
MySQL Enterprise Backup User's Guide (Version
8.3.0)

Abstract

This is the user manual for MySQL Enterprise Backup, a commercially licensed backup utility for MySQL databases.
It explains the different kinds of backup and restore that can be performed with MySQL Enterprise Backup, and
describes the commands for performing them. Strategies for optimizing backup and restore operations are also
discussed.

For notes detailing the changes in each release, see the MySQL Enterprise Backup 8.3 Release Notes.

For legal information, including licensing information, see the Preface and Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2024-03-05 (revision: 8589)

https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/8.3/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices ... xi
I Getting Started with MySQL Enterprise Backup ... 1

1 Introduction to MySQL Enterprise Backup .. 5
1.1 The mysqlbackup Client .. 5
1.2 Overview of Backup Types ... 5
1.3 Files that Are Backed Up .. 7

1.3.1 Types of Files Contained in a Backup .. 7
1.3.2 Files Backed up for InnoDB Data ... 19
1.3.3 Files Backed up for Data Stored with MyISAM and Other Storage Engines 20
1.3.4 Files Generated by mysqlbackup .. 20

1.4 The Backup Process .. 20
2 Installing MySQL Enterprise Backup ... 23
3 What's New in MySQL Enterprise Backup 8.3? ... 25

II Using MySQL Enterprise Backup ... 27
4 Backing Up a Database Server .. 31

4.1 Before the First Backup .. 31
4.1.1 Collect Database Information .. 31
4.1.2 Grant MySQL Privileges to Backup Administrator .. 32
4.1.3 Designate a Location for the Backup Directory .. 36

4.2 The Typical Backup / Verify / Restore Cycle ... 36
4.2.1 OS User for Running mysqlbackup ... 36
4.2.2 Backing Up an Entire MySQL Instance ... 37
4.2.3 Verifying a Backup ... 40
4.2.4 Restoring a Database .. 41

4.3 Backup Scenarios and Examples .. 44
4.3.1 Making a Single-File Backup .. 44
4.3.2 Making a Full Backup .. 49
4.3.3 Making a Differential or Incremental Backup .. 50
4.3.4 Making a Compressed Backup ... 56
4.3.5 Making a Partial Backup .. 57
4.3.6 Making an Optimistic Backup ... 60
4.3.7 Making a Back Up of In-Memory Database Data ... 63
4.3.8 Making Scheduled Backups ... 63

4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network
(SAN) ... 64

5 Recovering or Restoring a Database Server ... 65
5.1 Performing a Restore Operation .. 65

5.1.1 Restoring a Compressed Backup .. 66
5.1.2 Restoring an Encrypted Backup Image ... 67
5.1.3 Restoring an Incremental Backup ... 67
5.1.4 Table-Level Recovery (TLR) ... 68
5.1.5 Restoring Backups Created with the --use-tts Option 69
5.1.6 Restoring External InnoDB Tablespaces to Different Locations 70
5.1.7 Advanced: Preparing and Restoring a Directory Backup 70

5.2 Restoring a Backup from Cloud Storage to a MySQL Server ... 70
5.3 Point-in-Time Recovery ... 71
5.4 Restoring a Backup with a Database Server Upgrade or Downgrade 73

6 Working with Encrypted InnoDB Tablespaces ... 75
7 Backing up Using Redo Log Archiving ... 79
8 Using MySQL Enterprise Backup with Replication ... 81

8.1 Setting Up a New replica .. 81

iii

MySQL Enterprise Backup User's Guide (Version 8.3.0)

8.2 Backing up and Restoring a Replica Database ... 83
8.3 Restoring a Source Database ... 84
8.4 Working with Encrypted Binary and Relay Logs ... 85

9 Using MySQL Enterprise Backup with Group Replication ... 87
10 Encryption for Backups .. 89
11 Using MySQL Enterprise Backup with Media Management Software (MMS) Products 91

11.1 Backing Up to Tape with Oracle Secure Backup .. 91
12 Using MySQL Enterprise Backup with Docker ... 95
13 Performance Considerations for MySQL Enterprise Backup ... 97

13.1 Optimizing Backup Performance .. 97
13.2 Optimizing Restore Performance ... 100

14 Monitoring Backups with MySQL Enterprise Monitor .. 103
15 Using MySQL Enterprise Backup with MySQL Enterprise Firewall .. 105
16 Using LDAP for Server Authentication .. 107
17 Troubleshooting for MySQL Enterprise Backup ... 109

17.1 Exit codes of MySQL Enterprise Backup .. 109
17.2 Working Around Corruption Problems .. 110
17.3 Using the MySQL Enterprise Backup Logs ... 111
17.4 Using the MySQL Enterprise Backup Manifest .. 113

III mysqlbackup Command Reference ... 115
18 mysqlbackup ... 119
19 mysqlbackup commands ... 121

19.1 Backup Operations ... 121
19.2 Update Operations .. 122
19.3 Restore Operations ... 123
19.4 Validation Operations .. 125
19.5 Other Single-File Backup Operations ... 126
19.6 Other Operations .. 128

20 mysqlbackup Command-Line Options .. 131
20.1 General Options .. 137
20.2 Connection Options ... 139
20.3 Server Repository Options ... 140
20.4 Backup Repository Options ... 143
20.5 Metadata Options .. 147
20.6 Compression Options .. 147
20.7 Incremental Backup Options .. 150
20.8 Partial Backup and Restore Options .. 152
20.9 Single-File Backup Options ... 157
20.10 Performance / Scalability / Capacity Options ... 159
20.11 Message Logging Options ... 166
20.12 Progress Report Options ... 167
20.13 Encryption Options .. 171
20.14 Options for Working with Encrypted InnoDB Tablespaces and Encrypted Binary/
Relay Logs ... 171
20.15 Cloud Storage Options .. 172
20.16 Options for Special Backup Types ... 177

21 Configuration Files and Parameters .. 183
IV Appendixes .. 185

A Frequently Asked Questions for MySQL Enterprise Backup ... 189
B Limitations of MySQL Enterprise Backup .. 191
C Compatibility Information for MySQL Enterprise Backup .. 195

C.1 Supported Platforms ... 195
C.2 Cross-Platform Compatibility ... 195
C.3 Compatibility with MySQL Versions ... 195

iv

MySQL Enterprise Backup User's Guide (Version 8.3.0)

C.4 Compatibility with Older MySQL Enterprise Backup .. 195
D Backup History Table Update .. 197
E SBT Backup History Table Update ... 199
F Backup Progress Table Update ... 201
MySQL Enterprise Backup Glossary .. 203

Index .. 215

v

vi

List of Tables
1.1 Types of Files in a Backup ... 7
4.1 Information Needed to Back Up a Database .. 31
17.1 MySQL Enterprise Backup Exit Codes and Messages .. 109
20.1 List of All Options ... 131

vii

viii

List of Examples
4.1 Single-File Backup to Absolute Path .. 44
4.2 Single-File Backup to Relative Path ... 44
4.3 Single-File Backup to Standard Output .. 45
4.4 Convert Existing Backup Directory to Single Image .. 45
4.5 Extract Existing Image to Backup Directory .. 45
4.6 List Single-File Backup Contents ... 45
4.7 Validate a Single-File Backup ... 45
4.8 Extract Single-File Backup into Current Directory ... 45
4.9 Extract Single-File Backup into a Backup Directory .. 45
4.10 Selective Extract of Single File .. 45
4.11 Selective Extract of Single Directory .. 46
4.12 Dealing with Absolute Path Names .. 46
4.13 Single-File Backup to a Remote Host .. 46
4.14 Single-file Backup to a Remote MySQL Server .. 46
4.15 Stream a Backup Directory to a Remote MySQL Server ... 47
4.16 Creating a Cloud Backup on Oracle Cloud Infrastructure Object Storage 47
4.17 Creating a Cloud Incremental Backup on Oracle Cloud Infrastructure .. 48
4.18 Creating a Cloud Backup on an OpenStack Object Storage .. 48
4.19 Creating a Cloud Backup in an Amazon S3 Bucket .. 48
4.20 Creating a Cloud Incremental Backup in an Amazon S3 Bucket .. 48
4.21 Creating a Cloud Backup on GCP Storage Service .. 48
4.22 Making an Uncompressed Partial Backup of InnoDB Tables ... 59
4.23 Making a Compressed Partial Backup ... 60
4.24 Optimistic Backup Using the Option optimistic-time=YYMMDDHHMMSS 61
4.25 Optimistic Backup Using the Option optimistic-time=now .. 61
4.26 Optimistic Backup Using the optimistic-busy-tables Option .. 61
4.27 Optimistic and Partial Backup Using both the optimistic-busy-tables and optimistic-
time Options ... 62
5.1 Restoring a Database Server .. 65
5.2 Restoring a Compressed Backup .. 66
5.3 Restoring a Compressed Directory Backup .. 66
5.4 Restoring a Compressed and Prepared Directory Backup ... 66
5.5 Restoring an Encrypted Backup Image .. 67
5.6 Restoring an Incremental Backup Image ... 67
5.7 Restoring A Selected Table from an Image Backup ... 69
5.8 Restoring Selected Tables in a Schema from an Image Backup .. 69
5.9 Restoring and Renaming a Table from a TTS Backup .. 69
5.10 Restoring a Backup Directory using copy-back-and-apply-log .. 70
5.11 Applying the Log to a Backup ... 70
5.12 Restoring a Single-file Backup from an Oracle Cloud Infrastructure (OCI) Object Storage to a
MySQL Server .. 71
5.13 Restoring a Cloud Incremental Backup from an Oracle Cloud Infrastructure (OCI) Object Storage
to a MySQL Server .. 71
5.14 Restoring a Single-file Backup from an OpenStack Object Storage to a MySQL Server 71
5.15 Restoring a Single-file Backup from Amazon S3 to a MySQL Server ... 71
5.16 Restoring a Single-file Backup from GCP Storage Service to a MySQL Server 71
11.1 Sample mysqlbackup Commands Using MySQL Enterprise Backup with Oracle Secure
Backup ... 93
16.1 Backup Using Simple LDAP Authentication .. 107
16.2 TTS Restore Using Simple LDAP Authentication .. 107
16.3 Backup Using SALS-based LDAP Authentication .. 107

ix

MySQL Enterprise Backup User's Guide (Version 8.3.0)

16.4 TTS Restore Using SALS-based Authentication ... 107
19.1 Apply Log to Full Backup .. 123
21.1 Sample backup-my.cnf file .. 184

x

Preface and Legal Notices
This is the user manual for the MySQL Enterprise Backup product.

Licensing information. This product may include third-party software, used under license. See the
MySQL Enterprise Backup 8.3 License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this MySQL Enterprise Backup
release.

Legal Notices

Copyright © 2003, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

xi

https://downloads.mysql.com/docs/licenses/backup-8.3-com-en.pdf

Documentation Accessibility

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

xii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Part I Getting Started with
MySQL Enterprise Backup

Table of Contents
1 Introduction to MySQL Enterprise Backup .. 5

1.1 The mysqlbackup Client ... 5
1.2 Overview of Backup Types ... 5
1.3 Files that Are Backed Up .. 7

1.3.1 Types of Files Contained in a Backup .. 7
1.3.2 Files Backed up for InnoDB Data ... 19
1.3.3 Files Backed up for Data Stored with MyISAM and Other Storage Engines 20
1.3.4 Files Generated by mysqlbackup .. 20

1.4 The Backup Process .. 20
2 Installing MySQL Enterprise Backup .. 23
3 What's New in MySQL Enterprise Backup 8.3? .. 25

3

4

Chapter 1 Introduction to MySQL Enterprise Backup

Table of Contents
1.1 The mysqlbackup Client ... 5
1.2 Overview of Backup Types ... 5
1.3 Files that Are Backed Up .. 7

1.3.1 Types of Files Contained in a Backup .. 7
1.3.2 Files Backed up for InnoDB Data ... 19
1.3.3 Files Backed up for Data Stored with MyISAM and Other Storage Engines 20
1.3.4 Files Generated by mysqlbackup .. 20

1.4 The Backup Process .. 20

MySQL Enterprise Backup 8.3.0 is a backup utility for MySQL 8.3.0. It is a multi-platform, high-
performance tool, offering rich features like “hot” (online) backup, incremental and differential backup,
selective backup and restore, support for direct cloud storage backup, backup encryption and
compression, and many other valuable features.

While optimized for use with InnoDB tables, MySQL Enterprise Backup is capable of backing up and
restoring all kinds of tables created by any kinds of storage engines supported by MySQL. The parallelism
of its read and write processes (performed in independent, multiple threads) and its block-level parallelism
(different threads can read, process, or write different chunks within a single file) allow backup and restore
processes to be completed with great speed, and often with a significant performance gain when compared
to a logical backup using tools like mysqldump.

MySQL Enterprise Backup is a valuable tool for maintaining and safeguarding your MySQL data, and for
quick and reliable recovery when accidents or disasters strike. It is part of the MySQL Enterprise Edition,
available to subscribers under a commercial license.

Among other things, this manual explains:

• How to install MySQL Enterprise Backup.

• The different kinds of backups that can be performed with MySQL Enterprise Backup, how to perform
them, and some tips on choosing the right kind of backups for your system.

• How to restore backups created by MySQL Enterprise Backup.

• How to use MySQL Enterprise Backup in special situations or for special purposes (for example, setting
up replication, using Media Management Software (MMS) products, or using a Distributed File System
(DFS)).

• The mysqlbackup client, its commands and command options.

1.1 The mysqlbackup Client
All MySQL Enterprise Backup functions are executed with the mysqlbackup client. It is used for
performing different types of backup and restore operations, as well as other related tasks like backup
compression, decompression, validation, and so on.

Use of the mysqlbackup client and the related commands are explained and illustrated throughout this
manual. For detailed information on the mysqlbackup commands and command options, see Part III,
“mysqlbackup Command Reference”.

1.2 Overview of Backup Types

5

Kinds of backups according to the level of service disruption

When it comes to formulating your backup strategy, performance and storage space are the key
considerations. You want the backup to complete quickly, with as little CPU overhead on the database
server as possible. You also want the backup data to be compact, so you can keep multiple backups on
hand to restore at a moment's notice. Transferring the backup data to a different system should be quick
and convenient. Under such considerations, various strategies for backing up your database often give
you different advantages, for the different trade-offs you make when choosing a particular strategy. To
choose the strategy that best fits your needs, you have to understand the nature of each kind of backups
that MySQL Enterprise Backup can perform, for which this section is giving a brief overview.

Kinds of backups according to the level of service disruption

Depending on how the database operations would be disrupted during a backup, the backup is classified
as “hot,”“warm,” or “cold”:

• Very Low to Low Level of Disruption: A hot backup is a backup performed while the database is running.
This type of backups does not block normal database operations. It captures even changes that occur
while the backup is happening. Comparing to the other backup types, it causes the least disruption to
the database server, and it is a desirable backup option when you want to avoid taking your application,
web site, or web service offline. However, before a hot backup can be restored, there needs to be an
extra process of preparing the backup to make it consistent (i.e., correctly reflecting the state of the state
of the database at the time the backup was completed). See Section 5.1.7, “Advanced: Preparing and
Restoring a Directory Backup” for more explanations.

When connected to a running MySQL server, MySQL Enterprise Backup performs hot backup for
InnoDB tables.

• Medium to High Level of Disruption: A warm backup is a backup performed with the database put under
a read-only state. This type of backups blocks any write operations to the tables during the backup
process, but still allow tables to be read.

When connected to a running MySQL server, MySQL Enterprise Backup backs up all MyISAM and other
non-InnoDB tables using the warm backup technique after all InnoDB tables have already been backed
up with the hot backup method. Therefore, to back up as much data as possible during the hot backup
phase, you should designate InnoDB as the default storage engine for new tables (which is the default
setting for MySQL servers), or convert existing tables to use the InnoDB storage engine.

• High to Very High Level of Disruption: A cold backup is a backup created while the database is stopped.
It is very disruptive to a database service. MySQL Enterprise Backup 8.3 does not support cold backups.

Kinds of backups according to whether all data, or recent changes only are
backed up

According to whether you want to include all data into your backup or only the recent changes, and
according to recent changes since when, you can perform either a full backup, a differential backup, or an
incremental backup. The three types of backups have different levels of requirements for CPU overhead
and disk space, thus are suitable for different situations:

• A full backup includes the complete data from the database (except in cases where some tables are
excluded with the partial backup options).

• A differential backup includes all changes to the data since the last full backup. It is faster than a full
backup, saves storage space on the database server, and saves on network traffic when the backup is
being transferred to a different server. However, it requires additional processing to make the backup
ready for restore, which you can perform on a different system to minimize CPU overhead on the
database server.

6

Compressed versus uncompressed backups

• An Incremental backup includes all changes to the data since the last backup. It offers similar
advantages over a full backup as a differential backup does, and often to a even greater extent by further
decreasing the backup size. But it might also require more preparations on a longer series of backups,
before a restore can be performed.

Compressed versus uncompressed backups

Backup compression saves you storage space and network traffic to transfer the backup data onto a
different server. Compression does add some CPU overhead, but the overhead is algorithm dependent
and it is fairly low for the default algorithm used by MySQL Enterprise Backup. Also, compression often
reduces the IO overhead by a great deal, which might shorten the restore time, especially for slower IO
devices. However, during the restore process, you need time for decompression and also storage space
for both the compressed and decompressed data at the same time. So, take into account the additional
storage space and the extra time needed during a restore when considering whether to create compressed
backups.

When streaming backup data to another server, you might want to compress the backup either on the
original server or the destination server, depending on which server has more spare CPU capacity and
how much network traffic the compression could save.

For more on techniques and tradeoffs involving backup and restore performance, see Chapter 13,
Performance Considerations for MySQL Enterprise Backup.

1.3 Files that Are Backed Up

This section explains the various types of files contained in a backup.

1.3.1 Types of Files Contained in a Backup

The following table shows the different types of files that are included in a single-file backup image or a
directory backup. In the case of a single-file backup, unpack the file into a backup directory structure using
the extract or the image-to-backup-dir command to view the files.

Table 1.1 Types of Files in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes

ibdata* The InnoDB system tablespace,
containing multiple InnoDB tables
and associated indexes.

Because the original files might
change while the backup is in
progress, the apply-log step
applies the same changes to the
corresponding backup files.

*.ibd An InnoDB tablespace, which can
be (a) a file-per-table tablespace,
containing a single InnoDB
table and associated indexes,
or (b) a file-per-table external
tablespace located outside
of the server's data directory,
containing a single InnoDB table
and associated indexes, or (c) a
general tablespace, containing
one or more tables and their
indexes.

Because the original files might
change while the backup is in
progress, the apply-log step
applies the same changes to the
corresponding backup files.

7

https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/innodb-create-table-external.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-create-table-external.html
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_general_tablespace

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes

*.ibz Compressed form of InnoDB
data files from the MySQL data
directory.

Produced instead of .ibd files
in a compressed backup. The
ibdata* files representing
the InnoDB system tablespace
also receive this extension in a
compressed backup.

The .ibz files are uncompressed
during the apply-log, copy-
back, or copy-back-and-
apply-log step.

*.sdi Hold Serialized Dictionary
Information (SDI) for MyISAM
tables, which is the tables'
metadata.

The database is put into a read-
only state while these files are
copied. These files are copied
unmodified.

*.MYD MyISAM table data. The database is put into a read-
only state while these files are
copied. These files are copied
unmodified.

*.MYI MyISAM index data. The database is put into a read-
only state while these files are
copied. These files are copied
unmodified.

*.CSM Metadata for CSV tables. These files are copied unmodified.
The backup_history and
backup_progress tables
created by mysqlbackup use
the CSV format, so the backup
always includes some files with
this extension.

*.CSV Data for CSV tables. These files are copied unmodified.
The backup_history and
backup_progress tables
created by mysqlbackup use
the CSV format, so the backup
always includes some files with
this extension.

*.MRG MERGE storage engine
references to other tables.

The database is put into a read-
only state while these files are
copied. These files are copied
unmodified.

*.ARM ARCHIVE storage engine table
metadata.

The database is put into a read-
only state while these files are
copied. These files are copied
unmodified.

*.ARZ ARCHIVE storage engine table
data.

The database is put into a read-
only state while these files are
copied. These files are copied
unmodified.

8

https://dev.mysql.com/doc/refman/8.3/en/serialized-dictionary-information.html
https://dev.mysql.com/doc/refman/8.3/en/serialized-dictionary-information.html

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes

backup-my.cnf Records the configuration
parameters that specify the layout
of the MySQL data files.

Used in restore operations to
reproduce the same layout as
when the backup was taken.

ibbackup_ibd_files Records names of the .ibd files
and their space IDs during an
incremental backup.

This file is created during an
incremental backup. During a
restore, the information in the
file is used to delete the tables
from the full backup that has been
removed between the time of the
full backup and the time of the
incremental backup.

ibbackup_logfile A condensed version of the
ib_logfile* files from the
MySQL data directory.

The InnoDB log files
(ib_logfile*) are fixed-size
files that are continuously updated
during the database's operation.
For backup purposes, only the
changes that are committed
while the backup is in progress
are needed. These changes are
recorded in ibbackup_logfile,
and used to re-create the
ib_logfile* files during the
apply-log phase.

ibbackup_redo_log_only Created instead of the
ibbackup_logfile for
incremental backups taken with
the --incremental-with-
redo-log-only option.

ib_logfile* Created in the backup directory by
mysqlbackup during the apply-
log phase after the initial backup.

These files are not copied from
the original data directory, but
rather re-created in the backup
directory during the apply-log
phase after the initial backup,
using the changes recorded in the
ibbackup_logfile file.

Timestamped directory, such as
2011-05-26_13-42-02

Created by the --with-
timestamp option. All the backup
files go inside this subdirectory.

Use the --with-timestamp
option to easily keep more than
one set of backup data under the
same main backup directory.

datadir directory A subdirectory that stores the data
files and database subdirectories
from the original MySQL instance.

Created under the backup
directory by mysqlbackup.

binary log files Binary log files from the server,
which are included in a backup by
default (except when the backup
is created with the --use-tts
option). They allow a snapshot
of the server to be taken, so a
server can be cloned to its exact

Saved under the datadir
directory inside the backup. A
copy of the index file on the
MySQL server that lists all the
used binary log files, with the
locations of the binary log files
properly updated to point to the

9

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes
state. Using a full backup as a
basis, the binary log files that
are included with an incremental
backup can be used for a point-
in-time recovery (PITR), which
restores a database to its state
at a certain point in time after the
last full backup. See Section 5.3,
“Point-in-Time Recovery” for
details.

files' locations in the backup, is
included into the backup as well
also under the datadir directory.
Use the --skip-binlog option
to exclude the binary log from the
backup.

By default, the binary log files
and the index file are restored
to the same locations they were
found on the backed-up server.
Use the --log-bin option to
specify a different target location
for the binary log. Use the --
skip-binlog option to skip the
restoring of the binary log.

The binary log files are
compressed and saved with
the .bz extension when being
included in a compressed backup.

Notes

• No
binary
log files
are
copied
into the
incremental
backup
if the --
use-
tts
option or
the --
start-
lsn
option is
used. To
include
binary
log files
for the
period
covered
by the
incremental
backup,
do not
use the
--use-

10

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes
tts
option
and,
instead
of --
start-
lsn, use
the --
incremental-
base
option,
which
provides
the
necessary
information
for
mysqlbackup
to
ensure
that
no gap
exists
between
binary
log data
included
in the
previous
backup
and the
current
incremental
backup.

• No
binary
log files
are
restored
onto a
server
with a
partial
restore.

relay log files Relay log files from a replica
server, which are included in a
backup of a replica server by
default (except when the backup
is created with the --use-tts
option). Their inclusion saves the
time and resources required for

Saved under the datadir
directory under the backup
directory. A copy of the index
file on the replica server that
lists all the used relay log files,
with the locations of the relay
log files properly updated to

11

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes
fetching the relay logs from the
source when the replica is being
restored.

point to the files' locations in the
backup directory, is included
into the backup as well, under
the datadir directory. Use the
--skip-relaylog option to
exclude the relay log from the
backup.

By default, the relay log files
and the index file are restored
to the same locations they were
found on the backed-up replica
server. Use the --relay-log
option to specify a different target
location for the relay log. Use the
--skip-relaylog option to skip
the restoring of the relay log.

No relay log files are restored onto
a server with a partial restore.

The relay log files are compressed
and saved with the .bz extension
when being included in a
compressed backup.

*.bz Compressed binary log or relay
log files.

The binary log and relay log files
are compressed and saved with
the .bz extension when being
included in a compressed backup.
They are decompressed during a
restore.

undo log files Undo log files from the server.
See Undo Tablespaces for details.

Both active and inactive undo
tablespaces are included in
the backup. Also, when the --
incremental-with-redo-
log-only option is used for
creating incremental backups,
mysqlbackup creates from
the redo log an undo log for the
period covered by the incremental
backup, and includes it in the
backup.

Saved by default under the
datadir directory inside
the backup. Use the --
backup_innodb_undo_directory
option to specify another location
for the undo log in the backup.

During a restore, the default
undo tablespaces, as well as any
non-default undo tablespaces
resided in the backed-up server's
data directory, are restored
to the location pointed to by
the mysqlbackup option --
innodb_undo_directory.
Non-default, external undo
tablespaces are restored to the
locations they were found on the
backed-up server; change their
restore locations by editing the
tablespace_tracker file.

12

https://dev.mysql.com/doc/refman/8.3/en/innodb-undo-tablespaces.html

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes
No undo log files are restored onto
a server with a partial restore.

*.uz Compressed undo log files. The undo log files are compressed
and saved with the .uz extension
when being included in a
compressed backup. They are
decompressed during a restore.

encrypted keyring data file For a server using the
keyring_encrypted_file
plugin, the file specified by the
keyring_encrypted_file_data
option on the server is copied over
into the backup with its original
name under the meta folder.

For a server using the a
keyring plugin other than
keyring_encrypted_file,
the file is named keyring_kef,
saved under the meta folder.

An encrypted file containing the
master key for InnoDB table
encryption . See Chapter 6,
Working with Encrypted InnoDB
Tablespaces for detail.

replica status log files Usually named master.info
and relay-log.info, they are
included by default in a backup of
a replica database in a replication
setup. See Replication Metadata
Repositories, for details.

Saved under the datadir
directory under the backup
directory.

The copying of these files are
skipped during a backup or
a restore when the --skip-
relay-log option is used.

Backup image file A single-file backup produced by
the backup-to-image option,
with a name specified by the --
backup-image option.

You can move the image file
without losing or damaging the
contents inside it, then unpack
it with mysqlbackup using
the extract command and
specifying the same image name
with the --backup-image
option. Although some extra files
such as backup-my.cnf and the
meta subdirectory are present in
the backup directory, these files
are also included in the image
file and do not need to be moved
along with it.

Any other files in subdirectories
under the datadir directory
(that is, under backup-
dir/datadir/subdir)

Copied from the database
subdirectories under the MySQL
data directory.

By default, any unrecognized
files in subdirectories under the
MySQL data directory are copied
to the backup. To omit such files,
specify the --only-known-
file-types option.

13

https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_data
https://dev.mysql.com/doc/refman/8.3/en/replica-logs-status.html
https://dev.mysql.com/doc/refman/8.3/en/replica-logs-status.html

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes
Notes

• Some
limitations
apply
to this
behavior.
See the
discussion
here in
Appendix B,
Limitations
of
MySQL
Enterprise
Backup.

• Any
subdirectories
under a
subdirectory
under
datadir
(for
example,
backup-
dir/datadir/subdir/sub-
subdir)
are
ignored
in the
back up
process.

meta directory A subdirectory that stores files
with metadata about the backup.

Created under the backup
directory by mysqlbackup. All
files listed below go inside the
meta subdirectory.

backup_variables.txt Holds important information
about the backup. For use by
mysqlbackup only.

mysqlbackup consults and
possibly updates this file during
operations after the initial backup,
such as the apply-log phase or the
restore phase.

image_files.xml Contains the list of all the files
(except itself) that are present in
the single-file backup produced
by the backup-to-image or
backup-dir-to-image options.
For details about this file, see
Section 17.4, “Using the MySQL
Enterprise Backup Manifest”.

This file is not modified at any
stage once generated.

14

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes

backup_create.xml Lists the command line arguments
and environment in which the
backup was created. For details
about this file, see Section 17.4,
“Using the MySQL Enterprise
Backup Manifest”.

This file is not modified once
it is created. You can prevent
this file from being generated
by specifying the --disable-
manifest option.

backup_content.xml Essential metadata for the files
and database definitions of the
backup data. It also contains
details of all the plugins defined
on the backed-up server, by which
users should make sure the same
plugins are defined in the same
manner on the target server for
restoration. For details about
this file, see Section 17.4, “Using
the MySQL Enterprise Backup
Manifest”.

This file is not modified once
created. You can prevent this
file from being generated by
specifying the --disable-
manifest option.

comments.txt Produced by the --comments or
--comments-file option.

The comments are specified by
you to document the purpose or
special considerations for this
backup job.

backup_gtid_executed.sql Signifies the backup came from a
server with GTIDs enabled.

GTIDs are a replication feature
in MySQL 5.6 and higher.
See Replication with Global
Transaction Identifiers for details.
When you back up a server
with GTIDs enabled using
mysqlbackup, the file named
backup_gtid_executed.sql
is created in the meta folder
under the backup directory. Edit
and execute this file after restoring
the backup data on a replica
server; see Section 8.1, “Setting
Up a New replica” for details.

Note

For TTS
backups
for replica
servers,
use the --
replica-
info
option
to have
backup_gtid_executed.sql
generated.

15

https://dev.mysql.com/doc/refman/8.3/en/replication-gtids.html
https://dev.mysql.com/doc/refman/8.3/en/replication-gtids.html

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes

server-my.cnf Contains values of the backed-up
server's global variables that are
set to non-default values. Use this
file or server-all.cnf to start
the target server for restoration.

During a copy-back or copy-
back-and-apply-log
operation, the server repository
options values (e.g., --datadir,
--innodb_data_home_dir,
etc.) in the file are modified if
the command makes changes
to them through the command
options. However, during an
apply-incremental-backup
operation, the values already
saved in the file take precedence
and they are not modified by the
option values supplied through the
command.

Warning

When
using
the file
to restart
the target
server,
change
parameters
like --
tmpdir,
--
general-
log, etc.,
and any
global
variable
that
uses an
absolute
file path to
avoid the
accidental
usage
of the
wrong file
locations
by the
target
server.

server-all.cnf Contains values of all the global
variables of the backed-up server.
Use this file or server-my.cnf
to start the target server for
restoration.

During a copy-back or copy-
back-and-apply-log
operation, the server repository
options values (e.g., --datadir,
--innodb_data_home_dir,

16

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes
etc.) in the file are modified if
the command makes changes
to them through the command
options. However, during an
apply-incremental-backup
operation, the values already
saved in the file take precedence
and they are not modified by the
option values supplied through the
command.

Warning

When
using
the file
to restart
the target
server,
change
parameters
like --
tmpdir,
--
general-
log, etc.,
and any
global
variable
that
uses an
absolute
file path to
avoid the
accidental
usage
of the
wrong file
locations
by the
target
server.

backup-auto.cnf Copy of the file auto.cnf from
the backed-up server.

The file is restored into the data
directory of the restored server.
To use the UUID stored inside for
your restored server, rename the
file back to auto.cnf before you
start the server.

backup-mysqld-auto.cnf Copy of the file mysqld-.cnf
from the backed-up server.

The file is restored into the data
directory of the restored server. To
use the persisted system variables
stored inside for your restored

17

Types of Files Contained in a Backup

File Name, Pattern, or Extension Relation to Original Data Files Notes
server, rename the file back to
mysqld-auto.cnf before you
start the server.

ib_buffer_pool The file produced
on the server when
innodb_buffer_pool_dump_at_shutdown
(enabled by default on
MySQL 5.7.7 and after) or
innodb_buffer_pool_dump_now
is enabled. It holds the list of
tablespace IDs and page IDs of
the server's buffer pool.

The actual file name might be
different, as it can be configured
by the server's system variable
innodb_buffer_pool_filename"

With the default setting on
MySQL server 5.7.7 and after
(innodb_buffer_pool_load_at_startup=ON),
the target server, during start up,
is going to restore the buffer pool
state of the backed up server
using this file. See Saving and
Restoring the Buffer Pool State for
details.

tablespace_tracker The file tracks external
tablespaces, recording their file
paths on the backed-up server
and their tablespace IDs.

If any external tablespace exists
on a backed up server, the tracker
file is going to be found in the
datadir folder inside the backup.
Change server_file_path
in the file for any tablespace if
you want to change the restore
location for that tablespace (an
absolute path must be used). To
access the tracker file in a single-
file backup, use the extract
command.

Warnings

• If the
tracker
file is
deleted
from the
backup,
the
restore
of the
backup
might fail
silently,
resulting
in
corruptions
of the
restored
data.

18

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_dump_at_shutdown
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_dump_now
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_buffer_pool
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_filename
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_buffer_pool_load_at_startup
https://dev.mysql.com/doc/refman/8.3/en/innodb-preload-buffer-pool.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-preload-buffer-pool.html

Files Backed up for InnoDB Data

File Name, Pattern, or Extension Relation to Original Data Files Notes
• You

cannot
change
the
restore
location
for the
default
undo
tablespaces
of the
database
by
editing
their
server_file_path
entries.
Their
restore
location
is
controlled
by the
setting
of the
mysqlbackup
option
--
innodb_undo_directory.

After a restore is finished, if the
restored server contains any
external tablespace, a tracker file
is going to be found in the data
directory of the restored server.

1.3.2 Files Backed up for InnoDB Data

The InnoDB-related data files that are backed up include the ibdata* files (which represent the system
tablespace and possibly the data for some user tables), any .ibd files (which contains data from user tables
created with the file-per-table setting enabled), and the data extracted from the ib_logfile* files (the redo log
information representing changes that occur while the backup is running), which is stored in a new backup
file ibbackup_logfile.

If you use the compressed backup feature, the .ibd files are renamed in their compressed form to .ibz
files.

The backed-up files, as they are originally copied, form a raw backup that requires further processing. The
apply step (either as part of a copy-back-and-apply-log command or a backup-and-apply-log
command, or as a separate apply-log command) updates the backed-up files based on the changes
recorded in the ibbackup_logfile file. At this point, the data corresponds to a single point in time.

19

https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_ib_logfile
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_ibbackup_logfile

Files Backed up for Data Stored with MyISAM and Other Storage Engines

Note

To avoid concurrency issues during backups of busy databases, you can use the
--only-innodb option to back up only InnoDB tables and the associated data.

1.3.3 Files Backed up for Data Stored with MyISAM and Other Storage Engines

mysqlbackup also backs up the .MYD files, .MYI files, and the .sdi files associated with the MyISAM
tables. Files with other extensions that are backed up are shown in Table 1.1, “Types of Files in a Backup”.

Note

While MySQL Enterprise Backup can back up non-InnoDB data (like MYISAM
tables), the MySQL server to be backed up must support InnoDB (i.e., the backup
process will fail if the server was started up with the --innodb=OFF or --skip-
innodb option), and the server must contain at least one InnoDB table.

MyISAM tables and these other types of files cannot be backed up in the same non-blocking way as
InnoDB tables can be. They can be backed up using the warm backup technique: changes to these tables
are prevented while they are being backed up, possibly making the database unresponsive for a time, but
no shutdown is required during the backup.

1.3.4 Files Generated by mysqlbackup

Inside the image backup file created by the backup-to-image command of mysqlbackup are some
new files that are produced during the backup process. These files are used to control later tasks such as
verifying and restoring the backup data. The files generated during the backup process include:

• meta/backup_create.xml: Lists the command line arguments and environment in which the backup
was created.

• meta/backup_content.xml: Essential metadata for the files and database definitions of the backup
data.

• backup-my.cnf: Records the crucial configuration parameters that apply to the backup. These
configuration parameters are read by mysqlbackup during operations like apply-log to determine
how the backup data is structured. These parameters are also checked during a restore operation for
their compatibility with your target server's configuration.

• server-my.cnf: Contains values of the backed-up server's global variables that are set to non-default
values.

• server-all.cnf: Contains values of all the global variables of the backed-up server.

• *.bkt: Transfer file created for an encrypted InnoDB table during backup. It contains the reencrypted
tablespace key and other information related to the encryption. See Chapter 6, Working with Encrypted
InnoDB Tablespaces for detail.

For details about these are other files contained in the backup, see Table 1.1, “Types of Files in a Backup”.

1.4 The Backup Process

The following is a very brief outline of the steps performed by mysqlbackup when it creates a backup.
It does not include every single step taken by mysqlbackup, and the description only represents a very
general case—the process can look quite different, depending on the backup options you use (especially

20

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#option_mysqld_innodb

The Backup Process

with some of the options described in Section 20.10, “Performance / Scalability / Capacity Options” and
Section 20.16, “Options for Special Backup Types”).

In general, this is what happens when you run a backup operation with mysqlbackup:

1. The InnoDB data files, redo log, binary log, and relay log files (except for the log files currently in use)
are being copied into the backup, while the database server operates as usual.

The data and the structures of the InnoDB tables might have changed during this period; so, some of
the following steps are for making sure those changes are captured in the backup.

2. A backup lock is applied on the server instance. It blocks DDL operations (except for those on user-
created temporary tables), but not DML operations (except for those not captured by the binary log,
like administrative changes to the database) on InnoDB tables. Most read and write activities on the
database are still allowed. With this lock applied, mysqlbackup scans for InnoDB tables that have
been modified by DDL operations since step 1, and make changes to the backup accordingly.

3. A FLUSH TABLES tbl_name [, tbl_name] ... WITH READ LOCK statement is applied on all
non-InnoDB tables (only on non-InnoDB tables that are to be included in the backup), after which any
non-InnoDB tables relevant to the backup are copied.

This step is skipped if no user-created non-InnoDB tables exist on the database.

4. A brief blocking of logging activities on the server is applied, for mysqlbackup to collect logging-
related information like the current InnoDB LSN, binary log position, GTID, replication source or replica
status, and so on.

5. The read lock on the non-InnoDB tables is released.

6. Using information from step 4 above, the relevant portion of the binary or relay log file currently in use
is copied. This ensures that all recent changes to the InnoDB tables since step 1 are captured in the
backup, so they can be applied later to the raw backup data to bring the restored server to a consistent
state.

7. The backup lock on the server instance is released. The database now returns to its normal operations.

8. The redo log files not yet copied before, as well as all the metadata files for the backup, are copied or
created.

9. The backup operation is completed, and mysqlbackup returns success.

21

https://dev.mysql.com/doc/refman/8.3/en/lock-instance-for-backup.html
flush-tables-with-read-lock-with-list
https://dev.mysql.com/doc/refman/8.3/en/lock-instance-for-backup.html

22

Chapter 2 Installing MySQL Enterprise Backup
Install MySQL Enterprise Backup on each database server whose contents you intend to back up.
Typically, you perform all backup and restore operations locally, by running mysqlbackup on the same
server as the MySQL instance.

MySQL Enterprise Backup is packaged as either an archive file (.tgz, archived with tar and compressed
with gzip) or as a platform-specific installer.

Installing on Unix and Linux Systems

For all Linux and Unix systems, the product is available as a .tgz file. Unpack this file as follows:

tar xvzf package.tgz

mysqlbackup is unpacked into a subdirectory. You can either copy them into a system directory
(preserving their execute permission bits), or add to your $PATH setting the directory where you unpacked
it.

For certain Linux distributions, the product is also available as an RPM archive. When you install the RPM
using the command sudo rpm -i package_name.rpm, the mysqlbackup client is installed in the
directory /usr/bin/mysqlbackup.

Installation packages for Debian and Ubuntu platforms are also available. Install the package with the
following command sudo dpkg -i package_name.deb.

Installing on Windows Systems

The product can be installed together with other MySQL products with the MySQL Installer for Windows. It
can also be installed separately with either an individual .msi installer or .zip file.

When installing with a .msi installer, specify the installation location, preferably under the same directory
where other MySQL products have been installed. Choose the option Include directory in Windows
PATH, so that you can run mysqlbackup from any directory.

When installing with a .zip file, simply unzip the file and put mysqlbackup.exe at the desired
installation location. You can add that location to the %PATH% variable, so that you can run the
mysqlbackup client from any directory.

Verify the installation by selecting the menu item Start > Programs > MySQL Enterprise Backup 8.3 >
MySQL Enterprise Backup Command Line. The menu item displays version information and opens a
command prompt for running the mysqlbackup command.

23

24

Chapter 3 What's New in MySQL Enterprise Backup 8.3?
MySQL Enterprise Backup 8.3 is an Innovation release, which means it will have new features in addition
to bug fixes, and it is supported until the next Innovation release comes out. MySQL Enterprise Backup 8.3
is recommended for use on production systems. With this new Innovation series, the existing 8.0 series will
focus on security and bug fixes only.

For notes detailling the changes in MySQL Enterprise Backup 8.3, see MySQL Enterprise Backup 8.3
Release Notes.

25

https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/8.3/en/
https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/8.3/en/

26

Part II Using MySQL Enterprise Backup

Table of Contents
4 Backing Up a Database Server .. 31

4.1 Before the First Backup .. 31
4.1.1 Collect Database Information .. 31
4.1.2 Grant MySQL Privileges to Backup Administrator .. 32
4.1.3 Designate a Location for the Backup Directory .. 36

4.2 The Typical Backup / Verify / Restore Cycle ... 36
4.2.1 OS User for Running mysqlbackup ... 36
4.2.2 Backing Up an Entire MySQL Instance ... 37
4.2.3 Verifying a Backup ... 40
4.2.4 Restoring a Database .. 41

4.3 Backup Scenarios and Examples .. 44
4.3.1 Making a Single-File Backup .. 44
4.3.2 Making a Full Backup .. 49
4.3.3 Making a Differential or Incremental Backup .. 50
4.3.4 Making a Compressed Backup ... 56
4.3.5 Making a Partial Backup .. 57
4.3.6 Making an Optimistic Backup ... 60
4.3.7 Making a Back Up of In-Memory Database Data ... 63
4.3.8 Making Scheduled Backups ... 63

4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN) 64
5 Recovering or Restoring a Database Server ... 65

5.1 Performing a Restore Operation .. 65
5.1.1 Restoring a Compressed Backup ... 66
5.1.2 Restoring an Encrypted Backup Image ... 67
5.1.3 Restoring an Incremental Backup ... 67
5.1.4 Table-Level Recovery (TLR) ... 68
5.1.5 Restoring Backups Created with the --use-tts Option .. 69
5.1.6 Restoring External InnoDB Tablespaces to Different Locations 70
5.1.7 Advanced: Preparing and Restoring a Directory Backup .. 70

5.2 Restoring a Backup from Cloud Storage to a MySQL Server .. 70
5.3 Point-in-Time Recovery ... 71
5.4 Restoring a Backup with a Database Server Upgrade or Downgrade 73

6 Working with Encrypted InnoDB Tablespaces ... 75
7 Backing up Using Redo Log Archiving ... 79
8 Using MySQL Enterprise Backup with Replication ... 81

8.1 Setting Up a New replica .. 81
8.2 Backing up and Restoring a Replica Database .. 83
8.3 Restoring a Source Database ... 84
8.4 Working with Encrypted Binary and Relay Logs ... 85

9 Using MySQL Enterprise Backup with Group Replication .. 87
10 Encryption for Backups .. 89
11 Using MySQL Enterprise Backup with Media Management Software (MMS) Products 91

11.1 Backing Up to Tape with Oracle Secure Backup .. 91
12 Using MySQL Enterprise Backup with Docker ... 95
13 Performance Considerations for MySQL Enterprise Backup ... 97

13.1 Optimizing Backup Performance .. 97
13.2 Optimizing Restore Performance ... 100

14 Monitoring Backups with MySQL Enterprise Monitor .. 103
15 Using MySQL Enterprise Backup with MySQL Enterprise Firewall .. 105
16 Using LDAP for Server Authentication .. 107
17 Troubleshooting for MySQL Enterprise Backup ... 109

29

17.1 Exit codes of MySQL Enterprise Backup .. 109
17.2 Working Around Corruption Problems .. 110
17.3 Using the MySQL Enterprise Backup Logs ... 111
17.4 Using the MySQL Enterprise Backup Manifest ... 113

30

Chapter 4 Backing Up a Database Server

Table of Contents
4.1 Before the First Backup .. 31

4.1.1 Collect Database Information .. 31
4.1.2 Grant MySQL Privileges to Backup Administrator .. 32
4.1.3 Designate a Location for the Backup Directory .. 36

4.2 The Typical Backup / Verify / Restore Cycle .. 36
4.2.1 OS User for Running mysqlbackup ... 36
4.2.2 Backing Up an Entire MySQL Instance ... 37
4.2.3 Verifying a Backup ... 40
4.2.4 Restoring a Database .. 41

4.3 Backup Scenarios and Examples .. 44
4.3.1 Making a Single-File Backup .. 44
4.3.2 Making a Full Backup .. 49
4.3.3 Making a Differential or Incremental Backup ... 50
4.3.4 Making a Compressed Backup ... 56
4.3.5 Making a Partial Backup .. 57
4.3.6 Making an Optimistic Backup ... 60
4.3.7 Making a Back Up of In-Memory Database Data ... 63
4.3.8 Making Scheduled Backups ... 63

4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN) 64

This section explains the preparations you need for creating backups with MySQL Enterprise Backup,
the typical backup-verify-restore cycle, and the different backup scenarios for using MySQL Enterprise
Backup. It also includes sample commands and outputs, showing you how to use the mysqlbackup client
in different situations.

4.1 Before the First Backup

This section outlines some of the preparations needed before you can start working with MySQL Enterprise
Backup.

4.1.1 Collect Database Information

Before backing up a particular database server for the first time, gather some information and use it to
make some planning decisions, as outlined in the following table.

Table 4.1 Information Needed to Back Up a Database

Information to Gather Where to Find It How to Use It

Path to MySQL configuration file Default system locations,
hardcoded application default
locations, or from the --
defaults-file option in the
mysqld startup script.

The preferred way to convey
database configuration information
to mysqlbackup is to use the
--defaults-file option.
When connection and data layout
information is available from the

31

https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file

Grant MySQL Privileges to Backup Administrator

Information to Gather Where to Find It How to Use It
configuration file, you no longer
need to supply separately most of
the information listed below.

MySQL port MySQL configuration file or
mysqld startup script.

Used to connect to the database
instance during backup operations.
Specified via the --port option of
mysqlbackup. The specification
is not needed if the information
is available from the MySQL
configuration file.

Path to MySQL data directory MySQL configuration file or
mysqld startup script.

Used to retrieve files from the
database instance during backup
operations, and to copy files back
to the database instance during
restore operations. Automatically
retrieved from database connection.

ID and password of privileged
MySQL user

You record this during
installation of your own
databases, or get it from the
DBA when backing up databases
you do not own.

Specified via the --password
option of the mysqlbackup.
Prompted at the terminal if the --
password option is present without
the password argument.

Path under which to store backup
data or metadata, temporarily or
permanently

You choose this. See
Section 4.1.3, “Designate
a Location for the Backup
Directory” for details.

In general, this directory has to be
empty for mysqlbackup to write
data into it.

Owner and permission information
for backed-up files (for Linux,
Unix, and OS X systems)

In the MySQL data directory. If you perform the backup and
restore using a different OS user
than the one who runs the server,
this information might become
important. See Section 4.2.1, “OS
User for Running mysqlbackup” for
details.

Rate at which redo data is
generated

Calculated from the values of the
InnoDB logical sequence number
at different points in time. Use
the technique explained in
Creating Incremental Backups
Using Only the Redo Log.

Only needed if you perform
incremental backups using the --
incremental-with-redo-log-
only option rather than the --
incremental option. The size
of the InnoDB redo log and the
rate of generation for redo data
dictate how often you must perform
incremental backups.

4.1.2 Grant MySQL Privileges to Backup Administrator

The mysqlbackup command connects to the MySQL server using the credentials supplied with the --
user and --password options. The specified user needs certain privileges. You can either create a new
user with a limited set of privileges, or use an administrative account such as root. Here are the privileges
required by mysqlbackup:

• The minimum privileges for the MySQL user with which mysqlbackup connects to the server include:

32

Grant MySQL Privileges to Backup Administrator

• SELECT on all databases and tables, for table locks that protect the backups against inconsistency
caused by parallel DDL operations.

• BACKUP_ADMIN on all databases and tables.

• RELOAD on all databases and tables.

• SUPER, to enable and disable logging, and to optimize locking in order to minimize disruption to
database processing.

• REPLICATION CLIENT, to retrieve the binary log position, which is stored with the backup.

• PROCESS, to process DDL statements with the ALGORITHM = INPLACE clause.

• CREATE, INSERT, DROP, and UPDATE on the tables mysql.backup_progress and
mysql.backup_history, and also SELECT and ALTER on mysql.backup_history.

To create a MySQL user (mysqlbackup in this example) and set the above-mentioned privileges for the
user to connect from localhost, issue statements like the following from the mysql client program:

CREATE USER 'mysqlbackup'@'localhost' IDENTIFIED BY 'password';
GRANT SELECT, BACKUP_ADMIN, RELOAD, PROCESS, SUPER, REPLICATION CLIENT ON *.*
 TO `mysqlbackup`@`localhost`;
GRANT CREATE, INSERT, DROP, UPDATE ON mysql.backup_progress TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP, UPDATE, SELECT, ALTER ON mysql.backup_history
 TO 'mysqlbackup'@'localhost';

33

Grant MySQL Privileges to Backup Administrator

• The following additional privileges are required for using specific features of MySQL Enterprise Backup:

• For using transportable tablespaces (TTS) to back up and restore InnoDB tables:

• LOCK TABLES for backing up tables. CREATE for restoring tables.

• DROP for dropping tables if the restore fails for some reasons.

• FILE for restoring tables in external tablespaces outside of the server's data directory.

• For creating tape backups using the System Backup to Tape (SBT) API :

• CREATE, INSERT, DROP, and UPDATE on the mysql.backup_sbt_history table

• For working with encrypted InnoDB tables:

• ENCRYPTION_KEY_ADMIN to enable InnoDB encryption key rotation.

• For backing up and restoring user-created non-InnoDB tables:

• LOCK TABLES on all schemas containing user-created non-InnoDB tables

• For using redo log archiving for backups:

• INNODB_REDO_LOG_ARCHIVE to invoke the innodb_redo_log_archive_start() function .

• For Section 5.1.4, “Table-Level Recovery (TLR)” of non-TTS backups:

• INSERT and ALTER to update tables

Set those additional privileges if you are using the features that require them. To set all of them, issue
statements like the following from the mysql client program:

GRANT LOCK TABLES, CREATE, DROP, FILE, INSERT, ALTER ON *.* TO 'mysqlbackup'@'localhost';
GRANT CREATE, DROP, UPDATE ON mysql.backup_sbt_history TO 'mysqlbackup'@'localhost';
GRANT ENCRYPTION_KEY_ADMIN ON *.* TO 'mysqlbackup'@'localhost';
GRANT INNODB_REDO_LOG_ARCHIVE ON *.* TO 'mysqlbackup'@'localhost';

• For privileges required for using MySQL Enterprise Backup with a Group Replication setting, see
Chapter 9, Using MySQL Enterprise Backup with Group Replication.

• The following additional privileges might also be required after a server upgrade:

• When using MySQL Enterprise Backup 8.0.19 or later for the first time on a MySQL Server
that has been upgraded from 8.0.18 or earlier and has been backed up by MySQL Enterprise
Backup before:

• ALTER on mysql.backup_progress.

