
MySQL Performance Schema

Abstract

This is the MySQL Performance Schema extract from the MySQL 5.7 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-03-12 (revision: 78062)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 MySQL Performance Schema .. 1
2 Performance Schema Quick Start .. 3
3 Performance Schema Build Configuration ... 9
4 Performance Schema Startup Configuration .. 11
5 Performance Schema Runtime Configuration .. 15

5.1 Performance Schema Event Timing ... 16
5.2 Performance Schema Event Filtering ... 19
5.3 Event Pre-Filtering .. 20
5.4 Pre-Filtering by Instrument .. 21
5.5 Pre-Filtering by Object .. 22
5.6 Pre-Filtering by Thread .. 24
5.7 Pre-Filtering by Consumer ... 26
5.8 Example Consumer Configurations .. 29
5.9 Naming Instruments or Consumers for Filtering Operations ... 34
5.10 Determining What Is Instrumented ... 34

6 Performance Schema Queries .. 37
7 Performance Schema Instrument Naming Conventions .. 39
8 Performance Schema Status Monitoring ... 43
9 Performance Schema General Table Characteristics ... 47
10 Performance Schema Table Descriptions .. 49

10.1 Performance Schema Table Reference .. 50
10.2 Performance Schema Setup Tables ... 54

10.2.1 The setup_actors Table .. 54
10.2.2 The setup_consumers Table ... 55
10.2.3 The setup_instruments Table .. 56
10.2.4 The setup_objects Table ... 57
10.2.5 The setup_timers Table .. 58

10.3 Performance Schema Instance Tables ... 59
10.3.1 The cond_instances Table .. 59
10.3.2 The file_instances Table ... 60
10.3.3 The mutex_instances Table .. 60
10.3.4 The rwlock_instances Table .. 61
10.3.5 The socket_instances Table .. 62

10.4 Performance Schema Wait Event Tables ... 64
10.4.1 The events_waits_current Table .. 65
10.4.2 The events_waits_history Table .. 68
10.4.3 The events_waits_history_long Table .. 69

10.5 Performance Schema Stage Event Tables ... 69
10.5.1 The events_stages_current Table .. 72
10.5.2 The events_stages_history Table .. 74
10.5.3 The events_stages_history_long Table .. 74

10.6 Performance Schema Statement Event Tables ... 74
10.6.1 The events_statements_current Table ... 78
10.6.2 The events_statements_history Table .. 82
10.6.3 The events_statements_history_long Table .. 82
10.6.4 The prepared_statements_instances Table .. 83

10.7 Performance Schema Transaction Tables .. 85
10.7.1 The events_transactions_current Table .. 89
10.7.2 The events_transactions_history Table .. 91
10.7.3 The events_transactions_history_long Table .. 92

10.8 Performance Schema Connection Tables ... 92
10.8.1 The accounts Table .. 94
10.8.2 The hosts Table ... 95
10.8.3 The users Table ... 95

iii

MySQL Performance Schema

10.9 Performance Schema Connection Attribute Tables .. 95
10.9.1 The session_account_connect_attrs Table ... 98
10.9.2 The session_connect_attrs Table .. 98

10.10 Performance Schema User-Defined Variable Tables ... 98
10.11 Performance Schema Replication Tables ... 99

10.11.1 The replication_connection_configuration Table .. 102
10.11.2 The replication_connection_status Table .. 104
10.11.3 The replication_applier_configuration Table .. 105
10.11.4 The replication_applier_status Table .. 105
10.11.5 The replication_applier_status_by_coordinator Table 106
10.11.6 The replication_applier_status_by_worker Table ... 107
10.11.7 The replication_group_members Table .. 109
10.11.8 The replication_group_member_stats Table ... 109

10.12 Performance Schema Lock Tables ... 110
10.12.1 The metadata_locks Table .. 110
10.12.2 The table_handles Table ... 112

10.13 Performance Schema System Variable Tables .. 114
10.14 Performance Schema Status Variable Tables ... 115
10.15 Performance Schema Summary Tables .. 116

10.15.1 Wait Event Summary Tables ... 118
10.15.2 Stage Summary Tables ... 120
10.15.3 Statement Summary Tables .. 121
10.15.4 Transaction Summary Tables .. 124
10.15.5 Object Wait Summary Table .. 125
10.15.6 File I/O Summary Tables .. 126
10.15.7 Table I/O and Lock Wait Summary Tables ... 127
10.15.8 Socket Summary Tables ... 130
10.15.9 Memory Summary Tables ... 131
10.15.10 Status Variable Summary Tables ... 135

10.16 Performance Schema Miscellaneous Tables ... 136
10.16.1 The host_cache Table .. 136
10.16.2 The performance_timers Table .. 139
10.16.3 The processlist Table .. 139
10.16.4 The threads Table .. 142

11 Performance Schema and Plugins .. 147
12 Performance Schema System Variables .. 149
13 Performance Schema Status Variables ... 167
14 Using the Performance Schema to Diagnose Problems ... 171

14.1 Query Profiling Using Performance Schema ... 172

iv

Preface and Legal Notices
This is the MySQL Performance Schema extract from the MySQL 5.7 Reference Manual.

Licensing information—MySQL 5.7. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 5.7, see the MySQL 5.7 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 5.7, see the MySQL 5.7 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Licensing information—MySQL NDB Cluster 7.5. This product may include third-party software,
used under license. If you are using a Commercial release of NDB Cluster 7.5, see the MySQL NDB
Cluster 7.5 Commercial Release License Information User Manual for licensing information relating
to third-party software that may be included in this Commercial release. If you are using a Community
release of NDB Cluster 7.5, see the MySQL NDB Cluster 7.5 Community Release License Information
User Manual for licensing information relating to third-party software that may be included in this
Community release.

Licensing information—MySQL NDB Cluster 7.6. If you are using a Commercial release of
MySQL NDB Cluster 7.6, see the MySQL NDB Cluster 7.6 Commercial Release License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL NDB
Cluster 7.6, see the MySQL NDB Cluster 7.6 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices
Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated

v

https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-5.7-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.5-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.6-gpl-en.pdf

Documentation Accessibility

on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Access to Oracle Support for Accessibility

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

viii

Chapter 1 MySQL Performance Schema
The MySQL Performance Schema is a feature for monitoring MySQL Server execution at a low level.
The Performance Schema has these characteristics:

• The Performance Schema provides a way to inspect internal execution of the server at runtime. It
is implemented using the PERFORMANCE_SCHEMA storage engine and the performance_schema
database. The Performance Schema focuses primarily on performance data. This differs from
INFORMATION_SCHEMA, which serves for inspection of metadata.

• The Performance Schema monitors server events. An “event” is anything the server does that takes
time and has been instrumented so that timing information can be collected. In general, an event
could be a function call, a wait for the operating system, a stage of an SQL statement execution such
as parsing or sorting, or an entire statement or group of statements. Event collection provides access
to information about synchronization calls (such as for mutexes) file and table I/O, table locks, and so
forth for the server and for several storage engines.

• Performance Schema events are distinct from events written to the server's binary log (which
describe data modifications) and Event Scheduler events (which are a type of stored program).

• Performance Schema events are specific to a given instance of the MySQL Server. Performance
Schema tables are considered local to the server, and changes to them are not replicated or written
to the binary log.

• Current events are available, as well as event histories and summaries. This enables you to
determine how many times instrumented activities were performed and how much time they took.
Event information is available to show the activities of specific threads, or activity associated with
particular objects such as a mutex or file.

• The PERFORMANCE_SCHEMA storage engine collects event data using “instrumentation points” in
server source code.

• Collected events are stored in tables in the performance_schema database. These tables can be
queried using SELECT statements like other tables.

• Performance Schema configuration can be modified dynamically by updating tables in the
performance_schema database through SQL statements. Configuration changes affect data
collection immediately.

• Tables in the Performance Schema are in-memory tables that use no persistent on-disk storage. The
contents are repopulated beginning at server startup and discarded at server shutdown.

• Monitoring is available on all platforms supported by MySQL.

Some limitations might apply: The types of timers might vary per platform. Instruments that apply
to storage engines might not be implemented for all storage engines. Instrumentation of each third-
party engine is the responsibility of the engine maintainer. See also Restrictions on Performance
Schema.

• Data collection is implemented by modifying the server source code to add instrumentation. There
are no separate threads associated with the Performance Schema, unlike other features such as
replication or the Event Scheduler.

The Performance Schema is intended to provide access to useful information about server execution
while having minimal impact on server performance. The implementation follows these design goals:

• Activating the Performance Schema causes no changes in server behavior. For example, it does
not cause thread scheduling to change, and it does not cause query execution plans (as shown by
EXPLAIN) to change.

• Server monitoring occurs continuously and unobtrusively with very little overhead. Activating the
Performance Schema does not make the server unusable.

1

https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-restrictions.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-restrictions.html
https://dev.mysql.com/doc/refman/5.7/en/explain.html

• The parser is unchanged. There are no new keywords or statements.

• Execution of server code proceeds normally even if the Performance Schema fails internally.

• When there is a choice between performing processing during event collection initially or during
event retrieval later, priority is given to making collection faster. This is because collection is ongoing
whereas retrieval is on demand and might never happen at all.

• It is easy to add new instrumentation points.

• Instrumentation is versioned. If the instrumentation implementation changes, previously instrumented
code continues to work. This benefits developers of third-party plugins because it is not necessary to
upgrade each plugin to stay synchronized with the latest Performance Schema changes.

Note

 The MySQL sys schema is a set of objects that provides convenient access
to data collected by the Performance Schema. The sys schema is installed by
default. For usage instructions, see MySQL sys Schema.

2

https://dev.mysql.com/doc/refman/5.7/en/sys-schema.html

Chapter 2 Performance Schema Quick Start
This section briefly introduces the Performance Schema with examples that show how to use it. For
additional examples, see Chapter 14, Using the Performance Schema to Diagnose Problems.

The Performance Schema is enabled by default. To enable or disable it explicitly, start the server with
the performance_schema variable set to an appropriate value. For example, use these lines in the
server my.cnf file:

[mysqld]
performance_schema=ON

When the server starts, it sees performance_schema and attempts to initialize the Performance
Schema. To verify successful initialization, use this statement:

mysql> SHOW VARIABLES LIKE 'performance_schema';
+--------------------+-------+
| Variable_name | Value |
+--------------------+-------+
| performance_schema | ON |
+--------------------+-------+

A value of ON means that the Performance Schema initialized successfully and is ready for use. A
value of OFF means that some error occurred. Check the server error log for information about what
went wrong.

The Performance Schema is implemented as a storage engine. If this engine is available (which you
should already have checked earlier), you should see it listed with a SUPPORT value of YES in the
output from the Information Schema ENGINES table or the SHOW ENGINES statement:

mysql> SELECT * FROM INFORMATION_SCHEMA.ENGINES
 WHERE ENGINE='PERFORMANCE_SCHEMA'\G
*************************** 1. row ***************************
 ENGINE: PERFORMANCE_SCHEMA
 SUPPORT: YES
 COMMENT: Performance Schema
TRANSACTIONS: NO
 XA: NO
 SAVEPOINTS: NO
mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

The PERFORMANCE_SCHEMA storage engine operates on tables in the performance_schema
database. You can make performance_schema the default database so that references to its tables
need not be qualified with the database name:

mysql> USE performance_schema;

Performance Schema tables are stored in the performance_schema database. Information about the
structure of this database and its tables can be obtained, as for any other database, by selecting from
the INFORMATION_SCHEMA database or by using SHOW statements. For example, use either of these
statements to see what Performance Schema tables exist:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema';
+--+
| TABLE_NAME |
+--+

3

https://dev.mysql.com/doc/refman/5.7/en/information-schema-engines-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-engines.html
https://dev.mysql.com/doc/refman/5.7/en/show.html

| accounts |
| cond_instances |
...
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_thread_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_stages_summary_global_by_event_name |
| events_statements_current |
| events_statements_history |
| events_statements_history_long |
...
| file_instances |
| file_summary_by_event_name |
| file_summary_by_instance |
| host_cache |
| hosts |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |
| memory_summary_by_thread_by_event_name |
| memory_summary_by_user_by_event_name |
| memory_summary_global_by_event_name |
| metadata_locks |
| mutex_instances |
| objects_summary_global_by_type |
| performance_timers |
| replication_connection_configuration |
| replication_connection_status |
| replication_applier_configuration |
| replication_applier_status |
| replication_applier_status_by_coordinator |
| replication_applier_status_by_worker |
| rwlock_instances |
| session_account_connect_attrs |
| session_connect_attrs |
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
| socket_instances |
| socket_summary_by_event_name |
| socket_summary_by_instance |
| table_handles |
| table_io_waits_summary_by_index_usage |
| table_io_waits_summary_by_table |
| table_lock_waits_summary_by_table |
| threads |
| users |
+--+
mysql> SHOW TABLES FROM performance_schema;
+--+
| Tables_in_performance_schema |
+--+
| accounts |
| cond_instances |
| events_stages_current |
| events_stages_history |
| events_stages_history_long |
...

The number of Performance Schema tables increases over time as implementation of additional
instrumentation proceeds.

The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

To see the structure of individual tables, use SHOW CREATE TABLE:

4

https://dev.mysql.com/doc/refman/5.7/en/show-create-table.html

mysql> SHOW CREATE TABLE performance_schema.setup_consumers\G
*************************** 1. row ***************************
 Table: setup_consumers
Create Table: CREATE TABLE `setup_consumers` (
 `NAME` varchar(64) NOT NULL,
 `ENABLED` enum('YES','NO') NOT NULL
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

Table structure is also available by selecting from tables such as INFORMATION_SCHEMA.COLUMNS or
by using statements such as SHOW COLUMNS.

Tables in the performance_schema database can be grouped according to the type of information
in them: Current events, event histories and summaries, object instances, and setup (configuration)
information. The following examples illustrate a few uses for these tables. For detailed information
about the tables in each group, see Chapter 10, Performance Schema Table Descriptions.

Initially, not all instruments and consumers are enabled, so the performance schema does not collect
all events. To turn all of these on and enable event timing, execute two statements (the row counts may
differ depending on MySQL version):

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES';
Query OK, 560 rows affected (0.04 sec)
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES';
Query OK, 10 rows affected (0.00 sec)

To see what the server is doing at the moment, examine the events_waits_current table. It
contains one row per thread showing each thread's most recent monitored event:

mysql> SELECT *
 FROM performance_schema.events_waits_current\G
*************************** 1. row ***************************
 THREAD_ID: 0
 EVENT_ID: 5523
 END_EVENT_ID: 5523
 EVENT_NAME: wait/synch/mutex/mysys/THR_LOCK::mutex
 SOURCE: thr_lock.c:525
 TIMER_START: 201660494489586
 TIMER_END: 201660494576112
 TIMER_WAIT: 86526
 SPINS: NULL
 OBJECT_SCHEMA: NULL
 OBJECT_NAME: NULL
 INDEX_NAME: NULL
 OBJECT_TYPE: NULL
OBJECT_INSTANCE_BEGIN: 142270668
 NESTING_EVENT_ID: NULL
 NESTING_EVENT_TYPE: NULL
 OPERATION: lock
 NUMBER_OF_BYTES: NULL
 FLAGS: 0
...

This event indicates that thread 0 was waiting for 86,526 picoseconds to acquire a lock on
THR_LOCK::mutex, a mutex in the mysys subsystem. The first few columns provide the following
information:

• The ID columns indicate which thread the event comes from and the event number.

• EVENT_NAME indicates what was instrumented and SOURCE indicates which source file contains the
instrumented code.

• The timer columns show when the event started and stopped and how long it took. If an event is still
in progress, the TIMER_END and TIMER_WAIT values are NULL. Timer values are approximate and
expressed in picoseconds. For information about timers and event time collection, see Section 5.1,
“Performance Schema Event Timing”.

5

https://dev.mysql.com/doc/refman/5.7/en/information-schema-columns-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-columns.html

The history tables contain the same kind of rows as the current-events table but have more rows and
show what the server has been doing “recently” rather than “currently.” The events_waits_history
and events_waits_history_long tables contain the most recent 10 events per thread and most
recent 10,000 events, respectively. For example, to see information for recent events produced by
thread 13, do this:

mysql> SELECT EVENT_ID, EVENT_NAME, TIMER_WAIT
 FROM performance_schema.events_waits_history
 WHERE THREAD_ID = 13
 ORDER BY EVENT_ID;
+----------+---+------------+
| EVENT_ID | EVENT_NAME | TIMER_WAIT |
+----------+---+------------+
86	wait/synch/mutex/mysys/THR_LOCK::mutex	686322
87	wait/synch/mutex/mysys/THR_LOCK_malloc	320535
88	wait/synch/mutex/mysys/THR_LOCK_malloc	339390
89	wait/synch/mutex/mysys/THR_LOCK_malloc	377100
90	wait/synch/mutex/sql/LOCK_plugin	614673
91	wait/synch/mutex/sql/LOCK_open	659925
92	wait/synch/mutex/sql/THD::LOCK_thd_data	494001
93	wait/synch/mutex/mysys/THR_LOCK_malloc	222489
94	wait/synch/mutex/mysys/THR_LOCK_malloc	214947
95	wait/synch/mutex/mysys/LOCK_alarm	312993
+----------+---+------------+

As new events are added to a history table, older events are discarded if the table is full.

Summary tables provide aggregated information for all events over time. The tables in this group
summarize event data in different ways. To see which instruments have been executed the most times
or have taken the most wait time, sort the events_waits_summary_global_by_event_name
table on the COUNT_STAR or SUM_TIMER_WAIT column, which correspond to a COUNT(*) or
SUM(TIMER_WAIT) value, respectively, calculated over all events:

mysql> SELECT EVENT_NAME, COUNT_STAR
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY COUNT_STAR DESC LIMIT 10;
+---+------------+
| EVENT_NAME | COUNT_STAR |
+---+------------+
wait/synch/mutex/mysys/THR_LOCK_malloc	6419
wait/io/file/sql/FRM	452
wait/synch/mutex/sql/LOCK_plugin	337
wait/synch/mutex/mysys/THR_LOCK_open	187
wait/synch/mutex/mysys/LOCK_alarm	147
wait/synch/mutex/sql/THD::LOCK_thd_data	115
wait/io/file/myisam/kfile	102
wait/synch/mutex/sql/LOCK_global_system_variables	89
wait/synch/mutex/mysys/THR_LOCK::mutex	89
wait/synch/mutex/sql/LOCK_open	88
+---+------------+
mysql> SELECT EVENT_NAME, SUM_TIMER_WAIT
 FROM performance_schema.events_waits_summary_global_by_event_name
 ORDER BY SUM_TIMER_WAIT DESC LIMIT 10;
+--+----------------+
| EVENT_NAME | SUM_TIMER_WAIT |
+--+----------------+
wait/io/file/sql/MYSQL_LOG	1599816582
wait/synch/mutex/mysys/THR_LOCK_malloc	1530083250
wait/io/file/sql/binlog_index	1385291934
wait/io/file/sql/FRM	1292823243
wait/io/file/myisam/kfile	411193611
wait/io/file/myisam/dfile	322401645
wait/synch/mutex/mysys/LOCK_alarm	145126935
wait/io/file/sql/casetest	104324715
wait/synch/mutex/sql/LOCK_plugin	86027823
wait/io/file/sql/pid	72591750
+--+----------------+

These results show that the THR_LOCK_malloc mutex is “hot,” both in terms of how often it is used
and amount of time that threads wait attempting to acquire it.

6

Note

The THR_LOCK_malloc mutex is used only in debug builds. In production
builds it is not hot because it is nonexistent.

Instance tables document what types of objects are instrumented. An instrumented object, when
used by the server, produces an event. These tables provide event names and explanatory notes or
status information. For example, the file_instances table lists instances of instruments for file I/O
operations and their associated files:

mysql> SELECT *
 FROM performance_schema.file_instances\G
*************************** 1. row ***************************
 FILE_NAME: /opt/mysql-log/60500/binlog.000007
EVENT_NAME: wait/io/file/sql/binlog
OPEN_COUNT: 0
*************************** 2. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/tables_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
*************************** 3. row ***************************
 FILE_NAME: /opt/mysql/60500/data/mysql/columns_priv.MYI
EVENT_NAME: wait/io/file/myisam/kfile
OPEN_COUNT: 1
...

Setup tables are used to configure and display monitoring characteristics. For example,
setup_instruments lists the set of instruments for which events can be collected and shows which
of them are enabled:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To understand how to interpret instrument names, see Chapter 7, Performance Schema Instrument
Naming Conventions.

To control whether events are collected for an instrument, set its ENABLED value to YES or NO. For
example:

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'NO'

7

 WHERE NAME = 'wait/synch/mutex/sql/LOCK_mysql_create_db';

The Performance Schema uses collected events to update tables in the performance_schema
database, which act as “consumers” of event information. The setup_consumers table lists the
available consumers and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

To control whether the Performance Schema maintains a consumer as a destination for event
information, set its ENABLED value.

For more information about the setup tables and how to use them to control event collection, see
Section 5.2, “Performance Schema Event Filtering”.

There are some miscellaneous tables that do not fall into any of the previous groups. For example,
performance_timers lists the available event timers and their characteristics. For information about
timers, see Section 5.1, “Performance Schema Event Timing”.

8

Chapter 3 Performance Schema Build Configuration
The Performance Schema is mandatory and always compiled in. It is possible to exclude certain
parts of the Performance Schema instrumentation. For example, to exclude stage and statement
instrumentation, do this:

$> cmake . \
 -DDISABLE_PSI_STAGE=1 \
 -DDISABLE_PSI_STATEMENT=1

For more information, see the descriptions of the DISABLE_PSI_XXX CMake options in MySQL
Source-Configuration Options.

If you install MySQL over a previous installation that was configured without the Performance Schema
(or with an older version of the Performance Schema that has missing or out-of-date tables). One
indication of this issue is the presence of messages such as the following in the error log:

[ERROR] Native table 'performance_schema'.'events_waits_history'
has the wrong structure
[ERROR] Native table 'performance_schema'.'events_waits_history_long'
has the wrong structure
...

To correct that problem, perform the MySQL upgrade procedure. See Upgrading MySQL.

To verify whether a server was built with Performance Schema support, check its help output. If the
Performance Schema is available, the output mentions several variables with names that begin with
performance_schema:

$> mysqld --verbose --help
...
 --performance_schema
 Enable the performance schema.
 --performance_schema_events_waits_history_long_size=#
 Number of rows in events_waits_history_long.
...

You can also connect to the server and look for a line that names the PERFORMANCE_SCHEMA storage
engine in the output from SHOW ENGINES:

mysql> SHOW ENGINES\G
...
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
...

If the Performance Schema was not configured into the server at build time, no row for
PERFORMANCE_SCHEMA appears in the output from SHOW ENGINES. You might see
performance_schema listed in the output from SHOW DATABASES, but it has no tables and cannot be
used.

A line for PERFORMANCE_SCHEMA in the SHOW ENGINES output means that the Performance Schema
is available, not that it is enabled. To enable it, you must do so at server startup, as described in the
next section.

9

https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/5.7/en/upgrading.html
https://dev.mysql.com/doc/refman/5.7/en/show-engines.html
https://dev.mysql.com/doc/refman/5.7/en/show-engines.html
https://dev.mysql.com/doc/refman/5.7/en/show-databases.html
https://dev.mysql.com/doc/refman/5.7/en/show-engines.html

10

Chapter 4 Performance Schema Startup Configuration
To use the MySQL Performance Schema, it must be enabled at server startup to enable event
collection to occur.

Assuming that the Performance Schema is available, it is enabled by default. To enable or disable it
explicitly, start the server with the performance_schema variable set to an appropriate value. For
example, use these lines in your my.cnf file:

[mysqld]
performance_schema=ON

If the server is unable to allocate any internal buffer during Performance Schema initialization, the
Performance Schema disables itself and sets performance_schema to OFF, and the server runs
without instrumentation.

The Performance Schema also permits instrument and consumer configuration at server startup.

To control an instrument at server startup, use an option of this form:

--performance-schema-instrument='instrument_name=value'

Here, instrument_name is an instrument name such as wait/synch/mutex/sql/LOCK_open,
and value is one of these values:

• OFF, FALSE, or 0: Disable the instrument

• ON, TRUE, or 1: Enable and time the instrument

• COUNTED: Enable and count (rather than time) the instrument

Each --performance-schema-instrument option can specify only one instrument name, but
multiple instances of the option can be given to configure multiple instruments. In addition, patterns
are permitted in instrument names to configure instruments that match the pattern. To configure all
condition synchronization instruments as enabled and counted, use this option:

--performance-schema-instrument='wait/synch/cond/%=COUNTED'

To disable all instruments, use this option:

--performance-schema-instrument='%=OFF'

Exception: The memory/performance_schema/% instruments are built in and cannot be disabled at
startup.

Longer instrument name strings take precedence over shorter pattern names, regardless of order. For
information about specifying patterns to select instruments, see Section 5.9, “Naming Instruments or
Consumers for Filtering Operations”.

An unrecognized instrument name is ignored. It is possible that a plugin installed later may create the
instrument, at which time the name is recognized and configured.

To control a consumer at server startup, use an option of this form:

--performance-schema-consumer-consumer_name=value

Here, consumer_name is a consumer name such as events_waits_history, and value is one of
these values:

• OFF, FALSE, or 0: Do not collect events for the consumer

• ON, TRUE, or 1: Collect events for the consumer

For example, to enable the events_waits_history consumer, use this option:

11

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-options.html#option_mysqld_performance-schema-instrument

--performance-schema-consumer-events-waits-history=ON

The permitted consumer names can be found by examining the setup_consumers table. Patterns
are not permitted. Consumer names in the setup_consumers table use underscores, but for
consumers set at startup, dashes and underscores within the name are equivalent.

The Performance Schema includes several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+---------+
| Variable_name | Value |
+--+---------+
performance_schema	ON
performance_schema_accounts_size	100
performance_schema_digests_size	200
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	100
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	1000
...

The performance_schema variable is ON or OFF to indicate whether the Performance Schema is
enabled or disabled. The other variables indicate table sizes (number of rows) or memory allocation
values.

Note

With the Performance Schema enabled, the number of Performance Schema
instances affects the server memory footprint, perhaps to a large extent. The
Performance Schema autoscales many parameters to use memory only as
required; see The Performance Schema Memory-Allocation Model.

To change the value of Performance Schema system variables, set them at server startup. For
example, put the following lines in a my.cnf file to change the sizes of the history tables for wait
events:

[mysqld]
performance_schema
performance_schema_events_waits_history_size=20
performance_schema_events_waits_history_long_size=15000

The Performance Schema automatically sizes the values of several of its parameters at server
startup if they are not set explicitly. For example, it sizes the parameters that control the sizes of the
events waits tables this way. the Performance Schema allocates memory incrementally, scaling its
memory use to actual server load, instead of allocating all the memory it needs during server startup.
Consequently, many sizing parameters need not be set at all. To see which parameters are autosized
or autoscaled, use mysqld --verbose --help and examine the option descriptions, or see
Chapter 12, Performance Schema System Variables.

For each autosized parameter that is not set at server startup, the Performance Schema determines
how to set its value based on the value of the following system values, which are considered as “hints”
about how you have configured your MySQL server:

max_connections
open_files_limit
table_definition_cache
table_open_cache

To override autosizing or autoscaling for a given parameter, set it to a value other than −1 at startup. In
this case, the Performance Schema assigns it the specified value.

12

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-memory-model.html

At runtime, SHOW VARIABLES displays the actual values that autosized parameters were set to.
Autoscaled parameters display with a value of −1.

If the Performance Schema is disabled, its autosized and autoscaled parameters remain set to −1 and
SHOW VARIABLES displays −1.

13

https://dev.mysql.com/doc/refman/5.7/en/show-variables.html
https://dev.mysql.com/doc/refman/5.7/en/show-variables.html

14

Chapter 5 Performance Schema Runtime Configuration

Table of Contents
5.1 Performance Schema Event Timing ... 16
5.2 Performance Schema Event Filtering ... 19
5.3 Event Pre-Filtering .. 20
5.4 Pre-Filtering by Instrument .. 21
5.5 Pre-Filtering by Object .. 22
5.6 Pre-Filtering by Thread .. 24
5.7 Pre-Filtering by Consumer ... 26
5.8 Example Consumer Configurations .. 29
5.9 Naming Instruments or Consumers for Filtering Operations ... 34
5.10 Determining What Is Instrumented ... 34

Specific Performance Schema features can be enabled at runtime to control which types of event
collection occur.

Performance Schema setup tables contain information about monitoring configuration:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME LIKE 'setup%';
+-------------------+
| TABLE_NAME |
+-------------------+
| setup_actors |
| setup_consumers |
| setup_instruments |
| setup_objects |
| setup_timers |
+-------------------+

You can examine the contents of these tables to obtain information about Performance Schema
monitoring characteristics. If you have the UPDATE privilege, you can change Performance Schema
operation by modifying setup tables to affect how monitoring occurs. For additional details about these
tables, see Section 10.2, “Performance Schema Setup Tables”.

To see which event timers are selected, query the setup_timers tables:

mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

The NAME value indicates the type of instrument to which the timer applies, and TIMER_NAME indicates
which timer applies to those instruments. The timer applies to instruments where their name begins
with an element matching the NAME value.

To change the timer, update the NAME value. For example, to use the NANOSECOND timer for the wait
timer:

mysql> UPDATE performance_schema.setup_timers
 SET TIMER_NAME = 'NANOSECOND'
 WHERE NAME = 'wait';
mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+

15

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_update

Performance Schema Event Timing

| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	NANOSECOND
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

For discussion of timers, see Section 5.1, “Performance Schema Event Timing”.

The setup_instruments and setup_consumers tables list the instruments for which events
can be collected and the types of consumers for which event information actually is collected,
respectively. Other setup tables enable further modification of the monitoring configuration. Section 5.2,
“Performance Schema Event Filtering”, discusses how you can modify these tables to affect event
collection.

If there are Performance Schema configuration changes that must be made at runtime using SQL
statements and you would like these changes to take effect each time the server starts, put the
statements in a file and start the server with the init_file system variable set to name the file. This
strategy can also be useful if you have multiple monitoring configurations, each tailored to produce a
different kind of monitoring, such as casual server health monitoring, incident investigation, application
behavior troubleshooting, and so forth. Put the statements for each monitoring configuration into their
own file and specify the appropriate file as the init_file value when you start the server.

5.1 Performance Schema Event Timing

Events are collected by means of instrumentation added to the server source code. Instruments time
events, which is how the Performance Schema provides an idea of how long events take. It is also
possible to configure instruments not to collect timing information. This section discusses the available
timers and their characteristics, and how timing values are represented in events.

Performance Schema Timers

Two Performance Schema tables provide timer information:

• performance_timers lists the available timers and their characteristics.

• setup_timers indicates which timers are used for which instruments.

Each timer row in setup_timers must refer to one of the timers listed in performance_timers.

Timers vary in precision and amount of overhead. To see what timers are available and their
characteristics, check the performance_timers table:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers.

The columns have these meanings:

• The TIMER_NAME column shows the names of the available timers. CYCLE refers to the timer that
is based on the CPU (processor) cycle counter. The timers in setup_timers that you can use are

16

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_file
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_file

Performance Schema Timers

those that do not have NULL in the other columns. If the values associated with a given timer name
are NULL, that timer is not supported on your platform.

• TIMER_FREQUENCY indicates the number of timer units per second. For a cycle timer, the frequency
is generally related to the CPU speed. The value shown was obtained on a system with a 2.4GHz
processor. The other timers are based on fixed fractions of seconds. For TICK, the frequency may
vary by platform (for example, some use 100 ticks/second, others 1000 ticks/second).

• TIMER_RESOLUTION indicates the number of timer units by which timer values increase at a time. If
a timer has a resolution of 10, its value increases by 10 each time.

• TIMER_OVERHEAD is the minimal number of cycles of overhead to obtain one timing with the given
timer. The overhead per event is twice the value displayed because the timer is invoked at the
beginning and end of the event.

To see which timers are in effect or to change timers, access the setup_timers table:

mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+
mysql> UPDATE performance_schema.setup_timers
 SET TIMER_NAME = 'MICROSECOND'
 WHERE NAME = 'idle';
mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

By default, the Performance Schema uses the best timer available for each instrument type, but you
can select a different one.

To time wait events, the most important criterion is to reduce overhead, at the possible expense of the
timer accuracy, so using the CYCLE timer is the best.

The time a statement (or stage) takes to execute is in general orders of magnitude larger than the time
it takes to execute a single wait. To time statements, the most important criterion is to have an accurate
measure, which is not affected by changes in processor frequency, so using a timer which is not based
on cycles is the best. The default timer for statements is NANOSECOND. The extra “overhead” compared
to the CYCLE timer is not significant, because the overhead caused by calling a timer twice (once when
the statement starts, once when it ends) is orders of magnitude less compared to the CPU time used to
execute the statement itself. Using the CYCLE timer has no benefit here, only drawbacks.

The precision offered by the cycle counter depends on processor speed. If the processor runs at 1
GHz (one billion cycles/second) or higher, the cycle counter delivers sub-nanosecond precision. Using
the cycle counter is much cheaper than getting the actual time of day. For example, the standard
gettimeofday() function can take hundreds of cycles, which is an unacceptable overhead for data
gathering that may occur thousands or millions of times per second.

Cycle counters also have disadvantages:

• End users expect to see timings in wall-clock units, such as fractions of a second. Converting from
cycles to fractions of seconds can be expensive. For this reason, the conversion is a quick and fairly
rough multiplication operation.

17

Performance Schema Timer Representation in Events

• Processor cycle rate might change, such as when a laptop goes into power-saving mode or when a
CPU slows down to reduce heat generation. If a processor's cycle rate fluctuates, conversion from
cycles to real-time units is subject to error.

• Cycle counters might be unreliable or unavailable depending on the processor or the operating
system. For example, on Pentiums, the instruction is RDTSC (an assembly-language rather than a C
instruction) and it is theoretically possible for the operating system to prevent user-mode programs
from using it.

• Some processor details related to out-of-order execution or multiprocessor synchronization might
cause the counter to seem fast or slow by up to 1000 cycles.

MySQL works with cycle counters on x386 (Windows, macOS, Linux, Solaris, and other Unix flavors),
PowerPC, and IA-64.

Performance Schema Timer Representation in Events

Rows in Performance Schema tables that store current events and historical events have three
columns to represent timing information: TIMER_START and TIMER_END indicate when an event
started and finished, and TIMER_WAIT indicates event duration.

The setup_instruments table has an ENABLED column to indicate the instruments for which
to collect events. The table also has a TIMED column to indicate which instruments are timed. If
an instrument is not enabled, it produces no events. If an enabled instrument is not timed, events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT timer
values. This in turn causes those values to be ignored when calculating aggregate time values in
summary tables (sum, minimum, maximum, and average).

Internally, times within events are stored in units given by the timer in effect when event timing
begins. For display when events are retrieved from Performance Schema tables, times are shown in
picoseconds (trillionths of a second) to normalize them to a standard unit, regardless of which timer is
selected.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress
may use the original timer for the begin time and the new timer for the end time. To avoid unpredictable
results after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The timer baseline (“time zero”) occurs at Performance Schema initialization during server startup.
TIMER_START and TIMER_END values in events represent picoseconds since the baseline.
TIMER_WAIT values are durations in picoseconds.

Picosecond values in events are approximate. Their accuracy is subject to the usual forms of error
associated with conversion from one unit to another. If the CYCLE timer is used and the processor
rate varies, there might be drift. For these reasons, it is not reasonable to look at the TIMER_START
value for an event as an accurate measure of time elapsed since server startup. On the other hand, it
is reasonable to use TIMER_START or TIMER_WAIT values in ORDER BY clauses to order events by
start time or duration.

The choice of picoseconds in events rather than a value such as microseconds has a performance
basis. One implementation goal was to show results in a uniform time unit, regardless of the timer.
In an ideal world this time unit would look like a wall-clock unit and be reasonably precise; in other
words, microseconds. But to convert cycles or nanoseconds to microseconds, it would be necessary
to perform a division for every instrumentation. Division is expensive on many platforms. Multiplication
is not expensive, so that is what is used. Therefore, the time unit is an integer multiple of the highest
possible TIMER_FREQUENCY value, using a multiplier large enough to ensure that there is no major
precision loss. The result is that the time unit is “picoseconds.” This precision is spurious, but the
decision enables overhead to be minimized.

While a wait, stage, statement, or transaction event is executing, the respective current-event tables
display current-event timing information:

18

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Performance Schema Event Filtering

events_waits_current
events_stages_current
events_statements_current
events_transactions_current

To make it possible to determine how long a not-yet-completed event has been running, the timer
columns are set as follows:

• TIMER_START is populated.

• TIMER_END is populated with the current timer value.

• TIMER_WAIT is populated with the time elapsed so far (TIMER_END − TIMER_START).

Events that have not yet completed have an END_EVENT_ID value of NULL. To assess time elapsed
so far for an event, use the TIMER_WAIT column. Therefore, to identify events that have not yet
completed and have taken longer than N picoseconds thus far, monitoring applications can use this
expression in queries:

WHERE END_EVENT_ID IS NULL AND TIMER_WAIT > N

Event identification as just described assumes that the corresponding instruments have ENABLED and
TIMED set to YES and that the relevant consumers are enabled.

5.2 Performance Schema Event Filtering

Events are processed in a producer/consumer fashion:

• Instrumented code is the source for events and produces events to be collected. The
setup_instruments table lists the instruments for which events can be collected, whether they
are enabled, and (for enabled instruments) whether to collect timing information:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables
may be used as described in Section 5.3, “Event Pre-Filtering”.

• Performance Schema tables are the destinations for events and consume events. The
setup_consumers table lists the types of consumers to which event information can be sent and
whether they are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO

19

Event Pre-Filtering

events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Filtering can be done at different stages of performance monitoring:

• Pre-filtering. This is done by modifying Performance Schema configuration so that only certain
types of events are collected from producers, and collected events update only certain consumers.
To do this, enable or disable instruments or consumers. Pre-filtering is done by the Performance
Schema and has a global effect that applies to all users.

Reasons to use pre-filtering:

• To reduce overhead. Performance Schema overhead should be minimal even with all instruments
enabled, but perhaps you want to reduce it further. Or you do not care about timing events and
want to disable the timing code to eliminate timing overhead.

• To avoid filling the current-events or history tables with events in which you have no interest. Pre-
filtering leaves more “room” in these tables for instances of rows for enabled instrument types. If
you enable only file instruments with pre-filtering, no rows are collected for nonfile instruments.
With post-filtering, nonfile events are collected, leaving fewer rows for file events.

• To avoid maintaining some kinds of event tables. If you disable a consumer, the server does not
spend time maintaining destinations for that consumer. For example, if you do not care about
event histories, you can disable the history table consumers to improve performance.

