MySQL Enterprise Backup User's Guide (Version
3.12.5)

Abstract

This is the User's Guide for the MySQL Enterprise Backup product. This manual describes the procedures to
back up and restore MySQL databases. It covers techniques for minimizing time and storage overhead during
backups, and to keep the database available during backup operations. It illustrates the features and syntax of
the mysql backup command, for example, how to back up selected databases or tables, how to back up only the
changes since a previous backup, and how to transfer the backup data efficiently to a different server.

For notes detailing the changes in each release, see the MySQL Enterprise Backup 3.12 Release Notes.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. See the MySQL
Enterprise Backup 3.12 License Information User Manual for licensing information, including licensing information
relating to third-party software that may be included in this MySQL Enterprise Backup release.

Document generated on: 2023-03-03 (revision; 8501)

https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/3.12/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/backup-3.12-com-en.pdf
https://downloads.mysql.com/docs/licenses/backup-3.12-com-en.pdf

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiiee ittt e et e e ettt e e ettt e e e e et e e eenan e aeees ix
| Getting Started with MySQL ENterprise BACKUPcccuuuiiiiiiiiieiiiiie e 1
1 Introduction to MySQL ENterpris@ BaACKUPcccuuuiiiiiiiiiiiiiii et 5
1.1 TYPES OF BACKUPSieeitieiiiit ettt ettt ettt et ettt et et e aenees 5
1.2 The mysqlbackup CHENT e 6
1.3 Overview of Backup Performance and Capacity Considerationscccvveeeennnnnn. 6
1.4 Files that Are BacKed Ucoouuuiiiiiiiiei e 7
1.5 Overview of Restoring @ Databasecciiiiiiiiii e 19
2 Installing MySQL ENterprise BACKUDccuuuuiiiiiieiei ettt 21
3 What's New in MySQL Enterprise Backup 3.127coouiiiiiiiiiieiiiieeeei e 23
I Using MYySQL ENterpris@ BaACKUPDccouuiiiiii ittt e 25
4 Backing Up a Database SEIVET oottt 29
4.1 Before the First BaCKUPc.uuiiiiiiicii e 29
4.1.1 Collect Database INfOrmationcoouuiiiiiiiiiiiii e 29
4.1.2 Grant MySQL Privileges to Backup ADMINIStratorccooeveeeiiiieeiininneeenns 31
4.1.3 Designate a Location for Backup Datacooeeuiiiiiiiiiiiiiieec e, 31
4.2 The Typical Backup / Verify / Restore CYCleccooiiiiiiiiiiiiiiic e 32
4.2.1 OS User for Running mysglbackup ... 32
4.2.2 Backing Up an Entire MySQL INSTANCEccouuiiiiiiiiiiiiiiiiecei e 32
4.2.3 Verifying @ BacCKUP ... couuiiiiiii e 34
4.2.4 Restoring @ Databasecouuiiiiiiiiiiiiiii e 34
4.3 Backup Scenarios and EXamMPIESccoouuiiiiiiiiieiiiieee e 37
4.3.1 Making @ Full BACKUPiiiiiiieiii et 37
4.3.2 Making a Differential or Incremental Backupccooeieiiinieiiiiinieiiiiinieeenenn, 38
4.3.3 Making a Compressed Backupoooevuiiiiiiiiiiiii e 42
4.3.4 Making a Partial Backupoooiimiiiiiiii e 43
4.3.5 Making a Single-File BaCKUPccooiiiiiiiiiiiieci e a7
4.3.6 Making an OptimiStiC BACKUPcceuuuiiiiiiieiiii e 52
4.3.7 Making a Back Up of In-Memory Database Dataccccoovevevviieiiiinnennnnn. 53
4.3.8 Making Scheduled BacKUPSooiiiiiieiiiiiiecei e 53

4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network
(S AN e e e e ettt 54
5 Recovering or Restoring a Database ..o 57
5.1 Preparing the Backup to be Restoredcoouuiiiiiiiiiiiiii e 57
5.2 Performing a ReStore OPErationccouuuiieieiiieiiiiie et 58
5.2.1 Restoring a Compressed BacKUPc.uuiiiiiiiiiiiiiiieeei e 59
5.2.2 Restoring an Encrypted Backup IMageccooevviiiiiiiiiiiiicc e, 60
5.2.3 Restoring an Incremental Backupoooviviiiiiiiiiiiieiiiece e 60
5.2.4 Restoring Backups Created with the - - use-tts Optionc.oceevvieeeinnnnnn. 61
5.2.5 Restoring External InnoDB Tablespaces to Different Locations 61
5.2.6 Restoring a Backup from Cloud Storage to a MySQL Servercccceeeeeenn. 62
5.3 POINt-IN-TIME RECOVEIY ...ttt ettt 63
5.4 Restoring a Backup with a Database Upgrade or Downgradeccccceuvevenneeannnn. 64
6 Using MySQL Enterprise Backup with Replicationcccooveiiiiiiiiiiii e 67
6.1 Setting Up @ NEW REPIICAuuiiiiiiiiiiiiiii e 67
6.2 Backing up and Restoring a Replica Databaseccocovviiiiiiiiiieiiiiieceii e 69
6.3 Restoring @ SoUrce DAtabaseccceuuiiiiiiiiiiiiiii e e 69
7 Performance Considerations for MySQL Enterprise Backupoocoeviiiiiiiiiiiiiiinieicin, 73
7.1 Optimizing Backup PerfOrmMancCecc.uviiiiiiiiii e 73
7.2 Optimizing Restore PerfOrManCec.uuii it 76
8 ENCryption fOr BACKUPSiieiiiiieiiii ettt ettt e e ettt e e et e e eeb e eees 79
9 Using MySQL Enterprise Backup with Media Management Software (MMS) Products 81
9.1 Backing Up to Tape with Oracle Secure Backupccooveeuiiiiiiiiiiiiiiiiiieccii e, 81
10 Monitoring Backups with MySQL EnterpriSe MONITOrooeviiviiiiiiiiieeiii e 83
11 Troubleshooting for MySQL Enterprise BacCKUPc..uiiiiiiiiiiiiiiiieeciie e 85

MySQL Enterprise Backup User's Guide (Version 3.12.5)

11.1 Error codes of MySQL Enterprise Backupcccouuiiiiiiiiiiiieiiiiecie e 85

11.2 Working Around Corruption Problemscccoooiiiiiiiiiiii e 85

11.3 Using the MySQL Enterprise Backup LOGScccovuiiiiiiiiiiiiii e 86

11.4 Using the MySQL Enterprise Backup Manifestc.cccoeeviiiiiiiiiiiii e 88

I mysql backup Command REFEIENCEcciueiiiiiei e e e s 89
2 1 V=Y o | I o = Lo U T 93
13 nysql backup COMMANAScovuiiiiie e e e e e e e e e e e aans 95
R 2 7= Tt (B o I ®) 0 1= - 11 o] o < 95

13.2 APPIY-LOG OPEIAtIONS .. couiiiiiieii e e e e e e e e e e e e e e eeaes 96

13.3 RESIOre OPEIatiONS ...uuciieeiiii i et e e e e e e e e e e e e e e et e e e e e ean e eaes 97

13.4 Validation OPEIatiONScivuuieiieeiiiee et e e e e e e e e e e e st e e et e e et e e e eanaees 99

13.5 Single-File Backup OPEerationsccceuuieiiiioiiiieiiieei e e e e e e e e 100

14 nysql backup Command-Ling OPLiONScouuiiiiiiiiii e e e e 105
I S = T To F= 1o B @ o) 1o 1= 112

S oo T=Td 1[0 4 I o] 1 o] o < N 114

14.3 Server RepoSItOry OPLIONSccuuiiiiiieiii et e e e e e e e e e e e e e eanees 115

14.4 Backup RepOSItOry OPLIONSuiiiiniiiiiieii e e e e e e e e e e e e e e e e eaneees 117

14.5 Metadata OPtiONSciiiiiiiii e e a e 121

I G @toTa g o] £=1S1ST (o] 0 I © o] 110] 1 N 122

14.7 Incremental Backup OPLIONSccouuiiiiiiiiiiice e e e e e e 123

14.8 Partial Backup and Restore OPtioNScc.uiiiiiiiiiiiiiii e 125

14.9 Single-File Backup OPtioNSccouiiiiicii e e 131
14.10 Performance / Scalability / Capacity OptionsSccoevviiiiiiiiiiieeie e 133
14.11 Message Logging OPtiONSiiuuiiiiii it e e 140
14.12 Progress RepOrt OPLIONSuciiiiiiiiiei e e e e e e e e eaens 142
e B =T g Tor Y/ o 1 o] I @] o] 1o = PPN 145
14.14 Cloud Storage OPLIONSccvuiiiiieiii et e e e e e e e e e aaaas 145
14.15 Options for Special BaCkupP TYPES ..ccuuiiiiiiiiiieiii e e e e e e e e e e e e aanes 147

15 Configuration Files and Parameterscveiiieiiiiiiiiie e e e 151
RV Y o] o 11 10 13 = 153
A Frequently Asked Questions for MySQL Enterprise Backupccoocvviiviiiiiiiiiieiiineeineeann, 157
B Limitations of MySQL ENterprise BacCKUPoovuiiiiiiiiiiiiciie e e e e e e e e e e 159
C Compatibility Information for MySQL Enterprise Backupcccoveviiiiiiiieiiiieiiiieeeeennn, 161
C.1 Supported PIAtfOrMScouuiiiiie e e 161

C.2 Cross-Platform Compatibilityccouviiiiiiiiii e 161

C.3 Compatibility with MySQL VEISIONSc.uiiiiiiiiieeiii e e e e e 161

C.4 Compatibility with Older Versions of MySQL Enterprise Backupcccoeeevvnneenn. 161

C.5 Compatibility Notes for Specific MySQL VErSIONScccccvieiiiieiiiieiiieeiiiieeeieeeies 161

D MySQL Enterprise Backup Release NOEScc.oiiiiiiiiiiieiii e e 163
MySQL Enterprise Backup GIOSSArYccuuiiiiiiiiiii it e e eaae e 165

1T = 177

List of Tables

1.1 Files in a MySQL Enterprise Backup OUtput DIr€CIOIYuiiiieiiniiiiiiiieeiiiii e 7
4.1 Information Needed to Back Up a Databaseccoouiiiiiiiiiiiiiii e 29
105

14.2 LiSt OF All OPLIONS ...ttt ettt e et e et e e et eeeera s

Vi

List of Examples

4.1 Making an Uncompressed Partial Backup of INnoDB Tablesccoiiiiiiiiiiiici e 46
4.2 Making a Compressed Partial BACKUDcccuuuuiiiiiiiieiiii ettt e e e 46
4.3 Single-File Backup to ADSOIUtE Pathiiiiiiiiii e 47
4.4 Single-File Backup to Relative Pathccooiiiiiiii e 47
4.5 Single-File Backup to Standard OULPULcoouuuiiiiiiieieiii e e 48
4.6 Convert Existing Backup Directory to Single IMagecoouuiiiiiiiiiiiii e 48
4.7 Extract Existing Image to Backup Dir€CIOMYooveuuiiiiiiiiiieiii e 48
4.8 List Single-File BaCKUP CONENESiiiiiiiiiiiiii et e e 48
4.9 Validate a Single-File BaCKUPccooiiiiiiiii et 48
4.10 Extract Single-File Backup into CUrrent DIFECIONYocoeiuuiiieiiiiieeeiii e 48
4.11 Extract Single-File Backup into a Backup DIir€CtONYcccouuiiiiiiiiieiiiiii e 48
4.12 Selective Extract of SIiNgIe File ... 48
4.13 Selective Extract Of SiNgle DIrECIONYuuiiiiiiiiieiii et 49
4.14 Dealing with Absolute Path NAMEScoouiiiiiiii e 49
4.15 Single-File Backup t0 @ ReMOLE HOSLccoiiiiiiiiiii e 49
4.16 Single-file Backup to a Remote MYSQL SEIVETuiiiiiiiiiiiiii e 49
4.17 Stream a Backup Directory to a Remote MySQL SEIVEIcoouuiiiiiiiiiiieiiiiieeeeii e 50
4.18 Creating a Cloud Backup on Oracle Cloud Infrastructure Object Storage Classic 50
4.19 Creating a Cloud Backup on Oracle Cloud Infrastructure Object Storagecccvvveevernnnnnn. 51
4.20 Creating a Cloud Incremental Backup on Oracle Cloud Infrastructure Object Storage 51
4.21 Creating a Cloud Backup on an OpenStack Object Storagecccoovevieiiiiiiieiiinieeiieeeeenn, 51
4.22 Creating a Cloud Backup 0N AmMazon S3cooiiiiiiiiiiiieiii et et 51
4.23 Extract an Existing Image from an Oracle Cloud Infrastructure Object Storage Classic

Container t0 @ BACKUP DIFECIOMYuueiiiii ettt ettt ettt ettt e e e e enaens 51
4.24 Extract an Existing Image from Amazon S3 Cloud Storage to a Backup Directory 52
4.25 Optimistic Backup Using the Option opti nmi sti c-ti me=YYMVDDHHMVESccooviieiiiiinnenes 53
4.26 Optimistic Backup Using the Option opt i M Sti C- 11 MEBSNOW .oeivvviiiiiiiiieeiiii e e 53
4.27 Optimistic Backup Using the opt i mi sti c-busy-tabl es Optionccccooveviiiiiiiiiinienn. 53
4.28 Optimistic and Partial Backup Using both the opt i mi sti c- busy-t abl es and

OPLT M ST T C- 11 IME OPLIONS ..ttt ettt ettt et e e ettt e ettt e e e e et e e e ent i reeeenaaeeees 53
5.1 Applying the Log 10 @ BACKUPuuiiiiiii et e e 58
5.2 Applying the Log to & CompressSed BaCKUPuuiiiiiiiiiiiiii e 58
5.3 Applying an Incremental Backup to a Full BaCKUpccc.uiiiiiiiiiiiiii e 58
5.4 Shutting Down and Restoring @ Databaseuiiiiiiiiiiiiiiii e 58
5.5 Restoring a Backup Directory using copy- back-and- appl y-1 00 ..ccoovveiiiiniiiiiiinieieceeen, 59
5.6 Restoring a Single-file Backup using copy- back-and- appl y-1 00 ..cccoooviiiiiiiiiiiiiiieees 59
5.7 Restoring @ Compressed BACKUPcoiiiiiiiiii et 59
5.8 Restoring an Encrypted Backup IMaAQEoooeiiiiiiiii e 60
5.9 Restoring an Incremental Backup IMageoviiiiiiiiiiiii e 60
5.10 Restoring Selected Tables from & TTS BaCKUPviiiiiiiiiiiiiiie e 61
5.11 Restoring and Renaming a Table from a TTS BaCKUPcccoviiiiiiiiiiiiiiiieeici e 61
5.12 Restoring a Single-file Backup from an Oracle Cloud Infrastructure (OCI) Object Storage

Classic Container t0 @ MYSQL SEIVEIuuuiiiiiiiii ettt et e e enaas 62
5.13 Restoring a Single-file Backup from an Oracle Cloud Infrastructure (OCI) Object Storage to

A MYSQL SEIVET ..ottt 62
5.14 Restoring a Cloud Incremental Backup from an Oracle Cloud Infrastructure (OCI) Object

Storage Service t0 & MYSQL SEIVE ...ttt e e e eeaaas 62
5.15 Restoring a Single-file Backup from an OpenStack Object Storage to a MySQL Server 62
5.16 Restoring a Single-file Backup from Amazon S3 to a MySQL Servercccoovveiiiiinieiiininneeens 62
9.1 Sample nysql backup Commands Using MySQL Enterprise Backup with Oracle Secure

BACKUD ..t et 82
13.1 APPlY LOG tO FUIl BACKUP ...ttt eaaes 97
15.1 Example backup-my. CNT file oo 151

Vii

viii

Preface and Legal Notices

This is the User Manual for the MySQL Enterprise Backup product.

Licensing information. This product may include third-party software, used under license. See the
MySQL Enterprise Backup 3.12 License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this MySQL Enterprise
Backup release.

Legal Notices

Copyright © 2003, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation™ pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may
be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to

https://downloads.mysql.com/docs/licenses/backup-3.12-com-en.pdf

Documentation Accessibility

your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Part | Getting Started with
MySQL Enterprise Backup

Table of Contents

1 Introduction to MySQL ENterpris@ BaCKUPuuiiiiiiiiiiiiii e 5
1.1 TYPES OF BACKUPSeeeiiieeiii ettt ettt ettt e et e e e eni e eeneas 5
1.2 The mySqIDACKUP ClENTcoutiieii e e r e e e e e eeees 6
1.3 Overview of Backup Performance and Capacity Considerationsccccoovveeiiiinneeeennnnnn. 6
1.4 Files that Are Backed Uuuiiiiiiiiieiiii e e 7
1.5 Overview of ReStoring a Databaseoviiiiiiiiiiiii e 19
2 Installing MySQL ENterprise@ BACKUDcvvutuuiiiiiiieeeii ettt e e 21
3 What's New in MySQL Enterprise Backup 3.127uuiiiiiiiiiieiiiii et 23

Chapter 1 Introduction to MySQL Enterprise Backup

Table of Contents

1.1 TYPES OF BACKUPS ...ttt e e et ettt e e e et e e e sae e e enaans 5
1.2 The mySqIDACKUP ClENToouiieee et ettt e e e e e eaans 6
1.3 Overview of Backup Performance and Capacity Considerationsccoveveviinieieiiinieieiiinnenennnn 6
1.4 Files that Are BaCKed Uoouuiiiiiiiiiiiiii et et e et e e e e e een 7
1.5 Overview of ReStoring a Databasev i 19

The MySQL Enterprise Backup product performs backup operations for MySQL data. It can back up all
kinds of MySQL tables. It has special optimizations for fast and convenient backups of InnoDB tables.
Because of the speed of InnoDB backups, and the reliability and scalability features of InnoDB tables,
we recommend that you use InnoDB tables for your most important data.

