REPLICA statements.

Previously, multithreaded replicas were not supported by NDB Cluster, which silently ignored the setting
for this variable. This restriction was lifted in MySQL 8.0.33.

• slave_pending_jobs_size_max

Command-Line Format --slave-pending-jobs-size-max=#

Deprecated 8.0.26

System Variable slave_pending_jobs_size_max

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.12) 128M

Default Value (8.0.11) 16M

Minimum Value 1024

Maximum Value 16EiB

125

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Unit bytes

Block Size 1024

From MySQL 8.0.26, slave_pending_jobs_size_max is deprecated and the alias
replica_pending_jobs_size_max should be used instead. In releases before MySQL 8.0.26, use
slave_pending_jobs_size_max.

For multithreaded replicas, this variable sets the maximum amount of memory (in bytes) available to
applier queues holding events not yet applied. Setting this variable has no effect on replicas for which
multithreading is not enabled. Setting this variable has no immediate effect. The state of the variable
applies on all subsequent START REPLICA commands.

The minimum possible value for this variable is 1024 bytes; the default is 128MB. The maximum
possible value is 18446744073709551615 (16 exbibytes). Values that are not exact multiples of 1024
bytes are rounded down to the next lower multiple of 1024 bytes prior to being stored.

The value of this variable is a soft limit and can be set to match the normal workload. If an unusually
large event exceeds this size, the transaction is held until all the worker threads have empty queues, and
then processed. All subsequent transactions are held until the large transaction has been completed.

• slave_preserve_commit_order

Command-Line Format --slave-preserve-commit-order[={OFF|
ON}]

Deprecated 8.0.26

System Variable slave_preserve_commit_order

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.27) ON

Default Value (≤ 8.0.26) OFF

From MySQL 8.0.26, slave_preserve_commit_order is deprecated and the alias
replica_preserve_commit_order should be used instead. In releases before MySQL 8.0.26, use
slave_preserve_commit_order.

For multithreaded replicas (replicas on which replica_parallel_workers
or slave_parallel_workers is set to a value greater than 0), setting
slave_preserve_commit_order=1 ensures that transactions are executed and committed on the
replica in the same order as they appear in the replica's relay log. This prevents gaps in the sequence of
transactions that have been executed from the replica's relay log, and preserves the same transaction
history on the replica as on the source (with the limitations listed below). This variable has no effect on
replicas for which multithreading is not enabled.

Before MySQL 8.0.27, the default for this system variable is OFF, meaning that transactions may
be committed out of order. From MySQL 8.0.27, multithreading is enabled by default for replica
servers (replica_parallel_workers=4 by default), so slave_preserve_commit_order=ON
is the default, and the setting slave_parallel_type=LOGICAL_CLOCK is also the default.
Also from MySQL 8.0.27, the setting for slave_preserve_commit_order is ignored if

126

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

slave_parallel_workers is set to 1, because in that situation the order of transactions is preserved
anyway.

Up to and including MySQL 8.0.18, setting slave_preserve_commit_order=ON requires that
binary logging (log_bin) and replica update logging (log_slave_updates) are enabled on the
replica, which are the default settings from MySQL 8.0. From MySQL 8.0.19, binary logging and
replica update logging are not required on the replica to set slave_preserve_commit_order=ON,
and can be disabled if wanted. In all releases, setting slave_preserve_commit_order=ON
requires that slave_parallel_type is set to LOGICAL_CLOCK, which is not the default setting
before MySQL 8.0.27. Before changing the value of slave_preserve_commit_order and
slave_parallel_type, the replication SQL thread (for all replication channels if you are using
multiple replication channels) must be stopped.

When slave_preserve_commit_order=OFF is set, which is the default, the transactions that a
multithreaded replica applies in parallel may commit out of order. Therefore, checking for the most
recently executed transaction does not guarantee that all previous transactions from the source have
been executed on the replica. There is a chance of gaps in the sequence of transactions that have
been executed from the replica's relay log. This has implications for logging and recovery when using
a multithreaded replica. See Section 4.1.34, “Replication and Transaction Inconsistencies” for more
information.

When slave_preserve_commit_order=ON is set, the executing worker thread waits until all previous
transactions are committed before committing. While a given thread is waiting for other worker threads
to commit their transactions, it reports its status as Waiting for preceding transaction to
commit. With this mode, a multithreaded replica never enters a state that the source was not in. This
supports the use of replication for read scale-out. See Section 3.5, “Using Replication for Scale-Out”.

Note

• slave_preserve_commit_order=ON does not prevent source binary log
position lag, where Exec_master_log_pos is behind the position up to
which transactions have been executed. See Section 4.1.34, “Replication and
Transaction Inconsistencies”.

• slave_preserve_commit_order=ON does not preserve the commit order
and transaction history if the replica uses filters on its binary log, such as --
binlog-do-db.

• slave_preserve_commit_order=ON does not preserve the order of non-
transactional DML updates. These might commit before transactions that
precede them in the relay log, which might result in gaps in the sequence of
transactions that have been executed from the replica's relay log.

• In releases before MySQL 8.0.19, slave_preserve_commit_order=ON
does not preserve the order of statements with an IF EXISTS clause when
the object concerned does not exist. These might commit before transactions
that precede them in the relay log, which might result in gaps in the sequence
of transactions that have been executed from the replica's relay log.

• A limitation to preserving the commit order on the replica can occur if
statement-based replication is in use, and both transactional and non-
transactional storage engines participate in a non-XA transaction that is rolled
back on the source. Normally, non-XA transactions that are rolled back on
the source are not replicated to the replica, but in this particular situation,
the transaction might be replicated to the replica. If this does happen, a

127

Replica Server Options and Variables

multithreaded replica without binary logging does not handle the transaction
rollback, so the commit order on the replica diverges from the relay log order of
the transactions in that case.

• slave_rows_search_algorithms

Command-Line Format --slave-rows-search-algorithms=value

Deprecated 8.0.18

System Variable slave_rows_search_algorithms

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value INDEX_SCAN,HASH_SCAN

Valid Values TABLE_SCAN,INDEX_SCAN

INDEX_SCAN,HASH_SCAN

TABLE_SCAN,HASH_SCAN

TABLE_SCAN,INDEX_SCAN,HASH_SCAN
(equivalent to INDEX_SCAN,HASH_SCAN)

When preparing batches of rows for row-based logging and replication, this system variable controls how
the rows are searched for matches, in particular whether hash scans are used. The use of this system
variable is now deprecated. The default setting INDEX_SCAN,HASH_SCAN is optimal for performance
and works correctly in all scenarios. See Section 4.1.27, “Replication and Row Searches”.

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

Deprecated 8.0.26

System Variable slave_skip_errors

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

128

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

ddl_exist_errors

From MySQL 8.0.26, slave_skip_errors is deprecated and the alias replica_skip_errors
should be used instead. In releases before MySQL 8.0.26, use slave_skip_errors.

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This variable causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the variable value.

• replica_skip_errors

Command-Line Format --replica-skip-errors=name

Introduced 8.0.26

System Variable replica_skip_errors

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value OFF

Valid Values OFF

[list of error codes]

all

ddl_exist_errors

From MySQL 8.0.26, use replica_skip_errors in place of slave_skip_errors, which is
deprecated from that release. In releases before MySQL 8.0.26, use slave_skip_errors.

Normally, replication stops when an error occurs on the replica, which gives you the opportunity to
resolve the inconsistency in the data manually. This variable causes the replication SQL thread to
continue replication when a statement returns any of the errors listed in the variable value.

• slave_sql_verify_checksum

Command-Line Format --slave-sql-verify-checksum[={OFF|
ON}]

Deprecated 8.0.26

System Variable slave_sql_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

129

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

Default Value ON

From MySQL 8.0.26, slave_sql_verify_checksum is deprecated and the alias
replica_sql_verify_checksum should be used instead. In releases before MySQL 8.0.26, use
slave_sql_verify_checksum.

slave_sql_verify_checksum causes the replication SQL thread to verify data using the checksums
read from the relay log. In the event of a mismatch, the replica stops with an error. Setting this variable
takes effect for all replication channels immediately, including running channels.

Note

The replication I/O (receiver) thread always reads checksums if possible when
accepting events from over the network.

• slave_transaction_retries

Command-Line Format --slave-transaction-retries=#

Deprecated 8.0.26

System Variable slave_transaction_retries

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

From MySQL 8.0.26, slave_transaction_retries is deprecated and the alias
replica_transaction_retries should be used instead. In releases before MySQL 8.0.26, use
slave_transaction_retries.

slave_transaction_retries sets the maximum number of times for replication SQL threads on a
single-threaded or multithreaded replica to automatically retry failed transactions before stopping. Setting
this variable takes effect for all replication channels immediately, including running channels. The default
value is 10. Setting the variable to 0 disables automatic retrying of transactions.

If a replication SQL thread fails to execute a transaction because of an InnoDB deadlock or because
the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout or NDB's
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout, it automatically
retries slave_transaction_retries times before stopping with an error. Transactions with a non-
temporary error are not retried.

The Performance Schema table replication_applier_status shows the number of retries
that took place on each replication channel, in the COUNT_TRANSACTIONS_RETRIES column. The
Performance Schema table replication_applier_status_by_worker shows detailed information
on transaction retries by individual applier threads on a single-threaded or multithreaded replica, and
identifies the errors that caused the last transaction and the transaction currently in progress to be
reattempted.

130

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactiondeadlockdetectiontimeout
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactioninactivetimeout
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html

Replica Server Options and Variables

• slave_type_conversions

Command-Line Format --slave-type-conversions=set

Deprecated 8.0.26

System Variable slave_type_conversions

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Set

Default Value

Valid Values ALL_LOSSY

ALL_NON_LOSSY

ALL_SIGNED

ALL_UNSIGNED

From MySQL 8.0.26, slave_type_conversions is deprecated and the alias
replica_type_conversions should be used instead. In releases before MySQL 8.0.26, use
slave_type_conversions.

slave_type_conversions controls the type conversion mode in effect on the replica when using row-
based replication. Its value is a comma-delimited set of zero or more elements from the list: ALL_LOSSY,
ALL_NON_LOSSY, ALL_SIGNED, ALL_UNSIGNED. Set this variable to an empty string to disallow type
conversions between the source and the replica. Setting this variable takes effect for all replication
channels immediately, including running channels.

For additional information on type conversion modes applicable to attribute promotion and demotion in
row-based replication, see Row-based replication: attribute promotion and demotion.

• sql_replica_skip_counter

Introduced 8.0.26

System Variable sql_replica_skip_counter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

From MySQL 8.0.26, use sql_replica_skip_counter in place of sql_slave_skip_counter,
which is deprecated from that release. In releases before MySQL 8.0.26, use
sql_slave_skip_counter.

sql_replica_skip_counter specifies the number of events from the source that a replica should
skip. Setting the option has no immediate effect. The variable applies to the next START REPLICA

131

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Replica Server Options and Variables

statement; the next START REPLICA statement also changes the value back to 0. When this variable
is set to a nonzero value and there are multiple replication channels configured, the START REPLICA
statement can only be used with the FOR CHANNEL channel clause.

This option is incompatible with GTID-based replication, and must not be set to a nonzero value when
gtid_mode=ON is set. If you need to skip transactions when employing GTIDs, use gtid_executed
from the source instead. If you have enabled GTID assignment on a replication channel using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE TO
statement, sql_replica_skip_counter is available. See Section 2.7.3, “Skipping Transactions”.

Important

If skipping the number of events specified by setting this variable would cause the
replica to begin in the middle of an event group, the replica continues to skip until
it finds the beginning of the next event group and begins from that point. For more
information, see Section 2.7.3, “Skipping Transactions”.

• sql_slave_skip_counter

Deprecated 8.0.26

System Variable sql_slave_skip_counter

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

From MySQL 8.0.26, sql_slave_skip_counter is deprecated and the alias
sql_replica_skip_counter should be used instead. In releases before MySQL 8.0.26, use
sql_slave_skip_counter.

sql_slave_skip_counter specifies the number of events from the source that a replica should skip.
Setting the option has no immediate effect. The variable applies to the next START REPLICA statement;
the next START REPLICA statement also changes the value back to 0. When this variable is set to a
nonzero value and there are multiple replication channels configured, the START REPLICA statement
can only be used with the FOR CHANNEL channel clause.

This option is incompatible with GTID-based replication, and must not be set to a nonzero value when
gtid_mode=ON is set. If you need to skip transactions when employing GTIDs, use gtid_executed
from the source instead. If you have enabled GTID assignment on a replication channel using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE TO
statement, sql_slave_skip_counter is available. See Section 2.7.3, “Skipping Transactions”.

Important

If skipping the number of events specified by setting this variable would cause the
replica to begin in the middle of an event group, the replica continues to skip until
it finds the beginning of the next event group and begins from that point. For more
information, see Section 2.7.3, “Skipping Transactions”.

132

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Replica Server Options and Variables

• sync_master_info

Command-Line Format --sync-master-info=#

Deprecated 8.0.26

System Variable sync_master_info

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

From MySQL 8.0.26, sync_master_info is deprecated and the alias sync_source_info should be
used instead. In releases before MySQL 8.0.26, use sync_master_info.

sync_master_info specifies the number of events after which the replica updates the connection
metadata repository. When the connection metadata repository is stored as an InnoDB table, which
is the default from MySQL 8.0, it is updated after this number of events. If the connection metadata
repository is stored as a file, which is deprecated from MySQL 8.0, the replica synchronizes its
master.info file to disk (using fdatasync()) after this number of events. The default value is 10000,
and a zero value means that the repository is never updated. Setting this variable takes effect for all
replication channels immediately, including running channels.

• sync_relay_log

Command-Line Format --sync-relay-log=#

System Variable sync_relay_log

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk (using
fdatasync()) after every sync_relay_log events are written to the relay log. Setting this variable
takes effect for all replication channels immediately, including running channels.

Setting sync_relay_log to 0 causes no synchronization to be done to disk; in this case, the server
relies on the operating system to flush the relay log's contents from time to time as for any other file.

A value of 1 is the safest choice because in the event of an unexpected halt you lose at most one event
from the relay log. However, it is also the slowest choice (unless the disk has a battery-backed cache,
which makes synchronization very fast). For information on the combination of settings on a replica that
is most resilient to unexpected halts, see Section 3.2, “Handling an Unexpected Halt of a Replica”.

133

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Replica Server Options and Variables

• sync_relay_log_info

Command-Line Format --sync-relay-log-info=#

Deprecated 8.0.34

System Variable sync_relay_log_info

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

The number of transactions after which the replica updates the applier metadata repository. When the
applier metadata repository is stored as an InnoDB table (the default in MySQL 8.0 and later), it is
updated after every transaction and this system variable is ignored. If the applier metadata repository is
stored as a file (deprecated in MySQL 8.0), the replica synchronizes its relay-log.info file to disk
(using fdatasync()) after this many transactions. 0 (zero) means that the file contents are flushed
by the operating system only. Setting this variable takes effect for all replication channels immediately,
including running channels.

Since storing applier metadata as a file is deprecated, this variable is also deprecated; as of
MySQL 8.0.34, the server raises a warning whenever you set it or read its value. You should expect
sync_relay_log_info to be removed in a future version of MySQL, and migrate applications now
that may depend on it.

• sync_source_info

Command-Line Format --sync-source-info=#

Introduced 8.0.26

System Variable sync_source_info

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10000

Minimum Value 0

Maximum Value 4294967295

From MySQL 8.0.26, use sync_source_info in place of sync_master_info, which is deprecated
from that release. In releases before MySQL 8.0.26, use sync_source_info.

sync_source_info specifies the number of events after which the replica updates the connection
metadata repository. When the connection metadata repository is stored as an InnoDB table, which
is the default from MySQL 8.0, it is updated after this number of events. If the connection metadata
repository is stored as a file, which is deprecated from MySQL 8.0, the replica synchronizes its
master.info file to disk (using fdatasync()) after this number of events. The default value is 10000,

134

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Replica Server Options and Variables

and a zero value means that the repository is never updated. Setting this variable takes effect for all
replication channels immediately, including running channels.

• terminology_use_previous

Command-Line Format --terminology-use-previous=#

Introduced 8.0.26

System Variable terminology_use_previous

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

BEFORE_8_0_26

In MySQL 8.0.26, incompatible changes were made to instrumentation names containing the
terms master, slave, and mts (for “Multi-Threaded Slave”), which were changed respectively to
source, replica, and mta (for “Multi-Threaded Applier”). If these incompatible changes impact your
applications, set the terminology_use_previous system variable to BEFORE_8_0_26 to make
MySQL Server use the old versions of the names for the objects specified in the previous list. This
enables monitoring tools that rely on the old names to continue working until they can be updated to use
the new names.

Set the terminology_use_previous system variable with session scope to support individual users,
or with global scope to be the default for all new sessions. When global scope is used, the slow query
log contains the old versions of the names.

The affected instrumentation names are given in the following list. The terminology_use_previous
system variable only affects these items. It does not affect the new aliases for system variables, status
variables, and command-line options that were also introduced in MySQL 8.0.26, and these can still be
used when it is set.

• Instrumented locks (mutexes), visible in the mutex_instances and events_waits_* Performance
Schema tables with the prefix wait/synch/mutex/

• Read/write locks, visible in the rwlock_instances and events_waits_* Performance Schema
tables with the prefix wait/synch/rwlock/

• Instrumented condition variables, visible in the cond_instances and events_waits_*
Performance Schema tables with the prefix wait/synch/cond/

• Instrumented memory allocations, visible in the memory_summary_* Performance Schema tables
with the prefix memory/sql/

• Thread names, visible in the threads Performance Schema table with the prefix thread/sql/

• Thread stages, visible in the events_stages_* Performance Schema tables with the prefix stage/
sql/, and without the prefix in the threads and processlist Performance Schema tables, the
output from the SHOW PROCESSLIST statement, the Information Schema processlist table, and
the slow query log

135

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

• Thread commands, visible in the events_statements_history* and
events_statements_summary_*_by_event_name Performance Schema tables with the prefix
statement/com/, and without the prefix in the threads and processlist Performance Schema
tables, the output from the SHOW PROCESSLIST statement, the Information Schema processlist
table, and the output from the SHOW REPLICA STATUS statement

2.6.4 Binary Logging Options and Variables

• Startup Options Used with Binary Logging

• System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect the
operation of the binary log as well as to control which statements are written to the binary log. For
additional information about the binary log, see The Binary Log. For additional information about using
MySQL server options and system variables, see Server Command Options, and Server System Variables.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System variables
used with binary logging are discussed later in this section.

• --binlog-row-event-max-size=N

Command-Line Format --binlog-row-event-max-size=#

System Variable (≥ 8.0.14) binlog_row_event_max_size

Scope (≥ 8.0.14) Global

Dynamic (≥ 8.0.14) No

SET_VAR Hint Applies (≥ 8.0.14) No

Type Integer

Default Value 8192

Minimum Value 256

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

When row-based binary logging is used, this setting is a soft limit on the maximum size of a row-based
binary log event, in bytes. Where possible, rows stored in the binary log are grouped into events with
a size not exceeding the value of this setting. If an event cannot be split, the maximum size can be
exceeded. The value must be (or else gets rounded down to) a multiple of 256. The default is 8192
bytes.

• --log-bin[=base_name]

Command-Line Format --log-bin=file_name

Type File name

Specifies the base name to use for binary log files. With binary logging enabled, the server logs all
statements that change data to the binary log, which is used for backup and replication. The binary log is
a sequence of files with a base name and numeric extension. The --log-bin option value is the base

136

https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

name for the log sequence. The server creates binary log files in sequence by adding a numeric suffix to
the base name.

If you do not supply the --log-bin option, MySQL uses binlog as the default base name for the
binary log files. For compatibility with earlier releases, if you supply the --log-bin option with no
string or with an empty string, the base name defaults to host_name-bin, using the name of the host
machine.

The default location for binary log files is the data directory. You can use the --log-bin option to
specify an alternative location, by adding a leading absolute path name to the base name to specify a
different directory. When the server reads an entry from the binary log index file, which tracks the binary
log files that have been used, it checks whether the entry contains a relative path. If it does, the relative
part of the path is replaced with the absolute path set using the --log-bin option. An absolute path
recorded in the binary log index file remains unchanged; in such a case, the index file must be edited
manually to enable a new path or paths to be used. The binary log file base name and any specified path
are available as the log_bin_basename system variable.

In earlier MySQL versions, binary logging was disabled by default, and was enabled if you specified the
--log-bin option. From MySQL 8.0, binary logging is enabled by default, whether or not you specify
the --log-bin option. The exception is if you use mysqld to initialize the data directory manually
by invoking it with the --initialize or --initialize-insecure option, when binary logging is
disabled by default. It is possible to enable binary logging in this case by specifying the --log-bin
option. When binary logging is enabled, the log_bin system variable, which shows the status of binary
logging on the server, is set to ON.

To disable binary logging, you can specify the --skip-log-bin or --disable-log-bin option at
startup. If either of these options is specified and --log-bin is also specified, the option specified later
takes precedence. When binary logging is disabled, the log_bin system variable is set to OFF.

When GTIDs are in use on the server, if you disable binary logging when restarting the server after an
abnormal shutdown, some GTIDs are likely to be lost, causing replication to fail. In a normal shutdown,
the set of GTIDs from the current binary log file is saved in the mysql.gtid_executed table. Following
an abnormal shutdown where this did not happen, during recovery the GTIDs are added to the table
from the binary log file, provided that binary logging is still enabled. If binary logging is disabled for the
server restart, the server cannot access the binary log file to recover the GTIDs, so replication cannot be
started. Binary logging can be disabled safely after a normal shutdown.

The --log-slave-updates and --slave-preserve-commit-order options require binary
logging. If you disable binary logging, either omit these options, or specify --log-slave-
updates=OFF and --skip-slave-preserve-commit-order. MySQL disables these options by
default when --skip-log-bin or --disable-log-bin is specified. If you specify --log-slave-
updates or --slave-preserve-commit-order together with --skip-log-bin or --disable-
log-bin, a warning or error message is issued.

In MySQL 5.7, a server ID had to be specified when binary logging was enabled, or the server would
not start. In MySQL 8.0, the server_id system variable is set to 1 by default. The server can now
be started with this default server ID when binary logging is enabled, but an informational message is
issued if you do not specify a server ID explicitly by setting the server_id system variable. For servers
that are used in a replication topology, you must specify a unique nonzero server ID for each server.

For information on the format and management of the binary log, see The Binary Log.

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

137

https://dev.mysql.com/doc/refman/8.0/en/binary-log.html

Binary Logging Options and Variables

System Variable log_bin_index

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

The name for the binary log index file, which contains the names of the binary log files. By default, it has
the same location and base name as the value specified for the binary log files using the --log-bin
option, plus the extension .index. If you do not specify --log-bin, the default binary log index file
name is binlog.index. If you specify --log-bin option with no string or an empty string, the default
binary log index file name is host_name-bin.index, using the name of the host machine.

For information on the format and management of the binary log, see The Binary Log.

Statement selection options. The options in the following list affect which statements are written to the
binary log, and thus sent by a replication source server to its replicas. There are also options for replicas
that control which statements received from the source should be executed or ignored. For details, see
Section 2.6.3, “Replica Server Options and Variables”.

• --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Type String

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in
use, in the same way that the effects of --replicate-do-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-do-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Only those statements are written to the binary log where the default
database (that is, the one selected by USE) is db_name. To specify more than one database, use this
option multiple times, once for each database; however, doing so does not cause cross-database
statements such as UPDATE some_db.some_table SET foo='bar' to be logged while a different
database (or no database) is selected.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, the list is treated as the name of
a single database if you supply a comma-separated list.

An example of what does not work as you might expect when using statement-based logging: If the
server is started with --binlog-do-db=sales and you issue the following statements, the UPDATE
statement is not logged:

USE prices;
UPDATE sales.january SET amount=amount+1000;

138

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Binary Logging Options and Variables

The main reason for this “just check the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though it
was not specified when setting the option. If the server is started with --binlog-do-db=sales, the
following UPDATE statement is logged even though prices was not included when setting --binlog-
do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is logged.

Row-based logging. Logging is restricted to database db_name. Only changes to tables belonging
to db_name are logged; the default database has no effect on this. Suppose that the server is started
with --binlog-do-db=sales and row-based logging is in effect, and then the following statements
are executed:

USE prices;
UPDATE sales.february SET amount=amount+100;

The changes to the february table in the sales database are logged in accordance with the UPDATE
statement; this occurs whether or not the USE statement was issued. However, when using the row-
based logging format and --binlog-do-db=sales, changes made by the following UPDATE are not
logged:

USE prices;
UPDATE prices.march SET amount=amount-25;

Even if the USE prices statement were changed to USE sales, the UPDATE statement's effects would
still not be written to the binary log.

Another important difference in --binlog-do-db handling for statement-based logging as opposed to
the row-based logging occurs with regard to statements that refer to multiple databases. Suppose that
the server is started with --binlog-do-db=db1, and the following statements are executed:

USE db1;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

If you are using statement-based logging, the updates to both tables are written to the binary log.
However, when using the row-based format, only the changes to table1 are logged; table2 is in a
different database, so it is not changed by the UPDATE. Now suppose that, instead of the USE db1
statement, a USE db4 statement had been used:

USE db4;
UPDATE db1.table1, db2.table2 SET db1.table1.col1 = 10, db2.table2.col2 = 20;

In this case, the UPDATE statement is not written to the binary log when using statement-based logging.
However, when using row-based logging, the change to table1 is logged, but not that to table2—in
other words, only changes to tables in the database named by --binlog-do-db are logged, and the
choice of default database has no effect on this behavior.

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

139

https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Binary Logging Options and Variables

Type String

This option affects binary logging in a manner similar to the way that --replicate-ignore-db affects
replication.

The effects of this option depend on whether the statement-based or row-based logging format is in use,
in the same way that the effects of --replicate-ignore-db depend on whether statement-based or
row-based replication is in use. You should keep in mind that the format used to log a given statement
may not necessarily be the same as that indicated by the value of binlog_format. For example, DDL
statements such as CREATE TABLE and ALTER TABLE are always logged as statements, without
regard to the logging format in effect, so the following statement-based rules for --binlog-ignore-db
always apply in determining whether or not the statement is logged.

Statement-based logging. Tells the server to not log any statement where the default database (that
is, the one selected by USE) is db_name.

When there is no default database, no --binlog-ignore-db options are applied, and such
statements are always logged. (Bug #11829838, Bug #60188)

Row-based format. Tells the server not to log updates to any tables in the database db_name. The
current database has no effect.

When using statement-based logging, the following example does not work as you might expect.
Suppose that the server is started with --binlog-ignore-db=sales and you issue the following
statements:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The UPDATE statement is logged in such a case because --binlog-ignore-db applies only to the
default database (determined by the USE statement). Because the sales database was specified
explicitly in the statement, the statement has not been filtered. However, when using row-based logging,
the UPDATE statement's effects are not written to the binary log, which means that no changes to the
sales.january table are logged; in this instance, --binlog-ignore-db=sales causes all changes
made to tables in the source's copy of the sales database to be ignored for purposes of binary logging.

To specify more than one database to ignore, use this option multiple times, once for each database.
Because database names can contain commas, the list is treated as the name of a single database if
you supply a comma-separated list.

You should not use this option if you are using cross-database updates and you do not want these
updates to be logged.

Checksum options. MySQL supports reading and writing of binary log checksums. These are enabled
using the two options listed here:

• --binlog-checksum={NONE|CRC32}

Command-Line Format --binlog-checksum=type

Type String

Default Value CRC32

Valid Values NONE

CRC32

140

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Binary Logging Options and Variables

Enabling this option causes the source to write checksums for events written to the binary log. Set to
NONE to disable, or the name of the algorithm to be used for generating checksums; currently, only
CRC32 checksums are supported, and CRC32 is the default. You cannot change the setting for this
option within a transaction.

To control reading of checksums by the replica (from the relay log), use the --slave-sql-verify-
checksum option.

Testing and debugging options. The following binary log options are used in replication testing and
debugging. They are not intended for use in normal operations.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type Integer

Default Value 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail[={OFF|
ON}]

Type Boolean

Default Value OFF

This option is used internally by the MySQL test suite for replication testing and debugging.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary
logging are listed earlier in this section.

• binlog_cache_size

Command-Line Format --binlog-cache-size=#

System Variable binlog_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

141

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size

Binary Logging Options and Variables

The size of the memory buffer to hold changes to the binary log during a transaction.

When binary logging is enabled on the server (with the log_bin system variable set to ON), a binary
log cache is allocated for each client if the server supports any transactional storage engines. If the data
for the transaction exceeds the space in the memory buffer, the excess data is stored in a temporary
file. When binary log encryption is active on the server, the memory buffer is not encrypted, but (from
MySQL 8.0.17) any temporary file used to hold the binary log cache is encrypted. After each transaction
is committed, the binary log cache is reset by clearing the memory buffer and truncating the temporary
file if used.

If you often use large transactions, you can increase this cache size to get better performance
by reducing or eliminating the need to write to temporary files. The Binlog_cache_use and
Binlog_cache_disk_use status variables can be useful for tuning the size of this variable. See The
Binary Log.

binlog_cache_size sets the size for the transaction cache only; the size of the statement cache is
governed by the binlog_stmt_cache_size system variable.

• binlog_checksum

Command-Line Format --binlog-checksum=type

System Variable binlog_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value CRC32

Valid Values NONE

CRC32

When enabled, this variable causes the source to write a checksum for each event in the binary log.
binlog_checksum supports the values NONE (which disables checksums) and CRC32. The default
is CRC32. When binlog_checksum is disabled (value NONE), the server verifies that it is writing only
complete events to the binary log by writing and checking the event length (rather than a checksum) for
each event.

Setting this variable on the source to a value unrecognized by the replica causes the replica to set its
own binlog_checksum value to NONE, and to stop replication with an error. If backward compatibility
with older replicas is a concern, you may want to set the value explicitly to NONE.

Up to and including MySQL 8.0.20, Group Replication cannot make use of checksums and does not
support their presence in the binary log, so you must set binlog_checksum=NONE when configuring
a server instance to become a group member. From MySQL 8.0.21, Group Replication supports
checksums, so group members may use the default setting.

Changing the value of binlog_checksum causes the binary log to be rotated, because checksums
must be written for an entire binary log file, and never for only part of one. You cannot change the value
of binlog_checksum within a transaction.

When binary log transaction compression is enabled using the binlog_transaction_compression
system variable, checksums are not written for individual events in a compressed transaction

142

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_cache_use
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_cache_disk_use
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

payload. Instead a checksum is written for the GTID event, and a checksum for the compressed
Transaction_payload_event.

• binlog_direct_non_transactional_updates

Command-Line Format --binlog-direct-non-transactional-
updates[={OFF|ON}]

System Variable binlog_direct_non_transactional_updates

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Due to concurrency issues, a replica can become inconsistent when a transaction contains updates
to both transactional and nontransactional tables. MySQL tries to preserve causality among these
statements by writing nontransactional statements to the transaction cache, which is flushed upon
commit. However, problems arise when modifications done to nontransactional tables on behalf of a
transaction become immediately visible to other connections because these changes may not be written
immediately into the binary log.

The binlog_direct_non_transactional_updates variable offers one possible workaround to this
issue. By default, this variable is disabled. Enabling binlog_direct_non_transactional_updates
causes updates to nontransactional tables to be written directly to the binary log, rather than to the
transaction cache.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation. The
session user must have privileges sufficient to set restricted session variables. See System Variable
Privileges.

binlog_direct_non_transactional_updates works only for statements that are replicated using
the statement-based binary logging format; that is, it works only when the value of binlog_format
is STATEMENT, or when binlog_format is MIXED and a given statement is being replicated using
the statement-based format. This variable has no effect when the binary log format is ROW, or when
binlog_format is set to MIXED and a given statement is replicated using the row-based format.

Important

Before enabling this variable, you must make certain that there are no
dependencies between transactional and nontransactional tables; an example
of such a dependency would be the statement INSERT INTO myisam_table
SELECT * FROM innodb_table. Otherwise, such statements are likely to
cause the replica to diverge from the source.

This variable has no effect when the binary log format is ROW or MIXED.

• binlog_encryption

Command-Line Format --binlog-encryption[={OFF|ON}]

Introduced 8.0.14

System Variable binlog_encryption

Scope Global

143

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html

Binary Logging Options and Variables

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables encryption for binary log files and relay log files on this server. OFF is the default. ON sets
encryption on for binary log files and relay log files. Binary logging does not need to be enabled on the
server to enable encryption, so you can encrypt the relay log files on a replica that has no binary log.
To use encryption, a keyring plugin must be installed and configured to supply MySQL Server's keyring
service. For instructions to do this, see The MySQL Keyring. Any supported keyring plugin can be used
to store binary log encryption keys.

When you first start the server with binary log encryption enabled, a new binary log encryption key is
generated before the binary log and relay logs are initialized. This key is used to encrypt a file password
for each binary log file (if the server has binary logging enabled) and relay log file (if the server has
replication channels), and further keys generated from the file passwords are used to encrypt the data in
the files. Relay log files are encrypted for all channels, including Group Replication applier channels and
new channels that are created after encryption is activated. The binary log index file and relay log index
file are never encrypted.

If you activate encryption while the server is running, a new binary log encryption key is generated at that
time. The exception is if encryption was active previously on the server and was then disabled, in which
case the binary log encryption key that was in use before is used again. The binary log file and relay log
files are rotated immediately, and file passwords for the new files and all subsequent binary log files and
relay log files are encrypted using this binary log encryption key. Existing binary log files and relay log
files still present on the server are not automatically encrypted, but you can purge them if they are no
longer needed.

If you deactivate encryption by changing the binlog_encryption system variable to OFF, the
binary log file and relay log files are rotated immediately and all subsequent logging is unencrypted.
Previously encrypted files are not automatically decrypted, but the server is still able to read them. The
BINLOG_ENCRYPTION_ADMIN privilege (or the deprecated SUPER privilege) is required to activate or
deactivate encryption while the server is running. Group Replication applier channels are not included
in the relay log rotation request, so unencrypted logging for these channels does not start until their logs
are rotated in normal use.

For more information on binary log file and relay log file encryption, see Encrypting Binary Log Files and
Relay Log Files.

• binlog_error_action

Command-Line Format --binlog-error-action[=value]

System Variable binlog_error_action

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ABORT_SERVER

Valid Values IGNORE_ERROR

ABORT_SERVER

144

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/keyring.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

Controls what happens when the server encounters an error such as not being able to write to, flush or
synchronize the binary log, which can cause the source's binary log to become inconsistent and replicas
to lose synchronization.

This variable defaults to ABORT_SERVER, which makes the server halt logging and shut down whenever
it encounters such an error with the binary log. On restart, recovery proceeds as in the case of an
unexpected server halt (see Section 3.2, “Handling an Unexpected Halt of a Replica”).

When binlog_error_action is set to IGNORE_ERROR, if the server encounters such an error it
continues the ongoing transaction, logs the error then halts logging, and continues performing updates.
To resume binary logging log_bin must be enabled again, which requires a server restart. This setting
provides backward compatibility with older versions of MySQL.

• binlog_expire_logs_seconds

Command-Line Format --binlog-expire-logs-seconds=#

System Variable binlog_expire_logs_seconds

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2592000

Minimum Value 0

Maximum Value 4294967295

Unit seconds

Sets the binary log expiration period in seconds. After their expiration period ends, binary log files can
be automatically removed. Possible removals happen at startup and when the binary log is flushed. Log
flushing occurs as indicated in MySQL Server Logs.

The default binary log expiration period is 2592000 seconds, which equals 30 days (30*24*60*60
seconds). The default applies if neither binlog_expire_logs_seconds nor the deprecated system
variable expire_logs_days has a value set at startup. If a non-zero value for one of the variables
binlog_expire_logs_seconds or expire_logs_days is set at startup, this value is used as the
binary log expiration period. If a non-zero value for both of those variables is set at startup, the value
for binlog_expire_logs_seconds is used as the binary log expiration period, and the value for
expire_logs_days is ignored with a warning message.

At runtime, you cannot set binlog_expire_logs_seconds or expire_logs_days
to a non-zero value if the other is currently set to a non-zero value. Because the
default value for binlog_expire_logs_seconds is non-zero, you must explicitly set
binlog_expire_logs_seconds to zero before you can set or change the value of
expire_logs_days.

Beginning with MySQL 8.0.29, automatic purging of the binary log can be disabled by setting the
binlog_expire_logs_auto_purge system variable to OFF. This takes precedence over any setting
for binlog_expire_logs_seconds.

In MySQL 8.0.28 and earlier, to disable automatic purging of the binary log, specify a value of 0 explicitly
for binlog_expire_logs_seconds, and do not specify a value for expire_logs_days. For
compatibility with earlier releases, automatic purging is also disabled if you specify a value of 0 explicitly

145

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-logs.html

Binary Logging Options and Variables

for expire_logs_days and do not specify a value for binlog_expire_logs_seconds. In that case,
the default for binlog_expire_logs_seconds is not applied.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See PURGE BINARY
LOGS Statement.

• binlog_expire_logs_auto_purge

Command-Line Format --binlog-expire-logs-auto-purge={ON|
OFF}

Introduced 8.0.29

System Variable binlog_expire_logs_auto_purge

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Enables or disables automatic purging of binary log files. Setting this variable to ON (the default) enables
automatic purging; setting it to OFF disables automatic purging. The interval to wait before purging is
controlled by binlog_expire_logs_seconds and expire_logs_days.

Note

Even if binlog_expire_logs_auto_purge is ON, setting both
binlog_expire_logs_seconds and expire_logs_days to 0 stops
automatic purging from taking place.

This variable has no effect on PURGE BINARY LOGS.

• binlog_format

Command-Line Format --binlog-format=format

Deprecated 8.0.34

System Variable binlog_format

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value ROW

Valid Values MIXED

STATEMENT

ROW

This system variable sets the binary logging format, and can be any one of STATEMENT, ROW, or MIXED.
(See Section 5.1, “Replication Formats”.) The setting takes effect when binary logging is enabled on the

146

https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

server, which is the case when the log_bin system variable is set to ON. In MySQL 8.0, binary logging
is enabled by default, and by default uses the row-based format.

Note

binlog_format is deprecated as of MySQL 8.0.34, and is subject to removal
in a future version of MySQL. This implies that support for logging formats other
than row-based is also subject to removal in a future release. Thus, only row-
based logging should be employed for any new MySQL Replication setups.

binlog_format can be set at startup or at runtime, except that under some conditions, changing this
variable at runtime is not possible or causes replication to fail, as described later.

The default is ROW. Exception: In NDB Cluster, the default is MIXED; statement-based replication is not
supported for NDB Cluster.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See System Variable Privileges.

The rules governing when changes to this variable take effect and how long the effect lasts are the
same as for other MySQL server system variables. For more information, see SET Syntax for Variable
Assignment.

When MIXED is specified, statement-based replication is used, except for cases where only row-based
replication is guaranteed to lead to proper results. For example, this happens when statements contain
loadable functions or the UUID() function.

For details of how stored programs (stored procedures and functions, triggers, and events) are handled
when each binary logging format is set, see Stored Program Binary Logging.

There are exceptions when you cannot switch the replication format at runtime:

• The replication format cannot be changed from within a stored function or a trigger.

• If a session has open temporary tables, the replication format cannot be changed for the session (SET
@@SESSION.binlog_format).

• If any replication channel has open temporary tables, the replication format cannot be changed
globally (SET @@GLOBAL.binlog_format or SET @@PERSIST.binlog_format).

• If any replication channel applier thread is currently running, the replication format cannot be changed
globally (SET @@GLOBAL.binlog_format or SET @@PERSIST.binlog_format).

Trying to switch the replication format in any of these cases (or attempting to set the
current replication format) results in an error. You can, however, use PERSIST_ONLY (SET
@@PERSIST_ONLY.binlog_format) to change the replication format at any time, because this action
does not modify the runtime global system variable value, and takes effect only after a server restart.

Switching the replication format at runtime is not recommended when any temporary tables exist,
because temporary tables are logged only when using statement-based replication, whereas with row-
based replication and mixed replication, they are not logged.

Changing the logging format on a replication source server does not cause a replica to change its
logging format to match. Switching the replication format while replication is ongoing can cause issues
if a replica has binary logging enabled, and the change results in the replica using STATEMENT format
logging while the source is using ROW or MIXED format logging. A replica is not able to convert binary

147

https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html

Binary Logging Options and Variables

log entries received in ROW logging format to STATEMENT format for use in its own binary log, so this
situation can cause replication to fail. For more information, see Setting The Binary Log Format.

The binary log format affects the behavior of the following server options:

• --replicate-do-db

• --replicate-ignore-db

• --binlog-do-db

• --binlog-ignore-db

These effects are discussed in detail in the descriptions of the individual options.

• binlog_group_commit_sync_delay

Command-Line Format --binlog-group-commit-sync-delay=#

System Variable binlog_group_commit_sync_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1000000

Unit microseconds

Controls how many microseconds the binary log commit waits before synchronizing the binary log file
to disk. By default binlog_group_commit_sync_delay is set to 0, meaning that there is no delay.
Setting binlog_group_commit_sync_delay to a microsecond delay enables more transactions to
be synchronized together to disk at once, reducing the overall time to commit a group of transactions
because the larger groups require fewer time units per group.

When sync_binlog=0 or sync_binlog=1 is set, the delay specified by
binlog_group_commit_sync_delay is applied for every binary log commit group before
synchronization (or in the case of sync_binlog=0, before proceeding). When sync_binlog is set to a
value n greater than 1, the delay is applied after every n binary log commit groups.

Setting binlog_group_commit_sync_delay can increase the number of parallel committing
transactions on any server that has (or might have after a failover) a replica, and therefore
can increase parallel execution on the replicas. To benefit from this effect, the replica
servers must have replica_parallel_type=LOGICAL_CLOCK (from MySQL 8.0.26)
or slave_parallel_type=LOGICAL_CLOCK set, and the effect is more significant when
binlog_transaction_dependency_tracking=COMMIT_ORDER is also set. It is important to take

148

https://dev.mysql.com/doc/refman/8.0/en/binary-log-setting.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

into account both the source's throughput and the replicas' throughput when you are tuning the setting
for binlog_group_commit_sync_delay.

Setting binlog_group_commit_sync_delay can also reduce the number of fsync() calls to the
binary log on any server (source or replica) that has a binary log.

Note that setting binlog_group_commit_sync_delay increases the latency of transactions on the
server, which might affect client applications. Also, on highly concurrent workloads, it is possible for the
delay to increase contention and therefore reduce throughput. Typically, the benefits of setting a delay
outweigh the drawbacks, but tuning should always be carried out to determine the optimal setting.

• binlog_group_commit_sync_no_delay_count

Command-Line Format --binlog-group-commit-sync-no-delay-
count=#

System Variable binlog_group_commit_sync_no_delay_count

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100000

The maximum number of transactions to wait for before aborting the current delay as specified by
binlog_group_commit_sync_delay. If binlog_group_commit_sync_delay is set to 0, then this
option has no effect.

• binlog_max_flush_queue_time

Command-Line Format --binlog-max-flush-queue-time=#

Deprecated Yes

System Variable binlog_max_flush_queue_time

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 100000

Unit microseconds

binlog_max_flush_queue_time is deprecated, and is marked for eventual removal in a future
MySQL release. Formerly, this system variable controlled the time in microseconds to continue reading
transactions from the flush queue before proceeding with group commit. It no longer has any effect.