• Post-filtering. This involves the use of WHERE clauses in queries that select information from
Performance Schema tables, to specify which of the available events you want to see. Post-filtering
is performed on a per-user basis because individual users select which of the available events are of
interest.

Reasons to use post-filtering:

• To avoid making decisions for individual users about which event information is of interest.

• To use the Performance Schema to investigate a performance issue when the restrictions to
impose using pre-filtering are not known in advance.

The following sections provide more detail about pre-filtering and provide guidelines for naming
instruments or consumers in filtering operations. For information about writing queries to retrieve
information (post-filtering), see Chapter 6, Performance Schema Queries.

5.3 Event Pre-Filtering
Pre-filtering is done by the Performance Schema and has a global effect that applies to all users. Pre-
filtering can be applied to either the producer or consumer stage of event processing:

• To configure pre-filtering at the producer stage, several tables can be used:

• setup_instruments indicates which instruments are available. An instrument disabled in this
table produces no events regardless of the contents of the other production-related setup tables.
An instrument enabled in this table is permitted to produce events, subject to the contents of the
other tables.

• setup_objects controls whether the Performance Schema monitors particular table and stored
program objects.

• threads indicates whether monitoring is enabled for each server thread.

• setup_actors determines the initial monitoring state for new foreground threads.

20

Pre-Filtering by Instrument

• To configure pre-filtering at the consumer stage, modify the setup_consumers table. This
determines the destinations to which events are sent. setup_consumers also implicitly affects
event production. If a given event is not e sent to any destination (is not be consumed), the
Performance Schema does not produce it.

Modifications to any of these tables affect monitoring immediately, with some exceptions:

• Modifications to some instruments in the setup_instruments table are effective only at server
startup; changing them at runtime has no effect. This affects primarily mutexes, conditions, and
rwlocks in the server, although there may be other instruments for which this is true. This restriction
is lifted as of MySQL 5.7.12.

• Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads.

When you change the monitoring configuration, the Performance Schema does not flush the history
tables. Events already collected remain in the current-events and history tables until displaced by
newer events. If you disable instruments, you might need to wait a while before events for them are
displaced by newer events of interest. Alternatively, use TRUNCATE TABLE to empty the history tables.

After making instrumentation changes, you might want to truncate the summary tables. Generally, the
effect is to reset the summary columns to 0 or NULL, not to remove rows. This enables you to clear
collected values and restart aggregation. That might be useful, for example, after you have made a
runtime configuration change. Exceptions to this truncation behavior are noted in individual summary
table sections.

The following sections describe how to use specific tables to control Performance Schema pre-filtering.

5.4 Pre-Filtering by Instrument

The setup_instruments table lists the available instruments:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

To control whether an instrument is enabled, set its ENABLED column to YES or NO. To configure
whether to collect timing information for an enabled instrument, set its TIMED value to YES or NO.

21

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Pre-Filtering by Object

Setting the TIMED column affects Performance Schema table contents as described in Section 5.1,
“Performance Schema Event Timing”.

Modifications to most setup_instruments rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.
This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

The setup_instruments table provides the most basic form of control over event production. To
further refine event production based on the type of object or thread being monitored, other tables may
be used as described in Section 5.3, “Event Pre-Filtering”.

The following examples demonstrate possible operations on the setup_instruments table. These
changes, like other pre-filtering operations, affect all users. Some of these queries use the LIKE
operator and a pattern match instrument names. For additional information about specifying patterns to
select instruments, see Section 5.9, “Naming Instruments or Consumers for Filtering Operations”.

• Disable all instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO';

Now no events are collected.

• Disable all file instruments, adding them to the current set of disabled instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/io/file/%';

• Disable only file instruments, enable all other instruments:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(NAME LIKE 'wait/io/file/%', 'NO', 'YES');

• Enable all but those instruments in the mysys library:

UPDATE performance_schema.setup_instruments
SET ENABLED = CASE WHEN NAME LIKE '%/mysys/%' THEN 'YES' ELSE 'NO' END;

• Disable a specific instrument:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• To toggle the state of an instrument, “flip” its ENABLED value:

UPDATE performance_schema.setup_instruments
SET ENABLED = IF(ENABLED = 'YES', 'NO', 'YES')
WHERE NAME = 'wait/synch/mutex/mysys/TMPDIR_mutex';

• Disable timing for all events:

UPDATE performance_schema.setup_instruments
SET TIMED = 'NO';

5.5 Pre-Filtering by Object

The setup_objects table controls whether the Performance Schema monitors particular table and
stored program objects. The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |

22

https://dev.mysql.com/doc/refman/5.7/en/string-comparison-functions.html#operator_like

Pre-Filtering by Object

+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

The OBJECT_TYPE column indicates the type of object to which a row applies. TABLE filtering affects
table I/O events (wait/io/table/sql/handler instrument) and table lock events (wait/lock/
table/sql/handler instrument).

The OBJECT_SCHEMA and OBJECT_NAME columns should contain a literal schema or object name, or
'%' to match any name.

The ENABLED column indicates whether matching objects are monitored, and TIMED indicates whether
to collect timing information. Setting the TIMED column affects Performance Schema table contents as
described in Section 5.1, “Performance Schema Event Timing”.

The effect of the default object configuration is to instrument all objects except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For rows that match a given OBJECT_TYPE, the Performance Schema checks rows in
this order:

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='literal'.

• Rows with OBJECT_SCHEMA='literal' and OBJECT_NAME='%'.

• Rows with OBJECT_SCHEMA='%' and OBJECT_NAME='%'.

For example, with a table db1.t1, the Performance Schema looks in TABLE rows for a match for
'db1' and 't1', then for 'db1' and '%', then for '%' and '%'. The order in which matching occurs
matters because different matching setup_objects rows can have different ENABLED and TIMED
values.

For table-related events, the Performance Schema combines the contents of setup_objects with
setup_instruments to determine whether to enable instruments and whether to time enabled
instruments:

• For tables that match a row in setup_objects, table instruments produce events only if ENABLED
is YES in both setup_instruments and setup_objects.

• The TIMED values in the two tables are combined, so that timing information is collected only when
both values are YES.

23

Pre-Filtering by Thread

For stored program objects, the Performance Schema takes the ENABLED and TIMED columns directly
from the setup_objects row. There is no combining of values with setup_instruments.

Suppose that setup_objects contains the following TABLE rows that apply to db1, db2, and db3:

+-------------+---------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+---------------+-------------+---------+-------+
TABLE	db1	t1	YES	YES
TABLE	db1	t2	NO	NO
TABLE	db2	%	YES	YES
TABLE	db3	%	NO	NO
TABLE	%	%	YES	YES
+-------------+---------------+-------------+---------+-------+

If an object-related instrument in setup_instruments has an ENABLED value of NO, events for
the object are not monitored. If the ENABLED value is YES, event monitoring occurs according to the
ENABLED value in the relevant setup_objects row:

• db1.t1 events are monitored

• db1.t2 events are not monitored

• db2.t3 events are monitored

• db3.t4 events are not monitored

• db4.t5 events are monitored

Similar logic applies for combining the TIMED columns from the setup_instruments and
setup_objects tables to determine whether to collect event timing information.

If a persistent table and a temporary table have the same name, matching against setup_objects
rows occurs the same way for both. It is not possible to enable monitoring for one table but not the
other. However, each table is instrumented separately.

5.6 Pre-Filtering by Thread
The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring is enabled for it. For the Performance Schema to monitor a
thread, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

The threads table also indicates for each server thread whether to perform historical event logging.
This includes wait, stage, statement, and transaction events and affects logging to these tables:

events_waits_history
events_waits_history_long
events_stages_history
events_stages_history_long
events_statements_history
events_statements_history_long
events_transactions_history
events_transactions_history_long

For historical event logging to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must be enabled. For
example, wait event logging in the events_waits_history and events_waits_history_long

24

Pre-Filtering by Thread

tables requires the corresponding events_waits_history and events_waits_history_long
consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that are enabled in the
setup_instruments table.

For foreground threads (resulting from client connections), the initial values of the INSTRUMENTED and
HISTORY columns in threads table rows are determined by whether the user account associated
with a thread matches any row in the setup_actors table. The values come from the ENABLED and
HISTORY columns of the matching setup_actors table row.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial setup_actors contents look like this:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

The HOST and USER columns should contain a literal host or user name, or '%' to match any name.

The ENABLED and HISTORY columns indicate whether to enable instrumentation and historical event
logging for matching threads, subject to the other conditions described previously.

When the Performance Schema checks for a match for each new foreground thread in
setup_actors, it tries to find more specific matches first, using the USER and HOST columns (ROLE is
unused):

• Rows with USER='literal' and HOST='literal'.

• Rows with USER='literal' and HOST='%'.

• Rows with USER='%' and HOST='literal'.

• Rows with USER='%' and HOST='%'.

The order in which matching occurs matters because different matching setup_actors rows can
have different USER and HOST values. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (user and host combination), based on the ENABLED and
HISTORY column values:

• When the best match is a row with ENABLED=YES, the INSTRUMENTED value for the thread
becomes YES. When the best match is a row with HISTORY=YES, the HISTORY value for the thread
becomes YES.

• When the best match is a row with ENABLED=NO, the INSTRUMENTED value for the thread becomes
NO. When the best match is a row with HISTORY=NO, the HISTORY value for the thread becomes NO.

• When no match is found, the INSTRUMENTED and HISTORY values for the thread become NO.

The ENABLED and HISTORY columns in setup_actors rows can be set to YES or NO independent of
one another. This means you can enable instrumentation separately from whether you collect historical
events.

By default, monitoring and historical event collection are enabled for all new foreground threads
because the setup_actors table initially contains a row with '%' for both HOST and USER. To

25

Pre-Filtering by Consumer

perform more limited matching such as to enable monitoring only for some foreground threads, you
must change this row because it matches any connection, and add rows for more specific HOST/USER
combinations.

Suppose that you modify setup_actors as follows:

UPDATE performance_schema.setup_actors
SET ENABLED = 'NO', HISTORY = 'NO'
WHERE HOST = '%' AND USER = '%';
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('localhost','joe','%','YES','YES');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('hosta.example.com','joe','%','YES','NO');
INSERT INTO performance_schema.setup_actors
(HOST,USER,ROLE,ENABLED,HISTORY)
VALUES('%','sam','%','NO','YES');

The UPDATE statement changes the default match to disable instrumentation and historical event
collection. The INSERT statements add rows for more specific matches.

Now the Performance Schema determines how to set the INSTRUMENTED and HISTORY values for
new connection threads as follows:

• If joe connects from the local host, the connection matches the first inserted row. The
INSTRUMENTED and HISTORY values for the thread become YES.

• If joe connects from hosta.example.com, the connection matches the second inserted row. The
INSTRUMENTED value for the thread becomes YES and the HISTORY value becomes NO.

• If joe connects from any other host, there is no match. The INSTRUMENTED and HISTORY values
for the thread become NO.

• If sam connects from any host, the connection matches the third inserted row. The INSTRUMENTED
value for the thread becomes NO and the HISTORY value becomes YES.

• For any other connection, the row with HOST and USER set to '%' matches. This row now has
ENABLED and HISTORY set to NO, so the INSTRUMENTED and HISTORY values for the thread
become NO.

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

5.7 Pre-Filtering by Consumer

The setup_consumers table lists the available consumer types and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO

26

https://dev.mysql.com/doc/refman/5.7/en/update.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html

Global and Thread Consumers

global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

Modify the setup_consumers table to affect pre-filtering at the consumer stage and determine the
destinations to which events are sent. To enable or disable a consumer, set its ENABLED value to YES
or NO.

Modifications to the setup_consumers table affect monitoring immediately.

If you disable a consumer, the server does not spend time maintaining destinations for that consumer.
For example, if you do not care about historical event information, disable the history consumers:

UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following principles apply:

• Destinations associated with a consumer receive no events unless the Performance Schema checks
the consumer and the consumer is enabled.

• A consumer is checked only if all consumers it depends on (if any) are enabled.

• If a consumer is not checked, or is checked but is disabled, other consumers that depend on it are
not checked.

• Dependent consumers may have their own dependent consumers.

• If an event would not be sent to any destination, the Performance Schema does not produce it.

The following lists describe the available consumer values. For discussion of several representative
consumer configurations and their effect on instrumentation, see Section 5.8, “Example Consumer
Configurations”.

• Global and Thread Consumers

• Wait Event Consumers

• Stage Event Consumers

• Statement Event Consumers

• Transaction Event Consumers

• Statement Digest Consumer

Global and Thread Consumers

• global_instrumentation is the highest level consumer. If global_instrumentation is NO,
it disables global instrumentation. All other settings are lower level and are not checked; it does
not matter what they are set to. No global or per thread information is maintained and no individual
events are collected in the current-events or event-history tables. If global_instrumentation
is YES, the Performance Schema maintains information for global states and also checks the
thread_instrumentation consumer.

• thread_instrumentation is checked only if global_instrumentation is YES. Otherwise,
if thread_instrumentation is NO, it disables thread-specific instrumentation and all lower-
level settings are ignored. No information is maintained per thread and no individual events
are collected in the current-events or event-history tables. If thread_instrumentation

27

Wait Event Consumers

is YES, the Performance Schema maintains thread-specific information and also checks
events_xxx_current consumers.

Wait Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_waits_current, if NO, disables collection of individual wait events in the
events_waits_current table. If YES, it enables wait event collection and the Performance
Schema checks the events_waits_history and events_waits_history_long consumers.

• events_waits_history is not checked if event_waits_current is NO. Otherwise, an
events_waits_history value of NO or YES disables or enables collection of wait events in the
events_waits_history table.

• events_waits_history_long is not checked if event_waits_current is NO. Otherwise, an
events_waits_history_long value of NO or YES disables or enables collection of wait events in
the events_waits_history_long table.

Stage Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_stages_current, if NO, disables collection of individual stage events in the
events_stages_current table. If YES, it enables stage event collection and the Performance
Schema checks the events_stages_history and events_stages_history_long
consumers.

• events_stages_history is not checked if event_stages_current is NO. Otherwise, an
events_stages_history value of NO or YES disables or enables collection of stage events in the
events_stages_history table.

• events_stages_history_long is not checked if event_stages_current is NO. Otherwise, an
events_stages_history_long value of NO or YES disables or enables collection of stage events
in the events_stages_history_long table.

Statement Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

• events_statements_current, if NO, disables collection of individual statement
events in the events_statements_current table. If YES, it enables statement event
collection and the Performance Schema checks the events_statements_history and
events_statements_history_long consumers.

• events_statements_history is not checked if events_statements_current is NO.
Otherwise, an events_statements_history value of NO or YES disables or enables collection of
statement events in the events_statements_history table.

• events_statements_history_long is not checked if events_statements_current is NO.
Otherwise, an events_statements_history_long value of NO or YES disables or enables
collection of statement events in the events_statements_history_long table.

Transaction Event Consumers

These consumers require both global_instrumentation and thread_instrumentation to be
YES or they are not checked. If checked, they act as follows:

28

Statement Digest Consumer

• events_transactions_current, if NO, disables collection of individual transaction
events in the events_transactions_current table. If YES, it enables transaction event
collection and the Performance Schema checks the events_transactions_history and
events_transactions_history_long consumers.

• events_transactions_history is not checked if events_transactions_current is NO.
Otherwise, an events_transactions_history value of NO or YES disables or enables collection
of transaction events in the events_transactions_history table.

• events_transactions_history_long is not checked if events_transactions_current
is NO. Otherwise, an events_transactions_history_long value of NO or YES disables or
enables collection of transaction events in the events_transactions_history_long table.

Statement Digest Consumer

The statements_digest consumer requires global_instrumentation to be YES or it is not
checked. There is no dependency on the statement event consumers, so you can obtain statistics per
digest without having to collect statistics in events_statements_current, which is advantageous
in terms of overhead. Conversely, you can get detailed statements in events_statements_current
without digests (the DIGEST and DIGEST_TEXT columns are NULL).

For more information about statement digesting, see Performance Schema Statement Digests.

5.8 Example Consumer Configurations

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
The following discussion describes how consumers work, showing specific configurations and their
effects as consumer settings are enabled progressively from high to low. The consumer values shown
are representative. The general principles described here apply to other consumer values that may be
available.

The configuration descriptions occur in order of increasing functionality and overhead. If you do not
need the information provided by enabling lower-level settings, disable them and the Performance
Schema executes less code on your behalf and you have less information to sift through.

The setup_consumers table contains the following hierarchy of values:

global_instrumentation
 thread_instrumentation
 events_waits_current
 events_waits_history
 events_waits_history_long
 events_stages_current
 events_stages_history
 events_stages_history_long
 events_statements_current
 events_statements_history
 events_statements_history_long
 events_transactions_current
 events_transactions_history
 events_transactions_history_long
 statements_digest

Note

In the consumer hierarchy, the consumers for waits, stages, statements,
and transactions are all at the same level. This differs from the event nesting
hierarchy, for which wait events nest within stage events, which nest within
statement events, which nest within transaction events.

If a given consumer setting is NO, the Performance Schema disables the instrumentation associated
with the consumer and ignores all lower-level settings. If a given setting is YES, the Performance

29

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-digests.html

No Instrumentation

Schema enables the instrumentation associated with it and checks the settings at the next lowest level.
For a description of the rules for each consumer, see Section 5.7, “Pre-Filtering by Consumer”.

For example, if global_instrumentation is enabled, thread_instrumentation is
checked. If thread_instrumentation is enabled, the events_xxx_current consumers
are checked. If of these events_waits_current is enabled, events_waits_history and
events_waits_history_long are checked.

Each of the following configuration descriptions indicates which setup elements the Performance
Schema checks and which output tables it maintains (that is, for which tables it collects information).

• No Instrumentation

• Global Instrumentation Only

• Global and Thread Instrumentation Only

• Global, Thread, and Current-Event Instrumentation

• Global, Thread, Current-Event, and Event-History instrumentation

No Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, nothing is instrumented.

Setup elements checked:

• Table setup_consumers, consumer global_instrumentation

Output tables maintained:

• None

Global Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| global_instrumentation | YES |
| thread_instrumentation | NO |
...
+---------------------------+---------+

In this configuration, instrumentation is maintained only for global states. Per-thread instrumentation is
disabled.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumer thread_instrumentation

• Table setup_instruments

30

Global and Thread Instrumentation Only

• Table setup_objects

• Table setup_timers

Additional output tables maintained, relative to the preceding configuration:

• mutex_instances

• rwlock_instances

• cond_instances

• file_instances

• users

• hosts

• accounts

• socket_summary_by_event_name

• file_summary_by_instance

• file_summary_by_event_name

• objects_summary_global_by_type

• memory_summary_global_by_event_name

• table_lock_waits_summary_by_table

• table_io_waits_summary_by_index_usage

• table_io_waits_summary_by_table

• events_waits_summary_by_instance

• events_waits_summary_global_by_event_name

• events_stages_summary_global_by_event_name

• events_statements_summary_global_by_event_name

• events_transactions_summary_global_by_event_name

Global and Thread Instrumentation Only

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	NO
...	
events_stages_current	NO
...	
events_statements_current	NO
...	
events_transactions_current	NO
...
+----------------------------------+---------+

31

Global, Thread, and Current-Event Instrumentation

In this configuration, instrumentation is maintained globally and per thread. No individual events are
collected in the current-events or event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Table setup_consumers, consumers events_xxx_current, where xxx is waits, stages,
statements, transactions

• Table setup_actors

• Column threads.instrumented

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_summary_by_yyy_by_event_name, where xxx is waits, stages, statements,
transactions; and yyy is thread, user, host, account

Global, Thread, and Current-Event Instrumentation

Server configuration state:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	NO
...
+----------------------------------+---------+

In this configuration, instrumentation is maintained globally and per thread. Individual events are
collected in the current-events table, but not in the event-history tables.

Additional setup elements checked, relative to the preceding configuration:

• Consumers events_xxx_history, where xxx is waits, stages, statements, transactions

• Consumers events_xxx_history_long, where xxx is waits, stages, statements,
transactions

Additional output tables maintained, relative to the preceding configuration:

• events_xxx_current, where xxx is waits, stages, statements, transactions

Global, Thread, Current-Event, and Event-History instrumentation

The preceding configuration collects no event history because the events_xxx_history and
events_xxx_history_long consumers are disabled. Those consumers can be enabled separately
or together to collect event history per thread, globally, or both.

This configuration collects event history per thread, but not globally:

mysql> SELECT * FROM performance_schema.setup_consumers;

32

Global, Thread, Current-Event, and Event-History instrumentation

+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	NO
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	NO
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

This configuration collects event history globally, but not per thread:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	NO
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	NO
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	NO
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	NO
events_transactions_history_long	YES
...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

This configuration collects event history per thread and globally:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
global_instrumentation	YES
thread_instrumentation	YES
events_waits_current	YES
events_waits_history	YES
events_waits_history_long	YES
events_stages_current	YES
events_stages_history	YES
events_stages_history_long	YES
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	YES
events_transactions_current	YES
events_transactions_history	YES
events_transactions_history_long	YES

33

Naming Instruments or Consumers for Filtering Operations

...
+----------------------------------+---------+

Event-history tables maintained for this configuration:

• events_xxx_history, where xxx is waits, stages, statements, transactions

• events_xxx_history_long, where xxx is waits, stages, statements, transactions

5.9 Naming Instruments or Consumers for Filtering Operations

Names given for filtering operations can be as specific or general as required. To indicate a single
instrument or consumer, specify its name in full:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME = 'wait/synch/mutex/myisammrg/MYRG_INFO::mutex';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME = 'events_waits_current';

To specify a group of instruments or consumers, use a pattern that matches the group members:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'wait/synch/mutex/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%history%';

If you use a pattern, it should be chosen so that it matches all the items of interest and no others. For
example, to select all file I/O instruments, it is better to use a pattern that includes the entire instrument
name prefix:

... WHERE NAME LIKE 'wait/io/file/%';

The pattern '%/file/%' matches other instruments that have an element of '/file/' anywhere in
the name. Even less suitable is the pattern '%file%' because it matches instruments with 'file'
anywhere in the name, such as wait/synch/mutex/innodb/file_open_mutex.

To check which instrument or consumer names a pattern matches, perform a simple test:

SELECT NAME FROM performance_schema.setup_instruments
WHERE NAME LIKE 'pattern';
SELECT NAME FROM performance_schema.setup_consumers
WHERE NAME LIKE 'pattern';

For information about the types of names that are supported, see Chapter 7, Performance Schema
Instrument Naming Conventions.

5.10 Determining What Is Instrumented

It is always possible to determine what instruments the Performance Schema includes by checking
the setup_instruments table. For example, to see what file-related events are instrumented for the
InnoDB storage engine, use this query:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb/%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+

34

Determining What Is Instrumented

An exhaustive description of precisely what is instrumented is not given in this documentation, for
several reasons:

• What is instrumented is the server code. Changes to this code occur often, which also affects the set
of instruments.

• It is not practical to list all the instruments because there are hundreds of them.

• As described earlier, it is possible to find out by querying the setup_instruments table. This
information is always up to date for your version of MySQL, also includes instrumentation for
instrumented plugins you might have installed that are not part of the core server, and can be used
by automated tools.

35

36

Chapter 6 Performance Schema Queries
Pre-filtering limits which event information is collected and is independent of any particular user. By
contrast, post-filtering is performed by individual users through the use of queries with appropriate
WHERE clauses that restrict what event information to select from the events available after pre-filtering
has been applied.

In Section 5.3, “Event Pre-Filtering”, an example showed how to pre-filter for file instruments. If the
event tables contain both file and nonfile information, post-filtering is another way to see information
only for file events. Add a WHERE clause to queries to restrict event selection appropriately:

mysql> SELECT THREAD_ID, NUMBER_OF_BYTES
 FROM performance_schema.events_waits_history
 WHERE EVENT_NAME LIKE 'wait/io/file/%'
 AND NUMBER_OF_BYTES IS NOT NULL;
+-----------+-----------------+
| THREAD_ID | NUMBER_OF_BYTES |
+-----------+-----------------+
11	66
11	47
11	139
5	24
5	834
+-----------+-----------------+

37

38

Chapter 7 Performance Schema Instrument Naming
Conventions

An instrument name consists of a sequence of elements separated by '/' characters. Example
names:

wait/io/file/myisam/log
wait/io/file/mysys/charset
wait/lock/table/sql/handler
wait/synch/cond/mysys/COND_alarm
wait/synch/cond/sql/BINLOG::update_cond
wait/synch/mutex/mysys/BITMAP_mutex
wait/synch/mutex/sql/LOCK_delete
wait/synch/rwlock/sql/Query_cache_query::lock
stage/sql/closing tables
stage/sql/Sorting result
statement/com/Execute
statement/com/Query
statement/sql/create_table
statement/sql/lock_tables

The instrument name space has a tree-like structure. The elements of an instrument name from left to
right provide a progression from more general to more specific. The number of elements a name has
depends on the type of instrument.

The interpretation of a given element in a name depends on the elements to the left of it. For example,
myisam appears in both of the following names, but myisam in the first name is related to file I/O,
whereas in the second it is related to a synchronization instrument:

wait/io/file/myisam/log
wait/synch/cond/myisam/MI_SORT_INFO::cond

Instrument names consist of a prefix with a structure defined by the Performance Schema
implementation and a suffix defined by the developer implementing the instrument code. The top-level
element of an instrument prefix indicates the type of instrument. This element also determines which
event timer in the setup_timers table applies to the instrument. For the prefix part of instrument
names, the top level indicates the type of instrument.

The suffix part of instrument names comes from the code for the instruments themselves. Suffixes may
include levels such as these:

• A name for the major element (a server module such as myisam, innodb, mysys, or sql) or a
plugin name.

• The name of a variable in the code, in the form XXX (a global variable) or CCC::MMM (a member MMM
in class CCC). Examples: COND_thread_cache, THR_LOCK_myisam, BINLOG::LOCK_index.

• Top-Level Instrument Elements

• Idle Instrument Elements

• Memory Instrument Elements

• Stage Instrument Elements

• Statement Instrument Elements

• Wait Instrument Elements

Top-Level Instrument Elements
• idle: An instrumented idle event. This instrument has no further elements.

• memory: An instrumented memory event.

39

Idle Instrument Elements

• stage: An instrumented stage event.

• statement: An instrumented statement event.

• transaction: An instrumented transaction event. This instrument has no further elements.

• wait: An instrumented wait event.

Idle Instrument Elements
The idle instrument is used for idle events, which The Performance Schema generates as discussed
in the description of the socket_instances.STATE column in Section 10.3.5, “The socket_instances
Table”.

Memory Instrument Elements
Most memory instrumentation is disabled by default, and can be enabled or disabled
at startup, or dynamically at runtime by updating the ENABLED column of the relevant
instruments in the setup_instruments table. Memory instruments have names of the form
memory/code_area/instrument_name where code_area is a value such as sql or myisam, and
instrument_name is the instrument detail.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table. For more
information, see The Performance Schema Memory-Allocation Model.

Stage Instrument Elements
Stage instruments have names of the form stage/code_area/stage_name, where code_area is
a value such as sql or myisam, and stage_name indicates the stage of statement processing, such
as Sorting result or Sending data. Stages correspond to the thread states displayed by SHOW
PROCESSLIST or that are visible in the Information Schema PROCESSLIST table.

Statement Instrument Elements
• statement/abstract/*: An abstract instrument for statement operations. Abstract instruments

are used during the early stages of statement classification before the exact statement type is
known, then changed to a more specific statement instrument when the type is known. For a
description of this process, see Section 10.6, “Performance Schema Statement Event Tables”.

• statement/com: An instrumented command operation. These have names corresponding to
COM_xxx operations (see the mysql_com.h header file and sql/sql_parse.cc. For example,
the statement/com/Connect and statement/com/Init DB instruments correspond to the
COM_CONNECT and COM_INIT_DB commands.

• statement/scheduler/event: A single instrument to track all events executed by the Event
Scheduler. This instrument comes into play when a scheduled event begins executing.

• statement/sp: An instrumented internal instruction executed by a stored program. For example,
the statement/sp/cfetch and statement/sp/freturn instruments are used cursor fetch and
function return instructions.

• statement/sql: An instrumented SQL statement operation. For example, the statement/sql/
create_db and statement/sql/select instruments are used for CREATE DATABASE and
SELECT statements.

Wait Instrument Elements
• wait/io

40

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-memory-model.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-database.html
https://dev.mysql.com/doc/refman/5.7/en/select.html

Wait Instrument Elements

An instrumented I/O operation.

• wait/io/file

An instrumented file I/O operation. For files, the wait is the time waiting for the file operation to
complete (for example, a call to fwrite()). Due to caching, the physical file I/O on the disk might
not happen within this call.

• wait/io/socket

An instrumented socket operation. Socket instruments have names of the form wait/io/
socket/sql/socket_type. The server has a listening socket for each network protocol that
it supports. The instruments associated with listening sockets for TCP/IP or Unix socket file
connections have a socket_type value of server_tcpip_socket or server_unix_socket,
respectively. When a listening socket detects a connection, the server transfers the connection to
a new socket managed by a separate thread. The instrument for the new connection thread has a
socket_type value of client_connection.

• wait/io/table

An instrumented table I/O operation. These include row-level accesses to persistent base tables
or temporary tables. Operations that affect rows are fetch, insert, update, and delete. For a view,
waits are associated with base tables referenced by the view.

Unlike most waits, a table I/O wait can include other waits. For example, table I/O might include file
I/O or memory operations. Thus, events_waits_current for a table I/O wait usually has two
rows. For more information, see Performance Schema Atom and Molecule Events.

Some row operations might cause multiple table I/O waits. For example, an insert might activate a
trigger that causes an update.

• wait/lock

An instrumented lock operation.

• wait/lock/table

An instrumented table lock operation.

• wait/lock/metadata/sql/mdl

An instrumented metadata lock operation.

• wait/synch

An instrumented synchronization object. For synchronization objects, the TIMER_WAIT time includes
the amount of time blocked while attempting to acquire a lock on the object, if any.

• wait/synch/cond

A condition is used by one thread to signal to other threads that something they were waiting for
has happened. If a single thread was waiting for a condition, it can wake up and proceed with its
execution. If several threads were waiting, they can all wake up and compete for the resource for
which they were waiting.

• wait/synch/mutex

A mutual exclusion object used to permit access to a resource (such as a section of executable
code) while preventing other threads from accessing the resource.

• wait/synch/rwlock

41

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-atom-molecule-events.html

Wait Instrument Elements

A read/write lock object used to lock a specific variable for access while preventing its use by other
threads. A shared read lock can be acquired simultaneously by multiple threads. An exclusive
write lock can be acquired by only one thread at a time.

• wait/synch/sxlock

A shared-exclusive (SX) lock is a type of rwlock lock object that provides write access to a
common resource while permitting inconsistent reads by other threads. sxlocks optimize
concurrency and improve scalability for read-write workloads.

42

https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_rw_lock
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_rw_lock

Chapter 8 Performance Schema Status Monitoring
There are several status variables associated with the Performance Schema:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_digest_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_memory_classes_lost	0
Performance_schema_metadata_lock_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_nested_statement_lost	0
Performance_schema_program_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_session_connect_attrs_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

The Performance Schema status variables provide information about instrumentation that could not be
loaded or created due to memory constraints. Names for these variables have several forms:

• Performance_schema_xxx_classes_lost indicates how many instruments of type xxx could
not be loaded.

• Performance_schema_xxx_instances_lost indicates how many instances of object type xxx
could not be created.

• Performance_schema_xxx_handles_lost indicates how many instances of object type xxx
could not be opened.

• Performance_schema_locker_lost indicates how many events are “lost” or not recorded.

For example, if a mutex is instrumented in the server source but the server cannot allocate memory
for the instrumentation at runtime, it increments Performance_schema_mutex_classes_lost.
The mutex still functions as a synchronization object (that is, the server continues to function normally),
but performance data for it is not collected. If the instrument can be allocated, it can be used for
initializing instrumented mutex instances. For a singleton mutex such as a global mutex, there is only
one instance. Other mutexes have an instance per connection, or per page in various caches and data
buffers, so the number of instances varies over time. Increasing the maximum number of connections
or the maximum size of some buffers increases the maximum number of instances that might be
allocated at once. If the server cannot create a given instrumented mutex instance, it increments
Performance_schema_mutex_instances_lost.

Suppose that the following conditions hold:

• The server was started with the --performance_schema_max_mutex_classes=200 option and
thus has room for 200 mutex instruments.

43

• 150 mutex instruments have been loaded already.

• The plugin named plugin_a contains 40 mutex instruments.

• The plugin named plugin_b contains 20 mutex instruments.

The server allocates mutex instruments for the plugins depending on how many they need and how
many are available, as illustrated by the following sequence of statements:

INSTALL PLUGIN plugin_a

The server now has 150+40 = 190 mutex instruments.

UNINSTALL PLUGIN plugin_a;

The server still has 190 instruments. All the historical data generated by the plugin code is still
available, but new events for the instruments are not collected.

INSTALL PLUGIN plugin_a;

The server detects that the 40 instruments are already defined, so no new instruments are created, and
previously assigned internal memory buffers are reused. The server still has 190 instruments.

INSTALL PLUGIN plugin_b;

The server has room for 200-190 = 10 instruments (in this case, mutex classes), and sees that the
plugin contains 20 new instruments. 10 instruments are loaded, and 10 are discarded or “lost.” The
Performance_schema_mutex_classes_lost indicates the number of instruments (mutex classes)
lost:

mysql> SHOW STATUS LIKE "perf%mutex_classes_lost";
+---------------------------------------+-------+
| Variable_name | Value |
+---------------------------------------+-------+
| Performance_schema_mutex_classes_lost | 10 |
+---------------------------------------+-------+
1 row in set (0.10 sec)

The instrumentation still works and collects (partial) data for plugin_b.

When the server cannot create a mutex instrument, these results occur:

• No row for the instrument is inserted into the setup_instruments table.

• Performance_schema_mutex_classes_lost increases by 1.

• Performance_schema_mutex_instances_lost does not change. (When the mutex instrument
is not created, it cannot be used to create instrumented mutex instances later.)

The pattern just described applies to all types of instruments, not just mutexes.

A value of Performance_schema_mutex_classes_lost greater than 0 can happen in two cases:

• To save a few bytes of memory, you start the server with --
performance_schema_max_mutex_classes=N, where N is less than the default value. The
default value is chosen to be sufficient to load all the plugins provided in the MySQL distribution, but
this can be reduced if some plugins are never loaded. For example, you might choose not to load
some of the storage engines in the distribution.

• You load a third-party plugin that is instrumented for the Performance Schema but do not allow for
the plugin's instrumentation memory requirements when you start the server. Because it comes from
a third party, the instrument memory consumption of this engine is not accounted for in the default
value chosen for performance_schema_max_mutex_classes.

44

If the server has insufficient resources for the plugin's instruments and you do not explicitly allocate
more using --performance_schema_max_mutex_classes=N, loading the plugin leads to
starvation of instruments.

If the value chosen for performance_schema_max_mutex_classes is too small,
no error is reported in the error log and there is no failure at runtime. However, the
content of the tables in the performance_schema database misses events. The
Performance_schema_mutex_classes_lost status variable is the only visible sign to indicate that
some events were dropped internally due to failure to create instruments.

If an instrument is not lost, it is known to the Performance Schema, and is used when instrumenting
instances. For example, wait/synch/mutex/sql/LOCK_delete is the name of a mutex instrument
in the setup_instruments table. This single instrument is used when creating a mutex in the
code (in THD::LOCK_delete) however many instances of the mutex are needed as the server
runs. In this case, LOCK_delete is a mutex that is per connection (THD), so if a server has 1000
connections, there are 1000 threads, and 1000 instrumented LOCK_delete mutex instances
(THD::LOCK_delete).

If the server does not have room for all these 1000 instrumented mutexes (instances), some mutexes
are created with instrumentation, and some are created without instrumentation. If the server can
create only 800 instances, 200 instances are lost. The server continues to run, but increments
Performance_schema_mutex_instances_lost by 200 to indicate that instances could not be
created.

A value of Performance_schema_mutex_instances_lost greater than 0 can
happen when the code initializes more mutexes at runtime than were allocated for --
performance_schema_max_mutex_instances=N.

The bottom line is that if SHOW STATUS LIKE 'perf%' says that nothing was lost (all values are
zero), the Performance Schema data is accurate and can be relied upon. If something was lost, the
data is incomplete, and the Performance Schema could not record everything given the insufficient
amount of memory it was given to use. In this case, the specific Performance_schema_xxx_lost
variable indicates the problem area.

It might be appropriate in some cases to cause deliberate instrument starvation. For example, if you
do not care about performance data for file I/O, you can start the server with all Performance Schema
parameters related to file I/O set to 0. No memory is allocated for file-related classes, instances, or
handles, and all file events are lost.

Use SHOW ENGINE PERFORMANCE_SCHEMA STATUS to inspect the internal operation of the
Performance Schema code:

mysql> SHOW ENGINE PERFORMANCE_SCHEMA STATUS\G
...
*************************** 3. row ***************************
 Type: performance_schema
 Name: events_waits_history.size
Status: 76
*************************** 4. row ***************************
 Type: performance_schema
 Name: events_waits_history.count
Status: 10000
*************************** 5. row ***************************
 Type: performance_schema
 Name: events_waits_history.memory
Status: 760000
...
*************************** 57. row ***************************
 Type: performance_schema
 Name: performance_schema.memory
Status: 26459600
...

45

https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-engine.html

This statement is intended to help the DBA understand the effects that different Performance Schema
options have on memory requirements. For a description of the field meanings, see SHOW ENGINE
Statement.

46

https://dev.mysql.com/doc/refman/5.7/en/show-engine.html
https://dev.mysql.com/doc/refman/5.7/en/show-engine.html

Chapter 9 Performance Schema General Table Characteristics
The name of the performance_schema database is lowercase, as are the names of tables within it.
Queries should specify the names in lowercase.

Many tables in the performance_schema database are read only and cannot be modified:

mysql> TRUNCATE TABLE performance_schema.setup_instruments;
ERROR 1683 (HY000): Invalid performance_schema usage.

Some of the setup tables have columns that can be modified to affect Performance Schema operation;
some also permit rows to be inserted or deleted. Truncation is permitted to clear collected events, so
TRUNCATE TABLE can be used on tables containing those kinds of information, such as tables named
with a prefix of events_waits_.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the
summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and
restart aggregation. That might be useful, for example, after you have made a runtime configuration
change. Exceptions to this truncation behavior are noted in individual summary table sections.

Privileges are as for other databases and tables:

• To retrieve from performance_schema tables, you must have the SELECT privilege.

• To change those columns that can be modified, you must have the UPDATE privilege.