• CREATE, INSERT, and DROP on mysql.backup_progress_old.

• CREATE, INSERT, DROP, and ALTER on mysql.backup_progress_new.

Grant these privileges by issuing these sample statements at the mysql client:

GRANT ALTER ON mysql.backup_progress TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP ON mysql.backup_progress_old TO 'mysqlbackup'@'localhost';

34

https://dev.mysql.com/doc/refman/8.3/en/privileges-provided.html#priv_encryption-key-admin
https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-redo-log-archiving

Grant MySQL Privileges to Backup Administrator

GRANT CREATE, INSERT, DROP, ALTER ON mysql.backup_progress_new TO 'mysqlbackup'@'localhost';

Note

If you are working with a multiprimary Group Replication setting, make sure
these privileges are granted on all primary nodes; see also Chapter 9, Using
MySQL Enterprise Backup with Group Replication.

These privileges are for the attempt to migrate the mysql.backup_progress table to a newer
format (see Appendix F, Backup Progress Table Update for details), and they are no longer needed
after the first backup operation by MySQL Enterprise Backup 8.0.19 or later has taken place on the
server, by which point they can be revoked.

• When using MySQL Enterprise Backup 8.0.12 or later for the first time on a MySQL Server
that has been upgraded from 8.0.11 or earlier and has been backed up by MySQL Enterprise
Backup before:

• CREATE, INSERT, and DROP on mysql.backup_history_old.

• CREATE, INSERT, DROP, and ALTER on mysql.backup_history_new.

Grant these privileges by issuing these sample statements at the mysql client:

GRANT CREATE, INSERT, DROP ON mysql.backup_history_old TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP, ALTER ON mysql.backup_history_new TO 'mysqlbackup'@'localhost';

Note

If you are working with a multiprimary Group Replication setting, make sure
these privileges are granted on all primary nodes; see also Chapter 9, Using
MySQL Enterprise Backup with Group Replication.

These privileges are for the attempt to migrate the mysql.backup_history table to a newer format
(see Appendix D, Backup History Table Update for details), and they are no longer needed after the
first backup operation by MySQL Enterprise Backup 8.0.12 or later has taken place on the server, by
which point they can be revoked.

• When performing for the first time a backup using the SBT API with MySQL Enterprise Backup
8.0.21 or later on a MySQL Server that has been upgraded from 8.0.20 or earlier and has been
backed up by MySQL Enterprise Backup before using the SBT API:

• ALTER on mysql.backup_sbt_history.

• CREATE, INSERT, and DROP on mysql.backup_sbt_history_old.

• CREATE, INSERT, DROP, and ALTER on mysql.backup_sbt_history_new.

Grant these privileges by issuing these sample statements at the mysql client:

GRANT ALTER ON mysql.backup_sbt_history TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP ON mysql.backup_sbt_history_old TO 'mysqlbackup'@'localhost';

35

Designate a Location for the Backup Directory

GRANT CREATE, INSERT, DROP, ALTER ON mysql.backup_sbt_history_new TO 'mysqlbackup'@'localhost';

Note

If you are working with a multiprimary Group Replication setting, make sure
these privileges are granted on all primary nodes; see also Chapter 9, Using
MySQL Enterprise Backup with Group Replication.

These privileges are for the attempt to migrate the mysql.backup_sbt_history table to a newer
format (see Appendix E, SBT Backup History Table Update for details), and they are no longer needed
after the first backup operation by MySQL Enterprise Backup 8.0.21 or later using the SBT API has
taken place on the server, by which point they can be revoked.

Note

Make sure that the limit MAX_QUERIES_PER_HOUR is not set for the user
mysqlbackup uses to access the server, or backup operations might fail
unexpectedly.

4.1.3 Designate a Location for the Backup Directory

Most mysqlbackup operations, including those on single-file backups, write data or metadata to a
designated directory referred to as the “backup directory” in this manual. See the description for --
backup-dir for details on its usage for different operations.

Choose in advance for this directory a location on a file system with sufficient storage; it could even be
remotely mounted from a different server. You specify the path to this directory with the --backup-dir
option for many mysqlbackup commands.

If you use the backup directory as a location to store your backups, it is preferable to keep each backup
within a timestamped subdirectory underneath the main backup directory. To make mysqlbackup
create these subdirectories automatically, specify the --with-timestamp option each time you run
mysqlbackup.

4.2 The Typical Backup / Verify / Restore Cycle
To illustrate the basic steps in creating and making use of a backup, the following example shows how to
perform a full backup, verify it, and then restore it to a server.

4.2.1 OS User for Running mysqlbackup

For Linux and other Unix-like platforms: mysqlbackup does not record file ownership or permissions
of the files that are backed up. To ensure no file permission issues prevent a server to be backed up,
restored, and restarted successfully, it is highly recommended that you run mysqlbackup with the same OS
user who runs the MySQL server (typically mysql).

Note

For Linux and other Unix-like platforms, the mysql user was typically created using
the -r and -s /bin/false options of the useradd command, so that it does
not have login permissions to your server host (see Creating the mysql User and
Group for details). To switch to the mysql user on your OS, use the --shell=/
bin/bash option for the su command:

su - mysql --shell=/bin/bash

If it is not possible run mysqlbackup with the OS user mysql, pay attention to the following guidelines:

36

https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/secure-deployment-install.html#secure-deployment-mysql-user
https://dev.mysql.com/doc/mysql-secure-deployment-guide/8.0/en/secure-deployment-install.html#secure-deployment-mysql-user

Backing Up an Entire MySQL Instance

• For backups, mysqlbackup should be run by a user that can read all the server files and directories
and can execute all server directories. To satisfy that requirement, the OS user that runs mysqlbackup
should, for example, have the group owner of the server files and directories (typically mysql) as its
primary group or secondary group.

• For restores, unless mysqlbackup is run by the same user that runs the server, it can be very hard to
ensure that the server has access to all the restored server files and folders, especially in the case of an
online restore, where the server must be able to access the files immediately after they are restored. For
an offline restore, you might need to, for example, set a umask to the user before the restore and adjust
the permissions of the restored files and folders using a series of chmod and chown commands, so that
the original permissions for the backed-up files and folders are reproduced.

4.2.2 Backing Up an Entire MySQL Instance

In the following example, we back up an entire MySQL instance to a single file using the backup-to-
image command, which appears at the end of the sample command. We specify some of the connection
information for the database using the --user and --host options (and, with the --password option,
tell mysqlbackup to prompt for a user password). The location and filename for the single-file backup is
specified using the --backup-image option, and the location for an empty folder to store temporary files
is supplied with the --backup-dir option.

The output echoes all the parameters used by the backup operation, including several that are retrieved
automatically using the database connection. The unique ID for this backup job is recorded in special
tables that mysqlbackup creates inside the MySQL instance, allowing you to monitor long-running
backups and view information on previous backups. The final output section repeats the location of the
backup data and provides the LSN values that you might use when you perform an incremental backup
next time over the full backup that has just been made.

$./bin/mysqlbackup --user=mysqlbackup --password --host=127.0.0.1 --backup-dir=/home/meb/mysql/backup-temp \
 --backup-image=/home/meb/mysql/backups/testback3.mbi --with-timestamp backup-to-image
MySQL Enterprise Backup Ver 8.3.0-commercial for Linux on x86_64 (MySQL Enterprise - Commercial)
Copyright (c) 2003, 2022, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Starting with following command line ...
./bin/mysqlbackup
--user=mysqlbackup
--password
--host=127.0.0.1
--backup-dir=/home/meb/mysql/backup-temp
--backup-image=/home/meb/mysql/backups/testback3.mbi
--with-timestamp
backup-to-image

IMPORTANT: Please check that mysqlbackup run completes successfully.
 At the end of a successful 'backup-to-image' run mysqlbackup
 prints "mysqlbackup completed OK!".

Enter password:
220913 14:49:04 MAIN INFO: Establishing connection to server.
220913 14:49:04 MAIN INFO: No SSL options specified.
220913 14:49:04 MAIN INFO: MySQL server version is '8.3.0-commercial'
220913 14:49:04 MAIN INFO: MySQL server compile os version is 'Linux'
220913 14:49:04 MAIN INFO: SSL/TLS version used for connection is TLSv1.3
220913 14:49:04 MAIN INFO: Got some server configuration information from running server.

220913 14:49:04 MAIN INFO: Establishing connection to server for locking.
220913 14:49:04 MAIN INFO: No SSL options specified.
220913 14:49:04 MAIN INFO: Backup directory created: '/home/meb/mysql/backup-temp/2022-09-13_14-49-04'

37

Backing Up an Entire MySQL Instance

220913 14:49:04 MAIN INFO: MySQL server version_comment is 'MySQL Enterprise Server - Commercial'
220913 14:49:04 MAIN INFO: Mysqlbackup component not installed.
220913 14:49:04 MAIN INFO: MEB logfile created at /home/meb/mysql/backup-temp/2022-09-13_14-49-04/meta/MEB_2022-09-13.14-49-04_backup-to-image.log

220913 14:49:04 MAIN INFO: The MySQL server has no active keyring.
--
 Server Repository Options:
--
 datadir = /home/meb/mysql/mysql-datadir/
 innodb_data_home_dir =
 innodb_data_file_path = ibdata1:12M:autoextend
 innodb_log_group_home_dir = /home/meb/mysql/mysql-datadir/
 innodb_undo_directory = /home/meb/mysql/mysql-datadir/
 innodb_undo_tablespaces = 2
 innodb_buffer_pool_filename = ib_buffer_pool
 innodb_page_size = 16384
 innodb_checksum_algorithm = crc32

--
 Backup Config Options:
--
 datadir = /home/meb/mysql/backup-temp/2022-09-13_14-49-04/datadir
 innodb_data_home_dir = /home/meb/mysql/backup-temp/2022-09-13_14-49-04/datadir
 innodb_data_file_path = ibdata1:12M:autoextend
 innodb_log_group_home_dir = /home/meb/mysql/backup-temp/2022-09-13_14-49-04/datadir
 innodb_undo_directory = /home/meb/mysql/backup-temp/2022-09-13_14-49-04/datadir
 innodb_undo_tablespaces = 2
 innodb_buffer_pool_filename = ib_buffer_pool
 innodb_page_size = 16384
 innodb_checksum_algorithm = crc32

Backup Image Path = /home/meb/mysql/backups/testback3.mbi
220913 14:49:04 MAIN INFO: Unique generated backup id for this is 16630949446348741

220913 14:49:04 MAIN INFO: Copying the server config file '/home/meb/mysql/mysql-datadir/auto.cnf'
220913 14:49:04 MAIN INFO: Creating 14 buffers each of size 16777216.
220913 14:49:04 MAIN INFO: The server is not configured for redo log archiving. The system variable innodb_redo_log_archive_dirs is not set.
220913 14:49:04 MAIN INFO: Found checkpoint at lsn 19778447.
220913 14:49:04 MAIN INFO: Starting log scan from lsn = 19778048 at offset = 123791 and checkpoint = 19778447 in file /home/meb/mysql/mysql-datadir/#innodb_redo/#ib_redo6.
220913 14:49:04 MAIN INFO: Full Image Backup operation starts with following threads
 1 read-threads 6 process-threads 1 write-threads
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/backup-my.cnf.
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/meta/backup_create.xml.
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/datadir/backup-auto.cnf.
220913 14:49:04 RLP1 INFO: Starting to parse redo log at lsn = 19778077, whereas checkpoint_lsn = 19778447 and start_lsn = 19778048.
220913 14:49:04 RDR1 INFO: Starting to copy all innodb files...
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/ibdata1.
220913 14:49:04 RDR1 INFO: Starting to copy all undo files...
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/undo_002.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/undo_001.
220913 14:49:04 RDR1 INFO: Starting to lock instance for backup...
220913 14:49:04 RDR1 INFO: The server instance is locked for backup.
220913 14:49:04 RDR1 INFO: The server instance is unlocked after 0.004 seconds.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/sys/sys_config.ibd.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/Test/test1.ibd.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/mysql/backup_progress.ibd.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/mysql/backup_history.ibd.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/mysql.ibd.
220913 14:49:04 RDR1 INFO: Completing the copy of innodb files.
220913 14:49:04 RDR1 INFO: Requesting a dump of the InnoDB buffer pool
220913 14:49:04 RDR1 INFO: Waiting for the dump of the InnoDB buffer pool to complete
220913 14:49:04 RDR1 INFO: The dump of the InnoDB buffer pool completed
220913 14:49:04 RDR1 INFO: Binary Log Basename: '/home/meb/mysql/mysql-datadir/binlog'
220913 14:49:04 RDR1 INFO: Binary Log Index: '/home/meb/mysql/mysql-datadir/binlog.index'
220913 14:49:04 RDR1 INFO: Relay Channel: 'group_replication_applier'
220913 14:49:04 RDR1 INFO: Relay Log Basename: '/home/meb/mysql/mysql-datadir/meb-XBox3-relay-bin-group_replication_applier'
220913 14:49:04 RDR1 INFO: Relay Channel: 'group_replication_recovery'

38

Backing Up an Entire MySQL Instance

220913 14:49:04 RDR1 INFO: Relay Log Basename: '/home/meb/mysql/mysql-datadir/meb-XBox3-relay-bin-group_replication_recovery'
220913 14:49:04 RDR1 INFO: Starting to copy Binlog files.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/binlog.000001.
220913 14:49:04 RDR1 INFO: Starting to lock instance for backup...
220913 14:49:04 RDR1 INFO: The server instance is locked for backup.
220913 14:49:04 RDR1 INFO: The MySQL server has no active keyring.
220913 14:49:04 RDR1 INFO: Requesting flush of redo log reading after LSN 19781380.
220913 14:49:04 RDR1 INFO: Requesting flush of redo log processing after LSN 19781380.
220913 14:49:04 RDR1 INFO: Completed flush of redo log reading after LSN 19784275.
220913 14:49:04 RDR1 INFO: Completed flush of redo log processing after LSN 19784275.
220913 14:49:04 RDR1 INFO: Starting to read-lock tables...
220913 14:49:04 RDR1 INFO: No tables to read-lock.
220913 14:49:04 RDR1 INFO: Opening backup source directory '/home/meb/mysql/mysql-datadir'
220913 14:49:04 RDR1 INFO: Starting to copy non-innodb files in subdirs of '/home/meb/mysql/mysql-datadir'
220913 14:49:04 WTR1 INFO: Adding database directory: datadir/Test
220913 14:49:04 WTR1 INFO: Adding database directory: datadir/mysql
220913 14:49:04 WTR1 INFO: Adding database directory: datadir/performance_schema
220913 14:49:04 RDR1 INFO: Completing the copy of all non-innodb files.
220913 14:49:04 WTR1 INFO: Adding database directory: datadir/sys
220913 14:49:04 RDR1 INFO: Requesting consistency information...
220913 14:49:04 RDR1 INFO: Locked the consistency point for 353 microseconds.
220913 14:49:04 RDR1 INFO: Consistency point server_uuid '98bbd252-3374-11ed-8e69-0800276c22b0'.
220913 14:49:04 RDR1 INFO: Consistency point gtid_executed ''.
220913 14:49:04 RDR1 INFO: Consistency point binary_log_file 'binlog.000002'.
220913 14:49:04 RDR1 INFO: Consistency point binary_log_position 157.
220913 14:49:04 RDR1 INFO: Consistency point InnoDB lsn 19785442.
220913 14:49:04 RDR1 INFO: Consistency point InnoDB lsn_checkpoint 19778447.
220913 14:49:04 RDR1 INFO: Requesting completion of redo log copy after LSN 19785442.
220913 14:49:04 RLW1 INFO: A copied database page was modified at 19778447. (This is the highest lsn found on a page)
220913 14:49:04 RLW1 INFO: Scanned log up to lsn 19785442.
220913 14:49:04 RLW1 INFO: Was able to parse the log up to lsn 19785442.
220913 14:49:04 RLR1 INFO: Redo log reader waited 33 times for a total of 165.00 ms for logs to generate.
220913 14:49:04 RLW1 INFO: Copied redo log
 log_start_lsn 19778048
 start_checkpoint 19778447
 start_lsn 19778447
 last_checkpoint 19778447
 consistency_lsn 19785442
 log_end_lsn 19785442
220913 14:49:04 RDR1 INFO: Truncating binary log index '/home/meb/mysql/backup-temp/2022-09-13_14-49-04/datadir/binlog.index' to 32.
220913 14:49:04 RDR1 INFO: Truncating binary log 'binlog.000002' to 157.
220913 14:49:04 RDR1 INFO: Copying /home/meb/mysql/mysql-datadir/binlog.000002.
220913 14:49:04 RDR1 INFO: Completed the copy of binlog files...
220913 14:49:04 RDR1 INFO: The server instance is unlocked after 0.100 seconds.
220913 14:49:04 RDR1 INFO: Reading all global variables from the server.
220913 14:49:04 RDR1 INFO: Completed reading of all 631 global variables from the server.
220913 14:49:04 RDR1 INFO: Writing server defaults files 'server-my.cnf' and 'server-all.cnf' for server '8.3.0-commercial' in '/home/meb/mysql/backup-temp/2022-09-13_14-49-04'.
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/meta/backup_variables.txt.
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/datadir/ibbackup_logfile.
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/server-all.cnf.
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/server-my.cnf.
220913 14:49:04 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/meta/backup_content.xml.
220913 14:49:05 RDR1 INFO: Copying meta file /home/meb/mysql/backup-temp/2022-09-13_14-49-04/meta/image_files.xml.
220913 14:49:05 MAIN INFO: Full Image Backup operation completed successfully.
220913 14:49:05 MAIN INFO: Backup image created successfully.
220913 14:49:05 MAIN INFO: Image Path = /home/meb/mysql/backups/testback3.mbi
220913 14:49:05 MAIN INFO: MySQL binlog position: filename binlog.000002, position 157

 Parameters Summary

 Start LSN : 19778048
 Last Checkpoint LSN : 19778447
 End LSN : 19785442

mysqlbackup completed OK!

39

Verifying a Backup

4.2.3 Verifying a Backup

You can check the integrity of your backup using the validate command. The following is a sample
command for validating a backup image and the output for the successful validation:

$ mysqlbackup --backup-image=/home/meb/mysql/backups/testback3.mbi validate
MySQL Enterprise Backup Ver 8.3.0-commercial for Linux on x86_64 (MySQL Enterprise - Commercial)
Copyright (c) 2003, 2022, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Starting with following command line ...
./bin/mysqlbackup
--backup-image=/home/meb/mysql/backups/testback3.mbi
validate

IMPORTANT: Please check that mysqlbackup run completes successfully.
 At the end of a successful 'validate' run mysqlbackup
 prints "mysqlbackup completed OK!".

220913 14:53:38 MAIN INFO: Backup Image MEB version string: 8.0.31
220913 14:53:38 MAIN INFO: MySQL server version is '8.0.31'
220913 14:53:38 MAIN INFO: The backup image has no keyring.
220913 14:53:38 MAIN INFO: Creating 14 buffers each of size 16777216.
220913 14:53:38 MAIN INFO: Validate operation starts with following threads
 1 read-threads 6 process-threads
220913 14:53:38 MAIN INFO: Validating image ... /home/meb/mysql/backups/testback3.mbi
220913 14:53:38 PCR6 INFO: Validate: [Dir]: meta
220913 14:53:39 PCR6 INFO: Validate: [Dir]: datadir/Test
220913 14:53:39 PCR6 INFO: Validate: [Dir]: datadir/mysql
220913 14:53:39 PCR6 INFO: Validate: [Dir]: datadir/performance_schema
220913 14:53:39 PCR3 INFO: Validate: [Dir]: datadir/sys
220913 14:53:39 MAIN INFO: datadir/mysql.ibd validated.
220913 14:53:39 MAIN INFO: datadir/undo_002 validated.
220913 14:53:39 MAIN INFO: datadir/sys/sys_config.ibd validated.
220913 14:53:39 MAIN INFO: datadir/ibdata1 validated.
220913 14:53:39 MAIN INFO: datadir/undo_001 validated.
220913 14:53:39 MAIN INFO: datadir/Test/test1.ibd validated.
220913 14:53:39 MAIN INFO: datadir/mysql/backup_history.ibd validated.
220913 14:53:39 MAIN INFO: datadir/mysql/backup_progress.ibd validated.
220913 14:53:39 MAIN INFO: Validate operation completed successfully.
220913 14:53:39 MAIN INFO: Backup Image validation successful.
220913 14:53:39 MAIN INFO: Source Image Path = /home/meb/mysql/backups/testback3.mbi

mysqlbackup completed OK!

Furthermore, you can also verify that your backup has been successful by restoring the backup data on a
different server and run the MySQL daemon (mysqld) on the new data directory. You can then execute
SHOW statements to verify the database and table structures, and execute queries to verify further details
of the database. See Section 4.2.4, “Restoring a Database” for the basic steps for restoring a backup, and
see Chapter 5, Recovering or Restoring a Database Server for more detailed instructions.

Warning

Do not try to verify a backup by starting a MySQL Server using a backup
directly. You should never start a server using a raw backup directory as a
data directory, as the two types of directories are different and the action will crash
the server and might corrupt your backup. Start the server only after performing the
proper restore operation. See Appendix A, Frequently Asked Questions for MySQL
Enterprise Backup for details."

40

Restoring a Database

4.2.4 Restoring a Database

To restore a MySQL instance from a backup to a database server:

• Shut down the database server.

• Delete all files inside the server's data directory. Also delete all files inside the directories specified by the
--innodb_data_home_dir, --innodb_log_group_home_dir, and --innodb_undo_directory
options for restore, if the directories are different from the data directory.

• Use, for example, the copy-back-and-apply-log command, which converts the raw backup into
a prepared backup by updating it to a consistent state, and then copies the tables, indexes, metadata,
and any other required files onto a target server. For the various options that you can specify for this
operation, see Section 19.3, “Restore Operations”.

In the example below, the single-file backup created in the example given in Section 4.2.2, “Backing Up
an Entire MySQL Instance” is restored using the copy-back-and-apply-log command. The following
options are used:

• --datadir supplies the location of the data directory for restoring the data. You must specify this option
for any restore operation, either at the command line or in a defaults file.

• --backup-image provides the path of the single-file backup.

• --backup-dir provides the location of an empty folder to store some temporary files created during
the restore procedure.

$ mysqlbackup --datadir=/home/meb/mysql/mysql-datadir \
 --backup-image=/home/meb/mysql/backups/testback3.mbi --backup-dir=/home/meb/mysql/backup-tmp2 \
 copy-back-and-apply-log
MySQL Enterprise Backup Ver 8.3.0-commercial for Linux on x86_64 (MySQL Enterprise - Commercial)
Copyright (c) 2003, 2022, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Starting with following command line ...
./bin/mysqlbackup
--datadir=/home/meb/mysql/mysql-datadir
--backup-image=/home/meb/mysql/backups/testback3.mbi
--backup-dir=/home/meb/mysql/backup-tmp2
copy-back-and-apply-log

IMPORTANT: Please check that mysqlbackup run completes successfully.
 At the end of a successful 'copy-back-and-apply-log' run mysqlbackup
 prints "mysqlbackup completed OK!".

220913 15:02:34 MAIN INFO: Backup Image MEB version string: 8.0.31
220913 15:02:34 MAIN INFO: MySQL server version is '8.0.31'
220913 15:02:34 MAIN INFO: Backup directory created: '/home/meb/mysql/backup-tmp2'
220913 15:02:34 MAIN WARNING: If you restore to a server of a different version, the innodb_data_file_path parameter might have a different default. In that case you need to add 'innodb_data_file_path=ibdata1:12M:autoextend' to the target server configuration.
220913 15:02:34 MAIN INFO: MEB logfile created at /home/meb/mysql/backup-tmp2/meta/MEB_2022-09-13.15-02-34_copy-back-and-apply-log.log

220913 15:02:34 MAIN INFO: The backup image has no keyring.
--
 Server Repository Options:
--
 datadir = /home/meb/mysql/mysql-datadir
 innodb_data_home_dir = /home/meb/mysql/mysql-datadir
 innodb_data_file_path = ibdata1:12M:autoextend
 innodb_log_group_home_dir = /home/meb/mysql/mysql-datadir

41

Restoring a Database

 innodb_undo_directory = /home/meb/mysql/mysql-datadir
 innodb_undo_tablespaces = 2
 innodb_buffer_pool_filename = ib_buffer_pool
 innodb_page_size = Null
 innodb_checksum_algorithm = crc32

--
 Backup Config Options:
--
 datadir = /home/meb/mysql/backup-tmp2/datadir
 innodb_data_home_dir = /home/meb/mysql/backup-tmp2/datadir
 innodb_data_file_path = ibdata1:12M:autoextend
 innodb_log_group_home_dir = /home/meb/mysql/backup-tmp2/datadir
 innodb_undo_directory = /home/meb/mysql/backup-tmp2/datadir
 innodb_undo_tablespaces = 2
 innodb_buffer_pool_filename = ib_buffer_pool
 innodb_page_size = 16384
 innodb_checksum_algorithm = crc32

220913 15:02:34 MAIN INFO: Creating 14 buffers each of size 16777216.
220913 15:02:34 MAIN INFO: Copy-back-and-apply-log from image operation starts with following threads
 1 read-threads 6 process-threads 1 write-threads
220913 15:02:34 PCR1 INFO: Copying database directory: meta
220913 15:02:34 RDR1 INFO: Copying ibdata1.
220913 15:02:34 RDR1 INFO: Copying undo_002.
220913 15:02:34 RDR1 INFO: Copying undo_001.
220913 15:02:34 RDR1 INFO: Copying sys/sys_config.ibd.
220913 15:02:34 RDR1 INFO: Copying Test/test1.ibd.
220913 15:02:34 RDR1 INFO: Copying mysql/backup_progress.ibd.
220913 15:02:34 RDR1 INFO: Copying mysql/backup_history.ibd.
220913 15:02:34 RDR1 INFO: Copying mysql.ibd.
220913 15:02:34 RDR1 INFO: Copying binlog.000001.
220913 15:02:34 PCR2 INFO: Copying database directory: Test
220913 15:02:34 PCR2 INFO: Copying database directory: mysql
220913 15:02:34 PCR2 INFO: Copying database directory: performance_schema
220913 15:02:34 RDR1 INFO: Binary Log Basename: 'binlog'
220913 15:02:34 RDR1 INFO: Binlog Log Index: '/home/meb/mysql/mysql-datadir/binlog.index'
220913 15:02:34 RDR1 INFO: Copying binlog.000002.
220913 15:02:34 PCR3 INFO: Copying database directory: sys
220913 15:02:34 MAIN INFO: read_backup_variables_txt_file: '/home/meb/mysql/backup-tmp2/meta/backup_variables.txt'
220913 15:02:34 MAIN INFO: backup variable mysql_version=8.0.31-commercial
220913 15:02:34 MAIN INFO: MySQL server version is '8.0.31-commercial'
220913 15:02:34 MAIN INFO: Restoring ...8.0.31-commercial version
220913 15:02:34 MAIN INFO: backup variable meb_version=8.0.31
220913 15:02:34 MAIN INFO: backup variable start_lsn=19778048
220913 15:02:34 MAIN INFO: backup variable last_checkpoint=19778447
220913 15:02:34 MAIN INFO: backup variable end_lsn=19785442
220913 15:02:34 MAIN INFO: backup variable apply_log_done=0
220913 15:02:34 MAIN INFO: backup variable is_incremental=0
220913 15:02:34 MAIN INFO: backup variable is_incremental_with_redo_log_only=0
220913 15:02:34 MAIN INFO: backup variable is_partial=0
220913 15:02:34 MAIN INFO: backup variable is_compressed=0
220913 15:02:34 MAIN INFO: backup variable is_skip_binlog=0
220913 15:02:34 MAIN INFO: backup variable is_skip_relaylog=0
220913 15:02:34 MAIN INFO: backup variable is_skip_unused_pages=0
220913 15:02:34 MAIN INFO: backup variable is_onlyinnodb=0
220913 15:02:34 MAIN INFO: backup variable binlog_position=binlog.000002:157
220913 15:02:34 MAIN INFO: backup variable binlog_index=binlog.index
220913 15:02:34 MAIN INFO: backup variable has_tde_tables=0
220913 15:02:34 MAIN INFO: backup variable start_time_utc=1663094608919023
220913 15:02:34 MAIN INFO: backup variable end_time_utc=1663094944996741
220913 15:02:34 MAIN INFO: backup variable consistency_time_utc=1663094944976610
220913 15:02:34 MAIN INFO: backup variable mysql_version_comment=MySQL Enterprise Server - Commercial
220913 15:02:34 MAIN INFO: backup variable log_bin_name=binlog
220913 15:02:34 MAIN INFO: backup variable log_bin_index_name=binlog
220913 15:02:34 MAIN INFO: backup variable innodb_undo_files_count=2
220913 15:02:34 MAIN INFO: Copy-back operation completed successfully.

42

Restoring a Database

220913 15:02:34 MAIN INFO: Source Image Path = /home/meb/mysql/backups/testback3.mbi

220913 15:02:34 MAIN INFO: read_backup_variables_txt_file: '/home/meb/mysql/backup-tmp2/meta/backup_variables.txt'
220913 15:02:34 MAIN INFO: backup variable mysql_version=8.0.31-commercial
220913 15:02:34 MAIN INFO: MySQL server version is '8.0.31-commercial'
220913 15:02:34 MAIN INFO: Restoring ...8.0.31-commercial version
220913 15:02:34 MAIN INFO: backup variable meb_version=8.0.31
220913 15:02:34 MAIN INFO: backup variable start_lsn=19778048
220913 15:02:34 MAIN INFO: backup variable last_checkpoint=19778447
220913 15:02:34 MAIN INFO: backup variable end_lsn=19785442
220913 15:02:34 MAIN INFO: backup variable apply_log_done=0
220913 15:02:34 MAIN INFO: backup variable is_incremental=0
220913 15:02:34 MAIN INFO: backup variable is_incremental_with_redo_log_only=0
220913 15:02:34 MAIN INFO: backup variable is_partial=0
220913 15:02:34 MAIN INFO: backup variable is_compressed=0
220913 15:02:34 MAIN INFO: backup variable is_skip_binlog=0
220913 15:02:34 MAIN INFO: backup variable is_skip_relaylog=0
220913 15:02:34 MAIN INFO: backup variable is_skip_unused_pages=0
220913 15:02:34 MAIN INFO: backup variable is_onlyinnodb=0
220913 15:02:34 MAIN INFO: backup variable binlog_position=binlog.000002:157
220913 15:02:34 MAIN INFO: backup variable binlog_index=binlog.index
220913 15:02:34 MAIN INFO: backup variable has_tde_tables=0
220913 15:02:34 MAIN INFO: backup variable start_time_utc=1663094608919023
220913 15:02:34 MAIN INFO: backup variable end_time_utc=1663094944996741
220913 15:02:34 MAIN INFO: backup variable consistency_time_utc=1663094944976610
220913 15:02:34 MAIN INFO: backup variable mysql_version_comment=MySQL Enterprise Server - Commercial
220913 15:02:34 MAIN INFO: backup variable log_bin_name=binlog
220913 15:02:34 MAIN INFO: backup variable log_bin_index_name=binlog
220913 15:02:34 MAIN INFO: backup variable innodb_undo_files_count=2
220913 15:02:34 MAIN INFO: Creating 14 buffers each of size 65536.
220913 15:02:34 MAIN INFO: Apply-log operation starts with following threads
 1 read-threads 1 process-threads 6 apply-threads
220913 15:02:34 MAIN INFO: Using up to 100 MB of memory.
220913 15:02:34 MAIN INFO: ibbackup_logfile's creation parameters:
 start lsn 19778048, end lsn 19785442,
 start checkpoint 19778447.
220913 15:02:34 MAIN INFO: Loading the space id : 0, space name : /home/meb/mysql/mysql-datadir/ibdata1.
220913 15:02:34 MAIN INFO: Loading the space id 2 name '/home/meb/mysql/mysql-datadir/Test/test1.ibd'.
220913 15:02:34 MAIN INFO: Loading the space id 4 name '/home/meb/mysql/mysql-datadir/mysql/backup_history.ibd'.
220913 15:02:34 MAIN INFO: Loading the space id 3 name '/home/meb/mysql/mysql-datadir/mysql/backup_progress.ibd'.
220913 15:02:34 MAIN INFO: Loading the space id 1 name '/home/meb/mysql/mysql-datadir/sys/sys_config.ibd'.
220913 15:02:34 MAIN INFO: Loading the space id 4294967294 name '/home/meb/mysql/mysql-datadir/mysql.ibd'.
220913 15:02:34 MAIN INFO: Loading the space id 4294967279 name '/home/meb/mysql/mysql-datadir/undo_001'.
220913 15:02:34 MAIN INFO: Loading the space id 4294967278 name '/home/meb/mysql/mysql-datadir/undo_002'.
220913 15:02:34 PCR1 INFO: Starting to parse redo log at lsn = 19778077, whereas checkpoint_lsn = 19778447 and start_lsn = 19778048.
220913 15:02:34 PCR1 INFO: Doing recovery: scanned up to log sequence number 19785442.
220913 15:02:34 PCR1 INFO: Starting to apply a batch of log records to the database....
InnoDB: Progress in percent: 5 11 17 23 29
220913 15:02:34 PCR1 INFO: Create redo log files. target start_lsn 0 last_checkpoint 0 end_lsn 0
220913 15:02:34 PCR1 INFO: Create redo log files. source start_lsn 19778048 last_checkpoint 19778447 end_lsn 19785442
220913 15:02:34 PCR1 INFO: Updating last checkpoint to 19778447 in redo log
220913 15:02:34 PCR1 INFO: We were able to parse ibbackup_logfile up to lsn 19785442.
220913 15:02:34 PCR1 INFO: Last MySQL binlog file position 0 157, file name binlog.000002
220913 15:02:34 PCR1 INFO: The first data file is '/home/meb/mysql/mysql-datadir/ibdata1'
 and the new created log files are at '/home/meb/mysql/mysql-datadir'
220913 15:02:34 MAIN INFO: Apply-log operation completed successfully.
220913 15:02:34 MAIN INFO: Full Backup has been restored successfully.

mysqlbackup completed OK! with 1 warnings

Now the original database directory is restored from the backup.

Starting the Restored Server. When the following InnoDB settings are different on the backed-up and
the restored server, it is important to configure the restored server with the settings from the backed up
server (otherwise, your restored server might not start):

43

Backup Scenarios and Examples

• innodb_data_file_path

• innodb_page_size

• innodb_checksum_algorithm

If you are not sure about those settings for your backed-up server, they were actually stored in the
backup-my.cnf file during the backup—you can find the file either in the temporary directory you
specified with --backup-dir when you restored the single-image backup, or in a backup directory you
could create by unpacking the backup image using the extract command. If the values of these options
differ from those on the target server, add them to the configuration file you are using to start the target
server afterwards; alternatively, you can also supply them as command line options to mysqld.

Depending on how you are going to start the restored server, you might need to adjust the ownership of
the restored data directory. For example, if the server is going to be started by the user mysql, use the
following command to change the owner attribute of the data directory and the files under it to the mysql
user, and the group attribute to the mysql group.

$ chown -R mysql:mysql /path/to/datadir

You are now ready to start the restored database server. For more discussions on how to perform different
kinds of restores, see Section 5.1, “Performing a Restore Operation”.

4.3 Backup Scenarios and Examples

4.3.1 Making a Single-File Backup

To avoid having a large number of backup files to keep track, store, and transport, mysqlbackup
conveniently creates backups in a single-file format. It can also pack an existing backup directory into a
single file, unpack the single file back to a backup directory, list the contents of a single-file backup, verify
the contents of a single-file backup against embedded checksums, or extract a single file into a directory
tree. For the syntax of the relevant mysqlbackup options, see Section 20.9, “Single-File Backup Options”.

Advanced: While mysqlbackup can also create a directory backup (see description for the backup
command for details) instead of a single-file backup, the single-file format is preferable in most cases: a
single-file backup is easier to handle and store, and certain functions of mysqlbackup are not supported
for directory backups—for example, backup to cloud and backup to tape using the System Backup to
Tape (SBT) API. Throughout the manual, directory backup is mostly treated as an advanced topic, and
information and examples for directory backups are marked with the Advanced tag, like this paragraph.

Because the single-file backup can be streamed or piped to another process such as a tape backup or a
command, you can use the technique to put the backup onto another storage device or server and avoid
significant storage overhead on the original database server.

To create a single-file backup, use the backup-to-image command. The following examples illustrate
how to perform a single-file backup and other related operations.

Example 4.1 Single-File Backup to Absolute Path

This command creates a single backup image on the given absolute path. It still requires --backup-dir,
which is used to hold temporary output, status, and metadata files.

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --backup-image=/backups/sales.mbi --backup-dir=/backup-tmp backup-to-image

Example 4.2 Single-File Backup to Relative Path

When a relative path instead of an absolute path was supplied with the --backup-image option, the path
is taken to be relative to the backup directory. Therefore, in this example, the resulting single-file backup is
created as /backups/sales.mbi.

44

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_checksum_algorithm

Making a Single-File Backup

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --backup-image=sales.mbi --backup-dir=/backups backup-to-image

Example 4.3 Single-File Backup to Standard Output

The following command dumps the backup output to standard output. Again, the folder specified with the
--backup-dir option is used as a temporary directory.

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --backup-dir=/backups --backup-image=- backup-to-image > /backup/mybackup.mbi

Example 4.4 Convert Existing Backup Directory to Single Image

The backup-dir directory is bundled into the /backup/my.mbi file.

mysqlbackup --backup-image=/backup/my.mbi --backup-dir=/var/mysql/backup backup-dir-to-image

Example 4.5 Extract Existing Image to Backup Directory

The image contents are unpacked into backup-dir.

mysqlbackup --backup-dir=/var/backup --backup-image=/backup/my.mbi image-to-backup-dir

Example 4.6 List Single-File Backup Contents

The image contents are listed, with each line indicating a file or directory entry.

mysqlbackup --backup-image=/backup/my.mbi list-image

Example 4.7 Validate a Single-File Backup

The following command verifies that the single-file backup is not corrupted, truncated, or damaged by
validating the checksum value for each data page in the backup.

mysqlbackup --backup-image=/logs/fullimage.mi validate

Example 4.8 Extract Single-File Backup into Current Directory

The following command extracts all contents from a single-file backup into the current working directory.

mysqlbackup --backup-image=/var/my.mbi extract

Example 4.9 Extract Single-File Backup into a Backup Directory

This command extracts all contents of a single-file backup into the directory specified with the --backup-
dir option.

mysqlbackup --backup-image=/var/my.mbi --backup-dir=/var/backup extract

Example 4.10 Selective Extract of Single File

The following command extracts the single file meta/comments.txt from the backup image my.mbi into
the local path./meta/comments.txt.

mysqlbackup --backup-image=/var/my.mbi \
 --src-entry=meta/comments.txt extract

The following command extracts the meta/comments.txt file from the backup image my.mbi into a
specified path /tmp/mycomments.txt by using the --dst-entry option.

mysqlbackup --backup-image=/var/my.mbi \

45

Making a Single-File Backup

 --src-entry=meta/comments.txt \
 --dst-entry=/tmp/mycomments.txt extract

The following command dumps the contents of meta/comments.txt (which is inside the single-file
backup my.mbi) to standard output.

mysqlbackup --backup-image=/var/my.mbi --src-entry=meta/comments.txt --dst-entry=- extract

Example 4.11 Selective Extract of Single Directory

The following command extracts a single directory meta from the backup image my.mbi into a local file
system path ./meta. All contents in the meta directory are extracted, including any subdirectories. (Notice
the slash (/) at the end of the value meta/ for --src-entry, without which all files or folders containing
the string meta in their pathnames will be extracted.)

mysqlbackup --backup-image=/backup/my.mbi --src-entry=meta/ extract

Example 4.12 Dealing with Absolute Path Names

Since absolute pathnames are extracted to the same paths in local system, it could be a problem if you do
not have write permission for that path. You can remap absolute paths as follows:

mysqlbackup --backup-image=/backup/my.mbi --src-entry=/ --dst-entry=/myroot extract
mysqlbackup --backup-image=/backup/my.mbi --src-entry=. extract

The first command extracts all absolute paths to /myroot directory in the local system. The second
command extracts all relative paths to the current directory.

4.3.1.1 Streaming the Backup Data to Another Device or Server

To limit the storage overhead on the database server, you can transfer the backup data to a different
server without ever storing it locally. You can achieve that with a single-file backup. To send the single-
file backup to standard output, use the mysqlbackup command backup-to-image without specifying
the --backup-image option. (You can also specify --backup-image=- to make it obvious that the
data is sent to stdout.) To stream the data, you use the single-file backup in combination with operating
system features such as pipes, ssh, and so on, which take the input from standard output and create
an equivalent file on a remote system. You can either store the single-file backup directly on the remote
system, or invoke mysqlbackup with the copy-back-and-apply-log command on the other end to
restore the backup to a remote MySQL server.

Example 4.13 Single-File Backup to a Remote Host

The following command streams the backup as a single-file output to a remote host to be saved under the
file name my_backup.img (--backup-dir=/tmp designates the directory for storing temporary files
rather than the final output file):

mysqlbackup --defaults-file=~/my_backup.cnf --backup-image=- --backup-dir=/tmp backup-to-image | \
 ssh <user name>@<remote host name> 'cat > ~/backups/my_backup.img'

For simplicity, all the connection and other necessary options are assumed to be specified in the default
configuration file. ssh can be substituted with another communication protocol like ftp, and cat can be
substituted with another command (for example, dd or tar for normal archiving).

Example 4.14 Single-file Backup to a Remote MySQL Server

The following command streams the backup as a single backup file to be restored on a remote MySQL
server:

46

Making a Single-File Backup

mysqlbackup --backup-dir=backup --backup-image=- --compress backup-to-image | \
ssh <user name>@<remote host name> 'mysqlbackup --backup-dir=backup_tmp --datadir=/data \
--innodb_log_group_home_dir=. --uncompress --backup-image=- copy-back-and-apply-log'

Example 4.15 Stream a Backup Directory to a Remote MySQL Server

The following command streams a backup directory as a single backup file to be restored on a remote
MySQL server:

mysqlbackup --backup-image=- --backup-dir=/path/to/my/backup backup-dir-to-image | \
ssh <user name>@<remote host name> 'mysqlbackup --backup-dir=backup_tmp --datadir=/data --backup-image=- copy-back-and-apply-log'

4.3.1.2 Backing Up to Tape

Tape drives are affordable, high-capacity storage devices for backup data. MySQL Enterprise Backup can
interface with media management software (MMS) such as Oracle Secure Backup (OSB) to drive MySQL
backup and restore jobs. The media management software must support Version 2 or higher of the System
Backup to Tape (SBT) interface.

For information about doing tape backups in combination with MMS products such as Oracle Secure
Backup, see Chapter 11, Using MySQL Enterprise Backup with Media Management Software (MMS)
Products.

4.3.1.3 Backing Up to Cloud Storage

MySQL Enterprise Backup supports cloud backups. Only single-file backups can be created on and
restored from a cloud storage. All mysqlbackup options compatible with single-file operations (including,
for example, the incremental, compression, partial, and encryption options) can be used with cloud
backups or restores.

Note

See Appendix B, Limitations of MySQL Enterprise Backup for some limitations
regarding the support for cloud storage by mysqlbackup.

MySQL Enterprise Backup supports the following types of cloud storage services:

• Oracle Cloud Infrastructure (OCI) Object Storage

• OpenStack Swift or compatible object storage services

• Amazon Simple Storage Service (S3) or compatible storage service.

• GCP object storage

A cloud backup is created using the cloud options for mysqlbackup, which are described in details in
Section 20.15, “Cloud Storage Options”. Here are some sample commands for creating a cloud backup:

Example 4.16 Creating a Cloud Backup on Oracle Cloud Infrastructure Object Storage

This example creates a cloud backup in an Oracle Cloud Infrastructure (OCI) Object Storage bucket using
a Pre-Authenticated Request (PAR) URL.

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --backup-dir=/home/dbadmin/backuptmp \
 --with-timestamp --backup-image=- --cloud-service=OCI --cloud-par-url=<bucket_PAR_URL> --cloud-object=backup.bk \
 backup-to-image

47

Making a Single-File Backup

Example 4.17 Creating a Cloud Incremental Backup on Oracle Cloud Infrastructure

This example creates an incremental cloud backup in an Oracle Cloud Infrastructure (OCI) Object Storage
bucket, using a Pre-Authenticated Request (PAR) URL.

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --backup-dir=/home/dbadmin/backuptmp --with-timestamp \
 --backup-image=- --cloud-service=OCI --cloud-par-url=<bucket_PAR_URL> --cloud-object=backup-inc.bk \
 --incremental --incremental-base=history:last_backup backup-to-image

Example 4.18 Creating a Cloud Backup on an OpenStack Object Storage

This example creates a cloud backup on an OpenStack object storage, using the Keystone identity service
to authenticate the user's credentials.

mysqlbackup \
--defaults-file=/home/dbadmin/my.cnf \
--include-tables=testdb.t1 --use-tts=with-full-locking \
--cloud-service=openstack --cloud-container=<swift container> \
--cloud-user-id=<keystone user> --cloud-password=<keystone password> \
--cloud-region=<keystone region> --cloud-tenant=<keystone tenant> \
--cloud-identity-url=<keystone url> \
--cloud-trace=1 --cloud-object=image_800.mbi \
--backup-dir=/home/dba/opbackuptmpdir \
--backup-image=- \
backup-to-image

Example 4.19 Creating a Cloud Backup in an Amazon S3 Bucket

This example creates a cloud backup in an Amazon S3 bucket.

mysqlbackup\
--defaults-file=/home/dbadmin/my.cnf \
--cloud-service=s3 --cloud-aws-region=<aws region> \
--cloud-access-key-id=<aws access key id> --cloud-secret-access-key=<aws secret access key> \
--cloud-bucket=<s3 bucket name> --cloud-object-key=<aws object key> \
--backup-dir=/home/dba/s3backupdir --with-timestamp \
--backup-image=- \
backup-to-image

Example 4.20 Creating a Cloud Incremental Backup in an Amazon S3 Bucket

This example creates a cloud incremental backup in an Amazon S3 bucket.

mysqlbackup\
--defaults-file=/home/dbadmin/my.cnf \
--cloud-service=s3 --cloud-aws-region=<aws region> \
--cloud-access-key-id=<aws access key id> --cloud-secret-access-key=<aws secret access key> \
--cloud-bucket=<s3 bucket name> --cloud-object-key=<aws object key> \
--backup-dir=/home/dba/s3backupdir --with-timestamp \
--backup-image=- --incremental --incremental-base=history:last_backup \
backup-to-image

Example 4.21 Creating a Cloud Backup on GCP Storage Service

This example creates a cloud backup on GCP storage service.

mysqlbackup\
--defaults-file=/home/dbadmin/my.cnf \
--cloud-service=GCP \
--cloud-bucket=<bucket name> --cloud-object=<object name> \
--cloud-access-key=<access name> --cloud-secret-key=<secret key> \
--backup-dir=/home/dba/backupdir --with-timestamp \

48

Making a Full Backup

--backup-image=- \
backup-to-image

A cloud backup always uses one write thread.

Besides backup-to-image, all other mysqlbackup operations for single-file backups (backup-dir-
to-image, list-image, validate, image-to-backup-dir, extract, copy-back, and copy-
back-and-apply-log) can also be performed with cloud storage (see Appendix B, Limitations of MySQL
Enterprise Backup for some restrictions).

See Section 5.2, “Restoring a Backup from Cloud Storage to a MySQL Server” on how to restore a backup
image from a cloud storage.

4.3.2 Making a Full Backup

Most backup strategies start with a complete backup of the MySQL server, from which you can restore all
databases and tables. After you have created a full backup, you might perform incremental backups (which
are smaller and faster) for the next several backup tasks. You then make a full backup periodically to begin
the cycle again.

For sample commands for making a full backup, see Section 4.2.2, “Backing Up an Entire MySQL
Instance”.

This section outlines some of the things to consider when deciding on a strategy for creating full backups.
As we shall see, factors like speed, capacity, and convenience are all relevant for your decisions.

Options on Command Line or in Configuration File?

For clarity, the examples in this manual often show some of the command-line options that are used with
the mysqlbackup commands. For convenience and consistency, you can include those options that
remain unchanged for most backup jobs into the [mysqlbackup] section of the MySQL configuration file
that you supply to mysqlbackup. mysqlbackup also picks up the options from the [mysqld] section
if they are present there. Putting the options into a configuration file can simplify backup administration
for you: for example, putting port information into a configuration file, you can avoid the need to edit your
backup scripts each time the database instance switches to a different port. See Chapter 21, Configuration
Files and Parameters for details about the use of configuration files.

Using a Single Backup Directory or Timestamped Subdirectories?

For convenience, the --with-timestamp option creates uniquely named subdirectories under the
backup directory to hold the backup data (permanent or temporary) and metadata. The timestamped
subdirectories make it simpler to establish retention periods, allowing easy removal and archiving of
backup data that has passed a certain age.

If you do use a single backup directory (that is, if you omit the --with-timestamp option), specify a new,
unique directory name for each backup job.

For incremental backups that uses the --incremental-base option to specify the directory containing
the previous backup, in order to make the directory names predictable, you might prefer to not use the --
with-timestamp option and generate a sequence of directory names with your backup script instead .

Always Full Backup, or Full Backup plus Incremental Backups?

If your InnoDB data volume is small, or if your database is so busy that a high percentage of data changes
between backups, you might want to run a full backup each time. However, you can usually save time and

49

Making a Differential or Incremental Backup

storage space by running periodic full backups and then several incremental backups in between them, as
described in Section 4.3.3, “Making a Differential or Incremental Backup”.

Use Compression or Not?

Creating a compressed backup can save you considerable storage space and reduce I/O usage
significantly. And with the LZ4 compression method, the overhead for processing compression is quite low.
In cases where database backups are moving from a faster disk system where the active database files sit
to a possibly slower storage, compression will often significantly lower the overall backup time. It can result
in reduced restoration time as well. In general, we recommend LZ4 compression over no compression
for most users, as LZ4-based backups often finish in a shorter time period. However, test out MySQL
Enterprise Backup within your environment to determine what is the most efficient approach. For more
discussions on compressed backups, see Section 4.3.4, “Making a Compressed Backup”.

4.3.3 Making a Differential or Incremental Backup

Assuming a good portion of the data on your MySQL server remains unchanged over time, you can
increase the speed and reduce the required storage space for your regular backups by backing up not all
the data on the server each time, but only the changes to the data which have taken place over time. In
order to that, after making first a full backup that contains all data, you can do one of the following:

• Performing a series of differential backups. Each differential backups includes all the changes
made to the data since the last full backup was performed. To restore data up to, for example, time t,
you simply restore first the full backup, and then, on top of it, the differential backup taken for time t.

• Perform a series of incremental backup. Each incremental backup only includes the changes since
the previous backup, which can itself be a full or incremental backup. The first backup in an incremental
series is always then a differential backup; but after that, each incremental backup only contains the
changes made since that last incremental backup. Each subsequent incremental backup is thus usually
smaller in size than a differential backup, and is faster to make; that allows you to make very frequent
incremental backups, and then enables you to restore the database to a more precise point in time
when necessary. However, restoring data with incremental backups might take longer and more work:
in general, to restore data up to, for example, time t, you start with restoring the full backup, and then
restore the incremental backups one by one, until you are finished with the incremental backup taken for
time t.