149

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

• binlog_order_commits

Command-Line Format --binlog-order-commits[={OFF|ON}]

System Variable binlog_order_commits

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

When this variable is enabled on a replication source server (which is the default), transaction commit
instructions issued to storage engines are serialized on a single thread, so that transactions are always
committed in the same order as they are written to the binary log. Disabling this variable permits
transaction commit instructions to be issued using multiple threads. Used in combination with binary log
group commit, this prevents the commit rate of a single transaction being a bottleneck to throughput, and
might therefore produce a performance improvement.

Transactions are written to the binary log at the point when all the storage engines involved have
confirmed that the transaction is prepared to commit. The binary log group commit logic then commits
a group of transactions after their binary log write has taken place. When binlog_order_commits is
disabled, because multiple threads are used for this process, transactions in a commit group might be
committed in a different order from their order in the binary log. (Transactions from a single client always
commit in chronological order.) In many cases this does not matter, as operations carried out in separate
transactions should produce consistent results, and if that is not the case, a single transaction ought to
be used instead.

If you want to ensure that the transaction history on the source and on a multithreaded replica remains
identical, set slave_preserve_commit_order=1 on the replica.

• binlog_rotate_encryption_master_key_at_startup

Command-Line Format --binlog-rotate-encryption-master-
key-at-startup[={OFF|ON}]

Introduced 8.0.14

System Variable binlog_rotate_encryption_master_key_at_startup

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Specifies whether or not the binary log master key is rotated at server startup. The binary log master
key is the binary log encryption key that is used to encrypt file passwords for the binary log files and
relay log files on the server. When a server is started for the first time with binary log encryption enabled
(binlog_encryption=ON), a new binary log encryption key is generated and used as the binary
log master key. If the binlog_rotate_encryption_master_key_at_startup system variable
is also set to ON, whenever the server is restarted, a further binary log encryption key is generated
and used as the binary log master key for all subsequent binary log files and relay log files. If the
binlog_rotate_encryption_master_key_at_startup system variable is set to OFF, which

150

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

is the default, the existing binary log master key is used again after the server restarts. For more
information on binary log encryption keys and the binary log master key, see Encrypting Binary Log Files
and Relay Log Files.

• binlog_row_event_max_size

Command-Line Format --binlog-row-event-max-size=#

System Variable (≥ 8.0.14) binlog_row_event_max_size

Scope (≥ 8.0.14) Global

Dynamic (≥ 8.0.14) No

SET_VAR Hint Applies (≥ 8.0.14) No

Type Integer

Default Value 8192

Minimum Value 256

Maximum Value (64-bit platforms) 18446744073709551615

Maximum Value (32-bit platforms) 4294967295

Unit bytes

When row-based binary logging is used, this setting is a soft limit on the maximum size of a row-based
binary log event, in bytes. Where possible, rows stored in the binary log are grouped into events with
a size not exceeding the value of this setting. If an event cannot be split, the maximum size can be
exceeded. The default is 8192 bytes.

This global system variable is read-only and can be set only at server startup. Its value can therefore
only be modified by using the PERSIST_ONLY keyword or the @@persist_only qualifier with the SET
statement.

• binlog_row_image

Command-Line Format --binlog-row-image=image_type

System Variable binlog_row_image

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value full

Valid Values full (Log all columns)

minimal (Log only changed columns, and
columns needed to identify rows)

151

https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

noblob (Log all columns, except for unneeded
BLOB and TEXT columns)

For MySQL row-based replication, this variable determines how row images are written to the binary log.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See System Variable Privileges.

In MySQL row-based replication, each row change event contains two images, a “before” image whose
columns are matched against when searching for the row to be updated, and an “after” image containing
the changes. Normally, MySQL logs full rows (that is, all columns) for both the before and after images.
However, it is not strictly necessary to include every column in both images, and we can often save disk,
memory, and network usage by logging only those columns which are actually required.

Note

When deleting a row, only the before image is logged, since there are no
changed values to propagate following the deletion. When inserting a row, only
the after image is logged, since there is no existing row to be matched. Only
when updating a row are both the before and after images required, and both
written to the binary log.

For the before image, it is necessary only that the minimum set of columns required to uniquely identify
rows is logged. If the table containing the row has a primary key, then only the primary key column or
columns are written to the binary log. Otherwise, if the table has a unique key all of whose columns are
NOT NULL, then only the columns in the unique key need be logged. (If the table has neither a primary
key nor a unique key without any NULL columns, then all columns must be used in the before image, and
logged.) In the after image, it is necessary to log only the columns which have actually changed.

You can cause the server to log full or minimal rows using the binlog_row_image system variable.
This variable actually takes one of three possible values, as shown in the following list:

• full: Log all columns in both the before image and the after image.

• minimal: Log only those columns in the before image that are required to identify the row to
be changed; log only those columns in the after image where a value was specified by the SQL
statement, or generated by auto-increment.

• noblob: Log all columns (same as full), except for BLOB and TEXT columns that are not required to
identify rows, or that have not changed.

Note

This variable is not supported by NDB Cluster; setting it has no effect on the
logging of NDB tables.

The default value is full.

When using minimal or noblob, deletes and updates are guaranteed to work correctly for a given table
if and only if the following conditions are true for both the source and destination tables:

• All columns must be present and in the same order; each column must use the same data type as its
counterpart in the other table.

152

https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Binary Logging Options and Variables

• The tables must have identical primary key definitions.

(In other words, the tables must be identical with the possible exception of indexes that are not part of
the tables' primary keys.)

If these conditions are not met, it is possible that the primary key column values in the destination table
may prove insufficient to provide a unique match for a delete or update. In this event, no warning or error
is issued; the source and replica silently diverge, thus breaking consistency.

Setting this variable has no effect when the binary logging format is STATEMENT. When
binlog_format is MIXED, the setting for binlog_row_image is applied to changes that are logged
using row-based format, but this setting has no effect on changes logged as statements.

Setting binlog_row_image on either the global or session level does not cause an implicit commit;
this means that this variable can be changed while a transaction is in progress without affecting the
transaction.

• binlog_row_metadata

Command-Line Format --binlog-row-metadata=metadata_type

System Variable binlog_row_metadata

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value MINIMAL

Valid Values FULL (All metadata is included)

MINIMAL (Limit included metadata)

Configures the amount of table metadata added to the binary log when using row-based logging. When
set to MINIMAL, the default, only metadata related to SIGNED flags, column character set and geometry
types are logged. When set to FULL complete metadata for tables is logged, such as column name,
ENUM or SET string values, PRIMARY KEY information, and so on.

The extended metadata serves the following purposes:

• Replicas use the metadata to transfer data when its table structure is different from the source's.

• External software can use the metadata to decode row events and store the data into external
databases, such as a data warehouse.

• binlog_row_value_options

Command-Line Format --binlog-row-value-options=#

System Variable binlog_row_value_options

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Set

153

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

Default Value

Valid Values PARTIAL_JSON

When set to PARTIAL_JSON, this enables use of a space-efficient binary log format for updates that
modify only a small portion of a JSON document, which causes row-based replication to write only
the modified parts of the JSON document to the after-image for the update in the binary log, rather
than writing the full document (see Partial Updates of JSON Values). This works for an UPDATE
statement which modifies a JSON column using any sequence of JSON_SET(), JSON_REPLACE(), and
JSON_REMOVE(). If the server is unable to generate a partial update, the full document is used instead.

The default value is an empty string, which disables use of the format. To unset
binlog_row_value_options and revert to writing the full JSON document, set its value to the empty
string.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See System Variable Privileges.

binlog_row_value_options=PARTIAL_JSON takes effect only when binary logging
is enabled and binlog_format is set to ROW or MIXED. Statement-based replication
always logs only the modified parts of the JSON document, regardless of any value
set for binlog_row_value_options. To maximize the amount of space saved, use
binlog_row_image=NOBLOB or binlog_row_image=MINIMAL together with this option.
binlog_row_image=FULL saves less space than either of these, since the full JSON document is
stored in the before-image, and the partial update is stored only in the after-image.

mysqlbinlog output includes partial JSON updates in the form of events encoded as base-64 strings
using BINLOG statements. If the --verbose option is specified, mysqlbinlog displays the partial
JSON updates as readable JSON using pseudo-SQL statements.

MySQL Replication generates an error if a modification cannot be applied to the JSON document on the
replica. This includes a failure to find the path. Be aware that, even with this and other safety checks, if
a JSON document on a replica has diverged from that on the source and a partial update is applied, it
remains theoretically possible to produce a valid but unexpected JSON document on the replica.

• binlog_rows_query_log_events

Command-Line Format --binlog-rows-query-log-events[={OFF|
ON}]

System Variable binlog_rows_query_log_events

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This system variable affects row-based logging only. When enabled, it causes the server to write
informational log events such as row query log events into its binary log. This information can be used

154

https://dev.mysql.com/doc/refman/8.0/en/json.html#json-partial-updates
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/json-modification-functions.html#function_json-set
https://dev.mysql.com/doc/refman/8.0/en/json-modification-functions.html#function_json-replace
https://dev.mysql.com/doc/refman/8.0/en/json-modification-functions.html#function_json-remove
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/binlog.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_verbose
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

for debugging and related purposes, such as obtaining the original query issued on the source when it
cannot be reconstructed from the row updates.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See System Variable Privileges.

These informational events are normally ignored by MySQL programs reading the binary log and so
cause no issues when replicating or restoring from backup. To view them, increase the verbosity level by
using mysqlbinlog's --verbose option twice, either as -vv or --verbose --verbose.

• binlog_stmt_cache_size

Command-Line Format --binlog-stmt-cache-size=#

System Variable binlog_stmt_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294963200

Unit bytes

Block Size 4096

The size of the memory buffer for the binary log to hold nontransactional statements issued during a
transaction.

When binary logging is enabled on the server (with the log_bin system variable set to ON), separate
binary log transaction and statement caches are allocated for each client if the server supports any
transactional storage engines. If the data for the nontransactional statements used in the transaction
exceeds the space in the memory buffer, the excess data is stored in a temporary file. When binary log
encryption is active on the server, the memory buffer is not encrypted, but (from MySQL 8.0.17) any
temporary file used to hold the binary log cache is encrypted. After each transaction is committed, the
binary log statement cache is reset by clearing the memory buffer and truncating the temporary file if
used.

If you often use large nontransactional statements during transactions, you can increase this cache
size to get better performance by reducing or eliminating the need to write to temporary files. The
Binlog_stmt_cache_use and Binlog_stmt_cache_disk_use status variables can be useful for
tuning the size of this variable. See The Binary Log.

The binlog_cache_size system variable sets the size for the transaction cache.

• binlog_transaction_compression

Command-Line Format --binlog-transaction-
compression[={OFF|ON}]

Introduced 8.0.20

System Variable binlog_transaction_compression
155

https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_verbose
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_stmt_cache_use
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Binlog_stmt_cache_disk_use
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html

Binary Logging Options and Variables

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Enables compression for transactions that are written to binary log files on this server. OFF is the default.
Use the binlog_transaction_compression_level_zstd system variable to set the level for the
zstd algorithm that is used for compression.

When binary log transaction compression is enabled, transaction payloads are compressed and
then written to the binary log file as a single event (Transaction_payload_event). Compressed
transaction payloads remain in a compressed state while they are sent in the replication stream to
replicas, other Group Replication group members, or clients such as mysqlbinlog, and are written to
the relay log still in their compressed state. Binary log transaction compression therefore saves storage
space both on the originator of the transaction and on the recipient (and for their backups), and saves
network bandwidth when the transactions are sent between server instances.

For binlog_transaction_compression=ON to have a direct effect, binary logging must be enabled
on the server. When a MySQL server instance has no binary log, if it is at a release from MySQL
8.0.20, it can receive, handle, and display compressed transaction payloads regardless of its value
for binlog_transaction_compression. Compressed transaction payloads received by such
server instances are written in their compressed state to the relay log, so they benefit indirectly from
compression carried out by other servers in the replication topology.

This system variable cannot be changed within the context of a transaction. Setting the session value
of this system variable is a restricted operation. The session user must have privileges sufficient to set
restricted session variables. See System Variable Privileges.

For more information on binary log transaction compression, including details of what events are and
are not compressed, and changes in behavior when transaction compression is in use, see Binary Log
Transaction Compression.

Prior to NDB 8.0.31: Setting this variable when the server is running has no effect on logging of
transactions on NDB tables. Binary log transaction compression can be enabled for NDB tables by starting
MySQL with --binlog-transaction-compression=ON on the command line or in an option file but
cannot be enabled or disabled while the server is running.

In NDB 8.0.31 and later: You can use the ndb_log_transaction_compression system variable to
enable this feature for NDB. In addition, setting --binlog-transaction-compression=ON on the
command line or in a my.cnf file causes ndb_log_transaction_compression to be enabled on
server startup. See the description of the variable for further information.

• binlog_transaction_compression_level_zstd

Command-Line Format --binlog-transaction-compression-
level-zstd=#

Introduced 8.0.20

System Variable binlog_transaction_compression_level_zstd

Scope Global, Session

Dynamic Yes

156

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression

Binary Logging Options and Variables

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 1

Maximum Value 22

Sets the compression level for binary log transaction compression on this server, which is enabled by the
binlog_transaction_compression system variable. The value is an integer that determines the
compression effort, from 1 (the lowest effort) to 22 (the highest effort). If you do not specify this system
variable, the compression level is set to 3.

As the compression level increases, the data compression ratio increases, which reduces the storage
space and network bandwidth required for the transaction payload. However, the effort required for
data compression also increases, taking time and CPU and memory resources on the originating
server. Increases in the compression effort do not have a linear relationship to increases in the data
compression ratio.

This system variable cannot be changed within the context of a transaction. Setting the session value
of this system variable is a restricted operation. The session user must have privileges sufficient to set
restricted session variables. See System Variable Privileges.

This variable has no effect on logging of transactions on NDB tables; in NDB Cluster 8.0.31 and later, you
can use ndb_log_transaction_compression_level_zstd instead.

• binlog_transaction_dependency_tracking

Command-Line Format --binlog-transaction-dependency-
tracking=value

Deprecated 8.0.35

System Variable binlog_transaction_dependency_tracking

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value COMMIT_ORDER

Valid Values COMMIT_ORDER

WRITESET

WRITESET_SESSION

For a replication source server that has multithreaded replicas (replicas on which
replica_parallel_workers or slave_parallel_workers is is greater than 0),
binlog_transaction_dependency_tracking specifies how the source mysqld generates the

157

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression_level_zstd
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

dependency information that it writes in the binary log to help replicas determine which transactions can
be executed in parallel.

The dependency information written by the replication source is represented using logical timestamps.
(Thus, setting this variable requires that replica_parallel_type or slave_parallel_type
already be set to LOGICAL_CLOCK.) There are two logical timestamps, listed here, for each transaction:

• sequence_number: This is 1 for the first transaction in a given binary log, 2 for the second
transaction, and so on. The numbering restarts with 1 in each binary log file.

• last_committed: This refers to the sequence_number of the most recently committed transaction
found to conflict with the current transaction. This value is always less than sequence_number.

binlog_transaction_dependency_tracking controls the choice of scheme used to compute
these logical timestamps. Available choices are listed here:

• COMMIT_ORDER: Two transactions are considered to be independent if the commit-time window of the
first transaction overlaps with the commit-time window of the second transaction. This the default.

The commit-time window begins immediately following the execution of the last statement of the
transaction, and ends immediately after the storage engine commit ends. Since transactions hold all
row locks between these two points in time, we know that they cannot update the same rows.

• WRITESET: Logical timestamps are computed based on COMMIT_ORDER in combination with a
second scheme based on write sets for the transaction. Each row in the transaction adds a set of
one or more hashes to the transaction's write set, one of each unique key in the row. (If there are no
unique, nonnullable keys, a hash of the row is used.) This includes both deleted and inserted rows; for
updated rows, both the old and the new row are also included.

Two transactions are considered conflicting if their write sets overlap—that is, if there is some number
(hash) that occurs in the write sets of both transactions. In addition, due to the way the write sets
are computed, there are periodic serialization points, such that the write set computation process
regards every transaction after a serialization point as conflicting with every transaction before
the serialization point. Serialization points affect only dependencies computed by the WRITESET
algorithm; transactions on opposite sides of the serialization point may have overlapping commit-
time windows, and so can be parallelized on replica in spite of this. Serialization points occur for DDL
statements, for transactions updating a table having a foreign key, and for transactions where the
session value of transaction_write_set_extraction is not the same as the global value. A
serialization point is also imposed if the transactions committed since the previous serialization point
have generated a total of at least binlog_transaction_dependency_history_size unique
hashes.

For multithreaded replicas to work with NDB Cluster replication (supported in NDB 8.0.33 and
later), this variable must be set to WRITESET on the source. See NDB Cluster Replication Using the
Multithreaded Applier, for more information.

158

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-mta.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-mta.html

Binary Logging Options and Variables

• WRITESET_SESSION: Two transactions are considered dependent if either of the following statements
is true:

• The transactions are dependent according to WRITESET.

• The transactions were committed in the same user session.

In WRITESET or WRITESET_SESSION mode, the source uses COMMIT_ORDER to generate dependency
information for transactions that have empty or partial write sets, transactions that update tables without
primary or unique keys, and transactions that update parent tables in a foreign key relationship.

To set binlog_transaction_dependency_tracking to WRITESET or WRITESET_SESSION,
transaction_write_set_extraction must be set to a value other than OFF; the default
value (XXHASH64) is sufficient for this. transaction_write_set_extraction cannot be
changed whenever the value of binlog_transaction_dependency_tracking is WRITESET or
WRITESET_SESSION. Any change in the value does not take effect for replicated transactions until after
the replica has been stopped and restarted with STOP REPLICA and START REPLICA.

The number of row hashes to be kept and checked for the latest transaction to have changed a given
row is determined by the value of binlog_transaction_dependency_history_size.

Group Replication carries out its own parallelization after certification when applying transactions from
the relay log, independently of any value set for binlog_transaction_dependency_tracking, but
this variable does affect how transactions are written to the binary logs on Group Replication members.
The dependency information in those logs is used to assist the process of state transfer from a donor's
binary log for distributed recovery, which takes place whenever a member joins or rejoins the group.
For that process, setting binlog_transaction_dependency_tracking to WRITESET can improve
performance for a group member, depending on the group's workload.

• binlog_transaction_dependency_history_size

Command-Line Format --binlog-transaction-dependency-
history-size=#

System Variable binlog_transaction_dependency_history_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 25000

Minimum Value 1

Maximum Value 1000000

Sets an upper limit on the number of row hashes which are kept in memory and used for looking up the
transaction that last modified a given row. Once this number of hashes has been reached, the history is
purged.

• expire_logs_days

Command-Line Format --expire-logs-days=#

Deprecated Yes

159

https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

System Variable expire_logs_days

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 99

Unit days

Specifies the number of days before automatic removal of binary log files. expire_logs_days
is deprecated, and you should expect it to be removed in a future release. Instead, use
binlog_expire_logs_seconds, which sets the binary log expiration period in seconds. If you do not
set a value for either system variable, the default expiration period is 30 days. Possible removals happen
at startup and when the binary log is flushed. Log flushing occurs as indicated in MySQL Server Logs.

Any non-zero value that you specify at startup for expire_logs_days is
ignored if binlog_expire_logs_seconds is also specified, and the value of
binlog_expire_logs_seconds is used instead as the binary log expiration period. A warning
message is issued in this situation. A non-zero startup value for expire_logs_days is only applied as
the binary log expiration period if binlog_expire_logs_seconds is not specified or is specified as 0.

At runtime, you cannot set binlog_expire_logs_seconds or expire_logs_days
to a non-zero value if the other is currently set to a non-zero value. Because the
default value for binlog_expire_logs_seconds is non-zero, you must explicitly set
binlog_expire_logs_seconds to zero before you can set or change the value of
expire_logs_days.

To disable automatic purging of the binary log, specify a value of 0 explicitly for
binlog_expire_logs_seconds, and do not specify a value for expire_logs_days. For
compatibility with earlier releases, automatic purging is also disabled if you specify a value of 0 explicitly
for expire_logs_days and do not specify a value for binlog_expire_logs_seconds. In that case,
the default for binlog_expire_logs_seconds is not applied.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See PURGE BINARY
LOGS Statement.

• log_bin

System Variable log_bin

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Shows the status of binary logging on the server, either enabled (ON) or disabled (OFF). With binary
logging enabled, the server logs all statements that change data to the binary log, which is used for

160

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

backup and replication. ON means that the binary log is available, OFF means that it is not in use. The --
log-bin option can be used to specify a base name and location for the binary log.

In earlier MySQL versions, binary logging was disabled by default, and was enabled if you specified
the --log-bin option. From MySQL 8.0, binary logging is enabled by default, with the log_bin
system variable set to ON, whether or not you specify the --log-bin option. The exception is if you
use mysqld to initialize the data directory manually by invoking it with the --initialize or --
initialize-insecure option, when binary logging is disabled by default. It is possible to enable
binary logging in this case by specifying the --log-bin option.

If the --skip-log-bin or --disable-log-bin option is specified at startup, binary logging is
disabled, with the log_bin system variable set to OFF. If either of these options is specified and --
log-bin is also specified, the option specified later takes precedence.

For information on the format and management of the binary log, see The Binary Log.

• log_bin_basename

System Variable log_bin_basename

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Holds the base name and path for the binary log files, which can be set with the --log-bin server
option. The maximum variable length is 256. In MySQL 8.0, if the --log-bin option is not supplied, the
default base name is binlog. For compatibility with MySQL 5.7, if the --log-bin option is supplied
with no string or with an empty string, the default base name is host_name-bin, using the name of the
host machine. The default location is the data directory.

• log_bin_index

Command-Line Format --log-bin-index=file_name

System Variable log_bin_index

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type File name

Holds the base name and path for the binary log index file, which can be set with the --log-bin-
index server option. The maximum variable length is 256.

• log_bin_trust_function_creators

Command-Line Format --log-bin-trust-function-
creators[={OFF|ON}]

Deprecated 8.0.34

System Variable log_bin_trust_function_creators

Scope Global

Dynamic Yes

161

https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This variable applies when binary logging is enabled. It controls whether stored function creators can
be trusted not to create stored functions that may cause unsafe events to be written to the binary log.
If set to 0 (the default), users are not permitted to create or alter stored functions unless they have the
SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A setting of 0 also
enforces the restriction that a function must be declared with the DETERMINISTIC characteristic, or
with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1, MySQL does not enforce
these restrictions on stored function creation. This variable also applies to trigger creation. See Stored
Program Binary Logging.

• log_bin_use_v1_row_events

Command-Line Format --log-bin-use-v1-row-events[={OFF|
ON}]

Deprecated 8.0.18

System Variable log_bin_use_v1_row_events

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This read-only system variable is deprecated. Setting the system variable to ON at server startup enabled
row-based replication with replicas running MySQL Server 5.5 and earlier by writing the binary log using
Version 1 binary log row events, instead of Version 2 binary log row events which are the default as of
MySQL 5.6.

• log_replica_updates

Command-Line Format --log-replica-updates[={OFF|ON}]

Introduced 8.0.26

System Variable log_replica_updates

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

162

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

Default Value ON

From MySQL 8.0.26, use log_replica_updates in place of log_slave_updates, which is
deprecated from that release. In releases before MySQL 8.0.26, use log_slave_updates.

log_replica_updates specifies whether updates received by a replica server from a replication
source server should be logged to the replica's own binary log.

Enabling this variable causes the replica to write the updates that are received from a source and
performed by the replication SQL thread to the replica's own binary log. Binary logging, which is
controlled by the --log-bin option and is enabled by default, must also be enabled on the replica
for updates to be logged. See Section 2.6, “Replication and Binary Logging Options and Variables”.
log_replica_updates is enabled by default, unless you specify --skip-log-bin to disable binary
logging, in which case MySQL also disables replica update logging by default. If you need to disable
replica update logging when binary logging is enabled, specify --log-replica-updates=OFF at
replica server startup.

Enabling log_replica_updates enables replication servers to be chained. For example, you might
want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C. For this to
work, B must be both a source and a replica. With binary logging enabled and log_replica_updates
enabled, which are the default settings, updates received from A are logged by B to its binary log, and
can therefore be passed on to C.

• log_slave_updates

Command-Line Format --log-slave-updates[={OFF|ON}]

Deprecated 8.0.26

System Variable log_slave_updates

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

From MySQL 8.0.26, log_slave_updates is deprecated and the alias log_replica_updates
should be used instead. In releases before MySQL 8.0.26, use log_slave_updates.

log_slave_updates specifies whether updates received by a replica server from a replication source
server should be logged to the replica's own binary log.

Enabling this variable causes the replica to write the updates that are received from a source and
performed by the replication SQL thread to the replica's own binary log. Binary logging, which is
controlled by the --log-bin option and is enabled by default, must also be enabled on the replica
for updates to be logged. See Section 2.6, “Replication and Binary Logging Options and Variables”.
log_slave_updates is enabled by default, unless you specify --skip-log-bin to disable binary
logging, in which case MySQL also disables replica update logging by default. If you need to disable

163

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

replica update logging when binary logging is enabled, specify --log-slave-updates=OFF at replica
server startup.

Enabling log_slave_updates enables replication servers to be chained. For example, you might want
to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the source for the replica B, and B serves as the source for the replica C. For this to
work, B must be both a source and a replica. With binary logging enabled and log_slave_updates
enabled, which are the default settings, updates received from A are logged by B to its binary log, and
can therefore be passed on to C.

• log_statements_unsafe_for_binlog

Command-Line Format --log-statements-unsafe-for-
binlog[={OFF|ON}]

Deprecated 8.0.34

System Variable log_statements_unsafe_for_binlog

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

If error 1592 is encountered, controls whether the generated warnings are added to the error log or not.

• master_verify_checksum

Command-Line Format --master-verify-checksum[={OFF|ON}]

Deprecated 8.0.26

System Variable master_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, master_verify_checksum is deprecated and the alias
source_verify_checksum should be used instead. In releases before MySQL 8.0.26, use
master_verify_checksum.

Enabling master_verify_checksum causes the source to verify events read from the
binary log by examining checksums, and to stop with an error in the event of a mismatch.
master_verify_checksum is disabled by default; in this case, the source uses the event length from
the binary log to verify events, so that only complete events are read from the binary log.

• max_binlog_cache_size

Command-Line Format --max-binlog-cache-size=#

164

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

System Variable max_binlog_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (64-bit platforms) 18446744073709547520

Default Value (32-bit platforms) 4294967295

Minimum Value 4096

Maximum Value (64-bit platforms) 18446744073709547520

Maximum Value (32-bit platforms) 4294967295

Unit bytes

Block Size 4096

If a transaction requires more than this many bytes, the server generates a Multi-statement
transaction required more than 'max_binlog_cache_size' bytes of storage error.
When gtid_mode is not ON, the maximum recommended value is 4GB, due to the fact that, in this case,
MySQL cannot work with binary log positions greater than 4GB; when gtid_mode is ON, this limitation
does not apply, and the server can work with binary log positions of arbitrary size.

If, because gtid_mode is not ON, or for some other reason, you need to guarantee that the binary log
does not exceed a given size maxsize, you should set this variable according to the formula shown
here:

max_binlog_cache_size <
 (((maxsize - max_binlog_size) / max_connections) - 1000) / 1.2

This calculation takes into account the following conditions:

• The server writes to the binary log as long as the size before it begins to write is less than
max_binlog_size.

• The server does not write single transactions, but rather groups of transactions. The maximum
possible number of transactions in a group is equal to max_connections.

• The server writes data that is not included in the cache. This includes a 4-byte checksum for each
event; while this adds less than 20% to the transaction size, this amount is non-negible. In addition,
the server writes a Gtid_log_event for each transaction; each of these events can add another 1
KB to what is written to the binary log.

max_binlog_cache_size sets the size for the transaction cache only; the upper limit for the statement
cache is governed by the max_binlog_stmt_cache_size system variable.

The visibility to sessions of max_binlog_cache_size matches that of the binlog_cache_size
system variable; in other words, changing its value affects only new sessions that are started after the
value is changed.

• max_binlog_size

Command-Line Format --max-binlog-size=#

System Variable max_binlog_size

165

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_connections

Binary Logging Options and Variables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1073741824

Minimum Value 4096

Maximum Value 1073741824

Unit bytes

Block Size 4096

If a write to the binary log causes the current log file size to exceed the value of this variable, the server
rotates the binary logs (closes the current file and opens the next one). The minimum value is 4096
bytes. The maximum and default value is 1GB. Encrypted binary log files have an additional 512-byte
header, which is included in max_binlog_size.

A transaction is written in one chunk to the binary log, so it is never split between several binary logs.
Therefore, if you have big transactions, you might see binary log files larger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

With GTIDs in use on the server, when max_binlog_size is reached, if the system table
mysql.gtid_executed cannot be accessed to write the GTIDs from the current binary log
file, the binary log cannot be rotated. In this situation, the server responds according to its
binlog_error_action setting. If IGNORE_ERROR is set, an error is logged on the server and binary
logging is halted, or if ABORT_SERVER is set, the server shuts down.

• max_binlog_stmt_cache_size

Command-Line Format --max-binlog-stmt-cache-size=#

System Variable max_binlog_stmt_cache_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 18446744073709547520

Minimum Value 4096

Maximum Value 18446744073709547520

Unit bytes

Block Size 4096

If nontransactional statements within a transaction require more than this many bytes of memory, the
server generates an error. The minimum value is 4096. The maximum and default values are 4GB on
32-bit platforms and 16EB (exabytes) on 64-bit platforms.

max_binlog_stmt_cache_size sets the size for the statement cache only; the upper limit for the
transaction cache is governed exclusively by the max_binlog_cache_size system variable.

• original_commit_timestamp

166

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#system-variables-block-size

Binary Logging Options and Variables

System Variable original_commit_timestamp

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Numeric

For internal use by replication. When re-executing a transaction on a replica, this is set to the time when
the transaction was committed on the original source, measured in microseconds since the epoch. This
allows the original commit timestamp to be propagated throughout a replication topology.

Setting the session value of this system variable is a restricted operation. The session user must have
either the REPLICATION_APPLIER privilege (see Replication Privilege Checks), or privileges sufficient
to set restricted session variables (see System Variable Privileges). However, note that the variable is
not intended for users to set; it is set automatically by the replication infrastructure.

• source_verify_checksum

Command-Line Format --source-verify-checksum[={OFF|ON}]

Introduced 8.0.26

System Variable source_verify_checksum

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

From MySQL 8.0.26, use source_verify_checksum in place of master_verify_checksum, which
is deprecated from that release. In releases before MySQL 8.0.26, use master_verify_checksum.

Enabling source_verify_checksum causes the source to verify events read from the
binary log by examining checksums, and to stop with an error in the event of a mismatch.
source_verify_checksum is disabled by default; in this case, the source uses the event length from
the binary log to verify events, so that only complete events are read from the binary log.

• sql_log_bin

System Variable sql_log_bin

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

167

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

Default Value ON

This variable controls whether logging to the binary log is enabled for the current session (assuming
that the binary log itself is enabled). The default value is ON. To disable or enable binary logging for the
current session, set the session sql_log_bin variable to OFF or ON.

Set this variable to OFF for a session to temporarily disable binary logging while making changes to the
source you do not want replicated to the replica.

Setting the session value of this system variable is a restricted operation. The session user must have
privileges sufficient to set restricted session variables. See System Variable Privileges.

It is not possible to set the session value of sql_log_bin within a transaction or subquery.

Setting this variable to OFF prevents GTIDs from being assigned to transactions in the binary log. If
you are using GTIDs for replication, this means that even when binary logging is later enabled again,
the GTIDs written into the log from this point do not account for any transactions that occurred in the
meantime, so in effect those transactions are lost.

• sync_binlog

Command-Line Format --sync-binlog=#

System Variable sync_binlog

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 4294967295

Controls how often the MySQL server synchronizes the binary log to disk.

• sync_binlog=0: Disables synchronization of the binary log to disk by the MySQL server. Instead,
the MySQL server relies on the operating system to flush the binary log to disk from time to time as it
does for any other file. This setting provides the best performance, but in the event of a power failure
or operating system crash, it is possible that the server has committed transactions that have not been
synchronized to the binary log.

• sync_binlog=1: Enables synchronization of the binary log to disk before transactions are
committed. This is the safest setting but can have a negative impact on performance due to
the increased number of disk writes. In the event of a power failure or operating system crash,
transactions that are missing from the binary log are only in a prepared state. This permits the
automatic recovery routine to roll back the transactions, which guarantees that no transaction is lost
from the binary log.

• sync_binlog=N, where N is a value other than 0 or 1: The binary log is synchronized to disk after
N binary log commit groups have been collected. In the event of a power failure or operating system
crash, it is possible that the server has committed transactions that have not been flushed to the

168

https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Binary Logging Options and Variables

binary log. This setting can have a negative impact on performance due to the increased number of
disk writes. A higher value improves performance, but with an increased risk of data loss.

For the greatest possible durability and consistency in a replication setup that uses InnoDB with
transactions, use these settings:

• sync_binlog=1.

• innodb_flush_log_at_trx_commit=1.

Caution

Many operating systems and some disk hardware fool the flush-to-disk operation.
They may tell mysqld that the flush has taken place, even though it has not.
In this case, the durability of transactions is not guaranteed even with the
recommended settings, and in the worst case, a power outage can corrupt
InnoDB data. Using a battery-backed disk cache in the SCSI disk controller or in
the disk itself speeds up file flushes, and makes the operation safer. You can also
try to disable the caching of disk writes in hardware caches.

• transaction_write_set_extraction

Command-Line Format --transaction-write-set-
extraction[=value]

Deprecated 8.0.26

System Variable transaction_write_set_extraction

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value XXHASH64

Valid Values OFF

MURMUR32

XXHASH64

This system variable specifies the algorithm used to hash the writes extracted during a transaction. The
default is XXHASH64. OFF means that write sets are not collected.

transaction_write_set_extraction is deprecated as of MySQL 8.0.26; expect it to be removed
in a future MySQL release.

The XXHASH64 setting is required for Group Replication, where the process of extracting the
writes from a transaction is used for conflict detection and certification on all group members (see
Group Replication Requirements). For a replication source server that has multithreaded replicas
(replicas on which replica_parallel_workers or slave_parallel_workers is set to a value
greater than 0), where binlog_transaction_dependency_tracking is set to WRITESET or
WRITESET_SESSION, transaction_write_set_extraction must not be OFF. While the current

169

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/group-replication-requirements.html

Global Transaction ID System Variables

value of binlog_transaction_dependency_tracking is WRITESET or WRITESET_SESSION, you
cannot change the value of transaction_write_set_extraction.

As of MySQL 8.0.14, setting the session value of this system variable is a restricted operation;
the session user must have privileges sufficient to set restricted session variables (see
System Variable Privileges). binlog_format must be set to ROW to change the value of
transaction_write_set_extraction. If you change the value, the new value does not take effect
on replicated transactions until after the replica has been stopped and restarted with STOP REPLICA
and START REPLICA.

2.6.5 Global Transaction ID System Variables

The MySQL Server system variables described in this section are used to monitor and control Global
Transaction Identifiers (GTIDs). For additional information, see Section 2.3, “Replication with Global
Transaction Identifiers”.

• binlog_gtid_simple_recovery

Command-Line Format --binlog-gtid-simple-recovery[={OFF|
ON}]

System Variable binlog_gtid_simple_recovery

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable controls how binary log files are iterated during the search for GTIDs when MySQL starts or
restarts.

When binlog_gtid_simple_recovery=TRUE, which is the default in MySQL 8.0, the
values of gtid_executed and gtid_purged are computed at startup based on the values of
Previous_gtids_log_event in the most recent and oldest binary log files. For a description of
the computation, see The gtid_purged System Variable. This setting accesses only two binary log
files during server restart. If all binary logs on the server were generated using MySQL 5.7.8 or later,
binlog_gtid_simple_recovery=TRUE can always safely be used.

If any binary logs from MySQL 5.7.7 or older are present on the server (for example, following
an upgrade of an older server to MySQL 8.0), with binlog_gtid_simple_recovery=TRUE,
gtid_executed and gtid_purged might be initialized incorrectly in the following two situations:

• The newest binary log was generated by MySQL 5.7.5 or earlier, and gtid_mode was ON for some
binary logs but OFF for the newest binary log.

• A SET @@GLOBAL.gtid_purged statement was issued on MySQL 5.7.7 or earlier, and the binary
log that was active at the time of the SET @@GLOBAL.gtid_purged statement has not yet been
purged.

If an incorrect GTID set is computed in either situation, it remains incorrect even if the server is later
restarted with binlog_gtid_simple_recovery=FALSE. If either of these situations apply or might
apply on the server, set binlog_gtid_simple_recovery=FALSE before starting or restarting the
server.

170

https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Global Transaction ID System Variables

When binlog_gtid_simple_recovery=FALSE is set, the method of computing gtid_executed
and gtid_purged as described in The gtid_purged System Variable is changed to iterate the binary
log files as follows:

• Instead of using the value of Previous_gtids_log_event and GTID log events from the newest
binary log file, the computation for gtid_executed iterates from the newest binary log file, and uses
the value of Previous_gtids_log_event and any GTID log events from the first binary log file
where it finds a Previous_gtids_log_event value. If the server's most recent binary log files do
not have GTID log events, for example if gtid_mode=ON was used but the server was later changed
to gtid_mode=OFF, this process can take a long time.

• Instead of using the value of Previous_gtids_log_event from the oldest binary log file,
the computation for gtid_purged iterates from the oldest binary log file, and uses the value
of Previous_gtids_log_event from the first binary log file where it finds either a nonempty
Previous_gtids_log_event value, or at least one GTID log event (indicating that the use of
GTIDs starts at that point). If the server's older binary log files do not have GTID log events, for
example if gtid_mode=ON was only set recently on the server, this process can take a long time.

• enforce_gtid_consistency

Command-Line Format --enforce-gtid-consistency[=value]

System Variable enforce_gtid_consistency

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value OFF

Valid Values OFF

ON

WARN

Depending on the value of this variable, the server enforces GTID consistency by allowing execution of
only statements that can be safely logged using a GTID. You must set this variable to ON before enabling
GTID based replication.

The values that enforce_gtid_consistency can be configured to are:

• OFF: all transactions are allowed to violate GTID consistency.

• ON: no transaction is allowed to violate GTID consistency.

• WARN: all transactions are allowed to violate GTID consistency, but a warning is generated in this case.

--enforce-gtid-consistency only takes effect if binary logging takes place for a statement. If
binary logging is disabled on the server, or if statements are not written to the binary log because they

171

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Global Transaction ID System Variables

are removed by a filter, GTID consistency is not checked or enforced for the statements that are not
logged.

Only statements that can be logged using GTID safe statements can be logged when
enforce_gtid_consistency is set to ON, so the operations listed here cannot be used with this
option:

• CREATE TEMPORARY TABLE or DROP TEMPORARY TABLE statements inside transactions.

• Transactions or statements that update both transactional and nontransactional tables. There is an
exception that nontransactional DML is allowed in the same transaction or in the same statement as
transactional DML, if all nontransactional tables are temporary.

• CREATE TABLE ... SELECT statements, prior to MySQL 8.0.21. From MySQL 8.0.21, CREATE
TABLE ... SELECT statements are allowed for storage engines that support atomic DDL.

For more information, see Section 2.3.7, “Restrictions on Replication with GTIDs”.

Prior to MySQL 5.7 and in early releases in that release series, the boolean
enforce_gtid_consistency defaulted to OFF. To maintain compatibility with these earlier releases,
the enumeration defaults to OFF, and setting --enforce-gtid-consistency without a value is
interpreted as setting the value to ON. The variable also has multiple textual aliases for the values:
0=OFF=FALSE, 1=ON=TRUE,2=WARN. This differs from other enumeration types but maintains
compatibility with the boolean type used in previous releases. These changes impact on what is
returned by the variable. Using SELECT @@ENFORCE_GTID_CONSISTENCY, SHOW VARIABLES LIKE
'ENFORCE_GTID_CONSISTENCY', and SELECT * FROM INFORMATION_SCHEMA.VARIABLES
WHERE 'VARIABLE_NAME' = 'ENFORCE_GTID_CONSISTENCY', all return the textual form, not the
numeric form. This is an incompatible change, since @@ENFORCE_GTID_CONSISTENCY returns the
numeric form for booleans but returns the textual form for SHOW and the Information Schema.

• gtid_executed

System Variable gtid_executed

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Unit set of GTIDs

When used with global scope, this variable contains a representation of the set of all transactions
executed on the server and GTIDs that have been set by a SET gtid_purged statement. This is the
same as the value of the Executed_Gtid_Set column in the output of SHOW MASTER STATUS and
SHOW REPLICA STATUS. The value of this variable is a GTID set, see GTID Sets for more information.

When the server starts, @@GLOBAL.gtid_executed is initialized. See
binlog_gtid_simple_recovery for more information on how binary logs are iterated to populate

172

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Global Transaction ID System Variables

gtid_executed. GTIDs are then added to the set as transactions are executed, or if any SET
gtid_purged statement is executed.

The set of transactions that can be found in the binary logs at any given time is equal to
GTID_SUBTRACT(@@GLOBAL.gtid_executed, @@GLOBAL.gtid_purged); that is, to all
transactions in the binary log that have not yet been purged.

Issuing RESET MASTER causes the global value (but not the session value) of this variable to be reset to
an empty string. GTIDs are not otherwise removed from this set other than when the set is cleared due
to RESET MASTER.

• gtid_executed_compression_period

Command-Line Format --gtid-executed-compression-period=#

System Variable gtid_executed_compression_period

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.23) 0

Default Value (≤ 8.0.22) 1000

Minimum Value 0

Maximum Value 4294967295

Compress the mysql.gtid_executed table each time this many transactions have been processed.
When binary logging is enabled on the server, this compression method is not used, and instead the
mysql.gtid_executed table is compressed on each binary log rotation. When binary logging is
disabled on the server, the compression thread sleeps until the specified number of transactions have
been executed, then wakes up to perform compression of the mysql.gtid_executed table. Setting
the value of this system variable to 0 means that the thread never wakes up, so this explicit compression
method is not used. Instead, compression occurs implicitly as required.

From MySQL 8.0.17, InnoDB transactions are written to the mysql.gtid_executed table by a
separate process to non-InnoDB transactions. If the server has a mix of InnoDB transactions and
non-InnoDB transactions, the compression controlled by this system variable interferes with the work of
this process and can slow it significantly. For this reason, from that release it is recommended that you
set gtid_executed_compression_period to 0.

From MySQL 8.0.23, InnoDB and non-InnoDB transactions are written to the mysql.gtid_executed
table by the same process, and the gtid_executed_compression_period default value is 0.

See mysql.gtid_executed Table Compression for more information.

• gtid_mode

Command-Line Format --gtid-mode=MODE

System Variable gtid_mode

Scope Global

Dynamic Yes

SET_VAR Hint Applies No
173

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/gtid-functions.html#function_gtid-subtract
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Global Transaction ID System Variables

Type Enumeration

Default Value OFF

Valid Values OFF

OFF_PERMISSIVE

ON_PERMISSIVE

ON

Controls whether GTID based logging is enabled and what type of transactions the logs can contain.
You must have privileges sufficient to set global system variables. See System Variable Privileges.
enforce_gtid_consistency must be set to ON before you can set gtid_mode=ON. Before
modifying this variable, see Section 2.4, “Changing GTID Mode on Online Servers”.

Logged transactions can be either anonymous or use GTIDs. Anonymous transactions rely on binary log
file and position to identify specific transactions. GTID transactions have a unique identifier that is used
to refer to transactions. The different modes are:

• OFF: Both new and replicated transactions must be anonymous.