• To truncate tables that can be truncated, you must have the DROP privilege.

Because only a limited set of privileges apply to Performance Schema tables, attempts to use GRANT
ALL as shorthand for granting privileges at the database or table leval fail with an error:

mysql> GRANT ALL ON performance_schema.*
 TO 'u1'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'
mysql> GRANT ALL ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
ERROR 1044 (42000): Access denied for user 'root'@'localhost'
to database 'performance_schema'

Instead, grant exactly the desired privileges:

mysql> GRANT SELECT ON performance_schema.*
 TO 'u1'@'localhost';
Query OK, 0 rows affected (0.03 sec)
mysql> GRANT SELECT, UPDATE ON performance_schema.setup_instruments
 TO 'u2'@'localhost';
Query OK, 0 rows affected (0.02 sec)

47

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_drop

48

Chapter 10 Performance Schema Table Descriptions

Table of Contents
10.1 Performance Schema Table Reference .. 50
10.2 Performance Schema Setup Tables ... 54

10.2.1 The setup_actors Table .. 54
10.2.2 The setup_consumers Table ... 55
10.2.3 The setup_instruments Table .. 56
10.2.4 The setup_objects Table ... 57
10.2.5 The setup_timers Table .. 58

10.3 Performance Schema Instance Tables ... 59
10.3.1 The cond_instances Table .. 59
10.3.2 The file_instances Table ... 60
10.3.3 The mutex_instances Table .. 60
10.3.4 The rwlock_instances Table .. 61
10.3.5 The socket_instances Table .. 62

10.4 Performance Schema Wait Event Tables ... 64
10.4.1 The events_waits_current Table .. 65
10.4.2 The events_waits_history Table .. 68
10.4.3 The events_waits_history_long Table .. 69

10.5 Performance Schema Stage Event Tables ... 69
10.5.1 The events_stages_current Table .. 72
10.5.2 The events_stages_history Table .. 74
10.5.3 The events_stages_history_long Table .. 74

10.6 Performance Schema Statement Event Tables ... 74
10.6.1 The events_statements_current Table ... 78
10.6.2 The events_statements_history Table .. 82
10.6.3 The events_statements_history_long Table .. 82
10.6.4 The prepared_statements_instances Table .. 83

10.7 Performance Schema Transaction Tables .. 85
10.7.1 The events_transactions_current Table .. 89
10.7.2 The events_transactions_history Table .. 91
10.7.3 The events_transactions_history_long Table .. 92

10.8 Performance Schema Connection Tables ... 92
10.8.1 The accounts Table .. 94
10.8.2 The hosts Table ... 95
10.8.3 The users Table ... 95

10.9 Performance Schema Connection Attribute Tables ... 95
10.9.1 The session_account_connect_attrs Table ... 98
10.9.2 The session_connect_attrs Table .. 98

10.10 Performance Schema User-Defined Variable Tables ... 98
10.11 Performance Schema Replication Tables ... 99

10.11.1 The replication_connection_configuration Table .. 102
10.11.2 The replication_connection_status Table .. 104
10.11.3 The replication_applier_configuration Table .. 105
10.11.4 The replication_applier_status Table .. 105
10.11.5 The replication_applier_status_by_coordinator Table .. 106
10.11.6 The replication_applier_status_by_worker Table ... 107
10.11.7 The replication_group_members Table .. 109
10.11.8 The replication_group_member_stats Table ... 109

10.12 Performance Schema Lock Tables ... 110
10.12.1 The metadata_locks Table .. 110
10.12.2 The table_handles Table ... 112

10.13 Performance Schema System Variable Tables .. 114
10.14 Performance Schema Status Variable Tables ... 115

49

Performance Schema Table Reference

10.15 Performance Schema Summary Tables .. 116
10.15.1 Wait Event Summary Tables ... 118
10.15.2 Stage Summary Tables ... 120
10.15.3 Statement Summary Tables .. 121
10.15.4 Transaction Summary Tables .. 124
10.15.5 Object Wait Summary Table .. 125
10.15.6 File I/O Summary Tables .. 126
10.15.7 Table I/O and Lock Wait Summary Tables ... 127
10.15.8 Socket Summary Tables ... 130
10.15.9 Memory Summary Tables ... 131
10.15.10 Status Variable Summary Tables ... 135

10.16 Performance Schema Miscellaneous Tables ... 136
10.16.1 The host_cache Table .. 136
10.16.2 The performance_timers Table .. 139
10.16.3 The processlist Table .. 139
10.16.4 The threads Table .. 142

Tables in the performance_schema database can be grouped as follows:

• Setup tables. These tables are used to configure and display monitoring characteristics.

• Current events tables. The events_waits_current table contains the most recent event for
each thread. Other similar tables contain current events at different levels of the event hierarchy:
events_stages_current for stage events, events_statements_current for statement
events, and events_transactions_current for transaction events.

• History tables. These tables have the same structure as the current events tables, but contain more
rows. For example, for wait events, events_waits_history table contains the most recent 10
events per thread. events_waits_history_long contains the most recent 10,000 events. Other
similar tables exist for stage, statement, and transaction histories.

To change the sizes of the history tables, set the appropriate system variables
at server startup. For example, to set the sizes of the wait event history
tables, set performance_schema_events_waits_history_size and
performance_schema_events_waits_history_long_size.

• Summary tables. These tables contain information aggregated over groups of events, including those
that have been discarded from the history tables.

• Instance tables. These tables document what types of objects are instrumented. An instrumented
object, when used by the server, produces an event. These tables provide event names and
explanatory notes or status information.

• Miscellaneous tables. These do not fall into any of the other table groups.

10.1 Performance Schema Table Reference
The following table summarizes all available Performance Schema tables. For greater detail, see the
individual table descriptions.

Table 10.1 Performance Schema Tables

Table Name Description Deprecated

accounts Connection statistics per client
account

cond_instances Synchronization object instances

events_stages_current Current stage events

events_stages_history Most recent stage events per
thread

50

Performance Schema Table Reference

Table Name Description Deprecated

events_stages_history_longMost recent stage events overall

events_stages_summary_by_account_by_event_nameStage events per account and
event name

events_stages_summary_by_host_by_event_nameStage events per host name and
event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event
name

events_stages_summary_by_user_by_event_nameStage events per user name and
event name

events_stages_summary_global_by_event_nameStage waits per event name

events_statements_current Current statement events

events_statements_history Most recent statement events
per thread

events_statements_history_longMost recent statement events
overall

events_statements_summary_by_account_by_event_nameStatement events per account
and event name

events_statements_summary_by_digestStatement events per schema
and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name
and event name

events_statements_summary_by_programStatement events per stored
program

events_statements_summary_by_thread_by_event_nameStatement events per thread and
event name

events_statements_summary_by_user_by_event_nameStatement events per user name
and event name

events_statements_summary_global_by_event_nameStatement events per event
name

events_transactions_currentCurrent transaction events

events_transactions_historyMost recent transaction events
per thread

events_transactions_history_longMost recent transaction events
overall

events_transactions_summary_by_account_by_event_nameTransaction events per account
and event name

events_transactions_summary_by_host_by_event_nameTransaction events per host
name and event name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread
and event name

events_transactions_summary_by_user_by_event_nameTransaction events per user
name and event name

events_transactions_summary_global_by_event_nameTransaction events per event
name

events_waits_current Current wait events

events_waits_history Most recent wait events per
thread

51

Performance Schema Table Reference

Table Name Description Deprecated

events_waits_history_long Most recent wait events overall

events_waits_summary_by_account_by_event_nameWait events per account and
event name

events_waits_summary_by_host_by_event_nameWait events per host name and
event name

events_waits_summary_by_instanceWait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event
name

events_waits_summary_by_user_by_event_nameWait events per user name and
event name

events_waits_summary_global_by_event_nameWait events per event name

file_instances File instances

file_summary_by_event_nameFile events per event name

file_summary_by_instance File events per file instance

global_status Global status variables

global_variables Global system variables

host_cache Information from internal host
cache

hosts Connection statistics per client
host name

memory_summary_by_account_by_event_nameMemory operations per account
and event name

memory_summary_by_host_by_event_nameMemory operations per host and
event name

memory_summary_by_thread_by_event_nameMemory operations per thread
and event name

memory_summary_by_user_by_event_nameMemory operations per user and
event name

memory_summary_global_by_event_nameMemory operations globally per
event name

metadata_locks Metadata locks and lock
requests

mutex_instances Mutex synchronization object
instances

objects_summary_global_by_typeObject summaries

performance_timers Which event timers are available

prepared_statements_instancesPrepared statement instances
and statistics

replication_applier_configurationConfiguration parameters for
replication applier on replica

replication_applier_statusCurrent status of replication
applier on replica

replication_applier_status_by_coordinatorSQL or coordinator thread
applier status

replication_applier_status_by_workerWorker thread applier status

52

Performance Schema Table Reference

Table Name Description Deprecated

replication_connection_configurationConfiguration parameters for
connecting to source

replication_connection_statusCurrent status of connection to
source

replication_group_member_statsReplication group member
statistics

replication_group_members Replication group member
network and status

rwlock_instances Lock synchronization object
instances

session_account_connect_attrsConnection attributes per for
current session

session_connect_attrs Connection attributes for all
sessions

session_status Status variables for current
session

session_variables System variables for current
session

setup_actors How to initialize monitoring for
new foreground threads

setup_consumers Consumers for which event
information can be stored

setup_instruments Classes of instrumented objects
for which events can be collected

setup_objects Which objects should be
monitored

setup_timers Currently selected event timers 5.7.21

socket_instances Active connection instances

socket_summary_by_event_nameSocket waits and I/O per event
name

socket_summary_by_instanceSocket waits and I/O per
instance

status_by_account Session status variables per
account

status_by_host Session status variables per host
name

status_by_thread Session status variables per
session

status_by_user Session status variables per user
name

table_handles Table locks and lock requests

table_io_waits_summary_by_index_usageTable I/O waits per index

table_io_waits_summary_by_tableTable I/O waits per table

table_lock_waits_summary_by_tableTable lock waits per table

threads Information about server threads

53

Performance Schema Setup Tables

Table Name Description Deprecated

user_variables_by_thread User-defined variables per
thread

users Connection statistics per client
user name

variables_by_thread Session system variables per
session

10.2 Performance Schema Setup Tables

The setup tables provide information about the current instrumentation and enable the monitoring
configuration to be changed. For this reason, some columns in these tables can be changed if you
have the UPDATE privilege.

The use of tables rather than individual variables for setup information provides a high degree
of flexibility in modifying Performance Schema configuration. For example, you can use a single
statement with standard SQL syntax to make multiple simultaneous configuration changes.

These setup tables are available:

• setup_actors: How to initialize monitoring for new foreground threads

• setup_consumers: The destinations to which event information can be sent and stored

• setup_instruments: The classes of instrumented objects for which events can be collected

• setup_objects: Which objects should be monitored

• setup_timers: The current event timer

10.2.1 The setup_actors Table

The setup_actors table contains information that determines whether to enable monitoring
and historical event logging for new foreground server threads (threads associated with client
connections). This table has a maximum size of 100 rows by default. To change the table size, modify
the performance_schema_setup_actors_size system variable at server startup.

For each new foreground thread, the Performance Schema matches the user and host for the thread
against the rows of the setup_actors table. If a row from that table matches, its ENABLED and
HISTORY column values are used to set the INSTRUMENTED and HISTORY columns, respectively, of
the threads table row for the thread. This enables instrumenting and historical event logging to be
applied selectively per host, user, or account (user and host combination). If there is no match, the
INSTRUMENTED and HISTORY columns for the thread are set to NO.

For background threads, there is no associated user. INSTRUMENTED and HISTORY are YES by default
and setup_actors is not consulted.

The initial contents of the setup_actors table match any user and host combination, so monitoring
and historical event collection are enabled by default for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

For information about how to use the setup_actors table to affect event monitoring, see Section 5.6,
“Pre-Filtering by Thread”.

54

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_update

The setup_consumers Table

Modifications to the setup_actors table affect only foreground threads created subsequent to the
modification, not existing threads. To affect existing threads, modify the INSTRUMENTED and HISTORY
columns of threads table rows.

The setup_actors table has these columns:

• HOST

The host name. This should be a literal name, or '%' to mean “any host.”

• USER

The user name. This should be a literal name, or '%' to mean “any user.”

• ROLE

Unused.

• ENABLED

Whether to enable instrumentation for foreground threads matched by the row. The value is YES or
NO.

• HISTORY

Whether to log historical events for foreground threads matched by the row. The value is YES or NO.

TRUNCATE TABLE is permitted for the setup_actors table. It removes the rows.

10.2.2 The setup_consumers Table

The setup_consumers table lists the types of consumers for which event information can be stored
and which are enabled:

mysql> SELECT * FROM performance_schema.setup_consumers;
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
events_waits_current	NO
events_waits_history	NO
events_waits_history_long	NO
global_instrumentation	YES
thread_instrumentation	YES
statements_digest	YES
+----------------------------------+---------+

The consumer settings in the setup_consumers table form a hierarchy from higher levels to lower.
For detailed information about the effect of enabling different consumers, see Section 5.7, “Pre-Filtering
by Consumer”.

Modifications to the setup_consumers table affect monitoring immediately.

The setup_consumers table has these columns:

• NAME

The consumer name.

55

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The setup_instruments Table

• ENABLED

Whether the consumer is enabled. The value is YES or NO. This column can be modified. If you
disable a consumer, the server does not spend time adding event information to it.

TRUNCATE TABLE is not permitted for the setup_consumers table.

10.2.3 The setup_instruments Table

The setup_instruments table lists classes of instrumented objects for which events can be
collected:

mysql> SELECT * FROM performance_schema.setup_instruments;
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
...
stage/sql/end	NO	NO
stage/sql/executing	NO	NO
stage/sql/init	NO	NO
stage/sql/insert	NO	NO
...		
statement/sql/load	YES	YES
statement/sql/grant	YES	YES
statement/sql/check	YES	YES
statement/sql/flush	YES	YES
...		
wait/synch/mutex/sql/LOCK_global_read_lock	YES	YES
wait/synch/mutex/sql/LOCK_global_system_variables	YES	YES
wait/synch/mutex/sql/LOCK_lock_db	YES	YES
wait/synch/mutex/sql/LOCK_manager	YES	YES
...		
wait/synch/rwlock/sql/LOCK_grant	YES	YES
wait/synch/rwlock/sql/LOGGER::LOCK_logger	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_connect	YES	YES
wait/synch/rwlock/sql/LOCK_sys_init_slave	YES	YES
...		
wait/io/file/sql/binlog	YES	YES
wait/io/file/sql/binlog_index	YES	YES
wait/io/file/sql/casetest	YES	YES
wait/io/file/sql/dbopt	YES	YES
...

Each instrument added to the source code provides a row for the setup_instruments table,
even when the instrumented code is not executed. When an instrument is enabled and executed,
instrumented instances are created, which are visible in the xxx_instances tables, such as
file_instances or rwlock_instances.

Modifications to most setup_instruments rows affect monitoring immediately. For some
instruments, modifications are effective only at server startup; changing them at runtime has no effect.
This affects primarily mutexes, conditions, and rwlocks in the server, although there may be other
instruments for which this is true.

For more information about the role of the setup_instruments table in event filtering, see
Section 5.3, “Event Pre-Filtering”.

The setup_instruments table has these columns:

• NAME

The instrument name. Instrument names may have multiple parts and form a hierarchy, as discussed
in Chapter 7, Performance Schema Instrument Naming Conventions. Events produced from
execution of an instrument have an EVENT_NAME value that is taken from the instrument NAME value.
(Events do not really have a “name,” but this provides a way to associate events with instruments.)

• ENABLED

56

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The setup_objects Table

Whether the instrument is enabled. The value is YES or NO. A disabled instrument produces no
events. This column can be modified, although setting ENABLED has no effect for instruments that
have already been created.

• TIMED

Whether the instrument is timed. The value is YES or NO. This column can be modified, although
setting TIMED has no effect for instruments that have already been created.

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

If an enabled instrument is not timed, the instrument code is enabled, but the timer is not. Events
produced by the instrument have NULL for the TIMER_START, TIMER_END, and TIMER_WAIT
timer values. This in turn causes those values to be ignored when calculating the sum, minimum,
maximum, and average time values in summary tables.

TRUNCATE TABLE is not permitted for the setup_instruments table.

10.2.4 The setup_objects Table

The setup_objects table controls whether the Performance Schema monitors particular objects.
This table has a maximum size of 100 rows by default. To change the table size, modify the
performance_schema_setup_objects_size system variable at server startup.

The initial setup_objects contents look like this:

mysql> SELECT * FROM performance_schema.setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
EVENT	mysql	%	NO	NO
EVENT	performance_schema	%	NO	NO
EVENT	information_schema	%	NO	NO
EVENT	%	%	YES	YES
FUNCTION	mysql	%	NO	NO
FUNCTION	performance_schema	%	NO	NO
FUNCTION	information_schema	%	NO	NO
FUNCTION	%	%	YES	YES
PROCEDURE	mysql	%	NO	NO
PROCEDURE	performance_schema	%	NO	NO
PROCEDURE	information_schema	%	NO	NO
PROCEDURE	%	%	YES	YES
TABLE	mysql	%	NO	NO
TABLE	performance_schema	%	NO	NO
TABLE	information_schema	%	NO	NO
TABLE	%	%	YES	YES
TRIGGER	mysql	%	NO	NO
TRIGGER	performance_schema	%	NO	NO
TRIGGER	information_schema	%	NO	NO
TRIGGER	%	%	YES	YES
+-------------+--------------------+-------------+---------+-------+

Modifications to the setup_objects table affect object monitoring immediately.

For object types listed in setup_objects, the Performance Schema uses the table to how to monitor
them. Object matching is based on the OBJECT_SCHEMA and OBJECT_NAME columns. Objects for
which there is no match are not monitored.

The effect of the default object configuration is to instrument all tables except those in
the mysql, INFORMATION_SCHEMA, and performance_schema databases. (Tables in
the INFORMATION_SCHEMA database are not instrumented regardless of the contents of
setup_objects; the row for information_schema.% simply makes this default explicit.)

57

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The setup_timers Table

When the Performance Schema checks for a match in setup_objects, it tries to find more specific
matches first. For example, with a table db1.t1, it looks for a match for 'db1' and 't1', then for
'db1' and '%', then for '%' and '%'. The order in which matching occurs matters because different
matching setup_objects rows can have different ENABLED and TIMED values.

Rows can be inserted into or deleted from setup_objects by users with the INSERT or DELETE
privilege on the table. For existing rows, only the ENABLED and TIMED columns can be modified, by
users with the UPDATE privilege on the table.

For more information about the role of the setup_objects table in event filtering, see Section 5.3,
“Event Pre-Filtering”.

The setup_objects table has these columns:

• OBJECT_TYPE

The type of object to instrument. The value is one of 'EVENT' (Event Scheduler event),
'FUNCTION' (stored function), 'PROCEDURE' (stored procedure), 'TABLE' (base table), or
'TRIGGER' (trigger).

TABLE filtering affects table I/O events (wait/io/table/sql/handler instrument) and table lock
events (wait/lock/table/sql/handler instrument).

• OBJECT_SCHEMA

The schema that contains the object. This should be a literal name, or '%' to mean “any schema.”

• OBJECT_NAME

The name of the instrumented object. This should be a literal name, or '%' to mean “any object.”

• ENABLED

Whether events for the object are instrumented. The value is YES or NO. This column can be
modified.

• TIMED

Whether events for the object are timed. The value is YES or NO. This column can be modified.

TRUNCATE TABLE is permitted for the setup_objects table. It removes the rows.

10.2.5 The setup_timers Table

The setup_timers table shows the currently selected event timers:

mysql> SELECT * FROM performance_schema.setup_timers;
+-------------+-------------+
| NAME | TIMER_NAME |
+-------------+-------------+
idle	MICROSECOND
wait	CYCLE
stage	NANOSECOND
statement	NANOSECOND
transaction	NANOSECOND
+-------------+-------------+

Note

As of MySQL 5.7.21, the Performance Schema setup_timers table
is deprecated and is removed in MySQL 8.0, as is the TICKS row in the
performance_timers table.

58

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Performance Schema Instance Tables

The setup_timers.TIMER_NAME value can be changed to select a different timer. The value can
be any of the values in the performance_timers.TIMER_NAME column. For an explanation of how
event timing occurs, see Section 5.1, “Performance Schema Event Timing”.

Modifications to the setup_timers table affect monitoring immediately. Events already in progress
may use the original timer for the begin time and the new timer for the end time. To avoid unpredictable
results after you make timer changes, use TRUNCATE TABLE to reset Performance Schema statistics.

The setup_timers table has these columns:

• NAME

The type of instrument the timer is used for.

• TIMER_NAME

The timer that applies to the instrument type. This column can be modified.

TRUNCATE TABLE is not permitted for the setup_timers table.

10.3 Performance Schema Instance Tables

Instance tables document what types of objects are instrumented. They provide event names and
explanatory notes or status information:

• cond_instances: Condition synchronization object instances

• file_instances: File instances

• mutex_instances: Mutex synchronization object instances

• rwlock_instances: Lock synchronization object instances

• socket_instances: Active connection instances

These tables list instrumented synchronization objects, files, and connections. There are three types
of synchronization objects: cond, mutex, and rwlock. Each instance table has an EVENT_NAME or
NAME column to indicate the instrument associated with each row. Instrument names may have multiple
parts and form a hierarchy, as discussed in Chapter 7, Performance Schema Instrument Naming
Conventions.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. For examples of how to use them for this purpose,
see Chapter 14, Using the Performance Schema to Diagnose Problems

10.3.1 The cond_instances Table

The cond_instances table lists all the conditions seen by the Performance Schema while the server
executes. A condition is a synchronization mechanism used in the code to signal that a specific event
has happened, so that a thread waiting for this condition can resume work.

When a thread is waiting for something to happen, the condition name is an indication of what the
thread is waiting for, but there is no immediate way to tell which other threads cause the condition to
happen.

The cond_instances table has these columns:

• NAME

59

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The file_instances Table

The instrument name associated with the condition.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented condition.

TRUNCATE TABLE is not permitted for the cond_instances table.

10.3.2 The file_instances Table

The file_instances table lists all the files seen by the Performance Schema when executing file I/
O instrumentation. If a file on disk has never been opened, it is not in file_instances. When a file is
deleted from the disk, it is also removed from the file_instances table.

The file_instances table has these columns:

• FILE_NAME

The file name.

• EVENT_NAME

The instrument name associated with the file.

• OPEN_COUNT

The count of open handles on the file. If a file was opened and then closed, it was opened 1 time, but
OPEN_COUNT is 0. To list all the files currently opened by the server, use WHERE OPEN_COUNT > 0.

TRUNCATE TABLE is not permitted for the file_instances table.

10.3.3 The mutex_instances Table

The mutex_instances table lists all the mutexes seen by the Performance Schema while the server
executes. A mutex is a synchronization mechanism used in the code to enforce that only one thread at
a given time can have access to some common resource. The resource is said to be “protected” by the
mutex.

When two threads executing in the server (for example, two user sessions executing a query
simultaneously) do need to access the same resource (a file, a buffer, or some piece of data), these
two threads compete against each other, so that the first query to obtain a lock on the mutex causes
the other query to wait until the first is done and unlocks the mutex.

The work performed while holding a mutex is said to be in a “critical section,” and multiple queries do
execute this critical section in a serialized way (one at a time), which is a potential bottleneck.

The mutex_instances table has these columns:

• NAME

The instrument name associated with the mutex.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented mutex.

• LOCKED_BY_THREAD_ID

When a thread currently has a mutex locked, LOCKED_BY_THREAD_ID is the THREAD_ID of the
locking thread, otherwise it is NULL.

60

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The rwlock_instances Table

TRUNCATE TABLE is not permitted for the mutex_instances table.

For every mutex instrumented in the code, the Performance Schema provides the following
information.

• The setup_instruments table lists the name of the instrumentation point, with the prefix wait/
synch/mutex/.

• When some code creates a mutex, a row is added to the mutex_instances table. The
OBJECT_INSTANCE_BEGIN column is a property that uniquely identifies the mutex.

• When a thread attempts to lock a mutex, the events_waits_current table shows a row for that
thread, indicating that it is waiting on a mutex (in the EVENT_NAME column), and indicating which
mutex is waited on (in the OBJECT_INSTANCE_BEGIN column).

• When a thread succeeds in locking a mutex:

• events_waits_current shows that the wait on the mutex is completed (in the TIMER_END and
TIMER_WAIT columns)

• The completed wait event is added to the events_waits_history and
events_waits_history_long tables

• mutex_instances shows that the mutex is now owned by the thread (in the THREAD_ID
column).

• When a thread unlocks a mutex, mutex_instances shows that the mutex now has no owner (the
THREAD_ID column is NULL).

• When a mutex object is destroyed, the corresponding row is removed from mutex_instances.

By performing queries on both of the following tables, a monitoring application or a DBA can detect
bottlenecks or deadlocks between threads that involve mutexes:

• events_waits_current, to see what mutex a thread is waiting for

• mutex_instances, to see which other thread currently owns a mutex

10.3.4 The rwlock_instances Table

The rwlock_instances table lists all the rwlock (read write lock) instances seen by the Performance
Schema while the server executes. An rwlock is a synchronization mechanism used in the code to
enforce that threads at a given time can have access to some common resource following certain rules.
The resource is said to be “protected” by the rwlock. The access is either shared (many threads can
have a read lock at the same time), exclusive (only one thread can have a write lock at a given time), or
shared-exclusive (a thread can have a write lock while permitting inconsistent reads by other threads).
Shared-exclusive access is otherwise known as an sxlock and optimizes concurrency and improves
scalability for read-write workloads.

Depending on how many threads are requesting a lock, and the nature of the locks requested, access
can be either granted in shared mode, exclusive mode, shared-exclusive mode or not granted at all,
waiting for other threads to finish first.

The rwlock_instances table has these columns:

• NAME

The instrument name associated with the lock.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented lock.

61

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_rw_lock

The socket_instances Table

• WRITE_LOCKED_BY_THREAD_ID

When a thread currently has an rwlock locked in exclusive (write) mode,
WRITE_LOCKED_BY_THREAD_ID is the THREAD_ID of the locking thread, otherwise it is NULL.

• READ_LOCKED_BY_COUNT

When a thread currently has an rwlock locked in shared (read) mode, READ_LOCKED_BY_COUNT
is incremented by 1. This is a counter only, so it cannot be used directly to find which thread holds a
read lock, but it can be used to see whether there is a read contention on an rwlock, and see how
many readers are currently active.

TRUNCATE TABLE is not permitted for the rwlock_instances table.

By performing queries on both of the following tables, a monitoring application or a DBA may detect
some bottlenecks or deadlocks between threads that involve locks:

• events_waits_current, to see what rwlock a thread is waiting for

• rwlock_instances, to see which other thread currently owns an rwlock

There is a limitation: The rwlock_instances can be used only to identify the thread holding a write
lock, but not the threads holding a read lock.

10.3.5 The socket_instances Table

The socket_instances table provides a real-time snapshot of the active connections to the MySQL
server. The table contains one row per TCP/IP or Unix socket file connection. Information available in
this table provides a real-time snapshot of the active connections to the server. (Additional information
is available in socket summary tables, including network activity such as socket operations and number
of bytes transmitted and received; see Section 10.15.8, “Socket Summary Tables”).

mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_unix_socket
OBJECT_INSTANCE_BEGIN: 4316619408
 THREAD_ID: 1
 SOCKET_ID: 16
 IP:
 PORT: 0
 STATE: ACTIVE
*************************** 2. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 4316644608
 THREAD_ID: 21
 SOCKET_ID: 39
 IP: 127.0.0.1
 PORT: 55233
 STATE: ACTIVE
*************************** 3. row ***************************
 EVENT_NAME: wait/io/socket/sql/server_tcpip_socket
OBJECT_INSTANCE_BEGIN: 4316699040
 THREAD_ID: 1
 SOCKET_ID: 14
 IP: 0.0.0.0
 PORT: 50603
 STATE: ACTIVE

Socket instruments have names of the form wait/io/socket/sql/socket_type and are used like
this:

1. The server has a listening socket for each network protocol that it supports. The instruments
associated with listening sockets for TCP/IP or Unix socket file connections have a socket_type
value of server_tcpip_socket or server_unix_socket, respectively.

62

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The socket_instances Table

2. When a listening socket detects a connection, the server transfers the connection to a new socket
managed by a separate thread. The instrument for the new connection thread has a socket_type
value of client_connection.

3. When a connection terminates, the row in socket_instances corresponding to it is deleted.

The socket_instances table has these columns:

• EVENT_NAME

The name of the wait/io/socket/* instrument that produced the event. This is a NAME value
from the setup_instruments table. Instrument names may have multiple parts and form a
hierarchy, as discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

• OBJECT_INSTANCE_BEGIN

This column uniquely identifies the socket. The value is the address of an object in memory.

• THREAD_ID

The internal thread identifier assigned by the server. Each socket is managed by a single thread, so
each socket can be mapped to a thread which can be mapped to a server process.

• SOCKET_ID

The internal file handle assigned to the socket.

• IP

The client IP address. The value may be either an IPv4 or IPv6 address, or blank to indicate a Unix
socket file connection.

• PORT

The TCP/IP port number, in the range from 0 to 65535.

• STATE

The socket status, either IDLE or ACTIVE. Wait times for active sockets are tracked using the
corresponding socket instrument. Wait times for idle sockets are tracked using the idle instrument.

A socket is idle if it is waiting for a request from the client. When a socket becomes idle, the event
row in socket_instances that is tracking the socket switches from a status of ACTIVE to IDLE.
The EVENT_NAME value remains wait/io/socket/*, but timing for the instrument is suspended.
Instead, an event is generated in the events_waits_current table with an EVENT_NAME value of
idle.

When the next request is received, the idle event terminates, the socket instance switches from
IDLE to ACTIVE, and timing of the socket instrument resumes.

TRUNCATE TABLE is not permitted for the socket_instances table.

The IP:PORT column combination value identifies the connection. This combination value is used in
the OBJECT_NAME column of the events_waits_xxx tables, to identify the connection from which
socket events come:

• For the Unix domain listener socket (server_unix_socket), the port is 0, and the IP is ''.

• For client connections via the Unix domain listener (client_connection), the port is 0, and the IP
is ''.

• For the TCP/IP server listener socket (server_tcpip_socket), the port is always the master port
(for example, 3306), and the IP is always 0.0.0.0.

63

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Performance Schema Wait Event Tables

• For client connections via the TCP/IP listener (client_connection), the port is whatever the
server assigns, but never 0. The IP is the IP of the originating host (127.0.0.1 or ::1 for the local
host)

10.4 Performance Schema Wait Event Tables
The Performance Schema instruments waits, which are events that take time. Within the event
hierarchy, wait events nest within stage events, which nest within statement events, which nest within
transaction events.

These tables store wait events:

• events_waits_current: The current wait event for each thread.

• events_waits_history: The most recent wait events that have ended per thread.

• events_waits_history_long: The most recent wait events that have ended globally (across all
threads).

The following sections describe the wait event tables. There are also summary tables that aggregate
information about wait events; see Section 10.15.1, “Wait Event Summary Tables”.

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

Configuring Wait Event Collection

To control whether to collect wait events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with wait. Use these
instruments to enable or disable collection of individual wait event classes.

• The setup_consumers table contains consumer values with names corresponding to the current
and historical wait event table names. Use these consumers to filter collection of wait events.

Some wait instruments are enabled by default; others are disabled. For example:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/file/innodb%';
+--------------------------------------+---------+-------+
| NAME | ENABLED | TIMED |
+--------------------------------------+---------+-------+
wait/io/file/innodb/innodb_data_file	YES	YES
wait/io/file/innodb/innodb_log_file	YES	YES
wait/io/file/innodb/innodb_temp_file	YES	YES
+--------------------------------------+---------+-------+
mysql> SELECT *
 FROM performance_schema.setup_instruments WHERE
 NAME LIKE 'wait/io/socket/%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+

The wait consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_waits%';
+---------------------------+---------+
| NAME | ENABLED |
+---------------------------+---------+
| events_waits_current | NO |

64

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

The events_waits_current Table

| events_waits_history | NO |
| events_waits_history_long | NO |
+---------------------------+---------+

To control wait event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/%=ON'
performance-schema-consumer-events-waits-current=ON
performance-schema-consumer-events-waits-history=ON
performance-schema-consumer-events-waits-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='wait/%=OFF'
performance-schema-consumer-events-waits-current=OFF
performance-schema-consumer-events-waits-history=OFF
performance-schema-consumer-events-waits-history-long=OFF

To control wait event collection at runtime, update the setup_instruments and setup_consumers
tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'wait/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_waits%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'wait/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_waits%';

To collect only specific wait events, enable only the corresponding wait instruments. To collect wait
events only for specific wait event tables, enable the wait instruments but only the wait consumers
corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of wait that indicates the unit for wait
event timing. The default unit is CYCLE:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'wait';
+------+------------+
| NAME | TIMER_NAME |
+------+------------+
| wait | CYCLE |
+------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'NANOSECOND'
WHERE NAME = 'wait';

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

10.4.1 The events_waits_current Table

65

The events_waits_current Table

The events_waits_current table contains current wait events. The table stores one row per thread
showing the current status of the thread's most recent monitored wait event, so there is no system
variable for configuring the table size.

Of the tables that contain wait event rows, events_waits_current is the most fundamental. Other
tables that contain wait event rows are logically derived from the current events. For example, the
events_waits_history and events_waits_history_long tables are collections of the most
recent wait events that have ended, up to a maximum number of rows per thread and globally across
all threads, respectively.

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance
Schema Wait Event Tables”.

The events_waits_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved. For example, if a mutex or lock is being blocked, you can
check the context in which this occurs.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• SPINS

For a mutex, the number of spin rounds. If the value is NULL, the code does not use spin rounds or
spinning is not instrumented.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE, OBJECT_INSTANCE_BEGIN

66

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

The events_waits_current Table

These columns identify the object “being acted on.” What that means depends on the object type.

For a synchronization object (cond, mutex, rwlock):

• OBJECT_SCHEMA, OBJECT_NAME, and OBJECT_TYPE are NULL.

• OBJECT_INSTANCE_BEGIN is the address of the synchronization object in memory.

For a file I/O object:

• OBJECT_SCHEMA is NULL.

• OBJECT_NAME is the file name.

• OBJECT_TYPE is FILE.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a socket object:

• OBJECT_NAME is the IP:PORT value for the socket.

• OBJECT_INSTANCE_BEGIN is an address in memory.

For a table I/O object:

• OBJECT_SCHEMA is the name of the schema that contains the table.

• OBJECT_NAME is the table name.

• OBJECT_TYPE is TABLE for a persistent base table or TEMPORARY TABLE for a temporary table.

• OBJECT_INSTANCE_BEGIN is an address in memory.

An OBJECT_INSTANCE_BEGIN value itself has no meaning, except that different values indicate
different objects. OBJECT_INSTANCE_BEGIN can be used for debugging. For example, it can be
used with GROUP BY OBJECT_INSTANCE_BEGIN to see whether the load on 1,000 mutexes (that
protect, say, 1,000 pages or blocks of data) is spread evenly or just hitting a few bottlenecks. This
can help you correlate with other sources of information if you see the same object address in a log
file or another debugging or performance tool.

• INDEX_NAME

The name of the index used. PRIMARY indicates the table primary index. NULL means that no index
was used.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

• OPERATION

The type of operation performed, such as lock, read, or write.

• NUMBER_OF_BYTES

The number of bytes read or written by the operation. For table I/O waits (events for the wait/
io/table/sql/handler instrument), NUMBER_OF_BYTES indicates the number of rows. If the

67

The events_waits_history Table

value is greater than 1, the event is for a batch I/O operation. The following discussion describes the
difference between exclusively single-row reporting and reporting that reflects batch I/O.

MySQL executes joins using a nested-loop implementation. The job of the Performance Schema
instrumentation is to provide row count and accumulated execution time per table in the join. Assume
a join query of the following form that is executed using a table join order of t1, t2, t3:

SELECT ... FROM t1 JOIN t2 ON ... JOIN t3 ON ...

Table “fanout” is the increase or decrease in number of rows from adding a table during join
processing. If the fanout for table t3 is greater than 1, the majority of row-fetch operations are for
that table. Suppose that the join accesses 10 rows from t1, 20 rows from t2 per row from t1, and
30 rows from t3 per row of table t2. With single-row reporting, the total number of instrumented
operations is:

10 + (10 * 20) + (10 * 20 * 30) = 6210

A significant reduction in the number of instrumented operations is achievable by aggregating them
per scan (that is, per unique combination of rows from t1 and t2). With batch I/O reporting, the
Performance Schema produces an event for each scan of the innermost table t3 rather than for
each row, and the number of instrumented row operations reduces to:

10 + (10 * 20) + (10 * 20) = 410

That is a reduction of 93%, illustrating how the batch-reporting strategy significantly reduces
Performance Schema overhead for table I/O by reducing the number of reporting calls. The tradeoff
is lesser accuracy for event timing. Rather than time for an individual row operation as in per-row
reporting, timing for batch I/O includes time spent for operations such as join buffering, aggregation,
and returning rows to the client.

For batch I/O reporting to occur, these conditions must be true:

• Query execution accesses the innermost table of a query block (for a single-table query, that table
counts as innermost)

• Query execution does not request a single row from the table (so, for example, eq_ref access
prevents use of batch reporting)

• Query execution does not evaluate a subquery containing table access for the table

• FLAGS

Reserved for future use.

TRUNCATE TABLE is permitted for the events_waits_current table. It removes the rows.

10.4.2 The events_waits_history Table

The events_waits_history table contains the N most recent wait events that have ended per
thread. Wait events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for
that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_waits_history_size system
variable at server startup.

The events_waits_history table has the same columns as events_waits_current. See
Section 10.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history table. It removes the rows.

68

https://dev.mysql.com/doc/refman/5.7/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The events_waits_history_long Table

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance
Schema Wait Event Tables”.

10.4.3 The events_waits_history_long Table

The events_waits_history_long table contains N the most recent wait events that have ended
globally, across all threads. Wait events are not added to the table until they have ended. When the
table becomes full, the oldest row is discarded when a new row is added, regardless of which thread
generated either row.

The Performance Schema autosizes the value of N during server startup. To set the table size
explicitly, set the performance_schema_events_waits_history_long_size system variable at
server startup.

The events_waits_history_long table has the same columns as events_waits_current. See
Section 10.4.1, “The events_waits_current Table”.

TRUNCATE TABLE is permitted for the events_waits_history_long table. It removes the rows.

For more information about the relationship between the three wait event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect wait events, see Section 10.4, “Performance
Schema Wait Event Tables”.