This book describes the best practices regarding MySQL backups and documents how to use MySQL
Enterprise Backup features to implement these practices. This book teaches you:

» Why backups are important.
» The files that make up a MySQL database and the roles they play.
* How to keep the database running during a backup.

» How to minimize the time, CPU overhead, and storage overhead for a backup job. Often, minimizing
one of these aspects increases another.

» How to restore your data when disaster strikes. You learn how to verify backups and practice
recovery, so that you can stay calm and confident under pressure.

» Other ways to use backup data for day-to-day administration and in deploying new servers.

1.1 Types of Backups

The various kinds of backup techniques are classified on a scale ranging from hot (the most desirable)
to cold (the most disruptive). Your goal is to keep the database system, and associated applications
and web sites, operating and responsive while the backup is in progress.

Hot backups are performed while the database is running. This type of backup does not block normal
database operations. It captures even changes that occur while the backup is happening. For these
reasons, hot backups are desirable when your database “grows up”: when the data is large enough
that the backup takes significant time, and when your data is important enough to your business so that
you must capture every last change, without taking your application, web site, or web service offline.

MySQL Enterprise Backup does a hot backup of all InnoDB tables. MyISAM and other non-InnoDB
tables are backed up last, using the warm backup technique: the database continues to run, but the
system is in a read-only state during that phase of the backup.

You can also perform cold backups while the database is stopped. To avoid service disruption, you
would typically perform such a backup from a replica, which can be stopped without taking down the
entire application or web site.

Points to Remember

To back up as much data as possible during the hot backup phase, you can designate InnoDB as the
default storage engine for new tables, or convert existing tables to use the InnoDB storage engine. (In
MySQL 5.5 and higher, InnoDB is now the default storage engine for new tables.)

The mysqglbackup Client

During hot and warm backups, information about the structure of the database is retrieved
automatically through a database connection. For a cold backup, you must specify file locations
through configuration files or command-line options.

1.2 The mysglbackup Client

When using the MySQL Enterprise Backup product, you primarily work with the nmysql backup

client. Use it to perform different types of backup and restore operations, as well as tasks that are
otherwise performed by backup scripts, such as creating a timestamped subdirectory for each backup,
compressing the backup data, and packing the backup data into a single file for easy transfer to
another server.

For information about the various nmysgl backup commands and command-line options, see Part lll,
“mysql backup Command Reference”.

1.3 Overview of Backup Performance and Capacity
Considerations

In your backup strategy, performance and storage space are key aspects. You want the backup to
complete quickly, with little CPU overhead on the database server. You also want the backup data to
be compact, so you can keep multiple backups on hand to restore at a moment's notice. Transferring
the backup data to a different system should be quick and convenient. All of these aspects are
controlled by options of the nmysql backup command.

Sometimes you must balance the different kinds of overhead -- CPU cycles, storage space,

and network traffic. Always be aware how much time it takes to restore the data during planned
maintenance or when disaster strikes. For example, here are factors to consider for some of the key
MySQL Enterprise Backup features:

» Parallel backups are the default in MySQL Enterprise Backup 3.8, a major performance improvement
over earlier MySQL Enterprise Backup releases. The read, process and write are the primary sub-
operations of all MEB operations. For example, in a backup operation, MySQL Enterprise Backup
first reads the data from the disk, then processes this data, writes the data to disk, and reads
the data again for verification. MySQL Enterprise Backup ensures that these sub-operations are
independent of each other and run in parallel to gain performance improvement. Read, process and
write sub-operations are performed in parallel using multiple threads of the same kind: multiple read
threads, multiple process threads, and multiple write threads, resulting in better performance. The
performance improvement is typically greater when RAID arrays are used as both source and target
devices, and for compressed backups which can use more CPU cycles in parallel.

Parallel backup employs block-level parallelism, using blocks of 16MB. Different threads can

read, process, and write different 16MB chunks within a single file. Parallel backup improves the
performance of operations whether the instance contains a single huge system tablespace, or many
smaller tablespaces (represented by .ibd files created in the i nnodb_fil e _per _t abl e mode).

 Incremental backups are faster than full backups, save storage space on the database server, and
save on network traffic to transfer the backup data on a different server. Incremental backup requires
additional processing to make the backup ready to restore, which you can perform on a different
system to minimize CPU overhead on the database server.

» Compressed backups save on storage space for InnoDB tables, and network traffic to transfer
the backup data on a different server. They do impose more CPU overhead than uncompressed
backups. During restore, you need the compressed and uncompressed data at the same time, so
take into account this additional storage space and the time to uncompress the data.

In addition to compressing data within InnoDB tables, compressed backups also skip unused space
within InnoDB tablespace files. Uncompressed backups include this unused space.

» When space is limited, or you have a storage device such as tape that is cheap, large, but also
slow, the performance and space considerations are different. Rather than aiming for the fastest

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_compressed_backup

Files that Are Backed Up

possible backup, you want to avoid storing an intermediate copy of the backup data on the database
server. MySQL Enterprise Backup can produce a single-file backup and stream that file directly to
the other server or device. Since the backup data is never saved to the local system, you avoid the
space overhead on the database server. You also avoid the performance overhead of saving a set of
backup files and then bundling them into an archive for transport to another server or storage device.
For details, see Section 4.3.5.1, “Streaming the Backup Data to Another Device or Server”.

When streaming backup data to tape, you typically do not compress the backup, because the CPU
overhead on the database server to do the compression is more expensive than the additional
storage space on the tape device. When streaming backup data to another server, you might
compress on the original server or the destination server depending on which server has more spare
CPU capacity and how much network traffic the compression could save. Or, you might leave the
backup data uncompressed on the destination server so that it is ready to be restored on short
notice.

For disaster recovery, when speed to restore the data is critical, you might prefer to have critical
backup data already prepared and uncompressed, so that the restore operation involves as few steps
as possible.

It is during a disaster recovery that speed is most critical. For example, although a logical backup
performed with the nmysql dunp command might take about the same time as a physical backup with
(at least for a small database), the MySQL Enterprise Backup restore operation is typically faster.
Copying the actual data files back to the data directory skips the overhead of inserting rows and
updating indexes that comes from replaying the SQL statements from nysql dunp output.

To minimize any impact on server performance on Linux and Unix systems, MySQL Enterprise
Backup writes the backup data without storing it in the operating system's disk cache, by using the
posi x_fadvi se() system call. This technique minimizes any slowdown following the backup
operation, by preventing frequently accessed data from being flushed from the disk cache by the large
one-time read operation for the backup data.

For more on techniques and tradeoffs involving backup and restore performance, see Chapter 7,
Performance Considerations for MySQL Enterprise Backup.

1.4 Files that Are Backed Up

DBA and development work typically involves logical structures such as tables, rows, columns, the data
dictionary, and so on. For backups, you must understand the physical details of how these structures
are represented by files.

Table 1.1 Files in a MySQL Enterprise Backup Output Directory

File Name, Pattern, or Relation to Original Data Files |Notes
Extension
i bdat a* The InnoDB system tablespace, |Because the original files might
containing multiple InnoDB change while the backup is in
tables and associated indexes. |progress, the appl y-1 og step
applies the same changes to the
corresponding backup files.
*.ibd InnoDB file-per-table Used for tables created using
tablespaces, each containing theinnodb file per_table
a single InnoDB table and option. Because the original files
associated indexes. might change while the backup
is in progress, the apply-log step
applies the same changes to the
corresponding backup files.
*.i bz Compressed form of InnoDB Produced instead of . i bd files
data files from the MySQL data |in a compressed backup. The
directory. i bdat a* files representing

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

the InnoDB system tablespace
also receive this extension in a
compressed backup.

The . i bz files are
uncompressed during the

appl y- 1 og, copy- back, or
copy- back- and- appl y- I og
step.

Hold metadata about all MySQL
tables.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

MyISAM table data.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

MyISAM index data.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

Metadata for CSV tables.

These files are copied without
changes. The backup_hi story
and backup_pr ogr ess tables
created by nysql backup use
the CSV format, so the backup
always includes some files with
this extension.

Data for CSV tables.

These files are copied without
changes. The backup_hi story
and backup_progress tables
created by nysql backup use
the CSV format, so the backup
always includes some files with
this extension.

MERGE storage engine
references to other tables.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

* . TRG

Trigger parameters.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

*. TRN

Trigger namespace information.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

*. opt

Database configuration
information.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

*. par

Definitions for partitioned tables.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

* . ARM

ARCHIVE storage engine table
metadata.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

ARCHIVE storage engine table
data.

The database is put into a read-
only state while these files are
copied. These files are copied
without changes.

backup- ny. cnf

Records the configuration
parameters that specify the
layout and other important
information about the MySQL
data files.

The file is created during

a backup, and it contains

crucial parameters describing
the backed-up data like

i nnodb_data_file_path,

i nnodb_l og_file_size,

i nnodb_| og_files_in_group
and so on. It might also contain
other InnoDB parameters like

i nnodb_dat a_hone_dir and
i nnodb_undo_di rectory if
some of the backup repository
options were used during the
backup. mysql backup uses the
parameters stored in this file to
understand the structure of the
backup and to perform various
operations. You might need to
supply some of these parameters
to nysql backup during a
restore and to nysql d when
you start the target server if the
target server and the backup
are configured differently. See
the discussion in Section 4.2.4,
“Restoring a Database” for
details.

i bbackup_ibd files

Records names of the . i bd files
and their space IDs during an
incremental backup.

This file is created during an
incremental backup. During a
restore, the information in the file
is used to delete the tables from
the full backup that has been
removed between the time of the
full backup and the time of the
incremental backup.

i bbackup_l ogfile

A condensed version of the
i b_l ogfile* files from the
MySQL data directory.

The InnoDB log files

(ib_l ogfil e*) are fixed-

size files that are continuously
updated during the database's
operation. For backup purposes,
only the changes that are

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_data_home_dir
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

committed while the backup

is in progress are needed.
These changes are recorded in
i bbackup_I ogfil e, and used
to re-create the i b_| ogfi | e*
files during the apply-log phase.

i bbackup_redo_| og_only

Created instead of the

i bbackup_| ogfi | e for
incremental backups taken with
the--increnental -wit h-
redo-1 og-onl y option.

ib_logfile* Created in the backup directory |These files are not copied from
by mysql backup during the the original data directory, but
appl y- | og phase after the rather re-created in the backup
initial backup. directory during the appl y- | og
phase after the initial backup,
using the changes recorded in
the i bbackup_| ogfi | e file.
*. bl Renamed version of each .isl file |A . i sl file is created when

from the backed-up server.

you specify the location of an

| nnoDB table using the syntax
CREATE TABLE ... DATA
DI RECTORY = ... ,toact
like a symbolic link pointing

to the tablespace file. (See
Creating Tables Externally for
details.) The . bl files might or
might not be turned back into

. i sl files during the copy-
back operation. If the specified
directory does not exist on

the server where the backup

is restored, nysql backup
attempts to create it. If the
directory cannot be created, the
restore operation fails. Thus,

if you would like to use the
DATA DI RECTORY clause to
put tables at different locations
or to restore to a server with

a different file structure where
the corresponding directories
cannot be created, edit the . bl
files before restoring to point to
directories that do exist on the
destination server.

If the directory on the target
server pointed to by a . bl file
already contains .ibd files, the - -
f or ce option is required when
you restore the backup.

Timestamped directory, such as
2011-05-26_13-42-02

Created by the - - wi t h-
ti mest anp option. All the

Usethe --w t h-ti mest anp
option to easily keep more than

10

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_isl_file
https://dev.mysql.com/doc/refman/5.6/en/innodb-create-table-external.html

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

backup files go inside this
subdirectory.

one set of backup data under the
same main backup directory.

dat adi r directory

A subdirectory that stores

the data files and database
subdirectories from the original
MySQL instance.

Created under the backup
directory by nysql backup.

binary log files

Binary log files from the server,
which are included in a backup
by default (except when the
backup is created with the - -
use-tts option). They allow

a snapshot of the server to

be taken, so a server can be
cloned to its exact state. Using
a full backup as a basis, the
binary log files that are included
with an incremental backup

can be used for a point-in-time
recovery (PITR), which restores
a database to its state at a
certain point in time after the last
full backup. See Section 5.3,
“Point-in-Time Recovery” for
details.

Saved under the dat adi r
directory under the backup
directory. Use the - - ski p-

bi nl og option to exclude binary
logs in the backup. For MySQL
5.5 and earlier, as well as all
offline backups, use the - - | og-
bi n-i ndex option to specify the
absolute path of the index file on
the MySQL server that lists all
the used binary log files, if it is
different from the default value
of the option, for mysql backup
to find the binary log files and
include them in the backups. The
index file itself, with the locations
of the binary log files properly
updated to point to the files'
locations in the backup directory,
is included into the backup under
the dat adi r directory.

The binary log files are
compressed and saved with
the . bz extension when being
included in a compressed
backup.

The binary log files and the index
file, when included in a backup,
are always copied into the
restored server's data directory
during a restore operation. Use
the - - ski p- bi nl og option to
skip the restoring of the binary
log.

Notes
g o Ifany
binary
log files
are
missing
on the
server
you are
backing
up, you

11

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

should
use

the - -
ski p-
bi nl og
option
to avoid
nysql back
throwing
an error
for the
missing
files.

No
binary
log files
are
copied
into the
incremental
backup
if the
use-
tts
option
or the
start -
| sn
option
is used.
To
include
binary
log files
for the
period
covered
by the
incremental
backup,
do not
use

the - -
use-
tts
option
and,
instead
of - -
start -
| sn,
use

12

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

the - -

i ncrenent
base
option,
which
provides
the
necessary
information
for

nysql back
to

ensure

that

no gap
exists
between
binary

log data
included

in the
previous
backup
and the
current
incremental
backup.

relay log files

Relay log files from a replica
server, which are included in a
backup of a replica server by
default (except when the backup
is created with the - - use-tts
option). Their inclusion saves the
time and resources required for
fetching the relay logs from the
source when the replica is being
restored.

Saved under the dat adi r
directory under the backup
directory. Use the - - ski p-

rel ayl og option to exclude
relay logs in the backup. For
offline backup, use the - -

rel ay-1 og-i ndex option to
specify the absolute path of the
index file on the MySQL server
that lists all the used relay log
files, if it is different from the
default value of the option, for
nysql backup to find the relay
log files and include them in the
backups. The index file itself,
with the locations of the relay
log files properly updated to
point to the files' locations in the
backup directory, is included into
the backup under the dat adi r
directory.

The relay log files are
compressed and saved with
the . bz extension when being
included in a compressed

=

backup.

13

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

The relay log files and the index
file, when included in a backup,
are always copied into the
restored server's data directory
during a restore operation. Use
the - - ski p-rel ayl og option to
skip the restoring of the relay log.

* bz

Compressed binary log or relay
log files.

The binary log and relay log

files are compressed and saved
with the . bz extension when
being included in a compressed
backup. They are decompressed
during a restore.

replication metadata repository
files

Usually named nmast er . i nf o
andrel ay-1o0g.info,

they are included by default

in a backup of a replica
database in a replication setup.
See Replication Metadata
Repositories, for details.

Saved under the dat adi r
directory under the backup
directory. For an offline backup,
use the--master-info-file
and--relaylog-info-file
options to specify the absolute
paths of the information files,

if they are different from the
default values of the options, for
mysql backup to find those files
and include them in the backups.

The copying of these files are
skipped during a backup or

a restore when the - - ski p-
rel ay-1 og option is used.

Backup image file

A single-file backup produced

by the backup-t o-i mage
command, with a name specified
by the - - backup- i nage option.

If your backup data directory
consists only of zero-byte

files, with a single giant data

file in the top-level directory,

you have a single-file backup.
You can move the image file
without losing or damaging the
contents inside it, then unpack

it with mysql backup using the
extract option and specifying
the same image name with

the - - backup- i nmage option.
Although some extra files such
as backup-my. cnf and the
nmet a subdirectory are present in
the backup directory, these files
are also included in the image
file and do not need to be moved
along with it.

Any other files in subdirectories
under the dat adi r directory
(that is, under backup-

di r/ datadir/subdir)

Copied from the database
subdirectories under the MySQL
data directory.

By default, any unrecognized
files in subdirectories under the
MySQL data directory are copied
to the backup. To omit such files,
specify the - - onl y- known-
file-types option.

14

https://dev.mysql.com/doc/refman/5.6/en/replica-logs-status.html
https://dev.mysql.com/doc/refman/5.6/en/replica-logs-status.html

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

Note

Some
limitations
apply

to this
behavior.
See the
discussion
here in
Appendix B,
Limitations
of MySQL
Enterprise
Backup.

nmet a directory

A subdirectory that stores files
with metadata about the backup.