MySQL Enterprise Backup supports both incremental and differential backups. You should decide on
which backup strategy to adopt by looking at such factors like how much storage space you have, how
quickly you have to be able to restore data, and so on.

MySQL Enterprise Backup treats differential backup as a special case of incremental backup that has a
full backup as its base. To create a differential backup, simply follow the instructions below for performing
incremental backups, and make sure you specify a full backup as the base of your incremental backup;
you should also ignore any instructions that only apply to the handling of multiple incremental backups.

Note

You can create a differential backup easily using the option --incremental-
base=history:last_full_backup.

See Section 20.7, “Incremental Backup Options”, for descriptions of the mysqlbackup options used for
incremental backups. An Incremental backup is enabled with one of the two options: --incremental
and --incremental-with-redo-log-only option. See Creating Incremental Backups Using Only the
Redo Log for their differences.

50

Making a Differential or Incremental Backup

When creating an incremental backup, you have to indicate to mysqlbackup the point in time of the
previous full or incremental backup. For convenience, you can use the --incremental-base option to
automatically derive the necessary log sequence number (LSN) from the metadata stored in a previous
backup directory or on the server. Or, you can specify an explicit LSN value using the --start-lsn
option, providing to mysqlbackup the ending LSN from a previous full or incremental backup (see Other
Considerations for Incremental Backups on some limitation that applies when using the --start-lsn
option).

To prepare the backup data to be restored, you combine all incremental backups with an original full
backup. Typically, you perform a new full backup after a designated period of time, after which you can
discard the older incremental backup data.

Creating Incremental Backups Using Only the Redo Log

The --incremental-with-redo-log-only might offer some benefits over the --incremental
option for creating an incremental backup:

• The changes to the InnoDB tables are determined based on the contents of the InnoDB redo log. Since
the redo log has a maximum size that you know in advance, depending on the size of your database, the
amount of DML activities, and the size of the redo log, it usually requires less I/O to read the changes
from the redo log than to scan the InnoDB tablespace files to locate the changed pages.

• A system variable, innodb_redo_log_capacity, controls the amount of disk space occupied by redo
log files. If the redo log files occupy less space than the value of innodb_redo_log_capacity, dirty
pages are flushed from the buffer pool to tablespace data files less aggressively, allowing the disk space
occupied by the redo log files to grow faster. If the space occupied by the redo log files gets close to the
specified value, dirty pages are flushed more aggressively, so that the disk space occupied by redo log
files is kept within the specified limit. See Configuring Redo Log Capacity for details.

With the way the redo log is now maintained, it becomes more likely that when an incremental backup
using only the redo log is started, the redo log files storing the changes to the database since the last
backup are already processed and are no longer available. To prevent that situation, you should register
mysqlbackup (the MySQL user who creates backups) with the server as an external consumer of the
redo log by the following UDF command, before the creation of any data that is to be included in the
redo-log-only incremental backup:

DO innodb_redo_log_consumer_register();

This prevents InnoDB from removing or recycling redo log files that contain transactions not backed up
yet by mysqlbackup. After each redo-log-only incremental backup, run the following UDF to advance to
a new LSN checkpoint, so that the server may now process the redo log files that are no longer required
by mysqlbackup:

DO innodb_redo_log_consumer_advance($lsn);

$lsn is the highest LSN value included in a finished incremental backup.

The steps above assume that the connection session that initiated the DO
innodb_redo_log_consumer_register(); UDF is kept open in between the base backup or the
last incremental backup and the latest redo-log-only incremental backup. One way to help ensure that
is to have the server spawning on the same machine a special client that connects to the Server by,
for example, a Unix socket (if it is a Unix machine) through a connection session that initiates the UDF
and is then left open for as long as it is needed. That setup will provide a stable connection session for
keeping mysqlbackup as a consumer of the redo log.

• This type of incremental backup is not so forgiving of too-low --start-lsn values as the standard --
incremental option is. For example, you cannot make a full backup and then make a series of --

51

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_redo_log_capacity
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_redo_log_capacity
https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-modifying-redo-log-capacity

Making a Differential or Incremental Backup

incremental-with-redo-log-only backups all using the same --start-lsn value. Make sure to
specify the precise end LSN of the previous backup as the start LSN of the next incremental backup; do
not use arbitrary values.

Note

To ensure the LSN values match up exactly between successive incremental
backups, it is recommended that you always use the --incremental-base
option when you use the --incremental-with-redo-log-only option.

• To judge whether this type of incremental backup is practical and efficient for a particular MySQL
instance:

• Measure how fast the data changes within the InnoDB redo log files. Check the LSN periodically to
decide how much redo data accumulates over the course of some number of hours or days.

• Compare the rate of redo log accumulation with the redo log capacity, and use this ratio to
see how often to take an incremental backup. For example, if you are producing 1GB of redo
log data per day, and the combined size of your redo clog capacity (which is specified by
innodb_redo_log_capacity) is 7GB, you would schedule incremental backups more frequently
than once a week. You might perform incremental backups every day or two, to avoid a potential issue
when a sudden flurry of updates produced more redo log data than usual.

• Benchmark incremental backup times using both the --incremental and --incremental-with-
redo-log-only options, to confirm if the redo log backup technique performs faster and with less
overhead than the traditional incremental backup method. The result could depend on the size of your
data, the amount of DML activity, and the capacity of your redo log. Do your testing on a server with
a realistic data volume and a realistic workload. For example, if you have huge redo log files, reading
them in the course of an incremental backup could take as long as reading the InnoDB data files using
the traditional incremental technique. Conversely, if your data volume is large, reading all the data files
to find the few changed pages could be less efficient than processing the much smaller redo log files.

• Backup compression (i.e., use of the compression options) is not supported when you perform
incremental backups with the redo log only. If backup compression is important to you, do not use the
--incremental-with-redo-log-only option.

Incremental Backup Using Page Tracking

mysqlbackup supports creating incremental backups using the page tracking functionality of the MySQL
Server, by which mysqlbackup looks for changed pages in the InnoDB data files that have been modified
since the last backup and then copies them. In general, incremental backups using page tracking are faster
than other kinds of incremental backups performed by mysqlbackup if the majority of the data in the
database has not been modified. Using this feature requires the following to be done on the server before
the base backup for the incremental backup is made:

• Install the mysqlbackup component, which comes with the MySQL Enterprise Server 8.3 installation, by
running this command at a mysql client connected to the server:

INSTALL COMPONENT "file://component_mysqlbackup";

• Start page tracking with the following function:

SELECT mysqlbackup_page_track_set(true);

The LSN value starting from which changed pages have been tracked is returned by this function:

SELECT mysqlbackup_page_track_get_start_lsn();

52

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_redo_log_capacity

Making a Differential or Incremental Backup

You can stop page tracking with the following function:

SELECT mysqlbackup_page_track_set(false);

Note

The previously mentioned functions regarding page tracking require the
BACKUP_ADMIN privilege to run.

When the --incremental option is used without any value specified, mysqlbackup performs an
incremental backup using the page tracking functionality. User can also specifies --incremental=page-
track to make mysqlbackup use the page tracking functionality. However, the prerequisites for making
use of the page tracking functionality for incremental backups are:

• Page tracking is functioning properly on the server, and it has been enabled (with SELECT
mysqlbackup_page_track_set(true)) before the base backup was created; if that is not the
case, mysqlbackup throws an error when --incremental=page-track, or it performs a full-scan
incremental backup instead when --incremental is unspecified.

• The number of changed pages is less than 50% of the total number of pages; if that is not the case,
mysqlbackup throws an error when --incremental=page-track, or it performs a full-scan
incremental backup instead when --incremental is unspecified.

Note

mysqlbackup needs to be started with enough memory to process all the tracked
pages in memory. If there is not enough memory, mysqlbackup throws an error
and then exits. Here are some guidelines for assuring enough memory for the
operation:

• The default value of 400 [MB] for the --limit-memory option allows
mysqlbackup to handle about 800GB of changed data. Adjust the value for the
option according to your data size.

• The page tracking feature uses the memory buffers configured for mysqlbackup
for sorting the pages. Determine the number of buffers needed for page sorting
by the following steps:

• Before running the incremental backup, perform the following query on the
server to determine the end_lsn for the base backup:

SELECT end_lsn FROM mysql.backup_history WHERE exit_state = 'SUCCESS'
AND backup_type != 'TTS' AND server_uuid = @@server_uuid
ORDER BY end_time DESC, end_lsn DESC LIMIT 0,1;

• Run the following query on the server to get the number of changed pages
since the base backup was created (retry the query if it returns a negative
value):

SELECT mysqlbackup_page_track_get_changed_page_count(<the above end_lsn>, 0);

• Every changed page needs 8 bytes in the sorting buffer. So, multiply the
changed_page_count value obtained in the last step by 8 to get the number
of bytes needed for the sorting buffer.

• Each buffer has 16 Megabytes (16777216 bytes). So, divide the number of
bytes needed for the sorting buffers calculated in the last step by 16777216

53

Making a Differential or Incremental Backup

and round the result up to the next integer, to get the number of buffers needed
for sorting.

• Make sure the value for the option --number-of-buffers is no smaller
than the number of required sorting buffers you calculated in the last step.
Remember that there could be more changed pages created while you are
doing this calculation, so you might want to give mysqlbackup a few more
extra buffers.

• The default memory limit of 400MB should be able to support up to 25 buffers (up
to 18 buffers only for cloud backups); increase the memory limit if you need more
buffers than that by changing the value of the --limit-memory option.

Page tracking creates a file under the server's datadir for collecting information about changed pages.
This file keeps growing until page tracking is stopped. If the server is stopped and restarted, a new page
tracking file is created, but the old file persists and continues to grow until page tracking is deactivated
explicitly. Using a sequence of SQL statements similar to the following, you can purge any old page-
tracking data that you no longer need:

SELECT mysqlbackup_page_track_set(false);
SELECT mysqlbackup_page_track_purge_up_to(9223372036854775807);
/* Supply to he loadable function the LSN up to which you want to
purge page tracking data. 9223372036854775807 is the highest possible LSN,
which causes all page tracking files to be purged.*/
SELECT mysqlbackup_page_track_set(true);

This can be run, for example, before every full backup.

Full-scan versus Optimistic Incremental Backup

When the --incremental option is set to full-scan, mysqlbackup performs a full-scan incremental
backup, in which it scans all InnoDB data files in the server's data directory to find pages that have been
changed since the last backup was made and then copies those pages. A full-scan incremental backup
might not be very efficient when not many tables have been modified since the last back up.

An optimistic incremental backup, on the other hand, only scans for changed pages in InnoDB data files
that have been modified since the last backup, thus saving some unnecessary scan time. An optimistic
incremental backup can be performed by specifying --incremental=optimistic. While an optimistic
increment backup might shorten the backup time, it has the following limitations:

• Since this feature makes use of the modification times of the files in the server's data directory, two
things must have remained unchanged since the previous backup: (1) the system time on the server,
and (2) the location of the data directory. Otherwise, the backup might fail, or an inconsistent incremental
backup might be produced.

• Optimistic incremental backups cannot be performed with the --incremental-with-redo-log-
only, for which mysqlbackup reads the redo log files instead of scanning the files in the data directory.

• If the --start-lsn option is used, a full scan is performed even if --incremental=optimistic is
specified since, in that case, mysqlbackup cannot determine the point in time for which the previous
backup is consistent, and thus has no time frame to determine which files have been modified recently.

For these and other cases in which an optimistic incremental backup is not desirable, perform a full-scan
incremental backup, or an incremental backup using page tracking . See Section 4.1.2, “Grant MySQL
Privileges to Backup Administrator” on the privileges required for mysqlbackup to perform an optimistic
incremental backup. Also see Using Optimistic Backups and Optimistic Incremental Backups Together on
how to utilize the two features together in a backup schedule.

54

Making a Differential or Incremental Backup

Other Considerations for Incremental Backups

The incremental backup feature is primarily intended for InnoDB tables, or non-InnoDB tables that are
read-only or rarely updated. Incremental backups detect changes at the level of pages in the InnoDB
data files, as opposed to table rows; each page that has changed is backed up. Thus, the space and time
savings are not exactly proportional to the percentage of changed InnoDB rows or columns.

For non-InnoDB files, the entire file is always included in an incremental backup, which means the savings
for backup resources are less significant when comparing with the case with InnoDB tables.

No binary log files are copied into the incremental backup if the --start-lsn option is used. To include
binary log files for the period covered by the incremental backup, use the --incremental-base option
instead, which provides the necessary information for mysqlbackup to ensure that no gap exists between
binary log data included in the previous backup and the current incremental backup.

Examples of Incremental Backups

These examples use mysqlbackup to make an incremental backup of a MySQL server, including all
databases and tables. We show two alternatives, one using the --incremental-base option and the
other using the --start-lsn option.

With the --incremental-base option, you do not have to keep track of LSN values between one
backup and the next. Instead, you can do one of the following:

• Tell mysqlbackup to query the end_lsn value from the last successful non-TTS backup as recorded in
the backup_history table on the server using --incremental-base=history:last_backup or
history:last_full_backup .

• Advanced: For directory backups, specify the directory of the previous backup (either full or incremental)
with --incremental-base=dir:directory_path, and mysqlbackup will figure out the starting
point for this backup based on the metadata of the earlier one. Because you need a known set of
directory names, you might want to use hardcoded names or generate a sequence of names in your
own backup script, rather than using the --with-timestamp option. If your last backup was a single-
file, you can still use --incremental-base=dir:directory_path to provide the location of the
temporary directory you supplied with the --backup-dir option during the last backup

In the following example, the --incremental-base=history:last_backup option is used, given
which mysqlbackup fetches the LSN of the last successful (non-TTS) full or partial backup from the
mysql.backup_history table and performs an incremental backup basing on that.

mysqlbackup --defaults-file=/home/dbadmin/my.cnf \
 --incremental --incremental-base=history:last_backup \
 --backup-dir=/home/dbadmin/temp_dir \
 --backup-image=incremental_image1.bi \
 backup-to-image

In the following example, an incremental backup similar to the one in the last example but optimistic in
nature is performed.

mysqlbackup --defaults-file=/home/dbadmin/my.cnf \
 --incremental=optimistic --incremental-base=history:last_backup \
 --backup-dir=/home/dbadmin/temp_dir \
 --backup-image=incremental_image1.bi
 backup-to-image

Advanced: Use the following command to create an incremental directory backup using the --
incremental-base=dir:directory_path option; the backup is saved at the location specified by --
incremental-backup-dir:

55

https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_page
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_data_files

Making a Compressed Backup

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --incremental \
 --incremental-base=dir:/incr-backup/wednesday \
 --incremental-backup-dir=/incr-backup/thursday \
 backup

You can also use the --start-lsn option to specify where the incremental backup should start. You
have to record the LSN of the previous backup reported by mysqlbackup at the end of the backup:

mysqlbackup: Was able to parse the log up to lsn 2654255716

The number is also recorded in the meta/backup_variables.txt file in the folder specified by --
backup-dir during the backup. Supply then that number to mysqlbackup using the --start-lsn
option. The incremental backup then includes all changes that came after the specified LSN.

To create an incremental backup image with the --start-lsn option, use the following command,
specifying with --backup-dir the backup directory, which, in this case, is a directory for storing the
metadata for the backup and some temporary files:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --incremental \
 --start-lsn=2654255716 \
 --with-timestamp \
 --backup-dir=/incr-tmp \
 --backup-image=/incr-backup/incremental_image.bi \
 backup-to-image

In the following example though, because --backup-image does not provide a full path to the image file
to be created, the incremental backup image is created under the folder specified by --backup-dir:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --incremental \
 --start-lsn=2654255716 \
 --with-timestamp \
 --backup-dir=/incr-images \
 --backup-image=incremental_image1.bi \
 backup-to-image

Maintaining a backup schedule:

• On a regular schedule determined by date or amount of database activity, take more incremental or
differential backups.

• Optionally, periodically start the cycle over again by taking a full, uncompressed or compressed backup.
Typically, this milestone happens when you can archive and clear out your oldest backup data.

On how to restore your database using the incremental backups, see Section 5.1.3, “Restoring an
Incremental Backup”

4.3.4 Making a Compressed Backup

To save disk space, you can compress InnoDB backup data files by using the --compress option of
mysqlbackup. Compression lets you keep more sets of backup data on hand or save transmission
time when sending the backup data to another server. Also, compression often results in faster backups
because of reduced IO.

The backup compression feature works only for InnoDB tables. After the InnoDB tablespace files are
compressed during backup, they receive the .ibz extension. To avoid wasting CPU cycles without saving
additional disk space, --compress does not attempt to compress tables that were already-compressed on
the server (see Creating Compressed Tables); nevertheless, such tablespace files are also saved with the
.ibz extension inside the backup.

56

https://dev.mysql.com/doc/refman/8.3/en/innodb-compression-usage.html

Making a Partial Backup

Note

When there is unused space within an InnoDB tablespace file, the entire file is
copied during an uncompressed backup. Perform a compressed backup to avoid
the storage overhead for the unused space.

The binary log and relay log files are compressed and saved with the .bz extension when being included
in a compressed backup.

You cannot use the --compress option for incremental backups created only with the redo log (i.e., with
the --incremental-with-redo-log-only option).

You can also select the compression algorithm to use by the --compress-method option and, when
using the ZLIB or LZMA compression algorithm, the level of compression by the --compress-level
option. See Section 20.6, “Compression Options” for details.

This is a sample command for making a compressed single-file backup:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --compress --backup-image=backup.img backup-to-image

Advanced: This is a sample command for making a compressed directory backup:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --compress-method=zlib --compress-level=5 backup

This is a sample command for making a compressed and prepared directory backup:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --compress-method=zlib --compress-level=5 backup-and-apply-log

Warning

Compression ratio is low for encrypted InnoDB tables. Creating a compressed
backup with a database containing many encrypted InnoDB tables is not
recommended.

Note

See the limitation that applies to compressed backups in Appendix B, Limitations of
MySQL Enterprise Backup.

4.3.5 Making a Partial Backup

By default, all the files under the database subdirectories in the data directory are included in the backup,
so that the backup includes data from all MySQL storage engines, any third-party storage engines, and
even any non-database files in that directory. This section explains options you can use to selectively back
up or exclude data.

There are various ways to create different kinds of partial backup with MySQL Enterprise Backup:

• Including or excluding specific tables by their names. This uses the --include-tables or --
exclude-tables option.

Each table is checked against the regular expression specified with the --include-tables or --
exclude-tables option. If the regular expression matches the fully qualified name of the table (in
the form of db_name.table_name), the table is included or excluded for the backup. The regular
expression syntax used is the extended form specified in the POSIX 1003.2 standard. The options have
been implemented with the RE2 regular expression library.

• Including some or all InnoDB tables, but not other table types. This uses the --only-innodb option.

57

Making a Partial Backup

• Leaving out files that are present in the MySQL data directory but not actually part of the MySQL
instance. This uses the --only-known-file-types option.

• Achieving a multiple of selection effects by using a combination of the above mentioned options.

• Backing up a selection of InnoDB tables using transportable tablespaces (TTS). This uses the --use-
tts and the --include-tables or --exclude-tables (or both) options.

For syntax details on all the options involved, see Section 20.8, “Partial Backup and Restore Options”.

Important

Typically, a partial backup is more difficult to restore than a full backup, because
the backup data might not include the necessary interrelated pieces to constitute
a complete MySQL instance. In particular, InnoDB tables have internal IDs and
other data values that can only be restored to the same instance, not a different
MySQL server. Always fully test the recovery procedure for any partial backups to
understand the relevant procedures and restrictions.

The following are some command samples for partial backups.

Including all tables with names starting with “emp” into the backup:

mysqlbackup \
 --host=localhost --user=mysqluser --protocol=TCP --port=3306 \
 --backup-dir=$MEB_TEMP_BACKUP_DIR --backup-image=$MEB_BACKUPS_DIR/my.mbi \
 --include-tables="\.emp" \
 backup-to-image

Taking a backup of all tables except tables from the “mysql” and “performance_schema” databases:

mysqlbackup \
 --host=localhost --user=mysqluser --protocol=TCP --port=3306 \
 --backup-dir=$MEB_TEMP_BACKUP_DIR --backup-image=$MEB_BACKUPS_DIR/my.mbi \
 --exclude-tables="^(mysql|performance_schema)\." \
 backup-to-image

Taking a backup of all tables in the “sales” database, but excludes the table with the name “hardware”

mysqlbackup \
 --host=localhost --user=mysqluser --protocol=TCP --port=3306 \
 ---backup-dir=$MEB_TEMP_BACKUP_DIR --backup-image=$MEB_BACKUPS_DIR/my.mbi \
 --include-tables="^sales\." --exclude-tables="^sales\.hardware$" \
 backup-to-image

Taking a backup of all tables in the “sales reps” database, but excludes the table with the name “euro-asia”
(special characters like spaces or dashes are supported by the partial backup options):

mysqlbackup \
 --host=localhost --user=mysqluser --protocol=TCP --port=3306 \
 --backup-dir=$MEB_TEMP_BACKUP_DIR --backup-image=$MEB_BACKUPS_DIR/my.mbi \
 --include-tables="^sales reps\." --exclude-tables="^sales reps\.euro-asia" \
 backup-to-image

Backing up all InnoDB tables:

mysqlbackup \
 --host=localhost --user=mysqluser --protocol=TCP --port=3306 \
 --backup-dir=$MEB_TEMP_BACKUP_DIR --backup-image=$MEB_BACKUPS_DIR/my.mbi \
 --only-innodb \
 backup-to-image

58

Making a Partial Backup

You can also make compressed and other kinds of selective backups by using the appropriate command
options.

Making a Partial Backup with the Legacy Options (Deprecated)

Important

Information in this subsection is only for using the legacy option of --include,
which has been deprecated. For creating partial backups, use the --include-
tables and --exclude-tables options instead.

Note

Typically, a partial backup is more difficult to restore than a full backup, because
the backup data might not include the necessary interrelated pieces to constitute
a complete MySQL instance. In particular, InnoDB tables have internal IDs and
other data values that can only be restored to the same instance, not a different
MySQL server. Always fully test the recovery procedure for any partial backups to
understand the relevant procedures and restrictions.

With its --include option, mysqlbackup can make a backup that includes some InnoDB tables but not
others:

• A partial backup with the --include option always contains the InnoDB system tablespace and all the
tables inside it.

• For the InnoDB tables stored outside the system tablespace, the partial backup includes only those
tables whose names match the regular expression specified with the --include option.

This operation requires the tables being left out to be stored in separate table_name.ibd files. To put
an InnoDB table outside the system tablespace, create it while the innodb_file_per_table MySQL
configuration option is enabled. Each .ibd file holds the data and indexes of one table only.

Those InnoDB tables created with innodb_file_per_table turned off are stored as usual in the
InnoDB system tablespace, and cannot be left out of the backup.

For each table with a per-table data file a string of the form db_name.table_name is checked against
the regular expression specified with the --include option. If the regular expression matches the
complete string db_name.table_name, the table is included in the backup. The regular expression
syntax used is the extended form specified in the POSIX 1003.2 standard. On Unix-like systems, quote the
regular expression appropriately to prevent interpretation of shell meta-characters. This feature has been
implemented with the RE2 regular expression library.

The backup directory produced contains a backup log file and copies of InnoDB data files.

IMPORTANT: Because the InnoDB system tablespace holds metadata about InnoDB tables from all
databases in an instance, restoring a partial backup on a server that includes other databases could cause
the system to lose track of those InnoDB tables in other databases. Always restore partial backups on a
fresh MySQL server instance without any other InnoDB tables that you want to preserve.

Example 4.22 Making an Uncompressed Partial Backup of InnoDB Tables

In this example, we have configured MySQL so that some InnoDB tables have their own tablespaces.
We make a partial backup including only those InnoDB tables in test database whose name starts with
ib. The contents of the database directory for test database are shown below. Of these 10 tables six
(alex1, alex2, alex3, blobt3, ibstest0, ibstest09) are stored in per-table data files (.ibd files).

59

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table

Making an Optimistic Backup

$ ls /sqldata/mts/test
alex2.ibd ibstest0.ibd alex1.ibd blobt3.ibd alex3.ibd ibtest09.ibd

We run the mysqlbackup with the --include option:

Back up some InnoDB tables.
$ mysqlbackup --defaults-file=/home/dbadmin/my.cnf --include="^test\.ib.*" backup

Contents in the backup directory's subdirectory for the test database:
$ ls /sqldata-backup/test
ibstest0.ibd ibtest09.ibd

The backup directory's subdirectory for the test database contains only backups of ibstest0 and
ibtest09 tables, because other InnoDB tables do not match the include pattern ^test\.ib.*.

Example 4.23 Making a Compressed Partial Backup

We have configured MySQL so that every InnoDB table has its own tablespace. We make a partial backup
including only those InnoDB tables whose name starts with alex or blob. The contents of the database
directory for test database is shown below.

$ ls /sqldata/mts/test
alex2.ibd ibstest0.ibd alex1.ibd blobt3.ibd alex3.ibd ibtest09.ibd

We run mysqlbackup with the --compress and --include options:

$ mysqlbackup --defaults-file=/home/dbadmin/my.cnf --compress \
 --include=".*\.(alex|blob).*" backup

The backup directory for the database test is shown below. The .ibz files are compressed per-table
data files.

$ ls /sqldata-backup/test
alex1.ibz alex2.ibz alex3.ibz blobt3.ibz

4.3.6 Making an Optimistic Backup

Optimistic backup is a feature for improving performance for backing up and restoring huge databases in
which only a small number of tables are modified frequently.

During a hot backup of a huge database (say, in the order of terabytes), huge redo log files could be
generated on the server when the backup is in progress. As the redo log files grow faster than they can be
processed by mysqlbackup, the backup operation can actually fail when mysqlbackup cannot catch up
with the redo log cycles and LSNs get overwritten by the server before they are read by mysqlbackup.
Moreover, the apply-log step for preparing a backup for restoration can take a very long time as
mysqlbackup has huge ibbackup_logfile files (created from the big redo log files) to apply to the
backup. The problems are intensified when the I/O resources available for reading and writing the redo
logs are scarce during the backup and restoration processes.

Optimistic backup relieves the problems by dividing the backup process into two internal phases, which are
transparent to the users:

1. Optimistic phase: In this first phase, tables that are unlikely to be modified during the backup process
(referred to as the “inactive tables” below, identified by the user with the optimistic-time option
or, by exclusion, with the optimistic-busy-tables option) are backed up without any locks on
the MySQL instance. And because those tables are not expected to be changed before the backup is
finished, redo logs, undo logs, and system table spaces are not backed up by mysqlbackup in this
phase.

60

Making an Optimistic Backup

2. Normal phase: In this second phase, tables that are not backed up in the first phase (referred to as
the “busy tables” below) are being backed up in a manner similar to how they are processed in an
ordinary backup: the InnoDB files are copied first, and then other relevant files and copied or processed
with various locks applied to the database at different times. The redo logs, undo logs, and the system
tablespace are also backed up in this phase.

An optimistic backup occurs whenever the optimistic-time or optimistic-busy-tables option
is used. For how to use the options, see detailed descriptions for them in Section 20.10, “Performance /
Scalability / Capacity Options”. If, as expected, the list of inactive tables identified by the optimistic options
do not change during the backup (or, even if it changes by a small percentage), most users will find that
the overall backup time is reduced significantly compared to an ordinary backup, as the size of the redo
log data to be backed up will be far smaller. Additionally, restore time for the backup will also be reduced,
as the apply-log operation will be much faster because of the smaller redo log. However, if it turns out
that the list of inactive tables identified changed by a significant portion during the backup process, benefits
of performing an optimistic back up will become limited and, in the worst case, an optimistic backup might
actually take longer to perform and, for a single-file backup, the size of the backup will be larger when
comparing with an ordinary backup. Therefore, users should be careful in identifying which tables are
“inactive” and which are “busy” when trying to perform an optimistic backup.

Notes

• An optimistic backup cannot be performed for an incremental backup or a backup
using transportable tablespaces (TTS).

• Do not perform a DDL operation on the server in parallel with an optimistic
backup, or the backup will fail.

The following examples illustrate how to make an optimistic backup.

Example 4.24 Optimistic Backup Using the Option optimistic-time=YYMMDDHHMMSS

In this example, tables that have been modified since the noon of May 16, 2011 are treated as busy tables
and backed up in the normal phase of an optimistic backup, and all other tables are backed up in the
optimistic phase:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --optimistic-time=110516120000 \
 --backup-image=<image-name> --backup-dir=<temp-dir> backup-to-image

Example 4.25 Optimistic Backup Using the Option optimistic-time=now

In this example, all tables are treated as inactive tables and backed up in the optimistic phase of an
optimistic backup:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --optimistic-time=now \
 --backup-image=<image-name> --backup-dir=<temp-dir> backup-to-image

Example 4.26 Optimistic Backup Using the optimistic-busy-tables Option

In this example, tables in mydatabase that are prefixed by mytables- in their names are treated as busy
tables and backed up in the normal phase of an optimistic backup, and all other tables are backed up in the
optimistic phase:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --optimistic-busy-tables="^mydatabase\.mytables-.*" \
 --backup-image=<image-name> --backup-dir=<temp-dir> backup

When you use both the optimistic-time and optimistic-busy-tables options and they come into
conflict on determining which tables are to be busy tables, optimistic-busy-tables takes precedence
over optimistic-time. For example:

61

Making an Optimistic Backup

Example 4.27 Optimistic and Partial Backup Using both the optimistic-busy-tables and
optimistic-time Options

In this example, tables in mydatabase that are prefixed by mytables- in their names are treated as busy
tables and backed up in the normal phase, even if they have not been modified since May 16, 2010, the
time specified by optimistic-time:

mysqlbackup --defaults-file=/home/dbadmin/my.cnf --optimistic-busy-tables="^mydatabase\.mytables-.*" \
 --optimistic-time=100516 --backup-image=<image-name> --backup-dir=<temp-dir> backup

Using Optimistic Backups and Optimistic Incremental Backups Together

By utilizing optimistic backup and optimistic incremental backup together in your backup schedule, you
can speed up backups for huge databases, especially when only a relatively small number of tables have
been modified since a certain time and not many tables are being modified on a frequent basis. Below is a
sample sequence of commands illustrating a weekly backup schedule that makes use of the two features;
it also includes the steps for restoring the data to a certain day.

A full optimistic backup performed on 2017/02/04, Sat, at 1130 PM.
The --optimistic-time option is used to specify an optimistic time of 2016/08/16, 0800 PM

mysqlbackup --defaults-file=/home/admin/my.cnf --optimistic-time=160816200000 \
 --backup-dir=/home/admin/temp_dir --backup-image=/home/admin/backups/mydb_full_201702042330.bi \
 --with-timestamp \
 backup-to-image

A sequence of optimistic incremental backups are then performed on each the following six days at 1130 PM
On Sunday, 2017/02/05
mysqlbackup --defaults-file=/home/admin/my.cnf \
 --incremental=optimistic --incremental-base=history:last_backup \
 --backup-dir=/home/admin/temp_dir \
 --backup-image=/home/admin/backups/mydb_incremental__201702052330.bi \
 --with-timestamp \
 backup-to-image
On Monday, 2017/02/06
mysqlbackup --defaults-file=/home/admin/my.cnf \
 --incremental=optimistic --incremental-base=history:last_backup \
 --backup-dir=/home/admin/temp_dir \
 --backup-image=/home/admin/backups/mydb_incremental__201702062330.bi \
 --with-timestamp \
 backup-to-image
On Tuesday, 2017/02/07
mysqlbackup --defaults-file=/home/admin/my.cnf \
 --incremental=optimistic --incremental-base=history:last_backup \
 --backup-dir=/home/admin/temp_dir \
 --backup-image=/home/admin/backups/mydb_incremental__201702072330.bi \
 --with-timestamp \
 backup-to-image
On Wednesday, 2017/02/08
mysqlbackup --defaults-file=/home/admin/my.cnf \
 --incremental=optimistic --incremental-base=history:last_backup \
 --backup-dir=/home/admin/temp_dir \
 --backup-image=/home/admin/backups/mydb_incremental__201702082330.bi \
 --with-timestamp backup-to-image
On Thursday, 2017/02/09
mysqlbackup --defaults-file=/home/admin/my.cnf \
 --incremental=optimistic --incremental-base=history:last_backup \
 --backup-dir=/home/admin/temp_dir \
 --backup-image=/home/admin/backups/mydb_incremental__201702092330.bi \
 --with-timestamp \
 backup-to-image
On Friday, 2017/02/10
mysqlbackup --defaults-file=/home/admin/my.cnf \
 --incremental=optimistic --incremental-base=history:last_backup \

62

Making a Back Up of In-Memory Database Data

 --backup-dir=/home/admin/temp_dir \
 --backup-image=/home/admin/backups/mydb_incremental__201702102330.bi \
 --with-timestamp \
 backup-to-image

Another full optimistic backup is performed on Saturday, 2017/02/11
mysqlbackup --defaults-file=/home/dbadmin/my.cnf --optimistic-time=110516200000 \
 --backup-dir=/home/admin/temp_dir --backup-image=/home/admin/backups/mydb_full_201702112330.bi \
 --with-timestamp \
 backup-to-image

Restore the database to its state at Tuesday, 2017/02/07, at 11:30 PM
First, restore the full optimistic backup taken on the Saturday before, which was 2017/02/04:
mysqlbackup --defaults-file=/etc/my.cnf --backup-image=/home/admin/backups/mydb_full_201702042330.bi \
 --backup-dir=/home/admin/temp_dir --datadir=/var/lib/mysql \
 --with-timestamp \
 copy-back-and-apply-log
Next, restore the optimistic incremental taken on the Sunday, Monday, and Tuesday that follow:
mysqlbackup --defaults-file=/etc/my.cnf --backup-image=/home/admin/backups/mydb_incremental__201702052330.bi \
 --backup-dir=/home/admin/temp_dir --datadir=/var/lib/mysql --incremental \
 --with-timestamp \
 copy-back-and-apply-log
mysqlbackup --defaults-file=/etc/my.cnf --backup-image=/home/admin/backups/mydb_incremental__201702062330.bi \
 --backup-dir=/home/admin/temp_dir --datadir=/var/lib/mysql --incremental \
 --with-timestamp \
 copy-back-and-apply-log
mysqlbackup --defaults-file=/etc/my.cnf --backup-image=/home/admin/backups/mydb_incremental__201702072330.bi \
 --backup-dir=/home/admin/temp_dir --datadir=/var/lib/mysql --incremental \
 --with-timestamp \
 copy-back-and-apply-log

4.3.7 Making a Back Up of In-Memory Database Data

The --exec-when-locked option of mysqlbackup lets you specify a command (together with the
desired command arguments) to run near the end of the backup while the database's non-InnoDB tables
are still locked. This command can copy or create additional files in the backup directory. For example,
you can use this option to back up MEMORY tables with the mysqldump command, storing the output in the
backup directory. To delay any redirection or variable substitution until the command is executed, enclose
the entire option value within single quotes.

4.3.8 Making Scheduled Backups

Maintaining a regular backup schedule is an important measure for preventing data loss for you MySQL
server. This section discusses some simple means for setting up a schedule for running MySQL Enterprise
Backup.

For Linux and other Unix-like platforms: you can set up a cron job on your system for scheduled backups.
There are two types of cron jobs. To set up a user cron job, which is owned and run by a particular user, do
the following:

• Log on as the user who runs MySQL Enterprise Backup and use the following command to invoke an
editor for creating (or modifying) a crontab:

$> crontab -e

• In the editor, add an entry similar to the following one to the crontab, and then save your changes (make
sure contents in both lines below appear in a single line in the crontab):

@daily /path-to-mysqlbackup/mysqlbackup -uroot --backup-dir=/path-to-backup-folder/cronbackups
 --with-timestamp --backup-image=my.mib backup-to-image &>/dev/null

63

Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN)

This crontab entry invokes mysqlbackup to create a backup under the cronbackups directory at
00:00:00 everyday. Outputs from the stderr and stdout streams are redirected to /dev/null/, so they
will not invoke other actions on the part of the Cron server (for example, email notifications to the user).

To set up a system cron job, which is owned and run by root, create a file under the /etc/cron.d folder
and put into it a similar crontab entry as the one above, adding the user (root in the following example)
before the mysqlbackup command:

@daily root /path-to-mysqlbackup/mysqlbackup -uroot --backup-=/path-to-backup-folder/cronbackups \
 --with-timestamp --backup-image=my.mib backup-to-image &>/dev/null

Check your platform's documentation for further details on the different ways to set up cron jobs for various
types of schedules.

For Windows platforms: Use the Task Scheduler for the purpose. Check the documentation for your
Windows platform for instructions.

4.4 Making Backups with a Distributed File System (DFS) or Storage
Access Network (SAN)

When system administrators attempt to set up MySQL and MySQL Enterprise Backup in an environment
that uses a distributed file system (DFS) or a storage access network (SAN), the MySQL server, the
server's data directory, MySQL Enterprise Backup, and the backup directory may end up existing on
different physical servers. When that happens, the operations of mysqlbackup might be impacted. The
operation most likely to be adversely affected is hot backup, the success of which depends on:

1. Each page of a data file is copied consistently, that is, all the bytes in the page correspond to the same
LSN.

2. No copied page is older than the time that marks the beginning of the temporal duration the backup is
supposed to cover.

3. The redo log is copied consistently, meaning a continuous segment of redo log is copied, and it
includes all the changes from the beginning of the temporal period that the backup is to cover until the
end of the backup operation. Each block of the copied redo log has to be consistent.

Condition 1 is easily achievable with most DFSs or SANs of reasonable performance. Condition 2 though
can remain unfulfilled even when condition 1 has been satisfied: for example, mysqlbackup could copy
all the pages of a tablespace correctly except for one page for which mysqlbackup has included an
old version into the copy. If the LSN of that old version of the page is smaller than the LSN first seen by
mysqlbackup at the beginning of the backup process, the resulting backup will be defective. This example
shows that mysqlbackup may have problem performing a hot backup unless it can see the writes to the
file system being executed in the correct order, that is, the order in which the server executed them.

Regarding condition 3, unlike data file pages, redo log blocks are written sequentially, which means
condition 3 is easier to fulfill than conditions 1 and 2, especially when using the redo log archiving feature .
However, if mysqlbackup reaches the highest LSN in the copied data file pages before encountering the
end of the redo log, the backup fails. A failure occurs also if mysqlbackup reads a corrupted log block at
any time during the copying of the redo log. Both these failures can occur if mysqlbackup does not see
the same history of the file system states as the MySQL server does.

Therefore, to use mysqlbackup with a DFS or SAN, it is important to make sure that mysqlbackup sees
all the writes to the file system in the same order as the MySQL server does. The condition is most likely
to be satisfied when mysqlbackup and the MySQL server are running on the same server node, and it is
unlikely to be always fulfilled when it is otherwise.

64

Chapter 5 Recovering or Restoring a Database Server

Table of Contents
5.1 Performing a Restore Operation .. 65

5.1.1 Restoring a Compressed Backup ... 66
5.1.2 Restoring an Encrypted Backup Image ... 67
5.1.3 Restoring an Incremental Backup ... 67
5.1.4 Table-Level Recovery (TLR) ... 68
5.1.5 Restoring Backups Created with the --use-tts Option ... 69
5.1.6 Restoring External InnoDB Tablespaces to Different Locations ... 70
5.1.7 Advanced: Preparing and Restoring a Directory Backup .. 70

5.2 Restoring a Backup from Cloud Storage to a MySQL Server .. 70
5.3 Point-in-Time Recovery ... 71
5.4 Restoring a Backup with a Database Server Upgrade or Downgrade ... 73

The ultimate purpose of backup data is to help recover from a database issue or to create a clone of the
original database server in another location (typically, to run report queries or to create a new replica). This
section describes the procedures to handle those scenarios.

After a serious database issue, you might need to perform a recovery under severe time pressure. It is
critical to confirm in advance:

• How long the recovery will take, including any steps to transfer, unpack, and otherwise process the data.

• That you have practiced and documented all steps of the recovery process, so that you can do it
correctly in one try. If a hardware issue requires restoring the data to a different server, verify all
privileges, storage capacity, and so on, on that server ahead of time.

• That you have periodically verified the accuracy and completeness of the backup data, so that the
system will be up and running soon after being recovered.

5.1 Performing a Restore Operation

The mysqlbackup commands to perform a restore operation are copy-back-and-apply-log and
copy-back (for directory backup only; see Section 5.1.7, “Advanced: Preparing and Restoring a Directory
Backup”). Normally, the restoration process requires the database server to be already shut down (or, at
least not operating on the directory you are restoring the data to), except for a partial restore. The process
copies the data files, logs, and other backed-up files from the backup directory back to their original
locations, and performs any required post-processing on them.

Example 5.1 Restoring a Database Server

mysqlbackup --defaults-file=<my.cnf> -uroot --backup-image=<image_name> \
 --backup-dir=<backupTmpDir> --datadir=<restoreDir> copy-back-and-apply-log

The copy-back-and-apply-log command achieves two things:

• Extracts the backup from the image file and copies it to the data directory on the server to be restored.

• Performs an apply log operation to the restored data to bring them up-to-date.

65

Restoring a Compressed Backup

See Section 4.2.4, “Restoring a Database” for an explanation of the important options used in a restore
operation like --defaults-file, --datadir, --backup-image, and --backup-dir.

The restored data includes the backup_history table, where MySQL Enterprise Backup records details
of each backup. The table allows you to perform future incremental backups using the --incremental-
base=history:{last_backup | last_full_backup} option.

Important

• When performing a restore, make sure the target directories for restore data
are all clean, containing no old or unwanted data files (this might require
manual removal of files at the locations specified by the --datadir, --
innodb_data_home_dir, --innodb_log_group_home_dir, and --
innodb_undo_directory options). The same cleanup is not required for
partial restores, for which other requirements described in Section 5.1.4, “Table-
Level Recovery (TLR)” apply.

• After a full restore, depending on how you are going to start the restored server,
you might need to adjust the ownership of the restored data directory. For
example, if the server is going to be started by the user mysql, use the following
command to change the owner attribute of the data directory and the files under it
to the mysql user, and the group attribute to the mysql group.

$ chown -R mysql:mysql /path/to/datadir

The following subsections describe a number of different scenarios for restoring a backup.

5.1.1 Restoring a Compressed Backup

Note

The --uncompress option is no longer needed when restoring a compressed
backup.

Restore a compressed backup image named <image_name>, using the --backup-dir option to specify
the temporary directory into which temporary output, status files, and backup metadata will be saved:

Example 5.2 Restoring a Compressed Backup

mysqlbackup --defaults-file=<my.cnf> -uroot --backup-image=<image_name> \
 --backup-dir=<backupTmpDir> --datadir=<restoreDir> --uncompress copy-back-and-apply-log

Advanced: Do the same for a compressed directory backup at <backupDir> to <restoreDir> on the
server using copy-back-and-apply-log:

Example 5.3 Restoring a Compressed Directory Backup

mysqlbackup --defaults-file=<my.cnf> -uroot --backup-dir=<backupDir> --datadir=<restoreDir> \
 --uncompress copy-back-and-apply-log

To restore a compressed and prepared directory backup created with the backup-and-apply-log
command (which is only supported for MySQL Enterprise Backup 4.0.1 and later), use the copy-back
command and the --uncompress option:

Example 5.4 Restoring a Compressed and Prepared Directory Backup

mysqlbackup --defaults-file=<my.cnf> -uroot --backup-dir=<backupDir> --datadir=<restoreDir> \

66

https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file

Restoring an Encrypted Backup Image

 --uncompress copy-back

See Section 4.3.4, “Making a Compressed Backup” and Section 20.6, “Compression Options” for more
details on compressed backups.

5.1.2 Restoring an Encrypted Backup Image

Restore an encrypted backup image named <image_name> to <restoreDir> on the server with copy-
back-and-apply-log, using the encryption key contained in a file named <keyFile> :

Example 5.5 Restoring an Encrypted Backup Image

mysqlbackup --defaults-file=<my.cnf> --backup-image=<image_name> \
 --backup-dir=<backupTmpDir> --datadir=<restoreDir> --decrypt --key-file=<keyFile> copy-back-and-apply-log

See Section 20.13, “Encryption Options” for more details on backup encryption and decryption.

5.1.3 Restoring an Incremental Backup

Note

The --incremental option is not needed when restoring an incremental backup.

There are different ways to use incremental backups to restore a database server under different
scenarios. The preferred method is to first restore the full backup and make it up-to-date to the time
at which the full backup was performed using the copy-back-and-apply-log command (see
Example 5.1, “Restoring a Database Server” on how to do it), then use copy-back-and-apply-log
again to restore the incremental backup image on top of the full backup that was just restored:

Example 5.6 Restoring an Incremental Backup Image

mysqlbackup --defaults-file=<my.cnf> -uroot --backup-image=<inc_image_name> \
 --backup-dir=<incBackupTmpDir> --datadir=<restoreDir> --incremental \
 copy-back-and-apply-log

In this example, the incremental backup image named <inc_image_name> is restored to <restoreDir>
on the server (where the full backup that the incremental backup image was based on has already been
restored). The --backup-dir option is used to specify the temporary directory into which temporary
output, status files, and backup metadata are saved. Repeat the step with other incremental backup
images that you have, until the data has been restored to a desired point in time.

Advanced: Restoring an Incremental Backup Directory

Incremental directory backups can be restored in a series of copy-back-and-apply-log command, as
illustrated above for single-file backups. Alternatively, at anytime after an incremental backup is taken and
before the data is restored, you can bring your full backup up-to-date with your incremental backup. First,
apply to the full backup any changes that occurred while the backup was running:

$ mysqlbackup --backup-dir=/full-backup/2010-12-08_17-14-11 apply-log
..many lines of output...
101208 17:15:10 mysqlbackup: Full backup prepared for recovery successfully!

101208 17:15:10 mysqlbackup: mysqlbackup completed OK!

Then, we apply the changes from the incremental backup using the apply-incremental-backup
command:

$ mysqlbackup --incremental-backup-dir=/incr-backup/2010-12-08_17-14-48 \

67

Table-Level Recovery (TLR)

 --backup-dir=/full-backup/2010-12-08_17-14-11 apply-incremental-backup
...many lines of output...
101208 17:15:12 mysqlbackup: mysqlbackup completed OK!

Now, the data files in the full backup directory are fully up-to-date, as of the time of the last incremental
backup. You can keep updating it with more incremental backups, so it is ready to be restored anytime.

Binary Log and Relay Log Restore

When an incremental backup is being restored using either the copy-back-and-apply-log or apply-
incremental-backup command, the binary log (and also the relay log, in the case of a replica server), if
included in the incremental backup, is also restored to the target server by default. This default behavior is
overridden when either (1) the --skip-binlog option (or the --skip-relaylog option for the relay log)
is used with the restore command, or (2) if the full backup the incremental backup was based on or any
prior incremental backup that came in between the full backup and this incremental backup has the binary
log (or relay log) missing (in both case, mysqlbackup renamed any binary log (but not relay log) files and
their index files that have already been restored onto the server by adding the .old extension to their file
names).

Location of the binary log (or relay log) after an incremental backup is restored is, by default, the same as
the log's location on the backed-up server when the incremental backup was taken, or as specified by the
--log-bin (or --relay-log) option during the restore of the incremental backup.

See Section 4.3.3, “Making a Differential or Incremental Backup”, and Section 20.7, “Incremental Backup
Options”, for more details on incremental backups.

5.1.4 Table-Level Recovery (TLR)

Table-Level Recovery (TLR) allows selected tables (or schemas) to be restored from a backup (be it a
full backup, a partial backup, or a backup created using transportable tablespaces (TTS)) using the --
include-tables and --exclude-tables options. The feature is also known as partial restore in this
manual. Here are some general requirements for performing a TLR or partial restore:

• The destination server must be running.

• The required parameters for connecting to the server (port number, socket name, etc.) are provided as
command-line options for mysqlbackup, or are specified in the [client] section of a defaults file.

• The destination server must be using the same page size that was used on the server on which the
backup was made.

• The innodb_file_per_table option must be enabled on the destination server.

• For non-TTS backups: The tables being restored must already exist on the destination server, in the
same table definition.

• For TTS backups: The tables being restored must not already exist on the destination server.

• While it is not necessary to specify the --datadir option when partially restoring a backup, if the option
is specified, its value must match that of the target server, or the restore operation will fail .

Here are some limitations for a TLR or partial restore:

• Individual partitions cannot be selectively restored. Tables selected by the --include-tables and --
exclude-tables options are always restored in full.

• Partial restores cannot be performed with incremental backups.

68

https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_file_per_table

Restoring Backups Created with the --use-tts Option

• Binary, relay, and undo logs are not restored.

• For non-TTS backups only, these additional limitations apply:

• After partial restores, tables could contain changes from uncommitted transactions.

• The auto-increment values of the restored tables for a partial restore might not be the same as they
were at the end of the backup process.

• Encrypted InnoDB tables cannot be included in a partial restore.

The following command restores the table cats in the pets schema from the backup:

Example 5.7 Restoring A Selected Table from an Image Backup

mysqlbackup --socket=/tmp/restoreserver.sock --include-tables="^pets\.cats" --backup-dir=/dba/backuptmp \
 --backup-image=/dba/my.mbi copy-back-and-apply-log

The following command restores all tables in the “sales” database from the backup, but excludes the table
with the name “hardware” :

Example 5.8 Restoring Selected Tables in a Schema from an Image Backup

mysqlbackup --socket=/tmp/restoreserver.sock --include-tables="^sales\." \
 --exclude-tables="^sales\.hardware$" --backup-dir=/dba/backuptmp --backup-image=/dba/my.mbi \
 copy-back-and-apply-log

Also see Section 5.1.5, “Restoring Backups Created with the --use-tts Option” for additional information
on partial restores using TTS backups.

5.1.5 Restoring Backups Created with the --use-tts Option

Requirements for restoring backups created with transportable tablespaces (TTS) (that is, created with the
--use-tts option) are similar to those listed in Section 5.1.4, “Table-Level Recovery (TLR)”, with some
differences noted in the section. The following is some additional information on partial restores using TTS
backups

To backup and restore backups created using TTS, extra privileges are required of the user through
which mysqlbackup connects to the server; see Section 4.1.2, “Grant MySQL Privileges to Backup
Administrator” for details.

When restoring a single-file backup created with the option setting --use-tts=with-minimum-
locking, the folder specified with --backup-dir, besides holding temporary output, status files, and
metadata, is also used for extracting temporarily all the tables in the backup and for performing an apply-
log operation to make the data up-to-date before restoring them to the server's data directory.

You can rename a table when restoring it from a TTS backup by using the --rename option (the option is
not supported for non-TTS backups):

Example 5.9 Restoring and Renaming a Table from a TTS Backup

Using fully qualified table names:
mysqlbackup --socket=/tmp/restoreserver.sock \
 --backup-dir=/BackupDirTemp --backup-image=/home/user/dbadmin/backups/tts-backup.mbi \
 --include-tables="^sales\.cars" --rename="sales.cars to sales.autos" copy-back-and-apply-log

It works the same if database names are omitted in the argument for --rename:
mysqlbackup --socket=/tmp/restoreserver.sock \
 --backup-dir=/BackupDirTemp --backup-image=/home/user/dbadmin/backups/tts-backup.mbi \

69

Restoring External InnoDB Tablespaces to Different Locations

 --include-tables="^sales\.cars" --rename="cars to autos" copy-back-and-apply-log

A table can be restored into another database; the target database is created if it is not existing on the server:
mysqlbackup --socket=/tmp/restoreserver.sock \
 --backup-dir=/BackupDirTemp --backup-image=/home/user/dbadmin/backups/tts-backup.mbi \
 --include-tables="^sales\.cars" --rename="sales.cars to new_sales.autos" copy-back-and-apply-log

5.1.6 Restoring External InnoDB Tablespaces to Different Locations

When a backup contains external InnoDB tablespaces that resided outside of the backed-up server's data
directory, you can restore them to locations different from their original ones by updating their path names
in the tablespace_tracker file inside the backup; see description of the file in Table 1.1, “Types of Files in a
Backup” for details.