10.5 Performance Schema Stage Event Tables
The Performance Schema instruments stages, which are steps during the statement-execution
process, such as parsing a statement, opening a table, or performing a filesort operation. Stages
correspond to the thread states displayed by SHOW PROCESSLIST or that are visible in the Information
Schema PROCESSLIST table. Stages begin and end when state values change.

Within the event hierarchy, wait events nest within stage events, which nest within statement events,
which nest within transaction events.

These tables store stage events:

• events_stages_current: The current stage event for each thread.

• events_stages_history: The most recent stage events that have ended per thread.

• events_stages_history_long: The most recent stage events that have ended globally (across
all threads).

The following sections describe the stage event tables. There are also summary tables that aggregate
information about stage events; see Section 10.15.2, “Stage Summary Tables”.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

• Configuring Stage Event Collection

• Stage Event Progress Information

Configuring Stage Event Collection

To control whether to collect stage events, set the state of the relevant instruments and consumers:

• The setup_instruments table contains instruments with names that begin with stage. Use these
instruments to enable or disable collection of individual stage event classes.

69

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

Configuring Stage Event Collection

• The setup_consumers table contains consumer values with names corresponding to the current
and historical stage event table names. Use these consumers to filter collection of stage events.

Other than those instruments that provide statement progress information, the stage instruments are
disabled by default. For example:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME RLIKE 'stage/sql/[a-c]';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/After create	NO	NO
stage/sql/allocating local table	NO	NO
stage/sql/altering table	NO	NO
stage/sql/committing alter table to storage engine	NO	NO
stage/sql/Changing master	NO	NO
stage/sql/Checking master version	NO	NO
stage/sql/checking permissions	NO	NO
stage/sql/checking privileges on cached query	NO	NO
stage/sql/checking query cache for query	NO	NO
stage/sql/cleaning up	NO	NO
stage/sql/closing tables	NO	NO
stage/sql/Connecting to master	NO	NO
stage/sql/converting HEAP to MyISAM	NO	NO
stage/sql/Copying to group table	NO	NO
stage/sql/Copying to tmp table	NO	NO
stage/sql/copy to tmp table	NO	NO
stage/sql/Creating sort index	NO	NO
stage/sql/creating table	NO	NO
stage/sql/Creating tmp table	NO	NO
+--+---------+-------+

Stage event instruments that provide statement progress information are enabled and timed by default:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE ENABLED='YES' AND NAME LIKE "stage/%";
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
stage/sql/copy to tmp table	YES	YES
stage/innodb/alter table (end)	YES	YES
stage/innodb/alter table (flush)	YES	YES
stage/innodb/alter table (insert)	YES	YES
stage/innodb/alter table (log apply index)	YES	YES
stage/innodb/alter table (log apply table)	YES	YES
stage/innodb/alter table (merge sort)	YES	YES
stage/innodb/alter table (read PK and internal sort)	YES	YES
stage/innodb/buffer pool load	YES	YES
+--+---------+-------+

The stage consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_stages%';
+----------------------------+---------+
| NAME | ENABLED |
+----------------------------+---------+
events_stages_current	NO
events_stages_history	NO
events_stages_history_long	NO
+----------------------------+---------+

To control stage event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]

70

Stage Event Progress Information

performance-schema-instrument='stage/%=ON'
performance-schema-consumer-events-stages-current=ON
performance-schema-consumer-events-stages-history=ON
performance-schema-consumer-events-stages-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='stage/%=OFF'
performance-schema-consumer-events-stages-current=OFF
performance-schema-consumer-events-stages-history=OFF
performance-schema-consumer-events-stages-history-long=OFF

To control stage event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'stage/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_stages%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'stage/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_stages%';

To collect only specific stage events, enable only the corresponding stage instruments. To collect stage
events only for specific stage event tables, enable the stage instruments but only the stage consumers
corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of stage that indicates the unit for stage
event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'stage';
+-------+------------+
| NAME | TIMER_NAME |
+-------+------------+
| stage | NANOSECOND |
+-------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'
WHERE NAME = 'stage';

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Stage Event Progress Information

The Performance Schema stage event tables contain two columns that, taken together, provide a stage
progress indicator for each row:

• WORK_COMPLETED: The number of work units completed for the stage

• WORK_ESTIMATED: The number of work units expected for the stage

71

The events_stages_current Table

Each column is NULL if no progress information is provided for an instrument. Interpretation of the
information, if it is available, depends entirely on the instrument implementation. The Performance
Schema tables provide a container to store progress data, but make no assumptions about the
semantics of the metric itself:

• A “work unit” is an integer metric that increases over time during execution, such as the number of
bytes, rows, files, or tables processed. The definition of “work unit” for a particular instrument is left to
the instrumentation code providing the data.

• The WORK_COMPLETED value can increase one or many units at a time, depending on the
instrumented code.

• The WORK_ESTIMATED value can change during the stage, depending on the instrumented code.

Instrumentation for a stage event progress indicator can implement any of the following behaviors:

• No progress instrumentation

This is the most typical case, where no progress data is provided. The WORK_COMPLETED and
WORK_ESTIMATED columns are both NULL.

• Unbounded progress instrumentation

Only the WORK_COMPLETED column is meaningful. No data is provided for the WORK_ESTIMATED
column, which displays 0.

By querying the events_stages_current table for the monitored session, a monitoring
application can report how much work has been performed so far, but cannot report whether the
stage is near completion. Currently, no stages are instrumented like this.

• Bounded progress instrumentation

The WORK_COMPLETED and WORK_ESTIMATED columns are both meaningful.

This type of progress indicator is appropriate for an operation with a defined completion criterion,
such as the table-copy instrument described later. By querying the events_stages_current
table for the monitored session, a monitoring application can report how much work has been
performed so far, and can report the overall completion percentage for the stage, by computing the
WORK_COMPLETED / WORK_ESTIMATED ratio.

The stage/sql/copy to tmp table instrument illustrates how progress indicators work. During
execution of an ALTER TABLE statement, the stage/sql/copy to tmp table stage is used, and
this stage can execute potentially for a long time, depending on the size of the data to copy.

The table-copy task has a defined termination (all rows copied), and the stage/sql/copy to
tmp table stage is instrumented to provided bounded progress information: The work unit used is
number of rows copied, WORK_COMPLETED and WORK_ESTIMATED are both meaningful, and their ratio
indicates task percentage complete.

To enable the instrument and the relevant consumers, execute these statements:

UPDATE performance_schema.setup_instruments
SET ENABLED='YES'
WHERE NAME='stage/sql/copy to tmp table';
UPDATE performance_schema.setup_consumers
SET ENABLED='YES'
WHERE NAME LIKE 'events_stages_%';

To see the progress of an ongoing ALTER TABLE statement, select from the
events_stages_current table.

10.5.1 The events_stages_current Table

72

https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html

The events_stages_current Table

The events_stages_current table contains current stage events. The table stores one row per
thread showing the current status of the thread's most recent monitored stage event, so there is no
system variable for configuring the table size.

Of the tables that contain stage event rows, events_stages_current is the most fundamental.
Other tables that contain stage event rows are logically derived from the current events. For example,
the events_stages_history and events_stages_history_long tables are collections of the
most recent stage events that have ended, up to a maximum number of rows per thread and globally
across all threads, respectively.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance
Schema Stage Event Tables”.

The events_stages_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument that produced the event. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• WORK_COMPLETED, WORK_ESTIMATED

These columns provide stage progress information, for instruments that have been implemented to
produce such information. WORK_COMPLETED indicates how many work units have been completed
for the stage, and WORK_ESTIMATED indicates how many work units are expected for the stage. For
more information, see Stage Event Progress Information.

73

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

The events_stages_history Table

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested. The nesting event for a stage
event is usually a statement event.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT.

TRUNCATE TABLE is permitted for the events_stages_current table. It removes the rows.

10.5.2 The events_stages_history Table

The events_stages_history table contains the N most recent stage events that have ended per
thread. Stage events are not added to the table until they have ended. When the table contains the
maximum number of rows for a given thread, the oldest thread row is discarded when a new row for
that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_stages_history_size system
variable at server startup.

The events_stages_history table has the same columns as events_stages_current. See
Section 10.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance
Schema Stage Event Tables”.

10.5.3 The events_stages_history_long Table

The events_stages_history_long table contains the N most recent stage events that have ended
globally, across all threads. Stage events are not added to the table until they have ended. When the
table becomes full, the oldest row is discarded when a new row is added, regardless of which thread
generated either row.

The Performance Schema autosizes the value of N during server startup. To set the table size
explicitly, set the performance_schema_events_stages_history_long_size system variable
at server startup.

The events_stages_history_long table has the same columns as events_stages_current.
See Section 10.5.1, “The events_stages_current Table”.

TRUNCATE TABLE is permitted for the events_stages_history_long table. It removes the rows.

For more information about the relationship between the three stage event tables, see Performance
Schema Tables for Current and Historical Events.

For information about configuring whether to collect stage events, see Section 10.5, “Performance
Schema Stage Event Tables”.

10.6 Performance Schema Statement Event Tables

The Performance Schema instruments statement execution. Statement events occur at a high level of
the event hierarchy. Within the event hierarchy, wait events nest within stage events, which nest within
statement events, which nest within transaction events.

74

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

Configuring Statement Event Collection

These tables store statement events:

• events_statements_current: The current statement event for each thread.

• events_statements_history: The most recent statement events that have ended per thread.

• events_statements_history_long: The most recent statement events that have ended
globally (across all threads).

• prepared_statements_instances: Prepared statement instances and statistics

The following sections describe the statement event tables. There are also summary tables that
aggregate information about statement events; see Section 10.15.3, “Statement Summary Tables”.

For more information about the relationship between the three events_statements_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

• Configuring Statement Event Collection

• Statement Monitoring

Configuring Statement Event Collection

To control whether to collect statement events, set the state of the relevant instruments and
consumers:

• The setup_instruments table contains instruments with names that begin with statement. Use
these instruments to enable or disable collection of individual statement event classes.

• The setup_consumers table contains consumer values with names corresponding to the current
and historical statement event table names, and the statement digest consumer. Use these
consumers to filter collection of statement events and statement digesting.

The statement instruments are enabled by default, and the events_statements_current,
events_statements_history, and statements_digest statement consumers are enabled by
default:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'statement/%';
+---+---------+-------+
| NAME | ENABLED | TIMED |
+---+---------+-------+
statement/sql/select	YES	YES
statement/sql/create_table	YES	YES
statement/sql/create_index	YES	YES
...		
statement/sp/stmt	YES	YES
statement/sp/set	YES	YES
statement/sp/set_trigger_field	YES	YES
statement/scheduler/event	YES	YES
statement/com/Sleep	YES	YES
statement/com/Quit	YES	YES
statement/com/Init DB	YES	YES
...		
statement/abstract/Query	YES	YES
statement/abstract/new_packet	YES	YES
statement/abstract/relay_log	YES	YES
+---+---------+-------+

mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE '%statements%';
+--------------------------------+---------+
| NAME | ENABLED |

75

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

Configuring Statement Event Collection

+--------------------------------+---------+
events_statements_current	YES
events_statements_history	YES
events_statements_history_long	NO
statements_digest	YES
+--------------------------------+---------+

To control statement event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='statement/%=ON'
performance-schema-consumer-events-statements-current=ON
performance-schema-consumer-events-statements-history=ON
performance-schema-consumer-events-statements-history-long=ON
performance-schema-consumer-statements-digest=ON

• Disable:

[mysqld]
performance-schema-instrument='statement/%=OFF'
performance-schema-consumer-events-statements-current=OFF
performance-schema-consumer-events-statements-history=OFF
performance-schema-consumer-events-statements-history-long=OFF
performance-schema-consumer-statements-digest=OFF

To control statement event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME LIKE 'statement/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE '%statements%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME LIKE 'statement/%';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE '%statements%';

To collect only specific statement events, enable only the corresponding statement instruments. To
collect statement events only for specific statement event tables, enable the statement instruments but
only the statement consumers corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of statement that indicates the unit for
statement event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'statement';
+-----------+------------+
| NAME | TIMER_NAME |
+-----------+------------+
| statement | NANOSECOND |
+-----------+------------+

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'

76

Statement Monitoring

WHERE NAME = 'statement';

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Statement Monitoring

Statement monitoring begins from the moment the server sees that activity is requested on a thread,
to the moment when all activity has ceased. Typically, this means from the time the server gets the
first packet from the client to the time the server has finished sending the response. Statements within
stored programs are monitored like other statements.

When the Performance Schema instruments a request (server command or SQL statement), it uses
instrument names that proceed in stages from more general (or “abstract”) to more specific until it
arrives at a final instrument name.

Final instrument names correspond to server commands and SQL statements:

• Server commands correspond to the COM_xxx codes defined in the mysql_com.h header file
and processed in sql/sql_parse.cc. Examples are COM_PING and COM_QUIT. Instruments for
commands have names that begin with statement/com, such as statement/com/Ping and
statement/com/Quit.

• SQL statements are expressed as text, such as DELETE FROM t1 or SELECT * FROM
t2. Instruments for SQL statements have names that begin with statement/sql, such as
statement/sql/delete and statement/sql/select.

Some final instrument names are specific to error handling:

• statement/com/Error accounts for messages received by the server that are out of band. It
can be used to detect commands sent by clients that the server does not understand. This may be
helpful for purposes such as identifying clients that are misconfigured or using a version of MySQL
more recent than that of the server, or clients that are attempting to attack the server.

• statement/sql/error accounts for SQL statements that fail to parse. It can be used to detect
malformed queries sent by clients. A query that fails to parse differs from a query that parses
but fails due to an error during execution. For example, SELECT * FROM is malformed, and the
statement/sql/error instrument is used. By contrast, SELECT * parses but fails with a No
tables used error. In this case, statement/sql/select is used and the statement event
contains information to indicate the nature of the error.

A request can be obtained from any of these sources:

• As a command or statement request from a client, which sends the request as packets

• As a statement string read from the relay log on a replica

• As an event from the Event Scheduler

The details for a request are not initially known and the Performance Schema proceeds from abstract
to specific instrument names in a sequence that depends on the source of the request.

For a request received from a client:

1. When the server detects a new packet at the socket level, a new statement is started with an
abstract instrument name of statement/abstract/new_packet.

2. When the server reads the packet number, it knows more about the type of request received, and
the Performance Schema refines the instrument name. For example, if the request is a COM_PING
packet, the instrument name becomes statement/com/Ping and that is the final name. If

77

The events_statements_current Table

the request is a COM_QUERY packet, it is known to correspond to an SQL statement but not the
particular type of statement. In this case, the instrument changes from one abstract name to a more
specific but still abstract name, statement/abstract/Query, and the request requires further
classification.

3. If the request is a statement, the statement text is read and given to the parser. After parsing,
the exact statement type is known. If the request is, for example, an INSERT statement, the
Performance Schema refines the instrument name from statement/abstract/Query to
statement/sql/insert, which is the final name.

For a request read as a statement from the relay log on a replica:

1. Statements in the relay log are stored as text and are read as such. There is no network protocol,
so the statement/abstract/new_packet instrument is not used. Instead, the initial instrument
is statement/abstract/relay_log.

2. When the statement is parsed, the exact statement type is known. If the request is, for example,
an INSERT statement, the Performance Schema refines the instrument name from statement/
abstract/Query to statement/sql/insert, which is the final name.

The preceding description applies only for statement-based replication. For row-based replication, table
I/O done on the replica as it processes row changes can be instrumented, but row events in the relay
log do not appear as discrete statements.

For a request received from the Event Scheduler:

The event execution is instrumented using the name statement/scheduler/event. This is the final
name.

Statements executed within the event body are instrumented using statement/sql/* names,
without use of any preceding abstract instrument. An event is a stored program, and stored programs
are precompiled in memory before execution. Consequently, there is no parsing at runtime and the
type of each statement is known by the time it executes.

Statements executed within the event body are child statements. For example, if an event executes
an INSERT statement, execution of the event itself is the parent, instrumented using statement/
scheduler/event, and the INSERT is the child, instrumented using statement/sql/insert.
The parent/child relationship holds between separate instrumented operations. This differs from the
sequence of refinement that occurs within a single instrumented operation, from abstract to final
instrument names.

For statistics to be collected for statements, it is not sufficient to enable only the final statement/
sql/* instruments used for individual statement types. The abtract statement/abstract/*
instruments must be enabled as well. This should not normally be an issue because all statement
instruments are enabled by default. However, an application that enables or disables statement
instruments selectively must take into account that disabling abstract instruments also disables
statistics collection for the individual statement instruments. For example, to collect statistics for
INSERT statements, statement/sql/insert must be enabled, but also statement/abstract/
new_packet and statement/abstract/Query. Similarly, for replicated statements to be
instrumented, statement/abstract/relay_log must be enabled.

No statistics are aggregated for abstract instruments such as statement/abstract/Query because
no statement is ever classified with an abstract instrument as the final statement name.

10.6.1 The events_statements_current Table

The events_statements_current table contains current statement events. The table stores one
row per thread showing the current status of the thread's most recent monitored statement event, so
there is no system variable for configuring the table size.

78

https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/insert.html

The events_statements_current Table

Of the tables that contain statement event rows, events_statements_current
is the most fundamental. Other tables that contain statement event rows are logically
derived from the current events. For example, the events_statements_history and
events_statements_history_long tables are collections of the most recent statement events
that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three events_statements_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

The events_statements_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

For SQL statements, the EVENT_NAME value initially is statement/com/Query until the statement
is parsed, then changes to a more appropriate value, as described in Section 10.6, “Performance
Schema Statement Event Tables”.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• LOCK_TIME

The time spent waiting for table locks. This value is computed in microseconds but normalized to
picoseconds for easier comparison with other Performance Schema timers.

• SQL_TEXT

79

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

The events_statements_current Table

The text of the SQL statement. For a command not associated with an SQL statement, the value is
NULL.

The maximum space available for statement display is 1024 bytes by default. To change this value,
set the performance_schema_max_sql_text_length system variable at server startup.

• DIGEST

The statement digest MD5 value as a string of 32 hexadecimal characters, or NULL if the
statements_digest consumer is no. For more information about statement digesting, see
Performance Schema Statement Digests.

• DIGEST_TEXT

The normalized statement digest text, or NULL if the statements_digest consumer is no. For
more information about statement digesting, see Performance Schema Statement Digests.

The performance_schema_max_digest_length system variable determines the
maximum number of bytes available per session for digest value storage. However, the display
length of statement digests may be longer than the available buffer size due to encoding of
statement elements such as keywords and literal values in digest buffer. Consequently, values
selected from the DIGEST_TEXT column of statement event tables may appear to exceed the
performance_schema_max_digest_length value.

• CURRENT_SCHEMA

The default database for the statement, NULL if there is none.

• OBJECT_SCHEMA, OBJECT_NAME, OBJECT_TYPE

For nested statements (stored programs), these columns contain information about the parent
statement. Otherwise they are NULL.

• OBJECT_INSTANCE_BEGIN

This column identifies the statement. The value is the address of an object in memory.

• MYSQL_ERRNO

The statement error number, from the statement diagnostics area.

• RETURNED_SQLSTATE

The statement SQLSTATE value, from the statement diagnostics area.

• MESSAGE_TEXT

The statement error message, from the statement diagnostics area.

• ERRORS

Whether an error occurred for the statement. The value is 0 if the SQLSTATE value begins with 00
(completion) or 01 (warning). The value is 1 is the SQLSTATE value is anything else.

• WARNINGS

The number of warnings, from the statement diagnostics area.

• ROWS_AFFECTED

The number of rows affected by the statement. For a description of the meaning of “affected,” see
mysql_affected_rows().

80

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-digests.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-affected-rows.html

The events_statements_current Table

• ROWS_SENT

The number of rows returned by the statement.

• ROWS_EXAMINED

The number of rows examined by the server layer (not counting any processing internal to storage
engines).

• CREATED_TMP_DISK_TABLES

Like the Created_tmp_disk_tables status variable, but specific to the statement.

• CREATED_TMP_TABLES

Like the Created_tmp_tables status variable, but specific to the statement.

• SELECT_FULL_JOIN

Like the Select_full_join status variable, but specific to the statement.

• SELECT_FULL_RANGE_JOIN

Like the Select_full_range_join status variable, but specific to the statement.

• SELECT_RANGE

Like the Select_range status variable, but specific to the statement.

• SELECT_RANGE_CHECK

Like the Select_range_check status variable, but specific to the statement.

• SELECT_SCAN

Like the Select_scan status variable, but specific to the statement.

• SORT_MERGE_PASSES

Like the Sort_merge_passes status variable, but specific to the statement.

• SORT_RANGE

Like the Sort_range status variable, but specific to the statement.

• SORT_ROWS

Like the Sort_rows status variable, but specific to the statement.

• SORT_SCAN

Like the Sort_scan status variable, but specific to the statement.

• NO_INDEX_USED

1 if the statement performed a table scan without using an index, 0 otherwise.

• NO_GOOD_INDEX_USED

1 if the server found no good index to use for the statement, 0 otherwise. For additional information,
see the description of the Extra column from EXPLAIN output for the Range checked for each
record value in EXPLAIN Output Format.

• NESTING_EVENT_ID, NESTING_EVENT_TYPE, NESTING_EVENT_LEVEL

81

https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Created_tmp_disk_tables
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Created_tmp_tables
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Select_full_join
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Select_full_range_join
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Select_range
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Select_range_check
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Select_scan
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Sort_merge_passes
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Sort_range
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Sort_rows
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Sort_scan
https://dev.mysql.com/doc/refman/5.7/en/explain-output.html

The events_statements_history Table

These three columns are used with other columns to provide information as follows for top-level
(unnested) statements and nested statements (executed within a stored program).

For top level statements:

OBJECT_TYPE = NULL
OBJECT_SCHEMA = NULL
OBJECT_NAME = NULL
NESTING_EVENT_ID = NULL
NESTING_EVENT_TYPE = NULL
NESTING_LEVEL = 0

For nested statements:

OBJECT_TYPE = the parent statement object type
OBJECT_SCHEMA = the parent statement object schema
OBJECT_NAME = the parent statement object name
NESTING_EVENT_ID = the parent statement EVENT_ID
NESTING_EVENT_TYPE = 'STATEMENT'
NESTING_LEVEL = the parent statement NESTING_LEVEL plus one

TRUNCATE TABLE is permitted for the events_statements_current table. It removes the rows.

10.6.2 The events_statements_history Table

The events_statements_history table contains the N most recent statement events that have
ended per thread. Statement events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a
new row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_statements_history_size system
variable at server startup.

The events_statements_history table has the same columns as
events_statements_current. See Section 10.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the events_statements_history table. It removes the rows.

For more information about the relationship between the three events_statements_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

10.6.3 The events_statements_history_long Table

The events_statements_history_long table contains the N most recent statement events that
have ended globally, across all threads. Statement events are not added to the table until they have
ended. When the table becomes full, the oldest row is discarded when a new row is added, regardless
of which thread generated either row.

The value of N is autosized at server startup. To set the table size explicitly, set the
performance_schema_events_statements_history_long_size system variable at server
startup.

The events_statements_history_long table has the same columns as
events_statements_current. See Section 10.6.1, “The events_statements_current Table”.

TRUNCATE TABLE is permitted for the events_statements_history_long table. It removes the
rows.

82

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The prepared_statements_instances Table

For more information about the relationship between the three events_statements_xxx event
tables, see Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect statement events, see Section 10.6, “Performance
Schema Statement Event Tables”.

10.6.4 The prepared_statements_instances Table

The Performance Schema provides instrumentation for prepared statements, for which there are two
protocols:

• The binary protocol. This is accessed through the MySQL C API and maps onto underlying server
commands as shown in the following table.

C API Function Corresponding Server Command

mysql_stmt_prepare() COM_STMT_PREPARE

mysql_stmt_execute() COM_STMT_EXECUTE

mysql_stmt_close() COM_STMT_CLOSE

• The text protocol. This is accessed using SQL statements and maps onto underlying server
commands as shown in the following table.

SQL Statement Corresponding Server Command

PREPARE SQLCOM_PREPARE

EXECUTE SQLCOM_EXECUTE

DEALLOCATE PREPARE, DROP PREPARE SQLCOM_DEALLOCATE PREPARE

Performance Schema prepared statement instrumentation covers both protocols. The following
discussion refers to the server commands rather than the C API functions or SQL statements.

Information about prepared statements is available in the prepared_statements_instances
table. This table enables inspection of prepared statements used in the server and
provides aggregated statistics about them. To control the size of this table, set the
performance_schema_max_prepared_statements_instances system variable at server
startup.

Collection of prepared statement information depends on the statement instruments shown
in the following table. These instruments are enabled by default. To modify them, update the
setup_instruments table.

Instrument Server Command

statement/com/Prepare COM_STMT_PREPARE

statement/com/Execute COM_STMT_EXECUTE

statement/sql/prepare_sql SQLCOM_PREPARE

statement/sql/execute_sql SQLCOM_EXECUTE

The Performance Schema manages the contents of the prepared_statements_instances table
as follows:

• Statement preparation

A COM_STMT_PREPARE or SQLCOM_PREPARE command creates a prepared statement
in the server. If the statement is successfully instrumented, a new row is added to the
prepared_statements_instances table. If the statement cannot be instrumented,
Performance_schema_prepared_statements_lost status variable is incremented.

83

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-prepare.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-execute.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-stmt-close.html
https://dev.mysql.com/doc/refman/5.7/en/prepare.html
https://dev.mysql.com/doc/refman/5.7/en/execute.html
https://dev.mysql.com/doc/refman/5.7/en/deallocate-prepare.html
https://dev.mysql.com/doc/refman/5.7/en/deallocate-prepare.html

The prepared_statements_instances Table

• Prepared statement execution

Execution of a COM_STMT_EXECUTE or SQLCOM_PREPARE command for an instrumented prepared
statement instance updates the corresponding prepared_statements_instances table row.

• Prepared statement deallocation

Execution of a COM_STMT_CLOSE or SQLCOM_DEALLOCATE_PREPARE command
for an instrumented prepared statement instance removes the corresponding
prepared_statements_instances table row. To avoid resource leaks, removal occurs even if
the prepared statement instruments described previously are disabled.

The prepared_statements_instances table has these columns:

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented prepared statement.

• STATEMENT_ID

The internal statement ID assigned by the server. The text and binary protocols both use statement
IDs.

• STATEMENT_NAME

For the binary protocol, this column is NULL. For the text protocol, this column is the external
statement name assigned by the user. For example, for the following SQL statement, the name of
the prepared statement is stmt:

PREPARE stmt FROM 'SELECT 1';

• SQL_TEXT

The prepared statement text, with ? placeholder markers.

• OWNER_THREAD_ID, OWNER_EVENT_ID

These columns indicate the event that created the prepared statement.

• OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME

For a prepared statement created by a client session, these columns are NULL. For a prepared
statement created by a stored program, these columns point to the stored program. A typical user
error is forgetting to deallocate prepared statements. These columns can be used to find stored
programs that leak prepared statements:

SELECT
 OWNER_OBJECT_TYPE, OWNER_OBJECT_SCHEMA, OWNER_OBJECT_NAME,
 STATEMENT_NAME, SQL_TEXT
FROM performance_schema.prepared_statements_instances
WHERE OWNER_OBJECT_TYPE IS NOT NULL;

• TIMER_PREPARE

The time spent executing the statement preparation itself.

• COUNT_REPREPARE

The number of times the statement was reprepared internally (see Caching of Prepared Statements
and Stored Programs). Timing statistics for repreparation are not available because it is counted as
part of statement execution, not as a separate operation.

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

84

https://dev.mysql.com/doc/refman/5.7/en/statement-caching.html
https://dev.mysql.com/doc/refman/5.7/en/statement-caching.html

Performance Schema Transaction Tables

Aggregated statistics for executions of the prepared statement.

• SUM_xxx

The remaining SUM_xxx columns are the same as for the statement summary tables (see
Section 10.15.3, “Statement Summary Tables”).

TRUNCATE TABLE resets the statistics columns of the prepared_statements_instances table.

10.7 Performance Schema Transaction Tables

The Performance Schema instruments transactions. Within the event hierarchy, wait events nest within
stage events, which nest within statement events, which nest within transaction events.

These tables store transaction events:

• events_transactions_current: The current transaction event for each thread.

• events_transactions_history: The most recent transaction events that have ended per
thread.

• events_transactions_history_long: The most recent transaction events that have ended
globally (across all threads).

The following sections describe the transaction event tables. There are also summary tables that
aggregate information about transaction events; see Section 10.15.4, “Transaction Summary Tables”.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

• Configuring Transaction Event Collection

• Transaction Boundaries

• Transaction Instrumentation

• Transactions and Nested Events

• Transactions and Stored Programs

• Transactions and Savepoints

• Transactions and Errors

Configuring Transaction Event Collection

To control whether to collect transaction events, set the state of the relevant instruments and
consumers:

• The setup_instruments table contains an instrument named transaction. Use this instrument
to enable or disable collection of individual transaction event classes.

• The setup_consumers table contains consumer values with names corresponding to the current
and historical transaction event table names. Use these consumers to filter collection of transaction
events.

The transaction instrument and the transaction consumers are disabled by default:

mysql> SELECT *
 FROM performance_schema.setup_instruments
 WHERE NAME = 'transaction';

85

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

Configuring Transaction Event Collection

+-------------+---------+-------+
| NAME | ENABLED | TIMED |
+-------------+---------+-------+
| transaction | NO | NO |
+-------------+---------+-------+
mysql> SELECT *
 FROM performance_schema.setup_consumers
 WHERE NAME LIKE 'events_transactions%';
+----------------------------------+---------+
| NAME | ENABLED |
+----------------------------------+---------+
events_transactions_current	NO
events_transactions_history	NO
events_transactions_history_long	NO
+----------------------------------+---------+

To control transaction event collection at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='transaction=ON'
performance-schema-consumer-events-transactions-current=ON
performance-schema-consumer-events-transactions-history=ON
performance-schema-consumer-events-transactions-history-long=ON

• Disable:

[mysqld]
performance-schema-instrument='transaction=OFF'
performance-schema-consumer-events-transactions-current=OFF
performance-schema-consumer-events-transactions-history=OFF
performance-schema-consumer-events-transactions-history-long=OFF

To control transaction event collection at runtime, update the setup_instruments and
setup_consumers tables:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'transaction';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'YES'
WHERE NAME LIKE 'events_transactions%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'transaction';
UPDATE performance_schema.setup_consumers
SET ENABLED = 'NO'
WHERE NAME LIKE 'events_transactions%';

To collect transaction events only for specific transaction event tables, enable the transaction
instrument but only the transaction consumers corresponding to the desired tables.

The setup_timers table contains a row with a NAME value of transaction that indicates the unit
for transaction event timing. The default unit is NANOSECOND:

mysql> SELECT *
 FROM performance_schema.setup_timers
 WHERE NAME = 'transaction';
+-------------+------------+
| NAME | TIMER_NAME |
+-------------+------------+
| transaction | NANOSECOND |
+-------------+------------+

86

Transaction Boundaries

To change the timing unit, modify the TIMER_NAME value:

UPDATE performance_schema.setup_timers
SET TIMER_NAME = 'MICROSECOND'
WHERE NAME = 'transaction';

For additional information about configuring event collection, see Chapter 4, Performance Schema
Startup Configuration, and Chapter 5, Performance Schema Runtime Configuration.

Transaction Boundaries

In MySQL Server, transactions start explicitly with these statements:

START TRANSACTION | BEGIN | XA START | XA BEGIN

Transactions also start implicitly. For example, when the autocommit system variable is enabled, the
start of each statement starts a new transaction.

When autocommit is disabled, the first statement following a committed transaction marks the start of
a new transaction. Subsequent statements are part of the transaction until it is committed.

Transactions explicitly end with these statements:

COMMIT | ROLLBACK | XA COMMIT | XA ROLLBACK

Transactions also end implicitly, by execution of DDL statements, locking statements, and server
administration statements.

In the following discussion, references to START TRANSACTION also apply to BEGIN, XA START, and
XA BEGIN. Similarly, references to COMMIT and ROLLBACK apply to XA COMMIT and XA ROLLBACK,
respectively.

The Performance Schema defines transaction boundaries similarly to that of the server. The start and
end of a transaction event closely match the corresponding state transitions in the server:

• For an explicitly started transaction, the transaction event starts during processing of the START
TRANSACTION statement.

• For an implicitly started transaction, the transaction event starts on the first statement that uses a
transactional engine after the previous transaction has ended.

• For any transaction, whether explicitly or implicitly ended, the transaction event ends when the server
transitions out of the active transaction state during the processing of COMMIT or ROLLBACK.

There are subtle implications to this approach:

• Transaction events in the Performance Schema do not fully include the statement events associated
with the corresponding START TRANSACTION, COMMIT, or ROLLBACK statements. There is a trivial
amount of timing overlap between the transaction event and these statements.

• Statements that work with nontransactional engines have no effect on the transaction state of the
connection. For implicit transactions, the transaction event begins with the first statement that uses
a transactional engine. This means that statements operating exclusively on nontransactional tables
are ignored, even following START TRANSACTION.

To illustrate, consider the following scenario:

1. SET autocommit = OFF;
2. CREATE TABLE t1 (a INT) ENGINE = InnoDB;
3. START TRANSACTION; -- Transaction 1 START
4. INSERT INTO t1 VALUES (1), (2), (3);
5. CREATE TABLE t2 (a INT) ENGINE = MyISAM; -- Transaction 1 COMMIT
 -- (implicit; DDL forces commit)
6. INSERT INTO t2 VALUES (1), (2), (3); -- Update nontransactional table

87

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html

Transaction Instrumentation

7. UPDATE t2 SET a = a + 1; -- ... and again
8. INSERT INTO t1 VALUES (4), (5), (6); -- Write to transactional table
 -- Transaction 2 START (implicit)
9. COMMIT; -- Transaction 2 COMMIT

From the perspective of the server, Transaction 1 ends when table t2 is created. Transaction 2 does
not start until a transactional table is accessed, despite the intervening updates to nontransactional
tables.

From the perspective of the Performance Schema, Transaction 2 starts when the server transitions into
an active transaction state. Statements 6 and 7 are not included within the boundaries of Transaction 2,
which is consistent with how the server writes transactions to the binary log.

Transaction Instrumentation

Three attributes define transactions:

• Access mode (read only, read write)

• Isolation level (SERIALIZABLE, REPEATABLE READ, and so forth)

• Implicit (autocommit enabled) or explicit (autocommit disabled)

To reduce complexity of the transaction instrumentation and to ensure that the collected transaction
data provides complete, meaningful results, all transactions are instrumented independently of access
mode, isolation level, or autocommit mode.

To selectively examine transaction history, use the attribute columns in the transaction event tables:
ACCESS_MODE, ISOLATION_LEVEL, and AUTOCOMMIT.

The cost of transaction instrumentation can be reduced various ways, such as enabling or disabling
transaction instrumentation according to user, account, host, or thread (client connection).

Transactions and Nested Events

The parent of a transaction event is the event that initiated the transaction. For an explicitly started
transaction, this includes the START TRANSACTION and COMMIT AND CHAIN statements. For an
implicitly started transaction, it is the first statement that uses a transactional engine after the previous
transaction ends.

In general, a transaction is the top-level parent to all events initiated during the transaction, including
statements that explicitly end the transaction such as COMMIT and ROLLBACK. Exceptions are
statements that implicitly end a transaction, such as DDL statements, in which case the current
transaction must be committed before the new statement is executed.

Transactions and Stored Programs

Transactions and stored program events are related as follows:

• Stored Procedures

Stored procedures operate independently of transactions. A stored procedure can be started within a
transaction, and a transaction can be started or ended from within a stored procedure. If called from
within a transaction, a stored procedure can execute statements that force a commit of the parent
transaction and then start a new transaction.

If a stored procedure is started within a transaction, that transaction is the parent of the stored
procedure event.

If a transaction is started by a stored procedure, the stored procedure is the parent of the transaction
event.

88

https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html

Transactions and Savepoints

• Stored Functions

Stored functions are restricted from causing an explicit or implicit commit or rollback. Stored function
events can reside within a parent transaction event.

• Triggers

Triggers activate as part of a statement that accesses the table with which it is associated, so the
parent of a trigger event is always the statement that activates it.

Triggers cannot issue statements that cause an explicit or implicit commit or rollback of a transaction.

• Scheduled Events

The execution of the statements in the body of a scheduled event takes place in a new connection.
Nesting of a scheduled event within a parent transaction is not applicable.

Transactions and Savepoints

Savepoint statements are recorded as separate statement events. Transaction events include separate
counters for SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements issued
during the transaction.

Transactions and Errors

Errors and warnings that occur within a transaction are recorded in statement events, but not in the
corresponding transaction event. This includes transaction-specific errors and warnings, such as a
rollback on a nontransactional table or GTID consistency errors.

10.7.1 The events_transactions_current Table

The events_transactions_current table contains current transaction events. The table stores
one row per thread showing the current status of the thread's most recent monitored transaction event,
so there is no system variable for configuring the table size. For example:

mysql> SELECT *
 FROM performance_schema.events_transactions_current LIMIT 1\G
*************************** 1. row ***************************
 THREAD_ID: 26
 EVENT_ID: 7
 END_EVENT_ID: NULL
 EVENT_NAME: transaction
 STATE: ACTIVE
 TRX_ID: NULL
 GTID: 3E11FA47-71CA-11E1-9E33-C80AA9429562:56
 XID: NULL
 XA_STATE: NULL
 SOURCE: transaction.cc:150
 TIMER_START: 420833537900000
 TIMER_END: NULL
 TIMER_WAIT: NULL
 ACCESS_MODE: READ WRITE
 ISOLATION_LEVEL: REPEATABLE READ
 AUTOCOMMIT: NO
 NUMBER_OF_SAVEPOINTS: 0
NUMBER_OF_ROLLBACK_TO_SAVEPOINT: 0
 NUMBER_OF_RELEASE_SAVEPOINT: 0
 OBJECT_INSTANCE_BEGIN: NULL
 NESTING_EVENT_ID: 6
 NESTING_EVENT_TYPE: STATEMENT

Of the tables that contain transaction event rows, events_transactions_current
is the most fundamental. Other tables that contain transaction event rows are logically
derived from the current events. For example, the events_transactions_history and

89

https://dev.mysql.com/doc/refman/5.7/en/savepoint.html
https://dev.mysql.com/doc/refman/5.7/en/savepoint.html
https://dev.mysql.com/doc/refman/5.7/en/savepoint.html

The events_transactions_current Table

events_transactions_history_long tables are collections of the most recent transaction
events that have ended, up to a maximum number of rows per thread and globally across all threads,
respectively.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7,
“Performance Schema Transaction Tables”.