Created under the backup
directory by mysql backup. All
files listed below go inside the
nmet a subdirectory.

backup_vari abl es. t xt

Holds important information
about the backup. For use by
mysql backup only.

mysgl backup consults and
possibly updates this file during
operations after the initial
backup, such as the apply-log
phase or the restore phase.

i mge_files.xm

Contains the list of all the files
(except itself) that are present in
the single-file backup produced
by the backup-t o-i mage

or backup-dir-to-imge
options. For details about this
file, see Section 11.4, “Using
the MySQL Enterprise Backup
Manifest”.

This file is not modified at any
stage once generated.

backup_create. xni

Lists the command line
arguments and environment in
which the backup was created.
For details about this file, see
Section 11.4, “Using the MySQL
Enterprise Backup Manifest”.

This file is not modified once
it is created. You can prevent
this file from being generated
by specifying the - - di sabl e-
mani f est option.

backup_cont ent . xm

Essential metadata for the files
and database definitions of the
backup data. It also contains
details of all the plugins defined
on the backed-up server, by
which users should make sure
the same plugins are defined in
the same manner on the target
server for restoration. For details
about this file, see Section 11.4,
“Using the MySQL Enterprise
Backup Manifest”.

This file is not modified once
created. You can prevent this
file from being generated by
specifying the - - di sabl e-
mani f est option.

conment s. t xt

Produced by the - - conment s or
--comment s-fi | e option.

The comments are specified by
you to document the purpose or

15

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

special considerations for this
backup job.

backup_gti d_execut ed. sql

Signifies the backup came from a
server with GTIDs enabled.

GTIDs are a replication feature
in MySQL 5.6 and higher.

See Replication with Global
Transaction Identifiers for details.
When you back up a server
with GTIDs enabled using
mysql backup, the file named
backup_gti d_execut ed. sql
is created in the net a folder
under the backup directory.
Edit and execute this file after
restoring the backup data on a
replica server; see Section 6.1,
“Setting Up a New Replica” for
details.

server-ny. cnf

Contains values of the backed-
up server's global variables
that are set to non-default
values. Use this file or ser ver -
al | . cnf to start the target
server for restoration.

During a copy- back or

copy- back- and- appl y-

| og operation, the server
repository options values
(e.g.,--datadir,--

i nnodb_data_hone_dir,
etc.) in the file are modified if
the command makes changes
to them through the command
options. However, during an
appl y-i ncrenent al - backup
operation, the values already
saved in the file take precedence
and they are not modified by the
option values supplied through
the command.

X

Warning

When
using

the file

to restart
the target
server,
change
parameters
like - -

t npdi r,
gener al -
| og, etc.,
and any
global
variable
that

uses an
absolute

16

https://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html
https://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html

Files that Are Backed Up

File Name, Pattern, or
Extension

Relation to Original Data Files

Notes

filepath to
avoid the
accidental
usage

of the
wrong file
locations
by the
target
server.

server-all.cnf

Contains values of all the global
variables of the backed-up
server. Use this file or ser ver -
my. cnf to start the target server
for restoration.

During a copy- back or

copy- back- and- appl y-

| og operation, the server
repository options values
(e.g.,--datadir,--

i nnodb_dat a_hone_dir,
etc.) in the file are modified if
the command makes changes
to them through the command
options. However, during an
appl y-i ncrenent al - backup
operation, the values already
saved in the file take precedence
and they are not modified by the
option values supplied through
the command.

Warning

O When

using

the file

to restart
the target
server,
change
parameters
like - -

t npdi r,
gener al -
| og, etc.,
and any
global
variable
that

uses an
absolute
filepath to
avoid the
accidental
usage

of the
wrong file
locations

17

InnoDB Data

File Name, Pattern, or Relation to Original Data Files |Notes
Extension
by the
target
server.
InnoDB Data

Data managed by the InnoDB storage engine is always backed up. The primary InnoDB-related data
files that are backed up include the ibdata* files (which represent the system tablespace and possibly
the data for some user tables), any .ibd files (which contains data from user tables created with the file-
per-table setting enabled), and the data extracted from the ib_lodfile* files (the redo log information
representing changes that occur while the backup is running), which is stored in a new backup file
ibbackup_lodfile.

If you use the compressed backup feature, the . i bd files are renamed in their compressed form to .ibz
files.

The files, as they are originally copied, form a raw backup that requires further processing before it
is ready to be restored. You then run the apply step, which updates the backup files based on the
changes recorded in the i bbackup_I ogfi | e file, producing a prepared backup. At this point, the
backup data corresponds to a single point in time. The files are now ready to be restored to their
original location, or for some other use, such as testing, reporting, or deployment as a replica.

To restore InnoDB tables to their original state, you must also have the corresponding .frm files along
with the backup data. Otherwise, the table definitions could be missing or outdated if someone has run
ALTER TABLE or DROP TABLE statements since the backup. By default, mysql backup automatically
copies the . f r mfiles during a backup operation and restores the files during a restore operation.

Data from MyISAM and Other Storage Engines

nysql backup also backs up the .MYD files, .MYI files, and the .frm files associated with the MyISAM
tables. Files with other extensions that are backed up are shown in this list.

tables), the MySQL server to be backed up must support InnoDB (i.e., the
backup process will fail if the server was started up with the - - i nnodb=0OFF
or - - ski p-i nnodb option), and the server must contain at least one InnoDB

Note
@ While MySQL Enterprise Backup can back up non-InnoDB data (like MYISAM
table.

MyISAM tables and these other types of files cannot be backed up in the same non-blocking way as
InnoDB tables can. They are backed up using the warm backup technique: changes to these tables are
prevented while they are being backed up, possibly making the database unresponsive for a time, but
no shutdown is required during the backup.

Note

@ To avoid concurrency issues during backups of busy databases, you can use
the - - onl y-innodb or - - onl y-i nnodb- wi t h- f r moption to back up only
InnoDB tables and associated data.

Generated Files Included in the Backup

The backup data includes some new files that are produced during the backup process. These files are
used to control later tasks such as verifying and restoring the backup data. The files generated during
the backup process include:

18

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_ib_logfile
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_ibbackup_logfile
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#option_mysqld_innodb

Single-File Backups

e netal/ backup_creat e. xni : Lists the command line arguments and environment in which the
backup was created.

» net al/ backup_cont ent. xnl : Essential metadata for the files and database definitions of the
backup data.

» backup-ny. cnf : Records the crucial configuration parameters that apply to the backup. These
configuration parameters are read by nysql backup during operations like appl y- | og to determine
how the backup data is structured. These parameters are also checked during a restore operation for
their compatibility with your target server's configuration.

e server-ny. cnf: Contains values of the backed-up server's global variables that are set to non-
default values.

» server-all.cnf: Contains values of all the global variables of the backed-up server.

For details about all the files in the backup directory, see Table 1.1, “Files in a MySQL Enterprise
Backup Output Directory”.

Single-File Backups

Depending on your workflow, you might want to perform a single-file backup rather than a directory
backup, which produces a separate file for every file on the original server instance. A single-file
backup is easier to transfer to a different system, to compress, and to uncompress; it also helps to
prevent the situation in which individual files that form parts of a backup are deleted by mistake. It is
just as fast as a multi-file backup to do a full restore; restoring individual files can be slower than in a
multi-file backup. For instructions, see Section 4.3.5, “Making a Single-File Backup”.

1.5 Overview of Restoring a Database

To initiate the restore process, you run the nysql backup client with the copy- back or the copy-
back- and- appl y- | og command. You can restore all the data for a MySQL server with multiple
databases, each containing multiple tables. For backups created using transportable tablespace
(TTS) (that is, backups created with the - - use- t t s option), you can also choose to restore selected
databases, tables, or both.

To repair a problem such as data corruption, you restore the data back to its original location on the
original server machine. You might restore to a different server machine or a different location to set up
a new replica with the data from a source server, or to clone a database for reporting purposes.

See Chapter 5, Recovering or Restoring a Database for instructions on restoring databases.

19

20

Chapter 2 Installing MySQL Enterprise Backup

Install MySQL Enterprise Backup on each database server whose contents you intend to back up.
Typically, you perform all backup and restore operations locally, by running nysql backup on the
same server as the MySQL instance.

Optional: You can also install MySQL Enterprise Backup on computers other than the database server,
only to run nysql backup with the appl y- | og option. See Section 13.2, “Apply-Log Operations” for
information about bringing backup data to a separate server and running the “apply log” step there.

MySQL Enterprise Backup is packaged as either an archive file (. t gz, archived with t ar and
compressed with gzi p) or as a platform-specific installer.

Installing on Unix and Linux Systems

For all Linux and Unix systems, the product is available as a . t gz file. Unpack this file as follows:

tar xvzf package.tgz

nmysql backup is unpacked into a subdirectory. You can either copy them into a system directory
(preserving their execute permission bits), or add to your $PATH setting the directory where you
unpacked it.

For certain Linux distributions, the product is also available as an RPM archive. When you install the
RPM using the command sudo rpm -i package_nane. r pm the nysql backup client is installed
in the directory / opt / mysql / meb- 3. 12. You must add this directory to your $PATH setting.

Installing on Windows Systems

The product can be installed together with other MySQL products with the MySQL Installer for
Windows. It can also be installed separately with either an individual . nsi installer or . zi p file.

When installing with a . nsi installer, specify the installation location, preferably under the same
directory where other MySQL products have been installed. Choose the option Include directory in
Windows PATH, so that you can run nysql backup from any directory.

When installing with a . zi p file, simply unzip the file and put nysql backup. exe at the desired
installation location. You can add that location to the %°ATHY%variable, so that you can run the
nysqgl backup client from any directory.

Verify the installation by selecting the menu item Start > Programs > MySQL Enterprise Backup 3.12
> MySQL Enterprise Backup Command Line. The menu item displays version information and opens
a command prompt for running the nmysql backup command.

21

22

Chapter 3 What's New in MySQL Enterprise Backup 3.127

This chapter highlights the new features in MySQL Enterprise Backup 3.12, as well as any significant
changes made to MySQL Enterprise Backup with the release of this series.

* Renaming a table restored from a TTS backup. You can now rename a table when you restore
it from a backup created using transportable tablespace (TTS). See the description for the - -
r enamne option for details.

e Support for OpenStack Object Storage. = MySQL Enterprise Backup now supports cloud backup
and restore using OpenStack Object Storage (“Swift”). MySQL Enterprise Backup supports the Swift
v1.0 API, and also the OpenStack Identity (Keystone) API v2.0 for authentication. Also supports
authentication using Swift's TempAuth system. A number of new command options have been
introduced to support OpenStack Object Storage; see Section 14.14, “Cloud Storage Options”, for
details.

* Binary and Relay Logs are now compressed when included in a compressed backup. The
binary log file and relay log files (in the case of a replica server) are now compressed when they are
being included in a compressed backup and decompressed during a restore.

» Copying of the binary and relay Logs can now be skipped during arestore. The - - ski p-
bi nl og and - - ski p-r el ayl og options can now be used to skip the copying back of the binary
log and relay log onto a server during a restore. This is particularly useful for users who do not want
those logs appearing in the restored server's data directory, as that is always the location to which
nysql backup will restore them, regardless of their original locations on the backed-up server.

23

24

Part Il Using MySQL Enterprise Backup

Table of Contents

4 Backing Up a Database SEIVETcooiiiiiiiiii et e e e 29
4.1 Before the First BACKUPuuiiiiii e 29
4.1.1 Collect Database INfOrmationcooouuiiiiiiiiiiii e 29

4.1.2 Grant MySQL Privileges to Backup AdMINIiSIratoroovivevinieiiiiineeiiiieeeeeiinnnn 31

4.1.3 Designate a Location for Backup Dataocoevviiiiiiiiiiieiiiieece e 31

4.2 The Typical Backup / Verify / RESIOre CYCIEcoouuiiiiiiiiieiiiii e 32
4.2.1 OS User for Running mysglbackup ..o 32

4.2.2 Backing Up an Entire MySQL INSTANCEuiiiiiiiiiiiiii e 32

4.2.3 Verifying @ BacCKUP ... couuii e e 34

4.2.4 Restoring @ Databaseccuuuiiiiiiiiiiiiii e 34

4.3 Backup Scenarios and EXAmMPIEScouuiiiiiiiiieii e 37
4.3.1 MaKing @ FUll BACKUPiiiiiieiiii et 37

4.3.2 Making a Differential or Incremental Backupocooviiiiiiiiiiiiiiic e, 38

4.3.3 Making a Compressed BaCKUPoooeuuiiiiiiiiiiii e 42

4.3.4 Making a Partial BacCkUupcooouuiiiiiiiee e 43

4.3.5 Making a Single-File BaCKUPcoouutiiiiiiiic e 47

4.3.6 Making an OptimiStiC BACKUPcccuuuiiiiiiiiiii e 52

4.3.7 Making a Back Up of In-Memory Database Datac.ocoeeviiieiiiiiineiiiiineeciinn, 53

4.3.8 Making Scheduled BacCKUPSoooiiiiiiiiiii e e 53

4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN) .. 54

5 Recovering or Restoring @ Databaseccouuieiiiiiiiiiiiii e 57
5.1 Preparing the Backup to be ReStOredc.uuiiiiiiiiiiiiiiiee e 57

5.2 Performing a ReStOre OPEratioNccouuuiiiieiiiiiiiii ettt et 58
5.2.1 Restoring a Compressed BaCKUPcc.uuiiiiiiiiieiiiii et 59

5.2.2 Restoring an Encrypted Backup IMageoviiiiiiiiiiiiii e 60

5.2.3 Restoring an Incremental Backupcooooiiiiiiiiiiiiiic e 60

5.2.4 Restoring Backups Created with the - - use-tts Optioncooiiiiiiiiiiiiiiees 61

5.2.5 Restoring External InnoDB Tablespaces to Different Locationscccceeveeens 61

5.2.6 Restoring a Backup from Cloud Storage to a MySQL Serverccccooevvviieeiinnnnnnn. 62

5.3 POINt-IN-TIME RECOVEIY ...ttt ettt e et e e 63

5.4 Restoring a Backup with a Database Upgrade or Downgradecccooeeveviiieeiiiineeeennnnnn. 64

6 Using MySQL Enterprise Backup with RepliCatioNoooeiiiiiiiiiiiiiiiii e 67
6.1 Setting Up @ NEW REPIICAciieeiiiiiiii et e e eeees 67

6.2 Backing up and Restoring a Replica Databasecooeuuiiiiiiiiiiiiii e 69

6.3 Restoring @ SOUrCe DAt@hasEccoeuuuiiiiiiiiei e 69

7 Performance Considerations for MySQL Enterprise Backupcccoovviiiiiiiiiiiiiiiiii e 73
7.1 Optimizing Backup PerfOrmMancCeo..iiiuiiiiiiii e 73

7.2 Optimizing Restore PerforManCeii i 76

8 ENCIryption fOr BACKUPS ... iiiiti ittt ettt e e et e ettt e et e ab e e e enbaeeeees 79
9 Using MySQL Enterprise Backup with Media Management Software (MMS) Products 81
9.1 Backing Up to Tape with Oracle Secure Backupcocuuiiiiiiiiiiiiiiiiiiii e 81

10 Monitoring Backups with MySQL Enterprise MONITOKccouuuiiiiiiiiieiiiii e 83
11 Troubleshooting for MySQL ENterpris@ BaCKUPc.uuiiiiiiiiiiiiiiiie e 85
11.1 Error codes of MySQL Enterprise Backupcoocoeeuiiiiiiiinieiiece e 85

11.2 Working Around Corruption ProbIEMSuiiiiiiiiii e 85

11.3 Using the MySQL Enterprise Backup LOGScouuuieiiiiiiiiiiiiieeeii e e 86

11.4 Using the MySQL Enterprise Backup Manifestcooviiiiiiiiiiiiiiiece e 88

27

28

Chapter 4 Backing Up a Database Server

Table of Contents

4.1 Before the First BaCKUpPc.oieviiiiiiiiiiiiiiii e
4.1.1 Collect Database Informationccccceveveviineerennnnnnn.
4.1.2 Grant MySQL Privileges to Backup Administrator
4.1.3 Designate a Location for Backup Datac.......

4.2 The Typical Backup / Verify / Restore Cycleccocoeeviviennnnns
4.2.1 OS User for Running mysqlbackupccocoeiiiiinns
4.2.2 Backing Up an Entire MySQL Instancecc.......
4.2.3 Verifying @ Backupcooooiiiiiiii
4.2.4 Restoring a Databaseccooooeiiiiiiiiiii

4.3 Backup Scenarios and Examplescocooiviiiiiiiiiiiiiieiieeen,
4.3.1 Making a Full Backupcocoiiiiiiiiiiie
4.3.2 Making a Differential or Incremental Backup
4.3.3 Making a Compressed Backupc.cceoveiiiniienneeennnnns
4.3.4 Making a Partial Backupcocciviiiiiiiiiniiiiiiiieeis
4.3.5 Making a Single-File Backupc...cccoovveiiiiiiiieiineennn.
4.3.6 Making an Optimistic Backupcccooviiiiiiiiiiiiinennnnn.
4.3.7 Making a Back Up of In-Memory Database Data
4.3.8 Making Scheduled Backupsccooveeuiiiiiiiiiiineiinee.