• OFF_PERMISSIVE: New transactions are anonymous. Replicated transactions can be either
anonymous or GTID transactions.

• ON_PERMISSIVE: New transactions are GTID transactions. Replicated transactions can be either
anonymous or GTID transactions.

• ON: Both new and replicated transactions must be GTID transactions.

Changes from one value to another can only be one step at a time. For example, if gtid_mode is
currently set to OFF_PERMISSIVE, it is possible to change to OFF or ON_PERMISSIVE but not to ON.

The values of gtid_purged and gtid_executed are persistent regardless of the value of
gtid_mode. Therefore even after changing the value of gtid_mode, these variables contain the correct
values.

• gtid_next

System Variable gtid_next

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value AUTOMATIC

Valid Values AUTOMATIC

ANONYMOUS

174

https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Global Transaction ID System Variables

<UUID>:<NUMBER>

This variable is used to specify whether and how the next GTID is obtained.

Setting the session value of this system variable is a restricted operation. The session user must have
either the REPLICATION_APPLIER privilege (see Replication Privilege Checks), or privileges sufficient
to set restricted session variables (see System Variable Privileges).

gtid_next can take any of the following values:

• AUTOMATIC: Use the next automatically-generated global transaction ID.

• ANONYMOUS: Transactions do not have global identifiers, and are identified by file and position only.

• A global transaction ID in UUID:NUMBER format.

Exactly which of the above options are valid depends on the setting of gtid_mode, see Section 2.4.1,
“Replication Mode Concepts” for more information. Setting this variable has no effect if gtid_mode is
OFF.

After this variable has been set to UUID:NUMBER, and a transaction has been committed or rolled back,
an explicit SET GTID_NEXT statement must again be issued before any other statement.

DROP TABLE or DROP TEMPORARY TABLE fails with an explicit error when used on a combination of
nontemporary tables with temporary tables, or of temporary tables using transactional storage engines
with temporary tables using nontransactional storage engines.

• gtid_owned

System Variable gtid_owned

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type String

Unit set of GTIDs

This read-only variable is primarily for internal use. Its contents depend on its scope.

• When used with global scope, gtid_owned holds a list of all the GTIDs that are currently in use
on the server, with the IDs of the threads that own them. This variable is mainly useful for a multi-
threaded replica to check whether a transaction is already being applied on another thread. An
applier thread takes ownership of a transaction's GTID all the time it is processing the transaction,
so @@global.gtid_owned shows the GTID and owner for the duration of processing. When a
transaction has been committed (or rolled back), the applier thread releases ownership of the GTID.

• When used with session scope, gtid_owned holds a single GTID that is currently in use by and
owned by this session. This variable is mainly useful for testing and debugging the use of GTIDs
when the client has explicitly assigned a GTID for the transaction by setting gtid_next. In this case,
@@session.gtid_owned displays the GTID all the time the client is processing the transaction,
until the transaction has been committed (or rolled back). When the client has finished processing the
transaction, the variable is cleared. If gtid_next=AUTOMATIC is used for the session, gtid_owned
is populated only briefly during the execution of the commit statement for the transaction, so it cannot
be observed from the session concerned, although it is listed if @@global.gtid_owned is read at the

175

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

Global Transaction ID System Variables

right point. If you have a requirement to track the GTIDs that are handled by a client in a session, you
can enable the session state tracker controlled by the session_track_gtids system variable.

• gtid_purged

System Variable gtid_purged

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type String

Unit set of GTIDs

The global value of the gtid_purged system variable (@@GLOBAL.gtid_purged) is a GTID set
consisting of the GTIDs of all the transactions that have been committed on the server, but do not
exist in any binary log file on the server. gtid_purged is a subset of gtid_executed. The following
categories of GTIDs are in gtid_purged:

• GTIDs of replicated transactions that were committed with binary logging disabled on the replica.

• GTIDs of transactions that were written to a binary log file that has now been purged.

• GTIDs that were added explicitly to the set by the statement SET @@GLOBAL.gtid_purged.

When the server starts, the global value of gtid_purged is initialized to a set of GTIDs.
For information on how this GTID set is computed, see The gtid_purged System Variable.
If binary logs from MySQL 5.7.7 or older are present on the server, you might need to set
binlog_gtid_simple_recovery=FALSE in the server's configuration file to produce the correct
computation. See the description for binlog_gtid_simple_recovery for details of the situations in
which this setting is needed.

Issuing RESET MASTER causes the value of gtid_purged to be reset to an empty string.

You can set the value of gtid_purged in order to record on the server that the transactions in a certain
GTID set have been applied, although they do not exist in any binary log on the server. An example use
case for this action is when you are restoring a backup of one or more databases on a server, but you do
not have the relevant binary logs containing the transactions on the server.

Important

GTIDs are only available on a server instance up to the number of non-negative
values for a signed 64-bit integer (2 to the power of 63, minus 1). If you set the
value of gtid_purged to a number that approaches this limit, subsequent
commits can cause the server to run out of GTIDs and take the action specified
by binlog_error_action. From MySQL 8.0.23, a warning message is issued
when the server instance is approaching the limit.

From MySQL 8.0, there are two ways to set the value of gtid_purged. You can either replace the
value of gtid_purged with your specified GTID set, or you can append your specified GTID set to the
GTID set that is already held by gtid_purged. If the server has no existing GTIDs, for example an
empty server that you are provisioning with a backup of an existing database, both methods have the
same result. If you are restoring a backup that overlaps the transactions that are already on the server,
for example replacing a corrupted table with a partial dump from the source made using mysqldump
(which includes the GTIDs of all the transactions on the server, even though the dump is partial), use the

176

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html

Common Replication Administration Tasks

first method of replacing the value of gtid_purged. If you are restoring a backup that is disjoint from
the transactions that are already on the server, for example provisioning a multi-source replica using
dumps from two different servers, use the second method of adding to the value of gtid_purged.

• To replace the value of gtid_purged with your specified GTID set, use the following statement:

SET @@GLOBAL.gtid_purged = 'gtid_set'

gtid_set must be a superset of the current value of gtid_purged, and must not intersect
with gtid_subtract(gtid_executed,gtid_purged). In other words, the new GTID set
must include any GTIDs that were already in gtid_purged, and must not include any GTIDs in
gtid_executed that have not yet been purged. gtid_set also cannot include any GTIDs that are in
@@global.gtid_owned, that is, the GTIDs for transactions that are currently being processed on the
server.

The result is that the global value of gtid_purged is set equal to gtid_set, and the value of
gtid_executed becomes the union of gtid_set and the previous value of gtid_executed.

• To append your specified GTID set to gtid_purged, use the following statement with a plus sign (+)
before the GTID set:

SET @@GLOBAL.gtid_purged = '+gtid_set'

gtid_set must not intersect with the current value of gtid_executed. In other words, the new
GTID set must not include any GTIDs in gtid_executed, including transactions that are already also
in gtid_purged. gtid_set also cannot include any GTIDs that are in @@global.gtid_owned,
that is, the GTIDs for transactions that are currently being processed on the server.

The result is that gtid_set is added to both gtid_executed and gtid_purged.

Note

If any binary logs from MySQL 5.7.7 or older are present on the server
(for example, following an upgrade of an older server to MySQL 8.0), after
issuing a SET @@GLOBAL.gtid_purged statement, you might need to set
binlog_gtid_simple_recovery=FALSE in the server's configuration file before
restarting the server, otherwise gtid_purged can be computed incorrectly. See
the description for binlog_gtid_simple_recovery for details of the situations
in which this setting is needed.

2.7 Common Replication Administration Tasks

Once replication has been started it executes without requiring much regular administration. This
section describes how to check the status of replication, how to pause a replica, and how to skip a failed
transaction on a replica.

Tip

To deploy multiple instances of MySQL, you can use InnoDB Cluster which enables
you to easily administer a group of MySQL server instances in MySQL Shell.
InnoDB Cluster wraps MySQL Group Replication in a programmatic environment
that enables you easily deploy a cluster of MySQL instances to achieve high
availability. In addition, InnoDB Cluster interfaces seamlessly with MySQL Router,
which enables your applications to connect to the cluster without writing your own
failover process. For similar use cases that do not require high availability, however,

177

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-cluster.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/

Checking Replication Status

you can use InnoDB ReplicaSet. Installation instructions for MySQL Shell can be
found here.

2.7.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking place
and that there have been no errors between the replica and the source.

The SHOW REPLICA STATUS statement, which you must execute on each replica, provides information
about the configuration and status of the connection between the replica server and the source server.
From MySQL 8.0.22, SHOW SLAVE STATUS is deprecated, and SHOW REPLICA STATUS is available
to use instead. The Performance Schema has replication tables that provide this information in a more
accessible form. See Performance Schema Replication Tables.

The replication heartbeat information shown in the Performance Schema replication tables lets you check
that the replication connection is active even if the source has not sent events to the replica recently.
The source sends a heartbeat signal to a replica if there are no updates to, and no unsent events in, the
binary log for a longer period than the heartbeat interval. The MASTER_HEARTBEAT_PERIOD setting
on the source (set by the CHANGE MASTER TO statement) specifies the frequency of the heartbeat,
which defaults to half of the connection timeout interval for the replica (specified by the system variable
replica_net_timeout or slave_net_timeout). The replication_connection_status
Performance Schema table shows when the most recent heartbeat signal was received by a replica, and
how many heartbeat signals it has received.

If you are using the SHOW REPLICA STATUS statement to check on the status of an individual replica, the
statement provides the following information:

mysql> SHOW REPLICA STATUS\G
*************************** 1. row ***************************
 Replica_IO_State: Waiting for source to send event
 Source_Host: 127.0.0.1
 Source_User: root
 Source_Port: 13000
 Connect_Retry: 1
 Source_Log_File: master-bin.000001
 Read_Source_Log_Pos: 927
 Relay_Log_File: slave-relay-bin.000002
 Relay_Log_Pos: 1145
 Relay_Source_Log_File: master-bin.000001
 Replica_IO_Running: Yes
 Replica_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
 Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Source_Log_Pos: 927
 Relay_Log_Space: 1355
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Source_SSL_Allowed: No
 Source_SSL_CA_File:
 Source_SSL_CA_Path:
 Source_SSL_Cert:
 Source_SSL_Cipher:
 Source_SSL_Key:

178

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-innodb-replicaset.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-tables.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Checking Replication Status

 Seconds_Behind_Source: 0
Source_SSL_Verify_Server_Cert: No
 Last_IO_Errno: 0
 Last_IO_Error:
 Last_SQL_Errno: 0
 Last_SQL_Error:
 Replicate_Ignore_Server_Ids:
 Source_Server_Id: 1
 Source_UUID: 73f86016-978b-11ee-ade5-8d2a2a562feb
 Source_Info_File: mysql.slave_master_info
 SQL_Delay: 0
 SQL_Remaining_Delay: NULL
 Replica_SQL_Running_State: Replica has read all relay log; waiting for more updates
 Source_Retry_Count: 10
 Source_Bind:
 Last_IO_Error_Timestamp:
 Last_SQL_Error_Timestamp:
 Source_SSL_Crl:
 Source_SSL_Crlpath:
 Retrieved_Gtid_Set: 73f86016-978b-11ee-ade5-8d2a2a562feb:1-3
 Executed_Gtid_Set: 73f86016-978b-11ee-ade5-8d2a2a562feb:1-3
 Auto_Position: 1
 Replicate_Rewrite_DB:
 Channel_Name:
 Source_TLS_Version:
 Source_public_key_path:
 Get_Source_public_key: 0
 Network_Namespace:

The key fields from the status report to examine are:

• Replica_IO_State: The current status of the replica. See Replication I/O (Receiver) Thread States,
and Replication SQL Thread States, for more information.

• Replica_IO_Running: Whether the I/O (receiver) thread for reading the source's binary log is running.
Normally, you want this to be Yes unless you have not yet started replication or have explicitly stopped it
with STOP REPLICA.

• Replica_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As
with the I/O thread, this should normally be Yes.

• Last_IO_Error, Last_SQL_Error: The last errors registered by the I/O (receiver) and SQL (applier)
threads when processing the relay log. Ideally these should be blank, indicating no errors.

• Seconds_Behind_Source: The number of seconds that the replication SQL (applier) thread is behind
processing the source binary log. A high number (or an increasing one) can indicate that the replica is
unable to handle events from the source in a timely fashion.

A value of 0 for Seconds_Behind_Source can usually be interpreted as meaning that the replica
has caught up with the source, but there are some cases where this is not strictly true. For example,
this can occur if the network connection between source and replica is broken but the replication I/O
(receiver) thread has not yet noticed this; that is, the time period set by replica_net_timeout or
slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Source may not reflect the situation
accurately. When the replication SQL (applier) thread has caught up on I/O, Seconds_Behind_Source
displays 0; but when the replication I/O (receiver) thread is still queuing up a new event,
Seconds_Behind_Source may show a large value until the replication applier thread finishes
executing the new event. This is especially likely when the events have old timestamps; in such cases, if
you execute SHOW REPLICA STATUS several times in a relatively short period, you may see this value
change back and forth repeatedly between 0 and a relatively large value.

179

https://dev.mysql.com/doc/refman/8.0/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Pausing Replication on the Replica

Several pairs of fields provide information about the progress of the replica in reading events from the
source binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the source binary log indicating how far
the replication I/O (receiver) thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the source binary log indicating
how far the replication SQL (applier) thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the replica relay log indicating how far the
replication SQL (applier) thread has executed the relay log. These correspond to the preceding
coordinates, but are expressed in replica relay log coordinates rather than source binary log coordinates.

On the source, you can check the status of connected replicas using SHOW PROCESSLIST to examine the
list of running processes. Replica connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: replica1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Because it is the replica that drives the replication process, very little information is available in this report.

For replicas that were started with the --report-host option and are connected to the source, the
SHOW REPLICAS (or before MySQL 8.0.22, SHOW SLAVE HOSTS) statement on the source shows
basic information about the replicas. The output includes the ID of the replica server, the value of the --
report-host option, the connecting port, and source ID:

mysql> SHOW REPLICAS;
+-----------+----------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Source_id |
+-----------+----------+------+-------------------+-----------+
| 10 | replica1 | 3306 | 0 | 1 |
+-----------+----------+------+-------------------+-----------+
1 row in set (0.00 sec)

2.7.2 Pausing Replication on the Replica

You can stop and start replication on the replica using the STOP REPLICA and START REPLICA
statements. From MySQL 8.0.22, STOP SLAVE and START SLAVE are deprecated, and STOP REPLICA
and START REPLICA are available to use instead.

To stop processing of the binary log from the source, use STOP REPLICA:

mysql> STOP SLAVE;
Or from MySQL 8.0.22:
mysql> STOP REPLICA;

When replication is stopped, the replication I/O (receiver) thread stops reading events from the source
binary log and writing them to the relay log, and the SQL thread stops reading events from the relay log
and executing them. You can pause the I/O (receiver) or SQL (applier) thread individually by specifying the
thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;
Or from MySQL 8.0.22:

180

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-replicas.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-hosts.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html

Skipping Transactions

mysql> STOP REPLICA IO_THREAD;
mysql> STOP REPLICA SQL_THREAD;

To start execution again, use the START REPLICA statement:

mysql> START SLAVE;
Or from MySQL 8.0.22:
mysql> START REPLICA;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;
Or from MySQL 8.0.22:
mysql> START REPLICA IO_THREAD;
mysql> START REPLICA SQL_THREAD;

For a replica that performs updates only by processing events from the source, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O (receiver) thread continues
to read events from the source but they are not executed. This makes it easier for the replica to catch up
when you restart the SQL (applier) thread.

Stopping only the receiver thread enables the events in the relay log to be executed by the applier thread
up to the point where the relay log ends. This can be useful when you want to pause execution to catch up
with events already received from the source, when you want to perform administration on the replica but
also ensure that it has processed all updates to a specific point. This method can also be used to pause
event receipt on the replica while you conduct administration on the source. Stopping the receiver thread
but permitting the applier thread to run helps ensure that there is not a massive backlog of events to be
executed when replication is started again.

2.7.3 Skipping Transactions

If replication stops due to an issue with an event in a replicated transaction, you can resume replication by
skipping the failed transaction on the replica. Before skipping a transaction, ensure that the replication I/O
(receiver) thread is stopped as well as the SQL (applier) thread.

First you need to identify the replicated event that caused the error. Details of the error and
the last successfully applied transaction are recorded in the Performance Schema table
replication_applier_status_by_worker. You can use mysqlbinlog to retrieve and display
the events that were logged around the time of the error. For instructions to do this, see Point-in-Time
(Incremental) Recovery. Alternatively, you can issue SHOW RELAYLOG EVENTS on the replica or SHOW
BINLOG EVENTS on the source.

Before skipping the transaction and restarting the replica, check these points:

• Is the transaction that stopped replication from an unknown or untrusted source? If so, investigate the
cause in case there are any security considerations that indicate the replica should not be restarted.

• Does the transaction that stopped replication need to be applied on the replica? If so, either make the
appropriate corrections and reapply the transaction, or manually reconcile the data on the replica.

• Did the transaction that stopped replication need to be applied on the source? If not, undo the
transaction manually on the server where it originally took place.

To skip the transaction, choose one of the following methods as appropriate:

• When GTIDs are in use (gtid_mode is ON), see Section 2.7.3.1, “Skipping Transactions With GTIDs” .

• When GTIDs are not in use or are being phased in (gtid_mode is OFF, OFF_PERMISSIVE, or
ON_PERMISSIVE), see Section 2.7.3.2, “Skipping Transactions Without GTIDs”.

181

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/8.0/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html

Skipping Transactions

• If you have enabled GTID assignment on a replication channel using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE
TO or CHANGE MASTER TO statement, see Section 2.7.3.2, “Skipping Transactions Without GTIDs”.
Using ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS on a replication channel is not the same as
introducing GTID-based replication for the channel, and you cannot use the transaction skipping method
for GTID-based replication with those channels.

To restart replication after skipping the transaction, issue START REPLICA, with the FOR CHANNEL clause
if the replica is a multi-source replica.

2.7.3.1 Skipping Transactions With GTIDs

When GTIDs are in use (gtid_mode is ON), the GTID for a committed transaction is persisted on the
replica even if the content of the transaction is filtered out. This feature prevents a replica from retrieving
previously filtered transactions when it reconnects to the source using GTID auto-positioning. It can also
be used to skip a transaction on the replica, by committing an empty transaction in place of the failing
transaction.

This method of skipping transactions is not suitable when you have enabled GTID assignment on a
replication channel using the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE
REPLICATION SOURCE TO statement.

If the failing transaction generated an error in a worker thread, you can obtain its GTID
directly from the APPLYING_TRANSACTION field in the Performance Schema table
replication_applier_status_by_worker. To see what the transaction is, issue SHOW RELAYLOG
EVENTS on the replica or SHOW BINLOG EVENTS on the source, and search the output for a transaction
preceded by that GTID.

When you have assessed the failing transaction for any other appropriate actions as described previously
(such as security considerations), to skip it, commit an empty transaction on the replica that has the same
GTID as the failing transaction. For example:

SET GTID_NEXT='aaa-bbb-ccc-ddd:N';
BEGIN;
COMMIT;
SET GTID_NEXT='AUTOMATIC';

The presence of this empty transaction on the replica means that when you issue a START REPLICA
statement to restart replication, the replica uses the auto-skip function to ignore the failing transaction,
because it sees a transaction with that GTID has already been applied. If the replica is a multi-source
replica, you do not need to specify the channel name when you commit the empty transaction, but you do
need to specify the channel name when you issue START REPLICA.

Note that if binary logging is in use on this replica, the empty transaction enters the replication stream if
the replica becomes a source or primary in the future. If you need to avoid this possibility, consider flushing
and purging the replica's binary logs, as in this example:

FLUSH LOGS;
PURGE BINARY LOGS TO 'binlog.000146';

The GTID of the empty transaction is persisted, but the transaction itself is removed by purging the binary
log files.

2.7.3.2 Skipping Transactions Without GTIDs

To skip failing transactions when GTIDs are not in use or are being phased in (gtid_mode is OFF,
OFF_PERMISSIVE, or ON_PERMISSIVE), you can skip a specified number of events by issuing a

182

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Skipping Transactions

SET GLOBAL sql_replica_skip_counter statement (from MySQL 8.0.26) or a SET GLOBAL
sql_slave_skip_counter statement. Alternatively, you can skip past an event or events by issuing a
CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO statement to move the source binary log
position forward.

These methods are also suitable when you have enabled GTID assignment on a replication channel using
the ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE TO
or CHANGE MASTER TO statement.

When you use these methods, it is important to understand that you are not necessarily skipping a
complete transaction, as is always the case with the GTID-based method described previously. These non-
GTID-based methods are not aware of transactions as such, but instead operate on events. The binary
log is organized as a sequence of groups known as event groups, and each event group consists of a
sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

A single transaction can contain changes to both transactional and nontransactional tables.

When you use a SET GLOBAL sql_replica_skip_counter or SET GLOBAL
sql_slave_skip_counter statement to skip events and the resulting position is in the middle of an
event group, the replica continues to skip events until it reaches the end of the group. Execution then starts
with the next event group. The CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO statement
does not have this function, so you must be careful to identify the correct location to restart replication
at the beginning of an event group. However, using CHANGE REPLICATION SOURCE TO or CHANGE
MASTER TO means you do not have to count the events that need to be skipped, as you do with SET
GLOBAL sql_replica_skip_counter or SET GLOBAL sql_slave_skip_counter, and instead
you can just specify the location to restart.

Skipping Transactions With SET GLOBAL sql_slave_skip_counter

When you have assessed the failing transaction for any other appropriate actions as described previously
(such as security considerations), count the number of events that you need to skip. One event normally
corresponds to one SQL statement in the binary log, but note that statements that use AUTO_INCREMENT
or LAST_INSERT_ID() count as two events in the binary log. When binary log transaction compression
is in use, a compressed transaction payload (Transaction_payload_event) is counted as a single
counter value, so all the events inside it are skipped as a unit.

If you want to skip the complete transaction, you can count the events to the end of the transaction, or you
can just skip the relevant event group. Remember that with SET GLOBAL sql_replica_skip_counter
or SET GLOBAL sql_slave_skip_counter, the replica continues to skip to the end of an event group.
Make sure you do not skip too far forward and go into the next event group or transaction so that it is not
also skipped.

Issue the SET statement as follows, where N is the number of events from the source to skip:

SET GLOBAL sql_slave_skip_counter = N
Or from MySQL 8.0.26:
SET GLOBAL sql_replica_skip_counter = N

This statement cannot be issued if gtid_mode=ON is set, or if the replication I/O (receiver) and SQL
(applier) threads are running.

The SET GLOBAL sql_replica_skip_counter or SET GLOBAL sql_slave_skip_counter
statement has no immediate effect. When you issue the START REPLICA statement for the next time

183

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Skipping Transactions

following this SET statement, the new value for the system variable sql_replica_skip_counter or
sql_slave_skip_counter is applied, and the events are skipped. That START REPLICA statement
also automatically sets the value of the system variable back to 0. If the replica is a multi-source replica,
when you issue that START REPLICA statement, the FOR CHANNEL clause is required. Make sure that
you name the correct channel, otherwise events are skipped on the wrong channel.

Skipping Transactions With CHANGE MASTER TO

When you have assessed the failing transaction for any other appropriate actions as described previously
(such as security considerations), identify the coordinates (file and position) in the source's binary log that
represent a suitable position to restart replication. This can be the start of the event group following the
event that caused the issue, or the start of the next transaction. The replication I/O (receiver) thread begins
reading from the source at these coordinates the next time the thread starts, skipping the failing event.
Make sure that you have identified the position accurately, because this statement does not take event
groups into account.

Issue the CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO statement as follows, where
source_log_name is the binary log file that contains the restart position, and source_log_pos is the
number representing the restart position as stated in the binary log file:

CHANGE MASTER TO MASTER_LOG_FILE='source_log_name', MASTER_LOG_POS=source_log_pos;
Or from MySQL 8.0.24:
CHANGE REPLICATION SOURCE TO SOURCE_LOG_FILE='source_log_name', SOURCE_LOG_POS=source_log_pos;

If the replica is a multi-source replica, you must use the FOR CHANNEL clause to name the appropriate
channel on the CHANGE REPLICATION SOURCE TO or CHANGE MASTER TO statement.

This statement cannot be issued if SOURCE_AUTO_POSITION=1 or MASTER_AUTO_POSITION=1 is set,
or if the replication I/O (receiver) and SQL (applier) threads are running. If you need to use this method of
skipping a transaction when SOURCE_AUTO_POSITION=1 or MASTER_AUTO_POSITION=1 is normally
set, you can change the setting to SOURCE_AUTO_POSITION=0 or MASTER_AUTO_POSITION=0 while
issuing the statement, then change it back again afterwards. For example:

CHANGE MASTER TO MASTER_AUTO_POSITION=0, MASTER_LOG_FILE='binlog.000145', MASTER_LOG_POS=235;
CHANGE MASTER TO MASTER_AUTO_POSITION=1;
Or from MySQL 8.0.24:
CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION=0, SOURCE_LOG_FILE='binlog.000145', SOURCE_LOG_POS=235;
CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION=1;

184

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Chapter 3 Replication Solutions

Table of Contents
3.1 Using Replication for Backups ... 185

3.1.1 Backing Up a Replica Using mysqldump ... 186
3.1.2 Backing Up Raw Data from a Replica ... 187
3.1.3 Backing Up a Source or Replica by Making It Read Only ... 188

3.2 Handling an Unexpected Halt of a Replica ... 189
3.3 Monitoring Row-based Replication ... 192
3.4 Using Replication with Different Source and Replica Storage Engines ... 192
3.5 Using Replication for Scale-Out ... 194
3.6 Replicating Different Databases to Different Replicas ... 195
3.7 Improving Replication Performance ... 196
3.8 Switching Sources During Failover .. 198
3.9 Switching Sources and Replicas with Asynchronous Connection Failover 200

3.9.1 Asynchronous Connection Failover for Sources ... 201
3.9.2 Asynchronous Connection Failover for Replicas .. 203

3.10 Semisynchronous Replication .. 204
3.10.1 Installing Semisynchronous Replication ... 206
3.10.2 Configuring Semisynchronous Replication ... 208
3.10.3 Semisynchronous Replication Monitoring ... 209

3.11 Delayed Replication .. 210

Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the source and replica, see Section 3.4, “Using
Replication with Different Source and Replica Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of applications
that use the solution. See Section 3.5, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replicas. See Section 3.6, “Replicating Different Databases to Different Replicas”

As the number of replicas increases, the load on the source can increase and lead to reduced performance
(because of the need to replicate the binary log to each replica). For tips on improving your replication
performance, including using a single secondary server as the source, see Section 3.7, “Improving
Replication Performance”.

For guidance on switching sources, or converting replicas into sources as part of an emergency failover
solution, see Section 3.8, “Switching Sources During Failover”.

For information on security measures specific to servers in a replication topology, see Replication Security.

3.1 Using Replication for Backups
To use replication as a backup solution, replicate data from the source to a replica, and then back up the
replica. The replica can be paused and shut down without affecting the running operation of the source,

185

https://dev.mysql.com/doc/refman/8.0/en/replication-security.html

Backing Up a Replica Using mysqldump

so you can produce an effective snapshot of “live” data that would otherwise require the source to be shut
down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replica state so that you can rebuild the replica in the event of failure. There are therefore two
choices:

• If you are using replication as a solution to enable you to back up the data on the source, and the size of
your database is not too large, the mysqldump tool may be suitable. See Section 3.1.1, “Backing Up a
Replica Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw
data files instead. Using the raw data files option also means that you can back up the binary and relay
logs that make it possible to re-create the replica in the event of a replica failure. For more information,
see Section 3.1.2, “Backing Up Raw Data from a Replica”.

Another backup strategy, which can be used for either source or replica servers, is to put the server in a
read-only state. The backup is performed against the read-only server, which then is changed back to its
usual read/write operational status. See Section 3.1.3, “Backing Up a Source or Replica by Making It Read
Only”.

3.1.1 Backing Up a Replica Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the database
in a format that enables the information to be imported into another instance of MySQL Server (see
mysqldump — A Database Backup Program). Because the format of the information is SQL statements,
the file can easily be distributed and applied to running servers in the event that you need access to the
data in an emergency. However, if the size of your data set is very large, mysqldump may be impractical.

Tip

Consider using the MySQL Shell dump utilities, which provide parallel dumping
with multiple threads, file compression, and progress information display, as well
as cloud features such as Oracle Cloud Infrastructure Object Storage streaming,
and MySQL HeatWave Service compatibility checks and modifications. Dumps can
be easily imported into a MySQL Server instance or a MySQL HeatWave Service
DB System using the MySQL Shell load dump utilities. Installation instructions for
MySQL Shell can be found here.

When using mysqldump, you should stop replication on the replica before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the replica from processing requests. You can stop replication completely on the replica using
mysqladmin:

$> mysqladmin stop-slave

Alternatively, you can stop only the replication SQL thread to pause event execution:

$> mysql -e 'STOP SLAVE SQL_THREAD;'
Or from MySQL 8.0.22:
$> mysql -e 'STOP REPLICA SQL_THREAD;'

This enables the replica to continue to receive data change events from the source's binary log
and store them in the relay logs using the replication receiver thread, but prevents the replica from
executing these events and changing its data. Within busy replication environments, permitting the

186

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-dump-instance-schema.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-load-dump.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-install.html

Backing Up Raw Data from a Replica

replication receiver thread to run during backup may speed up the catch-up process when you restart
the replication applier thread.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases to
be dumped. For example, to dump all databases:

$> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start replication again:

$> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the commands,
and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the replication process to ensure that the time taken
to run the backup does not affect the replica's ability to keep up with events from the source. See
Section 2.7.1, “Checking Replication Status”. If the replica is unable to keep up, you may want to add
another replica and distribute the backup process. For an example of how to configure this scenario, see
Section 3.6, “Replicating Different Databases to Different Replicas”.

3.1.2 Backing Up Raw Data from a Replica

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL replica
should take place while your replica server is shut down. If the MySQL server is still running, background
tasks may still be updating the database files, particularly those involving storage engines with background
processes such as InnoDB. With InnoDB, these problems should be resolved during crash recovery, but
since the replica server can be shut down during the backup process without affecting the execution of the
source it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the replica MySQL server:

$> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip.
For example, assuming that the data directory is located under the current directory, you can archive
the entire directory as follows:

$> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

$> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 8.0\bin\mysqld"

Normally you should back up the entire data directory for the replica MySQL server. If you want to be able
to restore the data and operate as a replica (for example, in the event of failure of the replica), in addition to
the data, you need to have the replica's connection metadata repository and applier metadata repository,
and the relay log files. These items are needed to resume replication after you restore the replica's data.
Assuming tables have been used for the replica's connection metadata repository and applier metadata
repository (see Section 5.4, “Relay Log and Replication Metadata Repositories”), which is the default
in MySQL 8.0, these tables are backed up along with the data directory. If files have been used for the
repositories, which is deprecated, you must back these up separately. The relay log files must be backed
up separately if they have been placed in a different location to the data directory.

187

Backing Up a Source or Replica by Making It Read Only

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how
far the replication SQL thread has executed in the source's binary logs. Then you can use CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23) with the SOURCE_LOG_FILE | MASTER_LOG_FILE and SOURCE_LOG_POS |
MASTER_LOG_POS options to tell the replica to re-read the binary logs from that point. This requires that
the binary logs still exist on the source server.

If your replica is replicating LOAD DATA statements, you should also back up any SQL_LOAD-* files
that exist in the directory that the replica uses for this purpose. The replica needs these files to resume
replication of any interrupted LOAD DATA operations. The location of this directory is the value of the
system variable replica_load_tmpdir (from MySQL 8.0.26) or slave_load_tmpdir (before MySQL
8.0.26). If the server was not started with that variable set, the directory location is the value of the tmpdir
system variable.

3.1.3 Backing Up a Source or Replica by Making It Read Only

It is possible to back up either source or replica servers in a replication setup by acquiring a global read
lock and manipulating the read_only system variable to change the read-only state of the server to be
backed up:

1. Make the server read-only, so that it processes only retrievals and blocks updates.

2. Perform the backup.

3. Change the server back to its normal read/write state.

Note

The instructions in this section place the server to be backed up in a state that is
safe for backup methods that get the data from the server, such as mysqldump
(see mysqldump — A Database Backup Program). You should not attempt to use
these instructions to make a binary backup by copying files directly because the
server may still have modified data cached in memory and not flushed to disk.

The following instructions describe how to do this for a source and for a replica. For both scenarios
discussed here, suppose that you have the following replication setup:

• A source server S1

• A replica server R1 that has S1 as its source

• A client C1 connected to S1

• A client C2 connected to R1

In either scenario, the statements to acquire the global read lock and manipulate the read_only variable
are performed on the server to be backed up and do not propagate to any replicas of that server.

Scenario 1: Backup with a Read-Only Source

Put the source S1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While S1 is in a read-only state, the following properties are true:

• Requests for updates sent by C1 to S1 block because the server is in read-only mode.

188

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_tmpdir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only

Handling an Unexpected Halt of a Replica

• Requests for query results sent by C1 to S1 succeed.

• Making a backup on S1 is safe.

• Making a backup on R1 is not safe. This server is still running, and might be processing the binary log or
update requests coming from client C2.

While S1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on S1 completes, restore S1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

Although performing the backup on S1 is safe (as far as the backup is concerned), it is not optimal for
performance because clients of S1 are blocked from executing updates.

This strategy applies to backing up a source in a replication setup, but can also be used for a single server
in a nonreplication setting.

Scenario 2: Backup with a Read-Only Replica

Put the replica R1 in a read-only state by executing these statements on it:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SET GLOBAL read_only = ON;

While R1 is in a read-only state, the following properties are true:

• The source S1 continues to operate, so making a backup on the source is not safe.

• The replica R1 is stopped, so making a backup on the replica R1 is safe.

These properties provide the basis for a popular backup scenario: Having one replica busy performing
a backup for a while is not a problem because it does not affect the entire network, and the system is
still running during the backup. In particular, clients can still perform updates on the source server, which
remains unaffected by backup activity on the replica.

While R1 is read only, perform the backup. For example, you can use mysqldump.

After the backup operation on R1 completes, restore R1 to its normal operational state by executing these
statements:

mysql> SET GLOBAL read_only = OFF;
mysql> UNLOCK TABLES;

After the replica is restored to normal operation, it again synchronizes to the source by catching up with
any outstanding updates from the source's binary log.

3.2 Handling an Unexpected Halt of a Replica
In order for replication to be resilient to unexpected halts of the server (sometimes described as crash-
safe) it must be possible for the replica to recover its state before halting. This section describes the impact
of an unexpected halt of a replica during replication, and how to configure a replica for the best chance of
recovery to continue replication.

After an unexpected halt of a replica, upon restart the replication SQL thread must recover information
about which transactions have been executed already. The information required for recovery is stored

189

Handling an Unexpected Halt of a Replica

in the replica's applier metadata repository. From MySQL 8.0, this repository is created by default as an
InnoDB table named mysql.slave_relay_log_info. By using this transactional storage engine the
information is always recoverable upon restart. Updates to the applier metadata repository are committed
together with the transactions, meaning that the replica's progress information recorded in that repository is
always consistent with what has been applied to the database, even in the event of an unexpected server
halt. For more information on the applier metadata repository, see Section 5.4, “Relay Log and Replication
Metadata Repositories”.

DML transactions and also atomic DDL update the replication positions in the replica's applier metadata
repository in the mysql.slave_relay_log_info table together with applying the changes to the
database, as an atomic operation. In all other cases, including DDL statements that are not fully atomic,
and exempted storage engines that do not support atomic DDL, the mysql.slave_relay_log_info
table might be missing updates associated with replicated data if the server halts unexpectedly. Restoring
updates in this case is a manual process. For details on atomic DDL support in MySQL 8.0, and the
resulting behavior for the replication of certain statements, see Atomic Data Definition Statement Support.

The recovery process by which a replica recovers from an unexpected halt varies depending on the
configuration of the replica. The details of the recovery process are influenced by the chosen method of
replication, whether the replica is single-threaded or multithreaded, and the setting of relevant system
variables. The overall aim of the recovery process is to identify what transactions had already been applied
on the replica's database before the unexpected halt occurred, and retrieve and apply the transactions that
the replica missed following the unexpected halt.

• For GTID-based replication, the recovery process needs the GTIDs of the transactions that were
already received or committed by the replica. The missing transactions can be retrieved from the source
using GTID auto-positioning, which automatically compares the source's transactions to the replica's
transactions and identifies the missing transactions.

• For file position based replication, the recovery process needs an accurate replication SQL thread
(applier) position showing the last transaction that was applied on the replica. Based on that position, the
replication I/O thread (receiver) retrieves from the source's binary log all of the transactions that should
be applied on the replica from that point on.

Using GTID-based replication makes it easiest to configure replication to be resilient to unexpected halts.
GTID auto-positioning means the replica can reliably identify and retrieve missing transactions, even if
there are gaps in the sequence of applied transactions.

The following information provides combinations of settings that are appropriate for different types of
replica to guarantee recovery as far as this is under the control of replication.

Important

Some factors outside the control of replication can have an impact on the replication
recovery process and the overall state of replication after the recovery process. In
particular, the settings that influence the recovery process for individual storage
engines might result in transactions being lost in the event of an unexpected halt
of a replica, and therefore unavailable to the replication recovery process. The
innodb_flush_log_at_trx_commit=1 setting mentioned in the list below is
a key setting for a replication setup that uses InnoDB with transactions. However,
other settings specific to InnoDB or to other storage engines, especially those
relating to flushing or synchronization, can also have an impact. Always check for
and apply recommendations made by your chosen storage engines about crash-
safe settings.

The following combination of settings on a replica is the most resilient to unexpected halts:

190

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Handling an Unexpected Halt of a Replica

• When GTID-based replication is in use (gtid_mode=ON), set SOURCE_AUTO_POSITION=1 |
MASTER_AUTO_POSITION=1, which activates GTID auto-positioning for the connection to the
source to automatically identify and retrieve missing transactions. This option is set using a CHANGE
REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE MASTER TO statement
(before MySQL 8.0.23). If the replica has multiple replication channels, you need to set this option
for each channel individually. For details of how GTID auto-positioning works, see Section 2.3.3,
“GTID Auto-Positioning”. When file position based replication is in use, SOURCE_AUTO_POSITION=1
| MASTER_AUTO_POSITION=1 is not used, and instead the binary log position or relay log position is
used to control where replication starts.

• From MySQL 8.0.27, when GTID-based replication is in use (gtid_mode=ON), set GTID_ONLY=1,
which makes the replica use only GTIDs in the recovery process, and stop persisting binary log and
relay log file names and file positions in the replication metadata repositories. This option is set using
a CHANGE REPLICATION SOURCE TO statement. If the replica has multiple replication channels,
you need to set this option for each channel individually. With GTID_ONLY=1, during recovery, the file
position information is ignored and GTID auto-skip is used to skip transactions that have already been
supplied, rather than identifying the correct file position. This strategy is more efficient provided that you
purge relay logs using the default setting for relay_log_purge, which means only one relay log file
needs to be inspected.

• Set sync_relay_log=1, which instructs the replication receiver thread to synchronize the relay log to
disk after each received transaction is written to it. This means the replica's record of the current position
read from the source's binary log (in the applier metadata repository) is never ahead of the record of
transactions saved in the relay log. Note that although this setting is the safest, it is also the slowest due
to the number of disk writes involved. With sync_relay_log > 1, or sync_relay_log=0 (where
synchronization is handled by the operating system), in the event of an unexpected halt of a replica there
might be committed transactions that have not been synchronized to disk. Such transactions can cause
the recovery process to fail if the recovering replica, based on the information it has in the relay log as
last synchronized to disk, tries to retrieve and apply the transactions again instead of skipping them.
Setting sync_relay_log=1 is particularly important for a multi-threaded replica, where the recovery
process fails if gaps in the sequence of transactions cannot be filled using the information in the relay
log. For a single-threaded replica, the recovery process only needs to use the relay log if the relevant
information is not available in the applier metadata repository.

• Set innodb_flush_log_at_trx_commit=1, which synchronizes the InnoDB logs to disk before
each transaction is committed. This setting, which is the default, ensures that InnoDB tables and the
InnoDB logs are saved on disk so that there is no longer a requirement for the information in the relay
log regarding the transaction. Combined with the setting sync_relay_log=1, this setting further
ensures that the content of the InnoDB tables and the InnoDB logs is consistent with the content of
the relay log at all times, so that purging the relay log files cannot cause unfillable gaps in the replica's
history of transactions in the event of an unexpected halt.

• Set relay_log_info_repository = TABLE, which stores the replication SQL thread position in the
InnoDB table mysql.slave_relay_log_info, and updates it together with the transaction commit to
ensure a record that is always accurate. This setting is the default from MySQL 8.0, and the FILE setting
is deprecated. From MySQL 8.0.23, the use of the system variable itself is deprecated, so omit it and
allow it to default. If the FILE setting is used, which was the default in earlier releases, the information is
stored in a file in the data directory that is updated after the transaction has been applied. This creates a
risk of losing synchrony with the source depending at which stage of processing a transaction the replica
halts at, or even corruption of the file itself. With the setting relay_log_info_repository = FILE,
recovery is not guaranteed.

• Set relay_log_recovery = ON, which enables automatic relay log recovery immediately following
server startup. This global variable defaults to OFF and is read-only at runtime, but you can set it to ON
with the --relay-log-recovery option at replica startup following an unexpected halt of a replica.

191

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Monitoring Row-based Replication

Note that this setting ignores the existing relay log files, in case they are corrupted or inconsistent. The
relay log recovery process starts a new relay log file and fetches transactions from the source beginning
at the replication SQL thread position recorded in the applier metadata repository. The previous relay log
files are removed over time by the replica's normal purge mechanism.

For a multithreaded replica, setting relay_log_recovery = ON automatically handles any
inconsistencies and gaps in the sequence of transactions that have been executed from the relay log.
These gaps can occur when file position based replication is in use. (For more details, see Section 4.1.34,
“Replication and Transaction Inconsistencies”.) The relay log recovery process deals with gaps using
the same method as the START REPLICA UNTIL SQL_AFTER_MTS_GAPS (or before MySQL 8.0.22,
START SLAVE instead of START REPLICA) statement would. When the replica reaches a consistent gap-
free state, the relay log recovery process goes on to fetch further transactions from the source beginning
at the replication SQL thread position. When GTID-based replication is in use, from MySQL 8.0.18 a
multithreaded replica checks first whether MASTER_AUTO_POSITION is set to ON, and if it is, omits the
step of calculating the transactions that should be skipped or not skipped, so that the old relay logs are not
required for the recovery process.

3.3 Monitoring Row-based Replication
The current progress of the replication applier (SQL) thread when using row-based replication is monitored
through Performance Schema instrument stages, enabling you to track the processing of operations and
check the amount of work completed and work estimated. When these Performance Schema instrument
stages are enabled the events_stages_current table shows stages for applier threads and their
progress. For background information, see Performance Schema Stage Event Tables.