5.1.7 Advanced: Preparing and Restoring a Directory Backup

A directory backup, just like a single-file backup, can be prepared and restored using the copy-back-
and-apply-log command as explained at the beginning of Section 5.1, “Performing a Restore
Operation”.

Example 5.10 Restoring a Backup Directory using copy-back-and-apply-log

mysqlbackup --defaults-file=/usr/local/mysql/my.cnf \
 --backup-dir=/export/backups/full \
 copy-back-and-apply-log

However, two alternatives exist for directory backups:

• Perform the apply log operation on the raw backup right after the backup, or anytime before restore,
using the apply-log command. You can run this step on the same database server where you did the
backup, or transfer the raw backup files to a different system first, to limit the CPU and storage overhead
on the database server. Here are some examples of doing that, on different kinds of directory backups:

Example 5.11 Applying the Log to a Backup

This example runs mysqlbackup to roll forward the data files so that the data is ready to be restored:

mysqlbackup --backup-dir=/export/backups/2011-06-21__8-36-58 apply-log

That command creates InnoDB log files (ib_logfile*) within the backup directory and applies log
records to the InnoDB data files (ibdata* and *.ibd). For a compressed backup, there is no need to
add the --uncompress option.

• For backups that are non-incremental, you can combine the initial backup and the apply-log steps
using the backup-and-apply-log command.

After the backup has been prepared, you can now restore it using the copy-back command:

mysqlbackup --defaults-file=/usr/local/mysql/my.cnf \
 --backup-dir=/export/backups/full \
 copy-back

5.2 Restoring a Backup from Cloud Storage to a MySQL Server

To restore a backup image from cloud storage to datadir on the server, use the cloud storage options,
and also the --backup-dir option to specify the temporary directory into which temporary output, status
files, and backup metadata will be saved:

70

Point-in-Time Recovery

Example 5.12 Restoring a Single-file Backup from an Oracle Cloud Infrastructure (OCI) Object
Storage to a MySQL Server

mysqlbackup --defaults-file=<my.cnf> --backup-dir=/home/user/dbadmin/backuptmp \
 --datadir=<server_datadir> --with-timestamp --backup-image=- --cloud-service=OCI \
 --cloud-par-url=<backup_PAR_URL> copy-back-and-apply-log

Example 5.13 Restoring a Cloud Incremental Backup from an Oracle Cloud Infrastructure (OCI)
Object Storage to a MySQL Server

mysqlbackup --defaults-file=<my.cnf> --backup-dir=/home/user/dbadmin/backuptmp \
 --datadir=<server_datadir> --with-timestamp --backup-image=- --cloud-service=OCI \
 --cloud-par-url=<incremental-backup_PAR_URL> --incremental copy-back-and-apply-log

Example 5.14 Restoring a Single-file Backup from an OpenStack Object Storage to a MySQL Server

mysqlbackup \
--defaults-file=<my.cnf> \
--cloud-service=openstack --cloud-container=<swift container> \
--cloud-user-id=<keystone user> --cloud-password=<keystone password> \
--cloud-region=<keystone region> --cloud-tenant=<keystone tenant> \
--cloud-identity-url=<keystone url> --cloud-object=image_800.mbi \
--backup-dir=/home/user/dba/swiftbackuptmpdir \
--datadir=/home/user/dba/datadir \
--backup-image=- \
copy-back-and-apply-log

Example 5.15 Restoring a Single-file Backup from Amazon S3 to a MySQL Server

mysqlbackup\
--defaults-file=<my.cnf> \
--cloud-service=s3 --cloud-aws-region=<aws region> \
--cloud-access-key-id=<aws access key id> --cloud-secret-access-key=<aws secret access key> \
--cloud-bucket=<s3 bucket name> --cloud-object-key=<aws object key> \
--backup-dir=/home/user/dba/s3backuptmpdir --with-timestamp \
--datadir=/home/user/dba/datadir \
--backup-image=- \
copy-back-and-apply-log

Example 5.16 Restoring a Single-file Backup from GCP Storage Service to a MySQL Server

mysqlbackup\
--defaults-file=<my.cnf> \
--cloud-service=GCP \
--cloud-bucket=<bucket name> --cloud-object=<object name> \
--cloud-access-key=<access name> --cloud-secret-key=<secret key> \
--backup-dir=/home/user/dba/backuptmpdir --with-timestamp \
--datadir=/home/user/dba/datadir \
--backup-image=- \
copy-back-and-apply-log

5.3 Point-in-Time Recovery

You can restore your database server to its state at an arbitrary time using the binary log files included in
the backups. The process assumes that following conditions are met:

• The backed-up MySQL Server has had its binary logging enabled (which is true by default). To check if
this condition has been satisfied, perform this query on the server:

mysql> SHOW VARIABLES LIKE 'log_bin';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+

71

Point-in-Time Recovery

| log_bin | ON |
+---------------+-------+
1 row in set (0.00 sec)

If the value of log_bin is OFF, binary logging has not been enabled. See The Binary Log on how to
enable binary logging for the server.

• A series of backups, consisting typically of a full backup followed by a series of incremental backups, has
been created for the server. The last backup in the series covers the targeted point in time for recovery.
The example below illustrates such a typical case.

• The last backup in the backup series you have taken include in itself the relevant binary log files. (To
ensure this requirement is satisfied, do not use any of the following MySQL Enterprise Backup options
when creating the backup: --skip-binlog, --use-tts, --no-locking, or --start-lsn.)

These are the steps for a point-in-time recovery:

1. Restore the series of backups to the server, except for the last incremental backup in the series (which
covers the targeted point in time for recovery). When finished, note the binary log position to which you
have restored the server. The information is available from the backup_variables.txt file in the
restored data directory of the server: look for the value of the entry binlog_position in the file. For
example:

binlog_position=binlog.000012:426

This means after the restore of the backup series, the server is now at log position 426 found in the
binary log file binlog.000012. You will need the information later.

Note

While the last binary log position recovered is also displayed by InnoDB after the
restore, that is not a reliable means for obtaining the ending log position of your
restore, as there could be DDL events and non-InnoDB changes that have taken
place after the time reflected by the displayed position.

2. Extract the binary log from the last incremental backup in the backup series (that is, the backup that
covers the targeted point in time for recovery). You do this by unpacking the incremental backup image
into a backup directory using the image-to-backup-dir command; for example:

mysqlbackup --backup-dir=incr-backup-dir2 --backup-image=incremental_image2.bi image-to-backup-dir

Next, go into the resulting backup directory (incr-backup-dir2 in this example) and, under the data
directory inside, find the binary log file[s] (binlog.000012 in this example):

incr-backup-dir2$ ls datadir
binlog.000012 ibbackup_logfile mysql pets undo_002
...

3. Roll forward the database server to its state at the targeted point in time for recovery, identified as tR in
this example, using the binary log file extracted in the last step. Then, using the mysqlbinlog utility,
replay to the server the SQL activities recorded in the binary log file[s], from the log position the server
has been restored to in Step 1 above (which is 426 in our example) all the way to time tR. Specify the
range of binary log events to replay using the --start-position option and the --stop-position
option (which indicates the corresponding binary log position for tR), and pipe the output to the mysql
client:

mysqlbinlog --start-position="binary-log-position-at-the-end-of-backup-restores" \
 --stop-position="binary-log-position-corresponding-to-tR" \

72

https://dev.mysql.com/doc/refman/8.3/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/8.3/en/binary-log.html
https://dev.mysql.com/doc/refman/8.3/en/mysqlbinlog.html

Restoring a Backup with a Database Server Upgrade or Downgrade

 binary-log-filename | mysql -uadmin -p

Notes

• Using the --start-datetime or --stop-datetime option to specify the
range of binary log segment to replay is not recommended: there is a higher
risk of missing binary log events when using the option. Use --start-
position and --stop-position instead.

• If you have more than one binary log files in your incremental backup and
they are all needed for bringing the server up to its state at tR, you need to
pipe all of them to the server in a single connection; for example:

mysqlbinlog --start-position="426" --stop-position="binary-log-position-corresponding-to-tR" \
 binlog.000012 binlog.000013 binlog.000014 | mysql -u admin -p

You can also dump all the mysqlbinlog output to a single file first, and then pipe or play the file to the
mysql client.

For more explanations on using the binary log for point-in-time recovery, see Point-in-Time
(Incremental) Recovery.

4. Check that the server has been restored to the desired point in time.

5.4 Restoring a Backup with a Database Server Upgrade or
Downgrade

Important

You may encounter technical challenges during a server upgrade or downgrade,
and it is beyond the function of MySQL Enterprise Backup, as a backup tool, to
ensure a successful server upgrade or downgrade. Users interested in the topic are
advised to consult the MySQL server manual, especially the Upgrading MySQL and
Downgrading MySQL sections, and pay careful attention to the requirements and
restrictions discussed there.

You can facilitate a server upgrade or downgrade by using MySQL Enterprise Backup to make a backup
of your data from a source server, restore it to a new target server, and, after some preparations, start a
different version of MySQL Server on the restored data (see In-Place Upgrade for details and limitaions).
Here are a number of things that users should pay attention to when restoring a backup with a database
server upgrade or downgrade:

• Restoring a database server with a server downgrade should only be performed when the MySQL
servers on the source and the target servers are in the same release series. Downgrading to a lower
series (for example, from 8.3 to 8.0) might cause server crashes or data corruption.

• Restoring a database server with a server upgrade requires the following steps, the skipping of any of
which might crash the restored server:

1. Back up the data on the source server.

2. Using the same version of MySQL Enterprise Backup with which the backup was taken, restore the
data to the target server by running a copy-back-and-apply-log operation on the backup.

3. Install on the target server the same version of MySQL Server that was running on the source server
when your backup was created.

73

https://dev.mysql.com/doc/refman/8.3/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/8.3/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/8.3/en/upgrading.html
https://dev.mysql.com/doc/refman/8.3/en/downgrading.html
https://dev.mysql.com/doc/refman/8.3/en/upgrade-binary-package.html#upgrade-procedure-inplace

Restoring a Backup with a Database Server Upgrade or Downgrade

4. Start the MySQL Server you just installed. Your restored data go through an abbreviated crash
recovery process in preparation for a server upgrade.

5. Perform a slow shutdown of the MySQL Server you just started in the last step by issuing the SET
GLOBAL innodb_fast_shutdown=0 statement and then shutting the server down. This ensures
that all dirty pages are flushed, and hence there will be no redo log processing later for the upgraded
server.

6. Install the newer MySQL Server version on the target server.

7. Start the newer MySQL Server version you just installed on the data directory you have restored and
prepared in the earlier steps.

8. Perform any other additional upgrade steps that might be required for your platform or distribution as
documented in the MySQL reference manual.

After performing these steps, check your data to make sure that your restore has been successful.

74

https://dev.mysql.com/doc/refman/8.3/en/upgrading.html

Chapter 6 Working with Encrypted InnoDB Tablespaces
MySQL Enterprise Backup supports encrypted InnoDB tablespaces. For details on how the MySQL server
encrypts and decrypts InnoDB tablespaces, see InnoDB Data-at-Rest Encryption—it explains concepts like
master key and tablespace keys, which are important for understanding how MySQL Enterprise Backup
works with encrypted InnoDB tablespaces.

When InnoDB tablespace encryption uses a centralized key management solution, the feature is referred
to as “MySQL Enterprise Transparent Data Encryption (TDE).”

The following is a brief description on how encrypted InnoDB tablespaces are handled by MySQL
Enterprise Backup in backup, restore, and apply-log operations.

Note

• Encrypted InnoDB undo logs are supported by MySQL Enterprise Backup.
The encrypted undo tablespaces are handled the same way as the encrypted
tablespaces for InnoDB tables.

• Encrypted InnoDB redo logs are supported by MySQL Enterprise Backup.
The encrypted redo tablespaces are handled the same way as the encrypted
tablespaces for InnoDB tables.

• Backing up and restoring encrypted InnoDB tables created using the keyring
components are supported by MySQL Enterprise Backup.

Backing up a database server with encrypted InnoDB tablespaces.

Important

For MySQL Enterprise Backup to backup encrypted InnoDB tablespaces, the
operating system user that runs MySQL Enterprise Backup must have write
permission for the keyring file on the server if the keyring_file or keyring_aws
plugin is used on it.

When the database server uses encrypted InnoDB tablespaces, MySQL Enterprise Backup always stores
the master key for encryption in an encrypted file inside the backup, irrespective of the kind of keyring
plugin or component the server uses. The following is a typical command for backing up a database server
containing encrypted InnoDB tablespaces:

$ mysqlbackup --defaults-file=/home/dbadmin/my.cnf --backup-image=/home/admin/backups/my.mbi \
 --backup-dir=/home/admin/backup-tmp --encrypt-password="password" backup-to-image

During the backup operation, mysqlbackup copies the encrypted InnoDB tablespace files into the backup,
and also performs the following actions:

• mysqlbackup contacts the MySQL server to determine the keyring plugin or component the server is
using.

• If the server is using the keyring_encrypted_file plugin or the
component_keyring_encrypted_file component, the user must use the option --encrypt-
password to supply to mysqlbackup the keyring file encryption password that has been set on the
server either with the --keyring_encrypted_file_password option (if the plugin is used) or with
the component_keyring_encrypted_file.cnf file (if the component is used). mysqlbackup
then copies over from the server the encrypted keyring data file, which contains the master key used

75

https://dev.mysql.com/doc/refman/8.3/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-data-encryption.html#innodb-data-encryption-undo-log
https://dev.mysql.com/doc/refman/8.3/en/innodb-data-encryption.html#innodb-data-encryption-redo-log
https://dev.mysql.com/doc/refman/8.3/en/keyring-component-plugin-comparison.html
https://dev.mysql.com/doc/refman/8.3/en/keyring-component-plugin-comparison.html
https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_password

to encrypt all the tablespace keys, into the meta folder in the backup; the file is encrypted with the user
password supplied with the option --encrypt-password. The encrypted tablespace files are also
copied into the backup.

• If the server uses a keyring plugin other than keyring_encrypted_file or a keyring component
other than component_keyring_encrypted_file, mysqlbackup accesses the keyring to obtain
the master key and uses it to decrypt the encrypted tablespace keys, which were used to encrypt
the InnoDB tablespaces on the server. The master key is then put into a keyring data file named
keyring_kef and saved in the meta folder in the backup; the file is encrypted with the user password
supplied with the option --encrypt-password.

Notes

• Backing up a server that uses a keyring plugin other than
keyring_encrypted_file or a keyring component other than
component_keyring_encrypted_file is only supported for servers that
allow socket connections or TCP/IP connections using TLS; it is, therefore, not
supported when, for example, the server is running on a Windows platform and
only allows shared memory connections.

• Users who do not want to supply the password on the command line or in a
defaults file may use the --encrypt-password option without specifying
any value; mysqlbackup then asks the user to type in the password before
the operation starts. This applies to all commands that use the --encrypt-
password option.

• If the server uses the keyring_hashicorp plugin, use the --encrypt-
password to supply the HashiCorp Vault AppRole authentication secret ID,
which was the value of keyring_hashicorp_secret_id on the server to be
backed up.

An extract or image-to-backup-dir command for an image backup containing encrypted InnoDB
tablespaces does not require the --encrypt-password option.

Restoring a backup with encrypted InnoDB tablespaces. The following is a typical command for
restoring a single-file backup containing encrypted InnoDB tablespaces:

$ mysqlbackup --defaults-file=/usr/local/mysql/my.cnf --backup-image=/home/admin/backups/my.mbi \
 --backup-dir=/home/admin/restore-tmp --encrypt-password="password" copy-back-and-apply-log

The same password used for backing up the database server must be supplied with the --encrypt-
password option for a restore operation. During a restore, mysqlbackup copies the encrypted InnoDB
tablespace files onto the server. It also performs the following actions:

• When any keyring plugin other than keyring_file was used on the backed-up server,
mysqlbackup restores the encrypted keyring data file to its proper location on the server. The
restored server has to be started with keyring_encrypted_file plugin and with the options
keyring_encrypted_file_data and --keyring_encrypted_file_password (which should
supply the server with the same password used with the --encrypt-password option during the
restore). After the server is up and running, if another keyring plugin or component is needed (for
example, the backed-up user was using keyring_aws and the restored server is supposed to use it
too), a keyring migration can be performed.

• When the keyring_file keyring plugin was used on the backed-up server, mysqlbackup uses the
password supplied with the --encrypt-password option to decrypt the keyring data file and then
restores it to the proper location on the server for the keyring_file plugin to use.

76

https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_hashicorp_secret_id
https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_data
https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_password
https://dev.mysql.com/doc/refman/8.3/en/keyring-key-migration.html

• When the component_keyring_encrypted_file.cnf keyring component was used
on the backed-up server, mysqlbackup restores the encrypted keyring data file to its
proper location on the server, and also creates a manifest file and the configuration file
component_keyring_encrypted_file.cnf (which contains the password used with the --
encrypt-password option during the restore) on the restored server, so that the server will load the
component_keyring_encrypted_file component when it restarts.

• When the component_keyring_file keyring component was used on the backed-up server,
mysqlbackup uses the password supplied with the --encrypt-password option to decrypt the
keyring data file and then restores it to the proper location on the server. It also creates a manifest file
and the configuration file component_keyring_file.cnf on the restored server, so that the server
will load the component_keyring_file component when it restarts.

If a keyring component is used on the restored server, take these additional steps:

• To use global manifest and configuration file for starting the keyring component:

• Copy the manifest file from restored data directory to the folder where the mysqld binary resides.

• Copy the configuration file component_keyring_file.cnf from the restore data directory to the
folder where the component binary resides.

• To use local manifest and configuration file for starting the keyring component:

• Create a new manifest file with following contents in the folder where the mysqld binary resides

{ "read_local_manifest": true }

• Create a new configuration file component_keyring_file.cnf with following contents in the folder
where the component binary resides :

{ "read_local_config": true }

For Incremental Backups. For a series of incremental backups, if a keyring plugin other than
keyring_encrypted_file or a component other than component_keyring_encrypted_file is
being used on the server, users can provide a different value for --encrypt-password for any of the
full or incremental backup in the backup sequence. However, the password used to make the specific full
or incremental backup must be provided to restore that backup, and, if a keyring plug-in is used, when
starting the server after restoring a series of incremental backups, the password used for the restore of the
last incremental backup should be supplied to the server (except when the keyring_file plugin is
used, which does not require the --keyring_encrypted_file_password option to start).

Advanced: Creating and Restoring a directory backup with encrypted InnoDB tablespaces. The
following is a typical command for creating a directory backup containing encrypted InnoDB tablespaces:

$ mysqlbackup --defaults-file=/home/dbadmin/my.cnf --backup-dir=/home/admin/backup \
 --encrypt-password="password" backup

The following is a typical command for preparing the backup with the apply-log command:

$ mysqlbackup --backup-dir=/home/admin/backup --encrypt-password="password" apply-log

Notice that the user password supplied during the backup must be supplied with the --encrypt-
password option, as the tablespace keys and then the tablespaces must be decrypted before the log can
be applied. The same requirement applies when you try to update an encrypted backup with an encrypted
incremental backup using the apply-incremental-backup command:

$ mysqlbackup --backup-dir=/home/admin/backup --incremental-backup-dir=/home/admin/backup-in \

77

https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_password

 --encrypt-password="password" apply-incremental-backup

If you used different values for --encrypt-password for the full or incremental backups in the backup
sequence, make sure you supply the very password you used to create the individual backup when you
perform an apply-log or apply-incremental-backup operation with it.

Next, a copy-back command restores the prepared backup onto the server:

$ mysqlbackup --defaults-file=/usr/local/mysql/my.cnf --backup-dir=/home/admin/backup copy-back

Notice that the --encrypt-password option is not required for this step.

You can combine the two steps of apply-log and copy-back into one by running the copy-back-
and-apply-log command, for which the --encrypt-password option is required:

$ mysqlbackup --defaults-file=/usr/local/mysql/my.cnf --backup-dir=/home/admin/backup \
 --encrypt-password="password" copy-back-and-apply-log

Limitations. Certain limitations apply when MySQL Enterprise Backup works with encrypted InnoDB
tablespaces:

• For partial backups using transportable table spaces (that is, when the --use-tts option is used),
encrypted InnoDB tables are never included in a backup. A warning is issued in the log file whenever an
encrypted InnoDB table that matches the table selection criteria has been skipped over.

• The --skip-unused-pages option has no effect on encrypted InnoDB tables during a backup (that is,
empty pages for those tables are not skipped).

• If the server performs a master key rotation when a backup is running, the resulting backup might
become corrupted.

78

https://dev.mysql.com/doc/refman/8.3/en/innodb-data-encryption.html#innodb-data-encryption-master-key-rotation

Chapter 7 Backing up Using Redo Log Archiving
mysqlbackup may sometimes fail to keep pace with redo log generation on the backed up server while a
backup operation is in progress, resulting in lost redo log records due to those records being overwritten.
This issue most often occurs when there is significant server activity during the backup operation, and
the redo log file storage media operates at a faster speed than the backup storage media. The redo log
archiving feature addresses this issue by sequentially writing redo log records to an archive file in addition
to the redo log files. mysqlbackup can then copy redo log records from the archive file as necessary,
thereby avoiding the potential loss of data.

When redo log archiving has been enabled on the server to be backed up, mysqlbackup utilizes the
feature by default for backups, as long as the following are true:

• The OS user that runs mysqlbackup has read and write access to the folder on the server that
stores the redo log archive file; the folder is the first labeled directory defined by the system variable
innodb_redo_log_archive_dirs on the server.

• The MySQL user mysqlbackup uses to connect to the server must be granted the
INNODB_REDO_LOG_ARCHIVE privilege, for activating redo log archiving on the server.

Redo log archiving can be skipped using the mysqlbackup option --no-redo-log-archive.

If redo log archiving is skipped by mysqlbackup, disabled on the server, or is simply not working for some
reasons, mysqlbackup then reverts to copying the redo log data from the redo log files, as it used to do
before the feature was introduced.

79

https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-redo-log-archiving
https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-redo-log-archiving
https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-redo-log-archiving
https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-redo-log-archiving
https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-redo-log-archiving

80

Chapter 8 Using MySQL Enterprise Backup with Replication

Table of Contents
8.1 Setting Up a New replica .. 81
8.2 Backing up and Restoring a Replica Database .. 83
8.3 Restoring a Source Database ... 84
8.4 Working with Encrypted Binary and Relay Logs ... 85

Backup and restore operations are especially important in systems that use MySQL replication to
synchronize data across a source server and a set of replica servers. In a replication configuration, MySQL
Enterprise Backup helps you manage images for the entire system, set up new replica servers, or restore a
source server in an efficient way that avoids unnecessary work for the replica servers. On the other hand,
having multiple replica servers to choose from gives you more flexibility about where to perform backups.
When the binary log is enabled, you have more flexibility about restoring the database to a specific point in
time, even a time that is later than that of the last backup.

8.1 Setting Up a New replica

MySQL Enterprise Backup allows you to set up a replica server (referred to as the “replica” below) by
backing up the source server (referred to as the “source” below) and restoring the backup on a new replica,
without having to stop the source.

For servers NOT using GTID:

1. Take a full backup of the source and then use, for example, the copy-back-and-apply-log
command, to restore the backup and the log files to the right directories on the new replica and prepare
the data.

Note

Do not use the --no-locking option when backing up the server, or you will
be unable to get a proper binary log position in Step 4 below for initializing the
replica.

2. Edit the my.cnf file of the new replica and put skip-replica-start and event_scheduler=off
(if the source uses the Event Scheduler) under the [mysqld] section.

3. Start the new replica mysqld. You see the following in the server's output:

…
InnoDB: Last MySQL binlog file position 0 128760007, file name ./hundin-bin.000006
…

While a Last MySQL binlog file position has been displayed, it is NOT necessarily the latest
binary log position on the backed up server, as InnoDB does not store binary log position information
for any DDL operations or any changes to non-InnoDB tables. Do not use this binary log position to
initialize the replica. The next step explains how to find the correct binary log position to use.

4. Look for the file datadir/meta/backup_variables.txt where datadir is the data directory of
the new replica. Look into the file to retrieve the latest binary log position and the corresponding log file
number stored inside:

binlog_position=hundin-bin.000006:128760128

81

https://dev.mysql.com/doc/refman/8.3/en/replication-options-replica.html#option_mysqld_skip-replica-start
https://dev.mysql.com/doc/refman/8.3/en/event-scheduler.html

Setting Up a New replica

5. Use the CHANGE REPLICATION SOURCE TO SQL statement and the information you have retrieved
in the last step to initialize the replica properly:

CHANGE REPLICATION SOURCE TO
SOURCE_LOG_FILE='hundin-bin.000006',
SOURCE_LOG_POS=128760128;

6. Set the status of any events that were copied from the source to DISABLE ON REPLICA. For example:

mysql> ALTER EVENT mysql.event DISABLE ON REPLICA;

7. Remove the line skip-replica-start and event_scheduler=off entries you added to the
my.cnf file of the replica in step 2. (You can also leave the skip-replica-start entry in, but then
you will always need to use the START REPLICA statement to start replication whenever you restart
the replica server.)

8. Restart the replica server. Replication starts.

For servers using GTIDs (see Setting Up Replication Using GTIDs on how to enable servers to use
GTIDs):

1. Take a full backup of the source and then use, for example, the copy-back-and-apply-log
command, to restore the backup and the log files to the right directories on a new GTID-enabled replica
and prepare the data.

2. Edit the my.cnf file of the new replica and put skip-replica-start and event_scheduler=off
(if the source uses the Event Scheduler) under the [mysqld] section.

3. Start the new replica server.

4. Connect to the replica server with the mysql client. Then, execute the following statement to reset the
binary log:

mysql> RESET MASTER;

And execute the following statement to stop the binary logging:

mysql> SET sql_log_bin=0;

5. When a server using the GTID feature is backed up, mysqlbackup produces a file named
backup_gtid_executed.sql, which can be found in the restored data directory of the new replica
server. The file contains a SQL statement that sets the GTID_PURGED configuration option on the
replica:

On a new replica, issue the following command if GTIDs are enabled:
SET @@GLOBAL.GTID_PURGED='f65db8e2-0e1a-11e5-a980-080027755380:1-3';

It also contains a commented-out CHANGE REPLICATION SOURCE TO statement for initializing the
replica:

Use the following command if you want to use the GTID handshake protocol:
CHANGE REPLICATION SOURCE TO SOURCE_AUTO_POSITION = 1;

Uncomment the command and add any needed connection and authentication parameters to it (for
example, SOURCE_HOST, SOURCE_USER, SOURCE_PASSWORD, and SOURCE_PORT):

Use the following command if you want to use the GTID handshake protocol:
CHANGE REPLICATION SOURCE TO SOURCE_HOST='127.0.0.1', SOURCE_USER='muser', SOURCE_PASSWORD='mpass', SOURCE_PORT=18675, SOURCE_AUTO_POSITION = 1;

Execute the file with the mysql client

mysql> source /path-to-backup_gtid_executed.sql/backup_gtid_executed.sql

82

https://dev.mysql.com/doc/refman/8.3/en/start-replica.html
https://dev.mysql.com/doc/refman/8.3/en/replication-gtids-howto.html
https://dev.mysql.com/doc/refman/8.3/en/event-scheduler.html
https://dev.mysql.com/doc/refman/8.3/en/change-replication-source-to.html

Backing up and Restoring a Replica Database

6. Set the status of any events that were copied from the source to DISABLE ON REPLICA. For example:

mysql> ALTER EVENT mysql.event DISABLE ON REPLICA;

7. Remove the skip-replica-start and event_scheduler=off entries you added to the my.cnf
file of the replica in step 2. (You can also leave the skip-replica-start entry in, but then you will
always need to use the START REPLICA statement to start replication whenever you restart the replica
server.)

8. Restart the replica server. Replication starts.

For more information on the GTIDs, see GTID feature.

8.2 Backing up and Restoring a Replica Database

To backup a replica database, add the --replica-info option to your backup command.

To restore the backup on a replica server, follow the same steps outlined in Section 8.1, “Setting Up a New
replica”.

Temporary tables on a replica. MySQL Enterprise Backup does not include temporary tables inside
a backup. As a result, for a replica server in a statement-based replication (SBR) or a mixed-based
replication setup (see Replication Formats for details), any temporary tables still open at the end of the
backup process will be missing in the restored replica server, making the replication state of the replica
inconsistent, and any subsequent replicated statements that refer to the temporary tables will fail. To avoid
the issue, after the hot backup phase of a replica backup in which mysqlbackup copies all the InnoDB
tables, it enters into a loop, in which the following happens:

1. mysqlbackup waits until all temporary tables have been closed by the replication SQL thread.
mysqlbackup tells if that is the case by checking if the variable Replica_open_temp_tables is 0.

2. After Replica_open_temp_tables is detected to be 0, mysqlbackup stops the replication SQL
thread to prevent more changes to the tables on the replica.

3. To avoid the unexpected consequence by a race condition, after the replication SQL thread has been
stopped, mysqlbackup checks once more if Replica_open_temp_tables is still 0

• If it is, mysqlbackup exits the loop and finishes the backup by asserting a read lock on all the non-
InnoDB tables and copy them.

• If it is not, new temporary tables have just been created and opened on the replica. mysqlbackup
then restarts the replication SQL thread, so more updates can be made on the replica servers.
mysqlbackup then goes back to step 1 of this loop

Besides the exit condition described in step (3) above (which is, there really are no more open temporary
tables and mysqlbackup is ready to complete the backup), mysqlbackup will time out after staying in the
above loop for too long to wait for all temporary tables to be closed. The duration mysqlbackup waits until
it times out is specified by the --safe-replica-backup-timeout option.

In addition, mysqlbackup also runs an initial check at the beginning of a replica backup to see if
Replica_open_temp_tables becomes 0 within the duration set by --safe-replica-backup-
timeout. See description for --safe-replica-backup-timeout on details about the check.

Even though the issue described above with temporary tables does not exist for a row-based replication
(RBR) setup (for which temporary tables are not replicated onto the replica), any replica backups still enter
the same loop as described above, because the mode of replication could potentially be switched from

83

https://dev.mysql.com/doc/refman/8.3/en/start-replica.html
https://dev.mysql.com/doc/refman/8.3/en/replication-gtids.html
https://dev.mysql.com/doc/refman/8.3/en/replication-formats.html
https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Replica_open_temp_tables
https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Replica_open_temp_tables
https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Replica_open_temp_tables
https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Replica_open_temp_tables

Restoring a Source Database

RBR to statement-based replication (SBR) or mixed-mode replication at any time. User who are certain
that SBR is not occurring for the replica can set --safe-replica-backup-timeout=0, which will
prevent mysqlbackup from entering the above-mentioned loop.

Note

See the limitation that applies when backing up a replica in Appendix B, Limitations
of MySQL Enterprise Backup.

8.3 Restoring a Source Database

To fix a corruption problem in a replication source database, you can restore the backup, taking care not to
propagate unnecessary SQL operations to the replica servers:

1. Shut down the source database and then use, for example, the copy-back-and-apply-log
command, to restore a backup of it and prepare the data.

2. Edit the source's my.cnf file and comment out log-bin, so that the replicas do not receive twice the
binary log needed to recover the source.

3. Replication in the replicas must be stopped temporarily while you pipe the binary log to the source. In
the replicas, do:

mysql> STOP REPLICA;

4. Start the source mysqld on the restored backup:

$ mysqld
…
InnoDB: Doing recovery: scanned up to log sequence number 0 64300044
InnoDB: Last MySQL binlog file position 0 5585832, file name
./omnibook-bin.000002
…

InnoDB prints the binary log file (./omnibook-bin.000002 in this case) and the position (5585832
in this case) it was able to recover to.

5. Pipe the remaining of the binary log files to the restored server. The number of remaining binary log
files varies depending on the length of the timespan between the last backup and the time to which you
want to bring the database up to date. The longer the timespan, the more remaining binary log files
there may be. All the binary log files, containing all the continuous binary log positions in that timespan,
are required for a successful restore.

You also need to supply the starting position in the binary log by which the piping of the events should
start. Deduce that information from the meta/backup_variables.txt file in the backup you just
restored in step 1 above (access backup_variables.txt by, for example, going to the temporary
backup directory you specified with --backup-dir during the restore, and find the file under the meta
folder): look for the entry binlog_position=value in meta/backup_variables.txt, and supply
value to mysqlbinlog with the --start-position option.

Note

While the last binary log position recovered is also displayed by InnoDB after
the restore (see step 4 above), that is not a reliable number for deducing the
start position for mysqlbinlog to use, as there could be DDL events and non-
InnoDB changes that have taken place after the time reflected by the displayed
position.

84

https://dev.mysql.com/doc/refman/8.3/en/mysqlbinlog.html#option_mysqlbinlog_start-position

Working with Encrypted Binary and Relay Logs

For example, if there are two more binary log files, omnibook-bin.000003 and omnibook-
bin.000004 that come after omnibook-bin.000002 and the recovery in step 4 above has ended by
5585834 according to the backup_variables.txt file, pipe the binary log with a single connection
to the server with this command:

$ mysqlbinlog --start-position=5585834 /mysqldatadir/omnibook-bin.000002 \
 /mysqldatadir/omnibook-bin.000003 /mysqldatadir/omnibook-bin.000004 | mysql

See Point-in-Time (Incremental) Recovery for more instructions on using mysqlbinlog.

6. The source database is now recovered. Shut down the source and edit my.cnf to uncomment log-
bin.

7. Start the source again.

8. Start replication in the replicas again:

mysql> START REPLICA;

8.4 Working with Encrypted Binary and Relay Logs

MySQL Enterprise Backup supports encrypted binary and relay logs, which are handled in a similar way as
the encrypted InnoDB tables are (see Chapter 6, Working with Encrypted InnoDB Tablespaces for details).

When backing up encrypted binary or relay logs, the option --encrypt-password is required for the
following purposes:

• If the server is using the keyring_encrypted_file plugin, the user must use the option --
encrypt-password to supply to mysqlbackup the keyring file encryption password that has been set
on the server with the keyring_encrypted_file_password option. mysqlbackup then copies from
the server the encrypted keyring data file, which contains the replication master key used to encrypt all
the passwords for the individual log files, into the meta folder in the backup.

• If the server uses a keyring plugin other than keyring_encrypted_file, mysqlbackup accesses
the keyring to obtain the replication master key and uses it to decrypt the individual log files' passwords.
The replication master key is then put into a keyring data file, which is encrypted with the user password
supplied with the option --encrypt-password, and then saved under the meta folder in the backup
with the name keyring_kef.

When restoring encrypted binary or relay logs, the same password used for backing up the database must
be supplied with the --encrypt-password option, as mysqlbackup performs the following actions:

• For a MySQL Enterprise Server: mysqlbackup restores the encrypted keyring data file to its proper
location on the server. The restored server has to be started with keyring_encrypted_file plugin
and with the options keyring_encrypted_file_data and keyring_encrypted_file_password
(which should supply the server with the same password used with the --encrypt-password option
during the restore).

• For a MySQL Community Server: The keyring_file plugin is the only keyring plugin supported by the
MySQL Community Server; therefore mysqlbackup uses the password supplied with the --encrypt-
password option to decrypt the keyring data file and then restores it to the proper location on the server
for the keyring_file plugin to use.

For Incremental Backups. For a series of incremental backups, if a keyring plugin other than
keyring_encrypted_file is being used on the server, users can provide a different value for --

85

https://dev.mysql.com/doc/refman/8.3/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/8.3/en/replication-binlog-encryption.html
https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_password
https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_data
https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_password

Working with Encrypted Binary and Relay Logs

encrypt-password for any of the full or incremental backup in the backup sequence. However,
the password used to make the specific full or incremental backup must be provided to restore that
backup. When starting the server after restoring a series of incremental backups, the password
used for the restore of the last incremental backup should be supplied to the server (except for a
MySQL Community Server, which will start with the keyring_file plugin and does not require the
keyring_encrypted_file_password option to start).

86

https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_password

Chapter 9 Using MySQL Enterprise Backup with Group
Replication

For how to use MySQL Enterprise Backup to back up and subsequently restore a Group Replication
member, see Using MySQL Enterprise Backup with Group Replication.

When working with a Group Replication setup, mysqlbackup makes the backup information available
to all members of the server group by making sure that the backup_history, backup_sbt_history
(when using the SBT API), and backup_progress tables are updated on a primary node for each
mysqlbackup operation. For the feature to work on any host in a Group Replication setup, make sure the
following requirements are met:

• Host names or host addresses contained in the member_host column in the
performance_schema.replication_group_members table must be resolvable by mysqlbackup.

• In addition to the mysqlbackup@localhost account created on each host as described in
Section 4.1.2, “Grant MySQL Privileges to Backup Administrator”, accounts for the user mysqlbackup
to access all hosts in the group have been created on every member of the server group. These are
sample statements for creating the accounts:

CREATE USER 'mysqlbackup'@'host1' IDENTIFIED BY 'password';
CREATE USER 'mysqlbackup'@'host2' IDENTIFIED BY 'password';
CREATE USER 'mysqlbackup'@'host3' IDENTIFIED BY 'password';
...

Or, if the host names fall into a pattern, use a wildcard for the host names (if allowed by your
environment's security policy) to perform the same task with a single statement; for example:

CREATE USER 'mysqlbackup'@'host_' IDENTIFIED BY 'password';

• The account mysqlbackup@localhost AND all other accounts for accessing the hosts
(i.e., mysqlbackup@host1, mysqlbackup@host2,mysqlbackup@host3, etc, or simply
mysqlbackup@host_ in our example) use the same password for server access. This is needed
because, depending on how host names are resolved, mysqlbackup will likely be using two accounts
to finish a backup job on a Group Replication set up (one for the actual backup operation, the other for
updating the history and progress tables on a primary host), but only one password can be specified in
the backup command. Therefore, the accounts must use the same password.

• All the privileges granted to mysqlbackup@localhost as described in Section 4.1.2, “Grant MySQL
Privileges to Backup Administrator” are also granted to all other accounts with which mysqlbackup
connects to the hosts:

GRANT SELECT ON performance_schema.replication_group_members TO 'mysqlbackup'@'host1';
GRANT SELECT ON performance_schema.replication_group_members TO 'mysqlbackup'@'host2';
GRANT SELECT ON performance_schema.replication_group_members TO 'mysqlbackup'@'host3';
[More grant statements for other privileges for all hosts ...]

Or, if the host names fall into a pattern, use a wildcard for the host names (if allowed by your
environment's security policy) to perform the same task; for example:

GRANT SELECT ON performance_schema.replication_group_members TO 'mysqlbackup'@'host_';
[More grant statements for other privileges...]

87

https://dev.mysql.com/doc/refman/8.3/en/group-replication.html
https://dev.mysql.com/doc/refman/8.3/en/group-replication-enterprise-backup.html
https://dev.mysql.com/doc/refman/8.3/en/group-replication.html

88

Chapter 10 Encryption for Backups
In order to enhance security for backed up data, MySQL Enterprise Backup provides encryption for single-
file backups. The encryption can also be applied when creating a partial, compressed, or incremental
single-file backups, and for streaming backup data to another device or server.

The encryption is performed with Advanced Encryption Standard (AES) block cipher in CBC mode, with a
key string of 64 hexadecimal digits supplied by the user. Decryption is performed using the same key. The
key can be created manually just by putting together 64 random hexadecimal bytes, or it can be generated
by shasum (or similar programs for hash calculations that work on your platform) by supplying it with a
keyphrase:

$ echo -n "my secret passphrase" | shasum -a 256
a7e845b0854294da9aa743b807cb67b19647c1195ea8120369f3d12c70468f29 -

Note that the “-” at the end is not part of the key and should be ignored. Supply the key to mysqlbackup
with the --key option, or paste the key into a key file and supply the file's pathname to mysqlbackup with
the --key-file option.

To generate a key randomly, you can use tools like OpenSSL:

$ openssl rand -hex 32
8f3ca9b850ec6366f4a54feba99f2dc42fa79577158911fe8cd641ffff1e63d6

To put an OpenSSL-generated key into a key file, you can do the following:

$ openssl rand -hex 32 >keyfile
$ cat keyfile
6a1d325e6ef0577f3400b7cd624ae574f5186d0da2eeb946895de418297ed75b

The encryption function uses MySQL Enterprise Backup's own encryption format, which means decryption
is possible only by using MySQL Enterprise Backup. For Unix-like operating systems, different magic
numbers are used to identify encrypted and unencrypted backup files. For example, you can add these
lines to the /etc/magic file of your operating system:

0 string MBackuP\n MySQL Enterprise Backup backup image
0 string MebEncR\n MySQL Enterprise Backup encrypted backup

The file command can then be used to identify the file types:

 $ file /backups/image1 /backups/image2
 /backups/image1: MySQL Enterprise Backup backup image
 /backups/image2: MySQL Enterprise Backup encrypted backup

The command options used for encryption and decryption are --encrypt, --decrypt, --key, and --
key-file. These options can be used with various operations on backup images. See Section 20.13,
“Encryption Options” for details.

The following is a sample command for creating an encrypted backup:

mysqlbackup --defaults-file=/home/dbadmin/backup.cnf --backup-image=/backups/image.enc --encrypt \
 --key=23D987F3A047B475C900127148F9E0394857983645192874A2B3049570C12A34 \
 --backup-dir=/var/tmp/backup backup-to-image

To use a key file for the same task:

mysqlbackup --defaults-file=/home/dbadmin/backup.cnf --backup-image=/backups/image.enc --encrypt
 --key-file=/meb/key --backup-dir=/var/tmp/backup backup-to-image

To decrypt a backup when extracting it:

89

mysqlbackup --backup-image=/backups/image.enc --decrypt
 --key-file=/meb/key --backup-dir=/backups/extract-dir extract

To validate an encrypted backup image:

mysqlbackup --backup-image=/logs/encimage.bi --decrypt --key-file=/meb/enckey validate

90

Chapter 11 Using MySQL Enterprise Backup with Media
Management Software (MMS) Products

Table of Contents
11.1 Backing Up to Tape with Oracle Secure Backup .. 91

This section describes how you can use MySQL Enterprise Backup in combination with media
management software (MMS) products for creating backups for your database. Such products are typically
used for managing large volumes of backup data, often with high-capacity backup devices such as tape
drives.

11.1 Backing Up to Tape with Oracle Secure Backup
Tape drives are affordable, high-capacity storage devices for backup data. MySQL Enterprise Backup can
interface with media management software (MMS) such as Oracle Secure Backup (OSB) to drive MySQL
backup and restore jobs. The media management software must support Version 2 or higher of the System
Backup to Tape (SBT) API.

On the MySQL Enterprise Backup side, you run the backup job as a single-file backup using the --
backup-image parameter, with the prefix sbt: in front of the filename, and optionally pass other --sbt-
* parameters to mysqlbackup to control various aspects of the SBT processing. The --sbt-* options
are listed in Section 20.9, “Single-File Backup Options”.

On the OSB side, you can schedule MySQL Enterprise Backup jobs by specifying a configurable command
that calls mysqlbackup. You control OSB features such as encryption by defining a “storage selector” that
applies those features to a particular backup, and passing the name of the storage selector to OSB using
the MySQL Enterprise Backup parameter --sbt-database-name=storage_selector.

To back up MySQL data to tape:

• Specify the --backup-image=sbt:name parameter of mysqlbackup to uniquely identify the backup
data. The sbt: prefix sends the backup data to the MMS rather than a local file, and the remainder of
the argument value is used as the unique backup name within the MMS.

• Specify the --sbt-database-name parameter of mysqlbackup to enable the OSB operator to
configure a storage selector for backups from this MySQL source. (This parameter refers to a “storage
selector” defined by the OSB operator, not to any MySQL database name.) By default, mysqlbackup
supplies a value of MySQL for this MMS parameter. The argument to this option is limited to 8 bytes.

• If you have multiple media management programs installed, to select the specific SBT library to use,
specify the --sbt-lib-path parameter of the mysqlbackup command. If you do not specify the --
sbt-lib-path parameter, mysqlbackup uses the normal operating system paths and environment
variables to locate the SBT library, which is named libobk.so on Linux and Unix systems and
ORASBT.DLL on Windows systems. When you specify --sbt-lib-path, you can use a different
filename for the library in addition to specifying the path.

• Specify any other product-specific settings that are normally controlled by environment variables using
the --sbt-environment option.

Each time an online backup is made to a tape using the SBT API , besides recording the backup in
the mysql.backup_history and the mysql.backup_progress tables, an entry is also made

91

Backing Up to Tape with Oracle Secure Backup

to the mysql.backup_sbt_history table on the backed up MySQL instance. That facilitates the
management of tape backups by allowing easy look-ups for information on them. The definition of the
backup_sbt_history table is shown below:

mysql> DESCRIBE `backup_sbt_history`;
+--------------------+---------------+------+-----+---------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------------------+---------------+------+-----+---------------------+----------------+
id	int	NO	PRI	NULL	auto_increment
backup_id	bigint	NO		NULL	
backup_file_name	varchar(4096)	NO		NULL	
file_creation_time	timestamp	NO		0000-00-00 00:00:00	
file_expiry_time	timestamp	NO		0000-00-00 00:00:00	
volume_label	varchar(64)	NO		NULL	
sbt_error_msg	varchar(4096)	NO		NULL	
sbt_error_code	int	NO		NULL	
+--------------------+---------------+------+-----+---------------------+----------------+

Here are the descriptions for the fields in the table:

• id: Auto-increment primary key for the table.

• backup_id: The backup's ID, which is also recorded in the backup's entries in the
mysql.backup_history and the mysql.backup_progress tables.

• backup_file_name: The file name provided by the user through the --backup-image=sbt:name
option.

• file_creation_time: Creation date and time for the tape backup.

• file_expiry_time: Expiration date and time for the tape backup.

• volume_label: Volume label for the physical medium which contains the tape backup.

• sbt_error_msg: Error message, when an error occurs while retrieving information for the tape backup.

• sbt_error_code: Error code, when an error occurs while retrieving information for the tape backup.

Multiple entries, one for each volume label, are created in the mysql.backup_sbt_history table, if the
backup is split across multiple volumes.

Here are some sample entries in the mysql.backup_sbt_history table:

mysql> SELECT * FROM mysql.backup_sbt_history;
+----+-------------------+------------------+---------------------+---------------------+-----------------+---------------+----------------+
| id | backup_id | backup_file_name | file_creation_time | file_expiry_time | volume_label | sbt_error_msg | sbt_error_code |
+----+-------------------+------------------+---------------------+---------------------+-----------------+---------------+----------------+
| 1 | 15921945689894983 | backup_img1.msb | 2020-06-15 07:16:09 | 2020-06-15 07:16:09 | /sbt_bup_dir | | 0 |
| 2 | 15921945689894983 | backup_img1.msb | 2020-06-15 07:16:09 | 2020-06-15 07:16:09 | backup_img1.msb | | 0 |
+----+-------------------+------------------+---------------------+---------------------+-----------------+---------------+----------------+
2 rows in set (0.00 sec)

A backup to tape always uses one write thread.

To restore MySQL data from tape:

• Specify the --backup-image=sbt:name parameter of mysqlbackup as part of the restore operation.
Use the same name value which was used during the backup. This single parameter retrieves the
appropriate data from the appropriate tape device.

• Optionally use the --sbt-lib-path option, using the same value as for the backup operation.

92

Backing Up to Tape with Oracle Secure Backup

• Specify any other product-specific settings that are normally controlled by environment variables using
the --sbt-environment option.

For product-specific information about Oracle Secure Backup, see the Oracle Secure Backup
documentation.

Example 11.1 Sample mysqlbackup Commands Using MySQL Enterprise Backup with Oracle
Secure Backup

Uses libobk.so or ORASBT.DLL, at standard locations:
mysqlbackup --port=3306 --protocol=tcp --user=root --password \
 --backup-image=sbt:backup-shoeprod-2011-05-30 \
 --backup-dir=/backup backup-to-image

Associates this backup with storage selector 'shoeprod':
mysqlbackup --port=3306 --protocol=tcp --user=root --password \
 --backup-image=sbt:backup-shoeprod-2011-05-30 \
 --sbt-database-name=shoeprod \
 --backup-dir=/backup backup-to-image

Uses an alternative SBT library, /opt/Other-MMS.so:
mysqlbackup --port=3306 --protocol=tcp --user=root --password \
 --backup-image=sbt:backup-shoeprod-2011-05-30 \
 --sbt-lib-path=/opt/Other-MMS.so \
 --backup-dir=/backup backup-to-image

93

http://www.oracle.com/technetwork/database/database-technologies/secure-backup/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/secure-backup/documentation/index.html

94

Chapter 12 Using MySQL Enterprise Backup with Docker
MySQL Enterprise Backup is included in the Docker installation of MySQL Enterprise Edition. See Using
MySQL Enterprise Backup with Docker in the MySQL 8.3 Reference Manual for usage instructions.

95

https://dev.mysql.com/doc/refman/8.3/en/docker-mysql-more-topics.html#docker-meb
https://dev.mysql.com/doc/refman/8.3/en/docker-mysql-more-topics.html#docker-meb
https://dev.mysql.com/doc/refman/8.3/en/

96

Chapter 13 Performance Considerations for MySQL Enterprise
Backup

Table of Contents
13.1 Optimizing Backup Performance .. 97
13.2 Optimizing Restore Performance ... 100

This chapter describes the performance considerations for backing up and restoring databases using
MySQL Enterprise Backup.

13.1 Optimizing Backup Performance
This section describes the performance considerations for backing up a database with MySQL Enterprise
Backup. When optimizing and tuning the backup procedure, measure both the raw performance (how long
it takes the backup to complete) and the amount of overhead on the database server. When measuring
backup performance, consider:

• The limits imposed by your backup procedures. For example, if you take a backup every 8 hours, the
backup must take less than 8 hours to finish.

• The limits imposed by your network and storage infrastructure. For example, if you need to fit many
backups on a particular storage device, you might use compressed backups, even if that made the
backup process slower.

• The tradeoff between backup time and restore time. You might choose a set of options resulting in
a slightly slower backup, if those options enable the restore to be much faster. See Section 13.2,
“Optimizing Restore Performance” for performance information for the restore process.

Full or Incremental Backup

After taking a full backup, subsequent backups can be performed more quickly by doing incremental
backups, where only the changed data is backed up. For an incremental backup, specify the --
incremental or --incremental-with-redo-log-only option to mysqlbackup. See Section 20.7,
“Incremental Backup Options” for information about these options. For usage instructions for the backup
and apply stages of incremental backups, see Section 4.3.3, “Making a Differential or Incremental Backup”.

Compressed Backup

Compressing the backup data before transmitting it to another server involves additional CPU overhead
on the database server where the backup takes place, but less network traffic and less disk I/O on the
server that is the final destination for the backup data. Consider the load on your database server, the
bandwidth of your network, and the relative capacities of the database and destination servers when
deciding whether or not to use compression. See Section 4.3.4, “Making a Compressed Backup” and
Section 20.6, “Compression Options” for information about creating compressed backups.