4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN)

This section explains the preparations you need for creating backups with MySQL Enterprise Backup,
the typical backup-verify-restore cycle, and the different backup scenarios for using MySQL Enterprise
Backup. It also includes sample commands and outputs, showing you how to use the nysql backup

client in different situations.

4.1 Before the First Backup

This section outlines some of the preparations needed before you can start working with MySQL

Enterprise Backup.

4.1.1 Collect Database Information

Before backing up a particular database server for the first time, gather some information and use it to

make some planning decisions, as outlined in the following table.

Table 4.1 Information Needed to Back Up a Database

Information to Gather Where to Find It

How Used

Path to MySQL configuration file |Default system locations,
hardcoded application default
locations, or from the - -
defaul ts-fil e optionin the

mysql d startup script.

This is the preferred way to
convey database configuration
information to mysql backup,
using the - - defaul ts-file
option. When connection and
data layout information is
available from the configuration
file, you can skip most of the
other choices listed below.

MySQL port MySQL configuration file or

mysql d startup script.

Used to connect to the
database instance during
backup operations. Specified
via the - - por t option of
mysql backup. - - port is not

29

https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file

Collect Database Information

Information to Gather

Where to Find It

How Used

needed if available from MySQL
configuration file. Not needed
when doing a cold (offline)
backup, which works directly

on the files using OS-level file
permissions.

Path to MySQL data directory

MySQL configuration file or
mysql d startup script.

Used to retrieve files from the
database instance during backup
operations, and to copy files
back to the database instance
during restore operations.
Automatically retrieved from
database connection for hot and
warm backups, and taken from
MySQL configuration file for cold
backups.

ID and password of privileged
MySQL user

You record this during installation
of your own databases, or get

it from the DBA when backing

up databases you do not own.
Not needed when doing an
offline (cold) backup, which
works directly on the files using
OS-level file permissions. For
cold backups, you log in as an
administrative user.

Specified via the - - passwor d
option of the nysql backup.
Prompted at the terminal if the

- - passwor d option is present
without the password argument.

Path under which to store
backup data

You choose this. See
Section 4.1.3, “Designate a
Location for Backup Data” for
details.

By default, this directory must

be empty for mysql backup

to write data into it, to avoid
overwriting old backups or mixing
up data from different backups.
Usethe--with-tinestanp
option to automatically create a
subdirectory with a uniqgue name,
when storing multiple sets of
backup data under the same
main directory.

Owner and permission
information for backed-up files
(for Linux, Unix, and OS X
systems)

In the MySQL data directory.

If you perform the backup and
restore using a different OS
user than the one who runs
the server, this information
might become important. See
Section 4.2.1, “OS User for
Running mysgqlbackup” for
details.

Size of InnoDB redo log files

Calculated from the values of the
innodb | og file_sizeand

i nnodb_| og_files_in_group
configuration variables. Use the
technique explained for the - -

i ncrenent al -wi t h-redo-

| og- onl y option.

Only needed if you perform
incremental backups using the
--increnental -with-redo-
| og- onl y option rather than the
--incremental option. The
size of the InnoDB redo log and
the rate of generation for redo
data dictate how often you must
perform incremental backups.

30

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group

Grant MySQL Privileges to Backup Administrator

Information to Gather

Where to Find It

How Used

generated

Rate at which redo data is

Calculated from the values of the
InnoDB logical sequence number
at different points in time. Use
the technique explained for the
--increnental -w th-redo-
| og- onl y option.

Only needed if you perform
incremental backups using the
--increnental -w th-redo-
| og- onl y option rather than the
--increnent al option. The
size of the InnoDB redo log and
the rate of generation for redo
data dictate how often you must
perform incremental backups.

4.1.2 Grant MySQL Privileges to Backup Administrator

For most backup operations, the mysql backup command connects to the MySQL server using the
credentials supplied with the - - user and - - passwor d options. The specified user needs certain
privileges. You can either create a new user with a minimal set of privileges, or use an administrative

account such as root.

The minimum privileges for the MySQL user with which nysgl backup connects to the server are:

» RELQOAD on all databases and tables.

» CREATE, | NSERT, DROP, and UPDATE on the tables nmysql . backup_progress and
nysql . backup_hi st ory, and also SELECT and ALTER on nysql . backup_hi st ory.

» SUPER, to enable and disable logging, and to optimize locking in order to minimize disruption to

database processing.

* REPLI CATI ON CLI ENT, to retrieve the binary log position, which is stored with the backup.

To set these privileges for a MySQL user (nysql backup in this example) connecting from localhost,
issue statements like the following from the nysql client program:

GRANT RELOAD ON *.* TO ' nysql backup' @I ocal host "' ;
GRANT CREATE, | NSERT, DROP, UPDATE ON nysql . backup_progress TO ' nysql backup' @1 ocal host "' ;
GRANT CREATE, | NSERT, SELECT, ALTER, DROP, UPDATE ON nysql . backup_hi story

TO ' nysql backup' @1 ocal host ' ;
GRANT REPLI CATI ON CLIENT ON *.* TO ' nysql backup' @I ocal host " ;
GRANT SUPER ON *.* TO ' nysql backup' @I ocal host " ;

The following additional privileges are required for using transportable tablespaces (TTS) to back up

and restore InnoDB tables:

» LOCK TABLES and SELECT for backing up tables.

» CREATE for restoring tables.

» DROP for dropping tables if the restore fails for some reasons.

» FI LE for restoring tables in external tablespaces outside of the server's data director.

To set these privileges, issue a statement like the following from the mysql client program:

GRANT LOCK TABLES, SELECT, CREATE, DROP, FILE ON *.* TO 'nysql backup' @I ocal host" ;

4.1.3 Designate a Location for Backup Data

All backup-related operations either create new files or reference existing files underneath a specified
directory that holds backup data, referred to as the backup directory in this manual. Choose in advance
for this directory a location on a file system with sufficient storage, which could even be remotely
mounted from a different server. You specify the path to this directory with the - - backup- di r option
for many nysql backup commands.

31

The Typical Backup / Verify / Restore Cycle

Once you establish a regular backup schedule with automated jobs, it is preferable to keep each
backup within a timestamped subdirectory underneath the main backup directory. To make

nysqgl backup create these subdirectories automatically, specify the - - wi t h-ti mest anp option each
time you run nysql backup.

For one-time backup operations (for example, when cloning a database to set up a replica), you might
specify a new directory each time, or, for a single-file backup, specify the - - f or ce option to overwrite
the old backup file.

4.2 The Typical Backup / Verify / Restore Cycle

To illustrate the basic steps in creating and making use of a backup, the following example shows how
to perform a full backup, verify it, and then restore it to a server.

4.2.1 OS User for Running mysqlbackup

For Linux and other Unix-like platforms: mysql backup does not record file ownership or permissions
of the files that are backed up. To ensure no file permission issues prevent a server to be backed

up, restored, and restarted successfully, it is highly recommended that you run mysqlbackup with the
same OS user who runs the MySQL server (typically mysql). If that is not possible, pay attention to the
following guidelines:

» For backups, mysql backup should be run by a user that can read all the server files and
directories and can execute all server directories. To satisfy that requirement, the OS user that runs
nysql backup should, for example, have the group owner of the server files and directories (typically
nysql) as its primary group or secondary group.

» For restores, unless nysql backup is run by the same user that runs the server, it can be very
hard to ensure that the server has access to all the restored server files and folders, especially in
the case of an online restore, where the server must be able to access the files immediately after
they are restored. For an offline restore, you might need to, for example, set a unask to the user
before the restore and adjust the permissions of the restored files and folders using a series of
chnod and chown commands, so that the original permissions for the backed-up files and folders
are reproduced.

4.2.2 Backing Up an Entire MySQL Instance

In the following example, we back up an entire MySQL instance to a single file using the backup-

t o- i nage command, which appears at the end of the sample command. We specify some of the
connection information for the database using the - - user and - - host options (and, with the - -
passwor d option, tell the MySQL server to prompt for a user password). The location and filename for
the single-file backup is specified using the - - backup- i nage option, and the location for an empty
folder to store temporary files is supplied with the - - backup- di r option.

The output echoes all the parameters used by the backup operation, including several that are
retrieved automatically using the database connection. The unique ID for this backup job is recorded
in special tables that mysql backup creates inside the MySQL instance, allowing you to monitor
long-running backups and view information on previous backups. The final output section repeats the
location of the backup data and provides the LSN values that you might use when you perform an
incremental backup next time over the full backup that has just been made.

$./ nysql backup --user=root --password --host=127.0.0.1 --backup-i nage=/ hone/ adm n/ backups/ ny. nbi \
- - backup- di r =/ home/ adm n/ backup-t np backup-to-i mage

M/SQL Enterprise Backup version 3.12.5 Linux-2.6.18-274.el 5-i 686 [2014/11/12]
Copyright (c) 2003, 2014, Oacle and/or its affiliates. All Rights Reserved.

nysql backup: INFO Starting with follow ng conmand line ...
. I nysql backup --user=root --password --host=127.0.0.1

- - backup- i mage=/ hone/ adm n/ backups/ my. nbi

- - backup- di r =/ honme/ adm n/ backup-t mp backup-to-i mage

32

Backing Up an Entire MySQL Instance

nmysql backup:
Ent er password:
nmysql backup:
nmysql backup:

I NFO

INFO MySQL server version is '5.6.17-10g'.
INFO Got sone server configuration information fromrunning server.

| MPORTANT: Pl ease check that mnysql backup run conpl etes successful ly.

141204 12:54:55 nysql backup:

At the end of a successful

' backup-to-i mage'

run nysgl backup

prints "mysql backup conpleted OK!".

INFO MEB | ogfile created at /hone/adm n/ backup-t np/ neta/ MEB_2014- 12- 04. 12

Server

Repository Options:

datadir = /var/lib/nmysql/

nnodb_dat a_honme_dir =
nnodb_data_fil e_path

16384

128

0

= i bdat al: 12M aut oext end
nnodb_| og_group_hone_dir = /var/lib/nysql/
nnodb_| og_files_in_group = 2
nnodb_| og_fil e_size = 50331648
nnodb_page_si ze =
nnodb_checksum al gorithm = i nnodb
nnodb_undo_di rectory = /var/lib/nmysql/
nnodb_undo_t abl espaces =
nnodb_undo_| ogs =

datadir = /home/ adm n/ backup-t np/ dat adi r

Backup | mage
nmysql backup:

nmysql backup:

141204 12:54

1 read-threads
141204 12:54:58 nysql backup:
141204 12:54:58 nysql backup:

nmysql backup:
nmysql backup:

141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204
141204

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

54:
54:
54:
54:
54:
54:
54:
54:
55:
55:
55:
55:
55:
55:
55:
55:
55:
55:
55:

subdi rectori

nnodb_data_fil e_path

16384

128

0

nnodb_dat a_hone_dir = /hone/ adm n/ backup-t np/ dat adi r

= i bdat al: 12M aut oext end

nnodb_| og_group_hone_dir = /hone/ adni n/ backup-t np/ dat adi r
nnodb_| og_files_in_group = 2
nnodb_| og_fil e_size = 50331648
nnodb_page_si ze =
nnodb_checksum al gorithm = i nnodb
nnodb_undo_di rectory = /hone/ adm n/ backup-t np/ dat adi r
nnodb_undo_t abl espaces =
nnodb_undo_| ogs =

Pat h = /home/ adm n/ backups/ ny. mbi
I NFO Uni que generated backup id for this is 14177156956623554

INFO Creating 14 buffers each of size 16777216.
| mage Backup operation starts with foll ow ng threads

: 58 nysql backup:

I NFO. Ful |

6 process-threads

I NFO Copyi ng
I NFO Copyi ng

58
58
58
58
58
59
59
59
00
00
00
00
00
01
01
02
02
02
02
es

nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
"/var/lib/nysqgl/"'

of

INFO Systemtabl espace file format
INFO Starting to copy all

1

write-threads
i s Antel ope.
innodb files...

meta file /home/adm n/ backup-tnp/ backup-mnmy. cnf.
meta file /home/adm n/ backup-tnp/ met a/ backup_create. xm .

I NFO Found checkpoint at |sn 1631766.

INFO Starting log scan fromlsn 1631744.

I NFO Copyi ng | og. ..

INFO Log copied, |sn 1631766.

INFO Copying /var/lib/nmysql/ibdatal (Antel ope file format).

INFO Copying /var/lib/mysql/mysql/innodb_i ndex_stats.ibd (Antel ope file f
I NFO Copying /var/lib/mysql/mysql/innodb_table stats.ibd (Antelope file f
INFO Copying /var/lib/mysql/nmysql/slave_master_info.ibd (Antelope file fo
INFO Copying /var/lib/mysql/nysql/slave_relay_|og_info.ibd (Antelope file
INFO Copying /var/lib/mysql/nmysql/slave_worker_info.ibd (Antel ope file fo
INFO Copying /var/lib/mysqgl/test2/tbl.ibd (Antelope file format).

INFO Conpl eting the copy of innodb files.

INFO Starting to copy Binlog files...

INFO Preparing to | ock tables: Connected to nysqgld server.

INFO Starting to lock all the tables...

INFO. Al tables are |ocked and flushed to disk

INFO Conpl eted the copy of binlog files...

I NFO Openi ng backup source directory '/var/lib/nmysql/'

INFO Starting to backup all non-innodb files in

33

Verifying a Backup

141204 12: 55:
141204 12: 55:

141204 12:55

141204 12:55

(This

02 nysql backup:
02 nysql backup:

: 02 nysql backup:
141204 12:55:
141204 12:55:

02 nysql backup:
02 nysql backup:

: 04 nysql backup:
i s the highest

I NFO Addi ng dat abase directory:
I NFO Addi ng dat abase directory:
INFO Conpl eting the copy of all
I NFO Addi ng dat abase directory:
I NFO Addi ng dat abase directory:
INFO A copi ed dat abase page was
I sn found on page)

Scanned |l og up to Isn 1631766.
Was able to parse the log up to | sn 1631766.
Maxi mum page nunber for a log record 0

141204 12: 55:

141204 12:55

141204 12:55

Start LSN

End LSN

04 nysql backup:

: 04 nysql backup:
141204 12:55:
141204 12:55:

04 nysql backup:
04 nysql backup:

: 04 nysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:
nmysql backup:

141204 12:55:

141204 12:55:
nmysql backup:

141204 12:55:

I NFO Copyi ng
I NFO Copyi ng
I NFO Copyi ng
I NFO Copyi ng
I NFO Copyi ng
I NFO Copyi ng
08 nysql backup:
08 nysql backup:

INFO | mage Path = /hone/ admi n/ backups/ ny. mbi
INFO MySQL binl og position:

08 nysql backup:

nmysql backup conpl eted CK!

4.2.3 Verifying a Backup

To verify that your backup has been successful, restore the backup data on a different server and run
the MySQL daemon (mysql d) on the new data directory. You can then execute SHONstatements to
verify the database and table structures, and execute queries to verify further details of the database.

See Section 4.2.4, “Restoring a Database” for basic steps for restoring a backup, and see Chapter 5,
Recovering or Restoring a Database for more detailed instructions. Running the nysql d daemon on
the restored data requires a valid configuration file, which you specify with the - - def aul t s-fil e
option of the nysql d command. You can reuse most of the settings from the original ny. cnf file of
the backed up MySQL instance, combined with the settings from the backup- my. cnf file, which was
created in the temporary directory you specified with - - backup- di r when you created a single-image
backup (see Section 4.2.2, “Backing Up an Entire MySQL Instance”) and contains a small subset of
parameters required by nysql backup. Create a new configuration file by concatenating the two files
mentioned above into a new one, and use that file on the server on which you perform the verification.
Edit the file to make sure the dat adi r parameter points to the right location on the verification server.
Edit the values for port, socket, and so on if you need to use different connection settings on the

verification server.

4.2.4 Restoring a Database

To restore a MySQL instance from a backup to a database server:

INFO. All
INFO. All

t abl es unl ocked

M/SQL tables were | ocked for 2.057 seconds.
variables fromthe server.

INFO Reading all gl obal

I NFO Conpl eted readi ng of all
INFO Creating server config files server-ny.cnf and server-all.cnf

meta file /home/adm n/ backup-tnp/ meta/ backup_vari abl es. t xt .

meta file /home/adm n/ backup-tnp/datadir/ibbackup_| ogfile.

meta file /home/adm n/ backup-tnp/server-all.cnf.

meta file /home/adm n/ backup-tnp/server-nmny.cnf.

meta file /home/adm n/ backup-tnp/ meta/ backup_content. xm .

meta file /home/adm n/ backup-tnp/ metal/image_files.xm .

| mage Backup operation conpl eted successfully.

I NFO. Ful |

gl obal

dat adi r/ nysql
dat adi r/ per f or mance_schenma
non-innodb files.

datadir/test

datadir/test?2
nodi fied at 1631766.

I NFO Backup i mage created successfully.

1631744
1631766

» Shut down the database server.

» Delete all files inside the server's data directory. Also delete all files inside the directories
specified by the - - i nnodb_data_hone_dir,--innodb_| og group _hone dir,and- -
i nnodb_undo_di r ect ory options for restore, if the directories are different from the data directory.

vari abl es fromthe server.