To track progress of all three row-based replication event types (write, update, delete):

• Enable the three Performance Schema stages by issuing:

mysql> UPDATE performance_schema.setup_instruments SET ENABLED = 'YES'
 -> WHERE NAME LIKE 'stage/sql/Applying batch of row changes%';

• Wait for some events to be processed by the replication applier thread and then check progress by
looking into the events_stages_current table. For example to get progress for update events
issue:

mysql> SELECT WORK_COMPLETED, WORK_ESTIMATED FROM performance_schema.events_stages_current
 -> WHERE EVENT_NAME LIKE 'stage/sql/Applying batch of row changes (update)'

• If binlog_rows_query_log_events is enabled, information about queries is stored in the binary log
and is exposed in the processlist_info field. To see the original query that triggered this event:

mysql> SELECT db, processlist_state, processlist_info FROM performance_schema.threads
 -> WHERE processlist_state LIKE 'stage/sql/Applying batch of row changes%' AND thread_id = N;

3.4 Using Replication with Different Source and Replica Storage
Engines

It does not matter for the replication process whether the original table on the source and the replicated
table on the replica use different storage engine types. In fact, the default_storage_engine system
variable is not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 3.5, “Using Replication for Scale-Out”), you want to use InnoDB tables on the source to take
advantage of the transactional functionality, but use MyISAM on the replicas where transaction support is

192

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-events-stages-current-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-stage-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-events-stages-current-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_storage_engine

Using Replication with Different Source and Replica Storage Engines

not required because the data is only read. When using replication in a data-logging environment you may
want to use the Archive storage engine on the replica.

Configuring different engines on the source and replica depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your source, you could edit the dump file
text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
replica before using the dump to build the data on the replica. For example, you can add the --skip-
federated option on your replica to disable the FEDERATED engine. If a specific engine does not exist
for a table to be created, MySQL uses the default engine type, usually InnoDB. (This requires that the
NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines in this
way, you may want to consider building a special binary to be used on the replica that supports only the
engines you want.

• If you use raw data files (a binary backup) to set up the replica, it is not possible to change the initial
table format. Instead, use ALTER TABLE to change the table types after the replica has been started.

• For new source/replica replication setups where there are currently no tables on the source, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another engine
type, follow these steps:

1. Stop the replica from running replication updates:

mysql> STOP SLAVE;
Or from MySQL 8.0.22:
mysql> STOP REPLICA;

This makes it possible to change engine types without interruption.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the replication process again:

mysql> START SLAVE;

Or, beginning with MySQL 8.0.22:

mysql> START REPLICA;

Although the default_storage_engine variable is not replicated, be aware that CREATE TABLE and
ALTER TABLE statements that include the engine specification are replicated to the replica correctly. If, in
the case of a CSV table, you execute this statement:

mysql> ALTER TABLE csvtable ENGINE='MyISAM';

This statement is replicated; the table's engine type on the replica is converted to InnoDB, even
if you have previously changed the table type on the replica to an engine other than CSV. If you
want to retain engine differences on the source and replica, you should be careful to use the
default_storage_engine variable on the source when creating a new table. For example, instead of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET default_storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

193

https://dev.mysql.com/doc/refman/8.0/en/federated-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_engine_substitution
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/csv-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_storage_engine

Using Replication for Scale-Out

When replicated, the default_storage_engine variable is ignored, and the CREATE TABLE statement
executes on the replica using the replica's default engine.

3.5 Using Replication for Scale-Out
You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one source to one or more replicas, using replication
for scale-out works best in an environment where you have a high number of reads and low number of
writes/updates. Most websites fit into this category, where users are browsing the website, reading articles,
posts, or viewing products. Updates only occur during session management, or when making a purchase
or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replicas, while still enabling your
web servers to communicate with the source when a write is required. You can see a sample replication
layout for this scenario in Figure 3.1, “Using Replication to Improve Performance During Scale-Out”.

Figure 3.1 Using Replication to Improve Performance During Scale-Out

194

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Replicating Different Databases to Different Replicas

If the part of your code that is responsible for database access has been properly abstracted/modularized,
converting it to run with a replicated setup should be very smooth and easy. Change the implementation of
your database access to send all writes to the source, and to send reads to either the source or a replica. If
your code does not have this level of abstraction, setting up a replicated system gives you the opportunity
and motivation to clean it up. Start by creating a wrapper library or module that implements the following
functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions. You can
use different names for the functions. The important thing is to have a unified interface for connecting for
reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a source/replica configuration, even one involving multiple replicas. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions (for
example, to log how long each statement took, or which statement among those issued gave you an error).

If you have written a lot of code, you may want to automate the conversion task by writing a conversion
script. Ideally, your code uses consistent programming style conventions. If not, then you are probably
better off rewriting it anyway, or at least going through and manually regularizing it to use a consistent
style.

3.6 Replicating Different Databases to Different Replicas

There may be situations where you have a single source server and want to replicate different databases
to different replicas. For example, you may want to distribute different sales data to different departments
to help spread the load during data analysis. A sample of this layout is shown in Figure 3.2, “Replicating
Databases to Separate Replicas”.

Figure 3.2 Replicating Databases to Separate Replicas

You can achieve this separation by configuring the source and replicas as normal, and then limiting
the binary log statements that each replica processes by using the --replicate-wild-do-table
configuration option on each replica.

195

Improving Replication Performance

Important

You should not use --replicate-do-db for this purpose when using statement-
based replication, since statement-based replication causes this option's effects
to vary according to the database that is currently selected. This applies to mixed-
format replication as well, since this enables some updates to be replicated using
the statement-based format.

However, it should be safe to use --replicate-do-db for this purpose if you are
using row-based replication only, since in this case the currently selected database
has no effect on the option's operation.

For example, to support the separation as shown in Figure 3.2, “Replicating Databases to Separate
Replicas”, you should configure each replica as follows, before executing START REPLICA:

• Replica 1 should use --replicate-wild-do-table=databaseA.%.

• Replica 2 should use --replicate-wild-do-table=databaseB.%.

• Replica 3 should use --replicate-wild-do-table=databaseC.%.

Each replica in this configuration receives the entire binary log from the source, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-wild-
do-table option in effect on that replica.

If you have data that must be synchronized to the replicas before replication starts, you have a number of
choices:

• Synchronize all the data to each replica, and delete the databases, tables, or both that you do not want
to keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file on
each replica.

• Use a raw data file dump and include only the specific files and databases that you need for each
replica.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

3.7 Improving Replication Performance

As the number of replicas connecting to a source increases, the load, although minimal, also increases, as
each replica uses a client connection to the source. Also, as each replica must receive a full copy of the
source's binary log, the network load on the source may also increase and create a bottleneck.

If you are using a large number of replicas connected to one source, and that source is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication structure
that enables the source to replicate to only one replica, and for the remaining replicas to connect to
this primary replica for their individual replication requirements. A sample of this structure is shown in
Figure 3.3, “Using an Additional Replication Source to Improve Performance”.

196

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_file_per_table

Improving Replication Performance

Figure 3.3 Using an Additional Replication Source to Improve Performance

For this to work, you must configure the MySQL instances as follows:

• Source 1 is the primary source where all changes and updates are written to the database. Binary
logging is enabled on both source servers, which is the default.

• Source 2 is the replica to the server Source 1 that provides the replication functionality to the remainder
of the replicas in the replication structure. Source 2 is the only machine permitted to connect to Source
1. Source 2 has the --log-slave-updates option enabled (which is the default). With this option,
replication instructions from Source 1 are also written to Source 2's binary log so that they can then be
replicated to the true replicas.

• Replica 1, Replica 2, and Replica 3 act as replicas to Source 2, and replicate the information from
Source 2, which actually consists of the upgrades logged on Source 1.

The above solution reduces the client load and the network interface load on the primary source, which
should improve the overall performance of the primary source when used as a direct database solution.

If your replicas are having trouble keeping up with the replication process on the source, there are a
number of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, set the
relay_log system variable to specify the location of the relay log.

• If heavy disk I/O activity for reads of the binary log file and relay log files is an issue, consider increasing
the value of the rpl_read_size system variable. This system variable controls the minimum amount
of data read from the log files, and increasing it might reduce file reads and I/O stalls when the file data
is not currently cached by the operating system. Note that a buffer the size of this value is allocated
for each thread that reads from the binary log and relay log files, including dump threads on sources
and coordinator threads on replicas. Setting a large value might therefore have an impact on memory
consumption for servers.

• If the replicas are significantly slower than the source, you may want to divide up the responsibility for
replicating different databases to different replicas. See Section 3.6, “Replicating Different Databases to
Different Replicas”.

• If your source makes use of transactions and you are not concerned about transaction support on
your replicas, use MyISAM or another nontransactional engine on the replicas. See Section 3.4, “Using
Replication with Different Source and Replica Storage Engines”.

• If your replicas are not acting as sources, and you have a potential solution in place to ensure
that you can bring up a source in the event of failure, then you can disable the system variable
log_replica_updates (from MySQL 8.0.26) or log_slave_updates (before MySQL 8.0.26) on

197

Switching Sources During Failover

the replicas. This prevents “dumb” replicas from also logging events they have executed into their own
binary log.

3.8 Switching Sources During Failover
You can tell a replica to change to a new source using the CHANGE REPLICATION SOURCE TO statement
(prior to MySQL 8.0.23: CHANGE MASTER TO. The replica does not check whether the databases on the
source are compatible with those on the replica; it simply begins reading and executing events from the
specified coordinates in the new source's binary log. In a failover situation, all the servers in the group are
typically executing the same events from the same binary log file, so changing the source of the events
should not affect the structure or integrity of the database, provided that you exercise care in making the
change.

Replicas should be run with binary logging enabled (the --log-bin option), which is the default. If you are
not using GTIDs for replication, then the replicas should also be run with --log-slave-updates=OFF
(logging replica updates is the default). In this way, the replica is ready to become a source without
restarting the replica mysqld. Assume that you have the structure shown in Figure 3.4, “Redundancy
Using Replication, Initial Structure”.

Figure 3.4 Redundancy Using Replication, Initial Structure

In this diagram, the Source holds the source database, the Replica* hosts are replicas, and the Web
Client machines are issuing database reads and writes. Web clients that issue only reads (and would
normally be connected to the replicas) are not shown, as they do not need to switch to a new server
in the event of failure. For a more detailed example of a read/write scale-out replication structure, see
Section 3.5, “Using Replication for Scale-Out”.

Each MySQL replica (Replica 1, Replica 2, and Replica 3) is a replica running with binary logging
enabled, and with --log-slave-updates=OFF. Because updates received by a replica from the source
are not written to the binary log when --log-slave-updates=OFF is specified, the binary log on each
replica is initially empty. If for some reason Source becomes unavailable, you can pick one of the replicas
to become the new source. For example, if you pick Replica 1, all Web Clients should be redirected
to Replica 1, which writes the updates to its binary log. Replica 2 and Replica 3 should then
replicate from Replica 1.

198

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Switching Sources During Failover

The reason for running the replica with --log-slave-updates=OFF is to prevent replicas from receiving
updates twice in case you cause one of the replicas to become the new source. If Replica 1 has --
log-slave-updates enabled, which is the default, it writes any updates that it receives from Source in
its own binary log. This means that, when Replica 2 changes from Source to Replica 1 as its source,
it may receive updates from Replica 1 that it has already received from Source.

Make sure that all replicas have processed any statements in their relay log. On each replica, issue STOP
REPLICA IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all
relay log. When this is true for all replicas, they can be reconfigured to the new setup. On the replica
Replica 1 being promoted to become the source, issue STOP REPLICA and RESET MASTER.

On the other replicas Replica 2 and Replica 3, use STOP REPLICA and CHANGE REPLICATION
SOURCE TO SOURCE_HOST='Replica1' or CHANGE MASTER TO MASTER_HOST='Replica1' (where
'Replica1' represents the real host name of Replica 1). To use CHANGE REPLICATION SOURCE
TO, add all information about how to connect to Replica 1 from Replica 2 or Replica 3 (user,
password, port). When issuing the statement in this scenario, there is no need to specify the name of the
Replica 1 binary log file or log position to read from, since the first binary log file and position 4 are the
defaults. Finally, execute START REPLICA on Replica 2 and Replica 3.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements
to Replica 1. From that point on, all updates sent by Web Client to Replica 1 are written to the
binary log of Replica 1, which then contains every update sent to Replica 1 since Source became
unavailable.

The resulting server structure is shown in Figure 3.5, “Redundancy Using Replication, After Source
Failure”.

Figure 3.5 Redundancy Using Replication, After Source Failure

When Source becomes available again, you should make it a replica of Replica 1. To do this, issue
on Source the same CHANGE REPLICATION SOURCE TO (or CHANGE MASTER TO) statement as that
issued on Replica 2 and Replica 3 previously. Source then becomes a replica of Replica 1 and
picks up the Web Client writes that it missed while it was offline.

199

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Switching Sources and Replicas with Asynchronous Connection Failover

To make Source a source again, use the preceding procedure as if Replica 1 were unavailable and
Source were to be the new source. During this procedure, do not forget to run RESET MASTER on
Source before making Replica 1, Replica 2, and Replica 3 replicas of Source. If you fail to do
this, the replicas may pick up stale writes from the Web Client applications dating from before the point
at which Source became unavailable.

You should be aware that there is no synchronization between replicas, even when they share the same
source, and thus some replicas might be considerably ahead of others. This means that in some cases the
procedure outlined in the previous example might not work as expected. In practice, however, relay logs on
all replicas should be relatively close together.

One way to keep applications informed about the location of the source is to have a dynamic DNS entry for
the source host. With BIND, you can use nsupdate to update the DNS dynamically.

3.9 Switching Sources and Replicas with Asynchronous Connection
Failover

Beginning with MySQL 8.0.22, you can use the asynchronous connection failover mechanism to
automatically establish an asynchronous (source to replica) replication connection to a new source after
the existing connection from a replica to its source fails. The asynchronous connection failover mechanism
can be used to keep a replica synchronized with multiple MySQL servers or groups of servers that share
data. The list of potential source servers is stored on the replica, and in the event of a connection failure, a
new source is selected from the list based on a weighted priority that you set.

From MySQL 8.0.23, the asynchronous connection failover mechanism also supports Group Replication
topologies, by automatically monitoring changes to group membership and distinguishing between
primary and secondary servers. When you add a group member to the source list and define it as part of
a managed group, the asynchronous connection failover mechanism updates the source list to keep it in
line with membership changes, adding and removing group members automatically as they join or leave.
Only online group members that are in the majority are used for connections and obtaining status. The last
remaining member of a managed group is not removed automatically even if it leaves the group, so that
the configuration of the managed group is kept. However, you can delete a managed group manually if it is
no longer needed.

From MySQL 8.0.27, the asynchronous connection failover mechanism also enables a replica that is part
of a managed replication group to automatically reconnect to the sender if the current receiver (the primary
of the group) fails. This feature works with Group Replication, on a group configured in single-primary
mode, where the group’s primary is a replica that has a replication channel using the mechanism. The
feature is designed for a group of senders and a group of receivers to keep synchronized with each other
even when some members are temporarily unavailable. It also synchronizes a group of receivers with
one or more senders that are not part of a managed group. A replica that is not part of a replication group
cannot use this feature.

The requirements for using the asynchronous connection failover mechanism are as follows:

• GTIDs must be in use on the source and the replica (gtid_mode=ON), and the
SOURCE_AUTO_POSITION | MASTER_AUTO_POSITION option of the CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO statement must be enabled on the replica, so that GTID auto-positioning is
used for the connection to the source.

• The same replication user account and password must exist on all the source servers in the source list
for the channel. This account is used for the connection to each of the sources. You can set up different
accounts for different channels.

• The replication user account must be given SELECT permissions on the Performance Schema tables, for
example, by issuing GRANT SELECT ON performance_schema.* TO 'repl_user';

200

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Asynchronous Connection Failover for Sources

• The replication user account and password cannot be specified on the statement used to start
replication, because they need to be available on the automatic restart for the connection to the
alternative source. They must be set for the channel using the CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement on the replica, and recorded in the replication metadata repositories.

• If the channel where the asynchronous connection failover mechanism is in use is on the primary of a
Group Replication single-primary mode group, from MySQL 8.0.27, asynchronous connection failover
between replicas is also active by default. In this situation, the replication channel and the replication
user account and password for the channel must be set up on all the secondary servers in the replication
group, and on any new joining members. If the new servers are provisioned using MySQL’s clone
functionality, this all happens automatically.

Important

If you do not want asynchronous connection failover to take place
between replicas in this situation, disable it by disabling the member action
mysql_start_failover_channels_if_primary for the group, using
the group_replication_disable_member_action function. When the
feature is disabled, you do not need to configure the replication channel on the
secondary group members, but if the primary goes offline or into an error state,
replication stops for the channel.

From MySQL Shell 8.0.27 and MySQL 8.0.27, MySQL InnoDB ClusterSet is available to provide disaster
tolerance for InnoDB Cluster deployments by linking a primary InnoDB Cluster with one or more replicas
of itself in alternate locations, such as different datacenters. Consider using this solution instead to simplify
the setup of a new multi-group deployment for replication, failover, and disaster recovery. You can adopt
an existing Group Replication deployment as an InnoDB Cluster.

InnoDB ClusterSet and InnoDB Cluster are designed to abstract and simplify the procedures for setting
up, managing, monitoring, recovering, and repairing replication groups. InnoDB ClusterSet automatically
manages replication from a primary cluster to replica clusters using a dedicated ClusterSet replication
channel. You can use administrator commands to trigger a controlled switchover or emergency failover
between groups if the primary cluster is not functioning normally. Servers and groups can easily be added
to or removed from the InnoDB ClusterSet deployment after the initial setup when demand changes. For
more information, see MySQL InnoDB ClusterSet.

3.9.1 Asynchronous Connection Failover for Sources

To activate asynchronous connection failover for a replication channel set
SOURCE_CONNECTION_AUTO_FAILOVER=1 on the CHANGE REPLICATION SOURCE TO statement (from
MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23) for the channel. GTID auto-
positioning must be in use for the channel (SOURCE_AUTO_POSITION = 1 | MASTER_AUTO_POSITION
= 1).

Important

When the existing connection to a source fails, the replica first retries the same
connection the number of times specified by the SOURCE_RETRY_COUNT |
MASTER_RETRY_COUNT option of the CHANGE REPLICATION SOURCE TO |
CHANGE MASTER TO statement. The interval between attempts is set by the
SOURCE_CONNECT_RETRY | MASTER_CONNECT_RETRY option. When these
attempts are exhausted, the asynchronous connection failover mechanism
takes over. Note that the defaults for these options, which were designed for a
connection to a single source, make the replica retry the same connection for
60 days. To ensure that the asynchronous connection failover mechanism can

201

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action
https://dev.mysql.com/doc/mysql-shell/8.0/en/innodb-clusterset.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Asynchronous Connection Failover for Sources

be activated promptly, set SOURCE_RETRY_COUNT | MASTER_RETRY_COUNT
and SOURCE_CONNECT_RETRY | MASTER_CONNECT_RETRY to minimal
numbers that just allow a few retry attempts with the same source, in case
the connection failure is caused by a transient network outage. Suitable
values are SOURCE_RETRY_COUNT=3 | MASTER_RETRY_COUNT=3 and
SOURCE_CONNECT_RETRY=10 | MASTER_CONNECT_RETRY=10, which make the
replica retry the connection 3 times with 10-second intervals between.

You also need to set the source list for the replication channel, to specify
the sources that are available for failover. You set and manage source lists
using the asynchronous_connection_failover_add_source and
asynchronous_connection_failover_delete_source functions to add and
remove single replication source servers. To add and remove managed groups of
servers, use the asynchronous_connection_failover_add_managed and
asynchronous_connection_failover_delete_managed functions instead.

The functions name the relevant replication channel and specify the host name, port number, network
namespace, and weighted priority (1-100, with 100 being the highest priority) of a MySQL instance to add
to or delete from the channel's source list. For a managed group, you also specify the type of managed
service (currently only Group Replication is available), and the identifier of the managed group (for Group
Replication, this is the value of the group_replication_group_name system variable). When you
add a managed group, you only need to add one group member, and the replica automatically adds the
rest from the current group membership. When you delete a managed group, you delete the entire group
together.

In MySQL 8.0.22, the asynchronous connection failover mechanism is activated following the failure of the
replica's connection to the source, and it issues a START REPLICA statement to attempt to connect to
a new source. In this release, the connection fails over if the replication receiver thread stops due to the
source stopping or due to a network failure. The connection does not fail over in any other situations, such
as when the replication threads are stopped by a STOP REPLICA statement.

From MySQL 8.0.23, the asynchronous connection failover mechanism also fails over the connection if
another available server on the source list has a higher priority (weight) setting. This feature ensures that
the replica stays connected to the most suitable source server at all times, and it applies to both managed
groups and single (non-managed) servers. For a managed group, a source’s weight is assigned depending
on whether it is a primary or a secondary server. So assuming that you set up the managed group to give
a higher weight to a primary and a lower weight to a secondary, when the primary changes, the higher
weight is assigned to the new primary, so the replica changes over the connection to it. The asynchronous
connection failover mechanism additionally changes connection if the currently connected managed source
server leaves the managed group, or is no longer in the majority in the managed group.

When failing over a connection, the source with the highest priority (weight) setting among the alternative
sources listed in the source list for the channel is chosen for the first connection attempt. The replica
checks first that it can connect to the source server, or in the case of a managed group, that the source
server has ONLINE status in the group (not RECOVERING or unavailable). If the highest weighted source
is not available, the replica tries with all the listed sources in descending order of weight, then starts again
from the highest weighted source. If multiple sources have the same weight, the replica orders them
randomly. If the replica needs to start working through the list again, it includes and retries the source to
which the original connection failure occurred.

The source lists are stored in the mysql.replication_asynchronous_connection_failover
and mysql.replication_asynchronous_connection_failover_managed tables, and can
be viewed in the Performance Schema replication_asynchronous_connection_failover
and replication_asynchronous_connection_failover_managed tables. The replica uses a
monitor thread to track the membership of managed groups and update the source list (thread/sql/

202

https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-source
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-source
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-managed
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-managed
https://dev.mysql.com/doc/refman/8.0/en/group-replication-system-variables.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-asynchronous-connection-failover-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-asynchronous-connection-failover-managed-table.html

Asynchronous Connection Failover for Replicas

replica_monitor). The setting for the SOURCE_CONNECTION_AUTO_FAILOVER option of the CHANGE
REPLICATION SOURCE TO | CHANGE MASTER TO statement, and the source list, are transferred to a
clone of the replica during a remote cloning operation.

3.9.2 Asynchronous Connection Failover for Replicas

In MySQL 8.0.27 and later, asynchronous connection failover for replicas is activated
automatically for a replication channel on a Group Replication primary when you set
SOURCE_CONNECTION_AUTO_FAILOVER=1 in the CHANGE REPLICATION SOURCE TO statement for
the channel. The feature is designed for a group of senders and a group of receivers to keep synchronized
with each other even when some members are temporarily unavailable. When the feature is active and
correctly configured, if the primary that is replicating goes offline or into an error state, the new primary
starts replication on the same channel when it is elected. The new primary uses the source list for the
channel to select the source with the highest priority (weight) setting, which might not be the same as the
original source.

To configure this feature, the replication channel and the replication user account and password for
the channel must be set up on all the member servers in the replication group, and on any new joining
members. Ensure that SOURCE_RETRY_COUNT and SOURCE_CONNECT_RETRY are set to minimal
numbers that just allow a few retry attempts, for example 3 and 10. You can set up the replication channel
using CHANGE REPLICATION SOURCE TO, or if the new servers are provisioned using MySQL's clone
functionality, this all happens automatically. The SOURCE_CONNECTION_AUTO_FAILOVER setting
for the channel is broadcast to group members from the primary when they join. If you later disable
SOURCE_CONNECTION_AUTO_FAILOVER for the channel on the primary, this is also broadcast to the
secondary servers, and they change the status of the channel to match.

Note

A server participating in a group in single-primary mode must be started with --
skip-replica-start=ON. Otherwise, the server cannot join the group as a
secondary.

Asynchronous connection failover for replicas is activated and deactivated using the Group Replication
member action mysql_start_failover_channels_if_primary, which is enabled by default.
You can disable it for the whole group by disabling that member action on the primary, using the
group_replication_disable_member_action function, as in this example:

mysql> SELECT group_replication_disable_member_action("mysql_start_failover_channels_if_primary", "AFTER_PRIMARY_ELECTION");

The function can only be changed on a primary, and must be enabled or disabled for the
whole group, so you cannot have some members providing failover and others not. When the
mysql_start_failover_channels_if_primary member action is disabled, the channel
does not need to be configured on secondary members, but if the primary goes offline or into
an error state, replication stops for the channel. Note that if there is more than one channel with
SOURCE_CONNECTION_AUTO_FAILOVER=1 , the member action covers all the channels, so they cannot
be individually enabled and disabled by that method. Set SOURCE_CONNECTION_AUTO_FAILOVER=0 on
the primary to disable an individual channel.

The source list for a channel with SOURCE_CONNECTION_AUTO_FAILOVER=1 is broadcast to all
group members when they join, and also when it changes. This is the case whether the sources
are a managed group for which the membership is updated automatically, or whether they are
added or changed manually using asynchronous_connection_failover_add_source(),
asynchronous_connection_failover_delete_source(),
asynchronous_connection_failover_add_managed(), or
asynchronous_connection_failover_delete_managed(). All group members receive the current

203

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html#crs-opt-source_connection_auto_failover
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html#crs-opt-source_connection_auto_failover
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html#crs-opt-source_retry_count
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html#crs-opt-source_connect_retry
https://dev.mysql.com/doc/refman/8.0/en/group-replication-functions-for-member-actions.html#function_group-replication-disable-member-action
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-source
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-source
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-add-managed
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-async-failover.html#function_asynchronous-connection-failover-delete-managed

Semisynchronous Replication

source list as recorded in the mysql.replication_asynchronous_connection_failover and
mysql.replication_asynchronous_connection_failover_managed tables. Because the
sources do not have to be in a managed group, you can set up the function to synchronize a group of
receivers with one or more alternative standalone senders, or even a single sender. A standalone replica
that is not part of a replication group cannot use this feature.

3.10 Semisynchronous Replication

In addition to the built-in asynchronous replication, MySQL 8.0 supports an interface to semisynchronous
replication that is implemented by plugins. This section discusses what semisynchronous replication is and
how it works. The following sections cover the administrative interface to semisynchronous replication and
how to install, configure, and monitor it.

MySQL replication by default is asynchronous. The source writes events to its binary log and replicas
request them when they are ready. The source does not know whether or when a replica has retrieved
and processed the transactions, and there is no guarantee that any event ever reaches any replica. With
asynchronous replication, if the source crashes, transactions that it has committed might not have been
transmitted to any replica. Failover from source to replica in this case might result in failover to a server
that is missing transactions relative to the source.

With fully synchronous replication, when a source commits a transaction, all replicas have also committed
the transaction before the source returns to the session that performed the transaction. Fully synchronous
replication means failover from the source to any replica is possible at any time. The drawback of fully
synchronous replication is that there might be a lot of delay to complete a transaction.

Semisynchronous replication falls between asynchronous and fully synchronous replication. The source
waits until at least one replica has received and logged the events (the required number of replicas is
configurable), and then commits the transaction. The source does not wait for all replicas to acknowledge
receipt, and it requires only an acknowledgement from the replicas, not that the events have been fully
executed and committed on the replica side. Semisynchronous replication therefore guarantees that if the
source crashes, all the transactions that it has committed have been transmitted to at least one replica.

Compared to asynchronous replication, semisynchronous replication provides improved data integrity,
because when a commit returns successfully, it is known that the data exists in at least two places. Until a
semisynchronous source receives acknowledgment from the required number of replicas, the transaction is
on hold and not committed.

Compared to fully synchronous replication, semisynchronous replication is faster, because it can be
configured to balance your requirements for data integrity (the number of replicas acknowledging receipt of
the transaction) with the speed of commits, which are slower due to the need to wait for replicas.

Important

With semisynchronous replication, if the source crashes and a failover to a replica
is carried out, the failed source should not be reused as the replication source, and
should be discarded. It could have transactions that were not acknowledged by any
replica, which were therefore not committed before the failover.

If your goal is to implement a fault-tolerant replication topology where all the servers
receive the same transactions in the same order, and a server that crashes can
rejoin the group and be brought up to date automatically, you can use Group
Replication to achieve this. For information, see Group Replication.

The performance impact of semisynchronous replication compared to asynchronous replication is the
tradeoff for increased data integrity. The amount of slowdown is at least the TCP/IP roundtrip time to

204

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

Semisynchronous Replication

send the commit to the replica and wait for the acknowledgment of receipt by the replica. This means that
semisynchronous replication works best for close servers communicating over fast networks, and worst for
distant servers communicating over slow networks. Semisynchronous replication also places a rate limit
on busy sessions by constraining the speed at which binary log events can be sent from source to replica.
When one user is too busy, this slows it down, which can be useful in some deployment situations.

Semisynchronous replication between a source and its replicas operates as follows:

• A replica indicates whether it is semisynchronous-capable when it connects to the source.

• If semisynchronous replication is enabled on the source side and there is at least one semisynchronous
replica, a thread that performs a transaction commit on the source blocks and waits until at least one
semisynchronous replica acknowledges that it has received all events for the transaction, or until a
timeout occurs.

• The replica acknowledges receipt of a transaction's events only after the events have been written to its
relay log and flushed to disk.

• If a timeout occurs without any replica having acknowledged the transaction, the source reverts to
asynchronous replication. When at least one semisynchronous replica catches up, the source returns to
semisynchronous replication.

• Semisynchronous replication must be enabled on both the source and replica sides. If semisynchronous
replication is disabled on the source, or enabled on the source but on no replicas, the source uses
asynchronous replication.

While the source is blocking (waiting for acknowledgment from a replica), it does not return to the session
that performed the transaction. When the block ends, the source returns to the session, which then
can proceed to execute other statements. At this point, the transaction has committed on the source
side, and receipt of its events has been acknowledged by at least one replica. The number of replica
acknowledgments the source must receive per transaction before returning to the session is configurable,
and defaults to one acknowledgement (see Section 3.10.2, “Configuring Semisynchronous Replication”).

Blocking also occurs after rollbacks that are written to the binary log, which occurs when a transaction that
modifies nontransactional tables is rolled back. The rolled-back transaction is logged even though it has
no effect for transactional tables because the modifications to the nontransactional tables cannot be rolled
back and must be sent to replicas.

For statements that do not occur in transactional context (that is, when no transaction has been started
with START TRANSACTION or SET autocommit = 0), autocommit is enabled and each statement
commits implicitly. With semisynchronous replication, the source blocks for each such statement, just as it
does for explicit transaction commits.

By default, the source waits for replica acknowledgment of the transaction receipt after syncing the
binary log to disk, but before committing the transaction to the storage engine. As an alternative,
you can configure the source so that the source waits for replica acknowledgment after committing
the transaction to the storage engine, using the rpl_semi_sync_source_wait_point or
rpl_semi_sync_master_wait_point system variable. This setting affects the replication
characteristics and the data that clients can see on the source. For more information, see Section 3.10.2,
“Configuring Semisynchronous Replication”.

From MySQL 8.0.23, you can improve the performance of semisynchronous replication by enabling
the system variables replication_sender_observe_commit_only, which limits callbacks, and
replication_optimize_for_static_plugin_config, which adds shared locks and avoids
unnecessary lock acquisitions. These settings help as the number of replicas increases, because
contention for locks can slow down performance. Semisynchronous replication source servers can also

205

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Installing Semisynchronous Replication

get performance benefits from enabling these system variables, because they use the same locking
mechanisms as the replicas.

3.10.1 Installing Semisynchronous Replication

Semisynchronous replication is implemented using plugins, which must be installed on the source and on
the replicas to make semisynchronous replication available on the instances. There are different plugins
for a source and for a replica. After a plugin has been installed, you control it by means of the system
variables associated with it. These system variables are available only when the associated plugin has
been installed.

This section describes how to install the semisynchronous replication plugins. For general information
about installing plugins, see Installing and Uninstalling Plugins.

To use semisynchronous replication, the following requirements must be satisfied:

• The capability of installing plugins requires a MySQL server that supports dynamic loading. To verify
this, check that the value of the have_dynamic_loading system variable is YES. Binary distributions
should support dynamic loading.

• Replication must already be working, see Chapter 2, Configuring Replication.

• There must not be multiple replication channels configured. Semisynchronous replication is only
compatible with the default replication channel. See Section 5.2, “Replication Channels”.

From MySQL 8.0.26, new versions of the plugins that implement semisynchronous replication, one for the
source server and one for the replica, are supplied. The new plugins replace the terms “master” and “slave”
with “source” and “replica” in system variables and status variables, and you can install these versions
instead of the old ones. You cannot have both the new and the old version of the relevant plugin installed
on an instance. If you use the new version of the plugins, the new system variables and status variables
are available but the old ones are not. If you use the old version of the plugins, the old system variables
and status variables are available but the new ones are not.

The file name suffix for the plugin library files differs per platform (for example, .so for Unix and Unix-like
systems, and .dll for Windows). The plugin and library file names are as follows:

• Source server, old terminology: rpl_semi_sync_master plugin (semisync_master.so or
semisync_master.dll library)

• Source server, new terminology (from MySQL 8.0.26): rpl_semi_sync_source plugin
(semisync_source.so or semisync_source.dll library)

• Replica, old terminology: rpl_semi_sync_slave plugin (semisync_slave.so or
semisync_slave.dll library)

• Replica, new terminology (from MySQL 8.0.26): rpl_semi_sync_replica plugin
(semisync_replica.so or semisync_replica.dll library)

To be usable by a source or replica server, the appropriate plugin library file must be located in the MySQL
plugin directory (the directory named by the plugin_dir system variable). If necessary, configure the
plugin directory location by setting the value of plugin_dir at server startup. The source plugin library file
must be present in the plugin directory of the source server. The replica plugin library file must be present
in the plugin directory of each replica server.

To set up semisynchronous replication, use the following instructions. The INSTALL PLUGIN,
SET GLOBAL, STOP REPLICA, and START REPLICA statements mentioned here require the
REPLICATION_SLAVE_ADMIN privilege (or the deprecated SUPER privilege).

206

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_have_dynamic_loading
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super

Installing Semisynchronous Replication

To load the plugins, use the INSTALL PLUGIN statement on the source and on each replica that is to be
semisynchronous, adjusting the .so suffix for your platform as necessary.

On the source:

INSTALL PLUGIN rpl_semi_sync_master SONAME 'semisync_master.so';
Or from MySQL 8.0.26:
INSTALL PLUGIN rpl_semi_sync_source SONAME 'semisync_source.so';

On each replica:

INSTALL PLUGIN rpl_semi_sync_slave SONAME 'semisync_slave.so';
Or from MySQL 8.0.26:
INSTALL PLUGIN rpl_semi_sync_replica SONAME 'semisync_replica.so';

If an attempt to install a plugin results in an error on Linux similar to that shown here, you must install
libimf:

mysql> INSTALL PLUGIN rpl_semi_sync_source SONAME 'semisync_source.so';
ERROR 1126 (HY000): Can't open shared library
'/usr/local/mysql/lib/plugin/semisync_source.so'
(errno: 22 libimf.so: cannot open shared object file:
No such file or directory)

You can obtain libimf from https://dev.mysql.com/downloads/os-linux.html.

To verify plugin installation, examine the Information Schema PLUGINS table or use the SHOW PLUGINS
statement (see Obtaining Server Plugin Information). For example:

mysql> SELECT PLUGIN_NAME, PLUGIN_STATUS
 FROM INFORMATION_SCHEMA.PLUGINS
 WHERE PLUGIN_NAME LIKE '%semi%';
+----------------------+---------------+
| PLUGIN_NAME | PLUGIN_STATUS |
+----------------------+---------------+
| rpl_semi_sync_source | ACTIVE |
+----------------------+---------------+

If a plugin fails to initialize, check the server error log for diagnostic messages.

After a semisynchronous replication plugin has been installed, it is disabled by default. The plugins must
be enabled both on the source side and the replica side to enable semisynchronous replication. If only one
side is enabled, replication is asynchronous. To enable the plugins, set the appropriate system variable
either at runtime using SET GLOBAL, or at server startup on the command line or in an option file. For
example:

On the source:
SET GLOBAL rpl_semi_sync_master_enabled = 1;
Or from MySQL 8.0.26 with the rpl_semi_sync_source plugin:
SET GLOBAL rpl_semi_sync_source_enabled = 1;

On each replica:
SET GLOBAL rpl_semi_sync_slave_enabled = 1;
Or from MySQL 8.0.26 with the rpl_semi_sync_replica plugin:
SET GLOBAL rpl_semi_sync_replica_enabled = 1;

If you enable semisynchronous replication on a replica at runtime, you must also start the replication I/O
(receiver) thread (stopping it first if it is already running) to cause the replica to connect to the source and
register as a semisynchronous replica:

STOP SLAVE IO_THREAD;
START SLAVE IO_THREAD;
Or from MySQL 8.0.22:

207

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/downloads/os-linux.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Configuring Semisynchronous Replication

STOP REPLICA IO_THREAD;
START REPLICA IO_THREAD;

If the replication I/O (receiver) thread is already running and you do not restart it, the replica continues to
use asynchronous replication.

A setting listed in an option file takes effect each time the server starts. For example, you can set the
variables in my.cnf files on the source and replica servers as follows:

 On the source:
[mysqld]
rpl_semi_sync_master_enabled=1
Or from MySQL 8.0.26 with the rpl_semi_sync_source plugin:
rpl_semi_sync_source_enabled=1

 On each replica:
[mysqld]
rpl_semi_sync_slave_enabled=1
Or from MySQL 8.0.26 with the rpl_semi_sync_source plugin:
rpl_semi_sync_replica_enabled=1

You can configure the behavior of the semisynchronous replication plugins using the system variables
that become available when you install the plugins. For information on key system variables, see
Section 3.10.2, “Configuring Semisynchronous Replication”.

3.10.2 Configuring Semisynchronous Replication

When you install the source and replica plugins for semisynchronous replication (see Section 3.10.1,
“Installing Semisynchronous Replication”), system variables become available to control plugin behavior.

To check the current values of the status variables for semisynchronous replication, use SHOW
VARIABLES:

mysql> SHOW VARIABLES LIKE 'rpl_semi_sync%';

From MySQL 8.0.26, new versions of the source and replica plugins are supplied, which replace the terms
“master” and “slave” with “source” and “replica” in system variables and status variables. If you install the
new rpl_semi_sync_source and rpl_semi_sync_replica plugins, the new system variables and
status variables are available but the old ones are not. If you install the old rpl_semi_sync_master
and rpl_semi_sync_slave plugins, the old system variables and status variables are available but the
new ones are not. You cannot have both the new and the old version of the relevant plugin installed on an
instance.

All the rpl_semi_sync_xxx system variables are described at Section 2.6.2, “Replication Source
Options and Variables” and Section 2.6.3, “Replica Server Options and Variables”. Some key system
variables are:

rpl_semi_sync_source_enabled
or
rpl_semi_sync_master_enabled

Controls whether semisynchronous replication is enabled on the source
server. To enable or disable the plugin, set this variable to 1 or 0,
respectively. The default is 0 (off).

rpl_semi_sync_replica_enabled
or
rpl_semi_sync_slave_enabled

Controls whether semisynchronous replication is enabled on the replica.

rpl_semi_sync_source_timeout
or
rpl_semi_sync_master_timeout

A value in milliseconds that controls how long the source waits on
a commit for acknowledgment from a replica before timing out and
reverting to asynchronous replication. The default value is 10000 (10
seconds).

208

https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Semisynchronous Replication Monitoring

rpl_semi_sync_source_wait_for_replica_count
or
rpl_semi_sync_master_wait_for_slave_count

Controls the number of replica acknowledgments the source must
receive per transaction before returning to the session. The default is
1, meaning that the source only waits for one replica to acknowledge
receipt of the transaction's events.

The rpl_semi_sync_source_wait_point or rpl_semi_sync_master_wait_point system
variable controls the point at which a semisynchronous source server waits for replica acknowledgment of
transaction receipt before returning a status to the client that committed the transaction. These values are
permitted:

• AFTER_SYNC (the default): The source writes each transaction to its binary log and the replica, and
syncs the binary log to disk. The source waits for replica acknowledgment of transaction receipt after the
sync. Upon receiving acknowledgment, the source commits the transaction to the storage engine and
returns a result to the client, which then can proceed.

• AFTER_COMMIT: The source writes each transaction to its binary log and the replica, syncs the binary
log, and commits the transaction to the storage engine. The source waits for replica acknowledgment of
transaction receipt after the commit. Upon receiving acknowledgment, the source returns a result to the
client, which then can proceed.

The replication characteristics of these settings differ as follows:

• With AFTER_SYNC, all clients see the committed transaction at the same time, which is after it has been
acknowledged by the replica and committed to the storage engine on the source. Thus, all clients see
the same data on the source.

In the event of source failure, all transactions committed on the source have been replicated to the
replica (saved to its relay log). An unexpected exit of the source and failover to the replica is lossless
because the replica is up to date. As noted above, the source should not be reused after the failover.

• With AFTER_COMMIT, the client issuing the transaction gets a return status only after the server commits
to the storage engine and receives replica acknowledgment. After the commit and before replica
acknowledgment, other clients can see the committed transaction before the committing client.

If something goes wrong such that the replica does not process the transaction, then in the event of
an unexpected source exit and failover to the replica, it is possible for such clients to see a loss of data
relative to what they saw on the source.

From MySQL 8.0.23, you can improve the performance of semisynchronous replication by enabling
the system variables replication_sender_observe_commit_only, which limits callbacks, and
replication_optimize_for_static_plugin_config, which adds shared locks and avoids
unnecessary lock acquisitions. These settings help as the number of replicas increases, because
contention for locks can slow down performance. Semisynchronous replication source servers can also
get performance benefits from enabling these system variables, because they use the same locking
mechanisms as the replicas.

3.10.3 Semisynchronous Replication Monitoring

The plugins for semisynchronous replication expose a number of status variables that enable you to
monitor their operation. To check the current values of the status variables, use SHOW STATUS:

mysql> SHOW STATUS LIKE 'Rpl_semi_sync%';

From MySQL 8.0.26, new versions of the source and replica plugins are supplied, which replace the terms
“master” and “slave” with “source” and “replica” in system variables and status variables. If you install the
new rpl_semi_sync_source and rpl_semi_sync_replica plugins, the new system variables and

209

https://dev.mysql.com/doc/refman/8.0/en/show-status.html

Delayed Replication

status variables are available but the old ones are not. If you install the old rpl_semi_sync_master
and rpl_semi_sync_slave plugins, the old system variables and status variables are available but the
new ones are not. You cannot have both the new and the old version of the relevant plugin installed on an
instance.

All Rpl_semi_sync_xxx status variables are described at Server Status Variables. Some examples are:

• Rpl_semi_sync_source_clients or Rpl_semi_sync_master_clients

The number of semisynchronous replicas that are connected to the source server.

• Rpl_semi_sync_source_status or Rpl_semi_sync_master_status

Whether semisynchronous replication currently is operational on the source server. The value is 1 if
the plugin has been enabled and a commit acknowledgment has not occurred. It is 0 if the plugin is
not enabled or the source has fallen back to asynchronous replication due to commit acknowledgment
timeout.

• Rpl_semi_sync_source_no_tx or Rpl_semi_sync_master_no_tx

The number of commits that were not acknowledged successfully by a replica.

• Rpl_semi_sync_source_yes_tx or Rpl_semi_sync_master_yes_tx

The number of commits that were acknowledged successfully by a replica.

• Rpl_semi_sync_replica_status or Rpl_semi_sync_slave_status

Whether semisynchronous replication currently is operational on the replica. This is 1 if the plugin has
been enabled and the replication I/O (receiver) thread is running, 0 otherwise.