Compression involves a tradeoff between backup performance and restore performance. In an emergency,
the time needed to uncompress the backup data before restoring it might be unacceptable. There
might also be storage issues if there is not enough free space on the database server to hold both the
compressed backup and the uncompressed data. Thus, the more critical the data is, the more likely that
you might choose not to use compression: accepting a slower, larger backup to ensure that the restore
process is as fast and reliable as possible.

97

InnoDB Configuration Options Settings

InnoDB Configuration Options Settings

As discussed later, there are a number of reasons why you might prefer to run with the setting
innodb_file_per_table=1.

Parallel Backup

mysqlbackup can take advantage of modern multicore CPUs and operating system threads to perform
backup operations in parallel. See Section 20.10, “Performance / Scalability / Capacity Options” for the
options to control how many threads are used for different aspects of the backup process. If you see that
there is unused system capacity during backups, consider increasing the values for these options and
testing whether doing so increases backup performance:

• When tuning and testing backup performance using a RAID storage configuration, consider the
combination of option settings --read-threads=3 --process-threads=6 --write-threads=3.
Compare against the combination --read-threads=1 --process-threads=6 --write-
threads=1.

• When tuning and testing backup performance using a non-RAID storage configuration, consider the
combination of option settings --read-threads=1 --process-threads=6 --write-threads=1.

• When you increase the values for any of the 3 “threads” options, also increase the value of the --
limit-memory option, to give the extra threads enough memory to do their work.

• If the CPU is not too busy (less than 80% CPU utilization), increase the value of the --process-
threads option.

• If the storage device that you are backing up from (the source drive) can handle more I/O requests,
increase the value of the --read-threads option.

• If the storage device that you are backing up to (the destination drive) can handle more I/O requests,
increase the value of the --write-threads option (not applicable to single-file backups, which always
use a single write thread).

Depending on your operating system, you can measure resource utilization using commands such as top,
iostat, sar, dtrace, or a graphical performance monitor. Do not increase the number of read or write
threads once the system iowait value reaches approximately 20%.

MyISAM Considerations

Important

• Although mysqlbackup backs up InnoDB tables without interrupting database
use, the final stage that copies non-InnoDB files (such as MyISAM tables
and .sdi files) temporarily puts those tables into a read-only state, using the
statement FLUSH TABLES tbl_name [, tbl_name] ... WITH READ
LOCK. For best backup performance and minimal impact on database processing:

1. Do not run long INSERT, UPDATE, or DELETE queries at the time of the
backup run.

2. Keep your MyISAM tables relatively small and primarily for read-only or read-
mostly work.

Then the time where non-InnoDB tables are read-locked will be short and the
normal processing of mysqld will not be disturbed much. If the preceding

98

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/insert.html
https://dev.mysql.com/doc/refman/8.3/en/update.html
https://dev.mysql.com/doc/refman/8.3/en/delete.html

Network Performance

conditions are not met in your database application, use the --only-innodb
option to back up only InnoDB tables, or use the --no-locking option. Note
that files copied under the --no-locking setting cannot be guaranteed to have
consistent data.

• For a large database server, a backup run might take a long time. Always
check that mysqlbackup has completed successfully, either by verifying that
mysqlbackup returned exit code 0, or by observing that mysqlbackup has
printed the text “mysqlbackup completed OK!”.

• Schedule backups during periods when no DDL operations involving tables are
running. See Appendix B, Limitations of MySQL Enterprise Backup for restrictions
on backups at the same time as DDL operations.

Network Performance

For data processing operations, you might know the conventional advice that Unix sockets are faster than
TCP/IP for communicating with the database server. Although the mysqlbackup command supports the
options --protocol=tcp, --protocol=socket, and --protocol=pipe, these options do not have
a significant effect on backup or restore performance. These processes involve file-copy operations rather
than client/server network traffic. The database server communication controlled by the --protocol
option is low-volume. For example, mysqlbackup retrieves information about database server parameters
through the database server connection, but not table or index data.

Data Size

If certain tables or databases contain non-critical information, or are rarely updated, you can leave them
out of your most frequent backups and back them up on a less frequent schedule. See Section 20.8,
“Partial Backup and Restore Options” for information about the relevant options, and Section 4.3.5,
“Making a Partial Backup” for instructions about leaving out data from specific tables, databases, or
storage engines. Partial backups are faster because they copy, compress, and transmit a smaller volume
of data.

To minimize the overall size of InnoDB data files, consider enabling the MySQL configuration option
innodb_file_per_table. This option can minimize data size for InnoDB tables in several ways:

• It prevents the InnoDB system tablespace from ballooning in size, allocating disk space that
can afterwards only be used by MySQL. For example, sometimes huge amounts of data are
only needed temporarily, or are loaded by mistake or during experimentation. Without the
innodb_file_per_table option, the system tablespace expands to hold all this data, and never
shrinks afterward.

• It immediately frees the disk space taken up by an InnoDB table and its indexes when the table is
dropped or truncated. Each table and its associated indexes are represented by a .ibd file that is deleted
or emptied by these DDL operations.

• It allows unused space within a .ibd file to be reclaimed by the OPTIMIZE TABLE statement, when
substantial amounts of data are removed or indexes are dropped.

• It enables partial backups where you back up some InnoDB tables and not others, as discussed in
Section 4.3.5, “Making a Partial Backup”.

• It allows the use of table compression for InnoDB tables.

In general, using table compression by having ROW_FORMAT=COMPRESSED decreases table sizes and
increase backup and restore performance. However, as a trade-off, table compression can potentially

99

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/optimize-table.html

Advanced: Apply-Log Phase (for Directory Backups only)

increase redo log sizes and thus slow down incremental backups and restores, as well as apply-log
operations. See How Compression Works for InnoDB Tables for details.

Avoid creating indexes that are not used by queries. Because indexes take up space in the backup data,
unnecessary indexes slow down the backup process. (The copying and scanning mechanisms used by
mysqlbackup do not rely on indexes to do their work.) For example, it is typically not helpful to create an
index on each column of a table, because only one index is used by any query. Because the primary key
columns are included in each InnoDB secondary index, it wastes space to define primary keys composed
of numerous or lengthy columns, or multiple secondary indexes with different permutations of the same
columns.

Advanced: Apply-Log Phase (for Directory Backups only)

If you store the backup data on a separate machine, and that machine is not as busy the machine hosting
the database server, you can offload some postprocessing work (the apply-log phase) to that separate
machine. Apply-log Operation

There is always a performance tradeoff between doing the apply-log phase immediately after the initial
backup (makes restore faster), or postponing it until right before the restore (makes backup faster). In
an emergency, restore performance is the most important consideration. Thus, the more crucial the data
is, the more important it is to run the apply-log phase immediately after the backup. Either combine the
backup and apply-log phases on the same server by specifying the backup-and-apply-log option, or
perform the fast initial backup, transfer the backup data to another server, and then perform the apply-log
phase using one of the options from Apply-log Operation.

13.2 Optimizing Restore Performance

This section describes the performance considerations for restoring a database server with MySQL
Enterprise Backup. This subject is important because:

• The restore operation is the phase of the backup-restore cycle that tends to vary substantially between
different backup methods. For example, backup performance might be acceptable using mysqldump,
but mysqldump typically takes much longer than MySQL Enterprise Backup for a restore operation.

• The restore operation is often performed during an emergency, where it is critical to minimize the
downtime of the application or web site.

• The restore operation (except for Table-Level Restore) is always performed with the database server
shut down.

• The restore operation is mainly dependent on low-level considerations, such as I/O and network speed
for transferring files, and CPU speed, processor cores, and so on for uncompressing data.

For the combination of options you can specify for a restore job, see Section 19.3, “Restore Operations”.

Restoring Different Classes of Backup Data

Restoring a partial backup takes less time than restoring a full backup, because there is less data to
physically copy. See Section 4.3.5, “Making a Partial Backup” for information about partial backups.

Restoring a compressed backup takes more time than restoring an uncompressed backup, because the
time needed to uncompress the data is typically greater than any time saved by transferring less data
across the network. If you need to rearrange your storage to free up enough space to uncompress the
backup before restoring it, include that administration work in your estimate of the total time required. In

100

https://dev.mysql.com/doc/refman/8.3/en/innodb-compression-internals.html

The Apply-Log Phase (for Directory Backups only)

an emergency, the time needed to uncompress the backup data before restoring it might be unacceptable.
on the database server to hold both the compressed backup and the uncompressed data. Thus, the more
critical the data is, the more likely that you might choose not to use compression: accepting a slower,
larger backup to ensure that the restore process is as fast and reliable as possible. See Section 20.6,
“Compression Options” for information about making compressed backups.

The unpacking process to restore a single-file backup is typically not expensive either in terms of raw
speed or extra storage. Each file is unpacked directly to its final destination, the same as if it was copied
individually. Thus, if you can speed up the backup substantially or decrease its storage requirements by
using single-file backups, that typically does not involve a tradeoff with restore time. See Section 19.5,
“Other Single-File Backup Operations” for information about making single-file backups.

The Apply-Log Phase (for Directory Backups only)

See Advanced: Apply-Log Phase (for Directory Backups only) for performance considerations regarding
the apply-log phase.

Network Performance

For data processing operations, you might know the conventional advice that Unix sockets are faster
than TCP/IP for communicating with the database. Although the mysqlbackup command supports the
options --protocol=tcp, --protocol=socket, and --protocol=pipe, these options do not have
a significant effect on backup or restore performance. These processes involve file-copy operations rather
than client/server network traffic. The database communication controlled by the --protocol option is
low-volume. For example, mysqlbackup retrieves information about database parameters through the
database connection, but not table or index data.

Parallel Restore

mysqlbackup can take advantage of modern multicore CPUs and operating system threads to perform
backup operations in parallel. See Section 20.10, “Performance / Scalability / Capacity Options” for the
options to control how many threads are used for different aspects of the restore process. If you see that
there is unused system capacity during a restore, consider increasing the values for these options and
testing whether doing so increases restore performance:

• When tuning and testing backup performance using a RAID storage configuration, consider the
combination of option settings --read-threads=3 --process-threads=6 --write-threads=3.
Compare against the combination --read-threads=1 --process-threads=6 --write-
threads=1.

• When tuning and testing backup performance using a non-RAID storage configuration, consider the
combination of option settings --read-threads=1 --process-threads=6 --write-threads=1.

• When you increase the values for any of the 3 “threads” options, also increase the value of the --
limit-memory option, to give the extra threads enough memory to do their work.

• If the CPU is not too busy (less than 80% CPU utilization), increase the value of the --process-
threads option.

• If the storage device that you are restoring from (the source drive) can handle more I/O requests,
increase the value of the --read-threads option (not applicable to restores of single-file backups,
which always use a single read thread).

• If the storage device that you are restoring to (the destination drive) can handle more I/O requests,
increase the value of the --write-threads option.

101

Parallel Restore

For an apply-log operation, the --process-threads option controls the number of threads that read
and write modified datafile pages in parallel; those threads are usually I/O bound, even though they also
perform some in-memory processing.

Depending on your operating system, you can measure resource utilization using commands such as top,
iostat, sar, dtrace, or a graphical performance monitor. Do not increase the number of read or write
threads iowait once the system iowait value reaches approximately 20%.

102

Chapter 14 Monitoring Backups with MySQL Enterprise Monitor
The MySQL Enterprise Monitor is a companion product to the MySQL Server that enables monitoring
of MySQL instances and their hosts, notification of potential issues and problems, and advice on how to
correct issues. Among its other functions, it can be used to monitor the progress and history of backup
jobs. Check the MySQL Enterprise Monitor User's Guide for detail.

103

http://dev.mysql.com/doc/mysql-monitor/en/

104

Chapter 15 Using MySQL Enterprise Backup with MySQL
Enterprise Firewall

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that enables
database server administrators to permit or deny SQL statement execution based on matching against
allowlists of accepted statement patterns.

When using MySQL Enterprise Firewall with MySQL Enterprise Backup, record the statement FLUSH
ENGINE LOGS explicitly in the statement allowlist; otherwise some MySQL Enterprise Backup might then
fail. BecauseMySQL Enterprise Backup 8.3 only uses the statement sporadically, it is easy to miss it in the
training phase for the MySQL Enterprise Firewall.

105

106

Chapter 16 Using LDAP for Server Authentication
LDAP pluggable authentication is a feature supported by the MySQL Enterprise Edition; the user by which
mysqlbackup connects to the server can be authenticated using LDAP. Beyond proper setup for LDAP on
the server side, the following requirements apply for LDAP authentication to work with mysqlbackup:

• If the user is using simple LDAP authentication, the password is communicated to the server
in cleartext; enable Client-Side Cleartext Pluggable Authentication by using the --enable-
cleartext-plugin option in your mysqlbackup command, or set the environment variable
LIBMYSQL_ENABLE_CLEARTEXT_PLUGIN=[1|Y|y] in the environment you run the command.

• If the user is using SASL-based LDAP authentication and the client-side plugin
(authentication_ldap_sasl_client) is not located in the server's plugin folder, the --plugin-
dir option should be used with the mysqlbackup command to specify the location of the plugin, or the
same information should be provided by setting the environment variable LIBMYSQL_PLUGIN_DIR in
the environment you run the command.

The following are some sample commands for using LDAP authentication:

Example 16.1 Backup Using Simple LDAP Authentication

mysqlbackup --user=mysqlbackup --password=password --host=127.0.0.1 \
 --backup-dir=/home/mysqlbackup/backup-tmp --backup-image=/home/mysqlbackup/backups/my.mbi \
 --enable-cleartext-plugin backup-to-image

Example 16.2 TTS Restore Using Simple LDAP Authentication

mysqlbackup --user=mysqlbackup --password=password --host=127.0.0.1 \
 --backup-dir=/home/mysqlbackup/backup-tmp --backup-image=/home/mysqlbackup/backups/my.mbi \
 --include-tables=REGEX --enable-cleartext-plugin copy-back-and-apply-log

Example 16.3 Backup Using SALS-based LDAP Authentication

mysqlbackup --user=mysqlbackup --password=password --host=127.0.0.1 \
 --backup-dir=/home/mysqlbackup/backup-tmp --backup-image=/home/mysqlbackup/backups/my.mbi \
 --plugin-dir=SASL_plugin-dir backup-to-image

Example 16.4 TTS Restore Using SALS-based Authentication

mysqlbackup --user=mysqlbackup --password=password --host=127.0.0.1 \
 --backup-dir=/home/mysqlbackup/backup-tmp --backup-image=/home/mysqlbackup/backups/my.mbi \
 --include-tables=REGEX --plugin-dir=SASL_plugin-dir copy-back-and-apply-log

107

https://dev.mysql.com/doc/refman/8.3/en/ldap-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.3/en/cleartext-pluggable-authentication.html

108

Chapter 17 Troubleshooting for MySQL Enterprise Backup

Table of Contents
17.1 Exit codes of MySQL Enterprise Backup .. 109
17.2 Working Around Corruption Problems .. 110
17.3 Using the MySQL Enterprise Backup Logs ... 111
17.4 Using the MySQL Enterprise Backup Manifest ... 113

To troubleshoot issues regarding backup and restore with the MySQL Enterprise Backup product, consider
the following aspects:

• Before troubleshooting any problem, familiarize yourself with the known limits and restrictions on the
product, in Appendix B, Limitations of MySQL Enterprise Backup.

• If mysqlbackup encounters problems during operating system calls, it returns the corresponding OS
error codes. You might need to consult your operating system's documentation for the meaning of those
error codes and how to handle them.

• The output from mysqlbackup is sent to stderr rather than stdout. By default, the same output is
also saved to a log file in the backup_dir for use in error diagnosis. See Section 20.11, “Message
Logging Options” for details on how to configure this logging feature.

• Incremental backups, when performed using the --start-lsn option, require care to specify a
sequence of time periods. You must record the final LSN value at the end of each backup, and specify
that value in the next incremental backup. You must also make sure that the full backup you restore is
prepared correctly first, so that it contains all the changes from the sequence of incremental backups.

• As mysqlbackup proceeds, it writes progress information into the mysql.backup_progress
table. When the command finishes the backup operation, it records status information in the
mysql.backup_history table. You can query those tables to monitor ongoing backup jobs, see how
much time has been used for various stages, and check if any errors have occurred.

17.1 Exit codes of MySQL Enterprise Backup
MySQL Enterprise Backup returns one of the following exit codes as it exits an operation. The meaning
of each code is explained in Table 17.1, “MySQL Enterprise Backup Exit Codes and Messages” by its
associated exit message.

Table 17.1 MySQL Enterprise Backup Exit Codes and Messages

Exit Code Exit Message

0 No error

1 Unknown Error

2 Internal Error

3 One of the required files is corrupt

4 One of the required files not found

5 Corrupt page or header encountered

6 Mismatch in config and the value obtained

7 Illegal Argument

109

Working Around Corruption Problems

Exit Code Exit Message

8 One or more of the arguments are unknown

9 IO operation failed

10 Error allocating memory

11 Connection to server failed

12 Ongoing operation interrupted by user

13 User doesn't have sufficient privileges

14 No space left on device

15 Image version is not supported by this version of meb

16 The value is out of range

17 Innodb Error

18 Timedout while waiting for resource

19 Server returned error while executing sql

The mysqlbackup command print-message takes an exit code supplied with the --error-code
option and returns the corresponding exit message in the stdout stream. Users can, for example, use
a script to catch the exit code returned by mysqlbackup, and then pass it onto the print-message
command to obtain an exit message. See the description for print-message for details.

17.2 Working Around Corruption Problems
Sometimes the operating system or the hardware can corrupt a data file page at a location that does not
cause a database error, but prevents mysqlbackup from completing:

170225 10:46:18 PCR1 INFO: Re-reading page at offset 0 in D:/temp/5.7_source/test/emp2.ibd
170225 10:46:18 PCR1 INFO: Re-reading page at offset 0 in D:/temp/5.7_source/test/emp2.ibd
...
170225 10:46:26 PCR1 ERROR: Page at offset 0 in D:/temp/5.7_source/test/emp2.ibd seems corrupt!

A corruption problem can have different causes. Here are some suggestions for dealing with it:

• The problem can occur if the MySQL server is too busy. Before trying other solutions, you might want to
perform the backup again using some non-default settings for the following mysqlbackup options:

• --page-reread-time=MS. Try set the value to, for example, “0.05”, for faster rereads during
checksum failures.

• --page-reread-count=retry_limit. Try set the value to, for example, “1000”, to allow more
rereads during checksum failures before MySQL Enterprise Backup gives up and throws an error.

• Scrambled data in memory can cause the problem even though the data on disk is actually uncorrupted.
Reboot the database server and the storage device to see if the problem persists.

• If the problem persists after the database server and the storage device have been restarted, you might
really have a corruption on your disk. You might consider restoring data from an earlier backup and "roll
forward" the recent changes to bring the database server back to its current state.

• If you want to make MySQL Enterprise Backup finish a backup anyway before you go and investigate
the root cause of the issue, you can rewrite the checksum values on the disk by running the
innochecksum utility on the server:

innochecksum --no-checksum --write=crc32

110

https://dev.mysql.com/doc/refman/8.3/en/innochecksum.html

Using the MySQL Enterprise Backup Logs

The option --no-checksum disable the verification function of the tool, and the option --
write=crc32 makes innochecksum rewrite the checksum values on the disk.

IMPORTANT: Do not treat corruption problems as a minor annoyance. Find out what is wrong with the
system that causes the corruption—however, such troubleshooting is beyond the scope of this manual.

17.3 Using the MySQL Enterprise Backup Logs

Besides the message output of MySQL Enterprise Backup to the stderr stream and the log file,
progress and history of each backup are also logged into the mysql.backup_progress and
mysql.backup_history tables on the backed-up servers (to skip updating the two tables, use the --
no-history-logging option with the backup command).

backup_progress Table

Each row in the backup_progress table records a state change or message from a running backup job.
The backup_progress table has the following columns:

mysql> DESCRIBE mysql.backup_progress;
+---------------+---------------+------+-----+----------------------+--+
| Field | Type | Null | Key | Default | Extra |
+---------------+---------------+------+-----+----------------------+--+
id	int	NO	PRI	NULL	auto_increment
backup_id	bigint	NO	MUL	NULL	
tool_name	varchar(4096)	NO		NULL	
error_code	int	NO		NULL	
error_message	varchar(4096)	NO		NULL	
current_time	timestamp(3)	NO		CURRENT_TIMESTAMP(3)	DEFAULT_GENERATED on update CURRENT_TIMESTAMP(3)
current_state	varchar(200)	NO		NULL	
+---------------+---------------+------+-----+----------------------+--+
7 rows in set (0.00 sec)

The backup_progress table is in InnoDB format.

Here are some ways to make use of the information in the backup_progress table:

• Use the backup_id value to query all the information for different stages of a single backup operation,
and to find the corresponding row in the backup_history table for the same backup (the row is written
to the backup_history table only after the backup is finished).

• Check the tool_name column for the full mysqlbackup command that triggered the backup, including
all the options used.

• Use the error_code and error_message values to track any errors that have occurred, and to see if
the backup operation should be terminated because of any serious errors.

• Use the current_time and current_state values to track the progress of the operation. They also
allow you to measure how long each stage of the backup takes, which helps you plan for your future
backups.

backup_history Table

Each row in the backup_history table records the details of one completed backup produced by a
mysqlbackup command. The backup_history table has the following columns:

mysql> mysql> DESCRIBE mysql.backup_history;

111

https://dev.mysql.com/doc/refman/8.3/en/innochecksum.html

backup_history Table

+---------------------------+---------------+------+-----+---------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------------------------+---------------+------+-----+---------------------+-------+
backup_id	bigint(20)	NO	PRI	NULL	
tool_name	varchar(4096)	NO		NULL	
start_time	timestamp	NO		0000-00-00 00:00:00	
end_time	timestamp	NO		0000-00-00 00:00:00	
binlog_pos	bigint(20)	NO		NULL	
binlog_file	varchar(255)	NO		NULL	
compression_level	int(11)	NO		NULL	
engines	varchar(100)	NO		NULL	
innodb_data_file_path	varchar(2048)	NO		NULL	
start_lsn	bigint(20)	NO		NULL	
end_lsn	bigint(20)	NO		NULL	
backup_type	varchar(50)	NO		NULL	
backup_format	varchar(50)	NO		NULL	
mysql_data_dir	varchar(2048)	NO		NULL	
innodb_data_home_dir	varchar(2048)	NO		NULL	
innodb_log_group_home_dir	varchar(2048)	NO		NULL	
backup_destination	varchar(4096)	NO		NULL	
lock_time	double(7,3)	NO		NULL	
exit_state	varchar(10)	NO		NULL	
last_error	varchar(4096)	NO		NULL	
last_error_code	int(11)	NO		NULL	
start_time_utc	bigint(20)	NO		NULL	
end_time_utc	bigint(20)	NO		NULL	
consistency_time_utc	bigint(20)	NO		NULL	
meb_version	varchar(20)	NO		0.0.0	
server_uuid	varchar(36)	NO		NULL	
+---------------------------+---------------+------+-----+---------------------+-------+
26 rows in set (0.01 sec)

Warning

Because a successful backup is always recorded as such in the backup_history
table, a failure in the apply-log phase of a backup-and-apply-log command
is not reflected in the backup_history table. It is always important to check the
output of mysqlbackup to see if an operation is completed fully without an error.

Here is information on some columns of the backup_history table, and some ways to make use of the
information:

• The tool_name column records the full mysqlbackup command that triggered the backup, including
all the options used.

• You can use the end_lsn value of the latest backup as the starting LSN value for the next incremental
backup by specifying it with the --start-lsn option. (An alternative to specifying the start LSN value
for an incremental backup is to use the --incremental-base option).

• The binlog_pos column gives the position of the binary log up to where log events have been covered
by the backup. Because the backup_history table used to be in the CSV format, which cannot
register NULL values directly, if binary logging is not enabled, a value of -1 is entered into the column;
the same applies to other columns for the logging of NULL values.

• The value for backup_type is one of FULL, PARTIAL, DIFFERENTIAL, INCREMENTAL or TTS.

• The value for backup_format is one of IMAGE (for single-file backups) or DIRECTORY (for directory
backups).

• Use the values that show the backup's settings such as mysql_data_dir, innodb_data_home_dir,
and backup_destination to confirm that the backups are using the right source and destination
directories.

112

Using the MySQL Enterprise Backup Manifest

• The value for exit_state is either SUCCESS or FAILURE. If the exit_state is SUCCESS and
last_error is 'NO_ERROR', the backup operation has been successful; when it is not the case, see
last_error and last_error_code for the latest error of the operation. To retrieve the full list of
errors for that backup operation, go to the backup_progress table.

17.4 Using the MySQL Enterprise Backup Manifest

Each backup directory includes some files in the meta subdirectory that detail how the backup was
produced, and what files it contains. The files containing this information are known collectively as the
manifest.

mysqlbackup produces these files for use by database server management tools; it does not consult or
modify the manifest files after creating them. Management tools can use the manifest during diagnosis and
troubleshooting procedures, for example where the original MySQL instance has been lost entirely and the
recovery process is more involved than copying files back to a working MySQL server.

The files in the manifest include:

• backup_create.xml: information about the backup operation.

• backup_content.xml: information about the files in the backup. This information is only complete
and consistent when the backup operation succeeds. A management tool might use this information to
confirm which tables are part of a backup. A management tool might compare the checksum recorded
in the manifest for a single-file backup against the checksum for the file after the single-file backup is
unpacked. The file also contains details of all the plugins defined on the backed-up server, by which
users should make sure the same plugins are defined in the same manner on the target server for
restoration.

• image_files.xml: information about the files in a single-file backup. (Only produced for backups
taken with the backup-to-image and backup-dir-to-image commands.) A management tool
might use the paths recorded in this file to plan or automate the unpacking of a single-file backup using
the image-to-backup-dir or extract commands, or to remap the paths of extracted files with the
--src-entry and --dst-entry options.

113

114

Part III mysqlbackup Command Reference

Table of Contents
18 mysqlbackup ... 119
19 mysqlbackup commands ... 121

19.1 Backup Operations ... 121
19.2 Update Operations .. 122
19.3 Restore Operations ... 123
19.4 Validation Operations .. 125
19.5 Other Single-File Backup Operations ... 126
19.6 Other Operations .. 128

20 mysqlbackup Command-Line Options .. 131
20.1 General Options .. 137
20.2 Connection Options ... 139
20.3 Server Repository Options ... 140
20.4 Backup Repository Options ... 143
20.5 Metadata Options .. 147
20.6 Compression Options .. 147
20.7 Incremental Backup Options .. 150
20.8 Partial Backup and Restore Options .. 152
20.9 Single-File Backup Options ... 157
20.10 Performance / Scalability / Capacity Options ... 159
20.11 Message Logging Options ... 166
20.12 Progress Report Options ... 167
20.13 Encryption Options .. 171
20.14 Options for Working with Encrypted InnoDB Tablespaces and Encrypted Binary/Relay
Logs ... 171
20.15 Cloud Storage Options .. 172
20.16 Options for Special Backup Types ... 177

21 Configuration Files and Parameters .. 183

117

118

Chapter 18 mysqlbackup
The mysqlbackup client is an easy-to-use tool for all backup and restore operations. During backup
operations, mysqlbackup backs up:

• All InnoDB tables and indexes, including:

• The InnoDB system tablespace, which, by default contains all the InnoDB tables.

• Any separate data files produced with the InnoDB file-per-table setting. Each one contains one table
and its associated indexes. Each data file can use either the original Antelope or the new Barracuda
file format.

• All MyISAM tables and indexes.

• Tables managed by other storage engines.

• Other files underneath the MySQL data directory, such as the .sdi files that record the structure of
MyISAM tables.

• Any other files in the database subdirectories under the server's data directory.

In addition to creating backups, mysqlbackup can pack and unpack backup data, apply to the backup
data any changes to InnoDB tables that occurred during the backup operation, and restore data, index, and
log files back to their original locations, or to other places.

Here are some sample commands to start a backup operation with mysqlbackup are:

Information about data files can be retrieved through the database server connection.
Specify connection options on the command line.
mysqlbackup --user=dba --password --port=3306 \
 --with-timestamp --backup-dir=/export/backups \
 backup

Or we can include the above options in the configuration file
under the [mysqlbackup] section, and just specify the configuration file
and the 'backup' operation.
mysqlbackup --defaults-file=/usr/local/mysql/my.cnf backup

Or we can specify the configuration file as above, but
override some of those options on the command line.
mysqlbackup --defaults-file=/usr/local/mysql/my.cnf \
 --compress --user=backupadmin --password --port=18080 \
 backup

The --user and the --password you specify are used to connect to the MySQL server. This MySQL
user must have certain privileges in the MySQL server, as described in Section 4.1.2, “Grant MySQL
Privileges to Backup Administrator”.

The --with-timestamp option places the backup in a subdirectory created under the directory you
specified above. The name of the backup subdirectory is formed from the date and the clock time of the
backup run.

For the meanings of other command-line options, see Chapter 20, mysqlbackup Command-Line Options.
For information about configuration files, see Chapter 21, Configuration Files and Parameters.

Make sure that the user or the cron job running mysqlbackup has the rights to copy files from the MySQL
database directories to the backup directory.

119

https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_antelope
https://dev.mysql.com/doc/refman/5.7/en/glossary.html#glos_barracuda

Make sure that your connection timeouts are long enough so that the mysqlbackup command can keep
the connection to the server open for the duration of the backup run. mysqlbackup pings the server after
copying each database to keep the connection alive.

Review Section 13.1, “Optimizing Backup Performance” to understand the various issues that can impact
the performance of MySQL Enterprise Backup.

120

Chapter 19 mysqlbackup commands

Table of Contents
19.1 Backup Operations ... 121
19.2 Update Operations .. 122
19.3 Restore Operations ... 123
19.4 Validation Operations .. 125
19.5 Other Single-File Backup Operations ... 126
19.6 Other Operations .. 128

These are commands for the major operations for mysqlbackup. Only one of them can be specified
for each mysqlbackup invocation, and, unlike the command options, the name of a command is not
preceded by any dashes.

Each of these commands has its own set of required or allowed command options. For example, the
backup command typically requires connection information to the database server. The apply-log and
other commands that operate on the backup data after it is produced require the options that specify where
the backup data is located.

The major groups of commands are:

• Backup operations: backup, backup-and-apply-log, backup-to-image

• Update operations: apply-log, apply-incremental-backup

• Restore operations: copy-back, copy-back-and-apply-log

• Validation operation: validate

• Single-file backup operations: image-to-backup-dir, backup-dir-to-image, list-image,
extract

19.1 Backup Operations

The backup operations are the most frequently performed tasks by MySQL Enterprise Backup.
Various kinds of backups can be performed by adding different options, like using --compress or
--incremental for compressed or incremental backups. Here is the syntax for the mysqlbackup
commands for performing a backup operation:

mysqlbackup [STD-OPTIONS]
 [CONNECTION-OPTIONS]
 [SERVER-REPOSITORY-OPTIONS]
 [BACKUP-REPOSITORY-OPTIONS]
 [METADATA-OPTIONS]
 [COMPRESSION-OPTIONS]
 [SPECIAL-BACKUP-TYPES-OPTIONS]
 [INCREMENTAL-BACKUP-OPTIONS]
 [PARTIAL-BACKUP-RESTORE-OPTIONS]
 [SINGLE-FILE-BACKUP-OPTIONS]
 [PERFORMANCE-SCALABILITY-CAPACITY-OPTIONS]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTION-OPTIONS]

121

Update Operations

 [CLOUD-STORAGE-OPTIONS]
 [ENCRYPTED-INNODB-OPTIONS]
 backup-to-image

mysqlbackup [STD-OPTIONS]
 [CONNECTION-OPTIONS]
 [SERVER-REPOSITORY-OPTIONS]
 [BACKUP-REPOSITORY-OPTIONS]
 [METADATA-OPTIONS]
 [COMPRESSION-OPTIONS]
 [SPECIAL-BACKUP-TYPES-OPTIONS]
 [INCREMENTAL-BACKUP-OPTIONS]
 [PARTIAL-BACKUP-RESTORE-OPTIONS]
 [PERFORMANCE-SCALABILITY-CAPACITY-OPTIONS]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTED-INNODB-OPTIONS]
 backup | backup-and-apply-log

• backup-to-image

 Produces a single-file backup holding the backup data. In most cases, single-file backups are preferred
over directory backups, which are created using the backup command.

The command requires the --backup-image option to specify the destination file. Can be used to
stream the backup to a storage device or another system without ever storing the data on the database
server. You can specify --backup-image=-, representing standard output, allowing the output to be
piped to another command. To avoid mixing normal informational messages with backup output, the --
help message, errors, alerts, and normal informational messages are always printed to standard error
stream.

The command also requires the use of the --backup-dir option to supply a temporary folder to save
the backup metadata (including the mysqlbackup message log, the start and end LSN, and so on) and
some temporary output.

• backup

 Backs up data to a directory. In most cases, single-file backups, which are created using the backup-
to-image command, are preferred over directory backups.

The command only performs the initial phase of a complete backup process. The second phase is
performed later by running mysqlbackup again with the apply-log command, which makes the
backup consistent.

• backup-and-apply-log

 A combination of backup and apply-log. It cannot be used for an incremental backup.

19.2 Update Operations

There are two types of operations to bring your backup data up-to-date:

Apply-log Operation

After a backup job was first completed, the backup data might not be in a consistent state, because data
could have been inserted, updated, or deleted while the backup was running. This initial backup file is
known as the raw backup. During a backup, mysqlbackup also copies the accumulated InnoDB log to
a file called ibbackup_logfile. In an apply-log operation, the ibbackup_logfile file is used to “roll

122

Apply-incremental-backup Operation

forward” the raw data files, so that every page in the data files corresponds to the same log sequence
number of the InnoDB log. This is similar to the operation that takes place during a crash recovery.

For single-file backups, the apply-log operation is usually performed as part of the copy-back-and-
apply-log command. For directory backups, the copy-back-and-apply-log command can also be
used, but you also have the two alternatives of

• Performing the apply-log operation together with the back up using the backup-and-apply-log
command (not applicable for incremental or compressed directory backups)

• Performing the apply-log operation separately with the apply-log command on the raw backup, before
running the copy-back command.

mysqlbackup [STD-OPTIONS]
 [--limit-memory=MB] [--uncompress] [--backup-dir=PATH]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTED-INNODB-OPTIONS]
 apply-log

apply-log

 Advanced: Brings the InnoDB tables in the directory backup up-to-date, including any changes made to
the data while the backup was running.

Example 19.1 Apply Log to Full Backup

mysqlbackup --backup-dir=/path/to/backup apply-log

It reads the backup-my.cnf file inside backup-dir to understand the backup. The my.cnf defaults files
have no effect other than supplying the limit-memory=MB value, which limits usage of memory while
doing the apply-log operation.

Apply-incremental-backup Operation

Advanced: Use the apply-incremental-backup to update a backup directory with data in an
incremental backup directory:

mysqlbackup [STD-OPTIONS]
 [--incremental-backup-dir=PATH] [--backup-dir=PATH]
 [--limit-memory=MB] [--uncompress]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTED-INNODB-OPTIONS]
 apply-incremental-backup

apply-incremental-backup

 Advanced: Brings up-to-date a directory backup specified with the --backup-dir option, using the
data from an incremental backup directory specified with the --incremental-backup-dir option. See
Section 5.1.3, “Restoring an Incremental Backup” for instructions on restoring incremental backups.

For a single-file incremental backup, you typically use the copy-back-and-apply-log command to
apply the data in the incremental image backup to the full backup that has already been restored to the
data directory of the target server.

19.3 Restore Operations

123

Restore Operations

The restore operations restores the data files from a backup to their original locations on the database
server, or to other desired locations. Normally, the restoration process requires the database server to be
already shut down (or, at least not operating on the directory you are restoring the data to), except for a
partial restore. The option datadir must be specified either in the file specified by the --defaults-
file option or as a command-line option. For usage examples, see Chapter 5, Recovering or Restoring a
Database Server.

mysqlbackup [STD-OPTIONS]
 [SERVER-REPOSITORY-OPTIONS]
 [--backup-image=IMAGE]
 [--backup-dir=PATH]
 [--uncompress]
 [MESSAGE-LOGGING-OPTIONS]
 [PARTIAL-BACKUP-RESTORE-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTION-OPTIONS]
 [CLOUD-STORAGE-OPTIONS]
 [ENCRYPTED-INNODB-OPTIONS]
 copy-back-and-apply-log
mysqlbackup [STD-OPTIONS]
 [SERVER-REPOSITORY-OPTIONS]
 [--backup-dir=PATH]
 [--uncompress]
 [MESSAGE-LOGGING-OPTIONS]
 [PARTIAL-BACKUP-RESTORE-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [CLOUD-STORAGE-OPTIONS]
 [ENCRYPTED-INNODB-OPTIONS]
 copy-back

• copy-back-and-apply-log

 In a single step, restores a single-file backup specified by the --backup-image option or a backup
from the directory specified by the --backup-dir option to a server's data directory and performs
an apply-log operation to the restored data to bring them up-to-date. Comparing with a multi-step
approach for restoring a single-file backup (which typically consists of performing the successive steps
of extract, uncompress, apply-log, and copy-back for restoring compressed image, or extract ,apply-
log, and copy-back for uncompressed image), the command makes the restoration process simpler and
faster, and also saves the disk space required.

The following are some special requirements for different kinds of backup restoration using copy-back-
and-apply-log:

• To restore a single-file backup, besides specifying the location of the backup image with the --
backup-image option, also supply with the --backup-dir option the location of a folder that will be
used for storing temporary files produced during the restoration process.

• To restore a single-file incremental backup, assuming the full backup (on which the incremental
backup was based) has already been restored:

• Specifies the location of the incremental backup image with the --backup-image option.

• Supplies with the --backup-dir option the location of a folder that will be used for storing
temporary files produced during the restoration process.

• Advanced: To restore an incremental backup directory, assuming the full backup (on which the
incremental backup was based) has already been restored:

• Use either the --backup-dir or --incremental-backup-dir option to specify the incremental
backup directory.

124

https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file

Validation Operations

• To restore selected tables:

• See the general requirements described in Section 5.1.4, “Table-Level Recovery (TLR)”.

• When restoring a single-file backup created with the option setting --use-tts=with-minimum-
locking, the folder specified with --backup-dir is also used for extracting temporarily all the
tables in the backup and for performing an apply-log operation to make the data up-to-date
before restoring them to the server's data directory.

• Advanced: When restoring a backup directory created with the option --use-tts=with-
minimum-locking, an apply-log operation will be performed on the backup directory. That
means the backup taken will be altered during the process, and users might want to make an extra
copy of the backup directory before proceeding with the restoration, in order to prevent the loss of
backup data in case something goes wrong.

Also note that:

• Backups created with the --skip-unused-pages option cannot be restored using copy-back-
and-apply-log.

At the end of the copy-back-and-apply-log operation, the file backup_variables.txt is being
created or updated in the data directory. This file contains metadata about the restored contents and
is being used by successive single-step restores of incremental backups; it should not be deleted or
modified by users.

For some sample commands for restoring different kinds of backups with the copy-back-and-apply-
log command, see Section 5.1, “Performing a Restore Operation”.

• copy-back

 Restores files from a directory backup to their original locations within the MySQL server.

Before restoring a hot backup using the copy-back command, the backup has to be prepared and
made consistent using the apply-log command. See Section 5.1.7, “Advanced: Preparing and
Restoring a Directory Backup” for details. You can also perform apply-log and copy-back together
with a single copy-back-and-apply-log command.

Some clean-up efforts on the target directory for restoration might be needed before performing a full
restore (for example, when the backup data is used to set up a new MySQL server or to replace all data
of an existing MySQL server). See the discussions here for details.

There are some special requirements when restoring selected tables from backups; see Section 5.1.4,
“Table-Level Recovery (TLR)” for details.

Warning

When restoring a server for replication purpose, if the backed-up server has used
the innodb_undo_directory option to put the undo logs outside of the data
directory, when using the file server-my.cnf or server-all.cnf for the --
defaults-file option with copy-back or copy-back-and-apply-log, care
should be taken to configure correctly the innodb_undo_directory option in the
file. Otherwise, the data or log files on the original server might be overwritten by
accident.

19.4 Validation Operations

125

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_undo_directory
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file

Other Single-File Backup Operations

To ensure the integrity of the backup data, MySQL Enterprise Backup provides a validate command for
validating a backup by the checksum values of its data pages after the backup is created or transferred to
another system.

mysqlbackup [STD-OPTIONS]
 [--backup-dir=PATH][--backup-image=IMAGE]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [CLOUD-STORAGE-OPTIONS]
 validate

validate

 Verifies that a backup is not corrupted, truncated, or damaged. This operation validates the checksum
value for each data page in a backup.

To avoid spending excessive time and resources on files that are too heavily corrupted, mysqlbackup
stops validating a .ibd file after more than twenty corrupted pages are found in it, and proceeds to the next
file instead. In that case, the operation's summary will not give a full count of corrupted pages, but only
says “at least 20 pages are corrupted.”

The operation also has the following limitations:

• If any .ibd files or .sdi files are missing from the data directory during a backup or have been deleted
from a backup after the backup was made, the validate operation will not be able to detect the
problem.

• If a backup has been corrupted by removing or truncating pages from any of the .ibd files inside , the
validate operation will not be able to detect the problem.

• For any backup directory, the operation can only validate the InnoDB data files (ibdata* and *.ibd
files) in it. Problems with other file types within a backup directory (for example, .sdi file corruptions)
are not detected.

Here is a sample command for validating a backup image:

mysqlbackup -uroot --backup-image=/logs/fullimage.mi validate

Advanced: Here is a sample command for validating a backup directory:

mysqlbackup -uroot --backup-dir=/logs/backupext validate

For more usage examples for the validate command, see Section 4.2.3, “Verifying a Backup”

19.5 Other Single-File Backup Operations
Besides the commands for creating and restoring single-file backups (namely, backup-to-image and
copy-back-and-apply-log), mysqlbackup provides a number of other commands for you to work
with single-file backups. They are explained below.

mysqlbackup [STD-OPTIONS]
 [--backup-image=IMAGE]
 [--backup-dir=PATH]
 [--src-entry=PATH] [--dst-entry=PATH]
 [--uncompress]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTION-OPTIONS]
 [CLOUD-STORAGE-OPTIONS]
 image-to-backup-dir

mysqlbackup [STD-OPTIONS]

126

Other Single-File Backup Operations

 [--backup-dir=PATH] [--backup-image=IMAGE]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTION-OPTIONS]
 [CLOUD-STORAGE-OPTIONS]
 backup-dir-to-image

mysqlbackup [STD-OPTIONS]
 [--backup-image=IMAGE]
 [MESSAGE-LOGGING-OPTIONS]
 [ENCRYPTION-OPTIONS]
 [CLOUD-STORAGE-OPTIONS]
 list-image

mysqlbackup [STD-OPTIONS]
 [--backup-image=IMAGE]
 [--backup-dir=PATH]
 [--src-entry=PATH] [--dst-entry=PATH]
 [--uncompress]
 [MESSAGE-LOGGING-OPTIONS]
 [PROGRESS-REPORT-OPTIONS]
 [ENCRYPTION-OPTIONS]
 [CLOUD-STORAGE-OPTIONS]
 extract

• image-to-backup-dir

 It is an alias for the extract command; see the description below for extract.

Note

image-to-backup-dir only creates a raw backup directory, which is NOT
ready to be restored by the copy-back command. To become a prepared
backup, the backup directory has to go through an apply-log operation, executed
either by a stand-alone apply-log command or as a part of a copy-back-
and-apply-log command.

• backup-dir-to-image

 Packs an existing backup directory into a single file. The value for the --backup-image parameter
should either be “-”(stands for standard output) or an absolute path outside of the backup-dir
directory. Specify a --backup-image value of - (standard output) to stream an existing backup
directory structure to a tape device or a command that transfers the backup to another server. For usage
examples, see Section 4.3.1, “Making a Single-File Backup”.

• list-image

 Display the contents of a single-file backup. Lists all files and directories in the image. For usage
examples, see Section 4.3.1, “Making a Single-File Backup”.

Note

The list-image operation can be performed on a cloud backup only if the
cloud proxy supports HTTP range headers.

• extract

 Unpacks individual files or directories from a single-file backup. It is useful for troubleshooting, or for
restorations that do not require the full set of backup data. The resulting file or directory goes into the
current directory, or into the backup directory, if specified with --backup-dir; in either case, the

127

Other Operations

destination directory must be empty. For usage examples, see Section 4.3.1, “Making a Single-File
Backup”.

The --src-entry=string option can be used for selective extraction of files or directories whose path
names in the image contain the string specified with the option.

Notes

• Some items are always extracted from the backup; see the descriptions of --
src-entry for details.

• The option is currently not supported for the extraction of cloud backups, which
can only be extracted in full.

Tip

If you want to extract only from specific directories (for example, datadir/
meta), add a slash at the end of the option value (--src-entry=meta/);
otherwise, any file or directory in the backup that contains the value in its
pathname (including, for example,datadir/pets/metabolism.ibd) will also
be extracted.

The --dst-entry=path option, along with --src-entry=path option, can be used to extract files or
directories into user-specified locations; see the description for the option for details.

Use the --uncompress option to extract files from a compressed single-file backup (the --
uncompress option is not required when the --src-entry is used).

The default destination for the extract is the current working directory. All the files with relative
pathnames in the image are extracted to pathnames relative to the destination directory. If the image
contains some entries with absolute pathnames, those entries are extracted to the same absolute
pathnames on the local system even if the --backup-dir option is specified. The --dst-entry
option must be used to relocate an absolute pathname; see Example 4.12, “Dealing with Absolute Path
Names”.

Important

Even with all files extracted from the backup image, extract only creates a
raw backup directory, which is NOT ready to be restored by the copy-back
command. To become a prepared backup, the backup directory has to go
through an apply-log operation, executed either by a stand-alone apply-log
command or as a part of a copy-back-and-apply-log command.

19.6 Other Operations

This group of operations consists of any mysqlbackup commands not covered in other sections of this
chapter.

mysqlbackup --error-code=CODE print-message

print-message

 Prints the associated exit message for a mysqlbackup exit code to the stdout stream.

Use the --error-code option to supply the exit code for which you want to receive the associated exit
message:

128

Other Operations

$ mysqlbackup print-message --error-code=4 2> /dev/null

One of the required files not found

For a list of mysqlbackup exit codes and messages, see Section 17.1, “Exit codes of MySQL Enterprise
Backup”.

129

130

Chapter 20 mysqlbackup Command-Line Options

Table of Contents
20.1 General Options .. 137
20.2 Connection Options ... 139
20.3 Server Repository Options .. 140
20.4 Backup Repository Options ... 143
20.5 Metadata Options ... 147
20.6 Compression Options .. 147
20.7 Incremental Backup Options .. 150
20.8 Partial Backup and Restore Options .. 152
20.9 Single-File Backup Options ... 157
20.10 Performance / Scalability / Capacity Options ... 159
20.11 Message Logging Options ... 166
20.12 Progress Report Options ... 167
20.13 Encryption Options .. 171
20.14 Options for Working with Encrypted InnoDB Tablespaces and Encrypted Binary/Relay Logs 171
20.15 Cloud Storage Options .. 172
20.16 Options for Special Backup Types ... 177

The following sections describe the command-line options for the different modes of operation of
mysqlbackup.

The table below list all the command options for mysqlbackup. Use the hyperlinks at the option names to
jump to the detailed descriptions for the options.

Note

The command options can also be specified in configuration files; see explanations
in Chapter 21, Configuration Files and Parameters. mysqlbackup follows the
MySQL standard practice for handling duplicate options, whether specified in a
configuration file, on the command line, or both. Options are processed first from
configuration files, then from the command line. If an option is specified more than
once, the last instance takes precedence.

Table 20.1 List of All Options

Option Name Description

--backup-dir The directory to store the backup data.

--backup-image Specifies the path name of the backup image.

--backup_innodb_data_file_path Specifies Innodb system tablespace files' path and
size in backup.

--backup_innodb_data_home_dir Backup base directory for all InnoDB data files in the
system tablespace.

--backup_innodb_log_group_home_dir Backup directory for InnoDB log files.

--backup_innodb_undo_directory The relative or absolute directory path where
InnoDB creates separate tablespaces for the undo
logs.

--character-sets-dir Directory for character set files.

131

Option Name Description

--cloud-access-key Access key for the cloud account.

--cloud-access-key-id AWS access key ID for logging onto Amazon S3.

--cloud-aws-region Region for Amazon Web Services that mysqlbackup
access for S3.

--cloud-basicauth-url The URL for HTTP Basic Authentication for
accessing Swift.

--cloud-bucket The storage bucket for the backup image.

--cloud-buffer-size Size of buffer for cloud operations.

--cloud-ca-info Absolute path to the CA bundle file for host
authentication for SSL connections.

--cloud-ca-path CA certificate directory, in addition to the system's
default folder.

--cloud-chunk-size The size of a chunk in megabytes if chunked
transfer is enabled.

--cloud-chunked-transfer Use chunked transfer with cloud storage service.

--cloud-container The Swift container for the backup image.

--cloud-host The hostname for a storage service.

--cloud-identity-url The URL of the Keystone identity service.

--cloud-object The storage object for the backup image.

--cloud-object-key The Amazon S3 object key for the backup image.

--cloud-par-url Pre-Authenticated Request URL for OCI Object
Storage

--cloud-password Password for user specified by --cloud-user-id.

--cloud-proxy Proxy address and port number for overriding the
environment's default proxy settings for accessing
cloud service.

--cloud-region The Keystone region for the user specified by --
cloud-user-id.

--cloud-secret-access-key AWS secret access key.

--cloud-secret-key Secret key for the cloud account.

--cloud-service Cloud service for data backup or restoration.

--cloud-tempauth-url The URL of the identity service for authenticating
user credentials with Swift's TempAuth
authentication system.

--cloud-tenant The Keystone tenant for the user specified by --
cloud-user-id.

--cloud-trace Print trace information for cloud operations.

--cloud-user-id User ID for accessing Swift.

--comments Specifies comments string.

--comments-file Specifies path to comments file.

--compress Create backup in compressed format.

132

Option Name Description

--compress-level Specifies the level of compression.

--compress-method Specifies the compression algorithm.

--compression-algorithms Permitted compression algorithms for connections
to server

--connect_timeout Connection timeout in seconds.

--datadir Path to mysql server data directory.

--debug Print debug information.

--decrypt Decrypt backup image written in an MEB Secure
File.

--default-character-set Set the default character set.

--defaults-extra-file Read this file after the global files are read.

--defaults-file Only read default options from the given file.

--defaults-group-suffix Also read option groups with the usual names and a
suffix of str.

--disable-manifest Disable generation of manifest files for a backup
operation.

--dst-entry Used with single-file backups to extract a single file
or directory to a user-specified path.

--enable-cleartext-plugin Enables the cleartext authentication plugin.

--encrypt Encrypt backup image and write it in an MEB
Secure File.

--encrypt-password The user-supplied password by which mysqlbackup
encrypts the encryption keys for encrypted InnoDB
tablespaces.

--error-code The exit code for which the print-message command
prints the corresponding exit message.

--exclude-tables Exclude in a backup or restore tables whose names
match the regular expression REGEXP.

--exec-when-locked Execute the specified utility in the lock phase near
the end of the backup operation.

--force Force overwriting of data, log, or image files,
depending on the operation.

--free-os-buffers Free filesystem cache by syncing the buffers

--help Display help.

--host Host name to connect.

--include [Legacy] Backup only those per-table innodb data
files which match the regular expression REGEXP.