34

in /homel:

fil enane nysql d- bi n. 000004, position 120

https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file

Restoring a Database

» Use, for example, the copy- back- and- appl y- | og command, which converts the raw backup
into a prepared backup by updating it to a consistent state, and then copies the tables, indexes,
metadata, and any other required files onto a target server. For the various options that you can
specify for this operation, see Section 13.3, “Restore Operations”.

In the example below, the single-file backup created in the example given in Section 4.2.2, “Backing Up
an Entire MySQL Instance” is restored using the copy- back- and- appl y- 1 og command. Besides
the usual connection parameters, the following options are used:

» --defaul ts-fil e supplies the configuration for restoring the data. It must be the first option to
appear in a nysql backup command, if ever used. In most cases, you can supply to nysql backup
with this option the configuration file for the target server to which you are restoring the data.
However, when the following InnoDB settings for the backup are different from those on the target
server, it is important to supply the values for the backup to mysql backup during restore and to
nysql d when you start the restored server (otherwise, the restore might fail, or you might have
problem starting the restored server afterwards):

e innodb_data file_path

e innodb log file_size

e innodb I og files in_group
¢ innodb_page_si ze

e innodb_checksum al gorithm

If you are not sure about those settings for your backup, they are stored in the backup- ny. cnf

file during the backup—you can find the file either in the temporary directory you specified with - -
backup- di r when you created the single-image backup, or in a backup directory you can create by
unpacking the backup image using the ext r act command. If the values of these options differ from
those on the target server, add them to the configuration file you are supplying to nmysql backup and
also to the configuration file you are going to use to start the server afterwards; alternatively, you can
also supply them as command line options to nysql backup and nysql d.

For some of the options listed above (namely, i nnodb_data_fil e _path,

innodb log file size,andinnodb | og files_ in_group), nysqgl backup checks the
values you supply for them to ensure that you will be able to start the target server afterwards with
those values: it throws an error if any of them does not match with the actual values for the backup.
Warnings are given if those values are not specified for nysql backup in either the configuration file
or on the command line (which is the case in the example below).

e --dat adi r supplies the location of the data directory for restoring the data. You must specify this
option for any restore operation.

* --backup-i mage provides the path of the single-file backup.

e --backup-dir provides the location of an empty folder to store some temporary files created
during the restore procedure.

$. /nysqgl backup --defaults-file=/etc/nysqgl/ny.cnf --datadir=/var/lib/nysqgl \
- - backup- i mage=/ hone/ adm n/ backups/ my. nbi - - backup-di r =/ hone/ adm n/ backup-tnp copy- back- and- appl y- |

M/SQL Enterprise Backup version 3.12.5 Linux-2.6.18-274.el 5-i 686 [2014/11/12]
Copyright (c) 2003, 2014, Oacle and/or its affiliates. All Rights Reserved.

nysql backup: INFO Starting with follow ng conmand line ...

. I nysql backup --defaults-file=/etc/nysql/ny.cnf
--datadir=/var/lib/mysqgl --backup-imge=/hone/adm n/backups/ my. nbi
- - backup- di r =/ honme/ adm n/ backup-t mp copy- back- and- appl y- | og

nysql backup: | NFO
| MPORTANT: Pl ease check that nysql backup run conpl etes successfully.

35

https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_checksum_algorithm
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group

Restoring a Database

At the end of a successful 'copy-back-and-apply-1og" run nmysqgl backup
prints "mysql backup conpleted OK!".

nmysql backup: | NFO Backup | mage MEB version string: 3.12.5 [2014/11/12]
141204 13:10: 39 nysgl backup: INFO MEB | ogfile created at /home/adm n/ backup-t np/ nmeta/ MEB_2014- 12- 04. 13- 10-

Server Repository Options:

datadir = /var/li b/ nmysql
nnodb_dat a_home_dir = /var/lib/nysql
nnodb_data_file_path = ibdatal: 12M aut oext end
nnodb_| og_group_hone_dir = /var/lib/nysql
nnodb_| og_files_in_group = 2
nnodb_| og_fil e_size = 50331648
nnodb_page_si ze = 16384
nnodb_checksum al gorithm = i nnodb

datadir = /home/ adm n/ backup-t np/ dat adi r

nnodb_dat a_hone_dir = /hone/ adm n/ backup-t np/ dat adi r
nnodb_data_file_path = ibdatal: 12M aut oext end

nnodb_| og_group_hone_dir = /hone/ adni n/ backup-t np/ dat adi r
nnodb_| og_files_in_group = 2

nnodb_| og_fil e_size = 50331648

nnodb_page_si ze = 16384

nnodb_checksum al gorithm = i nnodb

nmysql backup: INFO Creating 14 buffers each of size 16777216

141204 13:10: 39 nysgl backup: | NFO Copy-back-and-apply-log operation starts with foll ow ng threads
1 read-threads 6 process-threads 1 wite-threads

141204 13:10: 39 nysgl backup: I NFO Copyi ng database directory: neta

141204 13:10: 39 nysgl backup: | NFO Copying datadir/ibdatal

141204 13:10: 39 nysgl backup: | NFO Copyi ng datadir/nysqgl/innodb_i ndex_stats. i bd

141204 13:10: 39 nysgl backup: |INFQ Copying datadir/nysqgl/innodb_table_stats.ibd

141204 13:10: 39 nysgl backup: | NFO Copying datadir/nysql /sl ave_nmaster_info.ibd

141204 13:10: 39 nysgl backup: |INFOQ Copyi ng datadir/nysqgl/slave_relay_| og_info.ibd

141204 13:10: 39 nysgl backup: |INFO Copyi ng dat abase directory: datadir/nysq

141204 13:10: 39 nysgl backup: | NFO Copying datadir/nysql /sl ave_worker _i nfo.ibd

141204 13:10: 39 nysgl backup: INFQ Copying datadir/test2/tbl.ibd

141204 13:10: 39 nysgl backup: I NFO Copying database directory: datadir/performance_schenma

141204 13:10: 39 nysgl backup: |INFO Copyi ng dat abase directory: datadir/test

141204 13:10: 39 nysgl backup: |INFO Copyi ng database directory: datadir/test2

141204 13:10: 40 nysgl backup: | NFG Copyi ng database directory: datadir/nysq

141204 13:10: 41 nysgl backup: | NFO Copyi ng database directory: datadir/performance_schena

141204 13:10: 42 nysgl backup: |INFO Copyi ng dat abase directory: datadir/test

141204 13:10: 42 nysgl backup: |INFO Copyi ng database directory: datadir/test2

141204 13:10: 43 nysqgl backup: INFO Total files as specified in inage: 161

141204 13:10: 43 nysgl backup: INFO Creating server config files server-ny.cnf and server-all.cnf in /var/l

141204 13:10: 43 nysgl backup: I NFO Copy-back operation conpl eted successfully.

nmysql backup: | NFO Source | mage Path = /home/ adm n/ backups/ nmy. nb

nmysql backup: I NFO Creating 14 buffers each of size 65536
141204 13:10: 43 nysqgl backup: INFO Apply-1og operation starts with foll ow ng threads
1 read-threads 1 process-threads
mysql backup: I NFO. Using up to 100 MB of menory.
141204 13:10: 43 nysgl backup: |INFQ ibbackup_|l ogfile's creation paraneters
start |sn 1631744, end |sn 1631766
start checkpoint 1631766
I nnoDB: Doi ng recovery: scanned up to | og sequence nunber 1631766
mysql backup: I NFO | nnoDB: Starting an apply batch of |og records to the database..
I nnoDB: Progress in percent: 0123456 789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
nmysql backup: INFO | nnoDB: Setting log file size to 50331648
nmysql backup: INFO | nnoDB: Setting log file size to 50331648
141204 13:10: 44 nysgl backup: INFO W were able to parse ibbackup_logfile up to
| sn 1631766.
nmysql backup: I NFO Last MySQL binlog file position 0 120, file name nysqgl d- bi n. 000004: 120
141204 13:10: 44 nysqgl backup: INFO The first data file is '/var/lib/nysql/ibdatal
and the new created log files are at '/var/lib/nysql

Backup Scenarios and Examples

141204 13:10: 44 nysqgl backup: INFO Apply-1og operation conpl eted successfully.
141204 13:10: 44 nysqgl backup: INFO Full Backup has been restored successfully.

nmysql backup conpl eted CK!

Now the original database directory is restored from the backup. Depending on how you are going to
start the restored server, you might need to adjust the ownership of the restored data directory. For
example, if the server is going to be started by the user mysqgl , use the following command to change
the owner attribute of the data directory and the files under it to the nysql user, and the group attribute
to the mysql group.

$ chown -R nysql : nysql /path/to/datadir

You are now ready to start the restored database server. For more discussions on how to perform
different kinds of restores, see Section 5.2, “Performing a Restore Operation”.

4.3 Backup Scenarios and Examples

4.3.1 Making a Full Backup

Most backup strategies start with a complete backup of the MySQL server, from which you can

restore all databases and tables. After you have created a full backup, you might perform incremental
backups (which are smaller and faster) for the next several backup tasks. You then make a full backup
periodically to begin the cycle again.

For sample commands for making a full backup, see Section 4.2.2, “Backing Up an Entire MySQL
Instance”.

This section outlines some of the things to consider when deciding on a strategy for creating full
backups. As we shall see, factors like speed, capacity, and convenience are all relevant for your
decisions.

Options on Command Line or in Configuration File?

For clarity, the examples in this manual often show some of the command-line options that are

used with the nysql backup commands. For convenience and consistency, you can include those
options that remain unchanged for most backup jobs into the [nysql backup] section of the MySQL
configuration file that you supply to nysql backup. mysql backup also picks up the options from the

[mysqgl d] section if they are present there. Putting the options into a configuration file can simplify
backup administration for you: for example, putting port information into a configuration file, you can
avoid the need to edit your backup scripts each time the database instance switches to a different port.
See Chapter 15, Configuration Files and Parameters for details about the use of configuration files.

Output in Single Directory or Timestamped Subdirectories?

For convenience, the - - wi t h-t i nest anp option creates uniquely named subdirectories under the
backup directory to hold the output from each backup job. The timestamped subdirectories make it
simpler to establish retention periods, allowing easy removal and archiving of backup data that has
passed a certain age.

If you do use a single backup directory (that is, if you omit the - - wi t h-t i nest anp option), either
specify a new unique directory name for each backup job, or specify the - - f or ce option to overwrite
existing backup files.

For incremental backups that uses the - - i ncr enent al - base option to specify the directory
containing the previous backup, in order to make the directory names predictable, you might prefer
to not use the - - wi t h-t i mest anp option and generate a sequence of directory names with your
backup script instead .

37

Making a Differential or Incremental Backup

Always Full Backup, or Full Backup plus Incremental Backups?

If your InnoDB data volume is small, or if your database is so busy that a high percentage of data
changes between backups, you might want to run a full backup each time. However, you can usually
save time and storage space by running periodic full backups and then several incremental backups in
between them, as described in Section 4.3.2, “Making a Differential or Incremental Backup”.

Use Compression or Not?

Creating a compressed backup can save you considerable storage space and reduce I/O usage
significantly. And with the LZ4 compression method (introduced since release 3.10), the overhead

for processing compression is quite low. In cases where database backups are moving from a faster
disk system where the active database files sit to a possibly slower storage, compression will often
significantly lower the overall backup time. It can result in reduced restoration time as well. In general,
we recommend LZ4 compression over no compression for most users, as LZ4-based backups often
finish in a shorter time period. However, test out MySQL Enterprise Backup within your environment to
determine what is the most efficient approach.

4.3.2 Making a Differential or Incremental Backup

Assuming a good portion of the data on your MySQL server remains unchanged over time, you can
increase the speed and reduce the required storage space for your regular backups by backing up
not all the data on the server each time, but only the changes to the data which have taken place
over time. In order to that, after making first a full backup that contains all data, you can do one of the
following:

» Performing a series of differential backups. Each differential backup includes all the changes
made to the data since the last full backup was performed. To restore data up to, for example, time
t, you simply restore first the full backup, and then, on top of it, the differential backup taken for time
t.

» Perform a series of incremental backup. Each incremental backup only includes the changes
since the previous backup, which can itself be a full or incremental backup. The first backup in an
incremental series is always then a differential backup; but after that, each incremental backup
only contains the changes made since that last incremental backup. Each subsequent incremental
backup is thus usually smaller in size than a differential backup, and is faster to make; that allows
you to make very frequent incremental backups, and then enables you to restore the database to
a more precise point in time when necessary. However, restoring data with incremental backups
might take longer and more work: in general, to restore data up to, for example, time t , you start with
restoring the full backup, and then restore the incremental backups one by one, until you are finished
with the incremental backup taken for time t.

MySQL Enterprise Backup supports both incremental and differential backups. You should decide on
which backup strategy to adopt by looking at such factors like how much storage space you have, how
quickly you have to be able to restore data, and so on.

MySQL Enterprise Backup treats differential backup as a special case of incremental backup that

has a full backup as its base. To create a differential backup, simply follow the instructions below

for performing incremental backups, and make sure you specify a full backup as the base of your
incremental backup using the methods we describe below; you should also ignore any instructions that
only apply to the handling of multiple incremental backups.

See Section 14.7, “Incremental Backup Options”, for descriptions of the mysql backup options
used for incremental backups. An Incremental backup is enabled with one of the two options: - -
increnental and--increnental -w t h-redo-| og-only option. See Creating Incremental
Backups Using Only the Redo Log for their differences.

When creating an incremental backup, you have to indicate to nysql backup the point in time of
the previous full or incremental backup. For convenience, you can use the - - i ncr enent al - base
option to automatically derive the necessary log sequence number (LSN) from the metadata stored in

38

Making a Differential or Incremental Backup

a previous backup directory or on the server. Or, you can specify an explicit LSN value using the - -

st art -1 sn option, providing to nysql backup the ending LSN from a previous full or incremental
backup (see Other Considerations for Incremental Backups on some limitation that applies when using
the - - st art -1 sn option).

To prepare the backup data to be restored, you combine all incremental backups with an original full
backup. Typically, you perform a new full backup after a designated period of time, after which you can
discard the older incremental backup data.

Creating Incremental Backups Using Only the Redo Log

The - -increnental -w t h-redo- | og- onl y might offer some benefits over the - - i ncr enent al
option for creating an incremental backup:

* The changes to InnoDB tables are determined based on the contents of the | nnoDB redo log.
Since the redo log files have a fixed size that you know in advance, it can require less 1/O to read
the changes from them than to scan the InnoDB tablespace files to locate the changed pages,
depending on the size of your database, amount of DML activity, and size of the redo log files.

 Since the redo log files act as a circular buffer, with records of older changes being overwritten as
new DML operations take place, you must take new incremental backups on a predictable schedule
dictated by the size of the log files and the amount of redo data generated for your workload.
Otherwise, the redo log might not reach back far enough to record all the changes since the previous
incremental backup, in which case nmysql backup will quickly determine that it cannot proceed
and will return an error. Your backup script should be able to catch that error and then perform an
incremental backup with the - - i ncr enent al option instead.

For example:

e To calculate the size of the redo log, issue the command SHOW VARI ABLES LI KE
"innodb_| og file% and, based on the output, multiply the i nnodb_| og fil e_si ze setting
by the value of i nnodb_[og fil es_in_group. Tocompute the redo log size at the physical
level, look into the dat adi r directory of the MySQL instance and sum up the sizes of the files
matching the patterni b_| ogfi | e*.

* The InnoDB LSN value corresponds to the number of bytes written to the redo log. To check the
LSN at some point in time, issue the command SHOWN ENG NE | NNCDB STATUS and look under
the LOG heading. While planning your backup strategy, record the LSN values periodically and
subtract the earlier value from the current one to calculate how much redo data is generated each
hour, day, and so on.

Prior to MySQL 5.5, it was common practice to keep the redo logs fairly small to avoid a long startup
time when the MySQL server was killed rather than shut down normally. With MySQL 5.5 and higher,
the performance of crash recovery is significantly improved, as described in Optimizing InnoDB
Configuration Variables, so that you can make your redo log files bigger if that helps your backup
strategy and your database workload.

» This type of incremental backup is not so forgiving of too-low - - st ar t - | sn values as the standard
--increnent al option. For example, you cannot make a full backup and then make a series of - -
i ncrenent al -wi t h-redo-1| og- onl y backups all using the same - - st art - | sn value. Make
sure to specify the precise end LSN of the previous backup as the start LSN of the next incremental
backup; do not use arbitrary values.

Note

@ To ensure the LSN values match up exactly between successive incremental
backups, it is recommended that you always use the - - i ncr enent al - base
option when you use the - -i ncrenent al -w t h-redo- | og- onl y option.

» To judge whether this type of incremental backup is practical and efficient for a particular MySQL
instance:

39

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_dml
https://dev.mysql.com/doc/refman/5.6/en/show-variables.html
https://dev.mysql.com/doc/refman/5.6/en/show-variables.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group
https://dev.mysql.com/doc/refman/5.6/en/show-engine.html
https://dev.mysql.com/doc/refman/5.6/en/optimizing-innodb-configuration-variables.html
https://dev.mysql.com/doc/refman/5.6/en/optimizing-innodb-configuration-variables.html

Making a Differential or Incremental Backup

« Measure how fast the data changes within the InnoDB redo log files. Check the LSN periodically to
decide how much redo data accumulates over the course of some number of hours or days.