When the source switches between asynchronous or semisynchronous replication due to commit-
blocking timeout or a replica catching up, it sets the value of the Rpl_semi_sync_source_status
or Rpl_semi_sync_master_status status variable appropriately. Automatic fallback from
semisynchronous to asynchronous replication on the source means that it is possible for the
rpl_semi_sync_source_enabled or rpl_semi_sync_master_enabled system variable to have
a value of 1 on the source side even when semisynchronous replication is in fact not operational at the
moment. You can monitor the Rpl_semi_sync_source_status or Rpl_semi_sync_master_status
status variable to determine whether the source currently is using asynchronous or semisynchronous
replication.

3.11 Delayed Replication

MySQL supports delayed replication such that a replica server deliberately executes transactions later than
the source by at least a specified amount of time. This section describes how to configure a replication
delay on a replica, and how to monitor replication delay.

In MySQL 8.0, the method of delaying replication depends on two timestamps,
immediate_commit_timestamp and original_commit_timestamp (see Replication Delay
Timestamps). If all servers in the replication topology are running MySQL 8.0 or above, delayed replication
is measured using these timestamps. If either the immediate source or replica is not using these
timestamps, the implementation of delayed replication from MySQL 5.7 is used (see Delayed Replication).
This section describes delayed replication between servers which are all using these timestamps.

The default replication delay is 0 seconds. Use a CHANGE REPLICATION SOURCE TO
SOURCE_DELAY=N statement (from MySQL 8.0.23) or a CHANGE MASTER TO MASTER_DELAY=N

210

https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_clients
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_clients
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_no_tx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_no_tx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_yes_tx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_yes_tx
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_replica_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_slave_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_source_status
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Rpl_semi_sync_master_status
https://dev.mysql.com/doc/refman/5.7/en/replication-delayed.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Replication Delay Timestamps

statement (before MySQL 8.0.23) to set the delay to N seconds. A transaction received from the source is
not executed until at least N seconds later than its commit on the immediate source. The delay happens
per transaction (not event as in previous MySQL versions) and the actual delay is imposed only on
gtid_log_event or anonymous_gtid_log_event. The other events in the transaction always follow
these events without any waiting time imposed on them.

Note

START REPLICA and STOP REPLICA take effect immediately and ignore any
delay. RESET REPLICA resets the delay to 0.

The replication_applier_configuration Performance Schema table contains the
DESIRED_DELAY column which shows the delay configured using the SOURCE_DELAY | MASTER_DELAY
option. The replication_applier_status Performance Schema table contains the
REMAINING_DELAY column which shows the number of delay seconds remaining.

Delayed replication can be used for several purposes:

• To protect against user mistakes on the source. With a delay you can roll back a delayed replica to the
time just before the mistake.

• To test how the system behaves when there is a lag. For example, in an application, a lag might be
caused by a heavy load on the replica. However, it can be difficult to generate this load level. Delayed
replication can simulate the lag without having to simulate the load. It can also be used to debug
conditions related to a lagging replica.

• To inspect what the database looked like in the past, without having to reload a backup. For example,
by configuring a replica with a delay of one week, if you then need to see what the database looked like
before the last few days' worth of development, the delayed replica can be inspected.

Replication Delay Timestamps

MySQL 8.0 provides a new method for measuring delay (also referred to as replication lag) in replication
topologies that depends on the following timestamps associated with the GTID of each transaction (instead
of each event) written to the binary log.

• original_commit_timestamp: the number of microseconds since epoch when the transaction was
written (committed) to the binary log of the original source.

• immediate_commit_timestamp: the number of microseconds since epoch when the transaction was
written (committed) to the binary log of the immediate source.

The output of mysqlbinlog displays these timestamps in two formats, microseconds from epoch and also
TIMESTAMP format, which is based on the user defined time zone for better readability. For example:

#170404 10:48:05 server id 1 end_log_pos 233 CRC32 0x016ce647 GTID last_committed=0
\ sequence_number=1 original_committed_timestamp=1491299285661130 immediate_commit_timestamp=1491299285843771
original_commit_timestamp=1491299285661130 (2017-04-04 10:48:05.661130 WEST)
immediate_commit_timestamp=1491299285843771 (2017-04-04 10:48:05.843771 WEST)
 /*!80001 SET @@SESSION.original_commit_timestamp=1491299285661130*//*!*/;
 SET @@SESSION.GTID_NEXT= 'aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa:1'/*!*/;
at 233

As a rule, the original_commit_timestamp is always the same on all replicas where the transaction
is applied. In source-replica replication, the original_commit_timestamp of a transaction in the
(original) source’s binary log is always the same as its immediate_commit_timestamp. In the
replica’s relay log, the original_commit_timestamp and immediate_commit_timestamp of the

211

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-configuration-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-table.html

Monitoring Replication Delay

transaction are the same as in the source’s binary log; whereas in its own binary log, the transaction’s
immediate_commit_timestamp corresponds to when the replica committed the transaction.

In a Group Replication setup, when the original source is a member of a group, the
original_commit_timestamp is generated when the transaction is ready to be committed. In
other words, when it finished executing on the original source and its write set is ready to be sent to
all members of the group for certification. When the original source is a server outside the group, the
original_commit_timestamp is preserved. The same original_commit_timestamp for a
particular transaction is replicated to all servers in the group, and to any replica outside the group that is
replicating from a member. From MySQL 8.0.26, each recipient of the transaction also stores the local
commit time in its binary log using immediate_commit_timestamp.

View change events, which are exclusive to Group Replication, are a special case. Transactions containing
these events are generated by each group member but share the same GTID (so, they are not first
executed in a source and then replicated to the group, but all members of the group execute and apply the
same transaction). Before MySQL 8.0.26, these transactions have their original_commit_timestamp
set to zero, and they appear this way in viewable output. From MySQL 8.0.26, for improved observability,
group members set local timestamp values for transactions associated with view change events.

Monitoring Replication Delay

One of the most common ways to monitor replication delay (lag) in previous MySQL versions was by
relying on the Seconds_Behind_Master field in the output of SHOW REPLICA STATUS. However,
this metric is not suitable when using replication topologies more complex than the traditional source-
replica setup, such as Group Replication. The addition of immediate_commit_timestamp and
original_commit_timestamp to MySQL 8 provides a much finer degree of information about
replication delay. The recommended method to monitor replication delay in a topology that supports these
timestamps is using the following Performance Schema tables.

• replication_connection_status: current status of the connection to the source, provides
information on the last and current transaction the connection thread queued into the relay log.

• replication_applier_status_by_coordinator: current status of the coordinator thread that
only displays information when using a multithreaded replica, provides information on the last transaction
buffered by the coordinator thread to a worker’s queue, as well as the transaction it is currently buffering.

• replication_applier_status_by_worker: current status of the thread(s) applying transactions
received from the source, provides information about the transactions applied by the replication SQL
thread, or by each worker thread when using a multithreaded replica.

Using these tables you can monitor information about the last transaction the corresponding thread
processed and the transaction that thread is currently processing. This information comprises:

• a transaction’s GTID

• a transaction's original_commit_timestamp and immediate_commit_timestamp, retrieved from
the replica’s relay log

• the time a thread started processing a transaction

• for the last processed transaction, the time the thread finished processing it

In addition to the Performance Schema tables, the output of SHOW REPLICA STATUS has three fields that
show:

• SQL_Delay: A nonnegative integer indicating the replication delay configured using CHANGE
REPLICATION SOURCE TO SOURCE_DELAY=N (from MySQL 8.0.23) or CHANGE MASTER TO
MASTER_DELAY=N (before MySQL 8.0.23), measured in seconds.

212

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-coordinator-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Monitoring Replication Delay

• SQL_Remaining_Delay: When Replica_SQL_Running_State is Waiting until
MASTER_DELAY seconds after master executed event, this field contains an integer indicating
the number of seconds left of the delay. At other times, this field is NULL.

• Replica_SQL_Running_State: A string indicating the state of the SQL thread (analogous to
Replica_IO_State). The value is identical to the State value of the SQL thread as displayed by
SHOW PROCESSLIST.

When the replication SQL thread is waiting for the delay to elapse before executing an event, SHOW
PROCESSLIST displays its State value as Waiting until MASTER_DELAY seconds after
master executed event.

213

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

214

Chapter 4 Replication Notes and Tips

Table of Contents
4.1 Replication Features and Issues .. 215

4.1.1 Replication and AUTO_INCREMENT .. 216
4.1.2 Replication and BLACKHOLE Tables .. 217
4.1.3 Replication and Character Sets .. 217
4.1.4 Replication and CHECKSUM TABLE .. 217
4.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER 217
4.1.6 Replication of CREATE ... IF NOT EXISTS Statements .. 217
4.1.7 Replication of CREATE TABLE ... SELECT Statements ... 218
4.1.8 Replication of CURRENT_USER() .. 218
4.1.9 Replication with Differing Table Definitions on Source and Replica 219
4.1.10 Replication and DIRECTORY Table Options ... 223
4.1.11 Replication of DROP ... IF EXISTS Statements .. 224
4.1.12 Replication and Floating-Point Values ... 224
4.1.13 Replication and FLUSH .. 224
4.1.14 Replication and System Functions .. 224
4.1.15 Replication and Fractional Seconds Support .. 226
4.1.16 Replication of Invoked Features .. 226
4.1.17 Replication of JSON Documents ... 228
4.1.18 Replication and LIMIT .. 228
4.1.19 Replication and LOAD DATA .. 229
4.1.20 Replication and max_allowed_packet .. 229
4.1.21 Replication and MEMORY Tables ... 230
4.1.22 Replication of the mysql System Schema .. 231
4.1.23 Replication and the Query Optimizer ... 231
4.1.24 Replication and Partitioning .. 231
4.1.25 Replication and REPAIR TABLE ... 231
4.1.26 Replication and Reserved Words .. 232
4.1.27 Replication and Row Searches ... 232
4.1.28 Replication and Source or Replica Shutdowns ... 233
4.1.29 Replica Errors During Replication ... 234
4.1.30 Replication and Server SQL Mode .. 235
4.1.31 Replication and Temporary Tables .. 235
4.1.32 Replication Retries and Timeouts .. 236
4.1.33 Replication and Time Zones ... 236
4.1.34 Replication and Transaction Inconsistencies .. 237
4.1.35 Replication and Transactions .. 239
4.1.36 Replication and Triggers ... 241
4.1.37 Replication and TRUNCATE TABLE ... 242
4.1.38 Replication and User Name Length ... 242
4.1.39 Replication and Variables ... 242
4.1.40 Replication and Views .. 244

4.2 Replication Compatibility Between MySQL Versions ... 244
4.3 Upgrading a Replication Topology ... 245
4.4 Troubleshooting Replication .. 247
4.5 How to Report Replication Bugs or Problems ... 249

4.1 Replication Features and Issues

215

Replication and AUTO_INCREMENT

The following sections provide information about what is supported and what is not in MySQL replication,
and about specific issues and situations that may occur when replicating certain statements.

Statement-based replication depends on compatibility at the SQL level between the source and replica.
In other words, successful statement-based replication requires that any SQL features used be supported
by both the source and the replica servers. If you use a feature on the source server that is available only
in the current version of MySQL, you cannot replicate to a replica that uses an earlier version of MySQL.
Such incompatibilities can also occur within a release series as well as between versions.

If you are planning to use statement-based replication between MySQL 8.0 and a previous MySQL release
series, it is a good idea to consult the edition of the MySQL Reference Manual corresponding to the earlier
release series for information regarding the replication characteristics of that series.

With MySQL's statement-based replication, there may be issues with replicating stored routines or triggers.
You can avoid these issues by using MySQL's row-based replication instead. For a detailed list of issues,
see Stored Program Binary Logging. For more information about row-based logging and row-based
replication, see Binary Logging Formats, and Section 5.1, “Replication Formats”.

For additional information specific to replication and InnoDB, see InnoDB and MySQL Replication. For
information relating to replication with NDB Cluster, see NDB Cluster Replication.

4.1.1 Replication and AUTO_INCREMENT

Statement-based replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is
carried out subject to the following exceptions:

• A statement invoking a trigger or function that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. These statements are marked as unsafe. (Bug
#45677)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT column
that is not the first column of this composite key is not safe for statement-based logging or replication.
These statements are marked as unsafe. (Bug #11754117, Bug #45670)

This issue does not affect tables using the InnoDB storage engine, since an InnoDB table with an
AUTO_INCREMENT column requires at least one key where the auto-increment column is the only or
leftmost column.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the replica and the source. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which the
rows were inserted. If it is important to have the same order on the source and replica, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both source and replica, the ORDER BY
clause must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a table

216

https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-formats.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-and-mysql-replication.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_auto_increment
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-like.html

Replication and BLACKHOLE Tables

definition includes any of those characteristics, create t2 using a CREATE TABLE statement that is
identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Problems with ALTER TABLE.

4.1.2 Replication and BLACKHOLE Tables

The BLACKHOLE storage engine accepts data but discards it and does not store it. When performing binary
logging, all inserts to such tables are always logged, regardless of the logging format in use. Updates and
deletes are handled differently depending on whether statement based or row based logging is in use.
With the statement based logging format, all statements affecting BLACKHOLE tables are logged, but their
effects ignored. When using row-based logging, updates and deletes to such tables are simply skipped—
they are not written to the binary log. A warning is logged whenever this occurs.

For this reason we recommend when you replicate to tables using the BLACKHOLE storage engine that you
have the binlog_format server variable set to STATEMENT, and not to either ROW or MIXED.

4.1.3 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the source has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on the
database default character set. A good workaround is to state the character set and collation explicitly in
CREATE TABLE statements.

4.1.4 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends on
the table row storage format. The storage format is not guaranteed to remain the same between MySQL
versions, so the checksum value might change following an upgrade.

4.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER

The statements CREATE SERVER, ALTER SERVER, and DROP SERVER are not written to the binary log,
regardless of the binary logging format that is in use.

4.1.6 Replication of CREATE ... IF NOT EXISTS Statements

MySQL applies these rules when various CREATE ... IF NOT EXISTS statements are replicated:

• Every CREATE DATABASE IF NOT EXISTS statement is replicated, whether or not the database
already exists on the source.

• Similarly, every CREATE TABLE IF NOT EXISTS statement without a SELECT is replicated, whether or
not the table already exists on the source. This includes CREATE TABLE IF NOT EXISTS ... LIKE.
Replication of CREATE TABLE IF NOT EXISTS ... SELECT follows somewhat different rules; see
Section 4.1.7, “Replication of CREATE TABLE ... SELECT Statements”, for more information.

217

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table-problems.html
https://dev.mysql.com/doc/refman/8.0/en/blackhole-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/blackhole-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/checksum-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-server.html
https://dev.mysql.com/doc/refman/8.0/en/alter-server.html
https://dev.mysql.com/doc/refman/8.0/en/drop-server.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-like.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html

Replication of CREATE TABLE ... SELECT Statements

• CREATE EVENT IF NOT EXISTS is always replicated, whether or not the event named in the
statement already exists on the source.

• CREATE USER is written to the binary log only if successful. If the statement includes IF NOT EXISTS,
it is considered successful, and is logged as long as at least one user named in the statement is created;
in such cases, the statement is logged as written; this includes references to existing users that were not
created. See CREATE USER Binary Logging, for more information.

• (MySQL 8.0.29 and later:) CREATE PROCEDURE IF NOT EXISTS, CREATE FUNCTION IF NOT
EXISTS, or CREATE TRIGGER IF NOT EXISTS, if successful, is written in its entirety to the binary
log (including the IF NOT EXISTS clause), whether or not the statement raised a warning because the
object (procedure, function, or trigger) already existed.

4.1.7 Replication of CREATE TABLE ... SELECT Statements

MySQL applies these rules when CREATE TABLE ... SELECT statements are replicated:

• CREATE TABLE ... SELECT always performs an implicit commit (Statements That Cause an Implicit
Commit).

• If the destination table does not exist, logging occurs as follows. It does not matter whether IF NOT
EXISTS is present.

• STATEMENT or MIXED format: The statement is logged as written.

• ROW format: The statement is logged as a CREATE TABLE statement followed by a series of insert-row
events.

Prior to MySQL 8.0.21, the statement is logged as two transactions. As of MySQL 8.0.21, on storage
engines that support atomic DDL, it is logged as one transaction. For more information, see Atomic
Data Definition Statement Support.

• If the CREATE TABLE ... SELECT statement fails, nothing is logged. This includes the case that the
destination table exists and IF NOT EXISTS is not given.

• If the destination table exists and IF NOT EXISTS is given, MySQL 8.0 ignores the statement
completely; nothing is inserted or logged.

MySQL 8.0 does not allow a CREATE TABLE ... SELECT statement to make any changes in tables
other than the table that is created by the statement.

4.1.8 Replication of CURRENT_USER()

The following statements support use of the CURRENT_USER() function to take the place of the name of,
and possibly the host for, an affected user or a definer:

• DROP USER

• RENAME USER

• GRANT

• REVOKE

• CREATE FUNCTION

• CREATE PROCEDURE

218

https://dev.mysql.com/doc/refman/8.0/en/create-event.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html#create-user-binary-logging
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/create-trigger.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html
https://dev.mysql.com/doc/refman/8.0/en/implicit-commit.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html
https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/rename-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html

Replication with Differing Table Definitions on Source and Replica

• CREATE TRIGGER

• CREATE EVENT

• CREATE VIEW

• ALTER EVENT

• ALTER VIEW

• SET PASSWORD

When binary logging is enabled and CURRENT_USER() or CURRENT_USER is used as the definer in any
of these statements, MySQL Server ensures that the statement is applied to the same user on both the
source and the replica when the statement is replicated. In some cases, such as statements that change
passwords, the function reference is expanded before it is written to the binary log, so that the statement
includes the user name. For all other cases, the name of the current user on the source is replicated to
the replica as metadata, and the replica applies the statement to the current user named in the metadata,
rather than to the current user on the replica.

4.1.9 Replication with Differing Table Definitions on Source and Replica

Source and target tables for replication do not have to be identical. A table on the source can have more or
fewer columns than the replica's copy of the table. In addition, corresponding table columns on the source
and the replica can use different data types, subject to certain conditions.

Note

Replication between tables which are partitioned differently from one another is not
supported. See Section 4.1.24, “Replication and Partitioning”.

In all cases where the source and target tables do not have identical definitions, the database and table
names must be the same on both the source and the replica. Additional conditions are discussed, with
examples, in the following two sections.

4.1.9.1 Replication with More Columns on Source or Replica

You can replicate a table from the source to the replica such that the source and replica copies of the table
have differing numbers of columns, subject to the following conditions:

• Columns common to both versions of the table must be defined in the same order on the source and the
replica. (This is true even if both tables have the same number of columns.)

• Columns common to both versions of the table must be defined before any additional columns.

This means that executing an ALTER TABLE statement on the replica where a new column is inserted
into the table within the range of columns common to both tables causes replication to fail, as shown in
the following example:

Suppose that a table t, existing on the source and the replica, is defined by the following CREATE
TABLE statement:

CREATE TABLE t (
 c1 INT,
 c2 INT,
 c3 INT
);

219

https://dev.mysql.com/doc/refman/8.0/en/create-trigger.html
https://dev.mysql.com/doc/refman/8.0/en/create-event.html
https://dev.mysql.com/doc/refman/8.0/en/create-view.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/alter-view.html
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Replication with Differing Table Definitions on Source and Replica

Suppose that the ALTER TABLE statement shown here is executed on the replica:

ALTER TABLE t ADD COLUMN cnew1 INT AFTER c3;

The previous ALTER TABLE is permitted on the replica because the columns c1, c2, and c3 that are
common to both versions of table t remain grouped together in both versions of the table, before any
columns that differ.

However, the following ALTER TABLE statement cannot be executed on the replica without causing
replication to break:

ALTER TABLE t ADD COLUMN cnew2 INT AFTER c2;

Replication fails after execution on the replica of the ALTER TABLE statement just shown, because the
new column cnew2 comes between columns common to both versions of t.

• Each “extra” column in the version of the table having more columns must have a default value.

A column's default value is determined by a number of factors, including its type, whether it is defined
with a DEFAULT option, whether it is declared as NULL, and the server SQL mode in effect at the time of
its creation; for more information, see Data Type Default Values).

In addition, when the replica's copy of the table has more columns than the source's copy, each column
common to the tables must use the same data type in both tables.

Examples. The following examples illustrate some valid and invalid table definitions:

More columns on the source. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

The following table definitions would raise an error because the definitions of the columns common to both
versions of the table are in a different order on the replica than they are on the source:

source> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT);

The following table definitions would also raise an error because the definition of the extra column on the
source appears before the definitions of the columns common to both versions of the table:

source> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT);

More columns on the replica. The following table definitions are valid and replicate correctly:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

The following definitions raise an error because the columns common to both versions of the table are not
defined in the same order on both the source and the replica:

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c2 INT, c1 INT, c3 INT);

The following table definitions also raise an error because the definition for the extra column in the replica's
version of the table appears before the definitions for the columns which are common to both versions of
the table:

220

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/data-type-defaults.html

Replication with Differing Table Definitions on Source and Replica

source> CREATE TABLE t1 (c1 INT, c2 INT);
replica> CREATE TABLE t1 (c3 INT, c1 INT, c2 INT);

The following table definitions fail because the replica's version of the table has additional columns
compared to the source's version, and the two versions of the table use different data types for the
common column c2:

source> CREATE TABLE t1 (c1 INT, c2 BIGINT);
replica> CREATE TABLE t1 (c1 INT, c2 INT, c3 INT);

4.1.9.2 Replication of Columns Having Different Data Types

Corresponding columns on the source's and the replica's copies of the same table ideally should have the
same data type. However, this is not always strictly enforced, as long as certain conditions are met.

It is usually possible to replicate from a column of a given data type to another column of the same type
and same size or width, where applicable, or larger. For example, you can replicate from a CHAR(10)
column to another CHAR(10), or from a CHAR(10) column to a CHAR(25) column without any problems.
In certain cases, it also possible to replicate from a column having one data type (on the source) to a
column having a different data type (on the replica); when the data type of the source's version of the
column is promoted to a type that is the same size or larger on the replica, this is known as attribute
promotion.

Attribute promotion can be used with both statement-based and row-based replication, and is not
dependent on the storage engine used by either the source or the replica. However, the choice of logging
format does have an effect on the type conversions that are permitted; the particulars are discussed later in
this section.

Important

Whether you use statement-based or row-based replication, the replica's copy of
the table cannot contain more columns than the source's copy if you wish to employ
attribute promotion.

Statement-based replication. When using statement-based replication, a simple rule of thumb to
follow is, “If the statement run on the source would also execute successfully on the replica, it should also
replicate successfully”. In other words, if the statement uses a value that is compatible with the type of a
given column on the replica, the statement can be replicated. For example, you can insert any value that
fits in a TINYINT column into a BIGINT column as well; it follows that, even if you change the type of a
TINYINT column in the replica's copy of a table to BIGINT, any insert into that column on the source that
succeeds should also succeed on the replica, since it is impossible to have a legal TINYINT value that is
large enough to exceed a BIGINT column.

Row-based replication: attribute promotion and demotion. Row-based replication supports attribute
promotion and demotion between smaller data types and larger types. It is also possible to specify whether
or not to permit lossy (truncated) or non-lossy conversions of demoted column values, as explained later in
this section.

Lossy and non-lossy conversions. In the event that the target type cannot represent the value being
inserted, a decision must be made on how to handle the conversion. If we permit the conversion but
truncate (or otherwise modify) the source value to achieve a “fit” in the target column, we make what is
known as a lossy conversion. A conversion which does not require truncation or similar modifications to fit
the source column value in the target column is a non-lossy conversion.

Type conversion modes. The global value of the system variable replica_type_conversions
(from MySQL 8.0.26) or slave_type_conversions (before MySQL 8.0.26) controls the type conversion

221

Replication with Differing Table Definitions on Source and Replica

mode used on the replica. This variable takes a set of values from the following list, which describes the
effects of each mode on the replica's type-conversion behavior:

ALL_LOSSY In this mode, type conversions that would mean loss of information are
permitted.

This does not imply that non-lossy conversions are permitted, merely
that only cases requiring either lossy conversions or no conversion at
all are permitted; for example, enabling only this mode permits an INT
column to be converted to TINYINT (a lossy conversion), but not a
TINYINT column to an INT column (non-lossy). Attempting the latter
conversion in this case would cause replication to stop with an error on
the replica.

ALL_NON_LOSSY This mode permits conversions that do not require truncation or other
special handling of the source value; that is, it permits conversions
where the target type has a wider range than the source type.

Setting this mode has no bearing on whether lossy conversions
are permitted; this is controlled with the ALL_LOSSY mode. If only
ALL_NON_LOSSY is set, but not ALL_LOSSY, then attempting a
conversion that would result in the loss of data (such as INT to
TINYINT, or CHAR(25) to VARCHAR(20)) causes the replica to stop
with an error.

ALL_LOSSY,ALL_NON_LOSSY When this mode is set, all supported type conversions are permitted,
whether or not they are lossy conversions.

ALL_SIGNED Treat promoted integer types as signed values (the default behavior).

ALL_UNSIGNED Treat promoted integer types as unsigned values.

ALL_SIGNED,ALL_UNSIGNED Treat promoted integer types as signed if possible, otherwise as
unsigned.

[empty] When replica_type_conversions or slave_type_conversions
is not set, no attribute promotion or demotion is permitted; this means
that all columns in the source and target tables must be of the same
types.

This mode is the default.

When an integer type is promoted, its signedness is not preserved. By default, the replica treats all
such values as signed. You can control this behavior using ALL_SIGNED, ALL_UNSIGNED, or both.
ALL_SIGNED tells the replica to treat all promoted integer types as signed; ALL_UNSIGNED instructs it
to treat these as unsigned. Specifying both causes the replica to treat the value as signed if possible,
otherwise to treat it as unsigned; the order in which they are listed is not significant. Neither ALL_SIGNED
nor ALL_UNSIGNED has any effect if at least one of ALL_LOSSY or ALL_NONLOSSY is not also used.

Changing the type conversion mode requires restarting the replica with the new
replica_type_conversions or slave_type_conversions setting.

Supported conversions. Supported conversions between different but similar data types are shown in
the following list:

• Between any of the integer types TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT.

222

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Replication and DIRECTORY Table Options

This includes conversions between the signed and unsigned versions of these types.

Lossy conversions are made by truncating the source value to the maximum (or minimum) permitted
by the target column. For ensuring non-lossy conversions when going from unsigned to signed types,
the target column must be large enough to accommodate the range of values in the source column. For
example, you can demote TINYINT UNSIGNED non-lossily to SMALLINT, but not to TINYINT.

• Between any of the decimal types DECIMAL, FLOAT, DOUBLE, and NUMERIC.

FLOAT to DOUBLE is a non-lossy conversion; DOUBLE to FLOAT can only be handled lossily. A
conversion from DECIMAL(M,D) to DECIMAL(M',D') where D' >= D and (M'-D') >= (M-D) is
non-lossy; for any case where M' < M, D' < D, or both, only a lossy conversion can be made.

For any of the decimal types, if a value to be stored cannot be fit in the target type, the value is rounded
down according to the rounding rules defined for the server elsewhere in the documentation. See
Rounding Behavior, for information about how this is done for decimal types.

• Between any of the string types CHAR, VARCHAR, and TEXT, including conversions between different
widths.

Conversion of a CHAR, VARCHAR, or TEXT to a CHAR, VARCHAR, or TEXT column the same size or larger
is never lossy. Lossy conversion is handled by inserting only the first N characters of the string on the
replica, where N is the width of the target column.

Important

Replication between columns using different character sets is not supported.

• Between any of the binary data types BINARY, VARBINARY, and BLOB, including conversions between
different widths.

Conversion of a BINARY, VARBINARY, or BLOB to a BINARY, VARBINARY, or BLOB column the same
size or larger is never lossy. Lossy conversion is handled by inserting only the first N bytes of the string
on the replica, where N is the width of the target column.

• Between any 2 BIT columns of any 2 sizes.

When inserting a value from a BIT(M) column into a BIT(M') column, where M' > M, the most
significant bits of the BIT(M') columns are cleared (set to zero) and the M bits of the BIT(M) value are
set as the least significant bits of the BIT(M') column.

When inserting a value from a source BIT(M) column into a target BIT(M') column, where M' < M,
the maximum possible value for the BIT(M') column is assigned; in other words, an “all-set” value is
assigned to the target column.

Conversions between types not in the previous list are not permitted.

4.1.10 Replication and DIRECTORY Table Options

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement on the
source server, the table option is also used on the replica. This can cause problems if no corresponding
directory exists in the replica host file system or if it exists but is not accessible to the replica MySQL
server. This can be overridden by using the NO_DIR_IN_CREATE server SQL mode on the replica, which
causes the replica to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when replicating
CREATE TABLE statements. The result is that MyISAM data and index files are created in the table's
database directory.

223

https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/precision-math-rounding.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Replication of DROP ... IF EXISTS Statements

For more information, see Server SQL Modes.

4.1.11 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on the
source. This is to ensure that the object to be dropped no longer exists on either the source or the replica,
once the replica has caught up with the source.

DROP ... IF EXISTS statements for stored programs (stored procedures and functions, triggers, and
events) are also replicated, even if the stored program to be dropped does not exist on the source.

4.1.12 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving floating-
point values are inexact. This is true for operations that use floating-point values explicitly, or that use
values that are converted to floating-point implicitly. Comparisons of floating-point values might yield
different results on source and replica servers due to differences in computer architecture, the compiler
used to build MySQL, and so forth. See Type Conversion in Expression Evaluation, and Problems with
Floating-Point Values.

4.1.13 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated to
a replica: FLUSH LOGS and FLUSH TABLES WITH READ LOCK. For a syntax example, see FLUSH
Statement. The FLUSH TABLES, ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements
are written to the binary log and thus replicated to replicas. This is not normally a problem because these
statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the replicas to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the replicas. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

4.1.14 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER() (or CURRENT_USER), UUID(), VERSION(), and LOAD_FILE()
functions are replicated without change and thus do not work reliably on the replica unless row-based
replication is enabled. (See Section 5.1, “Replication Formats”.)

USER() and CURRENT_USER() are automatically replicated using row-based replication when using
MIXED mode, and generate a warning in STATEMENT mode. (See also Section 4.1.8, “Replication of
CURRENT_USER()”.) This is also true for VERSION() and RAND().

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call
to this function on the source is replicated to the replica. To avoid unexpected results when replicating
between MySQL servers in different time zones, set the time zone on both source and replica. For more
information, see Section 4.1.33, “Replication and Time Zones”.

To explain the potential problems when replicating between servers which are in different time zones,
suppose that the source is located in New York, the replica is located in Stockholm, and both servers are

224

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-view.html
https://dev.mysql.com/doc/refman/8.0/en/type-conversion.html
https://dev.mysql.com/doc/refman/8.0/en/problems-with-float.html
https://dev.mysql.com/doc/refman/8.0/en/problems-with-float.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now

Replication and System Functions

using local time. Suppose further that, on the source, you create a table mytable, perform an INSERT
statement on this table, and then select from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)
mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)
mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the replica
at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason, if you select
from the replica's copy of mytable after the CREATE TABLE and INSERT statements just shown have
been replicated, you might expect mycol to contain the value 2009-09-01 18:00:00. However, this
is not the case; when you select from the replica's copy of mytable, you obtain exactly the same result
as on the source:

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Unlike NOW(), the SYSDATE() function is not replication-safe because it is not affected by SET
TIMESTAMP statements in the binary log and is nondeterministic if statement-based logging is used. This
is not a problem if row-based logging is used.

An alternative is to use the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW().
This must be done on the source and the replica to work correctly. In such cases, a warning is still
issued by this function, but can safely be ignored as long as --sysdate-is-now is used on both the
source and the replica.

SYSDATE() is automatically replicated using row-based replication when using MIXED mode, and
generates a warning in STATEMENT mode.

See also Section 4.1.33, “Replication and Time Zones”.

• The following restriction applies to statement-based replication only, not to row-based replication. The
GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that handle
user-level locks are replicated without the replica knowing the concurrency context on the source.
Therefore, these functions should not be used to insert into a source table because the content on
the replica would differ. For example, do not issue a statement such as INSERT INTO mytable
VALUES(GET_LOCK(...)).

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode.

As a workaround for the preceding limitations when statement-based replication is in effect, you can use
the strategy of saving the problematic function result in a user variable and referring to the variable in a
later statement. For example, the following single-row INSERT is problematic due to the reference to the
UUID() function:

INSERT INTO t VALUES(UUID());

225

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_sysdate-is-now
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_sysdate-is-now
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_release-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_is-free-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_is-used-lock
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid

Replication and Fractional Seconds Support

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you
can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

INSERT INTO t2 SELECT UUID(), * FROM t1;

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the execution
of the function. (You can consider the function execution timestamp and random number seed as implicit
inputs that are identical on the source and replica.)

The FOUND_ROWS() and ROW_COUNT() functions are not replicated reliably using statement-based
replication. A workaround is to store the result of the function call in a user variable, and then use that in
the INSERT statement. For example, if you wish to store the result in a table named mytable, you might
normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the variable
in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the replica correctly.

These functions are automatically replicated using row-based replication when using MIXED mode, and
generate a warning in STATEMENT mode. (Bug #12092, Bug #30244)

4.1.15 Replication and Fractional Seconds Support

MySQL 8.0 permits fractional seconds for TIME, DATETIME, and TIMESTAMP values, with up to
microseconds (6 digits) precision. See Fractional Seconds in Time Values.

4.1.16 Replication of Invoked Features

Replication of invoked features such as loadable functions and stored programs (stored procedures and
functions, triggers, and events) provides the following characteristics:

• The effects of the feature are always replicated.

• The following statements are replicated using statement-based replication:

226

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_found-rows
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/fractional-seconds.html

Replication of Invoked Features

• CREATE EVENT

• ALTER EVENT

• DROP EVENT

• CREATE PROCEDURE

• DROP PROCEDURE

• CREATE FUNCTION

• DROP FUNCTION

• CREATE TRIGGER

• DROP TRIGGER

However, the effects of features created, modified, or dropped using these statements are replicated
using row-based replication.

Note

Attempting to replicate invoked features using statement-based replication
produces the warning Statement is not safe to log in statement
format. For example, trying to replicate a loadable function with statement-
based replication generates this warning because it currently cannot be
determined by the MySQL server whether the function is deterministic. If you are
absolutely certain that the invoked feature's effects are deterministic, you can
safely disregard such warnings.

• In the case of CREATE EVENT and ALTER EVENT:

• The status of the event is set to SLAVESIDE_DISABLED on the replica regardless of the state
specified (this does not apply to DROP EVENT).

• The source on which the event was created is identified on the replica by its server ID. The
ORIGINATOR column in INFORMATION_SCHEMA.EVENTS stores this information. See SHOW
EVENTS Statement, for more information.

• The feature implementation resides on the replica in a renewable state so that if the source fails, the
replica can be used as the source without loss of event processing.

To determine whether there are any scheduled events on a MySQL server that were created on a different
server (that was acting as a source), query the Information Schema EVENTS table in a manner similar to
what is shown here:

SELECT EVENT_SCHEMA, EVENT_NAME
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

Alternatively, you can use the SHOW EVENTS statement, like this:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED';

When promoting a replica having such events to a source, you must enable each event using ALTER
EVENT event_name ENABLE, where event_name is the name of the event.

227

https://dev.mysql.com/doc/refman/8.0/en/create-event.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/drop-event.html
https://dev.mysql.com/doc/refman/8.0/en/create-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/drop-procedure.html
https://dev.mysql.com/doc/refman/8.0/en/create-function.html
https://dev.mysql.com/doc/refman/8.0/en/drop-function.html
https://dev.mysql.com/doc/refman/8.0/en/create-trigger.html
https://dev.mysql.com/doc/refman/8.0/en/drop-trigger.html
https://dev.mysql.com/doc/refman/8.0/en/create-event.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/drop-event.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-events.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-events.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html

Replication of JSON Documents

If more than one source was involved in creating events on this replica, and you wish to identify events that
were created only on a given source having the server ID source_id, modify the previous query on the
EVENTS table to include the ORIGINATOR column, as shown here:

SELECT EVENT_SCHEMA, EVENT_NAME, ORIGINATOR
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

You can employ ORIGINATOR with the SHOW EVENTS statement in a similar fashion:

SHOW EVENTS
 WHERE STATUS = 'SLAVESIDE_DISABLED'
 AND ORIGINATOR = 'source_id'

Before enabling events that were replicated from the source, you should disable the MySQL Event
Scheduler on the replica (using a statement such as SET GLOBAL event_scheduler = OFF;), run any
necessary ALTER EVENT statements, restart the server, then re-enable the Event Scheduler on the replica
afterward (using a statement such as SET GLOBAL event_scheduler = ON;)-

If you later demote the new source back to being a replica, you must disable manually all events enabled
by the ALTER EVENT statements. You can do this by storing in a separate table the event names from
the SELECT statement shown previously, or using ALTER EVENT statements to rename the events with a
common prefix such as replicated_ to identify them.

If you rename the events, then when demoting this server back to being a replica, you can identify the
events by querying the EVENTS table, as shown here:

SELECT CONCAT(EVENT_SCHEMA, '.', EVENT_NAME) AS 'Db.Event'
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE INSTR(EVENT_NAME, 'replicated_') = 1;

4.1.17 Replication of JSON Documents

Before MySQL 8.0, an update to a JSON column was always written to the binary log as the complete
document. In MySQL 8.0, it is possible to log partial updates to JSON documents (see Partial Updates of
JSON Values), which is more efficient. The logging behavior depends on the format used, as described
here:

Statement-based replication. JSON partial updates are always logged as partial updates. This cannot
be disabled when using statement-based logging.

Row-based replication. JSON partial updates are not logged as such by default, but
instead are logged as complete documents. To enable logging of partial updates, set
binlog_row_value_options=PARTIAL_JSON. If a replication source has this variable set, partial
updates received from that source are handled and applied by a replica regardless of the replica's own
setting for the variable.

Servers running MySQL 8.0.2 or earlier do not recognize the log events used for JSON partial
updates. For this reason, when replicating to such a server from a server running MySQL 8.0.3 or later,
binlog_row_value_options must be disabled on the source by setting this variable to '' (empty
string). See the description of this variable for more information.

4.1.18 Replication and LIMIT

Statement-based replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT
statements is unsafe since the order of the rows affected is not defined. (Such statements can be

228

https://dev.mysql.com/doc/refman/8.0/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-events.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-events-table.html
https://dev.mysql.com/doc/refman/8.0/en/json.html#json-partial-updates
https://dev.mysql.com/doc/refman/8.0/en/json.html#json-partial-updates
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html

Replication and LOAD DATA

replicated correctly with statement-based replication only if they also contain an ORDER BY clause.) When
such a statement is encountered:

• When using STATEMENT mode, a warning that the statement is not safe for statement-based replication
is now issued.

When using STATEMENT mode, warnings are issued for DML statements containing LIMIT even when
they also have an ORDER BY clause (and so are made deterministic). This is a known issue. (Bug
#42851)

• When using MIXED mode, the statement is now automatically replicated using row-based mode.

4.1.19 Replication and LOAD DATA

LOAD DATA is considered unsafe for statement-based logging (see Section 5.1.3, “Determination of Safe
and Unsafe Statements in Binary Logging”). When binlog_format=MIXED is set, the statement is
logged in row-based format. When binlog_format=STATEMENT is set, note that LOAD DATA does not
generate a warning, unlike other unsafe statements.

If you use LOAD DATA with binlog_format=STATEMENT, each replica on which the changes are to
be applied creates a temporary file containing the data. The replica then uses a LOAD DATA statement
to apply the changes. This temporary file is not encrypted, even if binary log encryption is active on the
source, If encryption is required, use row-based or mixed binary logging format instead, for which replicas
do not create the temporary file.

If a PRIVILEGE_CHECKS_USER account has been used to help secure the replication channel (see
Replication Privilege Checks), it is strongly recommended that you log LOAD DATA operations using row-
based binary logging (binlog_format=ROW). If REQUIRE_ROW_FORMAT is set for the channel, row-
based binary logging is required. With this logging format, the FILE privilege is not needed to execute
the event, so do not give the PRIVILEGE_CHECKS_USER account this privilege. If you need to recover
from a replication error involving a LOAD DATA INFILE operation logged in statement format, and the
replicated event is trusted, you could grant the FILE privilege to the PRIVILEGE_CHECKS_USER account
temporarily, removing it after the replicated event has been applied.

When mysqlbinlog reads log events for LOAD DATA statements logged in statement-based format,
a generated local file is created in a temporary directory. These temporary files are not automatically
removed by mysqlbinlog or any other MySQL program. If you do use LOAD DATA statements with
statement-based binary logging, you should delete the temporary files yourself after you no longer need
the statement log. For more information, see mysqlbinlog — Utility for Processing Binary Log Files.

4.1.20 Replication and max_allowed_packet

max_allowed_packet sets an upper limit on the size of any single message between the MySQL server
and clients, including replicas. If you are replicating large column values (such as might be found in TEXT
or BLOB columns) and max_allowed_packet is too small on the source, the source fails with an error,
and the replica shuts down the replication I/O (receiver) thread. If max_allowed_packet is too small on
the replica, this also causes the replica to stop the I/O thread.

Row-based replication sends all columns and column values for updated rows from the source to the
replica, including values of columns that were not actually changed by the update. This means that,
when you are replicating large column values using row-based replication, you must take care to set
max_allowed_packet large enough to accommodate the largest row in any table to be replicated, even
if you are replicating updates only, or you are inserting only relatively small values.

On a multi-threaded replica (with replica_parallel_workers > 0 or slave_parallel_workers
> 0), ensure that the system variable replica_pending_jobs_size_max or

229

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/replication-privilege-checks.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Replication and MEMORY Tables

slave_pending_jobs_size_max is set to a value equal to or greater than the setting
for the max_allowed_packet system variable on the source. The default setting for
replica_pending_jobs_size_max or slave_pending_jobs_size_max, 128M, is twice the default
setting for max_allowed_packet, which is 64M. max_allowed_packet limits the packet size that the
source can send, but the addition of an event header can produce a binary log event exceeding this size.
Also, in row-based replication, a single event can be significantly larger than the max_allowed_packet
size, because the value of max_allowed_packet only limits each column of the table.

The replica actually accepts packets up to the limit set by its replica_max_allowed_packet or
slave_max_allowed_packet setting, which default to the maximum setting of 1GB, to prevent a
replication failure due to a large packet. However, the value of replica_pending_jobs_size_max
or slave_pending_jobs_size_max controls the memory that is made available on the replica to hold
incoming packets. The specified memory is shared among all the replica worker queues.

The value of replica_pending_jobs_size_max or slave_pending_jobs_size_max is a
soft limit, and if an unusually large event (consisting of one or multiple packets) exceeds this size,
the transaction is held until all the replica workers have empty queues, and then processed. All
subsequent transactions are held until the large transaction has been completed. So although unusual
events larger than replica_pending_jobs_size_max or slave_pending_jobs_size_max
can be processed, the delay to clear the queues of all the replica workers and the wait to queue
subsequent transactions can cause lag on the replica and decreased concurrency of the replica workers.
replica_pending_jobs_size_max or slave_pending_jobs_size_max should therefore be set
high enough to accommodate most expected event sizes.

4.1.21 Replication and MEMORY Tables

When a replication source server shuts down and restarts, its MEMORY tables become empty. To replicate
this effect to replicas, the first time that the source uses a given MEMORY table after startup, it logs an
event that notifies replicas that the table must be emptied by writing a DELETE or (from MySQL 8.0.22)
TRUNCATE TABLE statement for that table to the binary log. This generated event is identifiable by a
comment in the binary log, and if GTIDs are in use on the server, it has a GTID assigned. The statement is
always logged in statement format, even if the binary logging format is set to ROW, and it is written even if
read_only or super_read_only mode is set on the server. Note that the replica still has outdated data
in a MEMORY table during the interval between the source's restart and its first use of the table. To avoid
this interval when a direct query to the replica could return stale data, you can set the init_file system
variable to name a file containing statements that populate the MEMORY table on the source at startup.