--include-tables Include in a backup or a restore tables whose
names match the regular expression REGEXP.

--incremental Specifies that the associated backup or backup-to-
image operation is incremental.

133

Option Name Description

--incremental-backup-dir Specifies the location for an incremental directory
backup.

--incremental-base The specification of base backup for --incremental
option.

--incremental-with-redo-log-only Specifies the incremental backup of InnoDB tables
to be based on copying redo log to the backup,
without including any InnoDB data files in the
backup.

--innodb_data_home_dir Specifies base directory for all InnoDB data files in
the shared system tablespace.

--innodb_log_group_home_dir The directory path to InnoDB log files.

--innodb_undo_directory The directory path to InnoDB undo tablespaces.

--key The symmetric key used for encryption and
decryption.

--key-file The pathname of a file that contains the symmetric
key used for encryption and decryption.

--limit-memory The memory in MB available for the MEB operation.

--lock-wait-timeout Specify the timeout in seconds for the FLUSH
TABLES WITH READ LOCK statement that
mysqlbackup issues during the final stage of a
backup.

--log-bin Specify the location for the binary log to be restored.

--log-bin-index Specifies the absolute path of the index file that lists
all the binary log files.

--login-path Read options from the named login path in
the .mylogin.cnf login file.

--messages-logdir Specifies the path name of an existing directory for
storing the message log.

--no-defaults Do not read default options from any given file.

--no-history-logging Disable history logging even if connection is
available.

--no-locking Disable all locking of tables during backups.

--no-redo-log-archive Skip using redo log archiving during backups.

--number-of-buffers Specifies the exact number of memory buffers to be
used for the backup operation.

--on-disk-full Specifies the behavior when a backup process
encounters a disk-full condition.

--only-innodb Back up only InnoDB data and log files.

--only-known-file-types Includes only files of a list of known types in the
backup.

--optimistic-busy-tables Perform an optimistic backup, using the regular
expression specified with the option to select tables
that will be skipped in the first phase of an optimistic
backup.

134

Option Name Description

--optimistic-time Perform an optimistic backup with the value
specified with the option as the optimistic time—a
time after which tables that have not been modified
are believed to be inactive tables.

--page-reread-count Maximum number of page re-reads.

--page-reread-time Wait time before a page re-read.

--password Connection password.

--pipe alias for –protocol=pipe.

--plugin-dir Specifies the directory for client-side plugins.

--port TCP portnumber to connect to.

--print-defaults Print a list of option values supplied by defaults files
and exit.

--process-threads Specifies the number of process-threads for the
backup operation.

--progress-interval Interval between progress reports in seconds.

--protocol Connection protocol.

--read-threads Specifies the number of read-threads for the backup
operation.

--relay-log Specify the location for the relay log to be restored
on a replica server.

--relay-log-index Specifies the absolute path of the index file that lists
all the relay log files.

--rename Rename a single table when it is selected by the --
include-tables option to be restored

--replica-info Capture information needed to set up an identical
replica server.

--safe-replica-backup-timeout When backing up a replica server, the timeout value
for waiting for the replication SQL thread to drop its
temporary tables.

--safe-slave-backup-timeout When backing up a replica server, the timeout value
for waiting for the replication SQL thread to drop its
temporary tables.

--sbt-database-name Used as a hint to the Media Management Software
(MMS) for the selection of media and policies for
tape backup.

--sbt-environment Comma separated list of environment variable
assignments to be given to the SBT library.

--sbt-lib-path Path name of the SBT library used by software that
manages tape backups.

--shared-memory-base-name It designates the shared-memory name used by a
Windows server to permit clients to connect using
shared memory (Windows only).

135

Option Name Description

--show-progress Instructs mysqlbackup to periodically output short
progress reports known as progress indicators on its
operation.

--skip-binlog Do not include binary log files during backup, or do
not restore binary log files during restore.

--skip-final-rescan Skip the final rescan for InnoDB tables that are
modified by DDL operations.

--skip-messages-logdir Disable logging to teelog file.

--skip-relaylog Do not include relay log files during backup, or do
not restore relay log files during a restore.

--skip-unused-pages Skip unused pages in tablespaces when backing up
InnoDB tables.

--slave-info Capture information needed to set up an identical
replica server.

--sleep Time to sleep in milliseconds after copying each
1MB of data.

--socket Socket file to use to connect.

--src-entry Identifies a file or directory to extract from a single-
file backup.

--ssl-ca CA file in PEM format (implies –ssl).

--ssl-capath CA directory (check OpenSSL docs,implies --ssl).

--ssl-cert X509 cert in PEM format (implies --ssl).

--ssl-cipher SSL cipher to use (implies --ssl).

--ssl-fips-mode Controls whether MEB operates in FIPS mode.

--ssl-key X509 key in PEM format (implies --ssl).

--ssl-mode Security state of connection to server.

--start-lsn Specifies the highest LSN value included in a
previous backup.

--suspend-at-end Pauses the mysqlbackup command when the
backup procedure is close to ending.

--trace Trace level of messages by mysqlbackup.

--uncompress Uncompress a backup during an operation.

--use-tts Enable selective backup of InnoDB tables using
transportable tablespaces (TTS).

--user Database server user name to connect.

--verbose Print more verbose information.

--version Display version information.

--with-timestamp Create a subdirectory underneath the backup
directory with a name formed from the timestamp of
the backup operation.

--write-threads Specifies the number of write-threads for the backup
operation.

136

General Options

Option Name Description

--zstd-compression-level Compression level for connections to server that
use ZSTD compression

20.1 General Options

The general options are options of a general nature, or options that are not classified under any other
specific option group:

• The following general options also exist for the mysql command. Full descriptions for these options
can be found in the MySQL reference manual, for example in Server Option, System Variable, and
Status Variable Reference. These options must be specified ahead of any other mysqlbackup options,
including the rest of the general options:

• --print-defaults: Print the program argument list and exit.

• --no-defaults: Don't read default options from any option file.

• --defaults-file=PATH: Only read default options from the given file. It has to be the first option to
be specified, if used.

• --defaults-extra-file=PATH: Read this file after the global files are read.

• --defaults-group-suffix=str: Also read option groups with the usual names and a suffix of
str.

• The following options are also common between mysqlbackup and mysql, and full descriptions for
them can be found in the MySQL reference manual, accessible through, e.g., Server Option, System
Variable, and Status Variable Reference. However, mysqlbackup does not accept any short forms for
these options as mysql does (for example, you must use --help instead of -h for mysqlbackup):

• --help: Display help.

• --version: Display version information.

• More general options are available for mysqlbackup:

• --verbose: Print more verbose information.

--verbose is synonymous with --trace=1.

• --debug=STRING: Print additional debug information.

The option accepts one or more of the following arguments (multiple values should be separated by
semicolons (;)) :

• all: Print additional debug information for all operations

• sbt: Print additional debug information for operations using the System Backup to Tape (SBT)
interface

• page_validation: Print debug information for validation operations.

• hole_punch: Print debug information for transparent page compression for backups.

• tablespace_flags: Print flags read from tablespaces.

137

https://dev.mysql.com/doc/refman/8.3/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.3/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_print-defaults
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-extra-file
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-group-suffix
https://dev.mysql.com/doc/refman/8.3/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.3/en/server-option-variable-reference.html

General Options

• io_file: Print debug information for reading and writing files.

• keyring_migration_tool: Print debug information on keyring migration operations.

• --force: (Deprecated and ignored): By default, some of the operations halt rather than overwrite any
user data or log files when told to write to existing files. --force allows the following:

Warning

For any restore operations, do NOT attempt to restore data to a non-empty
data directory using the --force option; doing so may cause data corruption
and other unexpected behaviors. Do not use the --force option with a copy-
back or a copy-back-and-apply-log operation.

• Overwriting of InnoDB data and log files during the apply-log and apply-incremental-
backup operations.

• Replacing of an image file during an backup-to-image or backup-dir-to-image operation.

• --trace=level

Command-Line Format --trace=LEVEL

Type Enumeration

Default Value 0

Valid Values 0

1

2

3

Trace level of mysqlbackup messages. The permissible levels, in the order of increasing fineness,
are:

• 0 - INFO (information, warnings, errors)

• 1 - FINE (more information given than at trace level 0)

• 2 - FINER (finer level of information given than at trace level 1)

• 3 - FINEST (finest level of information that can be given)

• --error-code=CODE

Command-Line Format --error-code

Type Numeric

Minimum Value 0

138

Connection Options

Maximum Value 19

 Specifies the exit code for which the print-message command prints the corresponding exit
message. See Section 17.1, “Exit codes of MySQL Enterprise Backup” for details.

• --enable-cleartext-plugin

 Enables the Client-Side Cleartext Pluggable Authentication. Required when using simple LDAP
authentication. See Chapter 16, Using LDAP for Server Authentication.

• --plugin-dir =plugin-dir

 Specifies the directory for the client-side plugins. Required when using SASL-based LDAP
authentication AND the client-side plugin is not in the server's plugin directory. See Chapter 16, Using
LDAP for Server Authentication for details.

20.2 Connection Options
When mysqlbackup creates a backup, it sends SQL commands to a MySQL server using a database
server connection. The way to create a connection is similar to what is described in Connecting to the
MySQL Server Using Command Options of the MySQL 8.3 Reference Manual.

As part of the mysqlbackup invocation, specify the appropriate --user, --password, --port, and
other options to connect to the MySQL server. You can specify the connection-specific MySQL client
options listed below in the [mysqlbackup] or [client] sections of a MySQL configuration file, or
through mysqlbackup command-line options (click on the option name to see its description in the mysql
Client Options section of the MySQL 8.3 Reference Manual):

Notes

• mysqlbackup reads only --user, --password, --port, and --socket
options from the [client] group, and ignores any other connection options.

• If you do not provide a value for the --password, the command prompts for one
from the keyboard.

• The --host option is allowed in the configuration file for compatibility, but it has
no effect. mysqlbackup always connects to the local server's IP address.

• If none of the algorithms specified by --compression-algorithms are
permitted by the server, connection to the server will not be established.

• --login-path=name

• --port=port-num

• --protocol={tcp|socket|pipe|memory}

• --pipe (alias for --protocol=pipe)

• --user=name (short option: -u)

• --host=hostname

• --socket=name

• --shared-memory-base-name=value (Windows only)

139

https://dev.mysql.com/doc/refman/8.3/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.3/en/connecting.html
https://dev.mysql.com/doc/refman/8.3/en/connecting.html
https://dev.mysql.com/doc/refman/8.3/en/
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html
https://dev.mysql.com/doc/refman/8.3/en/
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_login-path
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_port
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_protocol
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_pipe
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_socket
https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_shared_memory_base_name

Server Repository Options

• --character-sets-dir=PATH

• --default-character-set=VALUE

• --password[=value] (short option: -p)

• --connect-timeout

• --ssl-mode=mode

• --ssl-key=file_name

• --ssl-cert=file_name

• --ssl-ca=file_name

• --ssl-capath=directory_name

• --ssl-cipher=cipher_list

• --ssl-fips-mode={OFF|ON|STRICT}

• --tls-version= protocol_list

• --compression-algorithms=name

• --zstd-compression-level=number

Most other connection parameters used by the mysql command are recognized, but silently ignored.
Unknown connection parameters cause mysqlbackup to throw an error and quit.

20.3 Server Repository Options
These repository options specify various parameters related to the database server to which a backup is
restored.

These options are used only with restore operations, that is, copy-back and copy-back-and-apply-
log. The descriptions below explain how these options are used with mysqlbackup; for information about
how these options are used with the MySQL server, click the option names to see the descriptions in the
MySQL Reference Manual.

• datadir=PATH

 This is the data directory for the restored MySQL server. It should be supplied with the datadir value
of the target server for the restore.

This option must be specified for any restore operations, except for partial restores (see Section 5.1.4,
“Table-Level Recovery (TLR)” for details).

• log-bin[=basename]

 Specify the location for the binary log to be restored. By default, during a restore, the binary log is
restored to the same location it was found on the backed-up server. Use this option to specify a different
target location for the binary log. The option works similarly as the --log-bin option of the MySQL
server in determining the location and the name of the binary log files—see description of the server --
log-bin option for details. As a summary:

• Using this option without supplying a basename puts the binary log in the target server's data directory
with the default basename host_name-bin.

140

https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_character-sets-dir
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/8.3/en/mysql-command-options.html#option_mysql_connect-timeout
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_ssl-fips-mode
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_compression-algorithms
https://dev.mysql.com/doc/refman/8.3/en/connection-options.html#option_general_zstd-compression-level
https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.3/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/8.3/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/8.3/en/replication-options-binary-log.html#option_mysqld_log-bin

Server Repository Options

• Using this option while supplying a basename puts the binary log in the target server's data directory
with the specified basename.

• Using this option while supplying a basename containing a full file path (for example, /home/admin/
db/binlogdir/binlog) puts the binary log on the target server in the specified folder (/home/
admin/db/binlogdir/) using the supplied basename (binlog).

The option is only for the copy-back-and-apply-log and copy-back operations. Using it with any
other operations makes the command fail.

• relay-log[=basename]

 Specify the location for the relay log to be restored on a replica server. By default, during a restore for a
replica server, the relay log is restored to the same location it was found on the backed-up replica server.
Use this option to specify a different target location for the relay log. The option works similarly as the --
relay-log option of the MySQL server in determining the location and the name of the relay log files—
see description of the server --relay-log option for details. As a summary:

• Using this option without supplying a basename puts the relay log in the target server's data directory
with the default basename host_name-relay-bin.

• Using this option while supplying a basename puts the relay log in the target server's data directory
with the specified basename.

• Using this option while supplying a basename containing a full file path (for example, /home/admin/
db/relaylogdir/relaylog) puts the relay log on the target server in the specified folder (/home/
admin/db/relaylogdir/) using the supplied basename (relaylog).

The option is only for the copy-back-and-apply-log and copy-back operations. Using it with any
other operations makes the command fail.

• log-bin-index[=PATH]

 Specify the absolute path (including file name and extension) for restoring the index file that lists all the
binary log files, if it is different from the default path given below.

Default: data_dir/host_name-bin.index.

• relay-log-index[=PATH]

 Specify the absolute path (including file name and extension) for restoring the index file that lists all the
relay log files, if it is different from the default path given below.

Default: data_dir/host_name-relay-bin.index.

141

https://dev.mysql.com/doc/refman/8.3/en/replication-options-replica.html#sysvar_relay_log
https://dev.mysql.com/doc/refman/8.3/en/replication-options-replica.html#sysvar_relay_log
https://dev.mysql.com/doc/refman/8.3/en/replication-options-replica.html#sysvar_relay_log

Server Repository Options

• innodb_data_home_dir=PATH

 Specifies the directory where InnoDB data files reside. Usually the same as datadir, but can be
different. This parameter, together with innodb_data_file_path=SIZE, determines where the
InnoDB data files such as ibdata1, ibdata2, and so on, are situated within the MySQL server.

For backups:You do not need to specify this option, because its value is retrieved automatically using the
database server connection.

For restores: The directory where InnoDB data files are to be restored. Specify the option only if the
InnoDB data files are to be restored outside of the server's data directory. The specified directory must
be non-existent or empty, or the restore operation will fail.

• If innodb_data_home_dir is not specified, it inherits the value of datadir.

• If innodb_data_home_dir is a relative path, the path is located relative to (that is, underneath) the
datadir value.

• An innodb_data_home_dir of "" refers to the / root directory.

• If innodb_data_home_dir is an absolute path, its value is used as-is.

• innodb_log_group_home_dir=PATH

Specifies where the InnoDB redo log reside within the server repository. Usually the same as datadir,
but can be different.

For backups: You do not need to specify this option, because its value is retrieved automatically using
the database server connection.

For restores: The directory where InnoDB redo log files are to be restored. Specify the option only if the
InnoDB redo log files are to be restored outside of the server's data directory. The specified directory
must be non-existent or empty, or the restore operation will fail.

• If innodb_log_group_home_dir is not specified, it inherits the value of datadir.

• If innodb_log_group_home_dir is a relative path, the path is taken to be relative to (that is,
underneath) the datadir value.

• If innodb_log_group_home_dir is an absolute path, its value is used as-is.

• innodb_undo_directory=PATH

Specifies where the InnoDB undo log reside within the server repository. Usually the same as datadir,
but can be different.

For backups: You do not need to specify this option, because its value is retrieved automatically using
the database server connection.

For restores:

• The directory where the default InnoDB undo tablespaces, as well as any non-default undo
tablespaces resided in the backed-up server's data directory, are to be restored. (External undo
tablespaces are restored by default to the locations they were found on the backed-up server; see the

142

https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_datadir

Backup Repository Options

description for undo log files [12] for details.) The specified directory must be non-existent or empty, or
the restore operation will fail.

Its value is derived as follows:

• If innodb_undo_directory is not specified, it inherits the value of datadir.

• If innodb_undo_directory is a relative path, the path is taken to be relative to (that is, underneath)
the datadir value.

• If innodb_undo_directory is an absolute path, its value is used as-is.

Warning

When using this option, make sure the undo log location does not change
between successive restores of a full and an incremental backups, or of two
incremental backups. Otherwise, the restore is going to fail.

20.4 Backup Repository Options

These options specify various parameters related to the backup image or directory, or to how the backup
will be restored. Typically, --backup-image and --backup-dir are the only options from the group that
you need to specify when using mysqlbackup.

The backup repository options are used with the following operations:

• Backup operations: backup, backup-and-apply-log, backup-to-image.

• Restore operations: copy-back, copy-back-and-apply-log.

The backup repository options are divided into two groups: the first one determines the structure of the
backup, and the second one provides information on the original structure of the data on the backed-up
server for future operations on the backup.

The following options determine the structure of the backup:

• --backup-image=IMAGE

Command-Line Format --backup-image=IMAGE

Type File name

 Specify the path name of the file used for a single-file backup, restore, or another single-file operation.

Except when streaming the backup image with --backup-image=-, if --backup-image does not
give a full path name, this is how mysqlbackup interprets the value of the option:

•
• For backup-to-image operations, mysqlbackup takes the value of --backup-image as a path

relative to the location specified by --backup-dir. If the --with-timestamp option is also used,
the backup image is then saved in a subdirectory that bears the timestamp in its name under the
backup directory.

• For copy-back-and-apply-log and single-file operations other than backup-to-image ,
mysqlbackup takes the value of --backup-image as a path relative to the current working
directory in which the mysqlbackup command is run.

143

Backup Repository Options

By default, the single-file backup is streamed to standard output, so that you can pipe it directly to other
commands such as a tape backup or an ssh-related network command.

You can optionally prefix the image name with file: to signify a file I/O (the default). For tape backups,
prefix the image name with sbt:. See Section 4.3.1.2, “Backing Up to Tape” for details about tape
backups.

• --backup_dir=PATH

 Same as --backup-dir. The backup directory under which the backup data and metadata are stored,
permanently or temporarily. It is a crucial parameter required for most kinds of backup and restore
operations.

The option is used differently for different operations and under different situations:

• For backup to a single file (including incremental, compressed, encrypted, and cloud backups): Use --
backup-dir to supply a temporary folder to save the backup metadata (including the mysqlbackup
message log, the start and end LSN, and so on) and some temporary output. The backup data,
together with a copy of the metadata, will be stored in a singe file whose name is specified with the --
backup-image option.

However, if --backup-image does not give a full path name, mysqlbackup will actually take the
value of --backup-image as a path relative to the directory specified by --backup-dir, and thus
store the single-file backup under --backup-dir (or, if the --with-timestamp option is used,
under a subdirectory created under --backup-dir, which bears the timestamp in its name).

• For backup to a directory: Use --backup-dir to specify the directory to store the backup data and
metadata (including the mysqlbackup message log, the start and end LSN, and so on). The directory
specified by --backup-dir cannot be a subdirectory of the directory specified by --datadir.

When the --with-timestamp option is also specified, an additional level of subdirectory, with the
timestamp in its name, is created under --backup-dir (see description for the --with-timestamp
option for details). Unless the --with-timestamp option is used, the directory specified by --
backup-dir must be empty, or the backup operation will fail with an error.

• For restoring a single-file backup (including incremental, compressed, encrypted, and cloud backups):
When using copy-back-and-apply-log to restore a single-file backup, use --backup-dir to
supply a temporary folder to store the temporary data of the restore operation. The directory specified
by --backup-dir should be empty—if a non-empty directory is used, the restore operation will still
be carried out, but the restore data might be corrupted.

When restoring a single-file backup created with the option setting use-tts=with-minimum-
locking, the folder specified with --backup-dir is also used for extracting temporarily all the
tables in the backup and for performing an apply-log operation to make the data up-to-date before
restoring them to the server's data directory.

• For restoring a backup directory: Use --backup-dir to specify the location of the backup directory,
from which data will be restored to the server.

• backup_innodb_data_home_dir=PATH

The directory under which the backup's InnoDB data files are to be stored. Specify the option if you want
to put the data files at somewhere other than the default location (which is backup-dir/datadir).
If the value of the parameter is different from backup-dir/datadir, it is stored into the backup-
my.cnf file as innodb_data_home_dir for information, so that mysqlbackup can understand

144

Backup Repository Options

the structure of the backup when it performs various operations on the backup. Together with the
backup_innodb_data_file_path option, it determines the actual file paths of the InnoDB data files
inside the backup.

The value for the parameter is derived as follows:

• If backup_innodb_data_home_dir is not specified, its value will be backup-dir/datadir.

• If backup_innodb_data_home_dir is an absolute path, its value is used as-is, unless it points
to a location that is under backup-dir but is not equal to backup-dir/datadir, in which case
mysqlbackup will throw an error and abort the operation.

• If backup_innodb_data_home_dir is a relative path, the path is taken to be relative to (that is,
underneath) backup-dir, and it should point to backup-dir/datadir, or mysqlbackup will throw
an error and abort the operation.

• An empty string (“”) for backup_innodb_data_home_dir means the value of
backup_innodb_data_file_path is to be taken as an absolute path.

This parameter is applicable only for backup operations; during a restore, the InnoDB data files are
restored under the data directory specified by --datadir, unless another location is specified using the
--innodb_data_home_dir option during restore.

• backup_innodb_data_file_path=VALUE

The InnoDB data file names and sizes. Examples:

ibdata1:32M;ibdata2:32M:autoextend
/abs/path/ibdata1:32M:autoextend
innodb-dir/ibdata1:32M:autoextend

This parameter, together with backup_innodb_data_home_dir, determines where the InnoDB
data files are stored within the backup repository. Any file path specified with this option is taken to
be relative to the value of the backup_innodb_data_home_dir option (that is true even if the file
path is specified in the form of an absolute path, like /abs/path/ibdata1:32M:autoextend).
To specify truly absolute paths for InnoDB data files in the backup with this option, you must set the
backup_innodb_data_home_dir option to "" [empty string], in addition to using an absolute path for
this option.

When the parameter is not specified, it inherits the value from the value of the
innodb_data_file_path option on the backed-up server. If both the source and destination of the
backup attempt to use the same absolute paths that resolves to the same files, the backup is cancelled.

The value of the parameter is stored into the backup-my.cnf file as innodb_data_file_path for
information, so that mysqlbackup can understand the structure of the backup when it performs various
operations on the backup.

• backup_innodb_log_group_home_dir=PATH

The directory under which the backup's InnoDB logs will be stored. Specify this option only if you want to
put the logs at somewhere other than the default location (which is backup-dir/datadir). If the value
of the parameter is different from backup-dir/datadir, it is stored in the backup-my.cnf file as
innodb_log_group_home_dir for information, so that mysqlbackup can understand the structure

145

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_data_file_path

Backup Repository Options

of the backup when it performs various operations on the backup. Note that while you can specify a
directory for saving the logs, the names of the log files are fixed and not reconfigurable by this option.

The value for the parameter is derived as follows:

• If backup_innodb_log_group_home_dir is not specified, its value will be backup-dir/
datadir.

• If backup_innodb_log_group_home_dir is an absolute path, its value is used as-is, unless it
points to a location that is under backup-dir but is not equal to backup-dir/datadir, in which
case mysqlbackup will throw an error and abort the operation.

• If backup_innodb_log_group_home_dir is a relative path, the path is taken to be relative to (that
is, underneath) backup-dir, and it should point to backup-dir/datadir, or mysqlbackup will
throw an error and abort the operation.

• An empty string (“”) for the option produces an error.

This parameter is applicable only for backup operations; during a restore, the InnoDB log files are
restored under the data directory specified by --datadir, unless another location is specified using the
--innodb_log_group_home_dir option during restore.

• backup_innodb_undo_directory=PATH

The relative or absolute directory path where separate tablespaces are created for the InnoDB
undo logs during the backup. Specify the option if you want to put the undo logs at somewhere
other than the default location (which is backup_innodb_log_group_home_dir). If the value of
the parameter is different from backup-dir/datadir, it is stored in the backup-my.cnf file as
innodb_undo_directory for information, so that mysqlbackup can understand the structure of the
backup when it performs various operations on the backup.

The value for the parameter is derived as follows:

• If backup_innodb_undo_directory is not specified, the option takes up the same value as
backup_innodb_log_group_home_dir.

• If backup_innodb_undo_directory is an absolute path, its value is used as-is, unless it points
to a location that is under backup-dir but is not equal to backup-dir/datadir, in which case
mysqlbackup will throw an error and abort the operation.

• If backup_innodb_undo_directory is a relative path, the path is taken to be relative to (that is,
underneath) backup-dir and it should point to backup-dir/datadir, or mysqlbackup will throw
an error and abort the operation.

• An empty string (“”) for the option produces an error.

This parameter is applicable only for backup operations; see the description for undo log files [12] on
where undo logs are restored.

• --with-timestamp

 Creates a subdirectory underneath the backup directory, with a name formed with the timestamp of
the backup operation. It is useful for maintaining a single backup directory containing many backup
snapshots put under different subdirectories.

Default: no timestamped subdirectory is created. To reuse the same backup directory for a new backup
without using this option, remove the previous backup image or backup files manually.

146

Metadata Options

20.5 Metadata Options
These options control the generation of metadata about backups. Some metadata is stored in the backup
directory, other metadata is stored in tables within the mysql database of the backed-up instance.

• --no-history-logging

 Turns off the recording of backup progress and history in logging tables inside the backed-up database
server. See Section 17.3, “Using the MySQL Enterprise Backup Logs” for details about these tables.

Default: history logging is enabled.

• --comments=STRING

Command-Line Format --comments=STRING

Type String

 Specifies a comment string that describes or identifies the backup. Surround multi-word comments
with appropriate quotation marks. The string is saved in a file meta/comments.txt in the backup. For
example: --comments="Backup of HR data on 2010/12/10".

• --comments-file=PATH

Command-Line Format --comments-file=PATH

Type File name

 Specifies path to a file containing comments describing the backup. This file is saved as meta/
comments.txt in the backup. For example: --comments-file=/path/to/comments.txt.

This option overrides the --comments option if both are specified.

20.6 Compression Options
For an overview on backup compression, see Section 4.3.4, “Making a Compressed Backup”.

• --compress

 Create backup in compressed format. For a regular backup, among all the storage engines supported
by MySQL, only data files of the InnoDB format are compressed, and they bear the .ibz extension after
the compression. Similarly, for a single-image backup, only data files of the InnoDB format inside the
backup image are compressed. The binary log and relay log files are compressed and saved with the
.bz extension when being included in a compressed backup.

You cannot use the --compress option together with the --incremental-with-redo-log-only
option.

Default: compression is disabled.

• --compress-method=ALGORITHM

Command-Line Format --compress-method=ALGORITHM

Type Enumeration

Default Value lz4

Valid Values zlib

147

Compression Options

lz4

lzma

punch-hole

none

 Specifies the algorithm for backup compression, or enables support for InnoDB transparent page
compression. The supported arguments for the option and the algorithms they represent are:

• lz4: LZ4 r109. Out of the three compression algorithms that are supported, this is the most efficient
one, typically taking the shortest backup and restore times with the lowest CPU cost. See lz4
—Extremely Fast Compression algorithm for more details, including a comparison with other
compression algorithms.

• lzma: LZMA 9.20. Out of the three supported compression algorithms, this typically provides the
highest compression ratio; but it is also far more expensive in terms of CPU cost than the other two
options. Thus we do not recommend this for active systems, but only for off-hour or inactive database
servers, or where I/O rates are extremely low.

• zlib: ZLIB v1.2.3. This is in between the other two supported compression algorithms in terms of
both speed and compression ratio. ZLIB was the only compression algorithm available for MySQL
Enterprise Backup versions prior to 3.10.

• punch-hole: (Enables support for transparent page compression for InnoDB tables for directory
backups, which means that when the target platform for the mysqlbackup backup or restore

148

https://dev.mysql.com/doc/refman/8.3/en/innodb-page-compression.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-page-compression.html
http://code.google.com/p/lz4/
http://code.google.com/p/lz4/
https://dev.mysql.com/doc/refman/8.3/en/innodb-page-compression.html

Compression Options

operation supports hole punching, mysqlbackup keeps the punched holes in the page-compressed
InnoDB files it transfers.

Limitations: The feature is NOT supported in the following cases, for which punched holes are
removed from the InnoDB files:

• For single-file backups.

• For TTS, incremental, compressed, or encrypted backups.

• When a backup is not created in a file system (for example, when cloud storage is used to save the
backup), or when the file system does not support sparse files.

• For those pages of InnoDB data files that are modified by the redo log in an apply-log operation.

When the feature is enabled but hole punching fails, mysqlbackup issues a warning message after
the operation is completed; for example:

WARNING: "Punch hole" operation failed.

Or:

WARNING: InnoDB datafiles in the backup are larger than in the source because of missing sparse file support.

A backup can be taken with --compress-method=punch-hole and then be restored later
without using the feature; the reverse is also true: a backup taken without using --compress-
method=punch-hole can be restored later with the feature.

Note

punch-hole is a special argument with the --compress-method option for
supporting transparent page compression. --compress-method=punch-
hole is ignored when used together with any other mysqlbackup
compression options.

• none: No compression.

Default: lz4. Explicitly specifying a value other than punch-hole for the option through a configuration
file or command line automatically enables the --compress option.

• --compress-level=LEVEL

Command-Line Format --compress-level=LEVEL

Type Numeric

Default Value 1

Minimum Value 0

Maximum Value 9

 Specifies the level of compression, ranging from “0” to “9”: “0 ”disables compression; “1” is fastest
compression, and “9” is highest (and slowest) compression. The option is only meaningful for
compression using the ZLIB or LZMA algorithm; it is ignored when any other algorithms are selected by
the --compress-method option.

Default: 1 (lowest and fastest compression). Explicitly specifying a non-zero value through a
configuration file or command line automatically enables the --compress option.

149

Incremental Backup Options

• --uncompress

 When used with the extract operation, uncompresses files that are extracted from a compressed
single-file backup (the option is not required when the --src-entry option is used).

20.7 Incremental Backup Options

For an overview of incremental backups and usage examples for these options, see Section 4.3.3, “Making
a Differential or Incremental Backup” and Section 5.1.3, “Restoring an Incremental Backup”.

To take an incremental backup, specify the --incremental or --incremental-with-redo-
log-only, along with the --backup-dir option. Depending on whether --incremental or --
incremental-with-redo-log-only is used, other options are required or recommended. All InnoDB
data modified after the LSN (specified directly or indirectly by the options you use) is copied into the
incremental backup.

• --incremental[={page-track|full-scan|optimistic}]

Command-Line Format --incremental

Type Enumeration

Default Value full-scan

Valid Values page-track

full-scan

optimistic

 When performing an incremental backup, there are three possible values for this option:

• page-track: mysqlbackup looks for changed pages in the InnoDB data files that have been
modified since the last backup using the page tracking functionality on the server and then copies
them. This is potentially the fastest way for mysqlbackup to create incremental backups. Even with
this value set, the page tracking functionality is only used when certain requirements are satisfied; see
Incremental Backup Using Page Tracking for details.

• full-scan: mysqlbackup scans all InnoDB data files in the server's data directory to find pages that
have been changed since the last backup and copies them.

• optimistic: mysqlbackup only scans for changed pages in the InnoDB data files that have been
modified since the last backup and then copies them. In general, optimistic incremental backups are
faster than full-scan ones when not many tables in the database have been modified; however a few
restrictions apply to this feature. See Full-scan versus Optimistic Incremental Backup for details.

Default: page-track . However, if the page tracking functionality cannot be utilized by mysqlbackup
for some reasons (see Incremental Backup Using Page Tracking for details), mysqlbackup performs
a full-scan backup instead if the --incremental option is not set, or throws an error when --
incremental=page-track.

During a backup, the --incremental option also requires the use of either the --incremental-
base option or the --start-lsn option. Only InnoDB tables are backed up incrementally. By default,
all non-InnoDB files are included into the incremental backup and in their fullness. To exclude non-
InnoDB data in an incremental backup, use the --only-innodb option.

The value for the option has meaning only when the option is used an incremental backup.

150

Incremental Backup Options

For a copy-back-and-apply-log, copy-back, and apply-log operation on an incremental
backup, there is no need to use the option. .

• --incremental-with-redo-log-only

 Specifies that an incremental backup is to be created using only the redo log. This alternate type of
incremental backup has different performance characteristics and operational limitations compared
to backups created with the --incremental option; see Creating Incremental Backups Using Only
the Redo Log for a discussion on their differences, and for how to perform properly a redo-log-only
incremental backup.

To use this option, you also need to specify the --incremental-base option or the --start-lsn.
Just like with the --incremental option, only InnoDB tables are backed up incrementally. By default,
all non-InnoDB files are included into the incremental backup and in their fullness. To exclude non-
InnoDB data in an incremental backup, use the --only-innodb option.

You cannot use the --compress option together with the --incremental-with-redo-log-only
option.

• --incremental-base=mode:argument

Command-Line Format --incremental-base=mode:argument

Type String

 With this option, the mysqlbackup retrieves the information needed to perform incremental backups
from the metadata inside the backup directory rather than from the --start-lsn option. It saves
you from having to specify an ever-changing, unpredictable LSN value when doing a succession of
incremental backups. Instead, you specify a way to locate the previous backup directory through the
combination of mode : argument in the option syntax. The alternatives are:

• history:{last_backup | last_full_backup}

The prefix history: followed by one of the two possible values:

• last_backup: This makes mysqlbackup query the end_lsn value from the last successful non-
TTS backup as recorded in the backup_history table of the server instance that is being backed
up.

• last_full_backup: This works similarly as the value last_backup, except that it makes
mysqlbackup look for the last full backup that was taken and use it as the base backup, thus
creating a differential backup.

Note

If the last full or partial backup made was a TTS backup, mysqlbackup skips
it, and keeps searching the backup history until it finds the last non-TTS backup
and then returns its end_lsn value.

• dir:directory_path

Advanced: You specify the prefix dir: followed by a directory path argument, which points to the
previous directory backup. With the first incremental backup, you specify the directory holding the
full directory backup; with the second incremental backup, you specify the directory holding the first
incremental directory backup, and so on.

151

Partial Backup and Restore Options

• --start-lsn=LSN

Command-Line Format --start-lsn=LSN

Type Numeric

 In an incremental backup, specifies the highest LSN value included in a previous backup. You can
get this value from the output of the previous backup operation, or from the backup_history
table's end_lsn column for the previous backup operation. Always used in combination with the --
incremental option; not needed when you use the --incremental-base option; not recommended
when you use the --incremental-with-redo-log-only mechanism for incremental backups.

Note

No binary log files are copied into the incremental backup if the --start-
lsn option is used. To include binary log files for the period covered by the
incremental backup, instead of --start-lsn, use the --incremental-base
option, which provides the necessary information for mysqlbackup to ensure
that no gap exists between binary log data included in the previous backup and
the current incremental backup.

• --incremental-backup-dir=PATH

 Advanced: Specifies the location for data of an incremental directory backup. When creating or
restoring an incremental directory backup, the option serves the same function as --backup-dir does
for backups and restores in general, and the option can in fact be used interchangeably with --backup-
dir for directory backups. See the description for --backup-dir for details.

For an apply-incremental-backup operation, the option specifies the incremental backup directory
whose data is used to update a directory backup specified by the --backup-dir option.

Note

Do not use this option with any operations for image backups, for which the
option has no meaning.

20.8 Partial Backup and Restore Options
To select specific data to be backed up or restored, use the partial backup and restore options described in
this section.

For an overview of partial backup and restore, as well as usage examples on the following options, see
Section 4.3.5, “Making a Partial Backup” and Section 5.1.4, “Table-Level Recovery (TLR)”.

• --include-tables=REGEXP

Command-Line Format --include-tables=REGEXP

Type String

 Include for backup or restoration only those tables (both Innodb and non-Innodb) whose fully qualified
names (in the form of db_name.table_name) match the regular expression REGEXP. The regular
expression syntax used is the extended form specified in the POSIX 1003.2 standard. For example, --
include-tables=^mydb\.t[12]$ matches the tables t1 and t2 in the database mydb. On Unix-like
systems, quote the regular expression appropriately to prevent interpretation of shell meta-characters.
mysqlbackup throws an error when the option is used without a regular expression being supplied with
it.

152

Partial Backup and Restore Options

While mysqlbackup understands the MySQL convention of quoting the database or the table name (or
both) by backticks (see Schema Object Names), there is no need to include the backticks in the regular
expression for --include-tables.

The option can also be used with the backup-dir-to-image and image-to-backup-dir
commands to select tables when creating or unpacking a backup image.

mysqlbackup throws an error when no table matches the regular expression specified with --
include-tables.

When used together with the --exclude-tables option, --include-tables is applied first,
meaning mysqlbackup first selects all tables specified by --include-tables and then excludes from
the set those tables specified by --exclude-tables.

The option cannot be used together with the legacy --include option.

• --exclude-tables=REGEXP

Command-Line Format --exclude-tables=REGEXP

Type String

 Exclude for backup or restoration all tables (both Innodb and non-Innodb) whose fully qualified
names (in the form of db_name.table_name) match the regular expression REGEXP. The regular
expression syntax is the extended form specified in the POSIX 1003.2 standard. For example, --
exclude-tables=^mydb\.t[12]$ matches the tables t1 and t2 in the database mydb. On Unix-like
systems, quote the regular expression appropriately to prevent interpretation of shell meta-characters.
mysqlbackup throws an error when the option is used without a regular expression being supplied with
it.

While mysqlbackup understands the MySQL convention of quoting the database or the table name (or
both) by backticks (see Schema Object Names), there is no need to include the backticks in the regular
expression for --exclude-tables.

The option can also be used with the backup-dir-to-image and image-to-backup-dir
commands to select tables when creating or unpacking a backup image.

The option cannot be used together with the legacy --include option.

When used together with the --include-tables option, --include-tables is applied first,
meaning mysqlbackup first select all tables specified by --include-tables, and then exclude from
the set those tables specified by --exclude-tables.

• --only-known-file-types

 For back up only. By default, all files in the database subdirectories under the data directory of the
server are included in the backup (see Table 1.1, “Types of Files in a Backup” for details). If the --
only-known-file-types option is specified, mysqlbackup only backs up those types of files that
are data files for MySQL or its built-in storage engines, which, besides the ibdata* files, have the
following extensions:

• .ARM: ARCHIVE table metadata

• .ARZ: ARCHIVE table data

• .CSM: CSV table metadata

153

https://dev.mysql.com/doc/refman/8.3/en/identifiers.html
https://dev.mysql.com/doc/refman/8.3/en/identifiers.html

Partial Backup and Restore Options

• .CSV: CSV table data

• .ibd: InnoDB tablespace created using the file-per-table mode

• .MRG: Merge storage engine references to other tables

• .MYD: MyISAM data

• .MYI: MyISAM indexes

• --only-innodb

 For back up only. Back up only InnoDB data and log files. All files created by other storage engines are
excluded. Typically used when there is no need to copy MyISAM files.

The option is not compatible with the --replica-info option.

Default: backups include files from all storage engines.

• --use-tts[={with-minimum-locking|with-full-locking}]

Command-Line Format --use-tts[={with-minimum-locking|
with-full-locking}]

Type Enumeration

Default Value with-minimum-locking

Valid Values with-minimum-locking

with-full-locking

 Enable selective backup of InnoDB tables using transportable tablespaces (TTS). This is to be used in
conjunction with the --include-tables and --exclude-tables options for selecting the InnoDB
tables to be backed up by regular expressions. Using TTS for backups offers the following advantages:

• Backups can be restored to a different server

• The system tablespace is not backed up, saving disk space and I/O resources

• Data consistency of the tables is managed by MySQL Enterprise Backup

However, the option has the following limitations:

• Individual partitions cannot be selectively backed up or restored. Tables selected by the --include-
tables and --exclude-tables options are always backed up or restored in full.

• Can only backup tables that are stored in their own individual tablespaces (i.e., tables created with the
innodb_file_per_table option enabled)

• Non-InnoDB tables are not backed up

• Cannot be used for incremental backups

154

https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_file_per_table

Partial Backup and Restore Options

• Does not include the binary log or the relay log in the backup
See also Appendix B, Limitations of MySQL Enterprise Backup for some more minor limitations.

There are two possible values for the option:

• with-minimum-locking: Hot copies of the selected tables are backed up, and the tables are then
locked in read-only mode while the redo log (with only the portion containing the relevant changes
made after the hot backup) is being included in the backup. Any tables created during the locking
phase are ignored.

• with-full-locking: The selected tables are locked in read-only mode while they are being backed
up. The redo log is not included in the backup. Any tables created during the locking phase are
ignored.

Note

Due to a known issue, when creating a backup using TTS for a server
containing tables with a mix of the Antelope and Barracuda file formats, do
NOT apply full locking on the tables.

Default: with-minimum-locking

To use the --use-tts option, extra privileges are required of the user through which mysqlbackup
connects to the server; see Section 4.1.2, “Grant MySQL Privileges to Backup Administrator” for details.

There are some special requirements for restoring backups created with the --use-tts option; see
Section 5.1.5, “Restoring Backups Created with the --use-tts Option” for details.

• --rename=“old_table_name to new_table_name”

 Rename a single table when it is selected by the --include-tables or --exclude-tables option
(or both together) to be restored to a database server from a backup created using the --use-tts
option. The table named old_table_name is renamed to new_table_name. Note that when using the
option:

• The --include-tables or --exclude-tables option (or both together) must be used in the
restore command for the --rename option to work, unless there is only one table in the backup. Also,
the --include-tables or --exclude-tables option (or both together) should specify one and
only one table for restore when --rename is used, or the restore will fail.

• old_table_name and new_table_name can be fully qualified (containing the database names, in
the form of old_db_name.old_tb_name and new_db_name.new_tb_name) or not. By using fully-
qualified table names, a table can be restored into a database different from its original one. If the
database specified with new_db_name does not exist on the target server, it will be created during the
restore process. Regular expressions are not accepted in the argument of the option.

• The restore fails if old_table_name does not match with the table specified using the --include-
tables or --exclude-tables option (or both together), or if new_table_name already exists in
the target database.

• The requirements listed in Section 5.1.5, “Restoring Backups Created with the --use-tts Option”
apply.

See Section 5.1.5, “Restoring Backups Created with the --use-tts Option”, for more information on
selective restores, and for an example of table renaming.

155

Legacy Partial Backup Options

Legacy Partial Backup Options

Important

Information in this subsection is only for using the legacy option of --include,
which has been deprecated. For creating partial backups, use the --include-
tables and --exclude-tables options instead.

Besides --include, some other options are also discussed below, but the
information is only for using the options together with --include.

For an overview of partial backups and usage examples for these legacy options, see Making a Partial
Backup with the Legacy Options (Deprecated).

• --include=REGEXP

 This option is for filtering InnoDB tables for backup. The InnoDB tables' fully qualified names
are checked against the regular expression specified by the option. If the REGEXP matches
db_name.table_name, the table is included. The regular expression syntax used is the extended form
specified in the POSIX 1003.2 standard. For example, --include=mydb\.t[12] matches the tables
t1 and t2 in the database mydb. mysqlbackup throws an error when the option is used without a
regular expression being supplied with it.

This option only applies to InnoDB tables created with the MySQL option innodb_file_per_table
enabled (which is the default setting for MySQL 5.6 and after), in which case the tables are in separate
files that can be included or excluded from the backup. All tables in the InnoDB system tablespace are
always backed up.

When no InnoDB table names match the specified regular expression, an error is thrown with a message
indicating there are no matches.

Default: Backs up all InnoDB tables.

Note

This option does not filter non-InnoDB tables.

• --use-tts[={with-minimum-locking|with-full-locking}]

Enable selective backup of InnoDB tables using transportable tablespaces (TTS). This is to be used in
conjunction with the --include option, which selects the InnoDB tables to be backed up by a regular
expression. Using TTS for backups offers the following advantages:

• Backups can be restored to a different server

• The system tablespace is not backed up, saving disk space and I/O resources

• Data consistency of the tables is managed by MySQL Enterprise Backup

See important discussions here on the limitations with using the --use-tts option.

There are two possible values for the option:

• with-minimum-locking: Hot copies of the selected tables are backed up, and the tables are then
locked in read-only mode while the redo log (with only the portion containing the relevant changes

156

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table

Single-File Backup Options

made after the hot backup) is being included in the backup. Any tables created during the locking
phase are ignored.

• with-full-locking: The selected tables are locked in read-only mode while they are being backed
up. The redo log is not included in the backup. Any tables created during the locking phase are
ignored.

Default: back up with minimum locking

There are some special requirements for restoring backups created with the --use-tts option; see the
explanations in Section 5.1, “Performing a Restore Operation” for details.

20.9 Single-File Backup Options
These options are associated with single-file backups. You use them in combination with the
mysqlbackup commands backup-to-image, image-to-backup-dir, backup-dir-to-image,
copy-back-and-apply-log, list-image, and extract (not all of the options are applicable to all
these commands though). For usage examples, see Section 4.3.1, “Making a Single-File Backup”.

• --backup-image=IMAGE

See description of the option in Section 20.4, “Backup Repository Options”

• --src-entry=STRING

Command-Line Format --src-entry=STRING

Type Path name

 Identifies files or directories whose pathnames contain the STRING to be extracted from a single-file
backup. This option is used with the extract and image-to-backup-dir commands. Optionally,
you can also specify the --dst-entry option to extract a file or directory to a location different from its
original path name.

For example: src-entry=d1/f2 extracts only one file, f2, while src-entry=d1/ extracts the entire
directory tree for the d1 folder (notice the slash (/) at the end of the argument, without which all files or
folders containing the string d1 in their pathnames will be extracted).

Default: All entries are extracted.

Notes

• The following items are always extracted from the backup, irrespective of the
value of --src-entry (and the locations of their extraction are unaffected by
the --dst-entry option):

• The file backup-my.cnf.

• A datadir folder (which only contains items matched by the --src-entry
option).

• A meta folder, which contains the file backup_variables.txt, a log
file for the extract operation, and also items matched by the --src-entry
option.

• The option is currently not supported for the extract command for cloud
backups, which can only be extracted in full.

157

Single-File Backup Options

• --dst-entry=PATH

Command-Line Format --dst-entry=PATH

Type Path name

 Used with single-file backups to extract a file or directory to a user-specified path. Use of this option
requires specifying the --src-entry option. This option specifies the destination path for the entry
selected from the backup image by --src-entry. The entry could point to a single file or single
directory. For example, to retrieve the comments file from a backup image and store it as /tmp/my-
comments.txt, use a command like the following:

mysqlbackup --src-entry=meta/comments.txt \
 --dst-entry=/tmp/my-comments.txt \
 --backup-image=/var/myimage.bki extract

Similarly, to extract all the contents of the datadir/pets/ directory in a single-file backup as /pets-
extracted/, use a command like the following:

mysqlbackup --src-entry=datadir/pets/ \
 --dst-entry=/pets-extracted/ \
 --backup-image=/var/myimage.bki extract

The specified path is a simple path name without any wildcard expansion or regular expressions.

In case the argument for --src-entry matches multiple files or folders, they are all extracted into a
folder whose pathname, relative to the destination folder, is given by the argument of --dst-entry
(unless the argument specifies an absolute path).

Default: Original pathnames are used to create files under the destination folder.

• --sbt-database-name=NAME

Command-Line Format --sbt-database-name=NAME

Type String

Default Value MySQL

 For tape backups, this option can be used as a hint to the Media Management Software (MMS) for the
selection of media and policies. This name has nothing to do with MySQL database names. It is a term
used by the MMS. See Section 4.3.1.2, “Backing Up to Tape” for usage details.

• --sbt-lib-path=PATH

Command-Line Format --sbt-lib-path=PATH

Type File name

 Path name of the SBT library used by the software that manages tape backups. If this is not specified,
operating system-specific search methods are used to locate libobk.so (UNIX) or orasbt.dll
(Windows). See Section 4.3.1.2, “Backing Up to Tape” for usage details.

• --sbt-environment=VAR=value,...

Command-Line Format --sbt-
environment=VAR1=value1[,VAR2=value2[,...]]
SBT API provider)

158

Performance / Scalability / Capacity Options

Type String

 Passes product-specific environment variables to Oracle Secure Backup or another SBT-compliant
backup management product, as an alternative to setting and unsetting environment variables before
and after each mysqlbackup invocation.

The parameter to this option is a comma-separated list of key-value pairs, using
syntax similar to that of the RMAN tool for the Oracle Database. For example, --sbt-
environment=VAR1=val1,VAR2=val2,VAR3=val3.

Consult the documentation for your backup management product to see which of its features can be
controlled through environment variables. For example, the Oracle Secure Backup product defines
environment variables such as OB_MEDIA_FAMILY, OB_DEVICE, and OB_RESOURCE_WAIT_TIME.
You might set such variables with the mysqlbackup by specifying an option such as --sbt-
environment="OB_MEDIA_FAMILY=my_mf,OB_DEVICE=my_tape".

If the argument string contains any whitespace or special characters recognized by the
command shell, enclose the entire argument string in quotation marks. To escape an equal
sign or comma, use the \ character. For example, --sbt-environment="VAR1=multiple
words,VAR2=<angle_brackets>,VAR3=2+2\=4".

• --disable-manifest

 Disable generation of manifest files for a backup operation, which are backup_create.xml and
backup_content.xml present in the meta subdirectory.

20.10 Performance / Scalability / Capacity Options
These options limit the resources used by the backup process, in order to minimize backup overhead for
busy or huge databases, or specify behaviors of the process when encountering resource issues.

• --number-of-buffers=num_buffers

Command-Line Format --number-of-buffers=NUMBER

Type Numeric

Default Value 14

Minimum Value 1

Specifies the number of buffers, each 16MB in size, to use during multithreaded options.

Use a high number for CPU-intensive processing such as backup, particularly when using compression.
Use a low number for disk-intensive processing such as restoring a backup. This value should be at
least as high as the number of read threads or write threads, depending on the type of operation.

Default: currently 14.

For compression or incremental backup operations, the buffer size is slightly more than 16MB to
accommodate the headers.

One additional buffer is used for single-file incremental backup and single-file compressed backup.

Compressed backup, compressed single-file backup, and uncompress apply-log operations require one
additional buffer for each process thread.

159

http://docs.oracle.com/cd/E14812_01/doc/doc.103/e12838/rman_params.htm
http://docs.oracle.com/cd/E14812_01/doc/doc.103/e12838/rman_params.htm

Performance / Scalability / Capacity Options

If you change the number of read, write, and processing threads, you can experiment with changing this
value so that it is slightly larger than the total number of threads specified by those other options. See
Section 13.1, “Optimizing Backup Performance” and Section 13.2, “Optimizing Restore Performance”
for additional advice about recommended combinations of values for this and other performance-related
options for various hardware configurations, such as RAID or non-RAID storage devices.