« Compare the rate of redo log accumulation with the size of the redo log files. Use this ratio to see
how often to take an incremental backup, in order to avoid the likelihood of the backup failing
because the historical data are not available in the redo log. For example, if you are producing
1GB of redo log data per day, and the combined size of your redo log files is 7GB, you would
schedule incremental backups more frequently than once a week. You might perform incremental
backups every day or two, to avoid a potential issue when a sudden flurry of updates produced
more redo than usual.

« Benchmark incremental backup times using both the - - i ncrenent al and - -i ncrenent al -
wi t h-redo-1 og- onl y options, to confirm if the redo log backup technigue performs faster
and with less overhead than the traditional incremental backup method. The result could depend
on the size of your data, the amount of DML activity, and the size of your redo log files. Do your
testing on a server with a realistic data volume and a realistic workload. For example, if you have
huge redo log files, reading them in the course of an incremental backup could take as long as
reading the InnoDB data files using the traditional incremental technique. Conversely, if your data
volume is large, reading all the data files to find the few changed pages could be less efficient than
processing the much smaller redo log files.

Other Considerations for Incremental Backups

The incremental backup feature is primarily intended for InnoDB tables, or non-InnoDB tables that are
read-only or rarely updated. Incremental backups detect changes at the level of pages in the InnoDB
data files, as opposed to table rows; each page that has changed is backed up. Thus, the space and
time savings are not exactly proportional to the percentage of changed InnoDB rows or columns.

For non-InnoDB files, the entire file is included in an incremental backup if that file has changed
since the previous backup, which means the savings for backup resources are less significant when
comparing with the case with InnoDB tables.

You cannot perform incremental backups with the - - conpr ess option.

When making an incremental backup that is based on a backup (full or incremental) created using the
--no- 1 ocki ng option, use the - - ski p- bi nl og option to skip the backing up of the binary log, as
binary log information will be unavailable to nysql backup in that situation.

No binary log files are copied into the incremental backup if the - - st art - | sn option is used. To
include binary log files for the period covered by the incremental backup, use the - - i ncr enent al -
base option instead, which provides the necessary information for nysql backup to ensure that

no gap exists between binary log data included in the previous backup and the current incremental
backup.

Examples of Incremental Backups

This example uses nmysql backup to make an incremental backup of a MySQL server, including all
databases and tables. We show two alternatives, one using the - - i ncr ement al - base option and the
other using the - - st art - | sn option.

With the - - i ncr enent al - base option, you do not have to keep track of LSN values between one
backup and the next. Instead, you can just specify the location of the previous directory backup (either
full or incremental), and nysql backup figures out the starting point for this backup based on the
metadata of the earlier one. Because you need a known set of directory names, you might want to use
hardcoded names or generate a sequence of names in your own backup script, rather than using the
--w t h-tinestanp option.

$ nysql backup --defaul ts-fil e=/hone/dbadm n/.ny.cnf --increnental \
--increnmental - base=dir:/incr-backup/ wednesday \
--increnental - backup-dir=/incr-backup/thursday \

40

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_page
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_data_files

Making a Differential or Incremental Backup

backup
...Mmany lines of output...
mysql backup: Backup created in directory '/incr-backup/thursday
nmysql backup: start_|sn: 2654255717
nmysql backup: increnental _base_| sn: 2666733462
nmysql backup: end_| sn: 2666736714

101208 17: 14:58 nysgl backup: nysgl backup conpl eted K

Note that if your last backup was a single-file instead of a directory backup, you can still use - -
i ncrenent al - base by specifying for di r : di rect ory_pat h the location of the temporary directory
you supplied with the - - backup- di r option during the full backup.

As an alternative to specifying - - i ncr enent al - base=di r: di rect ory_pat h, you can tell

nysql backup to query the end_| sn value from the last successful backup as recorded in the
backup_hi st ory table on the server using - - i ncr enent al - base=hi st ory: | ast _backup (this
required that the last backup was made with mysql backup connected to the server).

You can also use the - - st art - | sn option to specify where the incremental backup should start. You
have to record the LSN of the previous backup reported by nysql backup at the end of the backup:

nysql backup: Was able to parse the log up to |sn 2654255716

The number is also recorded in the net a/ backup_vari abl es. t xt file in the folder specified by - -
backup- di r during the backup. Supply then that number to nysql backup using the - -start-1sn
option. The incremental backup then includes all changes that came after the specified LSN. Since
then the location of the previous backup is not very significant then, you can use - - wi t h-t i nest anp
to create named subdirectories automatically.

$ nysql backup --defaul ts-fil e=/hone/dbadni n/.ny.cnf --increnental \
--start-|sn=2654255716 \
--with-tinestanmp \
--increnental - backup-dir=/incr-backup \
backup
...many |lines of output...
nysql backup: Backup created in directory '/incr-backup/2010-12-08_17-14-48
nysql backup: start _|sn: 2654255717
nmysql backup: increnental base_|sn: 2666733462
nmysql backup: end_| sn: 2666736714

101208 17: 14: 58 nysql backup: nysgl backup conpl eted K

To create an incremental backup image instead, use the following command, specifying with - -
backup- di r atemporary directory for storing the metadata for the backup and some temporary files:

$ nysql backup --defaul ts-file=/hone/dbadm n/.ny.cnf --increnental \
--start-1sn=2654255716 \
--with-tinmestanmp \
--backup-dir=/incr-tnp \
- - backup-i mage=/i ncr - backup/ i ncrenment al _i mage. bi \
backup-t o-i mage

In the following example though, because - - backup- i mage does not provide a full path to the image
file to be created, the incremental backup image is created under the folder specified by - - backup-
dir:

$ nysql backup --defaul ts-fil e=/hone/dbadm n/.ny.cnf --increnental \
--start-1sn=2654255716 \
--with-tinestanmp \
- -backup-dir=/incr-imges \
- - backup-i mage=i ncrenent al _i magel. bi \
backup-to-i nage

On how to restore your database using the incremental backups, see Section 5.2.3, “Restoring an
Incremental Backup”

41

Making a Compressed Backup

Next steps:

» On aregular schedule determined by date or amount of database activity, take more incremental
backups.

» Optionally, periodically start the cycle over again by taking a full, uncompressed or compressed
backup. Typically, this milestone happens when you can archive and clear out your oldest backup
data.

4.3.3 Making a Compressed Backup

To save disk space, you can compress InnoDB backup data files by using the - - conpr ess option of
nysqgl backup. Compression lets you keep more sets of backup data on hand or save transmission
time when sending the backup data to another server. Also, compression often results in faster
backups because of reduced 10.

The backup compression feature works only for InnoDB tables. After the InnoDB tablespace files are
compressed during backup, they receive the . i bz extension. To avoid wasting CPU cycles without
saving additional disk space, - - conpr ess does not attempt to compress tables that were already-
compressed on the server (see Enabling Compression for a Table); nevertheless, such tablespace files
are also saved with the . i bz extension inside the backup.

is copied during an uncompressed backup. Perform a compressed backup to

Note
@ When there is unused space within an InnoDB tablespace file, the entire file
avoid the storage overhead for the unused space.

The binary log and relay log files are compressed and saved with the . bz extension when being
included in a compressed backup.

You can only use the - - conpr ess option for full backups, not for incremental backups.

You can also select the compression algorithm to use by the - - conpr ess- net hod option and, when
using the ZLIB or LZMA compression algorithm, the level of compression by the - - conpr ess- | evel
option. See Section 14.6, “Compression Options” for details.

This is a sample command for making a compressed directory backup:

nysql backup --defaults-file=/etc/ny.cnf --conpress backup

This is a sample command for making a compressed and prepared directory backup (only supported
for MySQL Enterprise Backup 3.12.3 and later):

nmysql backup --defaults-file=/etc/ my.cnf --conpress-nethod=zlib --conpress-|evel =5 backup-and-appl y-1 og

This is a sample command for making a compressed single-file backup:

nysql backup --defaults-file=/etc/ny.cnf --conpress-nethod=zlib --conpress-|evel =5 \
- - backup- i mage=backup. i g backup-to-i mage

Note

3 See the limitation that applies to compressed backups in Appendix B,
Limitations of MySQL Enterprise Backup.

Next steps:

» Make a note of the LSN value in the message at the end of both the full and incremental backups
(for example, in the line nysql backup: Was able to parse the log up to Isn

42

https://dev.mysql.com/doc/refman/5.6/en/innodb-compression-usage.html

Making a Partial Backup

LSN nunber). You specify this value when performing incremental backups of changes that occur
after this full backup.

» Apply the log to the compressed backup files, so that the full backup is ready to be restored at any
time. You can move the backup data to a different server first, to avoid the CPU and I/O overhead of
performing this operation on the database server.

 After applying the log, periodically take incremental backups, which are smaller and can be made
faster than a full backup.

4.3.4 Making a Partial Backup

Note

@ To facilitate the creation of partial backups, MySQL Enterprise Backup has
introduced two new options for partial backup since version 3.10: - - i ncl ude-
t abl es and - - excl ude-t abl es. The new options are intended for replacing
the older options of - - i ncl ude, - - dat abases, - - dat abases-1ist-file,
and - - onl y-i nnodb-w t h-f r m which are incompatible with the new options
and will be deprecated in the upcoming releases. In the discussions below we
assume the new options are used for partial backups. For reference purpose,
we have included information on the older options at the end of this section in
Making a Partial Backup with Legacy Options.

By default, all the files under the database subdirectories in the data directory are included in the
backup, so that the backup includes data from all MySQL storage engines, any third-party storage
engines, and even any non-database files in that directory. This section explains options you can use
to selectively back up or exclude data.

There are various ways to create different kinds of partial backup with MySQL Enterprise Backup:

* Including or excluding specific tables by their names. This uses the - - i ncl ude-t abl es or - -
excl ude-t abl es option.

Each table is checked against the regular expression specified with the - - i ncl ude-t abl es or - -
excl ude-t abl es option. If the regular expression matches the fully qualified name of the table (in
the form of db_nane. t abl e_nane) , the table is included or excluded for the backup. The regular
expression syntax used is the extended form specified in the POSIX 1003.2 standard. The options

have been implemented with the RE2 regular expression library.

* Including some or all InnoDB tables, but not other table types. This uses the - - onl y-i nnodb
option.

» Leaving out files that are present in the MySQL data directory but not actually part of the MySQL
instance. This uses the - - onl y- known-fi | e-t ypes option.

» Achieving a multiple of selection effects by using a combination of the above mentioned options.

» Backing up a selection of InnoDB tables using transportable tablespaces (TTS). This uses the - -
use-tts andthe--include-tabl es or--excl ude-tabl es (or both) options.

For syntax details on all the options involved, see Section 14.8, “Partial Backup and Restore Options”.
Important

A Typically, a partial backup is more difficult to restore than a full backup,
because the backup data might not include the necessary interrelated pieces
to constitute a complete MySQL instance. In particular, InnoDB tables have
internal IDs and other data values that can only be restored to the same
instance, not a different MySQL server. Always fully test the recovery procedure
for any partial backups to understand the relevant procedures and restrictions.

43

Making a Partial Backup

Important

A Because the InnoDB system tablespace holds metadata about InnoDB tables
from all databases in an instance, restoring a partial backup on a server that
includes other databases could cause the system to lose track of those InnoDB
tables in the other databases. Always restore partial backups on a fresh MySQL
server instance without any other InnoDB tables that you want to preserve.

The following are some command samples for partial backups.

Including all tables with names starting with “emp” into the backup:

$ nysql backup \
- - host =l ocal host --user=nysql user --protocol =TCP --port=3306 \
- - backup- di r =$MEB_BACKUPS_DI R/ backupdir \ --incl ude-tabl es="\.enmp" \
backup

Taking a backup of all tables except tables from the “mysql” and “performance_schema” databases:

$ nysql backup \
- -host =l ocal host --user=nysql user --protocol =TCP --port=3306 \
- - backup- di r =$MEB_BACKUPS_DI R/ backupdi r \
--excl ude-tabl es="~(nmysql | per formance_schema)\." \
backup

Taking a backup of all tables in the “sales” database, but excludes the table with the name “hardware”

$ nysql backup \

--host =l ocal host --user=nysql user --protocol =TCP --port=3306 \

- - backup- di r =$MEB_BACKUPS_DI R/ backupdi r \

--include-tabl es=""sal es\." --exclude-tabl es=""sal es\. hardware$" \
backup

Taking a backup of all tables in the “sales reps” database, but excludes the table with the name “euro-
asia” (special characters like spaces or dashes are supported by the partial backup options since
release 3.12.1):

$ nysql backup \
- - host =l ocal host --user=nysql user --protocol =TCP --port=3306 \
- - backup- di r =$MEB_BACKUPS_DI R/ backupdi r \
--include-tabl es=""sal es reps\." --exclude-tabl es=""sal es reps\. euro-asia" \
backup

Backing up all InnoDB tables, but not . f r mfiles:

$ nysql backup --defaul ts-fil e=/hone/dbadm n/.ny.cnf --only-innodb backup

You can also make compressed, single-image, and other kinds of selective backups by using the
appropriate command options.

Next Steps:

» Make a note of the LSN value in the message at the end of both full and incremental backups, for
example, nysql backup: Was able to parse the log up to |sn LSN nunber. You
specify this value when performing incremental backups of changes that occur after this full backup.

« Apply the log to the uncompressed backup files, so that the full backup is ready to be restored at any
time. You can move the backup data to a different server first, to avoid the CPU and 1/O overhead of
performing this operation on the database server.

 After applying the log, periodically take incremental backups, which are much faster and smaller than
a full backup like these ones.

44

Making a Partial Backup

Making a Partial Backup with the Legacy Options

Important

A Information in this subsection is only for using the legacy options of - -
i ncl ude, - - dat abases, - - dat abases-1ist-file,and--only-
i nnodb-wi t h- f r m which will be deprecated in the upcoming issues. For
creating partial backups, it is strongly recommended that the new options of
--include-tabl es and - - excl ude-t abl es be used instead. Note that
you cannot combine the legacy and the new partial-backup options in a single
command.

MySQL Enterprise Backup can make different kinds of partial backup using the legacy partial-backup
options:

« Including certain InnoDB tables but not others. This operation involves the - - i ncl ude, - - onl y-
i nnodb, and - - onl y-i nnodb- wi t h-f r moptions.

* Including certain non-InnoDB tables from selected databases but not others. This operation involves
the - - dat abases and - - dat abases- | i st-fil e options.

For syntax details on all these options, see Legacy Partial Backup Options.

Note

@ Typically, a partial backup is more difficult to restore than a full backup,
because the backup data might not include the necessary interrelated pieces
to constitute a complete MySQL instance. In particular, InnoDB tables have
internal IDs and other data values that can only be restored to the same
instance, not a different MySQL server. Always fully test the recovery procedure
for any partial backups to understand the relevant procedures and restrictions.

With its - - i ncl ude option, nysql backup can make a backup that includes some InnoDB tables but
not others:

» A partial backup with the - - i ncl ude option always contains the InnoDB system tablespace and all
the tables inside it.

» For the InnoDB tables stored outside the system tablespace, the partial backup includes only those
tables whose names match the regular expression specified with the - - i ncl ude option.

This operation requires the tables being left out to be stored in separate t abl e_nane. i bd files. To
put an InnoDB table outside the system tablespace, create it while the i nnodb_fil e per_table
MySQL configuration option is enabled. Each . i bd file holds the data and indexes of one table only.

Those InnoDB tables created with i nnodb_fil e _per tabl e turned off are stored as usual in the
InnoDB system tablespace, and cannot be left out of the backup.

For each table with a per-table data file a string of the form db_nan®e. t abl e_nane is checked against
the regular expression specified with the - - i ncl ude option. If the regular expression matches the
complete string db_nane. t abl e_nane, the table is included in the backup. The regular expression
syntax used is the extended form specified in the POSIX 1003.2 standard. On Unix-like systems, quote
the regular expression appropriately to prevent interpretation of shell meta-characters. This feature has
been implemented with the RE2 regular expression library.

The backup directory produced contains a backup log file and copies of InnoDB data files.

IMPORTANT: Although nmysql backup supports taking partial backups, be careful when restoring a
database from a partial backup. mysql backup copies also the . f r mfiles of those tables that are not
included in the backup, except when you do partial backups using, for example, the - - dat abases

45

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table

Making a Partial Backup

option. If you use nmysql backup with the - -i ncl ude option, before restoring the database, delete
from the backup data the . f r mfiles for any tables that are not included in the backup.

IMPORTANT: Because the InnoDB system tablespace holds metadata about InnoDB tables from
all databases in an instance, restoring a partial backup on a server that includes other databases
could cause the system to lose track of those InnoDB tables in other databases. Always restore partial
backups on a fresh MySQL server instance without any other InnoDB tables that you want to preserve.

The - - onl y-i nnodb and - - onl y-i nnodb- wi t h- f r moptions back up InnoDB tables only, skipping
those of other storage engines. You might also use them together with the - - i ncl ude option to make
selective backup of InnoDB tables while excluding all other files created by other storage engines.

Example 4.1 Making an Uncompressed Partial Backup of InnoDB Tables

In this example, we have configured MySQL so that some InnoDB tables have their own tablespaces.
We make a partial backup including only those InnoDB tables int est database whose name starts
with i b. The contents of the database directory for t est database are shown below. The directory
contains a MySQL description file (. f r mfile) for each of the tables (al ex1, al ex2, al ex3, bl obt 3,
i bstestO,i bstest09,ibtestlla, ibtestllb,ibtestllc,andi btest11d)inthe database.
Of these 10 tables six (al ex1, al ex2, al ex3, bl obt 3,i bst est 0, i bst est 09) are stored in per-
table data files (. i bd files).