The events_transactions_current table has these columns:

• THREAD_ID, EVENT_ID

The thread associated with the event and the thread current event number when the event starts.
The THREAD_ID and EVENT_ID values taken together uniquely identify the row. No two rows have
the same pair of values.

• END_EVENT_ID

This column is set to NULL when the event starts and updated to the thread current event number
when the event ends.

• EVENT_NAME

The name of the instrument from which the event was collected. This is a NAME value from the
setup_instruments table. Instrument names may have multiple parts and form a hierarchy, as
discussed in Chapter 7, Performance Schema Instrument Naming Conventions.

• STATE

The current transaction state. The value is ACTIVE (after START TRANSACTION or BEGIN),
COMMITTED (after COMMIT), or ROLLED BACK (after ROLLBACK).

• TRX_ID

Unused.

• GTID

The GTID column contains the value of gtid_next, which can be one of ANONYMOUS, AUTOMATIC,
or a GTID using the format UUID:NUMBER. For transactions that use gtid_next=AUTOMATIC,
which is all normal client transactions, the GTID column changes when the transaction commits
and the actual GTID is assigned. If gtid_mode is either ON or ON_PERMISSIVE, the GTID column
changes to the transaction's GTID. If gtid_mode is either OFF or OFF_PERMISSIVE, the GTID
column changes to ANONYMOUS.

• XID_FORMAT_ID, XID_GTRID, and XID_BQUAL

The elements of the XA transaction identifier. They have the format described in XA Transaction
SQL Statements.

• XA_STATE

The state of the XA transaction. The value is ACTIVE (after XA START), IDLE (after XA END),
PREPARED (after XA PREPARE), ROLLED BACK (after XA ROLLBACK), or COMMITTED (after XA
COMMIT).

On a replica, the same XA transaction can appear in the events_transactions_current table
with different states on different threads. This is because immediately after the XA transaction is
prepared, it is detached from the replication applier thread, and can be committed or rolled back by
any thread on the replica. The events_transactions_current table displays the current status

90

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/commit.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_next
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_next
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html

The events_transactions_history Table

of the most recent monitored transaction event on the thread, and does not update this status when
the thread is idle. So the XA transaction can still be displayed in the PREPARED state for the original
applier thread, after it has been processed by another thread. To positively identify XA transactions
that are still in the PREPARED state and need to be recovered, use the XA RECOVER statement rather
than the Performance Schema transaction tables.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• TIMER_START, TIMER_END, TIMER_WAIT

Timing information for the event. The unit for these values is picoseconds (trillionths of a second).
The TIMER_START and TIMER_END values indicate when event timing started and ended.
TIMER_WAIT is the event elapsed time (duration).

If an event has not finished, TIMER_END is the current timer value and TIMER_WAIT is the time
elapsed so far (TIMER_END − TIMER_START).

If an event is produced from an instrument that has TIMED = NO, timing information is not collected,
and TIMER_START, TIMER_END, and TIMER_WAIT are all NULL.

For discussion of picoseconds as the unit for event times and factors that affect time values, see
Section 5.1, “Performance Schema Event Timing”.

• ACCESS_MODE

The transaction access mode. The value is READ WRITE or READ ONLY.

• ISOLATION_LEVEL

The transaction isolation level. The value is REPEATABLE READ, READ COMMITTED, READ
UNCOMMITTED, or SERIALIZABLE.

• AUTOCOMMIT

Whether autcommit mode was enabled when the transaction started.

• NUMBER_OF_SAVEPOINTS, NUMBER_OF_ROLLBACK_TO_SAVEPOINT,
NUMBER_OF_RELEASE_SAVEPOINT

The number of SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT statements
issued during the transaction.

• OBJECT_INSTANCE_BEGIN

Unused.

• NESTING_EVENT_ID

The EVENT_ID value of the event within which this event is nested.

• NESTING_EVENT_TYPE

The nesting event type. The value is TRANSACTION, STATEMENT, STAGE, or WAIT. (TRANSACTION
does not appear because transactions cannot be nested.)

TRUNCATE TABLE is permitted for the events_transactions_current table. It removes the rows.

10.7.2 The events_transactions_history Table

91

https://dev.mysql.com/doc/refman/5.7/en/xa-statements.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/5.7/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/5.7/en/savepoint.html
https://dev.mysql.com/doc/refman/5.7/en/savepoint.html
https://dev.mysql.com/doc/refman/5.7/en/savepoint.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The events_transactions_history_long Table

The events_transactions_history table contains the N most recent transaction events that have
ended per thread. Transaction events are not added to the table until they have ended. When the table
contains the maximum number of rows for a given thread, the oldest thread row is discarded when a
new row for that thread is added. When a thread ends, all its rows are discarded.

The Performance Schema autosizes the value of N during server startup. To set the number of rows
per thread explicitly, set the performance_schema_events_transactions_history_size
system variable at server startup.

The events_transactions_history table has the same columns as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the events_transactions_history table. It removes the rows.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7,
“Performance Schema Transaction Tables”.

10.7.3 The events_transactions_history_long Table

The events_transactions_history_long table contains the N most recent transaction events
that have ended globally, across all threads. Transaction events are not added to the table until they
have ended. When the table becomes full, the oldest row is discarded when a new row is added,
regardless of which thread generated either row.

The Performance Schema autosizes the value of N is autosized at server startup. To set the table size
explicitly, set the performance_schema_events_transactions_history_long_size system
variable at server startup.

The events_transactions_history_long table has the same columns as
events_transactions_current. See Section 10.7.1, “The events_transactions_current Table”.

TRUNCATE TABLE is permitted for the events_transactions_history_long table. It removes
the rows.

For more information about the relationship between the three transaction event tables, see
Performance Schema Tables for Current and Historical Events.

For information about configuring whether to collect transaction events, see Section 10.7,
“Performance Schema Transaction Tables”.

10.8 Performance Schema Connection Tables

When a client connects to the MySQL server, it does so under a particular user name and from a
particular host. The Performance Schema provides statistics about these connections, tracking them
per account (user and host combination) as well as separately per user name and host name, using
these tables:

• accounts: Connection statistics per client account

• hosts: Connection statistics per client host name

• users: Connection statistics per client user name

The meaning of “account” in the connection tables is similar to its meaning in the MySQL grant tables
in the mysql system database, in the sense that the term refers to a combination of user and host
values. They differ in that, for grant tables, the host part of an account can be a pattern, whereas for
Performance Schema tables, the host value is always a specific nonpattern host name.

92

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-event-tables.html

Performance Schema Connection Tables

Each connection table has CURRENT_CONNECTIONS and TOTAL_CONNECTIONS columns to track
the current and total number of connections per “tracking value” on which its statistics are based. The
tables differ in what they use for the tracking value. The accounts table has USER and HOST columns
to track connections per user and host combination. The users and hosts tables have a USER and
HOST column, respectively, to track connections per user name and host name.

The Performance Schema also counts internal threads and threads for user sessions that failed to
authenticate, using rows with USER and HOST column values of NULL.

Suppose that clients named user1 and user2 each connect one time from hosta and hostb. The
Performance Schema tracks the connections as follows:

• The accounts table has four rows, for the user1/hosta, user1/hostb, user2/hosta, and
user2/hostb account values, each row counting one connection per account.

• The hosts table has two rows, for hosta and hostb, each row counting two connections per host
name.

• The users table has two rows, for user1 and user2, each row counting two connections per user
name.

When a client connects, the Performance Schema determines which row in each connection table
applies, using the tracking value appropriate to each table. If there is no such row, one is added. Then
the Performance Schema increments by one the CURRENT_CONNECTIONS and TOTAL_CONNECTIONS
columns in that row.

When a client disconnects, the Performance Schema decrements by one the CURRENT_CONNECTIONS
column in the row and leaves the TOTAL_CONNECTIONS column unchanged.

TRUNCATE TABLE is permitted for connection tables. It has these effects:

• Rows are removed for accounts, hosts, or users that have no current connections (rows with
CURRENT_CONNECTIONS = 0).

• Nonremoved rows are reset to count only current connections: For rows with
CURRENT_CONNECTIONS > 0, TOTAL_CONNECTIONS is reset to CURRENT_CONNECTIONS.

• Summary tables that depend on the connection table are implicitly truncated, as described later in
this section.

The Performance Schema maintains summary tables that aggregate connection statistics for
various event types by account, host, or user. These tables have _summary_by_account,
_summary_by_host, or _summary_by_user in the name. To identify them, use this query:

mysql> SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
 WHERE TABLE_SCHEMA = 'performance_schema'
 AND TABLE_NAME REGEXP '_summary_by_(account|host|user)'
 ORDER BY TABLE_NAME;
+--+
| TABLE_NAME |
+--+
| events_stages_summary_by_account_by_event_name |
| events_stages_summary_by_host_by_event_name |
| events_stages_summary_by_user_by_event_name |
| events_statements_summary_by_account_by_event_name |
| events_statements_summary_by_host_by_event_name |
| events_statements_summary_by_user_by_event_name |
| events_transactions_summary_by_account_by_event_name |
| events_transactions_summary_by_host_by_event_name |
| events_transactions_summary_by_user_by_event_name |
| events_waits_summary_by_account_by_event_name |
| events_waits_summary_by_host_by_event_name |
| events_waits_summary_by_user_by_event_name |
| memory_summary_by_account_by_event_name |
| memory_summary_by_host_by_event_name |

93

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The accounts Table

| memory_summary_by_user_by_event_name |
+--+

For details about individual connection summary tables, consult the section that describes tables for
the summarized event type:

• Wait event summaries: Section 10.15.1, “Wait Event Summary Tables”

• Stage event summaries: Section 10.15.2, “Stage Summary Tables”

• Statement event summaries: Section 10.15.3, “Statement Summary Tables”

• Transaction event summaries: Section 10.15.4, “Transaction Summary Tables”

• Memory event summaries: Section 10.15.9, “Memory Summary Tables”

TRUNCATE TABLE is permitted for connection summary tables. It removes rows for accounts, hosts,
or users with no connections, and resets the summary columns to zero for the remaining rows. In
addition, each summary table that is aggregated by account, host, user, or thread is implicitly truncated
by truncation of the connection table on which it depends. The following table describes the relationship
between connection table truncation and implicitly truncated tables.

Table 10.2 Implicit Effects of Connection Table Truncation

Truncated Connection Table Implicitly Truncated Summary Tables

accounts Tables with names containing
_summary_by_account,
_summary_by_thread

hosts Tables with names containing
_summary_by_account, _summary_by_host,
_summary_by_thread

users Tables with names containing
_summary_by_account, _summary_by_user,
_summary_by_thread

Truncating a _summary_global summary table also implicitly truncates its
corresponding connection and thread summary tables. For example, truncating
events_waits_summary_global_by_event_name implicitly truncates the wait event summary
tables that are aggregated by account, host, user, or thread.

10.8.1 The accounts Table

The accounts table contains a row for each account that has connected to the MySQL server. For
each account, the table counts the current and total number of connections. The table size is autosized
at server startup. To set the table size explicitly, set the performance_schema_accounts_size
system variable at server startup. To disable account statistics, set this variable to 0.

The accounts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session
that failed to authenticate.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session
that failed to authenticate.

94

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The hosts Table

• CURRENT_CONNECTIONS

The current number of connections for the account.

• TOTAL_CONNECTIONS

The total number of connections for the account.

10.8.2 The hosts Table

The hosts table contains a row for each host from which clients have connected to the
MySQL server. For each host name, the table counts the current and total number of
connections. The table size is autosized at server startup. To set the table size explicitly, set the
performance_schema_hosts_size system variable at server startup. To disable host statistics, set
this variable to 0.

The hosts table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

• HOST

The host from which the client connected. This is NULL for an internal thread, or for a user session
that failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the host.

• TOTAL_CONNECTIONS

The total number of connections for the host.

10.8.3 The users Table

The users table contains a row for each user who has connected to the MySQL server. For each user
name, the table counts the current and total number of connections. The table size is autosized at
server startup. To set the table size explicitly, set the performance_schema_users_size system
variable at server startup. To disable user statistics, set this variable to 0.

The users table has the following columns. For a description of how the Performance Schema
maintains rows in this table, including the effect of TRUNCATE TABLE, see Section 10.8, “Performance
Schema Connection Tables”.

• USER

The client user name for the connection. This is NULL for an internal thread, or for a user session
that failed to authenticate.

• CURRENT_CONNECTIONS

The current number of connections for the user.

• TOTAL_CONNECTIONS

The total number of connections for the user.

10.9 Performance Schema Connection Attribute Tables
Connection attributes are key-value pairs that application programs can pass to the server at connect
time. For applications based on the C API implemented by the libmysqlclient client library, the

95

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Available Connection Atrributes

mysql_options() and mysql_options4() functions define the connection attribute set. Other
MySQL Connectors may provide their own attribute-definition methods.

These Performance Schema tables expose attribute information:

• session_account_connect_attrs: Connection attributes for the current session, and other
sessions associated with the session account

• session_connect_attrs: Connection attributes for all sessions

Attribute names that begin with an underscore (_) are reserved for internal use and should not be
created by application programs. This convention permits new attributes to be introduced by MySQL
without colliding with application attributes, and enables application programs to define their own
attributes that do not collide with internal attributes.

• Available Connection Atrributes

• Connection Atrribute Limits

Available Connection Atrributes

The set of connection attributes visible within a given connection varies depending on factors such as
your platform, MySQL Connector used to establish the connection, or client program.

The libmysqlclient client library sets these attributes:

• _client_name: The client name (libmysql for the client library).

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _thread: The client thread ID (Windows only).

Other MySQL Connectors may define their own connection attributes.

MySQL Connector/J defines these attributes:

• _client_license: The connector license type.

• _runtime_vendor: The Java runtime environment (JRE) vendor.

• _runtime_version: The Java runtime environment (JRE) version.

MySQL Connector/NET defines these attributes:

• _client_version: The client library version.

• _os: The operating system (for example, Linux, Win64).

• _pid: The client process ID.

• _platform: The machine platform (for example, x86_64).

• _program_name: The client name.

• _thread: The client thread ID (Windows only).

PHP defines attributes that depend on how it was compiled:

96

https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options4.html

Connection Atrribute Limits

• Compiled using libmysqlclient: The standard libmysqlclient attributes, described
previously.

• Compiled using mysqlnd: Only the _client_name attribute, with a value of mysqlnd.

Many MySQL client programs set a program_name attribute with a value equal to the client name.
For example, mysqladmin and mysqldump set program_name to mysqladmin and mysqldump,
respectively.

Some MySQL client programs define additional attributes:

• mysqlbinlog:

• _client_role: binary_log_listener

• Replica connections:

• program_name: mysqld

• _client_role: binary_log_listener

• _client_replication_channel_name: The channel name.

• FEDERATED storage engine connections:

• program_name: mysqld

• _client_role: federated_storage

Connection Atrribute Limits

There are limits on the amount of connection attribute data transmitted from client to server:

• A fixed limit imposed by the client prior to connect time.

• A fixed limit imposed by the server at connect time.

• A configurable limit imposed by the Performance Schema at connect time.

For connections initiated using the C API, the libmysqlclient library imposes a limit of 64KB on the
aggregate size of connection attribute data on the client side: Calls to mysql_options() that cause
this limit to be exceeded produce a CR_INVALID_PARAMETER_NO error. Other MySQL Connectors
may impose their own client-side limits on how much connection attribute data can be transmitted to
the server.

On the server side, these size checks on connection attribute data occur:

• The server imposes a limit of 64KB on the aggregate size of connection attribute data it can accept.
If a client attempts to send more than 64KB of attribute data, the server rejects the connection.

• For accepted connections, the Performance Schema checks aggregate attribute size against the
value of the performance_schema_session_connect_attrs_size system variable. If attribute
size exceeds this value, these actions take place:

• The Performance Schema truncates the attribute data and increments the
Performance_schema_session_connect_attrs_lost status variable, which indicates the
number of connections for which attribute truncation occurred.

• The Performance Schema writes a message to the error log if the log_error_verbosity
system variable is greater than 1:

[Warning] Connection attributes of length N were truncated

97

https://dev.mysql.com/doc/refman/5.7/en/federated-storage-engine.html
https://dev.mysql.com/doc/c-api/5.7/en/mysql-options.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity

The session_account_connect_attrs Table

10.9.1 The session_account_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

The session_account_connect_attrs table contains connection attributes only for the current
session, and other sessions associated with the session account. To see connection attributes for all
sessions, use the session_connect_attrs table.

The session_account_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the session_account_connect_attrs table.

10.9.2 The session_connect_attrs Table

Application programs can provide key-value connection attributes to be passed to the server at connect
time. For descriptions of common attributes, see Section 10.9, “Performance Schema Connection
Attribute Tables”.

The session_connect_attrs table contains connection attributes for all sessions. To see
connection attributes only for the current session, and other sessions associated with the session
account, use the session_account_connect_attrs table.

The session_connect_attrs table has these columns:

• PROCESSLIST_ID

The connection identifier for the session.

• ATTR_NAME

The attribute name.

• ATTR_VALUE

The attribute value.

• ORDINAL_POSITION

The order in which the attribute was added to the set of connection attributes.

TRUNCATE TABLE is not permitted for the session_connect_attrs table.

10.10 Performance Schema User-Defined Variable Tables

98

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Performance Schema Replication Tables

The Performance Schema provides a user_variables_by_thread table that exposes user-defined
variables. These are variables defined within a specific session and include a @ character preceding
the name; see User-Defined Variables.

The user_variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the variable is defined.

• VARIABLE_NAME

The variable name, without the leading @ character.

• VARIABLE_VALUE

The variable value.

TRUNCATE TABLE is not permitted for the user_variables_by_thread table.

10.11 Performance Schema Replication Tables

The Performance Schema provides tables that expose replication information. This is similar to the
information available from the SHOW SLAVE STATUS statement, but representation in table form is
more accessible and has usability benefits:

• SHOW SLAVE STATUS output is useful for visual inspection, but not so much for programmatic use.
By contrast, using the Performance Schema tables, information about replica status can be searched
using general SELECT queries, including complex WHERE conditions, joins, and so forth.

• Query results can be saved in tables for further analysis, or assigned to variables and thus used in
stored procedures.

• The replication tables provide better diagnostic information. For multithreaded replica operation,
SHOW SLAVE STATUS reports all coordinator and worker thread errors using the Last_SQL_Errno
and Last_SQL_Error fields, so only the most recent of those errors is visible and information can
be lost. The replication tables store errors on a per-thread basis without loss of information.

• The last seen transaction is visible in the replication tables on a per-worker basis. This is information
not avilable from SHOW SLAVE STATUS.

• Developers familiar with the Performance Schema interface can extend the replication tables to
provide additional information by adding rows to the tables.

Replication Table Descriptions

The Performance Schema provides the following replication-related tables:

• Tables that contain information about the connection of a replica to the replication source server:

• replication_connection_configuration: Configuration parameters for connecting to the
source

• replication_connection_status: Current status of the connection to the source

• Tables that contain general (not thread-specific) information about the transaction applier:

• replication_applier_configuration: Configuration parameters for the transaction applier
on the replica.

• replication_applier_status: Current status of the transaction applier on the replica.

99

https://dev.mysql.com/doc/refman/5.7/en/user-variables.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Replication Table Life Cycle

• Tables that contain information about specific threads responsible for applying transactions received
from the source:

• replication_applier_status_by_coordinator: Status of the coordinator thread (empty
unless the replica is multithreaded).

• replication_applier_status_by_worker: Status of the applier thread or worker threads if
the replica is multithreaded.

• Tables that contain information about replication group members:

• replication_group_members: Provides network and status information for group members.

• replication_group_member_stats: Provides statistical information about group members
and transaction in which they participate.

The following sections describe each replication table in more detail, including the correspondence
between the columns produced by SHOW SLAVE STATUS and the replication table columns in which
the same information appears.

The remainder of this introduction to the replication tables describes how the Performance Schema
populates them and which fields from SHOW SLAVE STATUS are not represented in the tables.

Replication Table Life Cycle

The Performance Schema populates the replication tables as follows:

• Prior to execution of CHANGE MASTER TO, the tables are empty.

• After CHANGE MASTER TO, the configuration parameters can be seen in the tables. At this time,
there are no active replica threads, so the THREAD_ID columns are NULL and the SERVICE_STATE
columns have a value of OFF.

• After START SLAVE, non-NULL THREAD_ID values can be seen. Threads that are idle or active
have a SERVICE_STATE value of ON. The thread that connects to the source has a value of
CONNECTING while it establishes the connection, and ON thereafter as long as the connection lasts.

• After STOP SLAVE, the THREAD_ID columns become NULL and the SERVICE_STATE columns for
threads that no longer exist have a value of OFF.

• The tables are preserved after STOP SLAVE or threads dying due to an error.

• The replication_applier_status_by_worker table is nonempty only when the replica is
operating in multithreaded mode. That is, if the slave_parallel_workers system variable is
greater than 0, this table is populated when START SLAVE is executed, and the number of rows
shows the number of workers.

SHOW SLAVE STATUS Information Not In the Replication Tables

The information in the Performance Schema replication tables differs somewhat from the information
available from SHOW SLAVE STATUS because the tables are oriented toward use of global transaction
identifiers (GTIDs), not file names and positions, and they represent server UUID values, not server
ID values. Due to these differences, several SHOW SLAVE STATUS columns are not preserved in the
Performance Schema replication tables, or are represented a different way:

• The following fields refer to file names and positions and are not preserved:

Master_Log_File
Read_Master_Log_Pos
Relay_Log_File
Relay_Log_Pos

100

https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://dev.mysql.com/doc/refman/5.7/en/start-slave.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

Status Variables Moved to Replication Tables

Relay_Master_Log_File
Exec_Master_Log_Pos
Until_Condition
Until_Log_File
Until_Log_Pos

• The Master_Info_File field is not preserved. It refers to the master.info file, which has been
superseded by crash-safe tables.

• The following fields are based on server_id, not server_uuid, and are not preserved:

Master_Server_Id
Replicate_Ignore_Server_Ids

• The Skip_Counter field is based on event counts, not GTIDs, and is not preserved.

• These error fields are aliases for Last_SQL_Errno and Last_SQL_Error, so they are not
preserved:

Last_Errno
Last_Error

In the Performance Schema, this error information is available in the LAST_ERROR_NUMBER and
LAST_ERROR_MESSAGE columns of the replication_applier_status_by_worker table
(and replication_applier_status_by_coordinator if the replica is multithreaded). Those
tables provide more specific per-thread error information than is available from Last_Errno and
Last_Error.

• Fields that provide information about command-line filtering options is not preserved:

Replicate_Do_DB
Replicate_Ignore_DB
Replicate_Do_Table
Replicate_Ignore_Table
Replicate_Wild_Do_Table
Replicate_Wild_Ignore_Table

• The Slave_IO_State and Slave_SQL_Running_State fields are not preserved. If needed,
these values can be obtained from the process list by using the THREAD_ID column of the
appropriate replication table and joining it with the ID column in the INFORMATION_SCHEMA
PROCESSLIST table to select the STATE column of the latter table.

• The Executed_Gtid_Set field can show a large set with a great deal of text. Instead, the
Performance Schema tables show GTIDs of transactions that are currently being applied by
the replica. Alternatively, the set of executed GTIDs can be obtained from the value of the
gtid_executed system variable.

• The Seconds_Behind_Master and Relay_Log_Space fields are in to-be-decided status and are
not preserved.

Status Variables Moved to Replication Tables

As of MySQL version 5.7.5, the following status variables (previously monitored using SHOW STATUS)
were moved to the Perfomance Schema replication tables:

• Slave_retried_transactions

• Slave_last_heartbeat

• Slave_received_heartbeats

• Slave_heartbeat_period

• Slave_running

101

https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/5.7/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_retried_transactions
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_last_heartbeat
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_received_heartbeats
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_heartbeat_period
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html#statvar_Slave_running

Replication Channels

These status variables are now only relevant when a single replication channel is being used because
they only report the status of the default replication channel. When multiple replication channels exist,
use the Performance Schema replication tables described in this section, which report these variables
for each existing replication channel.

Replication Channels

The first column of the replication Performance Schema tables is CHANNEL_NAME. This enables the
tables to be viewed per replication channel. In a non-multisource replication setup there is a single
default replication channel. When you are using multiple replication channels on a replica, you can filter
the tables per replication channel to monitor a specific replication channel. See Replication Channels
and Multi-Source Replication Monitoring for more information.

10.11.1 The replication_connection_configuration Table

This table shows the configuration parameters used by the replica for connecting to the source.
Parameters stored in the table can be changed at runtime with the CHANGE MASTER TO statement, as
indicated in the column descriptions.

Compared to the replication_connection_status table,
replication_connection_configuration changes less frequently. It contains values that
define how the replica connects to the source and that remain constant during the connection, whereas
replication_connection_status contains values that change during the connection.

The replication_connection_configuration table has the following columns. The column
descriptions indicate the corresponding CHANGE MASTER TO options from which the column
values are taken, and the table given later in this section shows the correspondence between
replication_connection_configuration columns and SHOW SLAVE STATUS columns.

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.
(CHANGE MASTER TO option: FOR CHANNEL)

• HOST

The replication source server that the replica is connected to. (CHANGE MASTER TO option:
MASTER_HOST)

• PORT

The port used to connect to the replication source server. (CHANGE MASTER TO option:
MASTER_PORT)

• USER

The user name of the account used to connect to the replication source server. (CHANGE MASTER
TO option: MASTER_USER)

• NETWORK_INTERFACE

The network interface that the replica is bound to, if any. (CHANGE MASTER TO option:
MASTER_BIND)

• AUTO_POSITION

1 if autopositioning is in use; otherwise 0. (CHANGE MASTER TO option: MASTER_AUTO_POSITION)

• SSL_ALLOWED, SSL_CA_FILE, SSL_CA_PATH, SSL_CERTIFICATE, SSL_CIPHER, SSL_KEY,
SSL_VERIFY_SERVER_CERTIFICATE, SSL_CRL_FILE, SSL_CRL_PATH

102

https://dev.mysql.com/doc/refman/5.7/en/replication-channels.html
https://dev.mysql.com/doc/refman/5.7/en/replication-multi-source-monitoring.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/replication-channels.html

The replication_connection_configuration Table

These columns show the SSL parameters used by the replica to connect to the replication source
server, if any.

SSL_ALLOWED has these values:

• Yes if an SSL connection to the source is permitted

• No if an SSL connection to the source is not permitted

• Ignored if an SSL connection is permitted but the replica does not have SSL support enabled

CHANGE MASTER TO options for the other SSL columns: MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_CIPHER, MASTER_SSL_CRL, MASTER_SSL_CRLPATH,
MASTER_SSL_KEY, MASTER_SSL_VERIFY_SERVER_CERT.

• CONNECTION_RETRY_INTERVAL

The number of seconds between connect retries. (CHANGE MASTER TO option:
MASTER_CONNECT_RETRY)

• CONNECTION_RETRY_COUNT

The number of times the replica can attempt to reconnect to the source in the event of a lost
connection. (CHANGE MASTER TO option: MASTER_RETRY_COUNT)

• HEARTBEAT_INTERVAL

The replication heartbeat interval on a replica, measured in seconds. (CHANGE MASTER TO option:
MASTER_HEARTBEAT_PERIOD)

• TLS_VERSION

The TLS version used on the source. For TLS version information, see Encrypted Connection TLS
Protocols and Ciphers. (CHANGE MASTER TO option: MASTER_TLS_VERSION)

This column was added in MySQL 5.7.10.

TRUNCATE TABLE is not permitted for the replication_connection_configuration table.

The following table shows the correspondence between
replication_connection_configuration columns and SHOW SLAVE STATUS columns.

replication_connection_configuration
Column

SHOW SLAVE STATUS Column

CHANNEL_NAME Channel_name

HOST Master_Host

PORT Master_Port

USER Master_User

NETWORK_INTERFACE Master_Bind

AUTO_POSITION Auto_Position

SSL_ALLOWED Master_SSL_Allowed

SSL_CA_FILE Master_SSL_CA_File

SSL_CA_PATH Master_SSL_CA_Path

SSL_CERTIFICATE Master_SSL_Cert

SSL_CIPHER Master_SSL_Cipher

SSL_KEY Master_SSL_Key

103

https://dev.mysql.com/doc/refman/5.7/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/5.7/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

The replication_connection_status Table

replication_connection_configuration
Column

SHOW SLAVE STATUS Column

SSL_VERIFY_SERVER_CERTIFICATE Master_SSL_Verify_Server_Cert

SSL_CRL_FILE Master_SSL_Crl

SSL_CRL_PATH Master_SSL_Crlpath

CONNECTION_RETRY_INTERVAL Connect_Retry

CONNECTION_RETRY_COUNT Master_Retry_Count

HEARTBEAT_INTERVAL None

TLS_VERSION Master_TLS_Version

10.11.2 The replication_connection_status Table

This table shows the current status of the replication I/O thread that handles the replica's connection to
the source.

Compared to the replication_connection_configuration table,
replication_connection_status changes more frequently. It contains values that change during
the connection, whereas replication_connection_configuration contains values which define
how the replica connects to the source and that remain constant during the connection.

The replication_connection_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

• GROUP_NAME

If this server is a member of a group, shows the name of the group the server belongs to.

• SOURCE_UUID

The server_uuid value from the source.

• THREAD_ID

The I/O thread ID.

• SERVICE_STATE

ON (thread exists and is active or idle), OFF (thread no longer exists), or CONNECTING (thread exists
and is connecting to the source).

• RECEIVED_TRANSACTION_SET

The set of global transaction IDs (GTIDs) corresponding to all transactions received by this replica.
Empty if GTIDs are not in use. See GTID Sets for more information.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the I/O thread to stop. An
error number of 0 and message of the empty string mean “no error.” If the LAST_ERROR_MESSAGE
value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

• LAST_ERROR_TIMESTAMP

104

https://dev.mysql.com/doc/refman/5.7/en/replication-channels.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html

The replication_applier_configuration Table

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent I/O error took place.

• LAST_HEARTBEAT_TIMESTAMP

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent heartbeat signal was
received by a replica.

• COUNT_RECEIVED_HEARTBEATS

The total number of heartbeat signals that a replica received since the last time it was restarted or
reset, or a CHANGE MASTER TO statement was issued.

TRUNCATE TABLE is not permitted for the replication_connection_status table.

The following table shows the correspondence between replication_connection_status
columns and SHOW SLAVE STATUS columns.

replication_connection_status Column SHOW SLAVE STATUS Column

SOURCE_UUID Master_UUID

THREAD_ID None

SERVICE_STATE Slave_IO_Running

RECEIVED_TRANSACTION_SET Retrieved_Gtid_Set

LAST_ERROR_NUMBER Last_IO_Errno

LAST_ERROR_MESSAGE Last_IO_Error

LAST_ERROR_TIMESTAMP Last_IO_Error_Timestamp

10.11.3 The replication_applier_configuration Table

This table shows the configuration parameters that affect transactions applied by the replica.
Parameters stored in the table can be changed at runtime with the CHANGE MASTER TO statement, as
indicated in the column descriptions.

The replication_applier_configuration table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

• DESIRED_DELAY

The number of seconds that the replica must lag the source. (CHANGE MASTER TO option:
MASTER_DELAY)

TRUNCATE TABLE is not permitted for the replication_applier_configuration table.

The following table shows the correspondence between replication_applier_configuration
columns and SHOW SLAVE STATUS columns.

replication_applier_configuration
Column

SHOW SLAVE STATUS Column

DESIRED_DELAY SQL_Delay

10.11.4 The replication_applier_status Table

105

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/replication-channels.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

The replication_applier_status_by_coordinator Table

This table shows the current general transaction execution status on the replica.
The table provides information about general aspects of transaction applier status
that are not specific to any thread involved. Thread-specific status information is
available in the replication_applier_status_by_coordinator table (and
replication_applier_status_by_worker if the replica is multithreaded).

The replication_applier_status table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

• SERVICE_STATE

Shows ON when the replication channel's applier threads are active or idle, OFF means that the
applier threads are not active.

• REMAINING_DELAY

If the replica is waiting for DESIRED_DELAY seconds to pass since the source applied an event,
this field contains the number of delay seconds remaining. At other times, this field is NULL. (The
DESIRED_DELAY value is stored in the replication_applier_configuration table.)

• COUNT_TRANSACTIONS_RETRIES

Shows the number of retries that were made because the replication SQL thread failed to
apply a transaction. The maximum number of retries for a given transaction is set by the
slave_transaction_retries system variable.

TRUNCATE TABLE is not permitted for the replication_applier_status table.

The following table shows the correspondence between replication_applier_status columns
and SHOW SLAVE STATUS columns.

replication_applier_status Column SHOW SLAVE STATUS Column

SERVICE_STATE None

REMAINING_DELAY SQL_Remaining_Delay

10.11.5 The replication_applier_status_by_coordinator Table

For a multithreaded replica, the replica uses multiple worker threads and a coordinator thread to
manage them, and this table shows the status of the coordinator thread. For a single-threaded replica,
this table is empty. For a multithreaded replica, the replication_applier_status_by_worker
table shows the status of the worker threads.

The replication_applier_status_by_coordinator table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

• THREAD_ID

The SQL/coordinator thread ID.

• SERVICE_STATE

106

https://dev.mysql.com/doc/refman/5.7/en/replication-channels.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#sysvar_slave_transaction_retries
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/replication-channels.html

The replication_applier_status_by_worker Table

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the SQL/coordinator
thread to stop. An error number of 0 and message which is an empty string means “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Server Error Message Reference.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent SQL/coordinator error
occurred.

TRUNCATE TABLE is not permitted for the replication_applier_status_by_coordinator
table.

The following table shows the correspondence between
replication_applier_status_by_coordinator columns and SHOW SLAVE STATUS columns.

replication_applier_status_by_coordinator
Column

SHOW SLAVE STATUS Column

THREAD_ID None

SERVICE_STATE Slave_SQL_Running

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

10.11.6 The replication_applier_status_by_worker Table

If the replica is not multithreaded, this table shows the status of the applier thread. Otherwise,
the replica uses multiple worker threads and a coordinator thread to manage them,
and this table shows the status of the worker threads. For a multithreaded replica, the
replication_applier_status_by_coordinator table shows the status of the coordinator
thread.

The replication_applier_status_by_worker table has these columns:

• CHANNEL_NAME

The replication channel which this row is displaying. There is always a default replication channel,
and more replication channels can be added. See Replication Channels for more information.

• WORKER_ID

The worker identifier (same value as the id column in the mysql.slave_worker_info table).
After STOP SLAVE, the THREAD_ID column becomes NULL, but the WORKER_ID value is preserved.

• THREAD_ID

The worker thread identifier.

• SERVICE_STATE

107

https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html
https://dev.mysql.com/doc/refman/5.7/en/replication-channels.html
https://dev.mysql.com/doc/refman/5.7/en/stop-slave.html

The replication_applier_status_by_worker Table

ON (thread exists and is active or idle) or OFF (thread no longer exists).

• LAST_SEEN_TRANSACTION

The transaction that the worker has last seen. The worker has not necessarily applied this
transaction because it could still be in the process of doing so.

If the gtid_mode system variable value is OFF, this column is ANONYMOUS, indicating that
transactions do not have global transaction identifiers (GTIDs) and are identified by file and position
only.

If gtid_mode is ON, the column value is defined as follows:

• If no transaction has executed, the column is empty.

• When a transaction has executed, the column is set from gtid_next as soon as gtid_next is
set. From this moment, the column always shows a GTID.

• The GTID is preserved until the next transaction is executed. If an error occurs, the column value
is the GTID of the transaction being executed by the worker when the error occurred. The following
statement shows whether or not that transaction has been committed:

SELECT GTID_SUBSET(LAST_SEEN_TRANSACTION, @@GLOBAL.GTID_EXECUTED)
FROM performance_schema.replication_applier_status_by_worker;

If the statement returns zero, the transaction has not yet been committed, either because it is still
being processed, or because the worker thread was stopped while it was being processed. If the
statement returns nonzero, the transaction has been committed.

• LAST_ERROR_NUMBER, LAST_ERROR_MESSAGE

The error number and error message of the most recent error that caused the worker thread
to stop. An error number of 0 and message of the empty string mean “no error”. If the
LAST_ERROR_MESSAGE value is not empty, the error values also appear in the replica's error log.

Issuing RESET MASTER or RESET SLAVE resets the values shown in these columns.

All error codes and messages displayed in the LAST_ERROR_NUMBER and LAST_ERROR_MESSAGE
columns correspond to error values listed in Server Error Message Reference.

• LAST_ERROR_TIMESTAMP

A timestamp in YYMMDD hh:mm:ss format that shows when the most recent worker error occurred.

TRUNCATE TABLE is not permitted for the replication_applier_status_by_worker table.

The following table shows the correspondence between
replication_applier_status_by_worker columns and SHOW SLAVE STATUS columns.

replication_applier_status_by_worker
Column

SHOW SLAVE STATUS Column

WORKER_ID None

THREAD_ID None

SERVICE_STATE None

LAST_SEEN_TRANSACTION None

LAST_ERROR_NUMBER Last_SQL_Errno

LAST_ERROR_MESSAGE Last_SQL_Error

LAST_ERROR_TIMESTAMP Last_SQL_Error_Timestamp

108

https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_mode
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_next
https://dev.mysql.com/doc/refman/5.7/en/replication-options-gtids.html#sysvar_gtid_next
https://dev.mysql.com/doc/refman/5.7/en/reset-master.html
https://dev.mysql.com/doc/refman/5.7/en/reset-slave.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-slave-status.html

The replication_group_members Table

10.11.7 The replication_group_members Table

This table shows network and status information for replication group members. The network
addresses shown are the addresses used to connect clients to the group, and should
not be confused with the member's internal group communication address specified by
group_replication_local_address.

The replication_group_members table has these columns:

• CHANNEL_NAME

Name of the Group Replication channel.

• MEMBER_ID

Identifier for this member; the same as the server UUID.

• MEMBER_HOST

Network address of this member (host name or IP address). Retrieved from the member's hostname
variable.

• MEMBER_PORT

Port on which the server is listening. Retrieved from the member's port variable.

• MEMBER_STATE

Current state of this member; can be any one of the following:

• OFFLINE: The Group Replication plugin is installed but has not been started.

• RECOVERING: The server has joined a group from which it is retrieving data.

• ONLINE: The member is in a fully functioning state.

• ERROR: The member has encountered an error, either during applying transactions or during the
recovery phase, and is not participating in the group's transactions.

• UNREACHABLE: The failure detection process suspects that this member cannot be contacted,
because the group messages have timed out.

TRUNCATE TABLE is not permitted for the replication_group_members table.

10.11.8 The replication_group_member_stats Table

This table shows statistical information for MySQL Group Replication members. It is populated only
when Group Replication is running.

The replication_group_member_stats table has these columns:

• CHANNEL_NAME

Name of the Group Replication channel.