• --read-threads=num_threads

Command-Line Format --read-threads=NUMBER

Type Numeric

Default Value 1

Minimum Value 1

Maximum Value 15

Specifies the number of threads to use for reading data from disk. This option applies to these kinds
of operations: copy-back, copy-back-and-apply-log (for directory backups only), extract,
backup, and backup-and-apply-log. If you specify a value of 0, it is silently adjusted to 1. The
maximum is 15. If you supply a negative value, it is silently adjusted to 15. For the following operations,
the number of read threads is always 1 regardless of this option's setting:

• Restores of single-file backups

• apply-log operations and the apply-log phase of a copy-back-and-apply-log, backup-and-
apply-log, or apply-incremental-backup operation.

See Section 13.1, “Optimizing Backup Performance” and Section 13.2, “Optimizing Restore
Performance” for advice about recommended combinations of values for --read-threads, --
process-threads, and --write-threads for various hardware configurations, such as RAID or
non-RAID storage devices.

Default: 1.

• --process-threads=num_threads

Command-Line Format --process-threads=NUMBER

Type Numeric

Default Value 6

Minimum Value 1

Maximum Value 15

Specifies the number of threads to use for processing data, including compression and uncompression,
encryption and decryption, apply-log operations, and packing and extracting of backup images. For
backup-and-apply-log, copy-back-and-apply-log, and apply-incremental-backup, --
process-threads sets the worker threads number for the apply-log phase of the operation. The option
is ignored for those operations that do not involve data processing like copy-back (unless decryption

160

Performance / Scalability / Capacity Options

or uncompression is involved), backup-dir-to-image , or a backup operation that uses the --
incremental-with-redo-log-only option.

Default: 6 for all operations to which the option is applicable.

If you specify a value of 0, it is silently adjusted to 1. The maximum is 15. If you supply a negative value,
it is silently adjusted to 15. See Section 13.1, “Optimizing Backup Performance” and Section 13.2,
“Optimizing Restore Performance” for advice about recommended combinations of values for --read-
threads, --process-threads, and --write-threads for various hardware configurations, such as
RAID or non-RAID storage devices.

• --write-threads=num_threads

Command-Line Format --write-threads=NUMBER

Type Numeric

Default Value 1

Minimum Value 1

Maximum Value 15

Specifies the number of threads to use for writing data to disk. This option applies to these kinds of
operations: copy-back, copy-back-and-apply-log, extract, backup, and backup-and-
apply-log (when applied to directory backups). For the supported operations, multiple write threads
are supported for any write target that is seekable; --write-threads is forced to be 1 only when the
write target is non-seekable. The option is ignored for other operations like single-file backups (uses 1
write thread always), list-image (uses no write threads), and validate (uses no write threads).

If you specify a value of 0, it is silently adjusted to 1 (for operations that uses write threads). The
maximum is 15. If you supply a negative value, it is silently adjusted to 15.For apply-log operations
and the apply-log phase of copy-back-and-apply-log, backup-and-apply-log, or apply-
incremental-backup, the number of write threads is always 0 regardless of this option's setting. See
Section 13.1, “Optimizing Backup Performance” and Section 13.2, “Optimizing Restore Performance” for
advice about recommended combinations of values for --read-threads, --process-threads, and
--write-threads for various hardware configurations, such as RAID or non-RAID storage devices.

Default: 1.

• --limit-memory=MB

Command-Line Format --limit-memory=MB

Type Numeric

Default Value 100 for apply-log (without
uncompression), 400 for other
operations

Minimum Value 0

Maximum Value 999999

161

Performance / Scalability / Capacity Options

Unit megabyte

 Specify maximum memory in megabytes that can be used by mysqlbackup. It applies to all operations.
Do not include any suffixes such as mb or kb in the option value.

Default: 100 for apply-log without uncompression, 400 for all other operations (in megabytes).

The memory limit specified by this option also caps the number of 16MB buffers available for
multithreaded processing. For example, with a 400 MB limit, the maximum number of buffers is 25
(except for a cloud backup, for which extra memory is needed, and the maximum number of buffers
is 18). If additional buffers are required because you increased the values for --read-threads, --
process-threads, --write-threads, and/or --number-of-buffers, increase the --limit-
memory value accordingly.

• --sleep=MS

Command-Line Format --sleep=MS

Type Numeric

Default Value 0

Unit millisecond

 Specify the number in milliseconds to sleep after copying a certain amount of data from InnoDB tables.
Each block of data is 1024 InnoDB data pages, typically totalling 16MB. This is to limit the CPU and I/O
overhead on the database server.

Default: 0 (no voluntary sleeps).

• --no-locking

 Disables all locking during backup (see The Backup Process for details). It can be used to back up
a server with less disruption to normal database processing. There could be inconsistencies in both
InnoDB and non-InnoDB data if any changes are made while those files are being backed up.

• --lock-wait-timeout

Command-Line Format --lock-wait-timeout=S

Type Numeric

Default Value 60

Minimum Value 1

Unit second

 The option is no longer supported.

• --page-reread-time=MS

Command-Line Format --page-reread-time=MS

Type Numeric

Default Value 100

162

Performance / Scalability / Capacity Options

Unit millisecond

 Interval in milliseconds that mysqlbackup waits before re-reading a page that fails a checksum test.
A busy server could be writing a page at the same moment that mysqlbackup is reading it. Can
be a floating-point number, such as 0.05 meaning 50 microseconds. Best possible resolution is 1
microsecond, but it could be worse on some platforms. Default is 100 milliseconds (0.1 second).

• --page-reread-count=number

Command-Line Format --page-reread-count=number

Type Numeric

Default Value 500

 Maximum number of re-read attempts, when a page fails a checksum test. A busy server could be
writing a page at the same moment that mysqlbackup is reading it. If the same page fails this many
checksum tests consecutively, with a pause based on the --page-reread-time option between each
attempt, the backup fails. Default is 500.

• --on-disk-full={abort|abort_and_remove|warn}

Command-Line Format --on-disk-full=option

Type Enumeration

Default Value abort

Valid Values abort

warn

abort_and_remove

 Specifies the behavior when a backup process encounters a disk-full condition. This option is only for
backup operations (backup, backup-and-apply-log, and backup-to-image).

• abort: Abort backup, without removing the backup directory. The disk remains full.

• abort_and_remove: Abort backup and remove the backup directory.

• warn: Write a warning message every 30 seconds and retry backup until disk space becomes
available.

Default: abort.

• --skip-unused-pages

 Skip unused pages in tablespaces when backing up InnoDB tables. This option is applicable to the
backup and backup-to-image operations, but not to incremental backups. The option is ignored by
the backup-and-apply-log operation.

Note that backups created with the --skip-unused-pages option cannot be restored using copy-
back-and-apply-log.

Unused pages are free pages often caused by bulk delete of data. By skipping the unused pages during
backups, this option can reduce the backup sizes and thus the required disk space and I/O resources
for the operations. However, subsequent apply-log operations on the backups will take more time to
complete, as the unused pages are inserted back into the tables during the operations.

163

https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_page
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_page

Performance / Scalability / Capacity Options

• --skip-binlog

 Skip including the binary log files in the backup during a backup operation, or skip copying the binary log
files onto a server during a restore operation.

Binary log files, together with the binary log index file, are backed up and restored by default for all kinds
of backups (full, incremental (see Binary Log and Relay Log Restore for exceptions), compressed, partial
(except for TTS backups), single-file, etc.). See Table 1.1, “Types of Files in a Backup”, for details. Use
this option to skip backing up binary logs for the following situations if resource or performance issues
arise.:

The option makes binary log to be skipped not just for the current backup operation, but also for all
subsequent incremental backups that are based on the current backup.

When an incremental backup is restored with the --skip-binlog option, mysqlbackup renames any
binary log files that have already been restored onto the server by adding to them the .old extension.

• --skip-relaylog

 When working with a replica server, skip including the relay log files in the backup during a backup
operation, or skip copying the relay log files onto a server during a restore operation.

Relay log files, together with the relay log index file and the master.info and the slave.info files,
are backed up and restored by default for all kinds of backups (full, incremental (see Binary Log and
Relay Log Restore for exceptions), compressed, partial (except for TTS backups), single-file, etc.) of a
replica server. See Table 1.1, “Types of Files in a Backup”, for details. Use this option to skip backing up
or restoring relay logs if resource, performance, or other issues arise.

Note

If a user runs a FLUSH LOGS statement while backup is in progress for a replica,
the backup process will fail. Use the--skip-relaylog option if you expect a
FLUSH LOGS statement will be run during the backup and it is not necessary to
include the relay logs in the backup.

• --no-redo-log-archive

 Skip using redo log archiving on the server during backup, which is used by default. The option has
no effects for operations other than backups. See Chapter 7, Backing up Using Redo Log Archiving for
details.

• --skip-final-rescan

 Skip the final rescan for InnoDB tables that have been modified by DDL operations, which is supposed
to take place after mysqlbackup puts the database server under a backup lock near the end of a
backup operation. This potentially shortens the duration for the lock and reduces the backup's impact on
the server's normal operation, especially when many tables are being backed up.

Warning

This option can cause an incomplete or inconsistent backup if, during the backup
operation, DDL operations are executed on any InnoDB tables whose file-per-
table tablespaces are outside the MySQL data directory (i.e., any InnoDB tables
created using the DATA DIRECTORY table option).

The option is ignored for backups using the --incremental-with-redo-log-only option and for
non-backup operations.

164

https://dev.mysql.com/doc/refman/8.3/en/flush.html
https://dev.mysql.com/doc/refman/8.3/en/flush.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-redo-log.html#innodb-redo-log-archiving
https://dev.mysql.com/doc/refman/8.3/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/innodb-create-table-external.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-create-table-external.html

Performance / Scalability / Capacity Options

• --optimistic-time[=DATE-TIME]

Command-Line Format --optimistic-time=DATE-TIME

Type String

Default Value now

 Perform an optimistic backup with the value specified with the option as the “optimistic time”—a
time after which the tables that have not been modified are taken as “inactive tables.” The “inactive
tables”are believed to be unlikely to change during the backup process. The inactive tables are backed
up in the optimistic phase of the backup, and all other tables are backed up in the normal phase. See
Section 4.3.6, “Making an Optimistic Backup” for details on the concept, use cases, and command
samples for an optimistic backup.

Accepted formats for specifying the option include:

• now: This includes all tables into the optimistic phase of the backup process. It is the default value for
the option when no value is specified.

• {Number}{Unit}: Indicates the optimistic time as a time at a certain duration into the past. {Unit}
can be any one of years, months, hours, and minutes. Some examples for option strings in this
format include: 5years, 2days,13months, 23hours, and 35minutes.

• A date-time format in any of the following forms: YYMMDD, YYYYMMDD, YYMMDDHHMMSS,
YYYYMMDDHHMMSS, YY-MM-DD, YYYY-MM-DD, YY-MM-DD HH.MM.SS, or YYYYMMDDTHHMMSS (where
T is the character T).

When both the optimistic-time and the optimistic-busy-tables options are used and
they come into conflict on determining which tables are to be backed up in the optimistic phase,
optimistic-busy-tables takes precedence over optimistic-time.

• --optimistic-busy-tables=REGEXP

Command-Line Format --optimistic-busy-tables=REGEXP

Type String

 Perform an optimistic backup, using the regular expression specified with the option to select
tables that will be skipped in the first phase of an optimistic backup, because they are likely
to be modified during the backup process. Tables whose fully qualified names (in the form of
database_name.table_name) are matched by the regular expression are taken as “busy tables”,
which will be backed up in the second or the “normal” phase of the backup. Tables whose fully qualified
names are NOT matched by the regular expression are taken as “inactive tables”, which will be backed
up in the first or the “optimistic” phase of the backup. See Section 4.3.6, “Making an Optimistic Backup”
for details on the concept, use cases, and command samples for an optimistic backup.

MySQL Enterprise Backup will throw an error if the option is used but no regular expression is supplied
with it.

When both the optimistic-time and the optimistic-busy-tables options are used and they
come into conflict on determining which tables are to be “optimistic”, optimistic-busy-tables takes
precedence over optimistic-time.

• --free-os-buffers[=NUMBER]

Command-Line Format --free-os-buffers[=NUMBER] 165

Message Logging Options

Type Integer

Default Value 2

Valid Values 0

1

2

3

4

5

Default: Automatic syncing disabled.

 Only on platforms supporting posix_fadvise(): mysqlbackup advises the file system with
posix_fadvise() to free blocks from the system buffer cache, in order to minimize the impact on the
system by mysqlbackup. The manner posix_fadvise() is used depends on the argument for the
option:

• 0: Do not use posix_fadvise() at all

• 1, or no number given with the option: Use posix_fadvise() for reading and writing, and syncing
files at close. This option preserves the behavior of earlier versions of mysqlbackup.

• 2, or option not used : Use posix_fadvise() for reading or writing, depending on the operation.

• 3: Use posix_fadvise() for reading and writing.

• 4: Use posix_fadvise() for reading only.

• 5: Use posix_fadvise() for writing only.

Default: 2.

20.11 Message Logging Options

mysqlbackup writes important progress and error information to the stderr stream. The information
is often very valuable for tracking down problems that occur during an operation. Starting from MySQL
Enterprise Backup 3.9, the output to the stderr stream is also saved to a log file by default (for most
mysqlbackup operations), so that the error information can be easily accessed in any debug process.

The message logging works like a tee process on a Unix-like system, in which the output of a program is
split to be both displayed and saved to a file. The log file thus produced is named in the following format:
MEB_timestamp_operation.log, where operation is the mysqlbackup operation that was run
(e.g., backup, apply-log, etc.), and timestamp is the date and time at which the operation was run.
Here are some examples of names for the log files:

MEB_2013-06-24.16-32-43_backup.log
MEB_2013-06-28.11-07-18_apply_log.log
MEB_2013-06-29.10-08-06_list_image.log

The following options control the message logging function:

• --skip-messages-logdir

166

Progress Report Options

Skip message logging. Logging is turned on by default (except for the list-image and validate
operations; see the description for the --messages-logdir option for details), and it is turned off by
this option.

• --messages-logdir=path

Command-Line Format --messages-logdir=PATH

Type Directory name

Default Value backup_dir/meta

Specifies the path name of an existing directory for storing the message log. If the specified directory
does not exist, message logging fails and returns an error message. When this option is omitted, the
default directory of backup_dir/meta is used, where backup_dir is the directory specified with the
--backup-dir option.

Note

Use this option to turn on message logging for the list-image and validate
operations. Message logging is turned off by default for the two operations,
because they do not modify any files and a message log is usually not required
for debugging them. And because the default path name of backup_dir/meta
is not meaningful for the two operations, this option is required for both turning on
message logging and for supplying the path name of a directory in which to save
the log file. However, if the --skip-messages-logdir option is also specified,
it takes precedence and message logging is skipped.

The following are some examples showing how the message logging is controlled.

This creates a log file for the backup operation in the directory /home/backup_dir/meta due to the
default settings:

mysqlbackup -uroot --port=3306 --backup-dir=/home/backup_dir backup

This skips message logging for the backup operation:

mysqlbackup -uroot --port=3306 --backup-dir=/home/backup_dir \
 --skip-messages-logdir backup

This creates a log file for the apply-log operation in an existing directory named /home/teelog_dir,
rather than the default location:

mysqlbackup -uroot --port=3306 --backup-dir=/home/backup_dir \
 --messages-logdir=/home/teelog_dir apply-log

This creates a log file for the list-image operation in an existing directory named /home/teelog_dir:

mysqlbackup -uroot --port=3306 --backup-image=/backup/my.mbi \
 --messages-logdir=/home/teelog_dir list-image

20.12 Progress Report Options
There are two options for controlling the progress reporting function of mysqlbackup: --show-progress
and --progress-interval:

• --show-progress[={stderr|stdout|file:FILENAME|fifo:FIFONAME|table|variable}]

Command-Line Format --show-progress[=destinations]

167

Progress Report Options

Type Enumeration

Valid Values stderr

stdout

file:FILENAME

fifo:FIFONAME

table

variable

 The option instructs mysqlbackup to periodically output short progress reports known as progress
indicators on its operation.

The argument of the option controls the destination to which the progress indicators are sent:

• stderr: Progress indicators are sent to the standard error stream. The report is embedded in a time-
stamped mysqlbackup INFO message. For example:

 130607 12:22:38 mysqlbackup: INFO: Progress: 191 of 191 MB; state: Completed

• stdout: Progress indicators are sent to the standard output stream. A single newline character is
printed after each progress indicator.

• file:FILENAME: Progress indicators are sent to a file. Each new progress report overwrites the file,
and the file contains the most recent progress indicator followed by a single newline character.

• fifo:FIFONAME: Progress indicators are sent to a file system FIFO. A single newline character is
printed after each progress indicator.

Warning

If there is no process reading the FIFO, the mysqlbackup process hangs at
the end of the execution.

• table: Progress indicators are sent to the mysql.backup_progress table. This requires a
connection to the MySQL server, and therefore, only works when backing up a running MySQL
instance. mysqlbackup first adds one row of the progress report to the mysql.backup_progress
table, and then updates the row afterwards with the latest progress indicator. The progress indicator is
stored in the current_status column of the table.

168

Progress Report Options

• variable: Progress indicators are sent to the system variable backup_progress.

Warning

The system variable backup_progress is not yet defined for the MySQL
Server. Users need to create their own plugin to define the variable. See The
MySQL Plugin API for more information on user plugins.

When there is no argument specified for --show-progress, progress indicators are sent to stderr.

Progress can be reported to multiple destinations by specifying the --show-progress option several
times on the command line. For example the following command line reports progress of the backup
command to stderr and to a file called meb_output:

mysqlbackup --show-progress --show-progress=file:meb_output --backup-dir=/full-backup
 backup

The progress indicators are short strings that indicate how far the execution of a mysqlbackup
operation has progressed. A progress indicator consists of one or more meters that measure the
progress of the operation. For example:

Progress: 100 of 1450 MB; state: Copying .ibd files

This shows that 100 megabytes of a total of 1450 megabytes have been copied or processed so far, and
mysqlbackup is currently copying InnoDB data files (.ibd files).

The progress indicator string begins with Progress:, followed by one or more meters measuring the
progress. If multiple meters are present, they are separated by semicolons. The different types of meters
include:

• Total data meter: It is always the first meter in the progress indicator. It is in the format of:

DATA of TOTAL UNIT

DATA and TOTAL are unsigned decimal integers, and UNIT is either MB (megabytes), KB (kilobytes),
or bytes (1MB=1024KB and 1KB=1024 bytes).

The total data meter has two slightly different meanings depending on the mysqlbackup operation:

• The amount of data copied or processed and the total amount of data to be copied or processed by
the mysqlbackup operation. For example:

Progress: 200 of 1450 MB

When the operation is for, e.g., backup, the indicator means 200MB is copied of 1450MB. But
when the operation is for, e.g., validate or incremental, it means 200MB is processed out of
1450MB.

• Total amount of data copied or processed and an estimate for the total that will be copied by the end
of the operation. The estimated total is updated as per the data on the server, as the execution of
the command progresses.

For some operations such as backup, it is not possible to know exactly at the start of the execution
how much data will be copied or processed. Therefore, the total data meter shows the estimated

169

https://dev.mysql.com/doc/extending-mysql/8.2/en/plugin-api.html
https://dev.mysql.com/doc/extending-mysql/8.2/en/plugin-api.html

Progress Report Options

amount of the total data for a backup. The estimate is updated during the execution of the
command. For example:

Progress: 200 of 1450 MB

is followed by:

Progress: 200 of 1550 MB

when 100MB of data is added on the server.

If the operation is successful, the final progress indicator shows the actual amount of data copied at
the end of the operation.

• Compression meter: It indicates the sliding average of the compression ratio, which is defined for
each block of data that is compressed as (orig_size - compressed_size) / orig_size. For
example:

compression: 40%

This means that after compression, the data takes 40% less space (calculated as an average over the
last 10 data blocks).

The compression meter is included in the progress indicator if the --compress option is enabled for
the mysqlbackup operation. The value of the compression meter is undefined until at least 10 data
blocks have been compressed. The undefined meter value is denoted by the '-' in the meter:

compression: -

• State meter: It is a short description of the major step the command is currently executing. For
example:

 state: Copying InnoDB data

 state: Waiting for locks

 state: Copying system tablespace

 state: Copying .ibd files

 state: Copying non-InnoDB data

 state: Completed

Here are some examples of progress indicators with different meters:

Progress: 300 of 1540 MB; state: Waiting for locks

Progress: 400 of 1450 MB; state: Copying InnoDB data: compression: 30%

The exact set of meters included in the progress indicator depends on the command and the options
used for it.

• --progress-interval=SECONDS

Command-Line Format --progress-interval=SECONDS

Type Numeric

Default Value 2

Minimum Value 1170

Encryption Options

Maximum Value 100000

Unit second

 Interval between progress reports in seconds. Default value is two seconds. The shortest interval is 1
second and the longest allowed interval is 100000 seconds.

20.13 Encryption Options

These options are for creating encrypted single-file backups and for decrypting them. See Chapter 10,
Encryption for Backups for more details and usage examples for the encryption and decryption functions of
MySQL Enterprise Backup.

• --encrypt

 Encrypt the data when creating a backup image by a backup-to-image operation, or when packing
a backup directory into a single file with the backup-dir-to-image command. It cannot be used with
the backup or backup-and-apply-log command.

• --decrypt

 Decrypt an encrypted backup image when performing an extract, image-to-backup-dir, or
copy-back-and-apply-log operation. It is also used for performing a validate or list-image
operation on an encrypted backup image.

The option cannot be used in a apply-log, backup-and-apply-log, or copy-back operation.
For restoration using the copy-back command, the encrypted backup image has to be unpacked and
decrypted first using the image-to-backup-dir or extract command, together with the --decrypt
option.

• --key=STRING

Command-Line Format --key=KEY

Type String

 The symmetric key for encryption and decryption of a backup image. It should be a 256-bit key,
encoded as a string of 64 hexadecimal digits. See Chapter 10, Encryption for Backups on how to create
a key. The option is incompatible with the --key-file option.

• --key-file=PATH

Command-Line Format --key-file=FILE

Type File name

 The pathname to file that contains a 256-bit key, encoded as a string of 64 hexadecimal digits, for
encryption and decryption of a backup image. The option is incompatible with the --key option.

20.14 Options for Working with Encrypted InnoDB Tablespaces and
Encrypted Binary/Relay Logs

MySQL Enterprise Backup supports encrypted InnoDB tablespaces and encrypted binary/relay logs. For
details on how MySQL Server encrypts and decrypts these items, see InnoDB Data-at-Rest Encryption
and Encrypting Binary Log Files and Relay Log Files . See Chapter 6, Working with Encrypted InnoDB

171

https://dev.mysql.com/doc/refman/8.3/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/8.3/en/replication-binlog-encryption.html

Cloud Storage Options

Tablespaces and Section 8.4, “Working with Encrypted Binary and Relay Logs” on how mysqlbackup
commands handle these encrypted items.

The following is the command-line option for working with encrypted InnoDB tables and binary/relay logs:

• --encrypt-password[=STRING]

Command-Line Format --encrypt-password=STRING

Type String

 The user-supplied password by which mysqlbackup encrypts the master encryption key, which is used
to encrypt the encryption keys for the InnoDB tablespaces or binary/relay log files.

The option must be used when backing up a server that has a keyring plugin enabled for InnoDB table or
binary/relay log encryption and for restoring a backup containing encrypted InnoDB tables or binary/relay
log. If the server is using the keyring_encrypted_file plugin, the password supplied with the option
must match the value of the system variable keyring_encrypted_file_password on the server. If
the server uses the keyring_hashicorp plugin, use the option to supply the HashiCorp Vault AppRole
authentication secret ID, which was the value of keyring_hashicorp_secret_id on the server to be
backed up.

The same password supplied during backup must be supplied again during a copy-back-and-apply-
log, apply-log, or an apply-incremental-backup operation for the backup, or mysqlbackup
will error out when it encounters encrypted InnoDB tables or binary/relay logs during the operation. If
different passwords were used for different backups in a sequence of full and incremental backups,
make sure the very password used to create an individual backup is supplied when performing an
apply-log, apply-incremental-backup, or copy-back-and-apply-log operation on it.

Users who do not want to supply the password on the command line or in a default file may use the
option without specifying any value; mysqlbackup then asks the user to type in the password before the
operation starts.

20.15 Cloud Storage Options

These options are for using cloud storage for single-file operations. See Section 4.3.1.3, “Backing Up to
Cloud Storage”, and Section 5.2, “Restoring a Backup from Cloud Storage to a MySQL Server”, for more
information and instructions on using cloud storage with MySQL Enterprise Backup.

• Options used for all cloud services:

• --cloud-service=SERVICE

 Cloud service for data backup or restoration. Various types of cloud storage services are supported
by mysqlbackup, represented by the following values for the option:

• OCI: Oracle Cloud Infrastructure Object Storage

• openstack: OpenStack Swift or compatible object storage services

• s3: Amazon Simple Storage Service (S3) or compatible storage service

• GCP: GCP object storage

• --cloud-trace

172

https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_encrypted_file_password
https://dev.mysql.com/doc/refman/8.3/en/keyring-system-variables.html#sysvar_keyring_hashicorp_secret_id

Cloud Storage Options

 Print trace information for cloud operations. It works independently of --trace, which specifies the
trace level for the non-cloud operations of mysqlbackup. Any non-zero value for the option enables
the trace function.

Default value is “0.”

• --cloud-proxy=proxy-url:port

 Proxy address and port number for overriding the environment's default proxy settings for accessing a
cloud storage service.

Note

The list-image operation can be performed on a cloud backup only if the
cloud proxy supports HTTP range headers.

• --cloud-ca-info=PATH

 Absolute path to the CA bundle file for host authentication for SSL connections. When the option is
specified, the usage of the CA bundle file is preferred over the usage of individual .pem files for host
authentication.

• --cloud-ca-path=PATH

 CA certificate directory, in addition to the system's default folder.

• --cloud-buffer-size=MB

 Size of the buffer for cloud operations in megabytes. mysqlbackup accumulates data up to the size
specified by this option before initiating a cloud transfer. The value has to be between 16 to 4096.

Default: 64

• Options used for Oracle Cloud Infrastructure (OCI) Object Storage:

• --cloud-object=OCI_OBJECT

 The storage object for the backup image. Note that names of objects within the same bucket have to
be unique.

• --cloud-par-url=OCI_PAR-URL

 The Pre-Authenticated Request (PAR) URL for OCI Object Storage. For a backup to OCI Object
Storage, it is the PAR URL for the storage bucket; for restore and other operations on an object stored
on OCI, it is the PAR URL for the object.

173

https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm

Cloud Storage Options

• Options used for OpenStack Swift Object Storage:

• --cloud-object=SWIFT_OBJECT

 The storage object for the backup image. Note that names of objects within the same container have
to be unique.

• --cloud-container=SWIFT_CONTAINER

 The Swift container for the backup image.

• --cloud-user-id=SWIFT_USER-ID

 User ID for accessing Swift. The user credentials are authenticated by the Swift TempAuth identity
system when the --cloud-tempauth-url option is used, by the OpenStack Keystone identity
service when the --cloud-identity-url option is used, and by HTTP Basic Authentication when
the --cloud-basicauth-url option is used.

• --cloud-password=SWIFT_PASSWORD

 Password for accessing Swift for the user specified by the --cloud-user-id option. The user
credentials are authenticated by the Swift TempAuth identity system when the --cloud-tempauth-
url option is used, by the OpenStack Keystone identity service when the --cloud-identity-url
option is used, and by HTTP Basic Authentication when the --cloud-basicauth-url option is
used.

• --cloud-tempauth-url=SWIFT_TEMPAUTH-URL

 The TempAuth URL for authenticating user credentials.

• --cloud-basicauth-url=SWIFT_BASICAUTH-URL

 The URL for HTTP Basic Authentication.

• --cloud-identity-url=SWIFT_KEYSTONE-URL

 The URL of the Keystone identity service, when it is used for authenticating user credentials.

• --cloud-tenant=SWIFT_KEYSTONE-TENANT

 The Keystone tenant for the user specified by --cloud-user-id, when the Keystone identity
service is used for authenticating user credentials.

• --cloud-region=SWIFT_KEYSTONE-REGION

 The Keystone region for the user specified by --cloud-user-id, when the Keystone identity
service is used for authenticating user credentials.

• --cloud-chunked-transfer={true|false}

 Use chunked transfer. When --cloud-service=openstack, backups are always transferred
and stored as Dynamic Large Objects (DLOs), for which multiple file segments are considered as a

174

https://docs.openstack.org/swift/latest/overview_large_objects.html#module-swift.common.middleware.dlo

Cloud Storage Options

single file. The maximum number of segments a backup can have is determined by the object storage
service, and the maximum size of the segments is controlled by this option.

If the option is set to true, mysqlbackup uses chunked transfer encoding to transfer the data. A
backup larger than the value of --cloud-chunk-size is split into multiple segments.

If the option is set to false, mysqlbackup uploads the backup in segments in the size of the buffer.

Default: false, when --cloud-service=openstack

Warning

Set the option to true only if chunked transfer is supported by your cloud
storage; otherwise, the mysqlbackup operation may fail.

• --cloud-chunk-size=SWIFT_CHUNK-SIZE

 The size of a chunk in megabytes if chunked transfer is enabled. This option is ignored if chunked
transfer is disabled.

Minimum value: 64

Maximum value: 3072 on 32-bit machines, 5120 on 64-bit machines

Default value: 2048

Note

One and only one of --cloud-tempauth-url, --cloud-identity-url, --
cloud-basicauth-url, or --cloud-storage-url should be used when
accessing a Swift service, or mysqlbackup will throw an error.

175

Cloud Storage Options

• Options used for Amazon S3 and S3-compatible services:

• --cloud-host=S3_HOSTNAME

 The hostname for an S3-compatible storage service.

Default: s3.amazonaws.com

• --cloud-bucket=S3_BUCKET

 The storage bucket on an S3-compatible storage service for the backup image.

In order to perform cloud backups and restores with the bucket, the user identified by the --cloud-
access-key-id option must have at least the following permissions on the bucket:

• s3:ListBucket: For listing information on items in the bucket.

• s3:ListBucketMultipartUploads: For listing multipart uploads in progress to the bucket.

• s3:GetObject: For retrieving objects from the bucket.

• s3:PutObject: For adding objects to the bucket.

• --cloud-object-key=S3_OBJECT-KEY

 The S3 object key for the backup image.

• --cloud-access-key-id=S3_KEY-ID

 Access key ID for logging onto an S3-compatible storage service.

• --cloud-secret-access-key=S3_ACCESS-KEY

 Secret access key for the access key id specified with --cloud-access-key-id.

• --cloud-aws-region=S3_REGION

 Region for the web service that mysqlbackup accesses.

176

Options for Special Backup Types

• Options used for GCP object storage :

• --cloud-host=HOSTNAME

The hostname for the storage service.

Default: storage.googleapis.com, when --cloud-service=GCP

• --cloud-bucket=BUCKET

The storage bucket for the backup image.

• --cloud-object=OBJECT

The storage object for the backup image. Note that names of objects within the same bucket have to
be unique.

• --cloud-access-key=ACCESS-KEY

 Access key for the cloud account. The option is mandatory for a backup operation. If it is not provided
for a restore operation, mysqlbackup assumes the backup image is a public object and can be
accessed or downloaded without a key; if the object is not public, the restore operation fails.

• --cloud-secret-key=SECRET-KEY

 Secret key for the cloud account specified with --cloud-access-key. The option is mandatory for
a backup operation.

• --cloud-chunked-transfer={true|false}

Use chunked transfer.

If the option is set to true, mysqlbackup uses chunked transfer encoding to transfer the data. A
backup larger than the value of --cloud-chunk-size is split into multiple segments.

If the option is set to false, mysqlbackup uploads the backup in segments in the size of the buffer.

Default: true, when --cloud-service=GCP

• --cloud-chunk-size=CHUNK-SIZE

 The size of a chunk in megabytes if chunked transfer is enabled. This option is ignored if chunked
transfer is disabled.

Minimum value: 64

Maximum value: 3072 on 32-bit machines, 5120 on 64-bit machines

Default value: 2048

20.16 Options for Special Backup Types

These options are for backing up database servers that play specific roles in replication, or contain certain
kinds of data that require special care in backing up.

• --replica-info

177

Options for Special Backup Types

 When backing up a replica server, this option captures information needed to set up an identical replica
server. It creates a file meta/ibbackup_replica_info inside the backup directory, containing a
CHANGE REPLICATION SOURCE TO statement with the binary log position and name of the binary log
file of the source server. This information is also printed in the mysqlbackup output. To set up a new
replica for this source, restore the backup data on another server, start a replica server on the backup
data, and issue a CHANGE REPLICATION SOURCE TO command with the binary log position saved in
the ibbackup_replica_info file. See Section 8.1, “Setting Up a New replica” for instructions.

Notes

• Only use this option when backing up a replica server. Its behavior is undefined
when used on a source or non-replication server.

• This option is not compatible with the --no-locking option; using both
options together will make mysqlbackup throw an error.

• This option is not compatible with the --only-innodb option.

• For TTS backups for replica servers, use the --replica-info option to
have the file backup_gtid_executed.sql generated and included in the
backups.

The option is an alias of --slave-info, which has been decprecated .

• --slave-info

 (Deprecated; use --replica-info instead) When backing up a replica server, this option captures
information needed to set up an identical replica server. It creates a file meta/ibbackup_slave_info
inside the backup directory, containing a CHANGE MASTER statement with the binary log position and
name of the binary log file of the source server. This information is also printed in the mysqlbackup
output. To set up a new replica for this source, restore the backup data on another server, start a replica
server on the backup data, and issue a CHANGE MASTER command with the binary log position saved in
the ibbackup_slave_info file. See Section 8.1, “Setting Up a New replica” for instructions.

Notes

• Only use this option when backing up a replica server. Its behavior is undefined
when used on a source or non-replication server.

• This option is not compatible with the --no-locking option; using both
options together will make mysqlbackup throw an error.

• This option is not compatible with the --only-innodb option.

• For TTS backups for replica servers, use the --slave-info option to
have the file backup_gtid_executed.sql generated and included in the
backups.

• --safe-replica-backup-timeout=SECONDS

 For a replication setup, the option specifies the time (in seconds) mysqlbackup will wait for
Replica_open_temp_tables to become “0” (which happens when no temporary tables are open) to
complete the backup for a replica server by asserting a read lock and copies all the non-InnoDB tables.
If the duration of the wait exceeds that specified with the option, mysqlbackup times out and throws an
error. The wait is for preventing mysqlbackup from finishing a replica backup when there are temporary

178

https://dev.mysql.com/doc/refman/8.3/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.3/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Replica_open_temp_tables

Options for Special Backup Types

tables still open. See descriptions in Temporary tables on a replica for details on how mysqlbackup
deals with temporary tables on a replica server.

In addition, mysqlbackup also runs an initial check at the beginning of a replica backup to see if
Replica_open_temp_tables=0 becomes true within the duration set by --safe-replica-
backup-timeout. If it does not, mysqlbackup takes it as an early sign that before the backup
is completed, some temporary tables are likely to remain open after the timeout limit is exceeded;
mysqlbackup then throws an error, instead of continuing with the backup. When that happens, you can
either restart the backup with a higher value for --safe-replica-backup-timeout, or retry at a time
when fewer temporary tables are being used.

Default: 300

Warning

Proper setting of this value depends on the use case, and it can vary a lot
according to the situation. Setting the value for this option either too high or too
low will affect adversely the performance of the backup operation:

• Too high: If you need to wait for a long time for there to be no more temporary
tables, the chance is that the change rate for your database server is quite
high, which means the amount of redo log data to be included in the backup
will be large and the restore time for the backup will be long. In such a case, it
would have been better to have let mysqlbackup timeout and then restart the
backup operation, so the tables are copied in their final states. It is therefore
not helpful to set a high timeout value for the option. As a very general rule of
thumb: even for busy databases that use many temporary tables, do not set the
value to more than a few hours.

• Too low: Setting the wait time value too low would make the backup process
time out very easily and when that happens, the process has to be restarted.
With a repeating cycle of restarts, the backup might then take a long time to
complete, and resources used on the failed backups will be wasted. As a very
general rule of thumb, do not set the timeout to below the default value of 300s.

Even though the issue described above with temporary tables does not exist for a row-based replication
(RBR) setup (for which temporary tables are not replicated onto the replica), any replica backups still
wait for temporary tables to be all closed as described above, because the mode of replication could
potentially be switched from RBR to statement-based replication (SBR) or mixed-mode replication at
any time. Users who are certain that SBR is not occurring for the replica can set --safe-replica-
backup-timeout=0, with which mysqlbackup will not check for any open temporary tables before
finishing the backup.

The option is an alias of --safe-slave-backup-timeout, which has been decprecated .

• --safe-slave-backup-timeout=SECONDS

 (Deprecated ; use --safe-replica-backup-timeout instead) For a replication setup, the option
specifies the time (in seconds) mysqlbackup will wait for Slave_open_temp_tables to become
“0” (which is true when no temporary tables are open) to complete the backup for a replica server by
asserting a read lock and copies all the non-InnoDB tables. If the duration of the wait exceeds that
specified with the option, mysqlbackup times out and throws an error. The wait is for preventing
mysqlbackup from finishing a replica backup when there are temporary tables still open. See

179

https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Replica_open_temp_tables
https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Slave_open_temp_tables

Options for Special Backup Types

descriptions in Temporary tables on a replica for details on how mysqlbackup deals with temporary
tables on a replica server.

In addition, mysqlbackup also runs an initial check at the beginning of a replica backup to see if
Slave_open_temp_tables=0 becomes true within the duration set by --safe-slave-backup-
timeout. If it does not, mysqlbackup takes it as an early sign that before the backup is completed,
some temporary tables are likely to remain open after the timeout limit is exceeded; mysqlbackup
then throws an error, instead of continuing with the backup. When that happens, you can either restart
the backup with a higher value for --safe-slave-backup-timeout, or retry at a time when fewer
temporary tables are being used.

Default: 300

Warning

Proper setting of this value depends on the use case, and it can vary a lot
according to the situation. Setting the value for this option either too high or too
low will affect adversely the performance of the backup operation:

• Too high: If you need to wait for a long time for there to be no more temporary
tables, the chance is that the change rate for your database server is quite
high, which means the amount of redo log data to be included in the backup
will be large and the restore time for the backup will be long. In such a case, it
would have been better to have let mysqlbackup timeout and then restart the
backup operation, so the tables are copied in their final states. It is therefore
not helpful to set a high timeout value for the option. As a very general rule of
thumb: even for busy databases that use many temporary tables, do not set the
value to more than a few hours.

• Too low: Setting the wait time value too low would make the backup process
time out very easily and when that happens, the process has to be restarted.
With a repeating cycle of restarts, the backup might then take a long time to
complete, and resources used on the failed backups will be wasted. As a very
general rule of thumb, do not set the timeout to below the default value of 300s.

Even though the issue described above with temporary tables does not exist for a row-based replication
(RBR) setup (for which temporary tables are not replicated onto the replica), any replica backups still
wait for temporary tables to be all closed as described above, because the mode of replication could
potentially be switched from RBR to statement-based replication (SBR) or mixed-mode replication at any
time. Users who are certain that SBR is not occurring for the replica can set --safe-slave-backup-
timeout=0, with which mysqlbackup will not check for any open temporary tables before finishing the
backup.

• --suspend-at-end

 This option pauses the mysqlbackup command when the backup procedure is close to ending. It
creates a file called ibbackup_suspended in the backup log group home directory and waits until you
delete that file before proceeding. This option is useful to customize locking behavior and backup of non-
InnoDB files through custom scripting.

All non-InnoDB tables are locked before suspending, putting them into a read-only state, unless you
turn off locking with the --no-locking. The --only-innodb option also prevents the locking step.
You can also use a combination of --only-innodb and --suspend-at-end to back up only certain
InnoDB tables.

• --exec-when-locked="utility arg1 arg2 ..."

180

https://dev.mysql.com/doc/refman/8.3/en/server-status-variables.html#statvar_Slave_open_temp_tables

Options for Special Backup Types

Command-Line Format --exec-when-locked="utility arg1
arg2 ..."

Type String

 The specified utility is executed when all non-InnoDB tables are locked near the end of a backup
operation.

You can use this option to run a script that backs up any information that is not included as part of the
usual backup. For example, with --exec-when-locked, you can use mysqldump to back up tables
from the MEMORY storage engine, which are not on disk.

Set any variable you want to use within your script before you run mysqlbackup. In the following
example, the BACKUP_DIR environment variable is set to point to the current backup directory (quotes
are used for the argument of --exec-when-locked, to prevent premature expansion of the variable
BACKUP_DIR):

On Unix or Linux systems:

export BACKUP_DIR=path_to_backupdir
mysqlbackup --exec-when-locked="mysqldump mydb t1 > $BACKUP_DIR/t1.sql" other_options mysqlbackup_command

Or on Windows systems:

set BACKUP_DIR=path_to_backupdir
mysqlbackup --exec-when-locked="mysqldump mydb t1 > %BACKUP_DIR%/t1.sql" other_options mysqlbackup_command

If the utility cannot be executed or returns a non-zero exit status, the whole backup process is cancelled.
If you also use the --suspend-at-end option, the utility specified by --exec-when-locked is
executed after the suspension is lifted.

181

182

Chapter 21 Configuration Files and Parameters

You can specify mysqlbackup options either on the command line or as configuration parameters inside a
configuration file.

mysqlbackup looks for and reads MySQL configuration files as mysqld does (see explanations in
Using Option Files). You can also supply a configuration file to mysqlbackup using the --defaults-
file option. In general, mysqlbackup follows the mysql style of processing configuration options:
[mysqlbackup] and [client] group options listed in a configuration file are passed as command-line
options. Any command-line options that you specify when you run mysqlbackup override the values from
the configuration file. In the case of duplicate options, the last instance takes precedence.

mysqlbackup also reads the following options in the [mysqld] group in the configuration file to detect
parameters related to the server when it is not connected to it (for example, when restoring a non-TTS
backup):

• datadir

• innodb_data_home_dir

• innodb_log_group_home_dir

• innodb_undo_directory

• log-bin

• relay_log

If any of these options is also specified in the [mysqlbackup] section, the value there takes precedence
over the value in the [mysqld] section. Options other than the ones listed above should be specified
under the [mysqlbackup] or [client] section.

Within a mysqlbackup option name, dashes (-) and underscores (_) may usually be used
interchangeably, similar to mysqld parameters that use this same convention (notice that log-bin is
one exception; see Using Options on the Command Line in the MySQL Reference Manual for details).
The MySQL server's reference manual typically lists the parameter names with underscores, to match the
output of the SHOW VARIABLES statement.

Server Data Locations and Options Files

mysqlbackup reads the locations of the MySQL data (data files, logs, etc.) to be backed up or restored
from the following sources:

• For backup operations and partial restore operations, the information is retrieved from mysqld.

• For non-partial restore operations, the information is supplied to mysqlbackup as parameters through:

• The mysqlbackup command line, as command-line options.

• A configuration file (see explanation above at the beginning of the chapter). The parameters are
read first under the [mysqlbackup] group, then under the [client] group, and finally under
the [mysqld] group. You can put common connection parameters used for restore operations (for
example, user login, host name, etc.) into the configuration file.

183

https://dev.mysql.com/doc/refman/8.3/en/option-files.html
https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_data_home_dir
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_log_group_home_dir
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_undo_directory
https://dev.mysql.com/doc/refman/8.3/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/8.3/en/replication-options-replica.html#sysvar_relay_log
https://dev.mysql.com/doc/refman/8.3/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/8.3/en/command-line-options.html

Configuration Files Stored Inside the Backups

Configuration Files Stored Inside the Backups

Each set of backup data includes a configuration file, backup-my.cnf, containing a set of configuration
parameters. The mysqlbackup command generates this file to record the settings that apply to the
backup data. Here is a sample backup-my.cnf file generated by mysqlbackup:

Example 21.1 Sample backup-my.cnf file

#
Generated backup-my.cnf file.
Auto generated by mysqlbackup program.
#
[mysqld]
innodb_data_file_path=ibdata1:12M:autoextend
innodb_page_size=16384
innodb_checksum_algorithm=crc32
innodb_buffer_pool_filename=ib_buffer_pool
innodb_undo_tablespaces=2

All file paths contained in the generated backup-my.cnf are relative to the data directory under the
backup directory.

These configuration parameters are read by mysqlbackup during operations like apply-log, in which
the parameters are read from this file to determine how the backup data is structured. These parameters
can also be used in a restore to compare the InnoDB settings of the target server with those of the
backed-up server, so that any necessary adjustments can be made; see Starting the Restored Server
for details. Only the minimally-required parameters are stored in backup-my.cnf: for example, the
innodb_data_home_dir and innodb_log_group_home_dir options are omitted from the backup-
my.cnf file when they just point to the data directory under the backup directory (backup-dir/datadir
usually).

184

Part IV Appendixes

Table of Contents
A Frequently Asked Questions for MySQL Enterprise Backup ... 189
B Limitations of MySQL Enterprise Backup .. 191
C Compatibility Information for MySQL Enterprise Backup .. 195

C.1 Supported Platforms ... 195
C.2 Cross-Platform Compatibility ... 195
C.3 Compatibility with MySQL Versions ... 195
C.4 Compatibility with Older MySQL Enterprise Backup ... 195

D Backup History Table Update .. 197
E SBT Backup History Table Update ... 199
F Backup Progress Table Update ... 201
MySQL Enterprise Backup Glossary .. 203

187

188

Appendix A Frequently Asked Questions for MySQL Enterprise
Backup

This section lists some common questions about MySQL Enterprise Backup, with answers and pointers to
further information.

Questions

• A.1: What versions of the MySQL server does MySQL Enterprise Backup 8.3.0 support?

• A.2: What is the big ibdata file that is in all the backups?

• A.3: Can I back up non-InnoDB data with MySQL Enterprise Backup?

• A.4: What happens if the apply-log or apply-incremental-backup step is interrupted?

• A.5: Why is the option --defaults-file not recognized?

• A.6: Can I back up a database server on one OS platform and restore it on another one using MySQL
Enterprise Backup?

• A.7: What if I have included the binary log or relay log in my backup but do not want to restore it?

• A.8: What would happen if I start a server directly using a raw directory backup, without running either
the copy-back or the apply-log operation?

Questions and Answers

A.1: What versions of the MySQL server does MySQL Enterprise Backup 8.3.0 support?

See Section C.3, “Compatibility with MySQL Versions” for details of compatibility between different
releases of MySQL Enterprise Backup and MySQL Server.

A.2: What is the big ibdata file that is in all the backups?

You might find your backup data taking more space than expected because of a large file with a name
such as ibdata1. This file represents the InnoDB system tablespace, which grows but never shrinks as a
database server operates, and is included in every full and incremental backup. To reduce the space taken
up by this file in your backup data:

• After doing a full backup, do a succession of incremental backups, which take up less space. The
ibdata1 file in the incremental backups is typically much smaller, containing only the portions of the
system tablespace that changed since the full backup.

• Set the configuration option innodb_file_per_table=1 before creating your biggest or most active
InnoDB tables. Those tables are split off from the system tablespaces into separate .ibd files; the
tables can then be individually included or excluded from backups, and disk space is freed when the
tables are dropped or truncated.

• If your system tablespace is very large because you created a high volume of InnoDB data before
turning on the innodb_file_per_table setting, you might use mysqldump to create a dump of your
entire server instance, then turn on innodb_file_per_table before re-creating the databases, so
that all the table data is kept outside the system tablespace.

A.3: Can I back up non-InnoDB data with MySQL Enterprise Backup?

189

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_file_per_table

While MySQL Enterprise Backup can back up non-InnoDB data (like MYISAM tables), the MySQL server
to be backed up must support InnoDB (i.e., the backup process will fail if the server was started up with the
--innodb=OFF or --skip-innodb option), and the server must contain at least one InnoDB table.

A.4: What happens if the apply-log or apply-incremental-backup step is interrupted?

If mysqlbackup is interrupted during the apply-log or apply-incremental-backup stage, the
backup data is OK. The file operations performed by those options can be performed multiple times without
harming the consistency of the backup data. Just run the same mysqlbackup command again, and when
it completes successfully, all the necessary changes are present in the backup data.

A.5: Why is the option --defaults-file not recognized?

When you specify the --defaults-file option, it must be the first option going after mysqlbackup.
Otherwise, the error message makes it look as if the option name is not recognized.

A.6: Can I back up a database server on one OS platform and restore it on another one using
MySQL Enterprise Backup?

See Section C.2, “Cross-Platform Compatibility” for details.

A.7: What if I have included the binary log or relay log in my backup but do not want to restore it?

If you want to skip the restore of the binary log, relay log, or both during a restore, use the --skip-
binlog option, the --skip-relaylog option, or both with your copy-back or copy-back-and-
apply-log command.

A.8: What would happen if I start a server directly using a raw directory backup, without running
either the copy-back or the apply-log operation?

This should never be attempted. Not only would the server crash, but the backup would likely get corrupted
and become unusable. This is because the directory backup contains metadata created by mysqlbackup
that the MySQL server would not understand; also, the raw backup might be inconsistent and need to be
brought up-to-date by an apply-log operation, so that changes made to the database server during the
backup process can be applied.

190

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/8.3/en/option-file-options.html#option_general_defaults-file

Appendix B Limitations of MySQL Enterprise Backup
Please refer to the MySQL Enterprise Backup 8.3 Release Notes for a list of fixed bugs for mysqlbackup.
Here is a list of limitations of MySQL Enterprise Backup:

• In some cases, backups of non-transactional tables such as MyISAM tables could contain additional
uncommitted data. If autocommit is turned off, and both InnoDB tables and non-transactional tables are
modified within the same transaction, data can be written to the non-transactional table before the binary
log position is updated. The binary log position is updated when the transaction is committed, but the
non-transactional data is written immediately. If the backup occurs while such a transaction is open, the
backup data contains the updates made to the non-transactional table.

• The engines column in the mysql.backup_history table does not correctly reflect the storage
engines of the backed-up databases.

• Hot backups for large databases with heavy writing workloads (say, in the order of gigabytes per minute)
can take a very long time to complete due to the huge redo log files that are generated on the server
while the backup is running. However, when it is a relatively small subset of tables in the database that
are being modified frequently, the Optimistic Backup feature can be used to improve performance and
reduce backup size, as well as backup and recovery times. See Section 4.3.6, “Making an Optimistic
Backup” for details.

• While it is possible to backup to or restore from a Network Attached Storage (NAS) device using MySQL
Enterprise Backup, due to networking issues that might arise, the consistency of the backups and the
performance of the backup or restore operations might be compromised.

• When creating a backup using transportable tablespace (TTS) for a server containing tables with a
mix of the Antelope and Barracuda file formats, do not apply full locking on the tables (that is, do not
specify --use-tts=with-full-locking). Instead, just specify --use-tts or --use-tts=with-
minimum-locking, both of which will apply minimum locking to the tables.

• Backup of a partitioned table using transportable tablespace (TTS) would fail when any (or all) of its
partitions were created in a shared tablespace.

• Restoring a partitioned table backed up using transportable tablespace (TTS) would fail if any of the
partitions was created outside of the backed-up server's data directory.