$ I's /sqgldatal/nts/test

alexl.frm alex2.ibd blobt3.frm i bstestO.ibd ibtestlla.frm ibtestlld.frm
alexl.ibd alex3.frm blobt3.ibd ibtest09.frm ibtestllb.frm

alex2.frm alex3.ibd ibstestO.frm ibtest09.ibd ibtestllc.frm

We run the nysql backup with the - - i ncl ude option:

Back up sone | nnoDB tables but not any .frmfiles.

$ nysql backup --defaul ts-file=/honme/dbadm n/.ny.cnf --include=""test\.ib.*" --only-innodb backup
...many |ines of output...

nysql backup: Scanned |og up to |sn 2666737471

nysql backup: Was able to parse the log up to |sn 2666737471

nysql backup: Maxi mum page nunber for a log record O

101208 17:17:45 nysql backup: Full backup conpl et ed

Back up sone InnoDB tables and the .frmfiles for the backed-up tables only.

$ nysql backup --defaul ts-file=/hone/dbadm n/.ny.cnf --include=""test\.ib.*" \
--only-innodb-w th-frmerel ated backup

...many |ines of output...

nysql backup: Scanned |og up to |sn 2666737471

nysql backup: Was able to parse the log up to |sn 2666737471

nysql backup: Maxi mum page nunber for a log record O

101208 17:17:45 nysql backup: Full backup conpl et ed

The backup directory contains only backups of i bst est and i bt est 09 tables. Other InnoDB tables
did not match the include pattern ~t est \ . i b. *. Notice, however, that the tables i bt est 11a,

i btest11lb,i btestllc,i btest11d are inthe backup even though they are not visible in the
directory shown below, because they are stored in the system tablespace (i bdat al file) which is
always included in the backup.

Wth the --only-innodb option
$ |'s /sql dat a- backup/ t est
i bstestO.ibd i bt est 09.i bd

Wth the --only-innodb-with-frnrrel ated option
$ |'s /sql dat a- backup/ t est

i bstest0.frm ibtest09.frm

i bstestO.ibd i bt est 09.i bd

Example 4.2 Making a Compressed Partial Backup
We have configured MySQL so that every InnoDB table has its own tablespace. We make a partial

backup including only those InnoDB tables whose name starts with al ex or bl ob. The contents of the
database directory for t est database is shown below.

Making a Single-File Backup

$ |'s /sqgldata/nts/test

alexl.frm alex2.ibd blobt3.frm ibstestO.ibd ibtestlla.frm ibtestlld.frm
alexl.ibd alex3.frm blobt3.ibd ibtest09.frm ibtestllb.frm

alex2.frm alex3.ibd ibstestO.frm ibtest09.ibd ibtestllc.frm

We run nysqgl backup with the - - conpr ess and - - i ncl ude options:

$ nysql backup --defaul ts-file=/home/dbadm n/.ny.cnf --conpress \
--include=".*\.(al ex| bl ob).*" --only-innodb backup

...many |ines of output...

nysql backup: Scanned | og up to |sn 2666737471

nysql backup: Was able to parse the log up to |sn 2666737471

nysql backup: Maxi mum page nunber for a log record O

nysql backup: Conpressed 147 MB of data files to 15 MB (conpression 89%.

101208 17:18: 04 nysql backup: Full backup conpl et ed

The backup directory for the database t est is shown below. The . i bz files are compressed per-table
data files.

$ |s /sql dat a- backup/t est
al ex1.i bz al ex2. i bz al ex3. i bz bl obt 3. i bz

The - - dat abases and - - dat abases-1i st-fil e options of nysql backup let you back up non-
InnoDB tables only from selected databases, rather than across the entire MySQL instance. (To

filter InnoDB tables, use the - - i ncl ude option instead.) With - - dat abases, you specify a space-
separated list of database names, with the entire list enclosed in double quotation marks. With - -

dat abases-1ist-fil e, you specify the path of a file containing the list of database names, one per
line.

Some or all of the database names can be qualified with table names, to only back up selected non-
InnoDB tables from those databases.

If you specify this option, make sure you include the same set of databases for every backup
(especially incremental backups), so that you do not restore out-of-date versions of any databases.

4.3.5 Making a Single-File Backup

To avoid having a large number of backup files to keep track, store, and transport, nysql backup can
create a backup in a single-file format. It can also pack an existing backup into a single file, unpack
the single file back to the original backup directory structure, list the contents of a single-file backup,
verify the contents of a single-file backup against embedded checksums, or extract a single file into

a directory tree. For the syntax of the relevant nysql backup options, see Section 14.9, “Single-File
Backup Options”.

Because the single-file backup can be streamed or piped to another process such as a tape backup or
a command, you can use the technique to put the backup onto another storage device or server and
avoid significant storage overhead on the original database server.

To create a single-file backup, use the backup-t o- i mage command. The following examples
illustrate how to perform a single-file backup and other related operations.

Example 4.3 Single-File Backup to Absolute Path

This command creates a single backup image on the given absolute path. It still requires - - backup-
di r, which is used to hold temporary output, status, and metadata files.

nysql backup --backup-i mage=/ backups/ sal es. mhbi --backup-di r=/backup-tnp backup-to-i mage
Example 4.4 Single-File Backup to Relative Path

This command specifies - - backup- i mage with a relative path underneath the backup directory. The
resulting single-file backup is created as / backups/ sal es. nbi .

47

Making a Single-File Backup

nmysql backup --backup-i mage=sal es. mbi --backup-dir=/backups backup-to-inage
Example 4.5 Single-File Backup to Standard Output

The following command dumps the backup output to standard output. Again, the folder specified with
the - - backup- di r option is used as a temporary directory.

nysql backup --backup-dir=/backups --backup-i mage=- backup-to-i mage > /backup/ nybackup. mb
Example 4.6 Convert Existing Backup Directory to Single Image

The backup- di r directory is bundled into the / backup/ ny. nbi file.

nmysql backup --backup-i mage=/backup/ my. nmbi --backup-dir=/var/ nmysql/backup backup-dir-to-inmage
Example 4.7 Extract Existing Image to Backup Directory

The image contents are unpacked into backup-di r.

nysql backup --backup-dir=/var/backup --backup-i nmage=/backup/ ny. nbi i nage-to-backup-dir
Example 4.8 List Single-File Backup Contents

The image contents are listed, with each line indicating a file or directory entry.

nmysql backup --backup-i mage=/backup/ nmy. nbi |ist-inmage

Example 4.9 Validate a Single-File Backup

The following command verifies that the single-file backup is not corrupted, truncated, or damaged by
validating the checksum value for each data page in the backup.

nysql backup --backup-i mage=/1ogs/fullimge. m validate
Example 4.10 Extract Single-File Backup into Current Directory

The following command extracts all contents from a single-file backup into the current working
directory.

nysql backup --backup-i mage=/var/ny. nbi extract
Example 4.11 Extract Single-File Backup into a Backup Directory

This command behaves like the i mage-t o- backup- di r option by extracting all contents of a single-
file backup into the - - backup- di r directory.

nysql backup --backup-i mage=/var/ny. mbi --backup-dir=/var/backup extract
Example 4.12 Selective Extract of Single File

The following command extracts the single file net a/ comment s. t xt from the backup image ny. nbi
into the local path. / met a/ coment s. t xt .

nysql backup --backup-image=/var/ny. nbi \
--src-entry=netal/ coments.txt extract

The following command extracts the net a/ corment s. t xt file from the backup image ny. nbi into a
specified path / t np/ mycoment s. t xt by using the - - dst - ent r y option.

nysql backup --backup-i mage=/var/ny. nbi \
--src-entry=netal/ comments.txt \
--dst-entry=/tnp/ mycoments.txt extract

The following command dumps the contents of net a/ conmrent s. t xt (which is inside the single-file
backup my. nbi) to standard output.

48

Making a Single-File Backup

nmysql backup --backup-image=/var/ny.nbi --src-entry=netal/coments.txt --dst-entry=- extract
Example 4.13 Selective Extract of Single Directory

The following command extracts a single directory net a from the backup image ny. nbi into a local
file system path . / et a. All contents in the net a directory are extracted, including any subdirectories.

nysql backup --backup-i mage=/ backup/ nmy. mbi --src-entry=nmeta extract

The following command extracts all contents of the net a directory, including all its files and
subdirectories, into the directory / t np/ nmy- et a.

nysql backup --backup-i mage=/ backup/ ny. nbi --src-entry=neta \
--dst-entry=/tnp/ ny-neta extract

Example 4.14 Dealing with Absolute Path Names

Since absolute pathnames are extracted to the same paths in local system, it could be a problem if you
do not have write permission for that path. You can remap absolute paths as follows:

nysql backup --backup-i mage=/ backup/ ny. mbi --src-entry=/ --dst-entry=/nyroot extract
nysql backup --backup-i mage=/ backup/ ny. mbi --src-entry=. extract

The first command extracts all absolute paths to / nyr oot directory in the local system. The second
command extracts all relative paths to the current directory.

4.3.5.1 Streaming the Backup Data to Another Device or Server

To limit the storage overhead on the database server, you can transfer the backup data to a different
server without ever storing it locally. You can achieve that with a single-file backup. To send the
single-file backup to standard output, use the mysql backup command backup-t o- i mage without
specifying the - - backup- i mage option. (You can also specify - - backup- i mage=- to make

it obvious that the data is sent to stdout.) To stream the data, you use the single-file backup in
combination with operating system features such as pipes, ssh, and so on, which take the input from
standard output and create an equivalent file on a remote system. You can either store the single-file
backup directly on the remote system, or invoke mysql backup with the i mage-t o- backup-dir
option on the other end to reproduce the directory structure of a regular backup.

Example 4.15 Single-File Backup to a Remote Host

The following command streams the backup as a single-file output to a remote host to be saved under
the file name my_backup. i ng (- - backup- di r =/ t np designates the directory for storing temporary
files rather than the final output file):

nysql backup --defaults-file=~/ny_backup. cnf --backup-i mage=- --backup-dir=/tnp backup-to-imge | \
ssh <user nanme>@renote host name> 'cat > ~/backups/ my_backup.ing

For simplicity, all the connection and other necessary options are assumed to be specified in the
default configuration file. ssh can be substituted with another communication protocol like f t p, and
cat can be substituted with another command (for example, dd or t ar for normal archiving).

Example 4.16 Single-file Backup to a Remote MySQL Server

The following command streams the backup as a single backup file to be restored on a remote MySQL
server:

nysql backup --backup-di r=backup --backup-i mage=- --conpress backup-to-image | \
ssh <user nanme>@renote host nane> 'nysql backup --backup-dir=backup_tnp --datadir=/data \
--innodb_| og_group_hone_dir=. \
--innodb_l og_files_in_group=<innodb_| og_files_in_group_of_backedup_server> \
--innodb_l og_file_size=<innodb_| og_file_size_ of_backedup_server> \
--innodb_data_fil e_path=<innodb_data file_path_of _backedup_server> \
--unconpress --backup-i mage=- copy- back-and- appl y-| og

49

Making a Single-File Backup

Example 4.17 Stream a Backup Directory to a Remote MySQL Server

The following command streams a backup directory as a single backup file to be restored on a remote
MySQL server:

nysql backup --backup-i mage=- --backup-dir=/path/to/ ny/backup backup-dir-to-imge | \
ssh <user nanme>@renote host nanme> 'mysql backup --backup-dir=backup_tnmp --datadir=/data --backup-imge=- cc

4.3.5.2 Backing Up to Tape

Tape drives are affordable, high-capacity storage devices for backup data. MySQL Enterprise Backup
can interface with media management software (MMS) such as Oracle Secure Backup (OSB) to drive
MySQL backup and restore jobs. The media management software must support Version 2 or higher of
the System Backup to Tape (SBT) interface.

For information about doing tape backups in combination with MMS products such as Oracle Secure
Backup, see Chapter 9, Using MySQL Enterprise Backup with Media Management Software (MMS)
Products.

4.3.5.3 Backing Up to Cloud Storage

MySQL Enterprise Backup supports cloud backups. Only single-file backups can be created on

and restored from a cloud storage. All nysql backup options compatible with single-file operations
(including, for example, the incremental, compression, partial, and encryption options) can be used with
cloud backups or restores.

Note
@ See Appendix B, Limitations of MySQL Enterprise Backup for some limitations
regarding the support for cloud storage by nmysql backup.

Currently, MySQL Enterprise Backup supports two types of cloud storage services: OpenStack Swift
or compatible object storage services (for example, Oracle Cloud Infrastructure Object Storage and
Oracle Cloud Infrastructure Object Storage Classic) and Amazon S3.

Note
@ Due to some issues, Amazon S3 is currently not supported by MySQL
Enterprise Backup 3.12.

MySQL Enterprise Backup 3.12 supports the Swift v1.0 API, and also the OpenStack Identity
(Keystone) API v2.0 for authentication. It also supports authentication using Swift's TempAuth
system or HTTP Basic Authentication. Backups are stored as dynamic large objects in Swift,
with each backup larger than 5G being split into multiple parts with names in the form of

<obj ect _nanme>_part_<nunber >. See the OpenStack documentation for details.

A cloud backup is created using the cloud options for nysql backup, which are described in details
in Section 14.14, “Cloud Storage Options”. Here are some sample commands for creating a cloud
backup:

Example 4.18 Creating a Cloud Backup on Oracle Cloud Infrastructure Object Storage Classic

This example creates a cloud backup in an Oracle Cloud Infrastructure (OCI) Object Storage Classic
container, using the TempAuth system for authenticating the user's credentials.

nmysql backup \

--cl oud-servi ce=openstack --cloud-container=<OCl Object Storage Cl assic container> \

--cl oud-user-id=<servi cel nstanceNanme>- <i dent i t yDomai nNanme>: <user Nane> - - cl oud- passwor d=' <passwor d>' \
--cl oud-t enpaut h-ur| =htt ps: // <dat aCent er Code>. st or age. or acl ecl oud. com \

--cloud-trace=1 --cl oud-obj ect =i mage_900. nbi \

- - backup- di r =/ hone/ user/ dba/ or backupt npdi r \

- - backup-i mage=- \

backup-to-i mage

50

http://docs.openstack.org/api/openstack-object-storage/1.0/content/dynamic-large-object-creation.html

Making a Single-File Backup

Example 4.19 Creating a Cloud Backup on Oracle Cloud Infrastructure Object Storage

This example creates a cloud backup in an Oracle Cloud Infrastructure (OCI) Object Storage bucket,
using HTTP basic authentication.

mysql backup \

--cl oud- servi ce=openstack --cl oud-contai ner=<CCl Obj ect Storage bucket> \

--cl oud-user-id=<OCl userNane> --cl oud- password=' <OCl auth token>" \
--cloud-ca-info=/etc/ssl/certs/ca-certificates.crt

--cl oud- basi caut h-url =https://sw ftobj ect st orage. <regi on>. oracl ecl oud. com v1/ <OCl Obj ect Storage nanesp
--cloud-trace=1 --cl oud-obj ect =backup_i mage_900. nbi \

- - backup- di r =/ hone/ user / dba/ or backupt npdi r \

- - backup-i mage=- \

backup-t o-i nage

Example 4.20 Creating a Cloud Incremental Backup on Oracle Cloud Infrastructure Object
Storage

This example creates an incremental cloud backup in an Oracle Cloud Infrastructure (OCI) Object
Storage bucket, using HTTP basic authentication.

nmysql backup \

--cl oud-servi ce=openstack --cloud-contai ner=<OCl Object Storage bucket> \

--cl oud-user-i d=<CCl userName> --cl oud- password=' <CCl auth token>" \
--cloud-ca-info=/etc/ssl/certs/ca-certificates.crt

--cl oud- basi caut h-url =https://sw ftobj ectstorage. <regi on>. oracl ecl oud. conf vl/ <OCl Obj ect Storage namesp
- - cl oud- obj ect =backup_i ncr _i nage_900. nbi \

- - backup-di r =/ hone/ user/ dba/ ori ncr backupt npdi r \

--increnmental --increnental-base=history:|ast_backup \

- - backup-i mage=- \

backup-t o-i nage

Example 4.21 Creating a Cloud Backup on an OpenStack Object Storage

This example creates a cloud backup on an OpenStack object storage, using the Keystone identity
service to authenticate the user's credentials.

nysql backup \

--include-tabl es=testdb.t1 --use-tts=with-full-locking \

--cl oud- servi ce=openstack --cloud-container=<sw ft container> \

--cl oud- user-i d=<keyst one user> --cl oud- passwor d=<keyst one password> \
- -cl oud- r egi on=<keyst one regi on> --cl oud-t enant =<keyst one tenant> \
--cloud-identity-url =<keystone url> \

--cloud-trace=1 --cl oud- obj ect =i rage_800. nbi \

- - backup- di r =/ hone/ user/ dba/ opbackupt npdi r \

- - backup-i mage=- \

backup-to-i mage

Example 4.22 Creating a Cloud Backup on Amazon S3

nysql backup\

--cl oud- servi ce=s3 --cl oud- aws-r egi on=<aws regi on> \

--cl oud- access- key-i d=<aws access key id> --cloud-secret-access-key=< aws secret access key> \
- - cl oud- bucket =<s3 bucket nane> --cl oud- obj ect - key=<aws obj ect key> \

- - backup- di r =/ hone/ user/ dba/ s3backupt npdi r \

- - backup-i mage=- \

backup-to-i mage

A cloud backup always uses one write thread.