• VIEW_ID

Current view identifier for this group.

• MEMBER_ID

The member server UUID. This has a different value for each member in the group. This also serves
as a key because it is unique to each member.

109

https://dev.mysql.com/doc/refman/5.7/en/group-replication-system-variables.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Performance Schema Lock Tables

• COUNT_TRANSACTIONS_IN_QUEUE

The number of transactions in the queue pending conflict detection checks. Once the transactions
have been checked for conflicts, if they pass the check, they are queued to be applied as well.

• COUNT_TRANSACTIONS_CHECKED

The number of transactions that have been checked for conflicts.

• COUNT_CONFLICTS_DETECTED

The number of transactions that have not passed the conflict detection check.

• COUNT_TRANSACTIONS_ROWS_VALIDATING

Number of transaction rows which can be used for certification, but have not been garbage collected.
Can be thought of as the current size of the conflict detection database against which each
transaction is certified.

• TRANSACTIONS_COMMITTED_ALL_MEMBERS

The transactions that have been successfully committed on all members of the replication group,
shown as GTID Sets. This is updated at a fixed time interval.

• LAST_CONFLICT_FREE_TRANSACTION

The transaction identifier of the last conflict free transaction which was checked.

TRUNCATE TABLE is not permitted for the replication_group_member_stats table.

10.12 Performance Schema Lock Tables
The Performance Schema exposes lock information through these tables:

• metadata_locks: Metadata locks held and requested

• table_handles: Table locks held and requested

The following sections describe these tables in more detail.

10.12.1 The metadata_locks Table

MySQL uses metadata locking to manage concurrent access to database objects and to ensure data
consistency; see Metadata Locking. Metadata locking applies not just to tables, but also to schemas,
stored programs (procedures, functions, triggers, scheduled events), tablespaces, user locks acquired
with the GET_LOCK() function (see Locking Functions), and locks acquired with the locking service
described in The Locking Service.

The Performance Schema exposes metadata lock information through the metadata_locks table:

• Locks that have been granted (shows which sessions own which current metadata locks).

• Locks that have been requested but not yet granted (shows which sessions are waiting for which
metadata locks).

• Lock requests that have been killed by the deadlock detector.

• Lock requests that have timed out and are waiting for the requesting session's lock request to be
discarded.

This information enables you to understand metadata lock dependencies between sessions. You can
see not only which lock a session is waiting for, but which session currently holds that lock.

110

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/metadata-locking.html
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html
https://dev.mysql.com/doc/refman/5.7/en/locking-service.html

The metadata_locks Table

The metadata_locks table is read only and cannot be updated. It is autosized by default; to
configure the table size, set the performance_schema_max_metadata_locks system variable at
server startup.

Metadata lock instrumentation uses the wait/lock/metadata/sql/mdl instrument, which is
disabled by default.

To control metadata lock instrumentation state at server startup, use lines like these in your my.cnf
file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/metadata/sql/mdl=OFF'

To control metadata lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/metadata/sql/mdl';

The Performance Schema maintains metadata_locks table content as follows, using the
LOCK_STATUS column to indicate the status of each lock:

• When a metadata lock is requested and obtained immediately, a row with a status of GRANTED is
inserted.

• When a metadata lock is requested and not obtained immediately, a row with a status of PENDING is
inserted.

• When a metadata lock previously requested is granted, its row status is updated to GRANTED.

• When a metadata lock is released, its row is deleted.

• When a pending lock request is canceled by the deadlock detector to break a deadlock
(ER_LOCK_DEADLOCK), its row status is updated from PENDING to VICTIM.

• When a pending lock request times out (ER_LOCK_WAIT_TIMEOUT), its row status is updated from
PENDING to TIMEOUT.

• When granted lock or pending lock request is killed, its row status is updated from GRANTED or
PENDING to KILLED.

• The VICTIM, TIMEOUT, and KILLED status values are brief and signify that the lock row is about to
be deleted.

• The PRE_ACQUIRE_NOTIFY and POST_RELEASE_NOTIFY status values are brief and signify
that the metadata locking subsubsystem is notifying interested storage engines while entering lock
acquisition operations or leaving lock release operations. These status values were added in MySQL
5.7.11.

The metadata_locks table has these columns:

111

https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_lock_deadlock
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_lock_wait_timeout

The table_handles Table

• OBJECT_TYPE

The type of lock used in the metadata lock subsystem. The value is one of GLOBAL, SCHEMA, TABLE,
FUNCTION, PROCEDURE, TRIGGER (currently unused), EVENT, COMMIT, USER LEVEL LOCK,
TABLESPACE, or LOCKING SERVICE.

A value of USER LEVEL LOCK indicates a lock acquired with GET_LOCK(). A value of LOCKING
SERVICE indicates a lock acquired with the locking service described in The Locking Service.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The address in memory of the instrumented object.

• LOCK_TYPE

The lock type from the metadata lock subsystem. The value is one of INTENTION_EXCLUSIVE,
SHARED, SHARED_HIGH_PRIO, SHARED_READ, SHARED_WRITE, SHARED_UPGRADABLE,
SHARED_NO_WRITE, SHARED_NO_READ_WRITE, or EXCLUSIVE.

• LOCK_DURATION

The lock duration from the metadata lock subsystem. The value is one of STATEMENT,
TRANSACTION, or EXPLICIT. The STATEMENT and TRANSACTION values signify locks that are
released implicitly at statement or transaction end, respectively. The EXPLICIT value signifies locks
that survive statement or transaction end and are released by explicit action, such as global locks
acquired with FLUSH TABLES WITH READ LOCK.

• LOCK_STATUS

The lock status from the metadata lock subsystem. The value is one of PENDING, GRANTED,
VICTIM, TIMEOUT, KILLED, PRE_ACQUIRE_NOTIFY, or POST_RELEASE_NOTIFY. The
Performance Schema assigns these values as described previously.

• SOURCE

The name of the source file containing the instrumented code that produced the event and the line
number in the file at which the instrumentation occurs. This enables you to check the source to
determine exactly what code is involved.

• OWNER_THREAD_ID

The thread requesting a metadata lock.

• OWNER_EVENT_ID

The event requesting a metadata lock.

TRUNCATE TABLE is not permitted for the metadata_locks table.

10.12.2 The table_handles Table

The Performance Schema exposes table lock information through the table_handles table to show
the table locks currently in effect for each opened table handle. table_handles reports what is
recorded by the table lock instrumentation. This information shows which table handles the server has
open, how they are locked, and by which sessions.

112

https://dev.mysql.com/doc/refman/5.7/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/5.7/en/locking-service.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-tables-with-read-lock
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The table_handles Table

The table_handles table is read only and cannot be updated. It is autosized by default; to configure
the table size, set the performance_schema_max_table_handles system variable at server
startup.

Table lock instrumentation uses the wait/lock/table/sql/handler instrument, which is enabled
by default.

To control table lock instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=ON'

• Disable:

[mysqld]
performance-schema-instrument='wait/lock/table/sql/handler=OFF'

To control table lock instrumentation state at runtime, update the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES', TIMED = 'YES'
WHERE NAME = 'wait/lock/table/sql/handler';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO', TIMED = 'NO'
WHERE NAME = 'wait/lock/table/sql/handler';

The table_handles table has these columns:

• OBJECT_TYPE

The table opened by a table handle.

• OBJECT_SCHEMA

The schema that contains the object.

• OBJECT_NAME

The name of the instrumented object.

• OBJECT_INSTANCE_BEGIN

The table handle address in memory.

• OWNER_THREAD_ID

The thread owning the table handle.

• OWNER_EVENT_ID

The event which caused the table handle to be opened.

• INTERNAL_LOCK

The table lock used at the SQL level. The value is one of READ, READ WITH SHARED LOCKS, READ
HIGH PRIORITY, READ NO INSERT, WRITE ALLOW WRITE, WRITE CONCURRENT INSERT,
WRITE LOW PRIORITY, or WRITE. For information about these lock types, see the include/
thr_lock.h source file.

113

Performance Schema System Variable Tables

• EXTERNAL_LOCK

The table lock used at the storage engine level. The value is one of READ EXTERNAL or WRITE
EXTERNAL.

TRUNCATE TABLE is not permitted for the table_handles table.

10.13 Performance Schema System Variable Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the
description of that variable in Server System Variables.

The MySQL server maintains many system variables that indicate how it is configured (see Server
System Variables). System variable information is available in these Performance Schema tables:

• global_variables: Global system variables. An application that wants only global values should
use this table.

• session_variables: System variables for the current session. An application that wants all
system variable values for its own session should use this table. It includes the session variables for
its session, as well as the values of global variables that have no session counterpart.

• variables_by_thread: Session system variables for each active session. An application that
wants to know the session variable values for specific sessions should use this table. It includes
session variables only, identified by thread ID.

The session variable tables (session_variables, variables_by_thread) contain information
only for active sessions, not terminated sessions.

The global_variables and session_variables tables have these columns:

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The system variable value. For global_variables, this column contains the global value. For
session_variables, this column contains the variable value in effect for the current session.

The variables_by_thread table has these columns:

• THREAD_ID

The thread identifier of the session in which the system variable is defined.

• VARIABLE_NAME

The system variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The variables_by_thread table contains system variable information only about foreground
threads. If not all threads are instrumented by the Performance Schema, this table may miss some
rows. In this case, the Performance_schema_thread_instances_lost status variable is greater
than zero.

114

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_show_compatibility_56
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html

Performance Schema Status Variable Tables

TRUNCATE TABLE is not supported for Performance Schema system variable tables.

10.14 Performance Schema Status Variable Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the
description of that variable in Server System Variables.

The MySQL server maintains many status variables that provide information about its operation (see
Server Status Variables). Status variable information is available in these Performance Schema tables:

• global_status: Global status variables. An application that wants only global values should use
this table.

• session_status: Status variables for the current session. An application that wants all status
variable values for its own session should use this table. It includes the session variables for its
session, as well as the values of global variables that have no session counterpart.

• status_by_thread: Session status variables for each active session. An application that wants
to know the session variable values for specific sessions should use this table. It includes session
variables only, identified by thread ID.

There are also summary tables that provide status variable information aggregated by account, host
name, and user name. See Section 10.15.10, “Status Variable Summary Tables”.

The session variable tables (session_status, status_by_thread) contain information only for
active sessions, not terminated sessions.

The Performance Schema collects statistics for global status variables only for threads for which the
INSTRUMENTED value is YES in the threads table. Statistics for session status variables are always
collected, regardless of the INSTRUMENTED value.

The Performance Schema does not collect statistics for Com_xxx status variables
in the status variable tables. To obtain global and per-session statement execution
counts, use the events_statements_summary_global_by_event_name and
events_statements_summary_by_thread_by_event_name tables, respectively. For example:

SELECT EVENT_NAME, COUNT_STAR
FROM performance_schema.events_statements_summary_global_by_event_name
WHERE EVENT_NAME LIKE 'statement/sql/%';

The global_status and session_status tables have these columns:

• VARIABLE_NAME

The status variable name.

• VARIABLE_VALUE

The status variable value. For global_status, this column contains the global value. For
session_status, this column contains the variable value for the current session.

The status_by_thread table contains the status of each active thread. It has these columns:

• THREAD_ID

The thread identifier of the session in which the status variable is defined.

• VARIABLE_NAME

115

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_show_compatibility_56
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html

Performance Schema Summary Tables

The status variable name.

• VARIABLE_VALUE

The session variable value for the session named by the THREAD_ID column.

The status_by_thread table contains status variable information only about foreground threads. If
the performance_schema_max_thread_instances system variable is not autoscaled (signified by
a value of −1) and the maximum permitted number of instrumented thread objects is not greater than
the number of background threads, the table is empty.

The Performance Schema supports TRUNCATE TABLE for status variable tables as follows:

• global_status: Resets thread, account, host, and user status. Resets global status variables
except those that the server never resets.

• session_status: Not supported.

• status_by_thread: Aggregates status for all threads to the global status and account status, then
resets thread status. If account statistics are not collected, the session status is added to host and
user status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system
variables, respectively, are set to 0.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.15 Performance Schema Summary Tables

Summary tables provide aggregated information for terminated events over time. The tables in this
group summarize event data in different ways.

Each summary table has grouping columns that determine how to group the data to be aggregated,
and summary columns that contain the aggregated values. Tables that summarize events in similar
ways often have similar sets of summary columns and differ only in the grouping columns used to
determine how events are aggregated.

Summary tables can be truncated with TRUNCATE TABLE. Generally, the effect is to reset the
summary columns to 0 or NULL, not to remove rows. This enables you to clear collected values and
restart aggregation. That might be useful, for example, after you have made a runtime configuration
change. Exceptions to this truncation behavior are noted in individual summary table sections.

Wait Event Summaries

Table 10.3 Performance Schema Wait Event Summary Tables

Table Name Description

events_waits_summary_by_account_by_event_nameWait events per account and event name

events_waits_summary_by_host_by_event_nameWait events per host name and event name

events_waits_summary_by_instance Wait events per instance

events_waits_summary_by_thread_by_event_nameWait events per thread and event name

events_waits_summary_by_user_by_event_nameWait events per user name and event name

events_waits_summary_global_by_event_nameWait events per event name

116

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Stage Summaries

Stage Summaries

Table 10.4 Performance Schema Stage Event Summary Tables

Table Name Description

events_stages_summary_by_account_by_event_nameStage events per account and event name

events_stages_summary_by_host_by_event_nameStage events per host name and event name

events_stages_summary_by_thread_by_event_nameStage waits per thread and event name

events_stages_summary_by_user_by_event_nameStage events per user name and event name

events_stages_summary_global_by_event_nameStage waits per event name

Statement Summaries

Table 10.5 Performance Schema Statement Event Summary Tables

Table Name Description

events_statements_summary_by_account_by_event_nameStatement events per account and event name

events_statements_summary_by_digest Statement events per schema and digest value

events_statements_summary_by_host_by_event_nameStatement events per host name and event name

events_statements_summary_by_program Statement events per stored program

events_statements_summary_by_thread_by_event_nameStatement events per thread and event name

events_statements_summary_by_user_by_event_nameStatement events per user name and event name

events_statements_summary_global_by_event_nameStatement events per event name

prepared_statements_instances Prepared statement instances and statistics

Transaction Summaries

Table 10.6 Performance Schema Transaction Event Summary Tables

Table Name Description

events_transactions_summary_by_account_by_event_nameTransaction events per account and event name

events_transactions_summary_by_host_by_event_nameTransaction events per host name and event
name

events_transactions_summary_by_thread_by_event_nameTransaction events per thread and event name

events_transactions_summary_by_user_by_event_nameTransaction events per user name and event
name

events_transactions_summary_global_by_event_nameTransaction events per event name

Object Wait Summaries

Table 10.7 Performance Schema Object Event Summary Tables

Table Name Description

objects_summary_global_by_type Object summaries

File I/O Summaries

Table 10.8 Performance Schema File I/O Event Summary Tables

Table Name Description

file_summary_by_event_name File events per event name

117

Table I/O and Lock Wait Summaries

Table Name Description

file_summary_by_instance File events per file instance

Table I/O and Lock Wait Summaries

Table 10.9 Performance Schema Table I/O and Lock Wait Event Summary Tables

Table Name Description

table_io_waits_summary_by_index_usage Table I/O waits per index

table_io_waits_summary_by_table Table I/O waits per table

table_lock_waits_summary_by_table Table lock waits per table

Socket Summaries

Table 10.10 Performance Schema Socket Event Summary Tables

Table Name Description

socket_summary_by_event_name Socket waits and I/O per event name

socket_summary_by_instance Socket waits and I/O per instance

Memory Summaries

Table 10.11 Performance Schema Memory Operation Summary Tables

Table Name Description

memory_summary_by_account_by_event_nameMemory operations per account and event name

memory_summary_by_host_by_event_name Memory operations per host and event name

memory_summary_by_thread_by_event_nameMemory operations per thread and event name

memory_summary_by_user_by_event_name Memory operations per user and event name

memory_summary_global_by_event_name Memory operations globally per event name

Status Variable Summaries

Table 10.12 Performance Schema Error Status Variable Summary Tables

Table Name Description

status_by_account Session status variables per account

status_by_host Session status variables per host name

status_by_user Session status variables per user name

10.15.1 Wait Event Summary Tables

The Performance Schema maintains tables for collecting current and recent wait events, and
aggregates that information in summary tables. Section 10.4, “Performance Schema Wait Event
Tables” describes the events on which wait summaries are based. See that discussion for information
about the content of wait events, the current and recent wait event tables, and how to control wait event
collection, which is disabled by default.

Example wait event summary information:

mysql> SELECT *
 FROM performance_schema.events_waits_summary_global_by_event_name\G
...
*************************** 6. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/BINARY_LOG::LOCK_index

118

Wait Event Summary Tables

 COUNT_STAR: 8
SUM_TIMER_WAIT: 2119302
MIN_TIMER_WAIT: 196092
AVG_TIMER_WAIT: 264912
MAX_TIMER_WAIT: 569421
...
*************************** 9. row ***************************
 EVENT_NAME: wait/synch/mutex/sql/hash_filo::lock
 COUNT_STAR: 69
SUM_TIMER_WAIT: 16848828
MIN_TIMER_WAIT: 0
AVG_TIMER_WAIT: 244185
MAX_TIMER_WAIT: 735345
...

Each wait event summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table:

• events_waits_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_waits_summary_by_host_by_event_name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

• events_waits_summary_by_instance has EVENT_NAME and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given event name and object. If an instrument is used
to create multiple instances, each instance has a unique OBJECT_INSTANCE_BEGIN value and is
summarized separately in this table.

• events_waits_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_waits_summary_by_user_by_event_name has EVENT_NAME and USER columns.
Each row summarizes events for a given user and event name.

• events_waits_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name. An instrument might be used to create multiple
instances of the instrumented object. For example, if there is an instrument for a mutex that is
created for each connection, there are as many instances as there are connections. The summary
row for the instrument summarizes over all these instances.

Each wait event summary table has these summary columns containing aggregated values:

• COUNT_STAR

The number of summarized events. This value includes all events, whether timed or nontimed.

• SUM_TIMER_WAIT

The total wait time of the summarized timed events. This value is calculated only for timed
events because nontimed events have a wait time of NULL. The same is true for the other
xxx_TIMER_WAIT values.

• MIN_TIMER_WAIT

The minimum wait time of the summarized timed events.

• AVG_TIMER_WAIT

The average wait time of the summarized timed events.

• MAX_TIMER_WAIT

119

Stage Summary Tables

The maximum wait time of the summarized timed events.

TRUNCATE TABLE is permitted for wait summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each wait summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_waits_summary_global_by_event_name. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.15.2 Stage Summary Tables

The Performance Schema maintains tables for collecting current and recent stage events, and
aggregates that information in summary tables. Section 10.5, “Performance Schema Stage Event
Tables” describes the events on which stage summaries are based. See that discussion for information
about the content of stage events, the current and historical stage event tables, and how to control
stage event collection, which is disabled by default.

Example stage event summary information:

mysql> SELECT *
 FROM performance_schema.events_stages_summary_global_by_event_name\G
...
*************************** 5. row ***************************
 EVENT_NAME: stage/sql/checking permissions
 COUNT_STAR: 57
SUM_TIMER_WAIT: 26501888880
MIN_TIMER_WAIT: 7317456
AVG_TIMER_WAIT: 464945295
MAX_TIMER_WAIT: 12858936792
...
*************************** 9. row ***************************
 EVENT_NAME: stage/sql/closing tables
 COUNT_STAR: 37
SUM_TIMER_WAIT: 662606568
MIN_TIMER_WAIT: 1593864
AVG_TIMER_WAIT: 17907891
MAX_TIMER_WAIT: 437977248
...

Each stage summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• events_stages_summary_by_account_by_event_name has EVENT_NAME, USER, and HOST
columns. Each row summarizes events for a given account (user and host combination) and event
name.

• events_stages_summary_by_host_by_event_name has EVENT_NAME and HOST columns.
Each row summarizes events for a given host and event name.

• events_stages_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME
columns. Each row summarizes events for a given thread and event name.

• events_stages_summary_by_user_by_event_name has EVENT_NAME and USER columns.
Each row summarizes events for a given user and event name.

• events_stages_summary_global_by_event_name has an EVENT_NAME column. Each row
summarizes events for a given event name.

120

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Statement Summary Tables

Each stage summary table has these summary columns containing aggregated values: COUNT_STAR,
SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, and MAX_TIMER_WAIT. These
columns are analogous to the columns of the same names in the wait event summary tables (see
Section 10.15.1, “Wait Event Summary Tables”), except that the stage summary tables aggregate
events from events_stages_current rather than events_waits_current.

TRUNCATE TABLE is permitted for stage summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each stage summary table that is aggregated by account, host, user, or thread is
implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_stages_summary_global_by_event_name. For details, see Section 10.8, “Performance
Schema Connection Tables”.

10.15.3 Statement Summary Tables

The Performance Schema maintains tables for collecting current and recent statement events, and
aggregates that information in summary tables. Section 10.6, “Performance Schema Statement Event
Tables” describes the events on which statement summaries are based. See that discussion for
information about the content of statement events, the current and historical statement event tables,
and how to control statement event collection, which is partially disabled by default.

Example statement event summary information:

mysql> SELECT *
 FROM performance_schema.events_statements_summary_global_by_event_name\G
*************************** 1. row ***************************
 EVENT_NAME: statement/sql/select
 COUNT_STAR: 25
 SUM_TIMER_WAIT: 1535983999000
 MIN_TIMER_WAIT: 209823000
 AVG_TIMER_WAIT: 61439359000
 MAX_TIMER_WAIT: 1363397650000
 SUM_LOCK_TIME: 20186000000
 SUM_ERRORS: 0
 SUM_WARNINGS: 0
 SUM_ROWS_AFFECTED: 0
 SUM_ROWS_SENT: 388
 SUM_ROWS_EXAMINED: 370
SUM_CREATED_TMP_DISK_TABLES: 0
 SUM_CREATED_TMP_TABLES: 0
 SUM_SELECT_FULL_JOIN: 0
 SUM_SELECT_FULL_RANGE_JOIN: 0
 SUM_SELECT_RANGE: 0
 SUM_SELECT_RANGE_CHECK: 0
 SUM_SELECT_SCAN: 6
 SUM_SORT_MERGE_PASSES: 0
 SUM_SORT_RANGE: 0
 SUM_SORT_ROWS: 0
 SUM_SORT_SCAN: 0
 SUM_NO_INDEX_USED: 6
 SUM_NO_GOOD_INDEX_USED: 0
...

Each statement summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table:

• events_statements_summary_by_account_by_event_name has EVENT_NAME, USER, and
HOST columns. Each row summarizes events for a given account (user and host combination) and
event name.

121

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Statement Summary Tables

• events_statements_summary_by_digest has SCHEMA_NAME and DIGEST columns. Each
row summarizes events per schema and digest value. (The DIGEST_TEXT column contains the
corresponding normalized statement digest text, but is neither a grouping nor a summary column.)

The maximum number of rows in the table is autosized at server startup. To set this maximum
explicitly, set the performance_schema_digests_size system variable at server startup.

• events_statements_summary_by_host_by_event_name has EVENT_NAME and HOST
columns. Each row summarizes events for a given host and event name.

• events_statements_summary_by_program has OBJECT_TYPE, OBJECT_SCHEMA, and
OBJECT_NAME columns. Each row summarizes events for a given stored program (stored procedure
or function, trigger, or event).

• events_statements_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_statements_summary_by_user_by_event_name has EVENT_NAME and USER
columns. Each row summarizes events for a given user and event name.

• events_statements_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

• prepared_statements_instances has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given prepared statement.

Each statement summary table has these summary columns containing aggregated values (with
exceptions as noted):

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 10.15.1, “Wait Event Summary Tables”), except that the statement summary tables
aggregate events from events_statements_current rather than events_waits_current.

The prepared_statements_instances table does not have these columns.

• SUM_xxx

The aggregate of the corresponding xxx column in the events_statements_current table. For
example, the SUM_LOCK_TIME and SUM_ERRORS columns in statement summary tables are the
aggregates of the LOCK_TIME and ERRORS columns in events_statements_current table.

The events_statements_summary_by_digest table has these additional summary columns:

• FIRST_SEEN, LAST_SEEN

Timestamps indicating when statements with the given digest value were first seen and most
recently seen.

The events_statements_summary_by_program table has these additional summary columns:

• COUNT_STATEMENTS, SUM_STATEMENTS_WAIT, MIN_STATEMENTS_WAIT,
AVG_STATEMENTS_WAIT, MAX_STATEMENTS_WAIT

Statistics about nested statements invoked during stored program execution.

The prepared_statements_instances table has these additional summary columns:

• COUNT_EXECUTE, SUM_TIMER_EXECUTE, MIN_TIMER_EXECUTE, AVG_TIMER_EXECUTE,
MAX_TIMER_EXECUTE

Aggregated statistics for executions of the prepared statement.

122

Statement Summary Tables

TRUNCATE TABLE is permitted for statement summary tables. It has these effects:

• For events_statements_summary_by_digest, it removes the rows.

• For other summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For other summary tables aggregated by account, host, or user, truncation removes rows for
accounts, hosts, or users with no connections, and resets the summary columns to zero for the
remaining rows.

In addition, each statement summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_statements_summary_global_by_event_name. For details, see Section 10.8,
“Performance Schema Connection Tables”.

Statement Digest Aggregation Rules

If the statements_digest consumer is enabled, aggregation into
events_statements_summary_by_digest occurs as follows when a statement completes.
Aggregation is based on the DIGEST value computed for the statement.

• If a events_statements_summary_by_digest row already exists with the digest value for
the statement that just completed, statistics for the statement are aggregated to that row. The
LAST_SEEN column is updated to the current time.

• If no row has the digest value for the statement that just completed, and the table is not full, a new
row is created for the statement. The FIRST_SEEN and LAST_SEEN columns are initialized with the
current time.

• If no row has the statement digest value for the statement that just completed, and the table is full,
the statistics for the statement that just completed are added to a special “catch-all” row with DIGEST
= NULL, which is created if necessary. If the row is created, the FIRST_SEEN and LAST_SEEN
columns are initialized with the current time. Otherwise, the LAST_SEEN column is updated with the
current time.

The row with DIGEST = NULL is maintained because Performance Schema tables have a maximum
size due to memory constraints. The DIGEST = NULL row permits digests that do not match other rows
to be counted even if the summary table is full, using a common “other” bucket. This row helps you
estimate whether the digest summary is representative:

• A DIGEST = NULL row that has a COUNT_STAR value that represents 5% of all digests shows that
the digest summary table is very representative; the other rows cover 95% of the statements seen.

• A DIGEST = NULL row that has a COUNT_STAR value that represents 50% of all digests shows that
the digest summary table is not very representative; the other rows cover only half the statements
seen. Most likely the DBA should increase the maximum table size so that more of the rows counted
in the DIGEST = NULL row would be counted using more specific rows instead. By default, the table
is autosized, but if this size is too small, set the performance_schema_digests_size system
variable to a larger value at server startup.

Stored Program Instrumentation Behavior

For stored program types for which instrumentation is enabled in the setup_objects table,
events_statements_summary_by_program maintains statistics for stored programs as follows:

• A row is added for an object when it is first used in the server.

• The row for an object is removed when the object is dropped.

• Statistics are aggregated in the row for an object as it executes.

123

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Transaction Summary Tables

See also Section 5.3, “Event Pre-Filtering”.

10.15.4 Transaction Summary Tables

The Performance Schema maintains tables for collecting current and recent transaction events, and
aggregates that information in summary tables. Section 10.7, “Performance Schema Transaction
Tables” describes the events on which transaction summaries are based. See that discussion for
information about the content of transaction events, the current and historical transaction event tables,
and how to control transaction event collection, which is disabled by default.

Example transaction event summary information:

mysql> SELECT *
 FROM performance_schema.events_transactions_summary_global_by_event_name
 LIMIT 1\G
*************************** 1. row ***************************
 EVENT_NAME: transaction
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 19550092000
 MIN_TIMER_WAIT: 2954148000
 AVG_TIMER_WAIT: 3910018000
 MAX_TIMER_WAIT: 5486275000
 COUNT_READ_WRITE: 5
SUM_TIMER_READ_WRITE: 19550092000
MIN_TIMER_READ_WRITE: 2954148000
AVG_TIMER_READ_WRITE: 3910018000
MAX_TIMER_READ_WRITE: 5486275000
 COUNT_READ_ONLY: 0
 SUM_TIMER_READ_ONLY: 0
 MIN_TIMER_READ_ONLY: 0
 AVG_TIMER_READ_ONLY: 0
 MAX_TIMER_READ_ONLY: 0

Each transaction summary table has one or more grouping columns to indicate how the table
aggregates events. Event names refer to names of event instruments in the setup_instruments
table:

• events_transactions_summary_by_account_by_event_name has USER, HOST, and
EVENT_NAME columns. Each row summarizes events for a given account (user and host
combination) and event name.

• events_transactions_summary_by_host_by_event_name has HOST and EVENT_NAME
columns. Each row summarizes events for a given host and event name.

• events_transactions_summary_by_thread_by_event_name has THREAD_ID and
EVENT_NAME columns. Each row summarizes events for a given thread and event name.

• events_transactions_summary_by_user_by_event_name has USER and EVENT_NAME
columns. Each row summarizes events for a given user and event name.

• events_transactions_summary_global_by_event_name has an EVENT_NAME column. Each
row summarizes events for a given event name.

Each transaction summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns are analogous to the columns of the same names in the wait event summary tables
(see Section 10.15.1, “Wait Event Summary Tables”), except that the transaction summary tables
aggregate events from events_transactions_current rather than events_waits_current.
These columns summarize read-write and read-only transactions.

• COUNT_READ_WRITE, SUM_TIMER_READ_WRITE, MIN_TIMER_READ_WRITE,
AVG_TIMER_READ_WRITE, MAX_TIMER_READ_WRITE

124

Object Wait Summary Table

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-write
transactions only. The transaction access mode specifies whether transactions operate in read/write
or read-only mode.

• COUNT_READ_ONLY, SUM_TIMER_READ_ONLY, MIN_TIMER_READ_ONLY,
AVG_TIMER_READ_ONLY, MAX_TIMER_READ_ONLY

These are similar to the COUNT_STAR and xxx_TIMER_WAIT columns, but summarize read-only
transactions only. The transaction access mode specifies whether transactions operate in read/write
or read-only mode.

TRUNCATE TABLE is permitted for transaction summary tables. It has these effects:

• For summary tables not aggregated by account, host, or user, truncation resets the summary
columns to zero rather than removing rows.

• For summary tables aggregated by account, host, or user, truncation removes rows for accounts,
hosts, or users with no connections, and resets the summary columns to zero for the remaining rows.

In addition, each transaction summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
events_transactions_summary_global_by_event_name. For details, see Section 10.8,
“Performance Schema Connection Tables”.

Transaction Aggregation Rules

Transaction event collection occurs without regard to isolation level, access mode, or autocommit
mode.

Transaction event collection occurs for all non-aborted transactions initiated by the server, including
empty transactions.

Read-write transactions are generally more resource intensive than read-only transactions, therefore
transaction summary tables include separate aggregate columns for read-write and read-only
transactions.

Resource requirements may also vary with transaction isolation level. However, presuming that only
one isolation level would be used per server, aggregation by isolation level is not provided.

10.15.5 Object Wait Summary Table

The Performance Schema maintains the objects_summary_global_by_type table for aggregating
object wait events.

Example object wait event summary information:

mysql> SELECT * FROM performance_schema.objects_summary_global_by_type\G
...
*************************** 3. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: test
 OBJECT_NAME: t
 COUNT_STAR: 3
SUM_TIMER_WAIT: 263126976
MIN_TIMER_WAIT: 1522272
AVG_TIMER_WAIT: 87708678
MAX_TIMER_WAIT: 258428280
...
*************************** 10. row ***************************
 OBJECT_TYPE: TABLE
 OBJECT_SCHEMA: mysql
 OBJECT_NAME: user
 COUNT_STAR: 14
SUM_TIMER_WAIT: 365567592

125

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

File I/O Summary Tables

MIN_TIMER_WAIT: 1141704
AVG_TIMER_WAIT: 26111769
MAX_TIMER_WAIT: 334783032
...

The objects_summary_global_by_type table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. Each row summarizes
events for the given object.

objects_summary_global_by_type has the same summary columns as the
events_waits_summary_by_xxx tables. See Section 10.15.1, “Wait Event Summary Tables”.

TRUNCATE TABLE is permitted for the object summary table. It resets the summary columns to zero
rather than removing rows.

10.15.6 File I/O Summary Tables

The Performance Schema maintains file I/O summary tables that aggregate information about I/O
operations.

Example file I/O event summary information:

mysql> SELECT * FROM performance_schema.file_summary_by_event_name\G
...
*************************** 2. row ***************************
 EVENT_NAME: wait/io/file/sql/binlog
 COUNT_STAR: 31
 SUM_TIMER_WAIT: 8243784888
 MIN_TIMER_WAIT: 0
 AVG_TIMER_WAIT: 265928484
 MAX_TIMER_WAIT: 6490658832
...
mysql> SELECT * FROM performance_schema.file_summary_by_instance\G
...
*************************** 2. row ***************************
 FILE_NAME: /var/mysql/share/english/errmsg.sys
 EVENT_NAME: wait/io/file/sql/ERRMSG
 EVENT_NAME: wait/io/file/sql/ERRMSG
 OBJECT_INSTANCE_BEGIN: 4686193384
 COUNT_STAR: 5
 SUM_TIMER_WAIT: 13990154448
 MIN_TIMER_WAIT: 26349624
 AVG_TIMER_WAIT: 2798030607
 MAX_TIMER_WAIT: 8150662536
...

Each file I/O summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• file_summary_by_event_name has an EVENT_NAME column. Each row summarizes events for a
given event name.

• file_summary_by_instance has FILE_NAME, EVENT_NAME, and OBJECT_INSTANCE_BEGIN
columns. Each row summarizes events for a given file and event name.

Each file I/O summary table has the following summary columns containing aggregated values. Some
columns are more general and have values that are the same as the sum of the values of more fine-
grained columns. In this way, aggregations at higher levels are available directly without the need for
user-defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

126

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Table I/O and Lock Wait Summary Tables

These columns aggregate all read operations, including FGETS, FGETC, FREAD, and READ.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all write operations, including FPUTS, FPUTC, FPRINTF, VFPRINTF,
FWRITE, and PWRITE.

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other I/O operations, including CREATE, DELETE, OPEN, CLOSE,
STREAM_OPEN, STREAM_CLOSE, SEEK, TELL, FLUSH, STAT, FSTAT, CHSIZE, RENAME, and SYNC.
There are no byte counts for these operations.

TRUNCATE TABLE is permitted for file I/O summary tables. It resets the summary columns to zero
rather than removing rows.

The MySQL server uses several techniques to avoid I/O operations by caching information read from
files, so it is possible that statements you might expect to result in I/O events do not do so. You may be
able to ensure that I/O does occur by flushing caches or restarting the server to reset its state.

10.15.7 Table I/O and Lock Wait Summary Tables

The following sections describe the table I/O and lock wait summary tables:

• table_io_waits_summary_by_index_usage: Table I/O waits per index

• table_io_waits_summary_by_table: Table I/O waits per table

• table_lock_waits_summary_by_table: Table lock waits per table

10.15.7.1 The table_io_waits_summary_by_table Table

The table_io_waits_summary_by_table table aggregates all table I/O wait events, as generated
by the wait/io/table/sql/handler instrument. The grouping is by table.

The table_io_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

table_io_waits_summary_by_table has the following summary columns containing aggregated
values. As indicated in the column descriptions, some columns are more general and have values
that are the same as the sum of the values of more fine-grained columns. For example, columns that
aggregate all writes hold the sum of the corresponding columns that aggregate inserts, updates, and
deletes. In this way, aggregations at higher levels are available directly without the need for user-
defined views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all I/O operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read operations. They are the same as the sum of the corresponding
xxx_FETCH columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

127

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Table I/O and Lock Wait Summary Tables

These columns aggregate all write operations. They are the same as the sum of the corresponding
xxx_INSERT, xxx_UPDATE, and xxx_DELETE columns.

• COUNT_FETCH, SUM_TIMER_FETCH, MIN_TIMER_FETCH, AVG_TIMER_FETCH,
MAX_TIMER_FETCH

These columns aggregate all fetch operations.

• COUNT_INSERT, SUM_TIMER_INSERT, MIN_TIMER_INSERT, AVG_TIMER_INSERT,
MAX_TIMER_INSERT

These columns aggregate all insert operations.

• COUNT_UPDATE, SUM_TIMER_UPDATE, MIN_TIMER_UPDATE, AVG_TIMER_UPDATE,
MAX_TIMER_UPDATE

These columns aggregate all update operations.

• COUNT_DELETE, SUM_TIMER_DELETE, MIN_TIMER_DELETE, AVG_TIMER_DELETE,
MAX_TIMER_DELETE

These columns aggregate all delete operations.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. Truncating this table also truncates the
table_io_waits_summary_by_index_usage table.

10.15.7.2 The table_io_waits_summary_by_index_usage Table

The table_io_waits_summary_by_index_usage table aggregates all table index I/O wait events,
as generated by the wait/io/table/sql/handler instrument. The grouping is by table index.

The columns of table_io_waits_summary_by_index_usage are nearly identical to
table_io_waits_summary_by_table. The only difference is the additional group column,
INDEX_NAME, which corresponds to the name of the index that was used when the table I/O wait event
was recorded:

• A value of PRIMARY indicates that table I/O used the primary index.

• A value of NULL means that table I/O used no index.

• Inserts are counted against INDEX_NAME = NULL.

TRUNCATE TABLE is permitted for table I/O summary tables. It resets the summary
columns to zero rather than removing rows. This table is also truncated by truncation of the
table_io_waits_summary_by_table table. A DDL operation that changes the index structure of a
table may cause the per-index statistics to be reset.

10.15.7.3 The table_lock_waits_summary_by_table Table

The table_lock_waits_summary_by_table table aggregates all table lock wait events, as
generated by the wait/lock/table/sql/handler instrument. The grouping is by table.