• If a table containing full-text search (FTS) index is backed up using transportable tablespace (TTS), after
it is restored, the FTS index will be corrupted. Users will need to recreate the index with the following
command:

mysql> ALTER TABLE mytable ENGINE = INNODB;

Then, check that there are no more errors with the table:

mysql> CHECK TABLE mytable;

• Tables created on the MySQL server with the ANSI_QUOTES SQL mode cannot be backed up using
transportable tablespace (TTS).

• MySQL Enterprise Backup does not include the .pem files from the server into the backup. The files are
part of the server instance when SSL connections are enabled.

• During a backup process, if a CREATE INDEX statement with ALGORITHM = INPLACE is issued when
the backup process is going on, because the statement will not go into the redo log of the MySQL server
(see Sorted Index Builds for details), it cannot be recorded in the backup, and the index will not be
recreated by mysqlbackup when the backup is restored.

191

https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/8.3/en/
https://dev.mysql.com/doc/refman/8.3/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.3/en/glossary.html#glos_autocommit
https://dev.mysql.com/doc/refman/8.3/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.3/en/sql-mode.html#sqlmode_ansi_quotes
https://dev.mysql.com/doc/refman/8.3/en/sorted-index-builds.html

• When a file of an unrecognized file type exists under a subdirectory in the server's data directory, it will
be backed up by mysqlbackup unless the --only-known-file-types option is used. However, if
the name of the file does not have an extension, it will cause mysqlbackup to throw an error when it
tries to restore the backup to a server.

• Cloud operations by MySQL Enterprise Backup are not supported on macOS or Windows platforms, and
also on Linux platforms when generic Linux builds are used for both the server and MySQL Enterprise
Backup (i.e., when both the server and MySQL Enterprise Backup have been installed using generic
Linux tarballs).

• Using the --src-entry option with the extract command on cloud backups will cause the command
to fail. Cloud backups can only be extracted in full.

• Some limitations apply when mysqlbackup works with encrypted InnoDB tables. See the discussion
here for details.

• Backup operations fail if the server has been started with --innodb_undo_log_encrypt=ON

• Backup operations may fail if checksums for redo log pages are disabled (i.e., if --
innodb_log_checksums is OFF or FALSE or 0) on the server.

• It is safe to have DDL operations (CREATE TABLE, RENAME TABLE, DROP TABLE, ALTER TABLE,
and operations that map to ALTER TABLE like CREATE INDEX) happening on the server in parallel with
a backup operation as long as:

• The tables involved exist in their own tablespaces, instead of being in the system tablespace or some
general tablespaces.

• These server features have not been applied to the tables involved:

• Data-at-rest encryption

• Page-level compression

• Full-text indexing

• The backup is not taken with the following mysqlbackup features:

• Optimistic backup

• Transportable tablespace (TTS)

• Redo log archiving

• Incremental backups with-redo-log-only

• A compressed directory backup fails when a general tablespace bears the same basename as the
database server's system tablespace (usually ibdata1) and exists in the same directory with it (usually
the server's data directory). A compressed single-file backup created under the same situation will be
corrupted, and cannot be restored. To avoid the problem, the server administrator should not put into
the same directory the system tablespace and a general tablespace of the same basename; if that is
unavoidable, do not perform a compressed backup for the database server.

• When working with a replication set up whose source server also belongs to a separate Group
Replication setup, over time, create backups consistently either from the source or the replica, but not
from both. Otherwise, there will be conflicts between the id values generated by the source and the
replica, causing backups to fail.

192

https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_undo_log_encrypt
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_log_checksums
https://dev.mysql.com/doc/refman/8.3/en/innodb-parameters.html#sysvar_innodb_log_checksums
https://dev.mysql.com/doc/refman/8.3/en/create-table.html
https://dev.mysql.com/doc/refman/8.3/en/rename-table.html
https://dev.mysql.com/doc/refman/8.3/en/drop-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/create-index.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-data-encryption.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-page-compression.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-fulltext-index.html

• A backup fails if the name of any database is the same as the name of any undo tablespace. For
backups to be successful, the database administrator should avoid giving any database and undo
tablespace the same name (for example, using the default undo tablespace name undo_001 to name a
database), or the database should be renamed before a backup.

193

194

Appendix C Compatibility Information for MySQL Enterprise
Backup

Table of Contents
C.1 Supported Platforms ... 195
C.2 Cross-Platform Compatibility ... 195
C.3 Compatibility with MySQL Versions ... 195
C.4 Compatibility with Older MySQL Enterprise Backup ... 195

This section describes information related to compatibility issues for MySQL Enterprise Backup releases.

C.1 Supported Platforms

See Supported Platforms: MySQL Database (MySQL platform support evolves over time; please refer to
the page for the latest updates).

C.2 Cross-Platform Compatibility

MySQL Enterprise Backup is cross-platform compatible when running on the Linux and Windows
operating systems: backups on a Linux machine can be restored on a Windows machine, and vice versa.
However, to avoid data transfer problems arising from letter cases of database or table names, the
variable lower_case_table_names must be properly configured on the MySQL servers. For details, see
Identifier Case Sensitivity.

C.3 Compatibility with MySQL Versions

MySQL Enterprise Backup 8.3.0 only supports MySQL 8.3.0.

For earlier versions of MySQL 8.0, use the MySQL Enterprise Backup version with the same version
number as the server.

For MySQL 5.7, use MySQL Enterprise Backup 4.1.

For MySQL 5.6, use MySQL Enterprise Backup 3.12.

C.4 Compatibility with Older MySQL Enterprise Backup

MySQL Enterprise Backup 8.3.0 is incompatible with earlier MySQL Enterprise Backup versions—it does
not work with backups created with them.

195

https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/refman/8.3/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.3/en/identifier-case-sensitivity.html

196

Appendix D Backup History Table Update
The mysql.backup_history table has been updated with the release of MySQL Enterprise Backup
8.0.12 in the following ways:

• Changed the storage engine from CSV to InnoDB

• Added a new column for server UUIDs

When MySQL Enterprise Backup 8.0.12 or later tries to perform its first full backup on a database server, it
automatically checks the format of the mysql.backup_history table. If it detects that the table is in the
old format (which means the server has been upgraded from 8.0.11 or earlier (or 5.7.22 or earlier) and has
been backed up by MySQL Enterprise Backup before), it attempts to perform a format update on the table
automatically with the following steps:

1. Create in the new format a table named mysql.backup_history_new and copy into it data from the
original mysql.backup_history table.

2. Rename the original mysql.backup_history table to mysql.backup_history_old, and the
mysql.backup_history_new table to mysql.backup_history.

3. For MySQL Enterprise Backup 8.0.21 and later: Drop the mysql.backup_history_old table.

For the migration to the new table format to succeed, before performing the first backup task with MySQL
Enterprise Backup 8.0.12 or later for the first time on a MySQL Server that has been upgraded from 8.0.11
or earlier and has been backed up by MySQL Enterprise Backup before, grant the required privileges to
the mysqlbackup user on the server by issuing these statements at the mysql client: :

GRANT CREATE, INSERT, DROP ON mysql.backup_history_old TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP, ALTER ON mysql.backup_history_new TO 'mysqlbackup'@'localhost';

If these privileges are not granted, the first full backup on the upgraded server will fail with an error
message similar to the following:

180612 08:40:45 MAIN ERROR: MySQL query 'DROP TABLE IF EXISTS mysql.backup_history_old': 1142, DROP command denied to user 'mysqlbackup'@'localhost' for table 'backup_history_old'
mysqlbackup failed with errors!

These privileges are no longer needed after the first full backup has been performed by MySQL Enterprise
Backup 8.0.12 or later, by which point they can be revoked.

Note

If you are working with a multiprimary Group Replication setting, make sure these
privileges are granted on all primary nodes; see also Chapter 9, Using MySQL
Enterprise Backup with Group Replication.

197

198

Appendix E SBT Backup History Table Update
The mysql.backup_sbt_history table has been updated with the release of MySQL Enterprise
Backup 8.0.21 in the following ways:

• Changed the storage engine from CSV to InnoDB

• Added a new auto-increment primary key column id

When MySQL Enterprise Backup 8.0.21 or later tries to perform its first full backup on a database using the
SBT API (see Section 11.1, “Backing Up to Tape with Oracle Secure Backup” for details), it automatically
checks the format of the mysql.backup_sbt_history table. If it detects that the table is in the old
format (which means the server has been upgraded from 8.0.20 or earlier and has been backed up by
MySQL Enterprise Backup before using the SBT API), it attempts to perform an update on the table
automatically with the following steps:

1. Create in the new format a table named mysql.backup_sbt_history_new and copy into it data
from the original mysql.backup_sbt_history table.

2. Rename the original mysql.backup_sbt_history table to mysql.backup_sbt_history_old,
and the mysql.backup_sbt_history_new table to mysql.backup_sbt_history.

3. Drop the mysql.backup_history_old table.

For the migration to the new table format to succeed, before performing the first backup task using the
SBT API with MySQL Enterprise Backup 8.0.21 or later on a MySQL Server that has been upgraded from
8.0.20 or earlier and has been backed up by MySQL Enterprise Backup before with the SBT API, grant
the required privileges to the mysqlbackup user on the server by issuing these statements at the mysql
client: :

GRANT ALTER ON mysql.backup_sbt_history TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP ON mysql.backup_sbt_history_old TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP, ALTER ON mysql.backup_sbt_history_new TO 'mysqlbackup'@'localhost';

If these privileges are not granted, the first full backup on the upgraded server using the SBT API will fail
with an error message similar to the following:

200612 08:40:45 MAIN ERROR: MySQL query 'DROP TABLE IF EXISTS mysql.backup_sbt_history_old': 1142, DROP command denied to user 'mysqlbackup'@'localhost' for table 'backup_sbt_history_old'
mysqlbackup failed with errors!

These privileges are no longer needed after the first full backup with SBT API has been performed by
MySQL Enterprise Backup 8.0.21 or later, by which point they can be revoked.

Note

If you are working with a multiprimary Group Replication setting, make sure these
privileges are granted on all primary nodes; see also Chapter 9, Using MySQL
Enterprise Backup with Group Replication.

199

200

Appendix F Backup Progress Table Update
The mysql.backup_progress table has been updated with the release of MySQL Enterprise Backup
8.0.19 in the following ways:

• Changed the storage engine from CSV to InnoDB

• Added a new auto-increment primary key column id

• Added a composite index on the backup_id and current_timestamp columns

When MySQL Enterprise Backup 8.0.19 or later tries to perform its first full backup on a database server, it
automatically checks the format of the mysql.backup_progress table. If it detects that the table is in the
old format (which means the server has been upgraded from 8.0.18 or earlier and has been backed up by
MySQL Enterprise Backup before), it attempts to perform a format update on the table automatically with
the following steps:

1. Create in the new format a table named mysql.backup_progress_new and copy into it data from
the original mysql.backup_progress table.

2. Rename the original mysql.backup_progress table to mysql.backup_progress_old, and the
mysql.backup_progress_new table to mysql.backup_progress.

3. For MySQL Enterprise Backup 8.0.21 and later: Drop the mysql.backup_progress_old table.

For the migration to the new table format to succeed, before performing the first backup task with MySQL
Enterprise Backup 8.0.19 or later for the first time on a MySQL Server that has been upgraded from 8.0.18
or earlier and has been backed up by MySQL Enterprise Backup before, grant the required privileges to
the mysqlbackup user on the server by issuing these statements at the mysql client: :

GRANT ALTER ON mysql.backup_progress TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP ON mysql.backup_progress_old TO 'mysqlbackup'@'localhost';
GRANT CREATE, INSERT, DROP, ALTER ON mysql.backup_progress_new TO 'mysqlbackup'@'localhost';

If these privileges are not granted, the table upgrade will fail with an error message similar to the following:

191219 20:48:43 MAIN ERROR: MySQL query 'RENAME table mysql.backup_progress TO mysql.backup_progress_old,
mysql.backup_progress_new TO mysql.backup_progress': 1142, ALTER command denied to user 'mysqlbackup'@'localhost'
for table 'backup_progress'

These privileges are no longer needed after the first full backup has been performed by MySQL Enterprise
Backup 8.0.19 or later, by which point they can be revoked.

Note

If you are working with a multiprimary Group Replication setting, make sure these
privileges are granted on all primary nodes; see also Chapter 9, Using MySQL
Enterprise Backup with Group Replication.

201

202

MySQL Enterprise Backup Glossary
These terms are commonly used in information about the MySQL Enterprise Backup product.

A
.ARM file

 Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARZ file.

.ARZ file
 Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the mysqlbackup command of the MySQL Enterprise Backup product.
See Also .ARM file.

apply
 The operation that transforms a raw backup into a prepared backup by incorporating changes that occurred
while the backup was running, using data from the log.
See Also log, prepared backup, raw backup.

B
backup

 The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can also
refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the mysqldump command. These techniques have different characteristics in terms of
size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal database
server operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, mysqldump, physical backup, warm backup.

backup directory
 The directory under which the backup data and metadata are stored, permanently or temporarily. It is used in
most kinds of backup and restore operations, including single-file backups and restores. See the description of
the --backup-dir option on how the backup directory is used for different purposes and for different operations.

backup repository
 Contrast with server repository.
See Also repository, server repository.

backup-my.cnf
 A small configuration file generated by MySQL Enterprise Backup, containing a minimal set of configuration
parameters. This file records the settings that apply to this backup data. Subsequent operations, such as the
apply process, read options from this file to determine how the backup data is structured. This file always has the
extension .cnf, rather than .cnf on Unix-like systems and .ini on Windows systems.
See Also apply, configuration file.

binary log
 A file containing a record of all statements that attempt to change table data. These statements can be replayed
to bring replica servers up to date in a replication scenario, or to bring a database up to date after restoring table

203

data from a backup. The binary logging feature can be turned on and off, although Oracle recommends always
enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery, by
using the mysqlbinlog command. For full information about the binary log, see The Binary Log. For MySQL
configuration options related to the binary log, see Binary Logging Options and Variables.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the
file are important details. To record this information for the source server when taking a backup in a replication
context, you can specify the --slave-info option.

The binary log, if enabled on the server, is backed up by default.
See Also binlog, relay log, replication.

binlog
 An informal name for the binary log file. For example, you might see this abbreviation used in e-mail messages
or forum discussions.
See Also binary log.

C
cold backup

 A backup taken while the database is shut down.

MySQL Enterprise Backup 8.0 and later does not support cold backups.
See Also backup, connection, hot backup, warm backup.

compression
 A technique that produces smaller backup files, with size reduction influenced by the compression level setting.
Suitable for keeping multiple sets of non-critical backup files. (For recent backups of critical data, you might leave
the data uncompressed, to allow fast restore speed in case of emergency.)

MySQL Enterprise Backup can apply compression to the contents of InnoDB tables during the backup process,
turning the .ibd files into .ibz files.

Compression adds CPU overhead to the backup process, and requires additional time and disk space during the
restore process.
See Also backup, compression level, .ibd file, .ibz file, InnoDB, restore.

compression level
 A setting that determines how much compression to apply to a compressed backup. This setting ranges from
0 (none), 1 (default level when compression is enabled) to 9 (maximum). The amount of compression for a given
compression level depends on the nature of your data values. Higher compression levels do impose additional
CPU overhead, so ideally you use the lowest value that produces a good balance of compression with low CPU
overhead.
See Also compression.

configuration file
 The file that holds the startup options of the MySQL server and related products and components. Often referred
to by its default file name, my.cnf on Linux, Unix, and macOS systems, and my.ini on Windows systems. The
MySQL Enterprise Backup stores its default configuration settings in this file, under a [mysqlbackup] section.
For convenience, MySQL Enterprise Backup can also read settings from the [client] section, for configuration
options that are common between MySQL Enterprise Backup and other programs that connect to the MySQL
server.

204

https://dev.mysql.com/doc/refman/8.3/en/binary-log.html
https://dev.mysql.com/doc/refman/8.3/en/replication-options-binary-log.html

See Also my.cnf, my.ini.

connection
 The mechanism used by certain backup operations to communicate with a running MySQL server. For example,
the mysqlbackup command can log into the server being backed up to insert and update data in the progress
table and the history table. A hot backup typically uses a database connection for convenience, but can
proceed anyway if the connection is not available. A warm backup always uses a database connection, because
it must put the server into a read-only state. A cold backup is taken while the MySQL server is shut down.

Cold backups are not supported by MySQL Enterprise Backup 8.0 or later. Therefore a connection to the
server is always needed for MySQL Enterprise Backup 8.0 and later to back it up.
See Also cold backup, history table, hot backup, progress table, server, warm backup.

crash recovery
 The cleanup activities for InnoDB tables that occur when MySQL is started again after a crash. Changes
that were committed before the crash, but not yet written to the tablespace files, are reconstructed from the
doublewrite buffer. When the database is shut down normally, this type of activity is performed during shutdown
by the purge operation.

D
data dictionary

 A set of tables, controlled by the InnoDB storage engine, that keeps track of InnoDB-related objects such as
tables, indexes, and table columns. These tables are part of the InnoDB system tablespace.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups include
the contents of the data dictionary.
See Also hot backup, MySQL Enterprise Backup, system tablespace.

database
 A set of tables and related objects owned by a MySQL user. Equivalent to “schema” in Oracle Database
terminology. MySQL Enterprise Backup can perform a partial backup that includes some databases and not
others. The full set of databases controlled by a MySQL server is known as an instance.
See Also instance, partial backup.

differential backup
 A backup that captures only the data changed since the last full backup. It has the potential to be smaller
and faster than a full backup, but is usually bigger and takes longer to create than an incremental backup.
See Section 4.3.3, “Making a Differential or Incremental Backup” for usage details. Related mysqlbackup
options are --incremental, --incremental-with-redo-log-only, --incremental-backup-dir, --
incremental-base, and --start-lsn.
See Also full backup, incremental backup.

downtime
 A period when the database is unresponsive. The database might be entirely shut down, or in a read-only
state when applications are attempting to insert, update, or delete data. The goal for your backup strategy is to
minimize downtime, using techniques such as hot backup for InnoDB tables and minimizing the duration of the
suspend stage where you run customized backup logic while the MySQL server is locked.
See Also cold backup, hot backup, InnoDB, locking, replica, replication, suspend.

E
exclude

 In a partial backup, to select a set of tables, databases, or a combination of both to be omitted from the backup.
Contrast with include.

205

See Also partial backup.

extract
 The operation that retrieves some content from an image file produced by a single-file backup. It can apply to
a single file (unpacked to an arbitrary location) or to the entire backup (reproducing the original directory structure
of the backup data). These two kinds of extraction are performed by the mysqlbackup options extract and
image-to-backup-dir, respectively.
See Also image, single-file backup.

F
.frm file

 A file containing the metadata, such as the table definition, of a MySQL table. .frm files were removed in
MySQL 8.0 and later but are still used in earlier MySQL releases. In MySQL 8.0 and later, data that was
previously stored in .frm files is stored in data dictionary tables.

file format
 The format used by InnoDB for its data files named ibdata1, ibdata2, and so on. Each file format supports
one or more row formats.
See Also ibdata file, row format.

full backup
 A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup and incremental backup. Full backups take the longest, but also require the least
amount of followup work and administration complexity. Thus, even when you primarily do partial or incremental
backups, you might periodically do a full backup.
See Also backup, incremental backup, partial backup, table.

H
history table

 The table mysql.backup_history that holds details of completed backup operations. While a backup job is
running, the details (especially the changing status value) are recorded in the progress table.
See Also backup, progress table.

hot backup
 A backup taken while the MySQL instance and is running and applications are reading and writing to it. Contrast
with warm backup and cold backup.

A hot backup involves more than simply copying data files: it must include any data that was inserted or updated
while the backup was in process; it must exclude any data that was deleted while the backup was in process; and
it must ignore any changes started by transactions but not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the InnoDB data files produces a raw
backup. The apply step incorporates any changes to the databases that happened while the backup was
running. Applying the changes produces a prepared backup; these files are ready to be restored whenever
necessary.

A full backup consists of a hot backup phase that copies the InnoDB data, followed by a warm backup phase
that copies any non-InnoDB data such as MyISAM tables and the associated .sdi files.
See Also apply, cold backup, .frm file, full backup, InnoDB, instance, prepared backup, raw backup, warm
backup.

206

I
.ibd file

 Each InnoDB tablespace created using the file-per-table setting has a filename with a .ibd extension. This
extension does not apply to the system tablespace, which is made up of files named ibdata1, ibdata2, and
so on.
See Also .ibz file, system tablespace, tablespace.

.ibz file
 When the MySQL Enterprise Backup product performs a compressed backup, it transforms each tablespace
file that is created using the file-per-table setting from a .ibd extension to a .ibz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. An InnoDB tablespace that is already in compressed row format is not
compressed a second time, but is, nevertheless, still saved as an .ibz file in the compressed backup.
See Also compression, compression level, .ibd file, .ibz file, MySQL Enterprise Backup, tablespace.

ibdata file
 A set of files with names such as ibdata1, ibdata2, and so on, that make up the InnoDB system tablespace.
These files contain metadata about InnoDB tables, and can contain some or all of the table and index data
also (depending on whether the file-per-table option is in effect when each table is created). For backward
compatibility these files always use the Antelope file format.
See Also system tablespace.

image
 The file produced as part of a single-file backup operation. It can be a real file that you store locally, or standard
output (specified as -) when the backup data is streamed directly to another command or remote server. This
term is referenced in several mysqlbackup options such as backup-dir-to-image and image-to-backup-
dir.
See Also single-file backup, streaming.

include
 In a partial backup, to select a set of tables, databases, or a combination of both to be backed up. Contrast with
exclude.
See Also partial backup.

incremental backup
 A backup that captures only data changed since the previous backup. It has the potential to be smaller and
faster than a full backup. The incremental backup data must be merged with the contents of the previous
backup before it can be restored. See Section 4.3.3, “Making a Differential or Incremental Backup” for usage
details. Related mysqlbackup options are --incremental, --incremental-with-redo-log-only, --
incremental-backup-dir, --incremental-base, and --start-lsn.
See Also full backup.

InnoDB
 The type of MySQL table that works best with MySQL Enterprise Backup. These tables can be backed up
using the hot backup technique that avoids interruptions in database processing. For this reason, and because of
the higher reliability and concurrency possible with InnoDB tables, most deployments should use InnoDB for the
bulk of their data and their most important data. In MySQL 5.5 and higher, the CREATE TABLE statement creates
InnoDB tables by default.
See Also hot backup, table.

instance
 The full contents of a MySQL server, possibly including multiple databases. A backup operation can back up an
entire instance, or a partial backup can include selected databases and tables.

207

https://dev.mysql.com/doc/refman/8.3/en/create-table.html

See Also database, partial backup.

L
locking

See Also suspend, warm backup.

log
 Several types of log files are used within the MySQL Enterprise Backup product. The most common is the
InnoDB redo log that is consulted during incremental backups.
See Also incremental backup, redo log.

log sequence number
See LSN.

logical backup
 A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysqldump command produces a logical backup, because its output contains statements such as CREATE
TABLE and INSERT that can re-create the data. Contrast with physical backup.
See Also backup, physical backup.

LSN
 Acronym for log sequence number. This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction boundaries;
it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash recovery and for
managing the buffer pool.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which to
take an incremental backup. The relevant LSN is displayed by the output of the mysqlbackup command. Once
you have the LSN corresponding to the time of a full backup, you can specify that value to take a subsequent
incremental backup, whose output contains another LSN for the next incremental backup.
See Also crash recovery, hot backup, incremental backup, redo log.

M
.MRG file

 A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the mysqlbackup command of the MySQL Enterprise Backup
product.

.MYD file
 A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file.

.MYI file
 A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file.

manifest
 The record of the environment (for example, command-line arguments) and data files involved in a backup,
stored in the files meta/backup_create.xml and meta/backup_content.xml, respectively. This data can
be used by management tools during diagnosis and troubleshooting procedures.

master
See source.

208

media management software
 A class of software programs for managing backup media, such as libraries of tape backups. One example is
Oracle Secure Backup. Abbreviated MMS.
See Also Oracle Secure Backup.

my.cnf
 The typical name for the MySQL configuration file on Linux, Unix, and macOS systems.
See Also configuration file, my.ini.

my.ini
 The typical name for the MySQL configuration file on Windows systems.
See Also configuration file, my.cnf.

MyISAM
 A MySQL storage engine, formerly the default for new tables. In MySQL 5.5 and higher, InnoDB becomes
the default storage engine. MySQL Enterprise Backup can back up both types of tables, and tables from other
storage engines also. The backup process for InnoDB tables (hot backup) is less disruptive to database
operations than for MyISAM tables (warm backup).
See Also hot backup, InnoDB, warm backup.

MySQL Enterprise Backup
 A licensed products that performs hot backups of MySQL database servers. It offers the most efficiency and
flexibility when backing up InnoDB tables; it can also back up MyISAM and other kinds of tables. It is included as
part of the MySQL Enterprise Edition subscription.
See Also hot backup, InnoDB.

mysqlbackup
 The primary command of the MySQL Enterprise Backup product. Different options perform backup and
restore operations.
See Also backup, restore.

mysqldump
 A MySQL command that performs logical backups, producing a set of SQL commands to recreate tables and
data. Suitable for smaller backups or less critical data, because the restore operation takes longer than with a
physical backup produced by MySQL Enterprise Backup.
See Also logical backup, physical backup, restore.

N

non-TTS backup
 A backup that is NOT created using transportable tablespace (TTS), that is, not with the --use-tts option.
See Also transportable tablespace, TTS backup.

O

.opt file
 A file containing database server configuration information. Files with this extension are always included in
backups produced by the backup operations of the MySQL Enterprise Backup product.

offline
 A type of operation performed while the database server is stopped. With the MySQL Enterprise Backup
product, the main offline operation is the restore step. You cannot perform a cold backup with MySQL
Enterprise Backup 8.0 or later. Contrast with online.

209

See Also cold backup, online, restore.

online
 A type of operation performed while the database server is running. A hot backup is the ideal example, because
the database server continues to run and no read or write operations are blocked. For that reason, sometimes
“hot backup” and “online backup” are used as synonyms. A cold backup is the opposite of an online operation;
by definition, the database server is shut down while the backup happens (MySQL Enterprise Backup 8.0 and
later does not support cold backups). A warm backup is also a kind of online operation, because the database
server continues to run, although some write operations could be blocked while a warm backup is in progress.
Contrast with offline.
See Also cold backup, hot backup, offline, warm backup.

optimistic backup
 Optimistic backup is a feature for improving performance for backing up and restoring huge databases in which
only a small number of tables are modified frequently. An optimistic backup consists of two phases: (1) the
optimistic phase in which tables that are unlikely to be modified during the backup process (identified by the user
with the optimistic-time option or, by exclusion, with the optimistic-busy-tables option) are backed up
without any locks on the MySQL instance; (2) a normal phase, in which tables that are not backed up in the first
phase are being backed up in a manner similar to how they are processed in an ordinary backup: the InnoDB files
are copied first, and then other relevant files and copied or processed with various locks applied to the database
server. The redo logs, undo logs, and the system tablespace are also backed up in this phase. See Section 4.3.6,
“Making an Optimistic Backup” for details.

optimistic Incremental Backup
 In an optimistic incremental backup mysqlbackup scans InnoDB data files that have been modified since the
last backup for changed pages and then saves them into the incremental backup. It is performed by specifying --
incremental=optimistic. See Full-scan versus Optimistic Incremental Backup for details.

Oracle Secure Backup
 An Oracle product for managing backup media, and so classified as media management software (MMS).
Abbreviated OSB. For MySQL Enterprise Backup, OSB is typically used to manage tape backups.
See Also backup, media management software, OSB.

OSB
 Abbreviation for Oracle Secure Backup, a media management software product (MMS).
See Also Oracle Secure Backup.

P
.par file

 A file containing partition definitions. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.

parallel backup
 The default processing mode in MySQL Enterprise Backup 3.8 and higher, employing multiple threads for
different classes of internal operations (read, process, and write). See Section 1.2, “Overview of Backup Types”
for an overview, Section 20.10, “Performance / Scalability / Capacity Options” for the relevant mysqlbackup
options, and Chapter 13, Performance Considerations for MySQL Enterprise Backup for performance guidelines
and tips.

partial backup
 A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup. Related mysqlbackup options are --include-tables, --exclude-
tables, --use-tts, --only-known-file-types, and --only-innodb.
See Also backup, database, full backup, partial restore, table.

210

partial restore
 A restore operation that applies to one or more tables or databases, but not the entire contents of a
MySQL server. The data being restored could come from either a partial backup or a full backup. Related
mysqlbackup options are --include-tables, --exclude-tables, and --rename.
See Also database, full backup, partial backup, restore, table.

physical backup
 A backup that copies the actual data files. For example, the MySQL Enterprise Backup command produces a
physical backup, because its output contains data files that can be used directly by the mysqld server. Contrast
with logical backup.
See Also backup, logical backup.

point in time
 The time corresponding to the end of a backup operation. A prepared backup includes all the changes that
occurred while the backup operation was running. Restoring the backup brings the data back to the state at the
moment when the backup operation completed.
See Also backup, prepared backup, restore.

prepared backup
 The set of backup data that is entirely consistent and ready to be restored. It is produced by performing the apply
operation on the raw backup.
See Also apply, raw backup.

progress table
 The table mysql.backup_progress that holds details of running backup operations. When a backup job
finishes, the details are recorded in the history table.
See Also backup, history table.

R
raw backup

 The initial set of backup data, not yet ready to be restored because it does not incorporate changes that occurred
while the backup was running. The apply operation transforms the backup files into a prepared backup that is
ready to be restored.
See Also apply, prepared backup.

redo log
 A set of files, typically named ib_logfile0 and ib_logfile1, that record statements that attempt to change
data in InnoDB tables. These statements are replayed automatically to correct data written by incomplete
transactions, on startup following a crash. The passage of data through the redo logs is represented by the ever-
increasing LSN value. The 4GB limit on maximum size for the redo log is raised in MySQL 5.6.
See Also LSN.

regular expression
 Some MySQL Enterprise Backup features use POSIX-style regular expressions, for example to specify tables,
databases, or both to include or exclude from a partial backup. Regular expressions require escaping for dots
in filenames, because the dot is the single-character wildcard; no escaping is needed for forward slashes in
path names. When specifying regular expressions on the command line, surround them with quotation marks as
appropriate for the shell environment, to prevent expansion of characters such as asterisks by the shell wildcard
mechanism.
See Also exclude, include, partial backup.

relay log
 A record on a replica server for the events read from the binary log of the source server and written by the
replication I/O thread. The relay log, like the binary log, consists of a set of numbered files containing events

211

that describe database changes, and an index file that contains the names of all used relay log files. For more
information on relay log, see The Relay Log. The relay log on a server is backed up by default.
See Also binary log, replication.

replica
 In a replication configuration, a database server that receives updates from a source server. Typically used
to service user queries, to minimize the query load on the source server. With MySQL Enterprise Backup, you
might take a backup on one server, and restore on a different system to create a new replica server with the
data already in place. You might also back up data from a replica server rather than the source, to minimize any
slowdown of the overall system.
See Also replication, source.

replication
 A common configuration for MySQL deployments, with data and DML operations from a source server
synchronized with a set of replica servers. With MySQL Enterprise Backup, you might take a backup on one
server, and restore on a different system to create a new replica server with the data already in place. You might
also back up data from a replica server rather than the source, to minimize any slowdown of the overall system.
See Also replica, source.

repository
 We distinguish between the server repository and the backup repository.
See Also backup repository, server repository.

restore
 The converse of the backup operation. The data files from a prepared backup are put back into place to repair
a data issue or bring the system back to an earlier state.
See Also backup, prepared backup.

row format
 The disk storage format for a row from an InnoDB table. As InnoDB gains new capabilities such as compression,
new row formats are introduced to support the resulting improvements in storage efficiency and performance.

Each table has its own row format, specified through the ROW_FORMAT option. To see the row format for
each InnoDB table, issue the command SHOW TABLE STATUS. Because all the tables in the system
tablespace share the same row format, to take advantage of other row formats typically requires setting the
innodb_file_per_table option, so that each table is stored in a separate tablespace.

S

.sdi file
 A file containing the metadata (referred to as Serialized Dictionary Information (SDI)) of a MyISAM table.

SBT
 Acronym for system backup to tape.
See Also system backup to tape.

selective backup
 Another name for partial backup
See Also partial backup, selective restore.

selective restore
 Another name for partial restore
See Also partial restore, selective backup.

212

https://dev.mysql.com/doc/refman/8.3/en/replica-logs-relaylog.html
https://dev.mysql.com/doc/refman/8.3/en/serialized-dictionary-information.html

server
 A MySQL instance controlled by a mysqld daemon. A physical machine can host multiple MySQL servers,
each requiring its own backup operations and schedule. Some backup operations communicate with the server
through a connection.
See Also connection, instance.

server repository
 Contrast with backup repository.
See Also backup repository, repository.

single-file backup
 A backup technique that packs all the backup data into one file (the backup image), for ease of storage and
transfer. The streaming backup technique requires using a single-file backup.
See Also image, streaming.

slave
See replica.

source
 In a replication configuration, a database server that sends updates to a set of replica servers. It typically
dedicates most of its resources to write operations, leaving user queries to the replicas. With MySQL Enterprise
Backup, typically you perform backups on the replica servers rather than the source, to minimize any slowdown
of the overall system.
See Also replica, replication.

streaming
 A backup technique that transfers the data immediately to another server, rather than saving a local copy. Uses
mechanisms such as Unix pipes. Requires a single-file backup, with the destination file specified as - (standard
output).
See Also single-file backup.

suspend
 An optional stage within the backup where the MySQL Enterprise Backup processing stops, to allow for user-
specific operations to be run. The mysqlbackup command has options that let you specify commands to be run
while the backup is suspended.
See Also .frm file, InnoDB.

system backup to tape
 An API for media management software. Abbreviated SBT. Several mysqlbackup options (with sbt in their
names) pass information to media management software products such as Oracle Secure Backup.
See Also Oracle Secure Backup, SBT.

system tablespace
 By default, this single data file stores all the table data for a database server, as well as all the metadata for
InnoDB-related objects (the data dictionary).

Turning on the innodb_file_per_table option causes each newly created table to be stored in its own
tablespace, reducing the size of, and dependencies on, the system tablespace.

Keeping all table data in the system tablespace has implications for the MySQL Enterprise Backup product
(backing up one large file rather than several smaller files), and prevents you from using certain InnoDB features
that require the newer Barracuda file format. on the
See Also data dictionary, file format, ibdata file, tablespace.

213

T
.TRG file

 A file containing trigger parameters. Files with this extension are always included in backups produced by the
mysqlbackup command of the MySQL Enterprise Backup product.

table
 Although a table is a distinct, addressable object in the context of SQL, for backup purposes we are often
concerned with whether the table is part of the system tablespace, or was created under the file-per-table
setting and so resides in its own tablespace.
See Also backup, system tablespace, tablespace.

Table-Level Recovery (TLR)
 Table-Level Recovery (TLR) is a selective restore of tables or schemas from a backup; see Section 5.1.4, “Table-
Level Recovery (TLR)” for details.
See Also partial restore.

tablespace
 For InnoDB tables, the file that holds the data and indexes for a table. Can be either the system tablespace
containing multiple tables, or a table created with the file-per-table setting that resides in its own tablespace file.
See Also InnoDB, system tablespace.

TLR
 Short form for Table-Level Recovery.
See Also partial restore, Table-Level Recovery (TLR).

transportable tablespace
 A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not been
possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL 5.6 and
higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to another server;
running ALTER TABLE ... DISCARD TABLESPACE and ALTER TABLE ... IMPORT TABLESPACE on
the other server brings the copied data file into the other instance. A separate .cfg file, copied along with the
.ibd file, is used to update the table metadata (for example the space ID) as the tablespace is imported. See
Importing InnoDB Tables for usage information.

Use the --use-tts option to create a backup with transportable tablespace. See also Section 5.1.5, “Restoring
Backups Created with the --use-tts Option”.
See Also partial backup.

TTS
 Short form for transportable tablespace.
See Also partial backup, transportable tablespace.

TTS backup
 A backup that is created using transportable tablespace (TTS), that is, with the --use-tts option.
See Also non-TTS backup, partial backup, transportable tablespace.

W
warm backup

 A backup taken while the database server is running, but that restricts some database operations during the
backup process. For example, tables might become read-only. For busy applications and websites, you might
prefer a hot backup.
See Also backup, cold backup, hot backup.

214

https://dev.mysql.com/doc/refman/8.3/en/flush.html#flush-tables-for-export-with-list
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/alter-table.html
https://dev.mysql.com/doc/refman/8.3/en/innodb-table-import.html

Index

Symbols
--log-bin option, 140
--relay-log option, 141

A
Antelope, 119
apply, 203
apply-incremental-backup option, 123
--apply-log option, 123
.ARM file, 203
.ARZ file, 203
authentication

LDAP, 107

B
backup, 203
backup directory, 144, 203
backup option, 122
backup repository, 203
backup-and-apply-log option, 122
--backup-dir option, 144
backup-dir-to-image option, 127
backup-image option, 143
backup-my.cnf, 203
backup-my.cnf file, 7
backup-to-image option, 122, 157
backups

cold, 5
compressed, 5, 56, 60, 147
containing encrypted InnoDB tablespaces, 75
controlling overhead, performance, and scalability, 159
differential, 50
encrypted, 89
full, 49
hot, 5
incremental, 5, 50, 150
InnoDB tables only, 119
logical, 5
message logging, 166
optimistic, 60
parallel, 5
partial, 57, 152
physical, 5
prepared, 7, 70
preparing to restore, 70
progress report, 167
raw, 7, 70
scheduled, 63
single-file, 5, 44
streaming, 5, 46

to cloud, 47
to tape, 47

with Oracle Secure Backup, 91
troubleshooting, 109
uncompressed, 5, 59
verifying, 40
warm, 5

backup_content.xml, 7
backup_content.xml file, 113
backup_create.xml, 7
backup_create.xml file, 113
backup_history table, 111

update, 197
backup_progress table, 111

update, 201
backup_sbt_history table

update, 199
backup_variables.txt file, 7
Barracuda, 119
benchmarking, 97
binary log, 71, 203
binlog, 204

C
cloud backups, 47
--cloud-access-key-id option, 176
--cloud-access-key option, 177
--cloud-aws-region option, 176
--cloud-basicauth-url, 174
--cloud-bucket option, 176
--cloud-buffer-size option, 173
--cloud-ca-info option, 173
--cloud-ca-path option, 173
--cloud-chunk-size, 175, 177
--cloud-host option, 176
--cloud-chunked-transfer, 174
--cloud-identity-url, 174
--cloud-object, 173, 174
--cloud-par-url, 173
--cloud-object-key option, 176
--cloud-password, 174
--cloud-proxy option, 173
--cloud-region, 174
--cloud-secret-access-key option, 176
--cloud-secret-key option, 177
--cloud-service option, 172
--cloud-tempauth-url, 174
--cloud-tenant, 174
--cloud-trace option, 173
--cloud-user-id, 174
cold backup, 5, 204
command-line tools, 5
commands, mysqlbackup, 121

215

--comments option, 147
--comments-file option, 147
comments.txt file, 7, 147
--compress option, 56, 147
--compress-level option, 56, 149
--compress-method option, 148
compressed backups, 5, 56, 60, 147
compression, 204
compression level, 204
configuration file, 204
configuration options, 183
connection, 205
connection options, 139
copy-back option, 65, 125
copy-back-and-apply-log option, 41, 124
corruption problems, 110
--counter-container, 174
crash recovery, 70, 205
cron jobs, 63
.CSM file, 7
.CSV file, 7

D
data dictionary, 205
database, 205
datadir directory, 7
--datadir option, 140
--data_home_dir option, 142
--decrypt option, 171
decryption, 89
differential backup, 205
--disable-manifest option, 159
disk storage for backup data, 5, 46
distributed file system, 64
downtime, 205
--dst-entry option, 158

E
--enable-cleartext-plugin option, 139
--encrypt option, 171
--encrypt-password option, 172
encrypted backups, 89
encrypted InnoDB tables, 75
encrypted InnoDB tablespaces, 75
encrypted undo tablespaces, 75
encryption, 89
--error-code option, 109, 139
exclude, 205
--exclude-tables option, 57, 153
--exec-when-locked option, 181
exit codes, 109, 139
extract, 206
extract option, 127, 157

F
FAQ, 189
file format, 206
files backed up, 7
frequently asked questions, 189
.frm file, 206
full backup, 49, 206
full-scan incremental backup, 54

G
GRANT statement, 32
group replication, 87

H
history table, 206
hot backup, 5, 206

I
ibbackup_logfile file, 7
.ibd file, 7, 207
ibdata file, 7, 207
ibreset command, 110
.bz file, 7
.ibz file, 7, 207
ib_logfile file, 7
image, 207
image-to-backup-dir option, 127, 157, 157
image_files.xml file, 7, 113
include, 207
--include option, 57, 156
--include-tables option, 57, 152
incremental backup, 5, 150, 207

full scan versus optimistic, 54
using page tracking, 52

--incremental option, 150
--incremental-backup-dir option, 152
--incremental-base option, 151
--incremental-with-redo-log-only option, 151
InnoDB, 207
InnoDB tables, 5, 7, 119, 119

compressed backup feature, 56
incremental backup feature, 50

installing MySQL Enterprise Backup, 23
instance, 207

K
--key option, 171
--key-file option, 171
keyring components, 75

L
LDAP authentication

216

--enable-cleartext-plugin option, 139
--plugin-dir option, 139

--limit-memory option, 162
list-image option, 127, 157
--lock-wait-timeout option, 162
locking, 208
log, 7, 122, 208
--log-bin-index, 141
logical backup, 5, 208
logs

of backup operations, 111, 197, 199, 201
LSN, 50, 150, 208

M
manifest, 7, 113, 159, 208
media management software, 209
media management software (MMS) products, 91
MEMORY tables, 63
message logging, 166
meta directory, 7
MMS products, 91
monitoring backup jobs, 103
.MRG file, 208
my.cnf, 209
my.ini, 209
.MYD file, 7
.MYD file, 208
.MYI file, 7
.MYI file, 208
.sdi file, 7
MyISAM, 209
MyISAM tables, 119
MySQL Enterprise Backup, 209
mysqlbackup, 119, 209

and media management software (MMS) products, 91
commands, 121
configuration options, 183
examples, 44
files produced, 7
modes of operation, 121
options, 131
overview, 5
required privileges, 32
using, 31

mysqlbinlog command, 71
mysqldump, 63, 209

N
--no-history-logging option, 147
--no-locking option, 162
non-TTS backup, 209
--number-of-buffers option, 159

O
offline, 209
--on-disk-full option, 163
online, 210
--only-innodb option, 154
--rename option, 155
--only-known-file-types option, 153
.opt file, 209
optimistic backup, 60, 165, 165, 210
optimistic incremental backup, 54, 150
optimistic Incremental Backup, 210
--optimistic-busy-tables, 165
--optimistic-time, 165
options, mysqlbackup, 131

connection, 139
for cloud storage, 172
for compression, 147
for controlling backup overhead, performance, and
scalability, 159
for controlling message logging, 166
for controlling progress reporting, 167
for encrypted InnoDB tablespaces, 171
for encryption, 171
for generating metadata, 147
for incremental backups, 150
for partial backups, 152
for single-file backups, 157
for special types of backups, 177
general options, 137
in configuration files, 183
layout of backup files, 143
layout of database files, 140
options in common with mysql, 137

Oracle Secure Backup, 210
OS user, 36
OSB, 210
other operations, 128

P
--page-reread-count option, 163
--page-reread-time option, 163
.par file, 210
parallel backup, 97, 100, 210
parallel backups, 5
partial backup, 57, 152, 210
partial restore, 68, 211
performance

of backups, 97
of restores, 100

performance of backup operations, 5
permissions, 36
physical backup, 5, 211
--plugin-dir option, 139

217

point in time, 211
point-in-time recovery, 71
posix_fadvise() system call, 5
prepared backup, 7, 70, 211
print-message option, 128
privileges, 32
--process-threads option, 160
progress indicator, 167
progress table, 211
--progress-interval, 171

R
RAID, 97, 100
raw backup, 7, 70, 211
--read-threads option, 160
redo log, 211
redo log archiving, 79
regular expression, 211
relay log, 211
--relay-log-index, 141
--free-os-buffers, 166
replica, 81, 83, 212
replication, 81, 83, 84, 212
repository, 212
restore, 212
restoring a backup, 65

at original location, 41
backup created with the --use-tts option, 69
examples, 65
mysqlbackup options, 123
partial restore, 68
point-in-time recovery, 71
preparation, 70
restore external tablespaces at different locations, 70

row format, 212

S
--safe-replica-backup-timeout, 178
--safe-slave-backup-timeout, 179
SBT, 212

backup history table update, 199
--sbt-database-name option, 158
--sbt-environment option, 159
--sbt-lib-path option, 158
.sdi file, 212
selective backup, 212
selective restore, 212
server, 213
server repository, 213
--show-progress, 168
single-file backup, 5, 44, 126, 157, 213
--skip-binlog, 164
--skip-final-rescan, 164

--no-redo-log-archive, 164
--skip-relaylog, 164
--skip-unused-pages, 163
--replica-info option, 178
--slave-info option, 178
--sleep option, 162
source, 84, 213
space for backup data, 5
--src-entry option, 157
--start-lsn option, 152
storage access network, 64
streaming, 46, 213
streaming backups, 5
suspend, 213
--suspend-at-end option, 180
system backup to tape, 213
system tablespace, 7, 213

T
table, 214
Table-Level Recovery (TLR), 68, 214
tablespace, 214
tablespace tracker file, 18
tape backups, 47, 91
TLR, 214
transportable tablespace, 214
.TRG file, 214
troubleshooting for backups, 109
TTS, 214
TTS backup, 214

U
--uncompress option, 150
uncompressed backups, 5, 59
--use-tts option, 154
using with MySQL Enterprise Firewall, 105

V
validate option, 126
validating a backup, 125
verifying a backup, 40

W
warm backup, 5, 214
what is new, 25
--with-timestamp option, 146
--write-threads option, 161

218

	MySQL Enterprise Backup User's Guide (Version 8.3.0)
	Table of Contents
	Preface and Legal Notices
	Part I Getting Started with MySQL Enterprise Backup
	Chapter 1 Introduction to MySQL Enterprise Backup
	1.1 The mysqlbackup Client
	1.2 Overview of Backup Types
	1.3 Files that Are Backed Up
	1.3.1 Types of Files Contained in a Backup
	1.3.2 Files Backed up for InnoDB Data
	1.3.3 Files Backed up for Data Stored with MyISAM and Other Storage Engines
	1.3.4 Files Generated by mysqlbackup

	1.4 The Backup Process

	Chapter 2 Installing MySQL Enterprise Backup
	Chapter 3 What's New in MySQL Enterprise Backup 8.3?

	Part II Using MySQL Enterprise Backup
	Chapter 4 Backing Up a Database Server
	4.1 Before the First Backup
	4.1.1 Collect Database Information
	4.1.2 Grant MySQL Privileges to Backup Administrator
	4.1.3 Designate a Location for the Backup Directory

	4.2 The Typical Backup / Verify / Restore Cycle
	4.2.1 OS User for Running mysqlbackup
	4.2.2 Backing Up an Entire MySQL Instance
	4.2.3 Verifying a Backup
	4.2.4 Restoring a Database

	4.3 Backup Scenarios and Examples
	4.3.1 Making a Single-File Backup
	4.3.1.1 Streaming the Backup Data to Another Device or Server
	4.3.1.2 Backing Up to Tape
	4.3.1.3 Backing Up to Cloud Storage

	4.3.2 Making a Full Backup
	4.3.3 Making a Differential or Incremental Backup
	4.3.4 Making a Compressed Backup
	4.3.5 Making a Partial Backup
	4.3.6 Making an Optimistic Backup
	4.3.7 Making a Back Up of In-Memory Database Data
	4.3.8 Making Scheduled Backups

	4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN)

	Chapter 5 Recovering or Restoring a Database Server
	5.1 Performing a Restore Operation
	5.1.1 Restoring a Compressed Backup
	5.1.2 Restoring an Encrypted Backup Image
	5.1.3 Restoring an Incremental Backup
	5.1.4 Table-Level Recovery (TLR)
	5.1.5 Restoring Backups Created with the --use-tts Option
	5.1.6 Restoring External InnoDB Tablespaces to Different Locations
	5.1.7 Advanced: Preparing and Restoring a Directory Backup

	5.2 Restoring a Backup from Cloud Storage to a MySQL Server
	5.3 Point-in-Time Recovery
	5.4 Restoring a Backup with a Database Server Upgrade or Downgrade

	Chapter 6 Working with Encrypted InnoDB Tablespaces
	Chapter 7 Backing up Using Redo Log Archiving
	Chapter 8 Using MySQL Enterprise Backup with Replication
	8.1 Setting Up a New replica
	8.2 Backing up and Restoring a Replica Database
	8.3 Restoring a Source Database
	8.4 Working with Encrypted Binary and Relay Logs

	Chapter 9 Using MySQL Enterprise Backup with Group Replication
	Chapter 10 Encryption for Backups
	Chapter 11 Using MySQL Enterprise Backup with Media Management Software (MMS) Products
	11.1 Backing Up to Tape with Oracle Secure Backup

	Chapter 12 Using MySQL Enterprise Backup with Docker
	Chapter 13 Performance Considerations for MySQL Enterprise Backup
	13.1 Optimizing Backup Performance
	13.2 Optimizing Restore Performance

	Chapter 14 Monitoring Backups with MySQL Enterprise Monitor
	Chapter 15 Using MySQL Enterprise Backup with MySQL Enterprise Firewall
	Chapter 16 Using LDAP for Server Authentication
	Chapter 17 Troubleshooting for MySQL Enterprise Backup
	17.1 Exit codes of MySQL Enterprise Backup
	17.2 Working Around Corruption Problems
	17.3 Using the MySQL Enterprise Backup Logs
	17.4 Using the MySQL Enterprise Backup Manifest

	Part III mysqlbackup Command Reference
	Chapter 18 mysqlbackup
	Chapter 19 mysqlbackup commands
	19.1 Backup Operations
	19.2 Update Operations
	19.3 Restore Operations
	19.4 Validation Operations
	19.5 Other Single-File Backup Operations
	19.6 Other Operations

	Chapter 20 mysqlbackup Command-Line Options
	20.1 General Options
	20.2 Connection Options
	20.3 Server Repository Options
	20.4 Backup Repository Options
	20.5 Metadata Options
	20.6 Compression Options
	20.7 Incremental Backup Options
	20.8 Partial Backup and Restore Options
	20.9 Single-File Backup Options
	20.10 Performance / Scalability / Capacity Options
	20.11 Message Logging Options
	20.12 Progress Report Options
	20.13 Encryption Options
	20.14 Options for Working with Encrypted InnoDB Tablespaces and Encrypted Binary/Relay Logs
	20.15 Cloud Storage Options
	20.16 Options for Special Backup Types

	Chapter 21 Configuration Files and Parameters

	Part IV Appendixes
	Appendix A Frequently Asked Questions for MySQL Enterprise Backup
	Appendix B Limitations of MySQL Enterprise Backup
	Appendix C Compatibility Information for MySQL Enterprise Backup
	C.1 Supported Platforms
	C.2 Cross-Platform Compatibility
	C.3 Compatibility with MySQL Versions
	C.4 Compatibility with Older MySQL Enterprise Backup

	Appendix D Backup History Table Update
	Appendix E SBT Backup History Table Update
	Appendix F Backup Progress Table Update
	MySQL Enterprise Backup Glossary

	Index