When a replica server shuts down and restarts, its MEMORY tables become empty. This causes the replica
to be out of synchrony with the source and may lead to other failures or cause the replica to stop:

• Row-format updates and deletes received from the source may fail with Can't find record in
'memory_table'.

• Statements such as INSERT INTO ... SELECT FROM memory_table may insert a different set of
rows on the source and replica.

The replica also writes a DELETE or (from MySQL 8.0.22) TRUNCATE TABLE statement to its own binary
log, which is passed on to any downstream replicas, causing them to empty their own MEMORY tables.

The safe way to restart a replica that is replicating MEMORY tables is to first drop or delete all rows from the
MEMORY tables on the source and wait until those changes have replicated to the replica. Then it is safe to
restart the replica.

An alternative restart method may apply in some cases. When binlog_format=ROW, you can prevent
the replica from stopping if you set replica_exec_mode=IDEMPOTENT (from MySQL 8.0.26) or

230

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html

Replication of the mysql System Schema

slave_exec_mode=IDEMPOTENT (before MySQL 8.0.26) before you start the replica again. This
allows the replica to continue to replicate, but its MEMORY tables still differ from those on the source.
This is acceptable if the application logic is such that the contents of MEMORY tables can be safely lost
(for example, if the MEMORY tables are used for caching). replica_exec_mode=IDEMPOTENT or
slave_exec_mode=IDEMPOTENT applies globally to all tables, so it may hide other replication errors in
non-MEMORY tables.

(The method just described is not applicable in NDB Cluster, where replica_exec_mode or
slave_exec_mode is always IDEMPOTENT, and cannot be changed.)

The size of MEMORY tables is limited by the value of the max_heap_table_size system variable, which
is not replicated (see Section 4.1.39, “Replication and Variables”). A change in max_heap_table_size
takes effect for MEMORY tables that are created or updated using ALTER TABLE ... ENGINE = MEMORY
or TRUNCATE TABLE following the change, or for all MEMORY tables following a server restart. If you
increase the value of this variable on the source without doing so on the replica, it becomes possible for
a table on the source to grow larger than its counterpart on the replica, leading to inserts that succeed on
the source but fail on the replica with Table is full errors. This is a known issue (Bug #48666). In
such cases, you must set the global value of max_heap_table_size on the replica as well as on the
source, then restart replication. It is also recommended that you restart both the source and replica MySQL
servers, to ensure that the new value takes complete (global) effect on each of them.

See The MEMORY Storage Engine, for more information about MEMORY tables.

4.1.22 Replication of the mysql System Schema

Data modification statements made to tables in the mysql schema are replicated according to the value
of binlog_format; if this value is MIXED, these statements are replicated using row-based format.
However, statements that would normally update this information indirectly—such GRANT, REVOKE, and
statements manipulating triggers, stored routines, and views—are replicated to replicas using statement-
based replication.

4.1.23 Replication and the Query Optimizer

It is possible for the data on the source and replica to become different if a statement is written in such a
way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this is
not a good practice, even outside of replication.) Examples of nondeterministic statements include DELETE
or UPDATE statements that use LIMIT with no ORDER BY clause; see Section 4.1.18, “Replication and
LIMIT”, for a detailed discussion of these.

4.1.24 Replication and Partitioning

Replication is supported between partitioned tables as long as they use the same partitioning scheme and
otherwise have the same structure, except where an exception is specifically allowed (see Section 4.1.9,
“Replication with Differing Table Definitions on Source and Replica”).

Replication between tables that have different partitioning is generally not supported. This because
statements (such as ALTER TABLE ... DROP PARTITION) that act directly on partitions in such cases
might produce different results on the source and the replica. In the case where a table is partitioned on
the source but not on the replica, any statements that operate on partitions on the source's copy of the
replica fail on the replica. When the replica's copy of the table is partitioned but the source's copy is not,
statements that act directly on partitions cannot be run on the source without causing errors there. To avoid
stopping replication or creating inconsistencies between the source and replica, always ensure that a table
on the source and the corresponding replicated table on the replica are partitioned in the same way.

4.1.25 Replication and REPAIR TABLE

231

https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table-partition-operations.html

Replication and Reserved Words

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed by this
statement are not replicated, which can cause source and replica to lose synchronization. For this reason,
in the event that a table on the source becomes damaged and you use REPAIR TABLE to repair it, you
should first stop replication (if it is still running) before using REPAIR TABLE, then afterward compare the
source's and replica's copies of the table and be prepared to correct any discrepancies manually, before
restarting replication.

4.1.26 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older source to a newer replica and
you make use of identifiers on the source that are reserved words in the newer MySQL version running
on the replica. For example, a table column named rank on a MySQL 5.7 source that is replicating to a
MySQL 8.0 replica could cause a problem because RANK is a reserved word beginning in MySQL 8.0.

Replication can fail in such cases with Error 1064 You have an error in your SQL syntax...,
even if a database or table named using the reserved word or a table having a column named using the
reserved word is excluded from replication. This is due to the fact that each SQL event must be parsed by
the replica prior to execution, so that the replica knows which database object or objects would be affected.
Only after the event is parsed can the replica apply any filtering rules defined by --replicate-do-db,
--replicate-do-table, --replicate-ignore-db, and --replicate-ignore-table.

To work around the problem of database, table, or column names on the source which would be regarded
as reserved words by the replica, do one of the following:

• Use one or more ALTER TABLE statements on the source to change the names of any database
objects where these names would be considered reserved words on the replica, and change any SQL
statements that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers using
backtick characters (`).

For listings of reserved words by MySQL version, see Keywords and Reserved Words in MySQL 8.0, in the
MySQL Server Version Reference. For identifier quoting rules, see Schema Object Names.

4.1.27 Replication and Row Searches

When a replica using row-based replication format applies an UPDATE or DELETE operation, it must search
the relevant table for the matching rows. The algorithm used to carry out this process uses one of the
table's indexes to carry out the search as the first choice, and a hash table if there are no suitable indexes.

The algorithm first assesses the available indexes in the table definition to see if there is any suitable index
to use, and if there are multiple possibilities, which index is the best fit for the operation. The algorithm
ignores the following types of index:

• Fulltext indexes.

• Hidden indexes.

• Generated indexes.

• Multi-valued indexes.

• Any index where the before-image of the row event does not contain all the columns of the index.

232

https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/mysqld-version-reference/en/keywords-8-0.html
https://dev.mysql.com/doc/refman/8.0/en/identifiers.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Replication and Source or Replica Shutdowns

If there are no suitable indexes after ruling out these index types, the algorithm does not use an index for
the search. If there are suitable indexes, one index is selected from the candidates, in the following priority
order:

1. A primary key.

2. A unique index where every column in the index has a NOT NULL attribute. If more than one such
index is available, the algorithm chooses the leftmost of these indexes.

3. Any other index. If more than one such index is available, the algorithm chooses the leftmost of these
indexes.

If the algorithm is able to select a primary key or a unique index where every column in the index has a
NOT NULL attribute, it uses this index to iterate over the rows in the UPDATE or DELETE operation. For
each row in the row event, the algorithm looks up the row in the index to locate the table record to update.
If no matching record is found, it returns the error ER_KEY_NOT_FOUND and stops the replication applier
thread.

If the algorithm was not able to find a suitable index, or was only able to find an index that was non-unique
or contained nulls, a hash table is used to assist in identifying the table records. The algorithm creates
a hash table containing the rows in the UPDATE or DELETE operation, with the key as the full before-
image of the row. The algorithm then iterates over all the records in the target table, using the selected
index if it found one, or else performing a full table scan. For each record in the target table, it determines
whether that row exists in the hash table. If the row is found in the hash table, the record in the target table
is updated, and the row is deleted from the hash table. When all the records in the target table have been
checked, the algorithm verifies whether the hash table is now empty. If there are any unmatched rows
remaining in the hash table, the algorithm returns the error ER_KEY_NOT_FOUND and stops the replication
applier thread.

The slave_rows_search_algorithms system variable was previously used to control how rows are
searched for matches. The use of this system variable is now deprecated, because the default setting,
which uses an index scan followed by a hash scan as described above, is optimal for performance and
works correctly in all scenarios.

4.1.28 Replication and Source or Replica Shutdowns

It is safe to shut down a replication source server and restart it later. When a replica loses its connection
to the source, the replica tries to reconnect immediately and retries periodically if that fails. The default
is to retry every 60 seconds. This may be changed with the CHANGE REPLICATION SOURCE TO
statement (from MySQL 8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). A replica
also is able to deal with network connectivity outages. However, the replica notices the network outage
only after receiving no data from the source for replica_net_timeout or slave_net_timeout
seconds. If your outages are short, you may want to decrease the value of replica_net_timeout or
slave_net_timeout. See Section 3.2, “Handling an Unexpected Halt of a Replica”.

An unclean shutdown (for example, a crash) on the source side can result in the source's binary
log having a final position less than the most recent position read by the replica, due to the source's
binary log file not being flushed. This can cause the replica not to be able to replicate when the source
comes back up. Setting sync_binlog=1 in the source server's my.cnf file helps to minimize this
problem because it causes the source to flush its binary log more frequently. For the greatest possible
durability and consistency in a replication setup using InnoDB with transactions, you should also set
innodb_flush_log_at_trx_commit=1. With this setting, the contents of the InnoDB redo log buffer
are written out to the log file at each transaction commit and the log file is flushed to disk. Note that
the durability of transactions is still not guaranteed with this setting, because operating systems or disk
hardware may tell mysqld that the flush-to-disk operation has taken place, even though it has not.

233

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Replica Errors During Replication

Shutting down a replica cleanly is safe because it keeps track of where it left off. However, be careful that
the replica does not have temporary tables open; see Section 4.1.31, “Replication and Temporary Tables”.
Unclean shutdowns might produce problems, especially if the disk cache was not flushed to disk before the
problem occurred:

• For transactions, the replica commits and then updates relay-log.info. If an unexpected exit
occurs between these two operations, relay log processing proceeds further than the information file
indicates and the replica re-executes the events from the last transaction in the relay log after it has been
restarted.

• A similar problem can occur if the replica updates relay-log.info but the server host
crashes before the write has been flushed to disk. To minimize the chance of this occurring, set
sync_relay_log_info=1 in the replica my.cnf file. Setting sync_relay_log_info to 0 causes no
writes to be forced to disk and the server relies on the operating system to flush the file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

4.1.29 Replica Errors During Replication

If a statement produces the same error (identical error code) on both the source and the replica, the error
is logged, but replication continues.

If a statement produces different errors on the source and the replica, the replication SQL thread
terminates, and the replica writes a message to its error log and waits for the database administrator to
decide what to do about the error. This includes the case that a statement produces an error on the source
or the replica, but not both. To address the issue, connect to the replica manually and determine the cause
of the problem. SHOW REPLICA STATUS (or before MySQL 8.0.22, SHOW SLAVE STATUS) is useful
for this. Then fix the problem and run START REPLICA (or before MySQL 8.0.22, START SLAVE). For
example, you might need to create a nonexistent table before you can start the replica again.

Note

If a temporary error is recorded in the replica's error log, you do not necessarily
have to take any action suggested in the quoted error message. Temporary
errors should be handled by the client retrying the transaction. For example, if the
replication SQL thread records a temporary error relating to a deadlock, you do not
need to restart the transaction manually on the replica, unless the replication SQL
thread subsequently terminates with a nontemporary error message.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored) with
the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only partially
updates a table and returns an error code. This can happen, for example, on a multiple-row insert that has
one row violating a key constraint, or if a long update statement is killed after updating some of the rows.
If that happens on the source, the replica expects execution of the statement to result in the same error
code. If it does not, the replication SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the source and replica, keep in
mind that the same statement might produce a different error when run against one version of the table,
but not the other, or might cause an error for one version of the table, but not the other. For example, since
MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing an InnoDB table on
the source might cause a foreign key violation but the same statement performed on a MyISAM version of
the same table on the replica would produce no such error, causing replication to stop.

234

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-status.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Replication and Server SQL Mode

Beginning with MySQL 8.0.31, replication filter rules are applied first, prior to making any privilege or row
format checks, making it possible to filter out any transactions that fail validation; no checks are performed
and thus no errors are raised for transactions which have been filtered out. This means that the replica
can accept only that part of the database to which a given user has been granted access (as long as
any updates to this part of the database use the row-based replication format). This may be helpful when
performing an upgrade or when migrating to a system or application that uses administration tables to
which the inbound replication user does not have access. See also Section 5.5, “How Servers Evaluate
Replication Filtering Rules”.

4.1.30 Replication and Server SQL Mode

Using different server SQL mode settings on the source and the replica may cause the same INSERT
statements to be handled differently on the source and the replica, leading the source and replica to
diverge. For best results, you should always use the same server SQL mode on the source and on the
replica. This advice applies whether you are using statement-based or row-based replication.

If you are replicating partitioned tables, using different SQL modes on the source and the replica is likely to
cause issues. At a minimum, this is likely to cause the distribution of data among partitions to be different
in the source's and replica's copies of a given table. It may also cause inserts into partitioned tables that
succeed on the source to fail on the replica.

For more information, see Server SQL Modes.

4.1.31 Replication and Temporary Tables

In MySQL 8.0, when binlog_format is set to ROW or MIXED, statements that exclusively use temporary
tables are not logged on the source, and therefore the temporary tables are not replicated. Statements
that involve a mix of temporary and nontemporary tables are logged on the source only for the operations
on nontemporary tables, and the operations on temporary tables are not logged. This means that there
are never any temporary tables on the replica to be lost in the event of an unplanned shutdown by the
replica. For more information about row-based replication and temporary tables, see Row-based logging of
temporary tables.

When binlog_format is set to STATEMENT, operations on temporary tables are logged on the source
and replicated on the replica, provided that the statements involving temporary tables can be logged safely
using statement-based format. In this situation, loss of replicated temporary tables on the replica can be an
issue. In statement-based replication mode, CREATE TEMPORARY TABLE and DROP TEMPORARY TABLE
statements cannot be used inside a transaction, procedure, function, or trigger when GTIDs are in use on
the server (that is, when the enforce_gtid_consistency system variable is set to ON). They can be
used outside these contexts when GTIDs are in use, provided that autocommit=1 is set.

Because of the differences in behavior between row-based or mixed replication mode and statement-
based replication mode regarding temporary tables, you cannot switch the replication format at runtime,
if the change applies to a context (global or session) that contains any open temporary tables. For more
details, see the description of the binlog_format option.

Safe replica shutdown when using temporary tables. In statement-based replication mode,
temporary tables are replicated except in the case where you stop the replica server (not just the
replication threads) and you have replicated temporary tables that are open for use in updates that have
not yet been executed on the replica. If you stop the replica server, the temporary tables needed by those
updates are no longer available when the replica is restarted. To avoid this problem, do not shut down the
replica while it has temporary tables open. Instead, use the following procedure:

1. Issue a STOP REPLICA SQL_THREAD statement.

235

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit

Replication Retries and Timeouts

2. Use SHOW STATUS to check the value of the Replica_open_temp_tables or
Slave_open_temp_tables status variable.

3. If the value is not 0, restart the replication SQL thread with START REPLICA SQL_THREAD and repeat
the procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the replica.

Temporary tables and replication options. By default, with statement-based replication, all temporary
tables are replicated; this happens whether or not there are any matching --replicate-do-db,
--replicate-do-table, or --replicate-wild-do-table options in effect. However, the --
replicate-ignore-table and --replicate-wild-ignore-table options are honored for
temporary tables. The exception is that to enable correct removal of temporary tables at the end of a
session, a replica always replicates a DROP TEMPORARY TABLE IF EXISTS statement, regardless of
any exclusion rules that would normally apply for the specified table.

A recommended practice when using statement-based replication is to designate a prefix for exclusive
use in naming temporary tables that you do not want replicated, then employ a --replicate-wild-
ignore-table option to match that prefix. For example, you might give all such tables names beginning
with norep (such as norepmytable, norepyourtable, and so on), then use --replicate-wild-
ignore-table=norep% to prevent them from being replicated.

4.1.32 Replication Retries and Timeouts

The global value of the system variable replica_transaction_retries (from MySQL 8.0.26)
or slave_transaction_retries (before MySQL 8.0.26) sets the maximum number of times for
applier threads on a single-threaded or multithreaded replica to automatically retry failed transactions
before stopping. Transactions are automatically retried when the SQL thread fails to execute them
because of an InnoDB deadlock, or when the transaction's execution time exceeds the InnoDB
innodb_lock_wait_timeout value. If a transaction has a non-temporary error that prevents it from
succeeding, it is not retried.

The default setting for replica_transaction_retries or slave_transaction_retries is 10,
meaning that a failing transaction with an apparently temporary error is retried 10 times before the applier
thread stops. Setting the variable to 0 disables automatic retrying of transactions. On a multithreaded
replica, the specified number of transaction retries can take place on all applier threads of all channels.
The Performance Schema table replication_applier_status shows the total number of transaction
retries that took place on each replication channel, in the COUNT_TRANSACTIONS_RETRIES column.

The process of retrying transactions can cause lag on a replica or on a Group Replication group member,
which can be configured as a single-threaded or multithreaded replica. The Performance Schema table
replication_applier_status_by_worker shows detailed information on transaction retries by the
applier threads on a single-threaded or multithreaded replica. This data includes timestamps showing how
long it took the applier thread to apply the last transaction from start to finish (and when the transaction
currently in progress was started), and how long this was after the commit on the original source and the
immediate source. The data also shows the number of retries for the last transaction and the transaction
currently in progress, and enables you to identify the transient errors that caused the transactions to be
retried. You can use this information to see whether transaction retries are the cause of replication lag, and
investigate the root cause of the failures that led to the retries.

4.1.33 Replication and Time Zones

By default, source and replica servers assume that they are in the same time zone. If you are replicating
between servers in different time zones, the time zone must be set on both source and replica. Otherwise,
statements depending on the local time on the source are not replicated properly, such as statements that
use the NOW() or FROM_UNIXTIME() functions.

236

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Replica_open_temp_tables
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_lock_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_from-unixtime

Replication and Transaction Inconsistencies

Verify that your combination of settings for the system time zone (system_time_zone), server current
time zone (the global value of time_zone), and per-session time zones (the session value of time_zone)
on the source and replica is producing the correct results. In particular, if the time_zone system variable
is set to the value SYSTEM, indicating that the server time zone is the same as the system time zone, this
can cause the source and replica to apply different time zones. For example, a source could write the
following statement in the binary log:

SET @@session.time_zone='SYSTEM';

If this source and its replica have a different setting for their system time zones, this statement can produce
unexpected results on the replica, even if the replica's global time_zone value has been set to match the
source's. For an explanation of MySQL Server's time zone settings, and how to change them, see MySQL
Server Time Zone Support.

See also Section 4.1.14, “Replication and System Functions”.

4.1.34 Replication and Transaction Inconsistencies

Inconsistencies in the sequence of transactions that have been executed from the relay log can occur
depending on your replication configuration. This section explains how to avoid inconsistencies and solve
any problems they cause.

The following types of inconsistencies can exist:

• Half-applied transactions. A transaction which updates non-transactional tables has applied some but
not all of its changes.

• Gaps. A gap in the externalized transaction set appears when, given an ordered sequence of
transactions, a transaction that is later in the sequence is applied before some other transaction that is
prior in the sequence. Gaps can only appear when using a multithreaded replica.

To avoid gaps occurring on a multithreaded replica, set replica_preserve_commit_order=ON
(from MySQL 8.0.26) or slave_preserve_commit_order=ON (before MySQL 8.0.26). From MySQL
8.0.27, this setting is the default, because all replicas are multithreaded by default from that release.

Up to and including MySQL 8.0.18, preserving the commit order requires that binary logging (log_bin)
and replica update logging (log_replica_updates or log_slave_updates) are also enabled,
which are the default settings from MySQL 8.0. From MySQL 8.0.19, binary logging and replica
update logging are not required on the replica to set replica_preserve_commit_order=ON or
slave_preserve_commit_order=ON, and can be disabled if wanted.

In all releases, setting replica_preserve_commit_order=ON or
slave_preserve_commit_order=ON requires that replica_parallel_type (from MySQL 8.0.26)
or slave_parallel_type (before MySQL 8.0.26) is set to LOGICAL_CLOCK. From MySQL 8.0.27 (but
not for earlier releases), this is the default setting.

In some specific situations, as listed in the description for replica_preserve_commit_order
and slave_preserve_commit_order, setting replica_preserve_commit_order=ON or
slave_preserve_commit_order=ON cannot preserve commit order on the replica, so in these cases
gaps might still appear in the sequence of transactions that have been executed from the replica's relay
log.

Setting replica_preserve_commit_order=ON or slave_preserve_commit_order=ON does not
prevent source binary log position lag.

• Source binary log position lag. Even in the absence of gaps, it is possible that transactions after
Exec_master_log_pos have been applied. That is, all transactions up to point N have been applied,

237

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_system_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html
https://dev.mysql.com/doc/refman/8.0/en/time-zone-support.html

Replication and Transaction Inconsistencies

and no transactions after N have been applied, but Exec_master_log_pos has a value smaller than
N. In this situation, Exec_master_log_pos is a “low-water mark” of the transactions applied, and lags
behind the position of the most recently applied transaction. This can only happen on multithreaded
replicas. Enabling replica_preserve_commit_order or slave_preserve_commit_order does
not prevent source binary log position lag.

The following scenarios are relevant to the existence of half-applied transactions, gaps, and source binary
log position lag:

1. While replication threads are running, there may be gaps and half-applied transactions.

2. mysqld shuts down. Both clean and unclean shutdown abort ongoing transactions and may leave gaps
and half-applied transactions.

3. KILL of replication threads (the SQL thread when using a single-threaded replica, the coordinator
thread when using a multithreaded replica). This aborts ongoing transactions and may leave gaps and
half-applied transactions.

4. Error in applier threads. This may leave gaps. If the error is in a mixed transaction, that transaction is
half-applied. When using a multithreaded replica, workers which have not received an error complete
their queues, so it may take time to stop all threads.

5. STOP REPLICA when using a multithreaded replica. After issuing STOP REPLICA, the replica waits
for any gaps to be filled and then updates Exec_master_log_pos. This ensures it never leaves gaps
or source binary log position lag, unless any of the cases above applies, in other words, before STOP
REPLICA completes, either an error happens, or another thread issues KILL, or the server restarts. In
these cases, STOP REPLICA returns successfully.

6. If the last transaction in the relay log is only half-received and the multithreaded replica's coordinator
thread has started to schedule the transaction to a worker, then STOP REPLICA waits up to 60
seconds for the transaction to be received. After this timeout, the coordinator gives up and aborts the
transaction. If the transaction is mixed, it may be left half-completed.

7. STOP REPLICA when the ongoing transaction updates transactional tables only, in which case it
is rolled back and STOP REPLICA stops immediately. If the ongoing transaction is mixed, STOP
REPLICA waits up to 60 seconds for the transaction to complete. After this timeout, it aborts the
transaction, so it may be left half-completed.

The global setting for the system variable rpl_stop_replica_timeout (from MySQL 8.0.26) or
rpl_stop_slave_timeout (before MySQL 8.0.26) is unrelated to the process of stopping the replication
threads. It only makes the client that issues STOP REPLICA return to the client, but the replication threads
continue to try to stop.

If a replication channel has gaps, it has the following consequences:

1. The replica database is in a state that may never have existed on the source.

2. The field Exec_master_log_pos in SHOW REPLICA STATUS is only a “low-water mark”. In other
words, transactions appearing before the position are guaranteed to have committed, but transactions
after the position may have committed or not.

3. CHANGE REPLICATION SOURCE TO and CHANGE MASTER TO statements for that channel fail with
an error, unless the applier threads are running and the statement only sets receiver options.

4. If mysqld is started with --relay-log-recovery, no recovery is done for that channel, and a
warning is printed.

238

https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Replication and Transactions

5. If mysqldump is used with --dump-replica or --dump-slave, it does not record the existence of
gaps; thus it prints CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO with RELAY_LOG_POS
set to the “low-water mark” position in Exec_master_log_pos.

After applying the dump on another server, and starting the replication threads, transactions appearing
after the position are replicated again. Note that this is harmless if GTIDs are enabled (however, in that
case it is not recommended to use --dump-replica or --dump-slave).

If a replication channel has source binary log position lag but no gaps, cases 2 to 5 above apply, but case
1 does not.

The source binary log position information is persisted in binary format in the internal table
mysql.slave_worker_info. START REPLICA [SQL_THREAD] always consults this information so
that it applies only the correct transactions. This remains true even if replica_parallel_workers
or slave_parallel_workers has been changed to 0 before START REPLICA, and even if START
REPLICA is used with UNTIL clauses. START REPLICA UNTIL SQL_AFTER_MTS_GAPS only applies as
many transactions as needed in order to fill in the gaps. If START REPLICA is used with UNTIL clauses
that tell it to stop before it has consumed all the gaps, then it leaves remaining gaps.

Warning

RESET REPLICA removes the relay logs and resets the replication position. Thus
issuing RESET REPLICA on a multithreaded replica with gaps means the replica
loses any information about the gaps, without correcting the gaps. In this situation, if
binary log position based replication is in use, the recovery process fails.

When GTID-based replication is in use (GTID_MODE=ON) and SOURCE_AUTO_POSITION is set for the
replication channel using the CHANGE REPLICATION SOURCE TO statement, the old relay logs are not
required for the recovery process. Instead, the replica can use GTID auto-positioning to calculate what
transactions it is missing compared to the source. From MySQL 8.0.26, the process used for binary log
position based replication to resolve gaps on a multithreaded replica is skipped entirely when GTID-based
replication is in use. When the process is skipped, a START REPLICA UNTIL SQL_AFTER_MTS_GAPS
statement behaves differently, and does not attempt to check for gaps in the sequence of transactions. You
can also issue CHANGE REPLICATION SOURCE TO statements, which are not permitted on a non-GTID
replica where there are gaps.

4.1.35 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In general,
you should avoid transactions that update both transactional and nontransactional tables in a replication
environment. You should also avoid using any statement that accesses both transactional (or temporary)
and nontransactional tables and writes to any of them.

The server uses these rules for binary logging:

• If the initial statements in a transaction are nontransactional, they are written to the binary log
immediately. The remaining statements in the transaction are cached and not written to the binary log
until the transaction is committed. (If the transaction is rolled back, the cached statements are written to
the binary log only if they make nontransactional changes that cannot be rolled back. Otherwise, they
are discarded.)

• For statement-based logging, logging of nontransactional statements is affected by the
binlog_direct_non_transactional_updates system variable. When this variable is OFF
(the default), logging is as just described. When this variable is ON, logging occurs immediately for
nontransactional statements occurring anywhere in the transaction (not just initial nontransactional

239

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_dump-replica
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_dump-slave
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_dump-replica
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_dump-slave
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

Replication and Transactions

statements). Other statements are kept in the transaction cache and logged when the transaction
commits. binlog_direct_non_transactional_updates has no effect for row-format or mixed-
format binary logging.

Transactional, nontransactional, and mixed statements.
To apply those rules, the server considers a statement nontransactional if it changes only nontransactional
tables, and transactional if it changes only transactional tables. A statement that references both
nontransactional and transactional tables and updates any of the tables involved is considered a “mixed”
statement. Mixed statements, like transactional statements, are cached and logged when the transaction
commits.

A mixed statement that updates a transactional table is considered unsafe if the statement also performs
either of the following actions:

• Updates or reads a temporary table

• Reads a nontransactional table and the transaction isolation level is less than REPEATABLE_READ

A mixed statement following the update of a transactional table within a transaction is considered unsafe if
it performs either of the following actions:

• Updates any table and reads from any temporary table

• Updates a nontransactional table and binlog_direct_non_transactional_updates is OFF

For more information, see Section 5.1.3, “Determination of Safe and Unsafe Statements in Binary
Logging”.

Note

A mixed statement is unrelated to mixed binary logging format.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on source and replica. It is possible to replicate transactional tables
on the source using nontransactional tables on the replica. For example, you can replicate an InnoDB
source table as a MyISAM replica table. However, if you do this, there are problems if the replica is stopped
in the middle of a BEGIN ... COMMIT block because the replica restarts at the beginning of the BEGIN block.

It is also safe to replicate transactions from MyISAM tables on the source to transactional tables, such as
tables that use the InnoDB storage engine, on the replica. In such cases, an AUTOCOMMIT=1 statement
issued on the source is replicated, thus enforcing AUTOCOMMIT mode on the replica.

When the storage engine type of the replica is nontransactional, transactions on the source that mix
updates of transactional and nontransactional tables should be avoided because they can cause
inconsistency of the data between the source transactional table and the replica nontransactional table.
That is, such transactions can lead to source storage engine-specific behavior with the possible effect of
replication going out of synchrony. MySQL does not issue a warning about this, so extra care should be
taken when replicating transactional tables from the source to nontransactional tables on the replicas.

Changing the binary logging format within transactions. The binlog_format and
binlog_checksum system variables are read-only as long as a transaction is in progress.

240

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit

Replication and Triggers

Every transaction (including autocommit transactions) is recorded in the binary log as though it starts
with a BEGIN statement, and ends with either a COMMIT or a ROLLBACK statement. This is even true for
statements affecting tables that use a nontransactional storage engine (such as MyISAM).

Note

For restrictions that apply specifically to XA transactions, see Restrictions on XA
Transactions.

4.1.36 Replication and Triggers

With statement-based replication, triggers executed on the source also execute on the replica. With row-
based replication, triggers executed on the source do not execute on the replica. Instead, the row changes
on the source resulting from trigger execution are replicated and applied on the replica.

This behavior is by design. If under row-based replication the replica applied the triggers as well as the row
changes caused by them, the changes would in effect be applied twice on the replica, leading to different
data on the source and the replica.

If you want triggers to execute on both the source and the replica, perhaps because you have different
triggers on the source and replica, you must use statement-based replication. However, to enable replica-
side triggers, it is not necessary to use statement-based replication exclusively. It is sufficient to switch to
statement-based replication only for those statements where you want this effect, and to use row-based
replication the rest of the time.

A statement invoking a trigger (or function) that causes an update to an AUTO_INCREMENT column is not
replicated correctly using statement-based replication. MySQL 8.0 marks such statements as unsafe. (Bug
#45677)

A trigger can have triggers for different combinations of trigger event (INSERT, UPDATE, DELETE) and
action time (BEFORE, AFTER), and multiple triggers are permitted.

For brevity, “multiple triggers” here is shorthand for “multiple triggers that have the same trigger event and
action time.”

Upgrades. Multiple triggers are not supported in versions earlier than MySQL 5.7. If you upgrade servers
in a replication topology that use a version earlier than MySQL 5.7, upgrade the replicas first and then
upgrade the source. If an upgraded replication source server still has old replicas using MySQL versions
that do not support multiple triggers, an error occurs on those replicas if a trigger is created on the source
for a table that already has a trigger with the same trigger event and action time.

Downgrades. If you downgrade a server that supports multiple triggers to an older version that does not,
the downgrade has these effects:

• For each table that has triggers, all trigger definitions are in the .TRG file for the table. However, if there
are multiple triggers with the same trigger event and action time, the server executes only one of them
when the trigger event occurs. For information about .TRG files, see the Table Trigger Storage section of
the MySQL Server Doxygen documentation, available at https://dev.mysql.com/doc/index-other.html.

• If triggers for the table are added or dropped subsequent to the downgrade, the server rewrites the
table's .TRG file. The rewritten file retains only one trigger per combination of trigger event and action
time; the others are lost.

To avoid these problems, modify your triggers before downgrading. For each table that has multiple
triggers per combination of trigger event and action time, convert each such set of triggers to a single
trigger as follows:

241

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/xa-restrictions.html
https://dev.mysql.com/doc/refman/8.0/en/xa-restrictions.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/index-other.html

Replication and TRUNCATE TABLE

1. For each trigger, create a stored routine that contains all the code in the trigger. Values accessed using
NEW and OLD can be passed to the routine using parameters. If the trigger needs a single result value
from the code, you can put the code in a stored function and have the function return the value. If the
trigger needs multiple result values from the code, you can put the code in a stored procedure and
return the values using OUT parameters.

2. Drop all triggers for the table.

3. Create one new trigger for the table that invokes the stored routines just created. The effect for this
trigger is thus the same as the multiple triggers it replaces.

4.1.37 Replication and TRUNCATE TABLE

TRUNCATE TABLE is normally regarded as a DML statement, and so would be expected to be logged
and replicated using row-based format when the binary logging mode is ROW or MIXED. However this
caused issues when logging or replicating, in STATEMENT or MIXED mode, tables that used transactional
storage engines such as InnoDB when the transaction isolation level was READ COMMITTED or READ
UNCOMMITTED, which precludes statement-based logging.

TRUNCATE TABLE is treated for purposes of logging and replication as DDL rather than DML so that it can
be logged and replicated as a statement. However, the effects of the statement as applicable to InnoDB
and other transactional tables on replicas still follow the rules described in TRUNCATE TABLE Statement
governing such tables. (Bug #36763)

4.1.38 Replication and User Name Length

The maximum length for user names in MySQL 8.0 is 32 characters. Replication of user names longer
than 16 characters fails when the replica runs a version of MySQL previous to 5.7, because those versions
support only shorter user names. This occurs only when replicating from a newer source to an older
replica, which is not a recommended configuration.

4.1.39 Replication and Variables

System variables are not replicated correctly when using STATEMENT mode, except for the following
variables when they are used with session scope:

• auto_increment_increment

• auto_increment_offset

• character_set_client

• character_set_connection

• character_set_database

• character_set_server

• collation_connection

• collation_database

• collation_server

• foreign_key_checks

• identity

242

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_identity

Replication and Variables

• last_insert_id

• lc_time_names

• pseudo_thread_id

• sql_auto_is_null

• time_zone

• timestamp

• unique_checks

When MIXED mode is used, the variables in the preceding list, when used with session scope, cause a
switch from statement-based to row-based logging. See Mixed Binary Logging Format.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode; the replica always preserves
its own value for NO_DIR_IN_CREATE, regardless of changes to it on the source. This is true for all
replication formats.

However, when mysqlbinlog parses a SET @@sql_mode = mode statement, the full mode value,
including NO_DIR_IN_CREATE, is passed to the receiving server. For this reason, replication of such a
statement may not be safe when STATEMENT mode is in use.

The default_storage_engine system variable is not replicated, regardless of the logging mode; this is
intended to facilitate replication between different storage engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on the
source without doing so on the replica can lead eventually to Table is full errors on the replica when
trying to execute INSERT statements on a MEMORY table on the source that is thus permitted to grow larger
than its counterpart on the replica. For more information, see Section 4.1.21, “Replication and MEMORY
Tables”.

In statement-based replication, session variables are not replicated properly when used in statements that
update tables. For example, the following sequence of statements does not insert the same data on the
source and the replica:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence:

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Replication of session variables is not a problem when row-based replication is being used, in which case,
session variables are always replicated safely. See Section 5.1, “Replication Formats”.

The following session variables are written to the binary log and honored by the replica when parsing the
binary log, regardless of the logging format:

• sql_mode

243

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_last_insert_id
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lc_time_names
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_pseudo_thread_id
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_timestamp
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_unique_checks
https://dev.mysql.com/doc/refman/8.0/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_dir_in_create
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_storage_engine
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/set-password.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_heap_table_size
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode

Replication and Views

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are written
to the binary log, replication between different character sets is not supported.

To help reduce possible confusion, we recommend that you always use the same setting for the
lower_case_table_names system variable on both source and replica, especially when you are running
MySQL on platforms with case-sensitive file systems. The lower_case_table_names setting can only
be configured when initializing the server.

4.1.40 Replication and Views

Views are always replicated to replicas. Views are filtered by their own name, not by the tables they refer
to. This means that a view can be replicated to the replica even if the view contains a table that would
normally be filtered out by replication-ignore-table rules. Care should therefore be taken to ensure
that views do not replicate table data that would normally be filtered for security reasons.

Replication from a table to a same-named view is supported using statement-based logging, but not when
using row-based logging. Trying to do so when row-based logging is in effect causes an error.

4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example, you
can replicate from a source running MySQL 5.6 to a replica running MySQL 5.7, from a source running
MySQL 5.7 to a replica running MySQL 8.0, and so on. However, you might encounter difficulties when
replicating from an older source to a newer replica if the source uses statements or relies on behavior no
longer supported in the version of MySQL used on the replica. For example, foreign key names longer than
64 characters are no longer supported from MySQL 8.0.

The use of more than two MySQL Server versions is not supported in replication setups involving multiple
sources, regardless of the number of source or replica MySQL servers. This restriction applies not only
to release series, but to version numbers within the same release series as well. For example, if you are
using a chained or circular replication setup, you cannot use MySQL 8.0.22, MySQL 8.0.24, and MySQL
8.0.28 concurrently, although you could use any two of these releases together.

Important

It is strongly recommended to use the most recent release available within a given
MySQL release series because replication (and other) capabilities are continually
being improved. It is also recommended to upgrade sources and replicas that use
early releases of a release series of MySQL to GA (production) releases when the
latter become available for that release series.

244

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_unique_checks
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_server
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_auto_is_null
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names

Upgrading a Replication Topology

From MySQL 8.0.14, the server version is recorded in the binary log for each transaction for the server
that originally committed the transaction (original_server_version), and for the server that is the
immediate source of the current server in the replication topology (immediate_server_version).

Replication from newer sources to older replicas might be possible, but is generally not supported. This is
due to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While
we attempt to maintain backward compatibility, this is not always possible. A source might also have
optional features enabled that are not understood by older replicas, such as binary log transaction
compression, where the resulting compressed transaction payloads cannot be read by a replica at a
release before MySQL 8.0.20.

This also has significant implications for upgrading replication servers; see Section 4.3, “Upgrading a
Replication Topology”, for more information.

• For more information about row-based replication, see Section 5.1, “Replication Formats”.

• SQL incompatibilities. You cannot replicate from a newer source to an older replica using
statement-based replication if the statements to be replicated use SQL features available on the source
but not on the replica.

However, if both the source and the replica support row-based replication, and there are no data
definition statements to be replicated that depend on SQL features found on the source but not on the
replica, you can use row-based replication to replicate the effects of data modification statements even if
the DDL run on the source is not supported on the replica.

In MySQL 8.0.26, incompatible changes were made to replication instrumentation names, including
the names of thread stages, containing the terms “master”, which is changed to “source”, “slave”,
which is changed to “replica”, and “mts” (for “multithreaded slave”), which is changed to “mta” (for
“multithreaded applier”). Monitoring tools that work with these instrumentation names might be impacted. If
the incompatible changes have an impact for you, set the terminology_use_previous system variable
to BEFORE_8_0_26 to make MySQL Server use the old versions of the names for the objects specified in
the previous list. This enables monitoring tools that rely on the old names to continue working until they can
be updated to use the new names.

For more information on potential replication issues, see Section 4.1, “Replication Features and Issues”.

4.3 Upgrading a Replication Topology

When you upgrade servers that participate in a replication topology, you need to take into account each
server's role in the topology and look out for issues specific to replication. For general information and
instructions for upgrading a MySQL Server instance, see Upgrading MySQL.

As explained in Section 4.2, “Replication Compatibility Between MySQL Versions”, MySQL supports
replication from a source running one release series to a replica running the next higher release series, but
does not support replication from a source running a later release to a replica running an earlier release.
A replica at an earlier release might not have the required capability to process transactions that can be
handled by the source at a later release. You must therefore upgrade all of the replicas in a replication
topology to the target MySQL Server release, before you upgrade the source server to the target release.
In this way you will never be in the situation where a replica still at the earlier release is attempting to
handle transactions from a source at the later release.

In a replication topology where there are multiple sources (multi-source replication), the use of more
than two MySQL Server versions is not supported, regardless of the number of source or replica MySQL

245

https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Behavior Changes Between Releases

servers. This restriction applies not only to release series, but to version numbers within the same
release series as well. For example, you cannot use MySQL 8.0.22, MySQL 8.0.24, and MySQL 8.0.28
concurrently in such a setup, although you could use any two of these releases together.

If you need to downgrade the servers in a replication topology, the source must be downgraded before the
replicas are downgraded. On the replicas, you must ensure that the binary log and relay log have been
fully processed, and remove them before proceeding with the downgrade.

Behavior Changes Between Releases

Although this upgrade sequence is correct, it is possible to still encounter replication difficulties when
replicating from a source at an earlier release that has not yet been upgraded, to a replica at a later release
that has been upgraded. This can happen if the source uses statements or relies on behavior that is
no longer supported in the later release installed on the replica. You can use MySQL Shell's upgrade
checker utility util.checkForServerUpgrade() to check MySQL 5.7 server instances or MySQL 8.0
server instances for upgrade to a GA MySQL 8.0 release. The utility identifies anything that needs to be
fixed for that server instance so that it does not cause an issue after the upgrade, including features and
behaviors that are no longer available in the later release. See Upgrade Checker Utility for information on
the upgrade checker utility.

If you are upgrading an existing replication setup from a version of MySQL that does not support global
transaction identifiers (GTIDs) to a version that does, only enable GTIDs on the source and the replicas
when you have made sure that the setup meets all the requirements for GTID-based replication. See
Section 2.3.4, “Setting Up Replication Using GTIDs” for information about converting binary log file position
based replication setups to use GTID-based replication.

Changes affecting operations in strict SQL mode (STRICT_TRANS_TABLES or STRICT_ALL_TABLES)
may result in replication failure on an upgraded replica. If you use statement-based logging
(binlog_format=STATEMENT), if a replica is upgraded before the source, the source executes
statements which succeed there but which may fail on the replica and so cause replication to stop. To
deal with this, stop all new statements on the source and wait until the replicas catch up, then upgrade the
replicas. Alternatively, if you cannot stop new statements, temporarily change to row-based logging on the
source (binlog_format=ROW) and wait until all replicas have processed all binary logs produced up to
the point of this change, then upgrade the replicas.

The default character set has changed from latin1 to utf8mb4 in MySQL 8.0. In a replicated setting,
when upgrading from MySQL 5.7 to 8.0, it is advisable to change the default character set back to the
character set used in MySQL 5.7 before upgrading. After the upgrade is completed, the default character
set can be changed to utf8mb4. Assuming that the previous defaults were used, one way to preserve
them is to start the server with these lines in the my.cnf file:

[mysqld]
character_set_server=latin1
collation_server=latin1_swedish_ci

Standard Upgrade Procedure

To upgrade a replication topology, follow the instructions in Upgrading MySQL for each individual MySQL
Server instance, using this overall procedure:

1. Upgrade the replicas first. On each replica instance:

• Carry out the preliminary checks and steps described in Preparing Your Installation for Upgrade.

• Shut down MySQL Server.

246

https://dev.mysql.com/doc/mysql-shell/8.0/en/mysql-shell-utilities-upgrade.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_strict_trans_tables
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_strict_all_tables
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Upgrade Procedure With Table Repair Or Rebuild

• Upgrade the MySQL Server binaries or packages.

• Restart MySQL Server.

• If you have upgraded to a release earlier than MySQL 8.0.16, invoke mysql_upgrade manually
to upgrade the system tables and schemas. When the server is running with global transaction
identifiers (GTIDs) enabled (gtid_mode=ON), do not enable binary logging by mysql_upgrade (so
do not use the --write-binlog option). Then shut down and restart the server.