This table contains information about internal and external locks:

• An internal lock corresponds to a lock in the SQL layer. This is currently implemented by a call to
thr_lock(). In event rows, these locks are distinguished by the OPERATION column, which has
one of these values:

read normal
read with shared locks
read high priority

128

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Table I/O and Lock Wait Summary Tables

read no insert
write allow write
write concurrent insert
write delayed
write low priority
write normal

• An external lock corresponds to a lock in the storage engine layer. This is currently implemented
by a call to handler::external_lock(). In event rows, these locks are distinguished by the
OPERATION column, which has one of these values:

read external
write external

The table_lock_waits_summary_by_table table has these grouping columns to indicate how the
table aggregates events: OBJECT_TYPE, OBJECT_SCHEMA, and OBJECT_NAME. These columns have
the same meaning as in the events_waits_current table. They identify the table to which the row
applies.

table_lock_waits_summary_by_table has the following summary columns containing
aggregated values. As indicated in the column descriptions, some columns are more general and have
values that are the same as the sum of the values of more fine-grained columns. For example, columns
that aggregate all locks hold the sum of the corresponding columns that aggregate read and write
locks. In this way, aggregations at higher levels are available directly without the need for user-defined
views that sum lower-level columns.

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all lock operations. They are the same as the sum of the corresponding
xxx_READ and xxx_WRITE columns.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ

These columns aggregate all read-lock operations. They are the same as the sum
of the corresponding xxx_READ_NORMAL, xxx_READ_WITH_SHARED_LOCKS,
xxx_READ_HIGH_PRIORITY, and xxx_READ_NO_INSERT columns.

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE

These columns aggregate all write-lock operations. They are the same as the sum of
the corresponding xxx_WRITE_ALLOW_WRITE, xxx_WRITE_CONCURRENT_INSERT,
xxx_WRITE_LOW_PRIORITY, and xxx_WRITE_NORMAL columns.

• COUNT_READ_NORMAL, SUM_TIMER_READ_NORMAL, MIN_TIMER_READ_NORMAL,
AVG_TIMER_READ_NORMAL, MAX_TIMER_READ_NORMAL

These columns aggregate internal read locks.

• COUNT_READ_WITH_SHARED_LOCKS, SUM_TIMER_READ_WITH_SHARED_LOCKS,
MIN_TIMER_READ_WITH_SHARED_LOCKS, AVG_TIMER_READ_WITH_SHARED_LOCKS,
MAX_TIMER_READ_WITH_SHARED_LOCKS

These columns aggregate internal read locks.

• COUNT_READ_HIGH_PRIORITY, SUM_TIMER_READ_HIGH_PRIORITY,
MIN_TIMER_READ_HIGH_PRIORITY, AVG_TIMER_READ_HIGH_PRIORITY,
MAX_TIMER_READ_HIGH_PRIORITY

These columns aggregate internal read locks.

• COUNT_READ_NO_INSERT, SUM_TIMER_READ_NO_INSERT, MIN_TIMER_READ_NO_INSERT,
AVG_TIMER_READ_NO_INSERT, MAX_TIMER_READ_NO_INSERT

129

Socket Summary Tables

These columns aggregate internal read locks.

• COUNT_READ_EXTERNAL, SUM_TIMER_READ_EXTERNAL, MIN_TIMER_READ_EXTERNAL,
AVG_TIMER_READ_EXTERNAL, MAX_TIMER_READ_EXTERNAL

These columns aggregate external read locks.

• COUNT_WRITE_ALLOW_WRITE, SUM_TIMER_WRITE_ALLOW_WRITE,
MIN_TIMER_WRITE_ALLOW_WRITE, AVG_TIMER_WRITE_ALLOW_WRITE,
MAX_TIMER_WRITE_ALLOW_WRITE

These columns aggregate internal write locks.

• COUNT_WRITE_CONCURRENT_INSERT, SUM_TIMER_WRITE_CONCURRENT_INSERT,
MIN_TIMER_WRITE_CONCURRENT_INSERT, AVG_TIMER_WRITE_CONCURRENT_INSERT,
MAX_TIMER_WRITE_CONCURRENT_INSERT

These columns aggregate internal write locks.

• COUNT_WRITE_LOW_PRIORITY, SUM_TIMER_WRITE_LOW_PRIORITY,
MIN_TIMER_WRITE_LOW_PRIORITY, AVG_TIMER_WRITE_LOW_PRIORITY,
MAX_TIMER_WRITE_LOW_PRIORITY

These columns aggregate internal write locks.

• COUNT_WRITE_NORMAL, SUM_TIMER_WRITE_NORMAL, MIN_TIMER_WRITE_NORMAL,
AVG_TIMER_WRITE_NORMAL, MAX_TIMER_WRITE_NORMAL

These columns aggregate internal write locks.

• COUNT_WRITE_EXTERNAL, SUM_TIMER_WRITE_EXTERNAL, MIN_TIMER_WRITE_EXTERNAL,
AVG_TIMER_WRITE_EXTERNAL, MAX_TIMER_WRITE_EXTERNAL

These columns aggregate external write locks.

TRUNCATE TABLE is permitted for table lock summary tables. It resets the summary columns to zero
rather than removing rows.

10.15.8 Socket Summary Tables

These socket summary tables aggregate timer and byte count information for socket operations:

• socket_summary_by_event_name: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instrument.

• socket_summary_by_instance: Aggregate timer and byte count statistics generated by the
wait/io/socket/* instruments for all socket I/O operations, per socket instance. When a
connection terminates, the row in socket_summary_by_instance corresponding to it is deleted.

The socket summary tables do not aggregate waits generated by idle events while sockets are
waiting for the next request from the client. For idle event aggregations, use the wait-event summary
tables; see Section 10.15.1, “Wait Event Summary Tables”.

Each socket summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• socket_summary_by_event_name has an EVENT_NAME column. Each row summarizes events
for a given event name.

• socket_summary_by_instance has an OBJECT_INSTANCE_BEGIN column. Each row
summarizes events for a given object.

130

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Memory Summary Tables

Each socket summary table has these summary columns containing aggregated values:

• COUNT_STAR, SUM_TIMER_WAIT, MIN_TIMER_WAIT, AVG_TIMER_WAIT, MAX_TIMER_WAIT

These columns aggregate all operations.

• COUNT_READ, SUM_TIMER_READ, MIN_TIMER_READ, AVG_TIMER_READ, MAX_TIMER_READ,
SUM_NUMBER_OF_BYTES_READ

These columns aggregate all receive operations (RECV, RECVFROM, and RECVMSG).

• COUNT_WRITE, SUM_TIMER_WRITE, MIN_TIMER_WRITE, AVG_TIMER_WRITE,
MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

These columns aggregate all send operations (SEND, SENDTO, and SENDMSG).

• COUNT_MISC, SUM_TIMER_MISC, MIN_TIMER_MISC, AVG_TIMER_MISC, MAX_TIMER_MISC

These columns aggregate all other socket operations, such as CONNECT, LISTEN, ACCEPT, CLOSE,
and SHUTDOWN. There are no byte counts for these operations.

The socket_summary_by_instance table also has an EVENT_NAME column that indicates the class
of the socket: client_connection, server_tcpip_socket, server_unix_socket. This column
can be grouped on to isolate, for example, client activity from that of the server listening sockets.

TRUNCATE TABLE is permitted for socket summary tables. Except for
events_statements_summary_by_digest, tt resets the summary columns to zero rather than
removing rows.

10.15.9 Memory Summary Tables

The Performance Schema instruments memory usage and aggregates memory usage statistics,
detailed by these factors:

• Type of memory used (various caches, internal buffers, and so forth)

• Thread, account, user, host indirectly performing the memory operation

The Performance Schema instruments the following aspects of memory use

• Memory sizes used

• Operation counts

• Low and high water marks

Memory sizes help to understand or tune the memory consumption of the server.

Operation counts help to understand or tune the overall pressure the server is putting on the memory
allocator, which has an impact on performance. Allocating a single byte one million times is not the
same as allocating one million bytes a single time; tracking both sizes and counts can expose the
difference.

Low and high water marks are critical to detect workload spikes, overall workload stability, and possible
memory leaks.

Memory summary tables do not contain timing information because memory events are not timed.

For information about collecting memory usage data, see Memory Instrumentation Behavior.

Example memory event summary information:

mysql> SELECT *

131

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Memory Summary Tables

 FROM performance_schema.memory_summary_global_by_event_name
 WHERE EVENT_NAME = 'memory/sql/TABLE'\G
*************************** 1. row ***************************
 EVENT_NAME: memory/sql/TABLE
 COUNT_ALLOC: 1381
 COUNT_FREE: 924
 SUM_NUMBER_OF_BYTES_ALLOC: 2059873
 SUM_NUMBER_OF_BYTES_FREE: 1407432
 LOW_COUNT_USED: 0
 CURRENT_COUNT_USED: 457
 HIGH_COUNT_USED: 461
 LOW_NUMBER_OF_BYTES_USED: 0
CURRENT_NUMBER_OF_BYTES_USED: 652441
 HIGH_NUMBER_OF_BYTES_USED: 669269

Each memory summary table has one or more grouping columns to indicate how the table aggregates
events. Event names refer to names of event instruments in the setup_instruments table:

• memory_summary_by_account_by_event_name has USER, HOST, and EVENT_NAME columns.
Each row summarizes events for a given account (user and host combination) and event name.

• memory_summary_by_host_by_event_name has HOST and EVENT_NAME columns. Each row
summarizes events for a given host and event name.

• memory_summary_by_thread_by_event_name has THREAD_ID and EVENT_NAME columns.
Each row summarizes events for a given thread and event name.

• memory_summary_by_user_by_event_name has USER and EVENT_NAME columns. Each row
summarizes events for a given user and event name.

• memory_summary_global_by_event_name has an EVENT_NAME column. Each row summarizes
events for a given event name.

Each memory summary table has these summary columns containing aggregated values:

• COUNT_ALLOC, COUNT_FREE

The aggregated numbers of calls to memory-allocation and memory-free functions.

• SUM_NUMBER_OF_BYTES_ALLOC, SUM_NUMBER_OF_BYTES_FREE

The aggregated sizes of allocated and freed memory blocks.

• CURRENT_COUNT_USED

The aggregated number of currently allocated blocks that have not been freed yet. This is a
convenience column, equal to COUNT_ALLOC − COUNT_FREE.

• CURRENT_NUMBER_OF_BYTES_USED

The aggregated size of currently allocated memory blocks that have not been freed yet. This is a
convenience column, equal to SUM_NUMBER_OF_BYTES_ALLOC − SUM_NUMBER_OF_BYTES_FREE.

• LOW_COUNT_USED, HIGH_COUNT_USED

The low and high water marks corresponding to the CURRENT_COUNT_USED column.

• LOW_NUMBER_OF_BYTES_USED, HIGH_NUMBER_OF_BYTES_USED

The low and high water marks corresponding to the CURRENT_NUMBER_OF_BYTES_USED column.

TRUNCATE TABLE is permitted for memory summary tables. It has these effects:

• In general, truncation resets the baseline for statistics, but does not change the server state. That is,
truncating a memory table does not free memory.

132

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Memory Summary Tables

• COUNT_ALLOC and COUNT_FREE are reset to a new baseline, by reducing each counter by the same
value.

• Likewise, SUM_NUMBER_OF_BYTES_ALLOC and SUM_NUMBER_OF_BYTES_FREE are reset to a new
baseline.

• LOW_COUNT_USED and HIGH_COUNT_USED are reset to CURRENT_COUNT_USED.

• LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED are reset to
CURRENT_NUMBER_OF_BYTES_USED.

In addition, each memory summary table that is aggregated by account, host, user, or thread
is implicitly truncated by truncation of the connection table on which it depends, or truncation of
memory_summary_global_by_event_name. For details, see Section 10.8, “Performance Schema
Connection Tables”.

Memory Instrumentation Behavior

Memory instruments are listed in the setup_instruments table and have names of the form
memory/code_area/instrument_name. Most memory instrumentation is disabled by default.

Instruments named with the prefix memory/performance_schema/ expose how much memory is
allocated for internal buffers in the Performance Schema itself. The memory/performance_schema/
instruments are built in, always enabled, and cannot be disabled at startup or runtime. Built-in memory
instruments are displayed only in the memory_summary_global_by_event_name table.

To control memory instrumentation state at server startup, use lines like these in your my.cnf file:

• Enable:

[mysqld]
performance-schema-instrument='memory/%=ON'

• Disable:

[mysqld]
performance-schema-instrument='memory/%=OFF'

To control memory instrumentation state at runtime, update the ENABLED column of the relevant
instruments in the setup_instruments table:

• Enable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'YES'
WHERE NAME LIKE 'memory/%';

• Disable:

UPDATE performance_schema.setup_instruments
SET ENABLED = 'NO'
WHERE NAME LIKE 'memory/%';

For memory instruments, the TIMED column in setup_instruments is ignored because memory
operations are not timed.

When a thread in the server executes a memory allocation that has been instrumented, these rules
apply:

• If the thread is not instrumented or the memory instrument is not enabled, the memory block
allocated is not instrumented.

• Otherwise (that is, both the thread and the instrument are enabled), the memory block allocated is
instrumented.

133

Memory Summary Tables

For deallocation, these rules apply:

• If a memory allocation operation was instrumented, the corresponding free operation is instrumented,
regardless of the current instrument or thread enabled status.

• If a memory allocation operation was not instrumented, the corresponding free operation is not
instrumented, regardless of the current instrument or thread enabled status.

For the per-thread statistics, the following rules apply.

When an instrumented memory block of size N is allocated, the Performance Schema makes these
updates to memory summary table columns:

• COUNT_ALLOC: Increased by 1

• CURRENT_COUNT_USED: Increased by 1

• HIGH_COUNT_USED: Increased if CURRENT_COUNT_USED is a new maximum

• SUM_NUMBER_OF_BYTES_ALLOC: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Increased by N

• HIGH_NUMBER_OF_BYTES_USED: Increased if CURRENT_NUMBER_OF_BYTES_USED is a new
maximum

When an instrumented memory block is deallocated, the Performance Schema makes these updates
to memory summary table columns:

• COUNT_FREE: Increased by 1

• CURRENT_COUNT_USED: Decreased by 1

• LOW_COUNT_USED: Decreased if CURRENT_COUNT_USED is a new minimum

• SUM_NUMBER_OF_BYTES_FREE: Increased by N

• CURRENT_NUMBER_OF_BYTES_USED: Decreased by N

• LOW_NUMBER_OF_BYTES_USED: Decreased if CURRENT_NUMBER_OF_BYTES_USED is a new
minimum

For higher-level aggregates (global, by account, by user, by host), the same rules apply as expected
for low and high water marks.

• LOW_COUNT_USED and LOW_NUMBER_OF_BYTES_USED are lower estimates. The value reported
by the Performance Schema is guaranteed to be less than or equal to the lowest count or size of
memory effectively used at runtime.

• HIGH_COUNT_USED and HIGH_NUMBER_OF_BYTES_USED are higher estimates. The value reported
by the Performance Schema is guaranteed to be greater than or equal to the highest count or size of
memory effectively used at runtime.

For lower estimates in summary tables other than memory_summary_global_by_event_name, it is
possible for values to go negative if memory ownership is transferred between threads.

Here is an example of estimate computation; but note that estimate implementation is subject to
change:

Thread 1 uses memory in the range from 1MB to 2MB during execution, as reported by
the LOW_NUMBER_OF_BYTES_USED and HIGH_NUMBER_OF_BYTES_USED columns of the
memory_summary_by_thread_by_event_name table.

134

Status Variable Summary Tables

Thread 2 uses memory in the range from 10MB to 12MB during execution, as reported likewise.

When these two threads belong to the same user account, the per-account summary
estimates that this account used memory in the range from 11MB to 14MB. That
is, the LOW_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum
of each LOW_NUMBER_OF_BYTES_USED (assuming the worst case). Likewise, the
HIGH_NUMBER_OF_BYTES_USED for the higher level aggregate is the sum of each
HIGH_NUMBER_OF_BYTES_USED (assuming the worst case).

11MB is a lower estimate that can occur only if both threads hit the low usage mark at the same time.

14MB is a higher estimate that can occur only if both threads hit the high usage mark at the same time.

The real memory usage for this account could have been in the range from 11.5MB to 13.5MB.

For capacity planning, reporting the worst case is actually the desired behavior, as it shows what can
potentially happen when sessions are uncorrelated, which is typically the case.

10.15.10 Status Variable Summary Tables

Note

The value of the show_compatibility_56 system variable affects the
information available from the tables described here. For details, see the
description of that variable in Server System Variables.

The Performance Schema makes status variable information available in the tables described in
Section 10.14, “Performance Schema Status Variable Tables”. It also makes aggregated status
variable information available in summary tables, described here. Each status variable summary table
has one or more grouping columns to indicate how the table aggregates status values:

• status_by_account has USER, HOST, and VARIABLE_NAME columns to summarize status
variables by account.

• status_by_host has HOST and VARIABLE_NAME columns to summarize status variables by the
host from which clients connected.

• status_by_user has USER and VARIABLE_NAME columns to summarize status variables by client
user name.

Each status variable summary table has this summary column containing aggregated values:

• VARIABLE_VALUE

The aggregated status variable value for active and terminated sessions.

The meaning of “account” in these tables is similar to its meaning in the MySQL grant tables in
the mysql system database, in the sense that the term refers to a combination of user and host
values. They differ in that, for grant tables, the host part of an account can be a pattern, whereas for
Performance Schema tables, the host value is always a specific nonpattern host name.

Account status is collected when sessions terminate. The session status counters are added to the
global status counters and the corresponding account status counters. If account statistics are not
collected, the session status is added to host and user status, if host and user status are collected.

Account, host, and user statistics are not collected if the performance_schema_accounts_size,
performance_schema_hosts_size, and performance_schema_users_size system variables,
respectively, are set to 0.

The Performance Schema supports TRUNCATE TABLE for status variable summary tables as follows;
in all cases, status for active sessions is unaffected:

135

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_show_compatibility_56
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Performance Schema Miscellaneous Tables

• status_by_account: Aggregates account status from terminated sessions to user and host status,
then resets account status.

• status_by_host: Resets aggregated host status from terminated sessions.

• status_by_user: Resets aggregated user status from terminated sessions.

FLUSH STATUS adds the session status from all active sessions to the global status variables, resets
the status of all active sessions, and resets account, host, and user status values aggregated from
disconnected sessions.

10.16 Performance Schema Miscellaneous Tables
The following sections describe tables that do not fall into the table categories discussed in the
preceding sections:

• host_cache: Information from the internal host cache.

• performance_timers: Which event timers are available.

• threads: Information about server threads.

10.16.1 The host_cache Table

The MySQL server maintains an in-memory host cache that contains client host name and IP address
information and is used to avoid Domain Name System (DNS) lookups. The host_cache table
exposes the contents of this cache. The host_cache_size system variable controls the size of the
host cache, as well as the size of the host_cache table. For operational and configuration information
about the host cache, see DNS Lookups and the Host Cache.

Because the host_cache table exposes the contents of the host cache, it can be examined
using SELECT statements. This may help you diagnose the causes of connection problems. The
Performance Schema must be enabled or this table is empty.

The host_cache table has these columns:

• IP

The IP address of the client that connected to the server, expressed as a string.

• HOST

The resolved DNS host name for that client IP, or NULL if the name is unknown.

• HOST_VALIDATED

Whether the IP-to-host name-to-IP DNS resolution was performed successfully for the client IP.
If HOST_VALIDATED is YES, the HOST column is used as the host name corresponding to the IP
so that additional calls to DNS can be avoided. While HOST_VALIDATED is NO, DNS resolution is
attempted for each connection attempt, until it eventually completes with either a valid result or a
permanent error. This information enables the server to avoid caching bad or missing host names
during temporary DNS failures, which would negatively affect clients forever.

• SUM_CONNECT_ERRORS

The number of connection errors that are deemed “blocking” (assessed against the
max_connect_errors system variable). Only protocol handshake errors are counted, and only for
hosts that passed validation (HOST_VALIDATED = YES).

Once SUM_CONNECT_ERRORS for a given host reaches the value of max_connect_errors,
new connections from that host are blocked. The SUM_CONNECT_ERRORS value can exceed
the max_connect_errors value because multiple connection attempts from a host can occur

136

https://dev.mysql.com/doc/refman/5.7/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_host_cache_size
https://dev.mysql.com/doc/refman/5.7/en/host-cache.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors

The host_cache Table

simultaneously while the host is not blocked. Any or all of them can fail, independently incrementing
SUM_CONNECT_ERRORS, possibly beyond the value of max_connect_errors.

Suppose that max_connect_errors is 200 and SUM_CONNECT_ERRORS for a given host
is 199. If 10 clients attempt to connect from that host simultaneously, none of them are
blocked because SUM_CONNECT_ERRORS has not reached 200. If blocking errors occur for
five of the clients, SUM_CONNECT_ERRORS is increased by one for each client, for a resulting
SUM_CONNECT_ERRORS value of 204. The other five clients succeed and are not blocked because
the value of SUM_CONNECT_ERRORS when their connection attempts began had not reached 200.
New connections from the host that begin after SUM_CONNECT_ERRORS reaches 200 are blocked.

• COUNT_HOST_BLOCKED_ERRORS

The number of connections that were blocked because SUM_CONNECT_ERRORS exceeded the value
of the max_connect_errors system variable.

• COUNT_NAMEINFO_TRANSIENT_ERRORS

The number of transient errors during IP-to-host name DNS resolution.

• COUNT_NAMEINFO_PERMANENT_ERRORS

The number of permanent errors during IP-to-host name DNS resolution.

• COUNT_FORMAT_ERRORS

The number of host name format errors. MySQL does not perform matching of Host column values
in the mysql.user system table against host names for which one or more of the initial components
of the name are entirely numeric, such as 1.2.example.com. The client IP address is used
instead. For the rationale why this type of matching does not occur, see Specifying Account Names.

• COUNT_ADDRINFO_TRANSIENT_ERRORS

The number of transient errors during host name-to-IP reverse DNS resolution.

• COUNT_ADDRINFO_PERMANENT_ERRORS

The number of permanent errors during host name-to-IP reverse DNS resolution.

• COUNT_FCRDNS_ERRORS

The number of forward-confirmed reverse DNS errors. These errors occur when IP-to-host name-to-
IP DNS resolution produces an IP address that does not match the client originating IP address.

• COUNT_HOST_ACL_ERRORS

The number of errors that occur because no users are permitted to connect from the client host. In
such cases, the server returns ER_HOST_NOT_PRIVILEGED and does not even ask for a user name
or password.

• COUNT_NO_AUTH_PLUGIN_ERRORS

The number of errors due to requests for an unavailable authentication plugin. A plugin can be
unavailable if, for example, it was never loaded or a load attempt failed.

• COUNT_AUTH_PLUGIN_ERRORS

The number of errors reported by authentication plugins.

An authentication plugin can report different error codes to indicate the root
cause of a failure. Depending on the type of error, one of these columns is
incremented: COUNT_AUTHENTICATION_ERRORS, COUNT_AUTH_PLUGIN_ERRORS,

137

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connect_errors
https://dev.mysql.com/doc/refman/5.7/en/account-names.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html#error_er_host_not_privileged

The host_cache Table

COUNT_HANDSHAKE_ERRORS. New return codes are an optional extension to the existing plugin API.
Unknown or unexpected plugin errors are counted in the COUNT_AUTH_PLUGIN_ERRORS column.

• COUNT_HANDSHAKE_ERRORS

The number of errors detected at the wire protocol level.

• COUNT_PROXY_USER_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does not exist.

• COUNT_PROXY_USER_ACL_ERRORS

The number of errors detected when proxy user A is proxied to another user B who does exist but for
whom A does not have the PROXY privilege.

• COUNT_AUTHENTICATION_ERRORS

The number of errors caused by failed authentication.

• COUNT_SSL_ERRORS

The number of errors due to SSL problems.

• COUNT_MAX_USER_CONNECTIONS_ERRORS

The number of errors caused by exceeding per-user connection quotas. See Setting Account
Resource Limits.

• COUNT_MAX_USER_CONNECTIONS_PER_HOUR_ERRORS

The number of errors caused by exceeding per-user connections-per-hour quotas. See Setting
Account Resource Limits.

• COUNT_DEFAULT_DATABASE_ERRORS

The number of errors related to the default database. For example, the database does not exist or
the user has no privileges to access it.

• COUNT_INIT_CONNECT_ERRORS

The number of errors caused by execution failures of statements in the init_connect system
variable value.

• COUNT_LOCAL_ERRORS

The number of errors local to the server implementation and not related to the network,
authentication, or authorization. For example, out-of-memory conditions fall into this category.

• COUNT_UNKNOWN_ERRORS

The number of other, unknown errors not accounted for by other columns in this table. This column
is reserved for future use, in case new error conditions must be reported, and if preserving the
backward compatibility and structure of the host_cache table is required.

• FIRST_SEEN

The timestamp of the first connection attempt seen from the client in the IP column.

• LAST_SEEN

The timestamp of the most recent connection attempt seen from the client in the IP column.

• FIRST_ERROR_SEEN

138

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_proxy
https://dev.mysql.com/doc/refman/5.7/en/user-resources.html
https://dev.mysql.com/doc/refman/5.7/en/user-resources.html
https://dev.mysql.com/doc/refman/5.7/en/user-resources.html
https://dev.mysql.com/doc/refman/5.7/en/user-resources.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_init_connect

The performance_timers Table

The timestamp of the first error seen from the client in the IP column.

• LAST_ERROR_SEEN

The timestamp of the most recent error seen from the client in the IP column.

TRUNCATE TABLE is permitted for the host_cache table. It requires the DROP privilege for the table.
Truncating the table flushes the host cache, which has the effects described in Flushing the Host
Cache.

10.16.2 The performance_timers Table

The performance_timers table shows which event timers are available:

mysql> SELECT * FROM performance_schema.performance_timers;
+-------------+-----------------+------------------+----------------+
| TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD |
+-------------+-----------------+------------------+----------------+
CYCLE	2389029850	1	72
NANOSECOND	1000000000	1	112
MICROSECOND	1000000	1	136
MILLISECOND	1036	1	168
TICK	105	1	2416
+-------------+-----------------+------------------+----------------+

If the values associated with a given timer name are NULL, that timer is not supported on your platform.
The rows that do not contain NULL indicate which timers you can use in setup_timers. For an
explanation of how event timing occurs, see Section 5.1, “Performance Schema Event Timing”.

Note

As of MySQL 5.7.21, the Performance Schema setup_timers table
is deprecated and is removed in MySQL 8.0, as is the TICKS row in the
performance_timers table.

The performance_timers table has these columns:

• TIMER_NAME

The name by which to refer to the timer when configuring the setup_timers table.

• TIMER_FREQUENCY

The number of timer units per second. For a cycle timer, the frequency is generally related to
the CPU speed. For example, on a system with a 2.4GHz processor, the CYCLE may be close to
2400000000.

• TIMER_RESOLUTION

Indicates the number of timer units by which timer values increase. If a timer has a resolution of 10,
its value increases by 10 each time.

• TIMER_OVERHEAD

The minimal number of cycles of overhead to obtain one timing with the given timer. The
Performance Schema determines this value by invoking the timer 20 times during initialization
and picking the smallest value. The total overhead really is twice this amount because the
instrumentation invokes the timer at the start and end of each event. The timer code is called only for
timed events, so this overhead does not apply for nontimed events.

TRUNCATE TABLE is not permitted for the performance_timers table.

10.16.3 The processlist Table

139

https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_drop
https://dev.mysql.com/doc/refman/5.7/en/host-cache.html#host-cache-flushing
https://dev.mysql.com/doc/refman/5.7/en/host-cache.html#host-cache-flushing
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The processlist Table

Note

The processlist table is automatically created in the Performance Schema
for new installations of MySQL 5.7.39, or higher. It is also created automatically
by an upgrade.

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The processlist table is one source of process information. For a
comparison of this table with other sources, see Sources of Process Information.

The processlist table can be queried directly. If you have the PROCESS privilege, you can
see all threads, even those belonging to other users. Otherwise (without the PROCESS privilege),
nonanonymous users have access to information about their own threads but not threads for other
users, and anonymous users have no access to thread information.

Note

If the performance_schema_show_processlist system variable is
enabled, the processlist table also serves as the basis for an alternative
implementation underlying the SHOW PROCESSLIST statement. For details, see
later in this section.

The processlist table contains a row for each server process:

mysql> SELECT * FROM performance_schema.processlist\G
*************************** 1. row ***************************
 ID: 5
 USER: event_scheduler
 HOST: localhost
 DB: NULL
COMMAND: Daemon
 TIME: 137
 STATE: Waiting on empty queue
 INFO: NULL
*************************** 2. row ***************************
 ID: 9
 USER: me
 HOST: localhost:58812
 DB: NULL
COMMAND: Sleep
 TIME: 95
 STATE:
 INFO: NULL
*************************** 3. row ***************************
 ID: 10
 USER: me
 HOST: localhost:58834
 DB: test
COMMAND: Query
 TIME: 0
 STATE: executing
 INFO: SELECT * FROM performance_schema.processlist
...

The processlist table has these columns:

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW
PROCESSLIST statement, displayed in the PROCESSLIST_ID column of the Performance Schema
threads table, and returned by the CONNECTION_ID() function within the thread.

• USER

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an

140

https://dev.mysql.com/doc/refman/5.7/en/processlist-access.html#processlist-sources
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_connection-id

The processlist Table

I/O or SQL thread used on replica hosts. For system user, there is no host specified in the Host
column. unauthenticated user refers to a thread that has become associated with a client
connection but for which authentication of the client user has not yet occurred. event_scheduler
refers to the thread that monitors scheduled events (see Using the Event Scheduler).

Note

A USER value of system user is distinct from the SYSTEM_USER privilege.
The former designates internal threads. The latter distinguishes the system
user and regular user account categories (see Account Categories).

• HOST

The host name of the client issuing the statement (except for system user, for which there is no
host). The host name for TCP/IP connections is reported in host_name:client_port format to
make it easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

The type of command the thread is executing on behalf of the client, or Sleep if the session is
idle. For descriptions of thread commands, see Examining Server Thread (Process) Information.
The value of this column corresponds to the COM_xxx commands of the client/server protocol and
Com_xxx status variables. See Server Status Variables

• TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values,
see Examining Server Thread (Process) Information.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the INFO value shows the SELECT statement.

• EXECUTION_ENGINE

The query execution engine. The value is either PRIMARY or SECONDARY. For use with MySQL
HeatWave Service and HeatWave, where the PRIMARY engine is InnoDB and the SECONDARY
engine is HeatWave (RAPID). For MySQL Community Edition Server, MySQL Enterprise Edition
Server (on-premise), and MySQL HeatWave Service without HeatWave, the value is always
PRIMARY. This column was added in MySQL 8.0.29.

TRUNCATE TABLE is not permitted for the processlist table.

As mentioned previously, if the performance_schema_show_processlist system variable
is enabled, the processlist table serves as the basis for an alternative implementation of other
process information sources:

141

https://dev.mysql.com/doc/refman/5.7/en/event-scheduler.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html
https://dev.mysql.com/doc/refman/5.7/en/thread-information.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.7/en/replication-threads.html
https://dev.mysql.com/doc/refman/5.7/en/thread-information.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

The threads Table

• The SHOW PROCESSLIST statement.

• The mysqladmin processlist command (which uses SHOW PROCESSLIST statement).

The default SHOW PROCESSLIST implementation iterates across active threads from within the thread
manager while holding a global mutex. This has negative performance consequences, particularly on
busy systems. The alternative SHOW PROCESSLIST implementation is based on the Performance
Schema processlist table. This implementation queries active thread data from the Performance
Schema rather than the thread manager and does not require a mutex.

MySQL configuration affects processlist table contents as follows:

• Minimum required configuration:

• The MySQL server must be configured and built with thread instrumentation enabled. This is true
by default; it is controlled using the DISABLE_PSI_THREAD CMake option.

• The Performance Schema must be enabled at server startup. This is true by default; it is controlled
using the performance_schema system variable.

With that configuration satisfied, performance_schema_show_processlist enables or disables
the alternative SHOW PROCESSLIST implementation. If the minimum configuration is not satisfied,
the processlist table (and thus SHOW PROCESSLIST) may not return all data.

• Recommended configuration:

• To avoid having some threads ignored:

• Leave the performance_schema_max_thread_instances system variable set to its default
or set it at least as great as the max_connections system variable.

• Leave the performance_schema_max_thread_classes system variable set to its default.

• To avoid having some STATE column values be empty, leave the
performance_schema_max_stage_classes system variable set to its default.

The default for those configuration parameters is -1, which causes the Performance Schema to
autosize them at server startup. With the parameters set as indicated, the processlist table (and
thus SHOW PROCESSLIST) produce complete process information.

The preceding configuration parameters affect the contents of the processlist table.
For a given configuration, however, the processlist contents are unaffected by the
performance_schema_show_processlist setting.

The alternative process list implementation does not apply to the INFORMATION_SCHEMA
PROCESSLIST table or the COM_PROCESS_INFO command of the MySQL client/server protocol.

10.16.4 The threads Table

The threads table contains a row for each server thread. Each row contains information about a
thread and indicates whether monitoring and historical event logging are enabled for it:

mysql> SELECT * FROM performance_schema.threads\G
*************************** 1. row ***************************
 THREAD_ID: 1
 NAME: thread/sql/main
 TYPE: BACKGROUND
 PROCESSLIST_ID: NULL
 PROCESSLIST_USER: NULL
 PROCESSLIST_HOST: NULL
 PROCESSLIST_DB: NULL
PROCESSLIST_COMMAND: NULL
 PROCESSLIST_TIME: 80284
 PROCESSLIST_STATE: NULL

142

https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/source-configuration-options.html#option_cmake_disable_psi_thread
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/information-schema-processlist-table.html

The threads Table

 PROCESSLIST_INFO: NULL
 PARENT_THREAD_ID: NULL
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: NULL
 THREAD_OS_ID: 489803
...
*************************** 4. row ***************************
 THREAD_ID: 51
 NAME: thread/sql/one_connection
 TYPE: FOREGROUND
 PROCESSLIST_ID: 34
 PROCESSLIST_USER: isabella
 PROCESSLIST_HOST: localhost
 PROCESSLIST_DB: performance_schema
PROCESSLIST_COMMAND: Query
 PROCESSLIST_TIME: 0
 PROCESSLIST_STATE: Sending data
 PROCESSLIST_INFO: SELECT * FROM performance_schema.threads
 PARENT_THREAD_ID: 1
 ROLE: NULL
 INSTRUMENTED: YES
 HISTORY: YES
 CONNECTION_TYPE: SSL/TLS
 THREAD_OS_ID: 755399
...

When the Performance Schema initializes, it populates the threads table based on the threads in
existence then. Thereafter, a new row is added each time the server creates a thread.

The INSTRUMENTED and HISTORY column values for new threads are determined by the contents of
the setup_actors table. For information about how to use the setup_actors table to control these
columns, see Section 5.6, “Pre-Filtering by Thread”.

Removal of rows from the threads table occurs when threads end. For a thread associated with a
client session, removal occurs when the session ends. If a client has auto-reconnect enabled and
the session reconnects after a disconnect, the session becomes associated with a new row in the
threads table that has a different PROCESSLIST_ID value. The initial INSTRUMENTED and HISTORY
values for the new thread may be different from those of the original thread: The setup_actors table
may have changed in the meantime, and if the INSTRUMENTED or HISTORY value for the original
thread was changed after the row was initialized, the change does not carry over to the new thread.

You can enable or disable thread monitoring (that is, whether events executed by the thread are
instrumented) and historical event logging. To control the initial INSTRUMENTED and HISTORY values
for new foreground threads, use the setup_actors table. To control these aspects of existing
threads, set the INSTRUMENTED and HISTORY columns of threads table rows. (For more information
about the conditions under which thread monitoring and historical event logging occur, see the
descriptions of the INSTRUMENTED and HISTORY columns.)

For a comparison of the threads table columns with names having a prefix of PROCESSLIST_ to
other process information sources, see Sources of Process Information.

Important

For thread information sources other than the threads table, information
about threads for other users is shown only if the current user has the PROCESS
privilege. That is not true of the threads table; all rows are shown to any user
who has the SELECT privilege for the table. Users who should not be able to
see threads for other users by accessing the threads table should not be
given the SELECT privilege for it.

The threads table has these columns:

• THREAD_ID

143

https://dev.mysql.com/doc/refman/5.7/en/processlist-access.html#processlist-sources
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_select

The threads Table

A unique thread identifier.

• NAME

The name associated with the thread instrumentation code in the server. For example, thread/
sql/one_connection corresponds to the thread function in the code responsible for handling a
user connection, and thread/sql/main stands for the main() function of the server.

• TYPE

The thread type, either FOREGROUND or BACKGROUND. User connection threads are foreground
threads. Threads associated with internal server activity are background threads. Examples are
internal InnoDB threads, “binlog dump” threads sending information to replicas, and replication I/O
and SQL threads.

• PROCESSLIST_ID

For a foreground thread (associated with a user connection), this is the connection identifier. This
is the same value displayed in the ID column of the INFORMATION_SCHEMA PROCESSLIST table,
displayed in the Id column of SHOW PROCESSLIST output, and returned by the CONNECTION_ID()
function within the thread.

For a background thread (not associated with a user connection), PROCESSLIST_ID is NULL, so the
values are not unique.

• PROCESSLIST_USER

The user associated with a foreground thread, NULL for a background thread.

• PROCESSLIST_HOST

The host name of the client associated with a foreground thread, NULL for a background thread.

Unlike the HOST column of the INFORMATION_SCHEMA PROCESSLIST table or the Host column of
SHOW PROCESSLIST output, the PROCESSLIST_HOST column does not include the port number for
TCP/IP connections. To obtain this information from the Performance Schema, enable the socket
instrumentation (which is not enabled by default) and examine the socket_instances table:

mysql> SELECT * FROM performance_schema.setup_instruments
 WHERE NAME LIKE 'wait/io/socket%';
+--+---------+-------+
| NAME | ENABLED | TIMED |
+--+---------+-------+
wait/io/socket/sql/server_tcpip_socket	NO	NO
wait/io/socket/sql/server_unix_socket	NO	NO
wait/io/socket/sql/client_connection	NO	NO
+--+---------+-------+
3 rows in set (0.01 sec)
mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED='YES'
 WHERE NAME LIKE 'wait/io/socket%';
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0
mysql> SELECT * FROM performance_schema.socket_instances\G
*************************** 1. row ***************************
 EVENT_NAME: wait/io/socket/sql/client_connection
OBJECT_INSTANCE_BEGIN: 140612577298432
 THREAD_ID: 31
 SOCKET_ID: 53
 IP: ::ffff:127.0.0.1
 PORT: 55642
 STATE: ACTIVE
...

• PROCESSLIST_DB

144

https://dev.mysql.com/doc/refman/5.7/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/5.7/en/information-schema-processlist-table.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html

The threads Table

The default database for the thread, or NULL if none has been selected.

• PROCESSLIST_COMMAND

For foreground threads, the type of command the thread is executing on behalf of the client, or
Sleep if the session is idle. For descriptions of thread commands, see Examining Server Thread
(Process) Information. The value of this column corresponds to the COM_xxx commands of the
client/server protocol and Com_xxx status variables. See Server Status Variables

Background threads do not execute commands on behalf of clients, so this column may be NULL.

