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Preface and Legal Notices

This is the MySQL and Virtualization extract from the MySQL Reference Manual.

Legal Notices

Copyright © 1997, 2019, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:




Documentation Accessibility

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.
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Chapter 1 Using MySQL within an Amazon EC2 Instance

The Amazon Elastic Compute Cloud (EC2) service provides virtual servers that you can build and deploy
to run a variety of different applications and services, including MySQL. The EC2 service is based around
the Xen framework, supporting x86, Linux based, platforms with individual instances of a virtual machine
referred to as an Amazon Machine Image (AMI). You have complete (root) access to the AMI instance that
you create, enabling you to configure and install your AMI in any way you choose.

To use EC2, you create an AMI based on the configuration and applications that you intend to use, and
upload the AMI to the Amazon Simple Storage Service (S3). From the S3 resource, you can deploy one or
more copies of the AMI to run as an instance within the EC2 environment. The EC2 environment provides
management and control of the instance and contextual information about the instance while it is running.

Because you can create and control the AMI, the configuration, and the applications, you can deploy and
create any environment you choose. This includes a basic MySQL server in addition to more extensive

replication, HA and scalability scenarios that enable you to take advantage of the EC2 environment, and
the ability to deploy additional instances as the demand for your MySQL services and applications grow.

To aid the deployment and distribution of work, three different Amazon EC2 instances are available, small
(identified as mL. snal | ), large (. | ar ge) and extra large (L. x| ar ge). The different types provide
different levels of computing power measured in EC2 computer units (ECU). A summary of the different
instance configurations is shown in the following table.

EC2 Attribute Small Large Extra Large
Platform 32-bit 64-bit 64-bit

CPU cores 1 2 4

ECUs 1 4 8

RAM 1.7GB 7.5GB 15GB
Storage 150GB 840GB 1680GB

I/O Performance Medium High High

The typical model for deploying and using MySQL within the EC2 environment is to create a basic AMI that
you can use to hold your database data and application. Once the basic environment for your database
and application has been created you can then choose to deploy the AMI to a suitable instance. Here the
flexibility of having an AMI that can be re-deployed from the small to the large or extra large EC2 instance
makes it easy to upgrade the hardware environment without rebuilding your application or database stack.

To get started with MySQL on EC2, including information on how to set up and install MySQL within an
EC2 installation and how to port and migrate your data to the running instance, see Chapter 2, Setting Up
MySQL on an EC2 AMI.

For tips and advice on how to create a scalable EC2 environment using MySQL, including guides on
setting up replication, see Chapter 4, Deploying a MySQL Database Using EC2.







Chapter 2 Setting Up MySQL on an EC2 AMI

There are many different ways of setting up an EC2 AMI with MySQL, including using any of the pre-
configured AMIs supplied by Amazon.

The default Getting Started AMI provided by Amazon uses Fedora Core 4, and you can install MySQL by
using yum

shel | > yuminstall mysql
This installs both the MySQL server and the Perl DBD::mysq| driver for the Perl DBI API.
Alternatively, you can use one of the AMIs that include MySQL within the standard installation.

Finally, you can also install a standard version of MySQL downloaded from the MySQL website. The
installation process and instructions are identical to any other installation of MySQL on Linux. See Installing
and Upgrading MySQL.

The standard configuration for MySQL places the data files in the default location, / var /| i b/ nysql .
The default data directory on an EC2 instance is / nmt (although on the large and extra large instance you
can alter this configuration). You must edit / et ¢/ ny. cnf to set the dat adi r option to point to the larger
storage area.

Important

The first time you use the main storage location within an EC2 instance it needs to
be initialized. The initialization process starts automatically the first time you write
to the device. You can start using the device right away, but the write performance
of the new device is significantly lower on the initial writes until the initialization
process has finished.

To avoid this problem when setting up a new instance, you should start the
initialization process before populating your MySQL database. One way to do this is
to use dd to write to the file system:

root-shell> dd if=/dev/zero of=initialize bs=1024M count =50

The preceding creates a 50GB on the file system and starts the initialization
process. Delete the file once the process has finished.

The initialization process can be time-consuming. On the small instance,
initialization takes between two and three hours. For the large and extra large
drives, the initialization can be 10 or 20 hours, respectively.

In addition to configuring the correct storage location for your MySQL data files, also consider setting the
following other settings in your instance before you save the instance configuration for deployment:

» Set the MySQL server ID, so that when you use it for replication, the ID information is set correctly.
» Enabling binary logging, so that replication can be initialized without starting and stopping the server.

» Set the caching and memory parameters for your storage engines. There are no limitations or
restrictions on what storage engines you use in your EC2 environment. Choose a configuration, possibly
using one of the standard configurations provided with MySQL appropriate for the instance on which you
expect to deploy. The large and extra large instances have RAM that can be dedicated to caching. Be
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aware that if you choose to install nencached on the servers as part of your application stack you must
ensure there is enough memory for both MySQL and nentached.

Once you have configured your AMI with MySQL and the rest of your application stack, save the AMI so
that you can deploy and reuse the instance.

Once you have your application stack configured in an AMI, populating your MySQL database with data
should be performed by creating a dump of your database using nmysql dunp, transferring the dump to the
EC2 instance, and then reloading the information into the EC2 instance database.