• If you have upgraded to MySQL 8.0.16 or later, do not invoke mysql_upgrade. From that release,
MySQL Server performs the entire MySQL upgrade procedure, disabling binary logging during the
upgrade.

• Restart replication using a START REPLICA or START SLAVE statement.

2. When all the replicas have been upgraded, follow the same steps to upgrade and restart the source
server, with the exception of the START REPLICA or START SLAVE statement. If you made a
temporary change to row-based logging or to the default character set, you can revert the change now.

Upgrade Procedure With Table Repair Or Rebuild

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt. Such
operations, if necessary, are detailed at Changes in MySQL 8.0. It is safest to perform these operations
separately on the replicas and the source, and to disable replication of these operations from the source to
the replica. To achieve this, use the following procedure:

1. Stop all the replicas and upgrade the binaries or packages. Restart them with the --skip-slave-
start option, or from MySQL 8.0.24, the skip_slave_start system variable, so that they do not
connect to the source. Perform any table repair or rebuilding operations needed to re-create database
objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and reloading tables or triggers.

2. Disable the binary log on the source. To do this without restarting the source, execute a SET
sql_log_bin = OFF statement. Alternatively, stop the source and restart it with the --skip-log-
bin option. If you restart the source, you might also want to disallow client connections. For example, if
all clients connect using TCP/IP, enable the skip_networking system variable when you restart the
source.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the replicas later.

4. Re-enable the binary log on the source. If you set sql_log_bin to OFF earlier, execute a SET
sql_log_bin = ON statement. If you restarted the source to disable the binary log, restart it without
--skip-log-bin, and without enabling the skip_networking system variable so that clients and
replicas can connect.

5. Restart the replicas, this time without the --skip-slave-start option or skip_slave_start
system variable.

4.4 Troubleshooting Replication
If you have followed the instructions but your replication setup is not working, the first thing to do is check
the error log for messages. Many users have lost time by not doing this soon enough after encountering
problems.

247

https://dev.mysql.com/doc/refman/8.0/en/mysql-upgrade.html#option_mysql_upgrade_write-binlog
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking

Troubleshooting Replication

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the source has binary logging enabled by issuing a SHOW MASTER STATUS statement. Binary
logging is enabled by default. If binary logging is enabled, Position is nonzero. If binary logging is not
enabled, verify that you are not running the source with any settings that disable binary logging, such as
the --skip-log-bin option.

• Verify that the server_id system variable was set at startup on both the source and replica and that
the ID value is unique on each server.

• Verify that the replica is running. Use SHOW REPLICA STATUS to check whether the
Replica_IO_Running and Replica_SQL_Running values are both Yes. If not, verify the options
that were used when starting the replica server. For example, the --skip-slave-start command
line option, or from MySQL 8.0.24, the skip_slave_start system variable, prevents the replication
threads from starting until you issue a START REPLICA statement.

• If the replica is running, check whether it established a connection to the source. Use SHOW
PROCESSLIST, find the I/O (receiver) and SQL (applier) threads and check their State column to see
what they display. See Section 5.3, “Replication Threads”. If the receiver thread state says Connecting
to master, check the following:

• Verify the privileges for the replication user on the source.

• Check that the host name of the source is correct and that you are using the correct port to connect
to the source. The port used for replication is the same as used for client network communication (the
default is 3306). For the host name, ensure that the name resolves to the correct IP address.

• Check the configuration file to see whether the skip_networking system variable has been enabled
on the source or replica to disable networking. If so, comment the setting or remove it.

• If the source has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the source by using ping or traceroute/tracert to reach the host.

• If the replica was running previously but has stopped, the reason usually is that some statement that
succeeded on the source failed on the replica. This should never happen if you have taken a proper
snapshot of the source, and never modified the data on the replica outside of the replication threads.
If the replica stops unexpectedly, it is a bug or you have encountered one of the known replication
limitations described in Section 4.1, “Replication Features and Issues”. If it is a bug, see Section 4.5,
“How to Report Replication Bugs or Problems”, for instructions on how to report it.

• If a statement that succeeded on the source refuses to run on the replica, try the following procedure if it
is not feasible to do a full database resynchronization by deleting the replica's databases and copying a
new snapshot from the source:

1. Determine whether the affected table on the replica is different from the source table. Try to
understand how this happened. Then make the replica's table identical to the source's and run
START REPLICA.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe to
make the update manually (if needed) and then ignore the next statement from the source.

3. If you decide that the replica can skip the next statement from the source, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;

248

https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

How to Report Replication Bugs or Problems

mysql> START SLAVE;
Or from MySQL 8.0.26:
mysql> SET GLOBAL sql_replica_skip_counter = N;
mysql> START REPLICA;

The value of N should be 1 if the next statement from the source does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in the
binary log of the source.

See also SET GLOBAL sql_slave_skip_counter Syntax.

4. If you are sure that the replica started out perfectly synchronized with the source, and that no one
has updated the tables involved outside of the replication threads, then presumably the discrepancy
is the result of a bug. If you are running the most recent version of MySQL, please report the
problem. If you are running an older version, try upgrading to the latest production release to
determine whether the problem persists.

4.5 How to Report Replication Bugs or Problems
When you have determined that there is no user error involved, and replication still either does not work
at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible
from you to be able to track down the bug. Please spend some time and effort in preparing a good bug
report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using
the instructions given in How to Report Bugs or Problems. If you have a “phantom” problem (one that you
cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the replica outside of the replication
threads, the data goes out of synchrony, and you can have unique key violations on updates. In this
case, the replication thread stops and waits for you to clean up the tables manually to bring them into
synchrony. This is not a replication problem. It is a problem of outside interference causing replication
to fail.

2. Ensure that the replica is running with binary logging enabled (the log_bin system variable), and
with the --log-slave-updates option enabled, which causes the replica to log the updates that it
receives from the source into its own binary logs. These settings are the defaults.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the source

• All binary log files from the replica

• The output of SHOW MASTER STATUS from the source at the time you discovered the problem

• The output of SHOW REPLICA STATUS from the replica at the time you discovered the problem

• Error logs from the source and the replica

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos values
from SHOW REPLICA STATUS.

$> mysqlbinlog --start-position=log_pos log_file | head

249

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/5.7/en/set-global-sql-slave-skip-counter.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

How to Report Replication Bugs or Problems

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
How to Report Bugs or Problems.

250

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html

Chapter 5 Replication Implementation

Table of Contents
5.1 Replication Formats .. 252

5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 253
5.1.2 Usage of Row-Based Logging and Replication .. 256
5.1.3 Determination of Safe and Unsafe Statements in Binary Logging 257

5.2 Replication Channels .. 260
5.2.1 Commands for Operations on a Single Channel .. 260
5.2.2 Compatibility with Previous Replication Statements .. 261
5.2.3 Startup Options and Replication Channels .. 262
5.2.4 Replication Channel Naming Conventions ... 263

5.3 Replication Threads .. 264
5.3.1 Monitoring Replication Main Threads .. 264
5.3.2 Monitoring Replication Applier Worker Threads ... 265

5.4 Relay Log and Replication Metadata Repositories .. 266
5.4.1 The Relay Log ... 267
5.4.2 Replication Metadata Repositories .. 268

5.5 How Servers Evaluate Replication Filtering Rules .. 274
5.5.1 Evaluation of Database-Level Replication and Binary Logging Options 275
5.5.2 Evaluation of Table-Level Replication Options ... 276
5.5.3 Interactions Between Replication Filtering Options ... 278
5.5.4 Replication Channel Based Filters .. 280

Replication is based on the source server keeping track of all changes to its databases (updates, deletes,
and so on) in its binary log. The binary log serves as a written record of all events that modify database
structure or content (data) from the moment the server was started. Typically, SELECT statements are not
recorded because they modify neither database structure nor content.

Each replica that connects to the source requests a copy of the binary log. That is, it pulls the data from the
source, rather than the source pushing the data to the replica. The replica also executes the events from
the binary log that it receives. This has the effect of repeating the original changes just as they were made
on the source. Tables are created or their structure modified, and data is inserted, deleted, and updated
according to the changes that were originally made on the source.

Because each replica is independent, the replaying of the changes from the source's binary log occurs
independently on each replica that is connected to the source. In addition, because each replica receives a
copy of the binary log only by requesting it from the source, the replica is able to read and update the copy
of the database at its own pace and can start and stop the replication process at will without affecting the
ability to update to the latest database status on either the source or replica side.

For more information on the specifics of the replication implementation, see Section 5.3, “Replication
Threads”.

Source servers and replicas report their status in respect of the replication process regularly so that you
can monitor them. See Examining Server Thread (Process) Information, for descriptions of all replicated-
related states.

The source's binary log is written to a local relay log on the replica before it is processed. The replica also
records information about the current position with the source's binary log and the local relay log. See
Section 5.4, “Relay Log and Replication Metadata Repositories”.

251

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/thread-information.html

Replication Formats

Database changes are filtered on the replica according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules are
applied, see Section 5.5, “How Servers Evaluate Replication Filtering Rules”.

5.1 Replication Formats

Replication works because events written to the binary log are read from the source and then processed
on the replica. The events are recorded within the binary log in different formats according to the type of
event. The different replication formats used correspond to the binary logging format used when the events
were recorded in the source's binary log. The correlation between binary logging formats and the terms
used during replication are:

• When using statement-based binary logging, the source writes SQL statements to the binary log.
Replication of the source to the replica works by executing the SQL statements on the replica. This
is called statement-based replication (which can be abbreviated as SBR), which corresponds to the
MySQL statement-based binary logging format.

• When using row-based logging, the source writes events to the binary log that indicate how individual
table rows are changed. Replication of the source to the replica works by copying the events
representing the changes to the table rows to the replica. This is called row-based replication (which can
be abbreviated as RBR).

Row-based logging is the default method.

• You can also configure MySQL to use a mix of both statement-based and row-based logging, depending
on which is most appropriate for the change to be logged. This is called mixed-format logging. When
using mixed-format logging, a statement-based log is used by default. Depending on certain statements,
and also the storage engine being used, the log is automatically switched to row-based in particular
cases. Replication using the mixed format is referred to as mixed-based replication or mixed-format
replication. For more information, see Mixed Binary Logging Format.

NDB Cluster. The default binary logging format in MySQL NDB Cluster 8.0 is MIXED. You should
note that NDB Cluster Replication always uses row-based replication, and that the NDB storage engine is
incompatible with statement-based replication. See General Requirements for NDB Cluster Replication, for
more information.

When using MIXED format, the binary logging format is determined in part by the storage engine being
used and the statement being executed. For more information on mixed-format logging and the rules
governing the support of different logging formats, see Mixed Binary Logging Format.

The logging format in a running MySQL server is controlled by setting the binlog_format server system
variable. This variable can be set with session or global scope. The rules governing when and how the
new setting takes effect are the same as for other MySQL server system variables. Setting the variable for
the current session lasts only until the end of that session, and the change is not visible to other sessions.
Setting the variable globally takes effect for clients that connect after the change, but not for any current
client sessions, including the session where the variable setting was changed. To make the global system
variable setting permanent so that it applies across server restarts, you must set it in an option file. For
more information, see SET Syntax for Variable Assignment.

There are conditions under which you cannot change the binary logging format at runtime or doing so
causes replication to fail. See Setting The Binary Log Format.

Changing the global binlog_format value requires privileges sufficient to set global system variables.
Changing the session binlog_format value requires privileges sufficient to set restricted session system
variables. See System Variable Privileges.

252

https://dev.mysql.com/doc/refman/8.0/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-general.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-setting.html
https://dev.mysql.com/doc/refman/8.0/en/system-variable-privileges.html

Advantages and Disadvantages of Statement-Based and Row-Based Replication

Note

Changing the binary logging format (binlog_format system variable) is
deprecated as of MySQL 8.0.34. In a future version of MySQL, you can expect
binlog_format to be removed altogether, and for the row-based format to
become the only logging format used by MySQL.

The statement-based and row-based replication formats have different issues and limitations. For
a comparison of their relative advantages and disadvantages, see Section 5.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

With statement-based replication, you may encounter issues with replicating stored routines or triggers.
You can avoid these issues by using row-based replication instead. For more information, see Stored
Program Binary Logging.

5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based
Replication

Each binary logging format has advantages and disadvantages. For most users, the mixed replication
format should provide the best combination of data integrity and performance. If, however, you want to
take advantage of the features specific to the statement-based or row-based replication format when
performing certain tasks, you can use the information in this section, which provides a summary of their
relative advantages and disadvantages, to determine which is best for your needs.

• Advantages of statement-based replication

• Disadvantages of statement-based replication

• Advantages of row-based replication

• Disadvantages of row-based replication

Advantages of statement-based replication

• Proven technology.

• Less data written to log files. When updates or deletes affect many rows, this results in much less
storage space required for log files. This also means that taking and restoring from backups can be
accomplished more quickly.

• Log files contain all statements that made any changes, so they can be used to audit the database.

Disadvantages of statement-based replication

• Statements that are unsafe for SBR.
Not all statements which modify data (such as INSERT DELETE, UPDATE, and REPLACE statements)
can be replicated using statement-based replication. Any nondeterministic behavior is difficult to
replicate when using statement-based replication. Examples of such Data Modification Language (DML)
statements include the following:

• A statement that depends on a loadable function or stored program that is nondeterministic, since the
value returned by such a function or stored program or depends on factors other than the parameters
supplied to it. (Row-based replication, however, simply replicates the value returned by the function or
stored program, so its effect on table rows and data is the same on both the source and replica.) See
Section 4.1.16, “Replication of Invoked Features”, for more information.

253

https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/8.0/en/stored-programs-logging.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/replace.html

Advantages and Disadvantages of Statement-Based and Row-Based Replication

• DELETE and UPDATE statements that use a LIMIT clause without an ORDER BY are nondeterministic.
See Section 4.1.18, “Replication and LIMIT”.

• Locking read statements (SELECT ... FOR UPDATE and SELECT ... FOR SHARE) that use
NOWAIT or SKIP LOCKED options. See Locking Read Concurrency with NOWAIT and SKIP LOCKED.

• Deterministic loadable functions must be applied on the replicas.

• Statements using any of the following functions cannot be replicated properly using statement-based
replication:

• LOAD_FILE()

• UUID(), UUID_SHORT()

• USER()

• FOUND_ROWS()

• SYSDATE() (unless both the source and the replica are started with the --sysdate-is-now
option)

• GET_LOCK()

• IS_FREE_LOCK()

• IS_USED_LOCK()

• MASTER_POS_WAIT()

• RAND()

• RELEASE_LOCK()

• SOURCE_POS_WAIT()

• SLEEP()

• VERSION()

However, all other functions are replicated correctly using statement-based replication, including
NOW() and so forth.

For more information, see Section 4.1.14, “Replication and System Functions”.

Statements that cannot be replicated correctly using statement-based replication are logged with a
warning like the one shown here:

[Warning] Statement is not safe to log in statement format.

A similar warning is also issued to the client in such cases. The client can display it using SHOW
WARNINGS.

• INSERT ... SELECT requires a greater number of row-level locks than with row-based replication.

• UPDATE statements that require a table scan (because no index is used in the WHERE clause) must lock
a greater number of rows than with row-based replication.

254

https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking-reads.html#innodb-locking-reads-nowait-skip-locked
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid-short
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_found-rows
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_sysdate-is-now
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_is-free-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_is-used-lock
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_release-lock
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_source-pos-wait
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_sleep
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_version
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/show-warnings.html
https://dev.mysql.com/doc/refman/8.0/en/show-warnings.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

Advantages and Disadvantages of Statement-Based and Row-Based Replication

• For InnoDB: An INSERT statement that uses AUTO_INCREMENT blocks other nonconflicting INSERT
statements.

• For complex statements, the statement must be evaluated and executed on the replica before the rows
are updated or inserted. With row-based replication, the replica only has to modify the affected rows, not
execute the full statement.

• If there is an error in evaluation on the replica, particularly when executing complex statements,
statement-based replication may slowly increase the margin of error across the affected rows over time.
See Section 4.1.29, “Replica Errors During Replication”.

• Stored functions execute with the same NOW() value as the calling statement. However, this is not true
of stored procedures.

• Deterministic loadable functions must be applied on the replicas.

• Table definitions must be (nearly) identical on source and replica. See Section 4.1.9, “Replication with
Differing Table Definitions on Source and Replica”, for more information.

• As of MySQL 8.0.22, DML operations that read data from MySQL grant tables (through a join list or
subquery) but do not modify them are performed as non-locking reads on the MySQL grant tables
and are therefore not safe for statement-based replication. For more information, see Grant Table
Concurrency.

Advantages of row-based replication

• All changes can be replicated. This is the safest form of replication.

Note

Statements that update the information in the mysql system schema, such as
GRANT, REVOKE and the manipulation of triggers, stored routines (including
stored procedures), and views, are all replicated to replicas using statement-
based replication.

For statements such as CREATE TABLE ... SELECT, a CREATE statement is
generated from the table definition and replicated using statement-based format,
while the row insertions are replicated using row-based format.

• Fewer row locks are required on the source, which thus achieves higher concurrency, for the following
types of statements:

• INSERT ... SELECT

• INSERT statements with AUTO_INCREMENT

• UPDATE or DELETE statements with WHERE clauses that do not use keys or do not change most of the
examined rows.

• Fewer row locks are required on the replica for any INSERT, UPDATE, or DELETE statement.

Disadvantages of row-based replication

• RBR can generate more data that must be logged. To replicate a DML statement (such as an UPDATE or
DELETE statement), statement-based replication writes only the statement to the binary log. By contrast,
row-based replication writes each changed row to the binary log. If the statement changes many rows,
row-based replication may write significantly more data to the binary log; this is true even for statements

255

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html#grant-tables-concurrency
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html#grant-tables-concurrency
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Usage of Row-Based Logging and Replication

that are rolled back. This also means that making and restoring a backup can require more time. In
addition, the binary log is locked for a longer time to write the data, which may cause concurrency
problems. Use binlog_row_image=minimal to reduce the disadvantage considerably.

• Deterministic loadable functions that generate large BLOB values take longer to replicate with row-based
replication than with statement-based replication. This is because the BLOB column value is logged,
rather than the statement generating the data.

• You cannot see on the replica what statements were received from the source and executed.
However, you can see what data was changed using mysqlbinlog with the options --base64-
output=DECODE-ROWS and --verbose.

Alternatively, use the binlog_rows_query_log_events variable, which if enabled adds a
Rows_query event with the statement to mysqlbinlog output when the -vv option is used.

• For tables using the MyISAM storage engine, a stronger lock is required on the replica for INSERT
statements when applying them as row-based events to the binary log than when applying them as
statements. This means that concurrent inserts on MyISAM tables are not supported when using row-
based replication.

5.1.2 Usage of Row-Based Logging and Replication

MySQL uses statement-based logging (SBL), row-based logging (RBL) or mixed-format logging. The type
of binary log used impacts the size and efficiency of logging. Therefore the choice between row-based
replication (RBR) or statement-based replication (SBR) depends on your application and environment. This
section describes known issues when using a row-based format log, and describes some best practices
using it in replication.

For additional information, see Section 5.1, “Replication Formats”, and Section 5.1.1, “Advantages and
Disadvantages of Statement-Based and Row-Based Replication”.

For information about issues specific to NDB Cluster Replication (which depends on row-based
replication), see Known Issues in NDB Cluster Replication.

• Row-based logging of temporary tables. As noted in Section 4.1.31, “Replication and Temporary
Tables”, temporary tables are not replicated when using row-based format or (from MySQL 8.0.4) mixed
format. For more information, see Section 5.1.1, “Advantages and Disadvantages of Statement-Based
and Row-Based Replication”.

Temporary tables are not replicated when using row-based or mixed format because there is no need.
In addition, because temporary tables can be read only from the thread which created them, there is
seldom if ever any benefit obtained from replicating them, even when using statement-based format.

You can switch from statement-based to row-based binary logging format at runtime even when
temporary tables have been created. However, in MySQL 8.0, you cannot switch from row-based or
mixed format for binary logging to statement-based format at runtime, due to any CREATE TEMPORARY
TABLE statements having been omitted from the binary log in the previous mode.

The MySQL server tracks the logging mode that was in effect when each temporary table was created.
When a given client session ends, the server logs a DROP TEMPORARY TABLE IF EXISTS statement
for each temporary table that still exists and was created when statement-based binary logging was
in use. If row-based or mixed format binary logging was in use when the table was created, the DROP
TEMPORARY TABLE IF EXISTS statement is not logged. In releases before MySQL 8.0.4 and 5.7.25,
the DROP TEMPORARY TABLE IF EXISTS statement was logged regardless of the logging mode that
was in effect.

256

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_verbose
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-issues.html

Determination of Safe and Unsafe Statements in Binary Logging

Nontransactional DML statements involving temporary tables are allowed when using
binlog_format=ROW, as long as any nontransactional tables affected by the statements are temporary
tables (Bug #14272672).

• RBL and synchronization of nontransactional tables. When many rows are affected, the set of
changes is split into several events; when the statement commits, all of these events are written to the
binary log. When executing on the replica, a table lock is taken on all tables involved, and then the rows
are applied in batch mode. Depending on the engine used for the replica's copy of the table, this may or
may not be effective.

• Latency and binary log size. RBL writes changes for each row to the binary log and so its size can
increase quite rapidly. This can significantly increase the time required to make changes on the replica
that match those on the source. You should be aware of the potential for this delay in your applications.

• Reading the binary log. mysqlbinlog displays row-based events in the binary log using the
BINLOG statement. This statement displays an event as a base 64-encoded string, the meaning of which
is not evident. When invoked with the --base64-output=DECODE-ROWS and --verbose options,
mysqlbinlog formats the contents of the binary log to be human readable. When binary log events
were written in row-based format and you want to read or recover from a replication or database failure
you can use this command to read contents of the binary log. For more information, see mysqlbinlog
Row Event Display.

• Binary log execution errors and replica execution mode. Using
slave_exec_mode=IDEMPOTENT is generally only useful with MySQL NDB Cluster replication, for
which IDEMPOTENT is the default value. (See NDB Cluster Replication: Bidirectional and Circular
Replication). When the system variable replica_exec_mode or slave_exec_mode is IDEMPOTENT,
a failure to apply changes from RBL because the original row cannot be found does not trigger an error
or cause replication to fail. This means that it is possible that updates are not applied on the replica,
so that the source and replica are no longer synchronized. Latency issues and use of nontransactional
tables with RBR when replica_exec_mode or slave_exec_mode is IDEMPOTENT can cause the
source and replica to diverge even further. For more information about replica_exec_mode and
slave_exec_mode, see Server System Variables.

For other scenarios, setting replica_exec_mode or slave_exec_mode to STRICT is normally
sufficient; this is the default value for storage engines other than NDB.

• Filtering based on server ID not supported. You can filter based on server ID by using the
IGNORE_SERVER_IDS option for the CHANGE REPLICATION SOURCE TO statement (from MySQL
8.0.23) or CHANGE MASTER TO statement (before MySQL 8.0.23). This option works with statement-
based and row-based logging formats, but is deprecated for use when GTID_MODE=ON is set. Another
method to filter out changes on some replicas is to use a WHERE clause that includes the relation
@@server_id <> id_value clause with UPDATE and DELETE statements. For example, WHERE
@@server_id <> 1. However, this does not work correctly with row-based logging. To use the
server_id system variable for statement filtering, use statement-based logging.

• RBL, nontransactional tables, and stopped replicas. When using row-based logging, if the replica
server is stopped while a replica thread is updating a nontransactional table, the replica database
can reach an inconsistent state. For this reason, it is recommended that you use a transactional
storage engine such as InnoDB for all tables replicated using the row-based format. Use of STOP
REPLICA or STOP REPLICA SQL_THREAD (prior to MySQL 8.0.22, use STOP slave or STOP SLAVE
SQL_THREAD) prior to shutting down the replica MySQL server helps prevent issues from occurring, and
is always recommended regardless of the logging format or storage engine you use.

5.1.3 Determination of Safe and Unsafe Statements in Binary Logging

257

https://dev.mysql.com/doc/refman/8.0/en/binlog.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_base64-output
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html#option_mysqlbinlog_verbose
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-row-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog-row-events.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-source.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-slave.html
https://dev.mysql.com/doc/refman/8.0/en/stop-slave.html
https://dev.mysql.com/doc/refman/8.0/en/stop-slave.html

Determination of Safe and Unsafe Statements in Binary Logging

The “safeness” of a statement in MySQL replication refers to whether the statement and its effects can be
replicated correctly using statement-based format. If this is true of the statement, we refer to the statement
as safe; otherwise, we refer to it as unsafe.

In general, a statement is safe if it deterministic, and unsafe if it is not. However, certain nondeterministic
functions are not considered unsafe (see Nondeterministic functions not considered unsafe, later in this
section). In addition, statements using results from floating-point math functions—which are hardware-
dependent—are always considered unsafe (see Section 4.1.12, “Replication and Floating-Point Values”).

Handling of safe and unsafe statements. A statement is treated differently depending on whether the
statement is considered safe, and with respect to the binary logging format (that is, the current value of
binlog_format).

• When using row-based logging, no distinction is made in the treatment of safe and unsafe statements.

• When using mixed-format logging, statements flagged as unsafe are logged using the row-based format;
statements regarded as safe are logged using the statement-based format.

• When using statement-based logging, statements flagged as being unsafe generate a warning to this
effect. Safe statements are logged normally.

Each statement flagged as unsafe generates a warning. If a large number of such statements were
executed on the source, this could lead to excessively large error log files. To prevent this, MySQL has
a warning suppression mechanism. Whenever the 50 most recent ER_BINLOG_UNSAFE_STATEMENT
warnings have been generated more than 50 times in any 50-second period, warning suppression is
enabled. When activated, this causes such warnings not to be written to the error log; instead, for each 50
warnings of this type, a note The last warning was repeated N times in last S seconds
is written to the error log. This continues as long as the 50 most recent such warnings were issued in 50
seconds or less; once the rate has decreased below this threshold, the warnings are once again logged
normally. Warning suppression has no effect on how the safety of statements for statement-based logging
is determined, nor on how warnings are sent to the client. MySQL clients still receive one warning for each
such statement.

For more information, see Section 5.1, “Replication Formats”.

Statements considered unsafe.
Statements with the following characteristics are considered unsafe:

• Statements containing system functions that may return a different value on the replica.
These functions include FOUND_ROWS(), GET_LOCK(), IS_FREE_LOCK(), IS_USED_LOCK(),
LOAD_FILE(), MASTER_POS_WAIT(), RAND(), RELEASE_LOCK(), ROW_COUNT(),
SESSION_USER(), SLEEP(), SOURCE_POS_WAIT(), SYSDATE(), SYSTEM_USER(), USER(),
UUID(), and UUID_SHORT().

Nondeterministic functions not considered unsafe. Although these functions are not deterministic,
they are treated as safe for purposes of logging and replication: CONNECTION_ID(), CURDATE(),
CURRENT_DATE(), CURRENT_TIME(), CURRENT_TIMESTAMP(), CURTIME(),, LAST_INSERT_ID(),
LOCALTIME(), LOCALTIMESTAMP(), NOW(), UNIX_TIMESTAMP(), UTC_DATE(), UTC_TIME(), and
UTC_TIMESTAMP().

For more information, see Section 4.1.14, “Replication and System Functions”.

• References to system variables. Most system variables are not replicated correctly using the
statement-based format. See Section 4.1.39, “Replication and Variables”. For exceptions, see Mixed
Binary Logging Format.

258

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_binlog_unsafe_statement
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_found-rows
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_is-free-lock
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_is-used-lock
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_load-file
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_release-lock
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_session-user
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_sleep
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_source-pos-wait
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_sysdate
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_system-user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid-short
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_curdate
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_current-date
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_current-time
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_current-timestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_curtime
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_localtime
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_localtimestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_now
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_unix-timestamp
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_utc-date
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_utc-time
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_utc-timestamp
https://dev.mysql.com/doc/refman/8.0/en/binary-log-mixed.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-mixed.html

Determination of Safe and Unsafe Statements in Binary Logging

• Loadable Functions. Since we have no control over what a loadable function does, we must assume
that it is executing unsafe statements.

• Fulltext plugin. This plugin may behave differently on different MySQL servers; therefore, statements
depending on it could have different results. For this reason, all statements relying on the fulltext plugin
are treated as unsafe in MySQL.

• Trigger or stored program updates a table having an AUTO_INCREMENT column. This is unsafe
because the order in which the rows are updated may differ on the source and the replica.

In addition, an INSERT into a table that has a composite primary key containing an AUTO_INCREMENT
column that is not the first column of this composite key is unsafe.

For more information, see Section 4.1.1, “Replication and AUTO_INCREMENT”.

• INSERT ... ON DUPLICATE KEY UPDATE statements on tables with multiple primary or unique
keys. When executed against a table that contains more than one primary or unique key, this
statement is considered unsafe, being sensitive to the order in which the storage engine checks
the keys, which is not deterministic, and on which the choice of rows updated by the MySQL Server
depends.

An INSERT ... ON DUPLICATE KEY UPDATE statement against a table having more than one
unique or primary key is marked as unsafe for statement-based replication. (Bug #11765650, Bug
#58637)

• Updates using LIMIT. The order in which rows are retrieved is not specified, and is therefore
considered unsafe. See Section 4.1.18, “Replication and LIMIT”.

• Accesses or references log tables. The contents of the system log table may differ between source
and replica.

• Nontransactional operations after transactional operations. Within a transaction, allowing any
nontransactional reads or writes to execute after any transactional reads or writes is considered unsafe.

For more information, see Section 4.1.35, “Replication and Transactions”.

• Accesses or references self-logging tables. All reads and writes to self-logging tables are
considered unsafe. Within a transaction, any statement following a read or write to self-logging tables is
also considered unsafe.

• LOAD DATA statements. LOAD DATA is treated as unsafe and when binlog_format=MIXED the
statement is logged in row-based format. When binlog_format=STATEMENT LOAD DATA does not
generate a warning, unlike other unsafe statements.

• XA transactions. If two XA transactions committed in parallel on the source are being prepared on
the replica in the inverse order, locking dependencies can occur with statement-based replication that
cannot be safely resolved, and it is possible for replication to fail with deadlock on the replica. When
binlog_format=STATEMENT is set, DML statements inside XA transactions are flagged as being
unsafe and generate a warning. When binlog_format=MIXED or binlog_format=ROW is set, DML
statements inside XA transactions are logged using row-based replication, and the potential issue is not
present.

• DEFAULT clause that refers to a nondeterministic function. If an expression default value refers
to a nondeterministic function, any statement that causes the expression to be evaluated is unsafe for
statement-based replication. This includes statements such as INSERT, UPDATE, and ALTER TABLE.
Unlike most other unsafe statements, this category of statement cannot be replicated safely in row-
based format. When binlog_format is set to STATEMENT, the statement is logged and executed

259

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Replication Channels

but a warning message is written to the error log. When binlog_format is set to MIXED or ROW, the
statement is not executed and an error message is written to the error log. For more information on the
handling of explicit defaults, see Explicit Default Handling as of MySQL 8.0.13.

For additional information, see Section 4.1, “Replication Features and Issues”.

5.2 Replication Channels
In MySQL multi-source replication, a replica opens multiple replication channels, one for each source
server. The replication channels represent the path of transactions flowing from a source to the replica.
Each replication channel has its own receiver (I/O) thread, one or more applier (SQL) threads, and relay
log. When transactions from a source are received by a channel's receiver thread, they are added to the
channel's relay log file and passed through to the channel's applier threads. This enables each channel to
function independently.

This section describes how channels can be used in a replication topology, and the impact they have on
single-source replication. For instructions to configure sources and replicas for multi-source replication,
to start, stop and reset multi-source replicas, and to monitor multi-source replication, see Section 2.5,
“MySQL Multi-Source Replication”.

The maximum number of channels that can be created on one replica server in a multi-source replication
topology is 256. Each replication channel must have a unique (nonempty) name, as explained in
Section 5.2.4, “Replication Channel Naming Conventions”. The error codes and messages that are issued
when multi-source replication is enabled specify the channel that generated the error.

Note

Each channel on a multi-source replica must replicate from a different source. You
cannot set up multiple replication channels from a single replica to a single source.
This is because the server IDs of replicas must be unique in a replication topology.
The source distinguishes replicas only by their server IDs, not by the names of the
replication channels, so it cannot recognize different replication channels from the
same replica.

A multi-source replica can also be set up as a multi-threaded replica, by setting the system variable
replica_parallel_workers (from MySQL 8.0.26) or slave_parallel_workers (before MySQL
8.0.26) to a value greater than 0. When you do this on a multi-source replica, each channel on the replica
has the specified number of applier threads, plus a coordinator thread to manage them. You cannot
configure the number of applier threads for individual channels.

From MySQL 8.0, multi-source replicas can be configured with replication filters on specific replication
channels. Channel specific replication filters can be used when the same database or table is present on
multiple sources, and you only need the replica to replicate it from one source. For GTID-based replication,
if the same transaction might arrive from multiple sources (such as in a diamond topology), you must
ensure the filtering setup is the same on all channels. For more information, see Section 5.5.4, “Replication
Channel Based Filters”.

To provide compatibility with previous versions, the MySQL server automatically creates on startup a
default channel whose name is the empty string (""). This channel is always present; it cannot be created
or destroyed by the user. If no other channels (having nonempty names) have been created, replication
statements act on the default channel only, so that all replication statements from older replicas function
as expected (see Section 5.2.2, “Compatibility with Previous Replication Statements”. Statements applying
to replication channels as described in this section can be used only when there is at least one named
channel.

5.2.1 Commands for Operations on a Single Channel

260

https://dev.mysql.com/doc/refman/8.0/en/data-type-defaults.html#data-type-defaults-explicit

Compatibility with Previous Replication Statements

To enable MySQL replication operations to act on individual replication channels, use the FOR CHANNEL
channel clause with the following replication statements:

• CHANGE REPLICATION SOURCE TO

• CHANGE MASTER TO

• START REPLICA (or before MySQL 8.0.22, START SLAVE)

• STOP REPLICA (or before MySQL 8.0.22, STOP SLAVE)

• SHOW RELAYLOG EVENTS

• FLUSH RELAY LOGS

• SHOW REPLICA STATUS (or before MySQL 8.0.22, SHOW SLAVE STATUS)

• RESET REPLICA (or before MySQL 8.0.22, RESET SLAVE)

The following functions have a channel parameter:

• MASTER_POS_WAIT()

• SOURCE_POS_WAIT()

The following statements are disallowed for the group_replication_recovery channel:

• START REPLICA

• STOP REPLICA

The following statements are disallowed for the group_replication_applier channel:

• START REPLICA

• STOP REPLICA

• SHOW REPLICA STATUS

FLUSH RELAY LOGS is now permitted for the group_replication_applier channel, but if the request
is received while a transaction is being applied, the request is performed after the transaction ends. The
requester must wait while the transaction is completed and the rotation takes place. This behavior prevents
transactions from being split, which is not permitted for Group Replication.

5.2.2 Compatibility with Previous Replication Statements

When a replica has multiple channels and a FOR CHANNEL channel option is not specified, a valid
statement generally acts on all available channels, with some specific exceptions.

For example, the following statements behave as expected for all except certain Group Replication
channels:

• START REPLICA starts replication threads for all channels, except the
group_replication_recovery and group_replication_applier channels.

• STOP REPLICA stops replication threads for all channels, except the group_replication_recovery
and group_replication_applier channels.

• SHOW REPLICA STATUS reports the status for all channels, except the
group_replication_applier channel.

261

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-slave.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-relay-logs
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-status.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_source-pos-wait
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/stop-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Startup Options and Replication Channels

• RESET REPLICA resets all channels.

Warning

Use RESET REPLICA with caution as this statement deletes all existing channels,
purges their relay log files, and recreates only the default channel.

Some replication statements cannot operate on all channels. In this case, error 1964 Multiple
channels exist on the replica. Please provide channel name as an argument.
is generated. The following statements and functions generate this error when used in a multi-source
replication topology and a FOR CHANNEL channel option is not used to specify which channel to act on:

• SHOW RELAYLOG EVENTS

• CHANGE REPLICATION SOURCE TO

• CHANGE MASTER TO

• MASTER_POS_WAIT()

• SOURCE_POS_WAIT()

Note that a default channel always exists in a single source replication topology, where statements and
functions behave as in previous versions of MySQL.

5.2.3 Startup Options and Replication Channels

This section describes startup options which are impacted by the addition of replication channels.

The master_info_repository and relay_log_info_repository system variables must not be set
to FILE when you use replication channels. In MySQL 8.0, the FILE setting is deprecated, and TABLE is
the default, so the system variables can be omitted. From MySQL 8.0.23, they must be omitted because
their use is deprecated from that release. If these system variables are set to FILE, attempting to add
more sources to a replica fails with ER_SLAVE_NEW_CHANNEL_WRONG_REPOSITORY.

The following startup options now affect all channels in a replication topology.

• --log-replica-updates or --log-slave-updates

All transactions received by the replica (even from multiple sources) are written in the binary log.

• --relay-log-purge

When set, each channel purges its own relay log automatically.

• --replica-transaction-retries or --slave-transaction-retries

The specified number of transaction retries can take place on all applier threads of all channels.

• --skip-replica-start or --skip-slave-start (or skip_replica_start or
skip_slave_start system variable set)

No replication threads start on any channels.

• --replica-skip-errors or --slave-skip-errors

Execution continues and errors are skipped for all channels.

262

https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-relaylog-events.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_master-pos-wait
https://dev.mysql.com/doc/refman/8.0/en/replication-functions-synchronization.html#function_source-pos-wait
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_slave_new_channel_wrong_repository

Replication Channel Naming Conventions

The values set for the following startup options apply on each channel; since these are mysqld startup
options, they are applied on every channel.

• --max-relay-log-size=size

Maximum size of the individual relay log file for each channel; after reaching this limit, the file is rotated.

• --relay-log-space-limit=size

Upper limit for the total size of all relay logs combined, for each individual channel. For N channels, the
combined size of these logs is limited to relay_log_space_limit * N.

• --replica-parallel-workers=value or --slave-parallel-workers=value

Number of replication applier threads per channel.

• replica_checkpoint_group or slave_checkpoint_group

Waiting time by an receiver thread for each source.

• --relay-log-index=filename

Base name for each channel's relay log index file. See Section 5.2.4, “Replication Channel Naming
Conventions”.

• --relay-log=filename

Denotes the base name of each channel's relay log file. See Section 5.2.4, “Replication Channel Naming
Conventions”.

• --replica-net-timeout=N or --slave-net-timeout=N

This value is set per channel, so that each channel waits for N seconds to check for a broken connection.

• --replica-skip-counter=N or --slave-skip-counter=N

This value is set per channel, so that each channel skips N events from its source.

5.2.4 Replication Channel Naming Conventions

This section describes how naming conventions are impacted by replication channels.

Each replication channel has a unique name which is a string with a maximum length of 64 characters and
is case-insensitive. Because channel names are used in the replica's applier metadata repository table,
the character set used for these is always UTF-8. Although you are generally free to use any name for
channels, the following names are reserved:

• group_replication_applier

• group_replication_recovery

The name you choose for a replication channel also influences the file names used by
a multi-source replica. The relay log files and index files for each channel are named
relay_log_basename-channel.xxxxxx, where relay_log_basename is a base name specified
using the relay_log system variable, and channel is the name of the channel logged to this file. If you
do not specify the relay_log system variable, a default file name is used that also includes the name of
the channel.

263

Replication Threads

5.3 Replication Threads
MySQL replication capabilities are implemented using the following types of threads:

• Binary log dump thread. The source creates a thread to send the binary log contents to a replica
when the replica connects. This thread can be identified in the output of SHOW PROCESSLIST on the
source as the Binlog Dump thread.

• Replication I/O receiver thread. When a START REPLICA statement is issued on a replica server,
the replica creates an I/O (receiver) thread, which connects to the source and asks it to send the updates
recorded in its binary logs.

The replication receiver thread reads the updates that the source's Binlog Dump thread sends (see
previous item) and copies them to local files that comprise the replica's relay log.

The state of this thread is shown as Slave_IO_running in the output of SHOW REPLICA STATUS.

• Replication SQL applier thread. When replica_parallel_workers (in MySQL 8.0.26 and
earlier, use slave_parallel_workers) is equal to 0, the replica creates an SQL (applier) thread to
read the relay log that is written by the replication receiver thread and execute the transactions contained
in it. When replica_parallel_workers is N >= 1, there are N applier threads and one coordinator
thread, which reads transactions sequentially from the relay log, and schedules them to be applied by
worker threads. Each worker applies the transactions that the coordinator has assigned to it.

You can enable further parallelization for tasks on a replica by setting the system variable
replica_parallel_workers (MySQL 8.0.26 or later) or slave_parallel_workers (prior to MySQL
8.0.26) to a value greater than 0. When this is done, the replica creates the specified number of worker
threads to apply transactions, plus a coordinator thread which reads transactions from the relay log and
assigns them to workers. A replica with replica_parallel_workers (slave_parallel_workers)
set to a value greater than 0 is called a multithreaded replica. If you are using multiple replication channels,
each channel has the number of threads specified using this variable.

Note

Multithreaded replicas are supported by NDB Cluster beginning with NDB 8.0.33.
(Previously, NDB silently ignored any setting for replica_parallel_workers.)
See NDB Cluster Replication Using the Multithreaded Applier, for more information.

5.3.1 Monitoring Replication Main Threads

The SHOW PROCESSLIST statement provides information that tells you what is happening on the source
and on the replica regarding replication. For information on source states, see Replication Source Thread
States. For replica states, see Replication I/O (Receiver) Thread States, and Replication SQL Thread
States.

The following example illustrates how the three main replication threads, the binary log dump thread,
replication I/O (receiver) thread, and replication SQL (applier) thread, show up in the output from SHOW
PROCESSLIST.

On the source server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump

264

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-mta.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/source-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/source-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

Monitoring Replication Applier Worker Threads

 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump thread that services a connected replica. The State information
indicates that all outstanding updates have been sent to the replica and that the source is waiting for more
updates to occur. If you see no Binlog Dump threads on a source server, this means that replication is
not running; that is, no replicas are currently connected.

On a replica server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the replication I/O (receiver) thread that is
communicating with the source server, and thread 11 is the replication SQL (applier) thread that is
processing the updates stored in the relay logs. At the time that SHOW PROCESSLIST was run, both
threads were idle, waiting for further updates.

The value in the Time column can show how late the replica is compared to the source. See MySQL
8.0 FAQ: Replication. If sufficient time elapses on the source side without activity on the Binlog Dump
thread, the source determines that the replica is no longer connected. As for any other client connection,
the timeouts for this depend on the values of net_write_timeout and net_retry_count; for more
information about these, see Server System Variables.

The SHOW REPLICA STATUS statement provides additional information about replication processing on a
replica server. See Section 2.7.1, “Checking Replication Status”.

5.3.2 Monitoring Replication Applier Worker Threads

On a multithreaded replica, the Performance Schema tables
replication_applier_status_by_coordinator and
replication_applier_status_by_worker show status information for the replica's coordinator
thread and applier worker threads respectively. For a replica with multiple channels, the threads for each
channel are identified.

A multithreaded replica's coordinator thread also prints statistics to the replica's error log on a regular basis
if the verbosity setting is set to display informational messages. The statistics are printed depending on
the volume of events that the coordinator thread has assigned to applier worker threads, with a maximum
frequency of once every 120 seconds. The message lists the following statistics for the relevant replication
channel, or the default replication channel (which is not named):

265

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/faqs-replication.html
https://dev.mysql.com/doc/refman/8.0/en/faqs-replication.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-coordinator-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html

Relay Log and Replication Metadata Repositories

Seconds elapsed The difference in seconds between the current time and the last time
this information was printed to the error log.