• PROCESSLIST_TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

• PROCESSLIST_STATE

An action, event, or state that indicates what the thread is doing. For descriptions of
PROCESSLIST_STATE values, see Examining Server Thread (Process) Information. If the value if
NULL, the thread may correspond to an idle client session or the work it is doing is not instrumented
with stages.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that bears investigation.

• PROCESSLIST_INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the PROCESSLIST_INFO value shows the SELECT statement.

• PARENT_THREAD_ID

If this thread is a subthread (spawned by another thread), this is the THREAD_ID value of the
spawning thread.

• ROLE

Unused.

• INSTRUMENTED

Whether events executed by the thread are instrumented. The value is YES or NO.

• For foreground threads, the initial INSTRUMENTED value is determined by whether the user
account associated with the thread matches any row in the setup_actors table. Matching is
based on the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for
the subthread.

• For background threads, INSTRUMENTED is YES by default. setup_actors is not consulted
because there is no associated user for background threads.

• For any thread, its INSTRUMENTED value can be changed during the lifetime of the thread.

For monitoring of events executed by the thread to occur, these things must be true:

• The thread_instrumentation consumer in the setup_consumers table must be YES.

145

https://dev.mysql.com/doc/refman/5.7/en/thread-information.html
https://dev.mysql.com/doc/refman/5.7/en/thread-information.html
https://dev.mysql.com/doc/refman/5.7/en/server-status-variables.html
https://dev.mysql.com/doc/refman/5.7/en/replication-threads.html
https://dev.mysql.com/doc/refman/5.7/en/thread-information.html
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/select.html

The threads Table

• The threads.INSTRUMENTED column must be YES.

• Monitoring occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• HISTORY

Whether to log historical events for the thread. The value is YES or NO.

• For foreground threads, the initial HISTORY value is determined by whether the user account
associated with the thread matches any row in the setup_actors table. Matching is based on
the values of the PROCESSLIST_USER and PROCESSLIST_HOST columns.

If the thread spawns a subthread, matching occurs again for the threads table row created for
the subthread.

• For background threads, HISTORY is YES by default. setup_actors is not consulted because
there is no associated user for background threads.

• For any thread, its HISTORY value can be changed during the lifetime of the thread.

For historical event logging for the thread to occur, these things must be true:

• The appropriate history-related consumers in the setup_consumers table must
be enabled. For example, wait event logging in the events_waits_history and
events_waits_history_long tables requires the corresponding events_waits_history
and events_waits_history_long consumers to be YES.

• The threads.HISTORY column must be YES.

• Logging occurs only for those thread events produced from instruments that have the ENABLED
column set to YES in the setup_instruments table.

• CONNECTION_TYPE

The protocol used to establish the connection, or NULL for background threads. Permitted values
are TCP/IP (TCP/IP connection established without encryption), SSL/TLS (TCP/IP connection
established with encryption), Socket (Unix socket file connection), Named Pipe (Windows named
pipe connection), and Shared Memory (Windows shared memory connection).

• THREAD_OS_ID

The thread or task identifier as defined by the underlying operating system, if there is one:

• When a MySQL thread is associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains the operating system thread ID.

• When a MySQL thread is not associated with the same operating system thread for its lifetime,
THREAD_OS_ID contains NULL. This is typical for user sessions when the thread pool plugin is
used (see MySQL Enterprise Thread Pool).

For Windows, THREAD_OS_ID corresponds to the thread ID visible in Process Explorer (https://
technet.microsoft.com/en-us/sysinternals/bb896653.aspx).

For Linux, THREAD_OS_ID corresponds to the value of the gettid() function. This value
is exposed, for example, using the perf or ps -L commands, or in the proc file system (/
proc/[pid]/task/[tid]). For more information, see the perf-stat(1), ps(1), and proc(5)
man pages.

TRUNCATE TABLE is not permitted for the threads table.

146

https://dev.mysql.com/doc/refman/5.7/en/thread-pool.html
https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
https://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
https://dev.mysql.com/doc/refman/5.7/en/truncate-table.html

Chapter 11 Performance Schema and Plugins
Removing a plugin with UNINSTALL PLUGIN does not affect information already collected for code
in that plugin. Time spent executing the code while the plugin was loaded was still spent even if the
plugin is unloaded later. The associated event information, including aggregate information, remains
readable in performance_schema database tables. For additional information about the effect of
plugin installation and removal, see Chapter 8, Performance Schema Status Monitoring.

A plugin implementor who instruments plugin code should document its instrumentation characteristics
to enable those who load the plugin to account for its requirements. For example, a third-party storage
engine should include in its documentation how much memory the engine needs for mutex and other
instruments.

147

https://dev.mysql.com/doc/refman/5.7/en/uninstall-plugin.html

148

Chapter 12 Performance Schema System Variables
The Performance Schema implements several system variables that provide configuration information:

mysql> SHOW VARIABLES LIKE 'perf%';
+--+-------+
| Variable_name | Value |
+--+-------+
performance_schema	ON
performance_schema_accounts_size	-1
performance_schema_digests_size	10000
performance_schema_events_stages_history_long_size	10000
performance_schema_events_stages_history_size	10
performance_schema_events_statements_history_long_size	10000
performance_schema_events_statements_history_size	10
performance_schema_events_transactions_history_long_size	10000
performance_schema_events_transactions_history_size	10
performance_schema_events_waits_history_long_size	10000
performance_schema_events_waits_history_size	10
performance_schema_hosts_size	-1
performance_schema_max_cond_classes	80
performance_schema_max_cond_instances	-1
performance_schema_max_digest_length	1024
performance_schema_max_file_classes	50
performance_schema_max_file_handles	32768
performance_schema_max_file_instances	-1
performance_schema_max_index_stat	-1
performance_schema_max_memory_classes	320
performance_schema_max_metadata_locks	-1
performance_schema_max_mutex_classes	200
performance_schema_max_mutex_instances	-1
performance_schema_max_prepared_statements_instances	-1
performance_schema_max_program_instances	-1
performance_schema_max_rwlock_classes	40
performance_schema_max_rwlock_instances	-1
performance_schema_max_socket_classes	10
performance_schema_max_socket_instances	-1
performance_schema_max_sql_text_length	1024
performance_schema_max_stage_classes	150
performance_schema_max_statement_classes	192
performance_schema_max_statement_stack	10
performance_schema_max_table_handles	-1
performance_schema_max_table_instances	-1
performance_schema_max_table_lock_stat	-1
performance_schema_max_thread_classes	50
performance_schema_max_thread_instances	-1
performance_schema_session_connect_attrs_size	512
performance_schema_setup_actors_size	-1
performance_schema_setup_objects_size	-1
performance_schema_users_size	-1
+--+-------+

Performance Schema system variables can be set at server startup on the command line or in option
files, and many can be set at runtime. See Performance Schema Option and Variable Reference.

The Performance Schema automatically sizes the values of several of its parameters at server startup
if they are not set explicitly. For more information, see Chapter 4, Performance Schema Startup
Configuration.

Performance Schema system variables have the following meanings:

• performance_schema

Command-Line Format --performance-schema[={OFF|ON}]

System Variable performance_schema

Scope Global

Dynamic No

149

https://dev.mysql.com/doc/refman/5.7/en/performance-schema-option-variable-reference.html

Type Boolean

Default Value ON

The value of this variable is ON or OFF to indicate whether the Performance Schema is enabled. By
default, the value is ON. At server startup, you can specify this variable with no value or a value of ON
or 1 to enable it, or with a value of OFF or 0 to disable it.

Even when the Performance Schema is disabled, it continues to populate the global_variables,
session_variables, global_status, and session_status tables. This occurs as necessary
to permit the results for the SHOW VARIABLES and SHOW STATUS statements to be drawn from
those tables, depending on the setting of the show_compatibiliy_56 system variable.

• performance_schema_accounts_size

Command-Line Format --performance-schema-accounts-size=#

System Variable performance_schema_accounts_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the accounts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the accounts table or status variable information in the
status_by_account table.

• performance_schema_digests_size

Command-Line Format --performance-schema-digests-size=#

System Variable performance_schema_digests_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of rows in the events_statements_summary_by_digest table. If
this maximum is exceeded such that a digest cannot be instrumented, the Performance Schema
increments the Performance_schema_digest_lost status variable.

For more information about statement digesting, see Performance Schema Statement Digests.

• performance_schema_events_stages_history_long_size

Command-Line Format --performance-schema-events-stages-
history-long-size=#

150

https://dev.mysql.com/doc/refman/5.7/en/show-variables.html
https://dev.mysql.com/doc/refman/5.7/en/show-status.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-digests.html

System Variable performance_schema_events_stages_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_stages_history_long table.

• performance_schema_events_stages_history_size

Command-Line Format --performance-schema-events-stages-
history-size=#

System Variable performance_schema_events_stages_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_stages_history table.

• performance_schema_events_statements_history_long_size

Command-Line Format --performance-schema-events-
statements-history-long-size=#

System Variable performance_schema_events_statements_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_statements_history_long table.

• performance_schema_events_statements_history_size

Command-Line Format --performance-schema-events-
statements-history-size=#

System Variable performance_schema_events_statements_history_size

Scope Global

151

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_statements_history table.

• performance_schema_events_transactions_history_long_size

Command-Line Format --performance-schema-events-
transactions-history-long-size=#

System Variable performance_schema_events_transactions_history_long_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_transactions_history_long table.

• performance_schema_events_transactions_history_size

Command-Line Format --performance-schema-events-
transactions-history-size=#

System Variable performance_schema_events_transactions_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_transactions_history table.

• performance_schema_events_waits_history_long_size

Command-Line Format --performance-schema-events-waits-
history-long-size=#

System Variable performance_schema_events_waits_history_long_size

Scope Global

Dynamic No

Type Integer

152

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the events_waits_history_long table.

• performance_schema_events_waits_history_size

Command-Line Format --performance-schema-events-waits-
history-size=#

System Variable performance_schema_events_waits_history_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1024

The number of rows per thread in the events_waits_history table.

• performance_schema_hosts_size

Command-Line Format --performance-schema-hosts-size=#

System Variable performance_schema_hosts_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the hosts table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the hosts table or status variable information in the
status_by_host table.

• performance_schema_max_cond_classes

Command-Line Format --performance-schema-max-cond-
classes=#

System Variable performance_schema_max_cond_classes

Scope Global

Dynamic No

Type Integer

Default Value 80
153

Minimum Value 0

Maximum Value 256

The maximum number of condition instruments. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_cond_instances

Command-Line Format --performance-schema-max-cond-
instances=#

System Variable performance_schema_max_cond_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented condition objects. For information about how to set and use
this variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_digest_length

Command-Line Format --performance-schema-max-digest-
length=#

System Variable performance_schema_max_digest_length

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

Unit bytes

The maximum number of bytes of memory reserved per statement for computation of
normalized statement digest values in the Performance Schema. This variable is related to
max_digest_length; see the description of that variable in Server System Variables.

For more information about statement digesting, including considerations regarding memory use, see
Performance Schema Statement Digests.

• performance_schema_max_file_classes

Command-Line Format --performance-schema-max-file-
classes=#

System Variable performance_schema_max_file_classes

Scope Global

Dynamic No

Type Integer

154

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_digest_length
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html
https://dev.mysql.com/doc/refman/5.7/en/performance-schema-statement-digests.html

Default Value 80

Minimum Value 0

Maximum Value 256

The maximum number of file instruments. For information about how to set and use this variable, see
Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_file_handles

Command-Line Format --performance-schema-max-file-
handles=#

System Variable performance_schema_max_file_handles

Scope Global

Dynamic No

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value 1048576

The maximum number of opened file objects. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

The value of performance_schema_max_file_handles should be greater than the value of
open_files_limit: open_files_limit affects the maximum number of open file handles the
server can support and performance_schema_max_file_handles affects how many of these
file handles can be instrumented.

• performance_schema_max_file_instances

Command-Line Format --performance-schema-max-file-
instances=#

System Variable performance_schema_max_file_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented file objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_index_stat

Command-Line Format --performance-schema-max-index-
stat=#

System Variable performance_schema_max_index_stat

Scope Global

Dynamic No 155

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_open_files_limit
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_open_files_limit

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of indexes for which the Performance Schema maintains statistics. If this
maximum is exceeded such that index statistics are lost, the Performance Schema increments the
Performance_schema_index_stat_lost status variable. The default value is autosized using
the value of performance_schema_max_table_instances.

• performance_schema_max_memory_classes

Command-Line Format --performance-schema-max-memory-
classes=#

System Variable performance_schema_max_memory_classes

Scope Global

Dynamic No

Type Integer

Default Value 320

Minimum Value 0

Maximum Value 1024

The maximum number of memory instruments. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_metadata_locks

Command-Line Format --performance-schema-max-metadata-
locks=#

System Variable performance_schema_max_metadata_locks

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 10485760

The maximum number of metadata lock instruments. This value controls the
size of the metadata_locks table. If this maximum is exceeded such that a
metadata lock cannot be instrumented, the Performance Schema increments the
Performance_schema_metadata_lock_lost status variable.

• performance_schema_max_mutex_classes

Command-Line Format --performance-schema-max-mutex-
classes=#

System Variable performance_schema_max_mutex_classes
156

Scope Global

Dynamic No

Type Integer

Default Value 200

Minimum Value 0

Maximum Value 256

The maximum number of mutex instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_mutex_instances

Command-Line Format --performance-schema-max-mutex-
instances=#

System Variable performance_schema_max_mutex_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 104857600

The maximum number of instrumented mutex objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_prepared_statements_instances

Command-Line Format --performance-schema-max-prepared-
statements-instances=#

System Variable performance_schema_max_prepared_statements_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 4194304

The maximum number of rows in the prepared_statements_instances table. If this maximum
is exceeded such that a prepared statement cannot be instrumented, the Performance Schema
increments the Performance_schema_prepared_statements_lost status variable. For
information about how to set and use this variable, see Chapter 8, Performance Schema Status
Monitoring.

The default value of this variable is autosized based on the value of the
max_prepared_stmt_count system variable.

157

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_prepared_stmt_count

• performance_schema_max_rwlock_classes

Command-Line Format --performance-schema-max-rwlock-
classes=#

System Variable performance_schema_max_rwlock_classes

Scope Global

Dynamic No

Type Integer

Default Value (≥ 5.7.25) 50

Default Value (≤ 5.7.24) 40

Minimum Value 0

Maximum Value 256

The maximum number of rwlock instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_program_instances

Command-Line Format --performance-schema-max-program-
instances=#

System Variable performance_schema_max_program_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of stored programs for which the Performance Schema maintains
statistics. If this maximum is exceeded, the Performance Schema increments the
Performance_schema_program_lost status variable. For information about how to set and use
this variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_rwlock_instances

Command-Line Format --performance-schema-max-rwlock-
instances=#

System Variable performance_schema_max_rwlock_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

158

Maximum Value 104857600

The maximum number of instrumented rwlock objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_socket_classes

Command-Line Format --performance-schema-max-socket-
classes=#

System Variable performance_schema_max_socket_classes

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 256

The maximum number of socket instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_socket_instances

Command-Line Format --performance-schema-max-socket-
instances=#

System Variable performance_schema_max_socket_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented socket objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_sql_text_length

Command-Line Format --performance-schema-max-sql-text-
length=#

System Variable performance_schema_max_sql_text_length

Scope Global

Dynamic No

Type Integer

Default Value 1024

Minimum Value 0

Maximum Value 1048576

159

Unit bytes

The maximum number of bytes used to store SQL statements in the SQL_TEXT column
of the events_statements_current, events_statements_history, and
events_statements_history_long statement event tables. Any bytes in excess of
performance_schema_max_sql_text_length are discarded and do not appear in the
SQL_TEXT column. Statements differing only after that many initial bytes are indistinguishable in this
column.

Decreasing the performance_schema_max_sql_text_length value reduces memory use but
causes more statements to become indistinguishable if they differ only at the end. Increasing the
value increases memory use but permits longer statements to be distinguished.

• performance_schema_max_stage_classes

Command-Line Format --performance-schema-max-stage-
classes=#

System Variable performance_schema_max_stage_classes

Scope Global

Dynamic No

Type Integer

Default Value 150

Minimum Value 0

Maximum Value 256

The maximum number of stage instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_statement_classes

Command-Line Format --performance-schema-max-statement-
classes=#

System Variable performance_schema_max_statement_classes

Scope Global

Dynamic No

Type Integer

Minimum Value 0

Maximum Value 256

The maximum number of statement instruments. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

The default value is calculated at server build time based on the number of commands in the client/
server protocol and the number of SQL statement types supported by the server.

This variable should not be changed, unless to set it to 0 to disable all statement instrumentation and
save all memory associated with it. Setting the variable to nonzero values other than the default has
no benefit; in particular, values larger than the default cause more memory to be allocated then is
needed.

• performance_schema_max_statement_stack

Command-Line Format --performance-schema-max-statement-
stack=#

160

System Variable performance_schema_max_statement_stack

Scope Global

Dynamic No

Type Integer

Default Value 10

Minimum Value 1

Maximum Value 256

The maximum depth of nested stored program calls for which the Performance Schema
maintains statistics. When this maximum is exceeded, the Performance Schema increments the
Performance_schema_nested_statement_lost status variable for each stored program
statement executed.

• performance_schema_max_table_handles

Command-Line Format --performance-schema-max-table-
handles=#

System Variable performance_schema_max_table_handles

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of opened table objects. This value controls the size of the table_handles
table. If this maximum is exceeded such that a table handle cannot be instrumented, the
Performance Schema increments the Performance_schema_table_handles_lost status
variable. For information about how to set and use this variable, see Chapter 8, Performance
Schema Status Monitoring.

• performance_schema_max_table_instances

Command-Line Format --performance-schema-max-table-
instances=#

System Variable performance_schema_max_table_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented table objects. For information about how to set and use this
variable, see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_table_lock_stat

161

Command-Line Format --performance-schema-max-table-lock-
stat=#

System Variable performance_schema_max_table_lock_stat

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of tables for which the Performance Schema maintains lock statistics. If this
maximum is exceeded such that table lock statistics are lost, the Performance Schema increments
the Performance_schema_table_lock_stat_lost status variable.

• performance_schema_max_thread_classes

Command-Line Format --performance-schema-max-thread-
classes=#

System Variable performance_schema_max_thread_classes

Scope Global

Dynamic No

Type Integer

Default Value 50

Minimum Value 0

Maximum Value 256

The maximum number of thread instruments. For information about how to set and use this variable,
see Chapter 8, Performance Schema Status Monitoring.

• performance_schema_max_thread_instances

Command-Line Format --performance-schema-max-thread-
instances=#

System Variable performance_schema_max_thread_instances

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The maximum number of instrumented thread objects. The value controls the size of the threads
table. If this maximum is exceeded such that a thread cannot be instrumented, the Performance
Schema increments the Performance_schema_thread_instances_lost status variable. For

162

information about how to set and use this variable, see Chapter 8, Performance Schema Status
Monitoring.

The max_connections system variable affects how many threads can run in the server.
performance_schema_max_thread_instances affects how many of these running threads can
be instrumented.

The variables_by_thread and status_by_thread tables contain system
and status variable information only about foreground threads. If not all threads are
instrumented by the Performance Schema, this table may miss some rows. In this case, the
Performance_schema_thread_instances_lost status variable is greater than zero.

• performance_schema_session_connect_attrs_size

Command-Line Format --performance-schema-session-
connect-attrs-size=#

System Variable performance_schema_session_connect_attrs_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autosizing; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

Unit bytes

The amount of preallocated memory per thread reserved to hold connection attribute key-
value pairs. If the aggregate size of connection attribute data sent by a client is larger
than this amount, the Performance Schema truncates the attribute data, increments the
Performance_schema_session_connect_attrs_lost status variable, and writes a message
to the error log indicating that truncation occurred if the log_error_verbosity system variable
value is greater than 1.

The default value of performance_schema_session_connect_attrs_size
is autosized at server startup. This value may be small, so if truncation occurs
(Performance_schema_session_connect_attrs_lost becomes nonzero), you may wish to
set performance_schema_session_connect_attrs_size explicitly to a larger value.

Although the maximum permitted performance_schema_session_connect_attrs_size
value is 1MB, the effective maximum is 64KB because the server imposes a limit of 64KB on the
aggregate size of connection attribute data it can accept. If a client attempts to send more than
64KB of attribute data, the server rejects the connection. For more information, see Section 10.9,
“Performance Schema Connection Attribute Tables”.

• performance_schema_setup_actors_size

Command-Line Format --performance-schema-setup-actors-
size=#

System Variable performance_schema_setup_actors_size

Scope Global

Dynamic No

Type Integer

163

https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_connections
https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_log_error_verbosity

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autosizing; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_actors table.

• performance_schema_setup_objects_size

Command-Line Format --performance-schema-setup-objects-
size=#

System Variable performance_schema_setup_objects_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the setup_objects table.

• performance_schema_show_processlist

Command-Line Format --performance-schema-show-
processlist[={OFF|ON}]

Introduced 5.7.39

System Variable performance_schema_show_processlist

Scope Global

Dynamic Yes

Type Boolean

Default Value OFF

The SHOW PROCESSLIST statement provides process information by collecting thread data from all
active threads. The performance_schema_show_processlist variable determines which SHOW
PROCESSLIST implementation to use:

• The default implementation iterates across active threads from within the thread manager while
holding a global mutex. This has negative performance consequences, particularly on busy
systems.

• The alternative SHOW PROCESSLIST implementation is based on the Performance Schema
processlist table. This implementation queries active thread data from the Performance
Schema rather than the thread manager and does not require a mutex.

To enable the alternative implementation, enable the performance_schema_show_processlist
system variable. To ensure that the default and alternative implementations yield the same
information, certain configuration requirements must be met; see Section 10.16.3, “The processlist
Table”.

164

https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html

• performance_schema_users_size

Command-Line Format --performance-schema-users-size=#

System Variable performance_schema_users_size

Scope Global

Dynamic No

Type Integer

Default Value -1 (signifies autoscaling; do not assign this literal
value)

Minimum Value -1 (signifies autoscaling; do not assign this literal
value)

Maximum Value 1048576

The number of rows in the users table. If this variable is 0, the Performance Schema does
not maintain connection statistics in the users table or status variable information in the
status_by_user table.

165

166

Chapter 13 Performance Schema Status Variables
The Performance Schema implements several status variables that provide information about
instrumentation that could not be loaded or created due to memory constraints:

mysql> SHOW STATUS LIKE 'perf%';
+---+-------+
| Variable_name | Value |
+---+-------+
Performance_schema_accounts_lost	0
Performance_schema_cond_classes_lost	0
Performance_schema_cond_instances_lost	0
Performance_schema_file_classes_lost	0
Performance_schema_file_handles_lost	0
Performance_schema_file_instances_lost	0
Performance_schema_hosts_lost	0
Performance_schema_locker_lost	0
Performance_schema_mutex_classes_lost	0
Performance_schema_mutex_instances_lost	0
Performance_schema_rwlock_classes_lost	0
Performance_schema_rwlock_instances_lost	0
Performance_schema_socket_classes_lost	0
Performance_schema_socket_instances_lost	0
Performance_schema_stage_classes_lost	0
Performance_schema_statement_classes_lost	0
Performance_schema_table_handles_lost	0
Performance_schema_table_instances_lost	0
Performance_schema_thread_classes_lost	0
Performance_schema_thread_instances_lost	0
Performance_schema_users_lost	0
+---+-------+

For information on using these variables to check Performance Schema status, see Chapter 8,
Performance Schema Status Monitoring.

Performance Schema status variables have the following meanings:

• Performance_schema_accounts_lost

The number of times a row could not be added to the accounts table because it was full.

• Performance_schema_cond_classes_lost

How many condition instruments could not be loaded.

• Performance_schema_cond_instances_lost

How many condition instrument instances could not be created.

• Performance_schema_digest_lost

The number of digest instances that could not be instrumented in the
events_statements_summary_by_digest table. This can be nonzero if the value of
performance_schema_digests_size is too small.

• Performance_schema_file_classes_lost

How many file instruments could not be loaded.

• Performance_schema_file_handles_lost

How many file instrument instances could not be opened.

• Performance_schema_file_instances_lost

How many file instrument instances could not be created.

167

• Performance_schema_hosts_lost

The number of times a row could not be added to the hosts table because it was full.

• Performance_schema_index_stat_lost

The number of indexes for which statistics were lost. This can be nonzero if the value of
performance_schema_max_index_stat is too small.

• Performance_schema_locker_lost

How many events are “lost” or not recorded, due to the following conditions:

• Events are recursive (for example, waiting for A caused a wait on B, which caused a wait on C).

• The depth of the nested events stack is greater than the limit imposed by the implementation.

Events recorded by the Performance Schema are not recursive, so this variable should always be 0.

• Performance_schema_memory_classes_lost

The number of times a memory instrument could not be loaded.

• Performance_schema_metadata_lock_lost

The number of metadata locks that could not be instrumented in the metadata_locks table. This
can be nonzero if the value of performance_schema_max_metadata_locks is too small.

• Performance_schema_mutex_classes_lost

How many mutex instruments could not be loaded.

• Performance_schema_mutex_instances_lost

How many mutex instrument instances could not be created.

• Performance_schema_nested_statement_lost

The number of stored program statements for which statistics were lost. This can be nonzero if the
value of performance_schema_max_statement_stack is too small.

• Performance_schema_prepared_statements_lost

The number of prepared statements that could not be instrumented in the
prepared_statements_instances table. This can be nonzero if the value of
performance_schema_max_prepared_statements_instances is too small.

• Performance_schema_program_lost

The number of stored programs for which statistics were lost. This can be nonzero if the value of
performance_schema_max_program_instances is too small.

• Performance_schema_rwlock_classes_lost

How many rwlock instruments could not be loaded.

• Performance_schema_rwlock_instances_lost

How many rwlock instrument instances could not be created.

• Performance_schema_session_connect_attrs_lost

The number of connections for which connection attribute truncation has occurred.
For a given connection, if the client sends connection attribute key-value pairs

168

for which the aggregate size is larger than the reserved storage permitted by the
value of the performance_schema_session_connect_attrs_size system
variable, the Performance Schema truncates the attribute data and increments
Performance_schema_session_connect_attrs_lost. If this value is nonzero, you may wish
to set performance_schema_session_connect_attrs_size to a larger value.

For more information about connection attributes, see Section 10.9, “Performance Schema
Connection Attribute Tables”.

• Performance_schema_socket_classes_lost

How many socket instruments could not be loaded.

• Performance_schema_socket_instances_lost

How many socket instrument instances could not be created.

• Performance_schema_stage_classes_lost

How many stage instruments could not be loaded.

• Performance_schema_statement_classes_lost

How many statement instruments could not be loaded.

• Performance_schema_table_handles_lost

How many table instrument instances could not be opened. This can be nonzero if the value of
performance_schema_max_table_handles is too small.

• Performance_schema_table_instances_lost

How many table instrument instances could not be created.

• Performance_schema_table_lock_stat_lost

The number of tables for which lock statistics were lost. This can be nonzero if the value of
performance_schema_max_table_lock_stat is too small.

• Performance_schema_thread_classes_lost

How many thread instruments could not be loaded.

• Performance_schema_thread_instances_lost

The number of thread instances that could not be instrumented in the threads table. This can be
nonzero if the value of performance_schema_max_thread_instances is too small.

• Performance_schema_users_lost

The number of times a row could not be added to the users table because it was full.

169

170

Chapter 14 Using the Performance Schema to Diagnose
Problems

Table of Contents
14.1 Query Profiling Using Performance Schema ... 172

The Performance Schema is a tool to help a DBA do performance tuning by taking real measurements
instead of “wild guesses.” This section demonstrates some ways to use the Performance Schema for
this purpose. The discussion here relies on the use of event filtering, which is described in Section 5.2,
“Performance Schema Event Filtering”.

The following example provides one methodology that you can use to analyze a repeatable problem,
such as investigating a performance bottleneck. To begin, you should have a repeatable use
case where performance is deemed “too slow” and needs optimization, and you should enable all
instrumentation (no pre-filtering at all).

1. Run the use case.

2. Using the Performance Schema tables, analyze the root cause of the performance problem. This
analysis relies heavily on post-filtering.

3. For problem areas that are ruled out, disable the corresponding instruments. For example, if
analysis shows that the issue is not related to file I/O in a particular storage engine, disable the file
I/O instruments for that engine. Then truncate the history and summary tables to remove previously
collected events.

4. Repeat the process at step 1.

At each iteration, the Performance Schema output, particularly the
events_waits_history_long table, contains less and less “noise” caused by nonsignificant
instruments, and given that this table has a fixed size, contains more and more data relevant to the
analysis of the problem at hand.

At each iteration, investigation should lead closer and closer to the root cause of the problem, as
the signal-to-noise ratio improves, making analysis easier.

5. Once a root cause of performance bottleneck is identified, take the appropriate corrective action,
such as:

• Tune the server parameters (cache sizes, memory, and so forth).

• Tune a query by writing it differently,

• Tune the database schema (tables, indexes, and so forth).

• Tune the code (this applies to storage engine or server developers only).

6. Start again at step 1, to see the effects of the changes on performance.

The mutex_instances.LOCKED_BY_THREAD_ID and
rwlock_instances.WRITE_LOCKED_BY_THREAD_ID columns are extremely important for
investigating performance bottlenecks or deadlocks. This is made possible by Performance Schema
instrumentation as follows:

1. Suppose that thread 1 is stuck waiting for a mutex.

171

Query Profiling Using Performance Schema

2. You can determine what the thread is waiting for:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_1;

Say the query result identifies that the thread is waiting for mutex A, found in
events_waits_current.OBJECT_INSTANCE_BEGIN.

3. You can determine which thread is holding mutex A:

SELECT * FROM performance_schema.mutex_instances
WHERE OBJECT_INSTANCE_BEGIN = mutex_A;

Say the query result identifies that it is thread 2 holding mutex A, as found in
mutex_instances.LOCKED_BY_THREAD_ID.

4. You can see what thread 2 is doing:

SELECT * FROM performance_schema.events_waits_current
WHERE THREAD_ID = thread_2;

14.1 Query Profiling Using Performance Schema

The following example demonstrates how to use Performance Schema statement events and stage
events to retrieve data comparable to profiling information provided by SHOW PROFILES and SHOW
PROFILE statements.

The setup_actors table can be used to limit the collection of historical events by host, user, or
account to reduce runtime overhead and the amount of data collected in history tables. The first step of
the example shows how to limit collection of historical events to a specific user.

Performance Schema displays event timer information in picoseconds (trillionths of a second) to
normalize timing data to a standard unit. In the following example, TIMER_WAIT values are divided
by 1000000000000 to show data in units of seconds. Values are also truncated to 6 decimal places to
display data in the same format as SHOW PROFILES and SHOW PROFILE statements.

1. Limit the collection of historical events to the user running the query. By default, setup_actors is
configured to allow monitoring and historical event collection for all foreground threads:

mysql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| % | % | % | YES | YES |
+------+------+------+---------+---------+

Update the default row in the setup_actors table to disable historical event collection and
monitoring for all foreground threads, and insert a new row that enables monitoring and historical
event collection for the user running the query:

mysql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'NO', HISTORY = 'NO'
 WHERE HOST = '%' AND USER = '%';
mysql> INSERT INTO performance_schema.setup_actors
 (HOST,USER,ROLE,ENABLED,HISTORY)
 VALUES('localhost','test_user','%','YES','YES');

Data in the setup_actors table should now appear similar to the following:

mysql> SELECT * FROM performance_schema.setup_actors;
+-----------+-----------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+-----------+-----------+------+---------+---------+
| % | % | % | NO | NO |
| localhost | test_user | % | YES | YES |

172

https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html
https://dev.mysql.com/doc/refman/5.7/en/show-profile.html
https://dev.mysql.com/doc/refman/5.7/en/show-profile.html
https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html
https://dev.mysql.com/doc/refman/5.7/en/show-profile.html

Query Profiling Using Performance Schema

+-----------+-----------+------+---------+---------+

2. Ensure that statement and stage instrumentation is enabled by updating the setup_instruments
table. Some instruments may already be enabled by default.

mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%statement/%';
mysql> UPDATE performance_schema.setup_instruments
 SET ENABLED = 'YES', TIMED = 'YES'
 WHERE NAME LIKE '%stage/%';

3. Ensure that events_statements_* and events_stages_* consumers are enabled. Some
consumers may already be enabled by default.

mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';
mysql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%';

4. Under the user account you are monitoring, run the statement that you want to profile. For example:

mysql> SELECT * FROM employees.employees WHERE emp_no = 10001;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10001 | 1953-09-02 | Georgi | Facello | M | 1986-06-26 |
+--------+------------+------------+-----------+--------+------------+

5. Identify the EVENT_ID of the statement by querying the events_statements_history_long
table. This step is similar to running SHOW PROFILES to identify the Query_ID. The following
query produces output similar to SHOW PROFILES:

mysql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT
 FROM performance_schema.events_statements_history_long WHERE SQL_TEXT like '%10001%';
+----------+----------+--+
| event_id | duration | sql_text |
+----------+----------+--+
| 31 | 0.028310 | SELECT * FROM employees.employees WHERE emp_no = 10001 |
+----------+----------+--+

6. Query the events_stages_history_long table to retrieve the statement's stage events. Stages
are linked to statements using event nesting. Each stage event record has a NESTING_EVENT_ID
column that contains the EVENT_ID of the parent statement.

mysql> SELECT event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration
 FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID=31;
+--------------------------------+----------+
| Stage | Duration |
+--------------------------------+----------+
stage/sql/starting	0.000080
stage/sql/checking permissions	0.000005
stage/sql/Opening tables	0.027759
stage/sql/init	0.000052
stage/sql/System lock	0.000009
stage/sql/optimizing	0.000006
stage/sql/statistics	0.000082
stage/sql/preparing	0.000008
stage/sql/executing	0.000000
stage/sql/Sending data	0.000017
stage/sql/end	0.000001
stage/sql/query end	0.000004
stage/sql/closing tables	0.000006
stage/sql/freeing items	0.000272
stage/sql/cleaning up	0.000001
+--------------------------------+----------+

173

https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html
https://dev.mysql.com/doc/refman/5.7/en/show-profiles.html

174

	MySQL Performance Schema
	Table of Contents
	Preface and Legal Notices
	Chapter 1 MySQL Performance Schema
	Chapter 2 Performance Schema Quick Start
	Chapter 3 Performance Schema Build Configuration
	Chapter 4 Performance Schema Startup Configuration
	Chapter 5 Performance Schema Runtime Configuration
	5.1 Performance Schema Event Timing
	5.2 Performance Schema Event Filtering
	5.3 Event Pre-Filtering
	5.4 Pre-Filtering by Instrument
	5.5 Pre-Filtering by Object
	5.6 Pre-Filtering by Thread
	5.7 Pre-Filtering by Consumer
	5.8 Example Consumer Configurations
	5.9 Naming Instruments or Consumers for Filtering Operations
	5.10 Determining What Is Instrumented

	Chapter 6 Performance Schema Queries
	Chapter 7 Performance Schema Instrument Naming Conventions
	Chapter 8 Performance Schema Status Monitoring
	Chapter 9 Performance Schema General Table Characteristics
	Chapter 10 Performance Schema Table Descriptions
	10.1 Performance Schema Table Reference
	10.2 Performance Schema Setup Tables
	10.2.1 The setup_actors Table
	10.2.2 The setup_consumers Table
	10.2.3 The setup_instruments Table
	10.2.4 The setup_objects Table
	10.2.5 The setup_timers Table

	10.3 Performance Schema Instance Tables
	10.3.1 The cond_instances Table
	10.3.2 The file_instances Table
	10.3.3 The mutex_instances Table
	10.3.4 The rwlock_instances Table
	10.3.5 The socket_instances Table

	10.4 Performance Schema Wait Event Tables
	10.4.1 The events_waits_current Table
	10.4.2 The events_waits_history Table
	10.4.3 The events_waits_history_long Table

	10.5 Performance Schema Stage Event Tables
	10.5.1 The events_stages_current Table
	10.5.2 The events_stages_history Table
	10.5.3 The events_stages_history_long Table

	10.6 Performance Schema Statement Event Tables
	10.6.1 The events_statements_current Table
	10.6.2 The events_statements_history Table
	10.6.3 The events_statements_history_long Table
	10.6.4 The prepared_statements_instances Table

	10.7 Performance Schema Transaction Tables
	10.7.1 The events_transactions_current Table
	10.7.2 The events_transactions_history Table
	10.7.3 The events_transactions_history_long Table

	10.8 Performance Schema Connection Tables
	10.8.1 The accounts Table
	10.8.2 The hosts Table
	10.8.3 The users Table

	10.9 Performance Schema Connection Attribute Tables
	10.9.1 The session_account_connect_attrs Table
	10.9.2 The session_connect_attrs Table

	10.10 Performance Schema User-Defined Variable Tables
	10.11 Performance Schema Replication Tables
	10.11.1 The replication_connection_configuration Table
	10.11.2 The replication_connection_status Table
	10.11.3 The replication_applier_configuration Table
	10.11.4 The replication_applier_status Table
	10.11.5 The replication_applier_status_by_coordinator Table
	10.11.6 The replication_applier_status_by_worker Table
	10.11.7 The replication_group_members Table
	10.11.8 The replication_group_member_stats Table

	10.12 Performance Schema Lock Tables
	10.12.1 The metadata_locks Table
	10.12.2 The table_handles Table

	10.13 Performance Schema System Variable Tables
	10.14 Performance Schema Status Variable Tables
	10.15 Performance Schema Summary Tables
	10.15.1 Wait Event Summary Tables
	10.15.2 Stage Summary Tables
	10.15.3 Statement Summary Tables
	10.15.4 Transaction Summary Tables
	10.15.5 Object Wait Summary Table
	10.15.6 File I/O Summary Tables
	10.15.7 Table I/O and Lock Wait Summary Tables
	10.15.7.1 The table_io_waits_summary_by_table Table
	10.15.7.2 The table_io_waits_summary_by_index_usage Table
	10.15.7.3 The table_lock_waits_summary_by_table Table

	10.15.8 Socket Summary Tables
	10.15.9 Memory Summary Tables
	10.15.10 Status Variable Summary Tables

	10.16 Performance Schema Miscellaneous Tables
	10.16.1 The host_cache Table
	10.16.2 The performance_timers Table
	10.16.3 The processlist Table
	10.16.4 The threads Table

	Chapter 11 Performance Schema and Plugins
	Chapter 12 Performance Schema System Variables
	Chapter 13 Performance Schema Status Variables
	Chapter 14 Using the Performance Schema to Diagnose Problems
	14.1 Query Profiling Using Performance Schema