Before using your instance with your application in a production situation, be aware of the limitations of the
EC2 instance environment. See Chapter 3, EC2 Instance Limitations. To begin using your MySQL AMI,
consult the notes on deployment. See Chapter 4, Deploying a MySQL Database Using EC2.




Chapter 3 EC2 Instance Limitations

Be aware of the following limitations of the EC2 instances before deploying your applications. Although
these shouldn't affect your ability to deploy within the Amazon EC2 environment, they may alter the way
you setup and configure your environment to support your application.

» Data stored within instances is not persistent. If you create an instance and populate the instance with
data, then the data only remains in place while the machine is running, and does not survive a reboot. If
you shut down the instance, any data it contained is lost.

To ensure that you do not lose information, take regular backups using nysql dunp. If the data being
stored is critical, consider using replication to keep a “live” backup of your data in the event of a failure.
When creating a backup, write the data to the Amazon S3 service to avoid the transfer charges applied
when copying data offsite.

» EC2 instances are not persistent. If the hardware on which an instance is running fails, the instance is
shut down. This can lead to loss of data or service.

However, if you use EBS, you can attach an EBS storage volume to an EC2 instance, and that EBS
volume is persistent. Like a disk, an EBS volume can fail, but it is possible to create point-in-time
shapshots of the volume. Snapshots are persisted to Amazon S3 and can be used to restore data in the
event of volume failure.

e To replicate your EC2 instances to a non-EC2 environment, be aware of the transfer costs to and from
the EC2 service. Data transfer between different EC2 instances is free, so using replication within the
EC2 environment does not incur additional charges.

» Certain HA features are either not directly supported, or have limiting factors or problems that could
reduce their utility. For example, using DRBD or MySQL Cluster might not work. The default storage
configuration is also not redundant. You can use software-based RAID to improve redundancy, but this
implies a further performance hit.







Chapter 4 Deploying a MySQL Database Using EC2

Because you cannot guarantee the uptime and availability of your EC2 instances, when deploying MySQL
within the EC2 environment, use an approach that enables you to easily distribute work among your EC2
instances. There are a number of ways of doing this. Using sharding techniques, where you split the
application across multiple servers dedicating specific blocks of your dataset and users to different servers
is an effective way of doing this. As a general rule, it is easier to create more EC2 instances to support
more users than to upgrade the instance to a larger machine.

The EC2 architecture works best when you treat the EC2 instances as temporary, cache-based solutions,
rather than as a long-term, high availability solution. In addition to using multiple machines, take advantage
of other services, such as nencached to provide additional caching for your application to help reduce

the load on the MySQL server so that it can concentrate on writes. On the large and extra large instances
within EC2, the RAM available can provide a large memory cache for data.

Most types of scale-out topology that you would use with your own hardware can be used and applied
within the EC2 environment. However, use the limitations and advice already given to ensure that any
potential failures do not lose you any data. Also, because the relative power of each EC2 instance is so
low, be prepared to alter your application to use sharding and add further EC2 instances to improve the
performance of your application.

For example, take the typical scale-out environment shown following, where a single master replicates to
one or more slaves (three in this example), with a web server running on each replication slave.

Figure 4.1 Typical Standard Scale-out Structure

[ Web Server 1 H Webh Server 2 H Webh Server 3

| MySQL Slave 1 | | MySQL Slave 2 | | MySQL Slave 3 |

| MySCQL Master |

You can reproduce this structure completely within the EC2 environment, using an EC2 instance for the
master, and one instance for each of the web and MySQL slave servers.

Note

Within the EC2 environment, internal (private) IP addresses used by the EC2
instances are constant. Always use these internal addresses and names
when communicating between instances. Only use public IP addresses when
communicating with the outside world - for example, when publicizing your
application.

To ensure reliability of your database, add at least one replication slave dedicated to providing an active
backup and storage to the Amazon S3 facility. You can see an example of this in the following topology.




Figure 4.2 Typical Standard Scale-out Structure With Backup Using EC2

[ EC2 1 H EC2 2 H EC2 3 ]
| webimysaL | | websmysaL | [ websmysaL |

EC2

MySCQL Master

ECZ Backup
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Amazon 53
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Using nmentached within your EC2 instances should provide better performance. The large and extra
large instances have a significant amount of RAM. To use nentached in your application, when loading
information from the database, first check whether the item exists in the cache. If the data you are looking
for exists in the cache, use it. If not, reload the data from the database and populate the cache.

Sharding divides up data in your entire database by allocating individual machines or machine groups to
provide a unique set of data according to an appropriate group. For example, you might put all users with a
surname ending in the letters A-D onto a single server. When a user connects to the application and their
surname is known, queries can be redirected to the appropriate MySQL server.

When using sharding with EC2, separate the web server and MySQL server into separate EC2 instances,
and then apply the sharding decision logic into your application. Once you know which MySQL server you
should be using for accessing the data you then distribute queries to the appropriate server. You can see a
sample of this in the following illustration.




Figure 4.3 Using Sharding In EC2 To Spread The Load

( EC2 Web 1 EC2 Web 2 EC2Web 3

<>

| MySQL Slave 1 | | MySQL Slave 2 | | MySQL Slave 3 |

| MySCL Master |

Warning

With sharding and EC2, be careful that the potential for failure of an instance does
not affect your application. If the EC2 instance that provides the MySQL server for a
particular shard fails, then all of the data on that shard becomes unavailable.
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