Events assigned The total number of events that the coordinator thread has queued to all
applier worker threads since the coordinator thread was started.

Worker queues filled over
overrun level

The current number of events that are queued to any of the applier
worker threads in excess of the overrun level, which is set at 90% of the
maximum queue length of 16384 events. If this value is zero, no applier
worker threads are operating at the upper limit of their capacity.

Waited due to worker queue full The number of times that the coordinator thread had to wait to schedule
an event because an applier worker thread's queue was full. If this value
is zero, no applier worker threads exhausted their capacity.

Waited due to the total size The number of times that the coordinator thread had to wait to schedule
an event because the replica_pending_jobs_size_max or
slave_pending_jobs_size_max limit had been reached. This
system variable sets the maximum amount of memory (in bytes)
available to applier worker thread queues holding events not yet
applied. If an unusually large event exceeds this size, the transaction
is held until all the applier worker threads have empty queues, and
then processed. All subsequent transactions are held until the large
transaction has been completed.

Waited at clock conflicts The number of nanoseconds that the coordinator thread had to wait
to schedule an event because a transaction that the event depended
on had not yet been committed. If replica_parallel_type
or slave_parallel_type is set to DATABASE (rather than
LOGICAL_CLOCK), this value is always zero.

Waited (count) when workers
occupied

The number of times that the coordinator thread slept for a short
period, which it might do in two situations. The first situation is where
the coordinator thread assigns an event and finds the applier worker
thread's queue is filled beyond the underrun level of 10% of the
maximum queue length, in which case it sleeps for a maximum of 1
millisecond. The second situation is where replica_parallel_type
or slave_parallel_type is set to LOGICAL_CLOCK and the
coordinator thread needs to assign the first event of a transaction to
an applier worker thread's queue, it only does this to a worker with an
empty queue, so if no queues are empty, the coordinator thread sleeps
until one becomes empty.

Waited when workers occupied The number of nanoseconds that the coordinator thread slept while
waiting for an empty applier worker thread queue (that is, in the second
situation described above, where replica_parallel_type or
slave_parallel_type is set to LOGICAL_CLOCK and the first event
of a transaction needs to be assigned).

5.4 Relay Log and Replication Metadata Repositories

A replica server creates several repositories of information to use for the replication process:

• The replica's relay log, which is written by the replication I/O (receiver) thread, contains the transactions
read from the replication source server's binary log. The transactions in the relay log are applied on the

266

The Relay Log

replica by the replication SQL (applier) thread. For information about the relay log, see Section 5.4.1,
“The Relay Log”.

• The replica's connection metadata repository contains information that the replication receiver thread
needs to connect to the replication source server and retrieve transactions from the source's binary log.
The connection metadata repository is written to the mysql.slave_master_info table.

• The replica's applier metadata repository contains information that the replication applier thread needs to
read and apply transactions from the replica's relay log. The applier metadata repository is written to the
mysql.slave_relay_log_info table.

The replica's connection metadata repository and applier metadata repository are collectively known as the
replication metadata repositories. For information about these, see Section 5.4.2, “Replication Metadata
Repositories”.

Making replication resilient to unexpected halts. The mysql.slave_master_info and
mysql.slave_relay_log_info tables are created using the transactional storage engine InnoDB.
Updates to the replica's applier metadata repository table are committed together with the transactions,
meaning that the replica's progress information recorded in that repository is always consistent with what
has been applied to the database, even in the event of an unexpected server halt. For information on the
combination of settings on the replica that is most resilient to unexpected halts, see Section 3.2, “Handling
an Unexpected Halt of a Replica”.

5.4.1 The Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files. The default location
for relay log files is the data directory.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
mysqlbinlog — Utility for Processing Binary Log Files). If binary log transaction compression (available
as of MySQL 8.0.20) is in use, transaction payloads written to the relay log are compressed in the same
way as for the binary log. For more information on binary log transaction compression, see Binary Log
Transaction Compression.

For the default replication channel, relay log file names have the default form host_name-relay-
bin.nnnnnn, where host_name is the name of the replica server host and nnnnnn is a sequence
number. Successive relay log files are created using successive sequence numbers, beginning
with 000001. For non-default replication channels, the default base name is host_name-relay-
bin-channel, where channel is the name of the replication channel recorded in the relay log.

The replica uses an index file to track the relay log files currently in use. The default relay log index
file name is host_name-relay-bin.index for the default channel, and host_name-relay-
bin-channel.index for non-default replication channels.

The default relay log file and relay log index file names and locations can be overridden with, respectively,
the relay_log and relay_log_index system variables (see Section 2.6, “Replication and Binary
Logging Options and Variables”).

If a replica uses the default host-based relay log file names, changing a replica's host name after
replication has been set up can cause replication to fail with the errors Failed to open the relay
log and Could not find target log during relay log initialization. This is a known
issue (see Bug #2122). If you anticipate that a replica's host name might change in the future (for example,

267

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-transaction-compression.html

Replication Metadata Repositories

if networking is set up on the replica such that its host name can be modified using DHCP), you can avoid
this issue entirely by using the relay_log and relay_log_index system variables to specify relay
log file names explicitly when you initially set up the replica. This causes the names to be independent of
server host name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
replica server, prepend the contents of the old relay log index file to the new one, and then restart the
replica. On a Unix system, this can be done as shown here:

$> cat new_relay_log_name.index >> old_relay_log_name.index
$> mv old_relay_log_name.index new_relay_log_name.index

A replica server creates a new relay log file under the following conditions:

• Each time the replication I/O (receiver) thread starts.

• When the logs are flushed (for example, with FLUSH LOGS or mysqladmin flush-logs).

• When the size of the current relay log file becomes too large, which is determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay log
file size.

The replication SQL (applier) thread automatically deletes each relay log file after it has executed all
events in the file and no longer needs it. There is no explicit mechanism for deleting relay logs because the
replication SQL thread takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences
when the replication SQL thread deletes them.

5.4.2 Replication Metadata Repositories

A replica server creates two replication metadata repositories, the connection metadata repository and the
applier metadata repository. The replication metadata repositories survive a replica server's shutdown. If
binary log file position based replication is in use, when the replica restarts, it reads the two repositories
to determine how far it previously proceeded in reading the binary log from the source and in processing
its own relay log. If GTID-based replication is in use, the replica does not use the replication metadata
repositories for that purpose, but does need them for the other metadata that they contain.

• The replica's connection metadata repository contains information that the replication I/O (receiver)
thread needs to connect to the replication source server and retrieve transactions from the source's
binary log. The metadata in this repository includes the connection configuration, the replication user
account details, the SSL settings for the connection, and the file name and position where the replication
receiver thread is currently reading from the source's binary log.

• The replica's applier metadata repository contains information that the replication SQL (applier) thread
needs to read and apply transactions from the replica's relay log. The metadata in this repository
includes the file name and position up to which the replication applier thread has executed the
transactions in the relay log, and the equivalent position in the source's binary log. It also includes
metadata for the process of applying transactions, such as the number of worker threads and the
PRIVILEGE_CHECKS_USER account for the channel.

The connection metadata repository is written to the slave_master_info table in the mysql system
schema, and the applier metadata repository is written to the slave_relay_log_info table in the
mysql system schema. A warning message is issued if mysqld is unable to initialize the tables for the
replication metadata repositories, but the replica is allowed to continue starting. This situation is most

268

https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs

Replication Metadata Repositories

likely to occur when upgrading from a version of MySQL that does not support the use of tables for the
repositories to one in which they are supported.

Important

1. Do not attempt to update or insert rows in the mysql.slave_master_info
or mysql.slave_relay_log_info tables manually. Doing so can cause
undefined behavior, and is not supported. Execution of any statement
requiring a write lock on either or both of the slave_master_info and
slave_relay_log_info tables is disallowed while replication is ongoing
(although statements that perform only reads are permitted at any time).

2. Access privileges for the connection metadata repository table
mysql.slave_master_info should be restricted to the database
administrator, because it contains the replication user account name and
password for connecting to the source. Use a restricted access mode to protect
database backups that include this table. From MySQL 8.0.21, you can clear the
replication user account credentials from the connection metadata repository,
and instead always provide them using the START REPLICA statement or
START GROUP_REPLICATION statement that starts the replication channel.
This approach means that the replication channel always needs operator
intervention to restart, but the account name and password are not recorded in
the replication metadata repositories.

RESET REPLICA clears the data in the replication metadata repositories, with the exception of the
replication connection parameters (depending on the MySQL Server release). For details, see the
description for RESET REPLICA.

From MySQL 8.0.27, you can set the GTID_ONLY option on the CHANGE REPLICATION SOURCE TO
statement to stop a replication channel from persisting file names and file positions in the replication
metadata repositories. This avoids writes and reads to the tables in situations where GTID-based
replication does not actually require them. With the GTID_ONLY setting, the connection metadata
repository and the applier metadata repository are not updated when the replica queues and applies
events in a transaction, or when the replication threads are stopped and started. File positions are tracked
in memory, and can be viewed using a SHOW REPLICA STATUS statement if they are needed. The
replication metadata repositories are only synchronized in the following situations:

• When a CHANGE REPLICATION SOURCE TO statement is issued.

• When a RESET REPLICA statement is issued. RESET REPLICA ALL deletes rather than updates the
repositories, so they are synchronized implicitly.

• When a replication channel is initialized.

• If the replication metadata repositories are moved from files to tables.

Before MySQL 8.0, to create the replication metadata repositories as tables, it was necessary to specify
master_info_repository=TABLE and relay_log_info_repository=TABLE at server startup.
Otherwise, the repositories were created as files in the data directory named master.info and relay-
log.info, or with alternative names and locations specified by the --master-info-file option and
relay_log_info_file system variable. From MySQL 8.0, creating the replication metadata repositories
as tables is the default, and the use of all these system variables is deprecated.

The mysql.slave_master_info and mysql.slave_relay_log_info tables are created using the
InnoDB transactional storage engine. Updates to the applier metadata repository table are committed
together with the transactions, meaning that the replica's progress information recorded in that repository is
always consistent with what has been applied to the database, even in the event of an unexpected server

269

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/start-group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Replication Metadata Repositories

halt. For information on the combination of settings on a replica that is most resilient to unexpected halts,
see Section 3.2, “Handling an Unexpected Halt of a Replica”.

When you back up the replica's data or transfer a snapshot of its data to create a new replica, ensure that
you include the mysql.slave_master_info and mysql.slave_relay_log_info tables containing
the replication metadata repositories. For cloning operations, note that when the replication metadata
repositories are created as tables, they are copied to the recipient during a cloning operation, but when
they are created as files, they are not copied. When binary log file position based replication is in use, the
replication metadata repositories are needed to resume replication after restarting the restored, copied,
or cloned replica. If you do not have the relay log files, but still have the applier metadata repository, you
can check it to determine how far the replication SQL thread has executed in the source's binary log.
Then you can use a CHANGE REPLICATION SOURCE TO statement (from MySQL 8.0.23) or CHANGE
MASTER TO statement (before MySQL 8.0.23) with the SOURCE_LOG_FILE | MASTER_LOG_FILE and
SOURCE_LOG_POS | MASTER_LOG_POS options to tell the replica to re-read the binary logs from the source
from that point (provided that the required binary logs still exist on the source).

One additional repository, the applier worker metadata repository, is created primarily for internal use, and
holds status information about worker threads on a multithreaded replica. The applier worker metadata
repository includes the names and positions for the relay log file and the source's binary log file for each
worker thread. If the applier metadata repository is created as a table, which is the default, the applier
worker metadata repository is written to the mysql.slave_worker_info table. If the applier metadata
repository is written to a file, the applier worker metadata repository is written to the worker-relay-
log.info file. For external use, status information for worker threads is presented in the Performance
Schema replication_applier_status_by_worker table.

The replication metadata repositories originally contained information similar to that shown in the output
of the SHOW REPLICA STATUS statement, which is discussed in SQL Statements for Controlling Replica
Servers. Further information has since been added to the replication metadata repositories which is not
displayed by the SHOW REPLICA STATUS statement.

For the connection metadata repository, the following table shows the correspondence between the
columns in the mysql.slave_master_info table, the columns displayed by SHOW REPLICA STATUS,
and the lines in the deprecated master.info file.

slave_master_info
Table Column

SHOW REPLICA STATUS
Column

master.info File Line Description

Number_of_lines [None] 1 Number of columns in the
table (or lines in the file)

Master_log_name Source_Log_File 2 The name of the binary
log currently being read
from the source

Master_log_pos Read_Source_Log_Pos 3 The current position
within the binary log that
has been read from the
source

Host Source_Host 4 The host name of the
replication source server

User_name Source_User 5 The replication user
account name used to
connect to the source

User_password Password (not shown
by SHOW REPLICA
STATUS)

6 The replication user
account password used
to connect to the source

270

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-statements-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-statements-replica.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Replication Metadata Repositories

slave_master_info
Table Column

SHOW REPLICA STATUS
Column

master.info File Line Description

Port Source_Port 7 The network port used to
connect to the replication
source server

Connect_retry Connect_Retry 8 The period (in seconds)
that the replica waits
before trying to reconnect
to the source

Enabled_ssl Source_SSL_Allowed 9 Whether the replica
supports SSL
connections

Ssl_ca Source_SSL_CA_File 10 The file used for the
Certificate Authority (CA)
certificate

Ssl_capath Source_SSL_CA_Path 11 The path to the
Certificate Authority (CA)
certificate

Ssl_cert Source_SSL_Cert 12 The name of the SSL
certificate file

Ssl_cipher Source_SSL_Cipher 13 The list of possible
ciphers used in the
handshake for the SSL
connection

Ssl_key Source_SSL_Key 14 The name of the SSL key
file

Ssl_verify_server_certSource_SSL_Verify_Server_Cert15 Whether to verify the
server certificate

Heartbeat [None] 16 Interval between
replication heartbeats, in
seconds

Bind Source_Bind 17 Which of the replica's
network interfaces should
be used for connecting to
the source

Ignored_server_ids Replicate_Ignore_Server_Ids18 The list of server IDs to
be ignored. Note that for
Ignored_server_ids
the list of server IDs is
preceded by the total
number of server IDs to
ignore.

Uuid Source_UUID 19 The source's unique ID

Retry_count Source_Retry_Count 20 Maximum number of
reconnection attempts
permitted

Ssl_crl [None] 21 Path to an SSL certificate
revocation-list file

271

Replication Metadata Repositories

slave_master_info
Table Column

SHOW REPLICA STATUS
Column

master.info File Line Description

Ssl_crlpath [None] 22 Path to a directory
containing SSL certificate
revocation-list files

Enabled_auto_positionAuto_position 23 Whether GTID auto-
positioning is in use or
not

Channel_name Channel_name 24 The name of the
replication channel

Tls_version Source_TLS_Version 25 TLS version on the
source

Public_key_path Source_public_key_path26 Name of the RSA public
key file

Get_public_key Get_source_public_key27 Whether to request RSA
public key from source

Network_namespace Network_namespace 28 Network namespace

Master_compression_algorithm[None] 29 Permitted compression
algorithms for the
connection to the source

Master_zstd_compression_level[None] 30 zstd compression level

Tls_ciphersuites [None] 31 Permitted ciphersuites for
TLSv1.3

Source_connection_auto_failover[None] 32 Whether the
asynchronous connection
failover mechanism is
activated

Gtid_only [None] 33 Whether the channel
uses only GTIDs and
does not persist positions

For the applier metadata repository, the following table shows the correspondence between the columns in
the mysql.slave_relay_log_info table, the columns displayed by SHOW REPLICA STATUS, and the
lines in the deprecated relay-log.info file.

slave_relay_log_info
Table Column

SHOW REPLICA STATUS
Column

Line in relay-
log.info File

Description

Number_of_lines [None] 1 Number of columns in the
table or lines in the file

Relay_log_name Relay_Log_File 2 The name of the current
relay log file

Relay_log_pos Relay_Log_Pos 3 The current position
within the relay log file;
events up to this position
have been executed on
the replica database

Master_log_name Relay_Source_Log_File4 The name of the source's
binary log file from which

272

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html

Replication Metadata Repositories

slave_relay_log_info
Table Column

SHOW REPLICA STATUS
Column

Line in relay-
log.info File

Description

the events in the relay log
file were read

Master_log_pos Exec_Source_Log_Pos 5 The equivalent position
within the source's binary
log file of the events that
have been executed on
the replica

Sql_delay SQL_Delay 6 The number of seconds
that the replica must lag
the source

Number_of_workers [None] 7 The number of worker
threads for applying
replication transactions in
parallel

Id [None] 8 ID used for internal
purposes; currently this is
always 1

Channel_name Channel_name 9 The name of the
replication channel

Privilege_checks_username[None] 10 The user name for the
PRIVILEGE_CHECKS_USER
account for the channel

Privilege_checks_hostname[None] 11 The host name for the
PRIVILEGE_CHECKS_USER
account for the channel

Require_row_format [None] 12 Whether the channel
accepts only row-based
events

Require_table_primary_key_check[None] 13 The channel's policy on
whether tables must have
primary keys for CREATE
TABLE and ALTER
TABLE operations

Assign_gtids_to_anonymous_transactions_type[None] 14 If the channel assigns
a GTID to replicated
transactions that do not
already have one, using
the replica's local UUID,
this value is LOCAL; if the
channel does so using
instead a UUID which
has been set manually,
the value is UUID. If the
channel does not assign
a GTID in such cases,
the value is OFF.

273

How Servers Evaluate Replication Filtering Rules

slave_relay_log_info
Table Column

SHOW REPLICA STATUS
Column

Line in relay-
log.info File

Description

Assign_gtids_to_anonymous_transactions_value[None] 15 The UUID used in the
GTIDs assigned to
anonymous transactions

5.5 How Servers Evaluate Replication Filtering Rules

If a replication source server does not write a statement to its binary log, the statement is not replicated.
If the server does log the statement, the statement is sent to all replicas and each replica determines
whether to execute it or ignore it.

On the source, you can control which databases to log changes for by using the --binlog-do-db and
--binlog-ignore-db options to control binary logging. For a description of the rules that servers use in
evaluating these options, see Section 5.5.1, “Evaluation of Database-Level Replication and Binary Logging
Options”. You should not use these options to control which databases and tables are replicated. Instead,
use filtering on the replica to control the events that are executed on the replica.

On the replica side, decisions about whether to execute or ignore statements received from the source
are made according to the --replicate-* options that the replica was started with. (See Section 2.6,
“Replication and Binary Logging Options and Variables”.) The filters governed by these options can also
be set dynamically using the CHANGE REPLICATION FILTER statement. The rules governing such filters
are the same whether they are created on startup using --replicate-* options or while the replica
server is running by CHANGE REPLICATION FILTER. Note that replication filters cannot be used on
Group Replication-specific channels on a MySQL server instance that is configured for Group Replication,
because filtering transactions on some servers would make the group unable to reach agreement on a
consistent state.

In the simplest case, when there are no --replicate-* options, the replica executes all statements that
it receives from the source. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first; see
Section 5.5.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a description
of this process. If no database-level options are used, option checking proceeds to any table-level options
that may be in use (see Section 5.5.2, “Evaluation of Table-Level Replication Options”, for a discussion
of these). If one or more database-level options are used but none are matched, the statement is not
replicated.

For statements affecting databases only (that is, CREATE DATABASE, DROP DATABASE, and ALTER
DATABASE), database-level options always take precedence over any --replicate-wild-do-table
options. In other words, for such statements, --replicate-wild-do-table options are checked if and
only if there are no database-level options that apply.

To make it easier to determine what effect a given set of options has, it is recommended that you avoid
mixing do-* and ignore-* options, or options containing wildcards with options which do not.

If any --replicate-rewrite-db options were specified, they are applied before the --replicate-*
filtering rules are tested.

Note

All replication filtering options follow the same rules for case sensitivity that apply
to names of databases and tables elsewhere in the MySQL server, including the
effects of the lower_case_table_names system variable.

274

https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names

Evaluation of Database-Level Replication and Binary Logging Options

Beginning with MySQL 8.0.31, filtering rules are applied before performing any privilege checks; if a
transaction is filtered out, no privilege check is performed for that transaction, and thus no error can be
raised by it. See Section 4.1.29, “Replica Errors During Replication”, for more information.

5.5.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the replica begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db or
--binlog-ignore-db, the process is similar, but the options are checked on the source.

The database that is checked for a match depends on the binary log format of the statement that is being
handled. If the statement has been logged using the row format, the database where data is to be changed
is the database that is checked. If the statement has been logged using the statement format, the default
database (specified with a USE statement) is the database that is checked.

Note

Only DML statements can be logged using the row format. DDL statements
are always logged as statements, even when binlog_format=ROW. All DDL
statements are therefore always filtered according to the rules for statement-based
replication. This means that you must select the default database explicitly with a
USE statement in order for a DDL statement to be applied.

For replication, the steps involved are listed here:

1. Which logging format is used?

• STATEMENT. Test the default database.

• ROW. Test the database affected by the changes.

2. Are there any --replicate-do-db options?

• Yes. Does the database match any of them?

• Yes. Continue to Step 4.

• No. Ignore the update and exit.

• No. Continue to step 3.

3. Are there any --replicate-ignore-db options?

• Yes. Does the database match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Proceed to checking the table-level replication options, if there are any. For a description of how these
options are checked, see Section 5.5.2, “Evaluation of Table-Level Replication Options”.

275

https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/use.html

Evaluation of Table-Level Replication Options

Important

A statement that is still permitted at this stage is not yet actually executed. The
statement is not executed until all table-level options (if any) have also been
checked, and the outcome of that process permits execution of the statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

Important

For statement-based logging, an exception is made in the rules just given for the
CREATE DATABASE, ALTER DATABASE, and DROP DATABASE statements. In
those cases, the database being created, altered, or dropped replaces the default
database when determining whether to log or ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, when using statement-
based logging, a server running with only --binlog-do-db=sales does not write to the binary log
statements for which the default database differs from sales. When using row-based logging with the
same option, the server logs only those updates that change data in sales.

5.5.2 Evaluation of Table-Level Replication Options

The replica checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 5.5.1, “Evaluation of Database-
Level Replication and Binary Logging Options”).

276

https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html

Evaluation of Table-Level Replication Options

First, as a preliminary condition, the replica checks whether statement-based replication is enabled. If so,
and the statement occurs within a stored function, the replica executes the statement and exits. If row-
based replication is enabled, the replica does not know whether a statement occurred within a stored
function on the source, so this condition does not apply.

Note

For statement-based replication, replication events represent statements (all
changes making up a given event are associated with a single SQL statement); for
row-based replication, each event represents a change in a single table row (thus
a single statement such as UPDATE mytable SET mycol = 1 may yield many
row-based events). When viewed in terms of events, the process of checking table
options is the same for both row-based and statement-based replication.

Having reached this point, if there are no table options, the replica simply executes all events. If there are
any --replicate-do-table or --replicate-wild-do-table options, the event must match one of
these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-table or --
replicate-wild-ignore-table options, all events are executed except those that match any of these
options.

Important

Table-level replication filters are only applied to tables that are explicitly mentioned
and operated on in the query. They do not apply to tables that are implicitly updated
by the query. For example, a GRANT statement, which updates the mysql.user
system table but does not mention that table, is not affected by a filter that specifies
mysql.% as the wildcard pattern.

The following steps describe this evaluation in more detail. The starting point is the end of the evaluation of
the database-level options, as described in Section 5.5.1, “Evaluation of Database-Level Replication and
Binary Logging Options”.

1. Are there any table replication options?

• Yes. Continue to step 2.

• No. Execute the update and exit.

2. Which logging format is used?

• STATEMENT. Carry out the remaining steps for each statement that performs an update.

• ROW. Carry out the remaining steps for each update of a table row.

3. Are there any --replicate-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

277

https://dev.mysql.com/doc/refman/8.0/en/grant.html

Interactions Between Replication Filtering Options

• Yes. Ignore the update and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the update and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the update and exit.

• No. Continue to step 7.

• No. Continue to step 7.

7. Is there another table to be tested?

• Yes. Go back to step 3.

• No. Continue to step 8.

8. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes. Ignore the update and exit.

• No. Execute the update and exit.

Note

Statement-based replication stops if a single SQL statement operates on both a
table that is included by a --replicate-do-table or --replicate-wild-
do-table option, and another table that is ignored by a --replicate-ignore-
table or --replicate-wild-ignore-table option. The replica must either
execute or ignore the complete statement (which forms a replication event), and
it cannot logically do this. This also applies to row-based replication for DDL
statements, because DDL statements are always logged as statements, without
regard to the logging format in effect. The only type of statement that can update
both an included and an ignored table and still be replicated successfully is a DML
statement that has been logged with binlog_format=ROW.

5.5.3 Interactions Between Replication Filtering Options

If you use a combination of database-level and table-level replication filtering options, the replica first
accepts or ignores events using the database options, then it evaluates all events permitted by those
options according to the table options. This can sometimes lead to results that seem counterintuitive. It is
also important to note that the results vary depending on whether the operation is logged using statement-

278

Interactions Between Replication Filtering Options

based or row-based binary logging format. If you want to be sure that your replication filters always operate
in the same way independently of the binary logging format, which is particularly important if you are using
mixed binary logging format, follow the guidance in this topic.

The effect of the replication filtering options differs between binary logging formats because of the way
the database name is identified. With statement-based format, DML statements are handled based on the
current database, as specified by the USE statement. With row-based format, DML statements are handled
based on the database where the modified table exists. DDL statements are always filtered based on the
current database, as specified by the USE statement, regardless of the binary logging format.

An operation that involves multiple tables can also be affected differently by replication filtering options
depending on the binary logging format. Operations to watch out for include transactions involving multi-
table UPDATE statements, triggers, cascading foreign keys, stored functions that update multiple tables,
and DML statements that invoke stored functions that update one or more tables. If these operations
update both filtered-in and filtered-out tables, the results can vary with the binary logging format.

If you need to guarantee that your replication filters operate consistently regardless of the binary logging
format, particularly if you are using mixed binary logging format (binlog_format=MIXED), use only table-
level replication filtering options, and do not use database-level replication filtering options. Also, do not
use multi-table DML statements that update both filtered-in and filtered-out tables.

If you need to use a combination of database-level and table-level replication filters, and want these to
operate as consistently as possible, choose one of the following strategies:

1. If you use row-based binary logging format (binlog_format=ROW), for DDL statements, rely on the
USE statement to set the database and do not specify the database name. You can consider changing
to row-based binary logging format for improved consistency with replication filtering. See Setting The
Binary Log Format for the conditions that apply to changing the binary logging format.

2. If you use statement-based or mixed binary logging format (binlog_format=STATEMENT or MIXED),
for both DML and DDL statements, rely on the USE statement and do not use the database name. Also,
do not use multi-table DML statements that update both filtered-in and filtered-out tables.

Example 5.1 A --replicate-ignore-db option and a --replicate-do-table option

On the replication source server, the following statements are issued:

USE db1;
CREATE TABLE t2 LIKE t1;
INSERT INTO db2.t3 VALUES (1);

The replica has the following replication filtering options set:

replicate-ignore-db = db1
replicate-do-table = db2.t3

The DDL statement CREATE TABLE creates the table in db1, as specified by the preceding USE
statement. The replica filters out this statement according to its --replicate-ignore-db = db1
option, because db1 is the current database. This result is the same whatever the binary logging format is
on the replication source server. However, the result of the DML INSERT statement is different depending
on the binary logging format:

• If row-based binary logging format is in use on the source (binlog_format=ROW), the replica evaluates
the INSERT operation using the database where the table exists, which is named as db2. The database-
level option --replicate-ignore-db = db1, which is evaluated first, therefore does not apply. The
table-level option --replicate-do-table = db2.t3 does apply, so the replica applies the change
to table t3.

279

https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-setting.html
https://dev.mysql.com/doc/refman/8.0/en/binary-log-setting.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Replication Channel Based Filters

• If statement-based binary logging format is in use on the source (binlog_format=STATEMENT), the
replica evaluates the INSERT operation using the default database, which was set by the USE statement
to db1 and has not been changed. According to its database-level --replicate-ignore-db = db1
option, it therefore ignores the operation and does not apply the change to table t3. The table-level
option --replicate-do-table = db2.t3 is not checked, because the statement already matched a
database-level option and was ignored.

If the --replicate-ignore-db = db1 option on the replica is necessary, and the use of statement-
based (or mixed) binary logging format on the source is also necessary, the results can be made
consistent by omitting the database name from the INSERT statement and relying on a USE statement
instead, as follows:

USE db1;
CREATE TABLE t2 LIKE t1;
USE db2;
INSERT INTO t3 VALUES (1);

In this case, the replica always evaluates the INSERT statement based on the database db2. Whether the
operation is logged in statement-based or row-based binary format, the results remain the same.

5.5.4 Replication Channel Based Filters

This section explains how to work with replication filters when multiple replication channels exist, for
example in a multi-source replication topology. Before MySQL 8.0, all replication filters were global, so
filters were applied to all replication channels. From MySQL 8.0, replication filters can be global or channel
specific, enabling you to configure multi-source replicas with replication filters on specific replication
channels. Channel specific replication filters are particularly useful in a multi-source replication topology
when the same database or table is present on multiple sources, and the replica is only required to
replicate it from one source.

For instructions to set up replication channels, see Section 2.5, “MySQL Multi-Source Replication”, and for
more information on how they work, see Section 5.2, “Replication Channels”.

Important

Each channel on a multi-source replica must replicate from a different source.
You cannot set up multiple replication channels from a single replica to a single
source, even if you use replication filters to select different data to replicate on each
channel. This is because the server IDs of replicas must be unique in a replication
topology. The source distinguishes replicas only by their server IDs, not by the
names of the replication channels, so it cannot recognize different replication
channels from the same replica.

Important

On a MySQL server instance that is configured for Group Replication, channel
specific replication filters can be used on replication channels that are not directly
involved with Group Replication, such as where a group member also acts as
a replica to a source that is outside the group. They cannot be used on the
group_replication_applier or group_replication_recovery channels.
Filtering on these channels would make the group unable to reach agreement on a
consistent state.

Important

For a multi-source replica in a diamond topology (where the replica replicates
from two or more sources, which in turn replicate from a common source), when

280

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Replication Channel Based Filters

GTID-based replication is in use, ensure that any replication filters or other channel
configuration are identical on all channels on the multi-source replica. With GTID-
based replication, filters are applied only to the transaction data, and GTIDs are
not filtered out. This happens so that a replica’s GTID set stays consistent with
the source’s, meaning GTID auto-positioning can be used without re-acquiring
filtered out transactions each time. In the case where the downstream replica is
multi-source and receives the same transaction from multiple sources in a diamond
topology, the downstream replica now has multiple versions of the transaction,
and the result depends on which channel applies the transaction first. The second
channel to attempt it skips the transaction using GTID auto-skip, because the
transaction’s GTID was added to the gtid_executed set by the first channel.
With identical filtering on the channels, there is no problem because all versions
of the transaction contain the same data, so the results are the same. However,
with different filtering on the channels, the database can become inconsistent and
replication can hang.

Overview of Replication Filters and Channels

When multiple replication channels exist, for example in a multi-source replication topology, replication
filters are applied as follows:

• Any global replication filter specified is added to the global replication filters of the filter type (do_db,
do_ignore_table, and so on).

• Any channel specific replication filter adds the filter to the specified channel’s replication filters for the
specified filter type.

• Each replication channel copies global replication filters to its channel specific replication filters if no
channel specific replication filter of this type is configured.

• Each channel uses its channel specific replication filters to filter the replication stream.

The syntax to create channel specific replication filters extends the existing SQL statements
and command options. When a replication channel is not specified the global replication filter is
configured to ensure backwards compatibility. The CHANGE REPLICATION FILTER statement
supports the FOR CHANNEL clause to configure channel specific filters online. The --replicate-
* command options to configure filters can specify a replication channel using the form --
replicate-filter_type=channel_name:filter_details. Suppose channels channel_1 and
channel_2 exist before the server starts; in this case, starting the replica with the command line options
--replicate-do-db=db1 --replicate-do-db=channel_1:db2 --replicate-do-db=db3 --
replicate-ignore-db=db4 --replicate-ignore-db=channel_2:db5 --replicate-wild-do-
table=channel_1:db6.t1% would result in:

• Global replication filters: do_db=db1,db3; ignore_db=db4

• Channel specific filters on channel_1: do_db=db2; ignore_db=db4; wild-do-table=db6.t1%

• Channel specific filters on channel_2: do_db=db1,db3; ignore_db=db5

These same rules could be applied at startup when included in the replica's my.cnf file, like this:

replicate-do-db=db1
replicate-do-db=channel_1:db2
replicate-ignore-db=db4
replicate-ignore-db=channel_2:db5
replicate-wild-do-table=db6.channel_1.t1%

281

https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html

Replication Channel Based Filters

To monitor the replication filters in such a setup use the replication_applier_global_filters and
replication_applier_filters tables.

Configuring Channel Specific Replication Filters at Startup

The replication filter related command options can take an optional channel followed by a colon, followed
by the filter specification. The first colon is interpreted as a separator, subsequent colons are interpreted as
literal colons. The following command options support channel specific replication filters using this format:

• --replicate-do-db=channel:database_id

• --replicate-ignore-db=channel:database_id

• --replicate-do-table=channel:table_id

• --replicate-ignore-table=channel:table_id

• --replicate-rewrite-db=channel:db1-db2

• --replicate-wild-do-table=channel:table pattern

• --replicate-wild-ignore-table=channel:table pattern

All of the options just listed can be used in the replica's my.cnf file, as with most other MySQL server
startup options, by omitting the two leading dashes. See Overview of Replication Filters and Channels, for
a brief example, as well as Using Option Files.

If you use a colon but do not specify a channel for the filter option, for example --replicate-do-
db=:database_id, the option configures the replication filter for the default replication channel. The
default replication channel is the replication channel which always exists once replication has been started,
and differs from multi-source replication channels which you create manually. When neither the colon nor
a channel is specified the option configures the global replication filters, for example --replicate-do-
db=database_id configures the global --replicate-do-db filter.

If you configure multiple rewrite-db=from_name->to_name options with the same from_name
database, all filters are added together (put into the rewrite_do list) and the first one takes effect.

The pattern used for the --replicate-wild-*-table options can include any characters allowed
in identifiers as well as the wildcards % and _. These work the same way as when used with the LIKE
operator; for example, tbl% matches any table name beginning with tbl, and tbl_ matches any table
name matching tbl plus one additional character.

Changing Channel Specific Replication Filters Online

In addition to the --replicate-* options, replication filters can be configured using the CHANGE
REPLICATION FILTER statement. This removes the need to restart the server, but the replication SQL
thread must be stopped while making the change. To make this statement apply the filter to a specific
channel, use the FOR CHANNEL channel clause. For example:

CHANGE REPLICATION FILTER REPLICATE_DO_DB=(db1) FOR CHANNEL channel_1;

When a FOR CHANNEL clause is provided, the statement acts on the specified channel's replication filters.
If multiple types of filters (do_db, do_ignore_table, wild_do_table, and so on) are specified, only
the specified filter types are replaced by the statement. In a replication topology with multiple channels, for
example on a multi-source replica, when no FOR CHANNEL clause is provided, the statement acts on the
global replication filters and all channels’ replication filters, using a similar logic as the FOR CHANNEL case.
For more information see CHANGE REPLICATION FILTER Statement.

282

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-global-filters-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-filters-table.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html

Replication Channel Based Filters

Removing Channel Specific Replication Filters

When channel specific replication filters have been configured, you can remove the filter by issuing an
empty filter type statement. For example to remove all REPLICATE_REWRITE_DB filters from a replication
channel named channel_1 issue:

CHANGE REPLICATION FILTER REPLICATE_REWRITE_DB=() FOR CHANNEL channel_1;

Any REPLICATE_REWRITE_DB filters previously configured, using either command options or CHANGE
REPLICATION FILTER, are removed.

The RESET REPLICA ALL statement removes channel specific replication filters that were set on
channels deleted by the statement. When the deleted channel or channels are recreated, any global
replication filters specified for the replica are copied to them, and no channel specific replication filters are
applied.

283

https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-filter.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html

284

	MySQL Replication
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Replication
	Chapter 2 Configuring Replication
	2.1 Binary Log File Position Based Replication Configuration Overview
	2.2 Setting Up Binary Log File Position Based Replication
	2.2.1 Setting the Replication Source Configuration
	2.2.2 Setting the Replica Configuration
	2.2.3 Creating a User for Replication
	2.2.4 Obtaining the Replication Source Binary Log Coordinates
	2.2.5 Choosing a Method for Data Snapshots
	2.2.5.1 Creating a Data Snapshot Using mysqldump
	2.2.5.2 Creating a Data Snapshot Using Raw Data Files

	2.2.6 Setting Up Replicas
	2.2.6.1 Setting Up Replication with New Source and Replicas
	2.2.6.2 Setting Up Replication with Existing Data

	2.2.7 Setting the Source Configuration on the Replica
	2.2.8 Adding Replicas to a Replication Environment

	2.3 Replication with Global Transaction Identifiers
	2.3.1 GTID Format and Storage
	2.3.2 GTID Life Cycle
	2.3.3 GTID Auto-Positioning
	2.3.4 Setting Up Replication Using GTIDs
	2.3.5 Using GTIDs for Failover and Scaleout
	2.3.6 Replication From a Source Without GTIDs to a Replica With GTIDs
	2.3.7 Restrictions on Replication with GTIDs
	2.3.8 Stored Function Examples to Manipulate GTIDs

	2.4 Changing GTID Mode on Online Servers
	2.4.1 Replication Mode Concepts
	2.4.2 Enabling GTID Transactions Online
	2.4.3 Disabling GTID Transactions Online
	2.4.4 Verifying Replication of Anonymous Transactions

	2.5 MySQL Multi-Source Replication
	2.5.1 Configuring Multi-Source Replication
	2.5.2 Provisioning a Multi-Source Replica for GTID-Based Replication
	2.5.3 Adding GTID-Based Sources to a Multi-Source Replica
	2.5.4 Adding Binary Log Based Replication Sources to a Multi-Source Replica
	2.5.5 Starting Multi-Source Replicas
	2.5.6 Stopping Multi-Source Replicas
	2.5.7 Resetting Multi-Source Replicas
	2.5.8 Monitoring Multi-Source Replication
	2.5.8.1 Monitoring Channels Using Performance Schema Tables

	2.6 Replication and Binary Logging Options and Variables
	2.6.1 Replication and Binary Logging Option and Variable Reference
	2.6.2 Replication Source Options and Variables
	2.6.3 Replica Server Options and Variables
	2.6.4 Binary Logging Options and Variables
	2.6.5 Global Transaction ID System Variables

	2.7 Common Replication Administration Tasks
	2.7.1 Checking Replication Status
	2.7.2 Pausing Replication on the Replica
	2.7.3 Skipping Transactions
	2.7.3.1 Skipping Transactions With GTIDs
	2.7.3.2 Skipping Transactions Without GTIDs
	Skipping Transactions With SET GLOBAL sql_slave_skip_counter
	Skipping Transactions With CHANGE MASTER TO

	Chapter 3 Replication Solutions
	3.1 Using Replication for Backups
	3.1.1 Backing Up a Replica Using mysqldump
	3.1.2 Backing Up Raw Data from a Replica
	3.1.3 Backing Up a Source or Replica by Making It Read Only

	3.2 Handling an Unexpected Halt of a Replica
	3.3 Monitoring Row-based Replication
	3.4 Using Replication with Different Source and Replica Storage Engines
	3.5 Using Replication for Scale-Out
	3.6 Replicating Different Databases to Different Replicas
	3.7 Improving Replication Performance
	3.8 Switching Sources During Failover
	3.9 Switching Sources and Replicas with Asynchronous Connection Failover
	3.9.1 Asynchronous Connection Failover for Sources
	3.9.2 Asynchronous Connection Failover for Replicas

	3.10 Semisynchronous Replication
	3.10.1 Installing Semisynchronous Replication
	3.10.2 Configuring Semisynchronous Replication
	3.10.3 Semisynchronous Replication Monitoring

	3.11 Delayed Replication

	Chapter 4 Replication Notes and Tips
	4.1 Replication Features and Issues
	4.1.1 Replication and AUTO_INCREMENT
	4.1.2 Replication and BLACKHOLE Tables
	4.1.3 Replication and Character Sets
	4.1.4 Replication and CHECKSUM TABLE
	4.1.5 Replication of CREATE SERVER, ALTER SERVER, and DROP SERVER
	4.1.6 Replication of CREATE ... IF NOT EXISTS Statements
	4.1.7 Replication of CREATE TABLE ... SELECT Statements
	4.1.8 Replication of CURRENT_USER()
	4.1.9 Replication with Differing Table Definitions on Source and Replica
	4.1.9.1 Replication with More Columns on Source or Replica
	4.1.9.2 Replication of Columns Having Different Data Types

	4.1.10 Replication and DIRECTORY Table Options
	4.1.11 Replication of DROP ... IF EXISTS Statements
	4.1.12 Replication and Floating-Point Values
	4.1.13 Replication and FLUSH
	4.1.14 Replication and System Functions
	4.1.15 Replication and Fractional Seconds Support
	4.1.16 Replication of Invoked Features
	4.1.17 Replication of JSON Documents
	4.1.18 Replication and LIMIT
	4.1.19 Replication and LOAD DATA
	4.1.20 Replication and max_allowed_packet
	4.1.21 Replication and MEMORY Tables
	4.1.22 Replication of the mysql System Schema
	4.1.23 Replication and the Query Optimizer
	4.1.24 Replication and Partitioning
	4.1.25 Replication and REPAIR TABLE
	4.1.26 Replication and Reserved Words
	4.1.27 Replication and Row Searches
	4.1.28 Replication and Source or Replica Shutdowns
	4.1.29 Replica Errors During Replication
	4.1.30 Replication and Server SQL Mode
	4.1.31 Replication and Temporary Tables
	4.1.32 Replication Retries and Timeouts
	4.1.33 Replication and Time Zones
	4.1.34 Replication and Transaction Inconsistencies
	4.1.35 Replication and Transactions
	4.1.36 Replication and Triggers
	4.1.37 Replication and TRUNCATE TABLE
	4.1.38 Replication and User Name Length
	4.1.39 Replication and Variables
	4.1.40 Replication and Views

	4.2 Replication Compatibility Between MySQL Versions
	4.3 Upgrading a Replication Topology
	4.4 Troubleshooting Replication
	4.5 How to Report Replication Bugs or Problems

	Chapter 5 Replication Implementation
	5.1 Replication Formats
	5.1.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication
	5.1.2 Usage of Row-Based Logging and Replication
	5.1.3 Determination of Safe and Unsafe Statements in Binary Logging

	5.2 Replication Channels
	5.2.1 Commands for Operations on a Single Channel
	5.2.2 Compatibility with Previous Replication Statements
	5.2.3 Startup Options and Replication Channels
	5.2.4 Replication Channel Naming Conventions

	5.3 Replication Threads
	5.3.1 Monitoring Replication Main Threads
	5.3.2 Monitoring Replication Applier Worker Threads

	5.4 Relay Log and Replication Metadata Repositories
	5.4.1 The Relay Log
	5.4.2 Replication Metadata Repositories

	5.5 How Servers Evaluate Replication Filtering Rules
	5.5.1 Evaluation of Database-Level Replication and Binary Logging Options
	5.5.2 Evaluation of Table-Level Replication Options
	5.5.3 Interactions Between Replication Filtering Options
	5.5.4 Replication Channel Based Filters