Besides backup- t o- i mage, all other nysql backup operations for single-file backups (backup-
dir-to-image,list-inage,validate,inage-to-backup-dir,extract, copy-back, and
copy- back-and- appl y-1 og) can also be performed with cloud storage. For example:

Example 4.23 Extract an Existing Image from an Oracle Cloud Infrastructure Object Storage
Classic Container to a Backup Directory

Extract a backup image from an Oracle Cloud Infrastructure Object Storage Classic container, using
the - - backup- di r option to specify the directory into which the image will be extracted:

51

Making an Optimistic Backup

nmysql backup \

--cl oud-servi ce=openstack --cloud-contai ner=<OCl Object Storage Cl assic container> \

--cl oud-user-id=<servi cel nstanceNanme>- <i dent i t yDomai nNanme>: <user Nane> - - ¢l oud- passwor d=<passwor d> \
--cl oud-t enpaut h-url =htt ps: // <dat aCent er Code>. st or age. or acl ecl oud. com \

- - cl oud- obj ect =i mage_930. nbi \

- - backup- di r =/ hone/ user/ dba/ or backupdi r \

- - backup-i mage=- \

i mage-t o- backup-dir

Example 4.24 Extract an Existing Image from Amazon S3 Cloud Storage to a Backup Directory

Extract a backup image from Amazon S3, using the - - backup- di r option to specify the directory into
which the image will be extracted:

nmysql backup\

--cl oud-servi ce=s3 --cl oud- aws-r egi on=<aws regi on> \

--cl oud- access- key-i d=<aws access key id> --cloud-secret-access-key=< aws secret access key> \
--cl oud- bucket =<s3 bucket nane> --cl oud- obj ect - key=<aws obj ect key> \

- - backup-di r =/ hone/ user/ dba/ s3backupdi r \

- - backup-i mage=- \

i mage-t o- backup-dir

See Section 5.2.6, “Restoring a Backup from Cloud Storage to a MySQL Server” on how to restore a
backup image from a cloud storage.

4.3.6 Making an Optimistic Backup

Optimistic backup is a feature introduced in MySQL Enterprise Backup 3.11 for improving performance
for backing up and restoring huge databases in which only a small number of tables are modified
frequently.

During a hot backup of a huge database (say, in the order of terabytes), huge redo log files could be
generated on the server when the backup is in progress. As the redo log files grow faster than they can
be processed by nysql backup, the backup operation can actually fail when nmysql backup cannot
catch up with the redo log cycles and LSNs get overwritten by the server before they are read by
nysql backup. Moreover, the appl y- | og step for preparing a backup for restoration can take a very
long time as nmysql backup has huge i bbackup_| ogfi | e files (created from the big redo log files)
to apply to the backup. The problems are intensified when the I/O resources available for reading and
writing the redo logs are scarce during the backup and restoration processes.

Optimistic backup relieves the problems by dividing the backup process into two internal phases, which
are transparent to the users:

1. Optimistic phase: In this first phase, tables that are unlikely to be modified during the backup
process (referred to as the “inactive tables” below, identified by the user with the opti m sti c-
t i me option or, by exclusion, with the opti m sti c- busy-t abl es option) are backed up without
locking the MySQL instance. And because those tables are not expected to be changed before
the backup is finished, redo logs, undo logs, and system table spaces are not backed up by
nysql backup in this phase.

2. Normal phase: In this second phase, tables that are not backed up in the first phase (referred to
as the “busy tables” below) are being backed up in a manner similar to how they are processed in
an ordinary backup: the InnoDB files are copied first, and then other relevant files and copied or
processed with the MySQL instance locked. The redo logs, undo logs, and the system tablespace
are also backed up in this phase.

An optimistic backup occurs whenever the optim stic-tinmeoroptinm stic-busy-tabl es option
is used. For how to use the options, see detailed descriptions for them in Section 14.10, “Performance /
Scalability / Capacity Options”. If, as expected, the list of inactive tables identified by the optimistic
options do not change during the backup (or, even if it changes by a small percentage), most users

will find that the overall backup time is reduced significantly compared to an ordinary backup, as the
size of the redo log data to be backed up will be far smaller. Additionally, restore time for the backup

52

Making a Back Up of In-Memory Database Data

will also be reduced, as the appl y- | og operation will be much faster because of the smaller redo
log. However, if it turns out that the list of inactive tables identified changed by a significant portion
during the backup process, benefits of performing an optimistic back up will become limited and, in the
worst case, an optimistic backup might actually take longer to perform and, for a single-file backup,
the size of the backup will be larger when comparing with an ordinary backup. Therefore, users should
be careful in identifying which tables are “inactive” and which are “busy” when trying to perform an
optimistic backup.

Note
@ An optimistic backup cannot be performed for an incremental backup or a
backup using transportable tablespaces (TTS).

The following examples illustrate how to make an optimistic backup.
Example 4.25 Optimistic Backup Using the Option opti nmi sti c-ti me=YYMVDDHHWSS

In this example, tables that have been modified since the noon of May 16, 2011 are treated as busy
tables and backed up in the normal phase of an optimistic backup, and all other tables are backed up in
the optimistic phase:

nysql backup --defaults-file=/etc/my.cnf --optimstic-time=110516120000 backup

Example 4.26 Optimistic Backup Using the Option opti nmi sti c-ti me=now

In this example, all tables are treated as inactive tables and backed up in the optimistic phase of an
optimistic backup:

nysql backup --defaults-file=/etc/ny.cnf --optimnistic-ti me=now backup

Example 4.27 Optimistic Backup Using the opti m sti c- busy-t abl es Option

In this example, tables in nydat abase that are prefixed by nyt abl es- in their names are treated as
busy tables and backed up in the normal phase of an optimistic backup, and all other tables are backed
up in the optimistic phase:

nysql backup --defaults-file=/etc/ny.cnf --optimstic-busy-tabl es=""nydat abase\. nytabl es-.*" backup

When you use both the opt i m stic-tinme andoptin stic-busy-tabl es options and they come
into conflict on determining which tables are to be busy tables, opti m sti c- busy-t abl es takes
precedence over opti m sti c-ti ne. For example:

Example 4.28 Optimistic and Partial Backup Using both the opti mi sti c- busy-t abl es and
optim stic-tinme Options

In this example, tables in nydat abase that are prefixed by nyt abl es- in their names are treated as
busy tables and backed up in the normal phase, even if they have not been modified since May 16,
2010, the time specified by opti m stic-ti ne:

nysql backup --defaults-file=/etc/ny.cnf --optinstic-busy-tabl es="~nydat abase\. nytables-.*" \
--optimstic-ti me=100516 backup

4.3.7 Making a Back Up of In-Memory Database Data

The - - exec- when- | ocked option of mysql backup lets you specify a command (together with the
desired command arguments) to run near the end of the backup while the database is still locked.
This command can copy or create additional files in the backup directory. For example, you can use
this option to back up MEMORY tables with the mysqgl dunp command, storing the output in the backup
directory. To delay any redirection or variable substitution until the command is executed, enclose the
entire option value within single quotes.

4.3.8 Making Scheduled Backups

53

Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN)

Maintaining a regular backup schedule is an important measure for preventing data loss for you
MySQL server. This section discusses some simple means for setting up a schedule for running
MySQL Enterprise Backup.

For Linux and other Unix-like platforms: you can set up a cron job on your system for scheduled
backups. There are two types of cron jobs. To set up a user cron job, which is owned and run by a
particular user, do the following:

* Log on as the user who runs MySQL Enterprise Backup and use the following command to invoke an
editor for creating (or modifying) a crontab:

$> crontab -e

* In the editor, add an entry similar to the following one to the crontab, and then save your changes:
@lai |y / pat h-to-nysql backup/ nysql backup -uroot --backup-dir=/path-to-backup-fol der/cronbackups --with-tir

This crontab entry invokes nysql backup to create a backup under the cr onbackups directory at
00: 00: 00 everyday. Outputs from the st derr and st dout streams are redirected to /dev/null/, so
they will not invoke other actions on the part of the Cron server (for example, email notifications to
the user).

To set up a system cron job, which is owned and run by r oot , create a file under the / et ¢/ cron. d
folder and put into it a similar crontab entry as the one above, adding the user (r oot in the following
example) before the nysql backup command:

@laily root /path-to-nysql backup/ nysql backup -uroot --backup-dir=/path-to-backup-fol der/cronbackups --with-

Check your platform's documentation for further details on the different ways to set up cron jobs for
various types of schedules.

For Windows platforms: Use the Task Scheduler for the purpose. Check the documentation for your
Windows platform for instructions.

4.4 Making Backups with a Distributed File System (DFS) or
Storage Access Network (SAN)

When system administrators attempt to set up MySQL and MySQL Enterprise Backup in an
environment that uses a distributed file system (DFS) or a storage access network (SAN), the MySQL
server, the server's data directory, MySQL Enterprise Backup, and the backup directory may end up
existing on different physical servers. When that happens, the operations of nysql backup might

be impacted. The operation most likely to be adversely affected is hot backup, the success of which
depends on:

1. Each page of a data file is copied consistently, that is, all the bytes in the page correspond to the
same LSN.

2. No copied page is older than the time that marks the beginning of the temporal duration the backup
is supposed to cover.

3. The redo log is copied consistently, meaning a continuous segment of redo log is copied, and it
includes all the changes from the beginning of the temporal period that the backup is to cover until
the end of the backup operation. Each block of the copied redo log has to be consistent.

Condition 1 is easily achievable with most DFSs or SANs of reasonable performance. Condition 2
though can remain unfulfilled even when condition 1 has been satisfied: for example, nysql backup
could copy all the pages of a tablespace correctly except for one page for which nmysql backup has
included an old version into the copy. If the LSN of that old version of the page is smaller than the
LSN first seen by nysqgl backup at the beginning of the backup process, the resulting backup will be
defective. This example shows that nysql backup may have problem performing a hot backup unless

54

Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN)

it can see the writes to the file system being executed in the correct order, that is, the order in which the
server executed them.

Regarding condition 3, unlike data file pages, redo log blocks are written sequentially, which means
condition 3 is easier to fulfill than conditions 1 and 2. However, if nysql backup reaches the highest
LSN in the copied data file pages before encountering the end of the redo log, the backup fails. A
failure occurs also if mysql backup reads a corrupted log block at any time during the copying of
the redo log. Both these failures can occur if nysql backup does not see the same history of the file
system states as the MySQL server does.

Therefore, to use nysql backup with a DFS or SAN, it is important to make sure that mysql backup
sees all the writes to the file system in the same order as the MySQL server does. The condition is
most likely to be satisfied when nmysql backup and the MySQL server are running on the same server
node, and it is unlikely to be always fulfilled when it is otherwise.

55

56

Chapter 5 Recovering or Restoring a Database

Table of Contents

5.1 Preparing the Backup t0 b RESIOIEAccvuuiiiiiiiii e e ea s 57
5.2 Performing a RestOre OPErationiiiiuiiiiieiiii e e e e e e e e e e e e e e e e e e eaanas 58
5.2.1 Restoring a Compressed BaCKUPiviiiiiiiieii i e e e e e e e 59
5.2.2 Restoring an Encrypted Backup IMAgec..oeiiiiiiiiiieii i e e e e e e e 60
5.2.3 Restoring an Incremental BACKUPco.uuiiiiiieiiiiciii e e e e e e e e e e eaen 60
5.2.4 Restoring Backups Created with the - - use-tts Optionccccvvviiiiiiiiiiiin e, 61
5.2.5 Restoring External InnoDB Tablespaces to Different Locationsccccceevvvviievinnennnnn. 61
5.2.6 Restoring a Backup from Cloud Storage to a MySQL Serverccccoovivvvviieeiiievinnennnn. 62
5.3 POINt-iN-TIME RECOVEIY ...uiiiiiiiiii ettt ettt et e e e e e e e e et e et e e et e e et e e et e e et s e e aaeeaneeeanns 63
5.4 Restoring a Backup with a Database Upgrade or DOWNGradeccoeevviiiiiiieiiiieriineeeieeains 64

The ultimate purpose of backup data is to help recover from a database issue or to create a clone of
the original database in another location (typically, to run report queries or to create a new replica).
This section describes the procedures to handle those scenarios.

After a serious database issue, you might need to perform a recovery under severe time pressure. It is
critical to confirm in advance:

» How long the recovery will take, including any steps to transfer, unpack, and otherwise process the
data.

» That you have practiced and documented all steps of the recovery process, so that you can do it
correctly in one try. If a hardware issue requires restoring the data to a different server, verify all
privileges, storage capacity, and so on, on that server ahead of time.

» That you have periodically verified the accuracy and completeness of the backup data, so that the
system will be up and running soon after being recovered.

5.1 Preparing the Backup to be Restored

Immediately after the backup job completes, the backup files might not be in a consistent state,
because data could be inserted, updated, or deleted while the backup is running. These initial backup
files are known as the raw backup. You must update the backup files so that they reflect the state of
the database corresponding to a specific InnoDB log sequence number (the same kind of operation
takes place during a crash recovery). When this step is complete, these final files are known as the
prepared backup.

During the backup, mysql backup copies the accumulated InnoDB log to a file called

i bbackup_| ogfi | e. This log file is used to “roll forward” the backed-up data files, so that every page
in the data files corresponds to the same log sequence number of the InnoDB log. This phase also
createsnew i b_| ogfi | es that correspond to the data files.

The nysql backup option for turning a raw backup into a prepared backup is appl y- | 0og. You can
run this step on the same database server where you did the backup, or transfer the raw backup files to
a different system first, to limit the CPU and storage overhead on the database server.

the backup, nothing is lost if the operation fails for some reason (for example,
insufficient disk space). After fixing the problem, you can safely retry appl y-
| og and by specifying the - - f or ce option, which allows the data and log files

Note
@ Since the appl y- | og operation does not modify any of the original files in
created by the failed appl y- | og operation to be overwritten.

57

Performing a Restore Operation

For simple directory backups (which are not compressed and non-incremental), you can combine the
initial backup and the appl y- | og steps using the backup- and- appl y- 1 og command.

You can also perform appl y- | og and copy- back (which restores the prepared backup) with a single
copy- back- and- appl y- | og command.

Example 5.1 Applying the Log to a Backup

This example runs mysql backup to roll forward the data files so that the data is ready to be restored:
nmysql backup --backup-dir=/export/backups/2011-06-21_ 8- 36-58 appl y-1 og

That command creates InnoDB log files (i b_| ogfi | e*) within the backup directory and applies log
records to the InnoDB data files (i bdat a* and *. i bd).

Example 5.2 Applying the Log to a Compressed Backup

If the backup is compressed, as in Section 4.3.3, “Making a Compressed Backup”, specify the - -
unconpr ess option to mysql backup when applying the log to the backup:

nysql backup --backup-dir=/export/backups/conpressed --unconpress apply-I|og

Example 5.3 Applying an Incremental Backup to a Full Backup

After you take an incremental backup as described in Section 4.3.2, “Making a Differential or
Incremental Backup”, the changes reflected in those backup files must be applied to a full backup to
bring the full backup up-to-date, in the same way that you apply changes from the binary log.

To bring the data files from the full backup up to date, first run the apply log step so that the data files
will include any changes that occurred while the full backup was running. Then apply the changes from
the incremental backup to the data files produced by the full backup:

nysql backup --backup-dir=/export/backups/full apply-Iog

nysql backup --backup-dir=/export/backups/full \
--increnent al - backup- di r =/ export/backups/increnmental \
appl y-i ncrenent al - backup

Now the data files in the f ul | - backup directory are fully up-to-date as of the time of the incremental
backup.

5.2 Performing a Restore Operation

The mysql backup commands to perform a restore operation are copy- back- and- appl y-1 og

and copy- back (for directory backup only; see Section 5.1, “Preparing the Backup to be Restored”).
Normally, the restoration process requires the database server to be already shut down (or, at least
not operating on the directory you are restoring the data to), except for restorations of backups created
with the - - use- t t s option; see explanations below. The process copies the data files, logs, and other
backed-up files from the backup directory back to their original locations, and performs any required
post-processing on them.

Example 5.4 Shutting Down and Restoring a Database
nysql adm n --user=root --password shut down

nmysql backup --defaul ts-file=/usr/local/nmysql/mnmy.cnf \
- - backup-di r =/ export/ backups/ful | \

copy- back
Note
@ The restored data includes the backup_hi st ory table, where MySQL
Enterprise Backup records details of each backup. The table allows you
to perform future incremental backups using the - - i ncr enent al -
base=hi st ory: | ast _backup option.

58

Restoring a Compressed Backup

See Section 4.2.4, “Restoring a Database” for an explanation of the important options used in a restore
operation like - - defaul ts-fil e,--datadir, --backup-i mage, and - - backup-di r.

Important

A When performing a restore, make sure the target directories for restore data
are all clean, containing no old or unwanted data files (this might require
manual removal of files at the locations specified by the - - dat adi r, - -

i nnodb_data_homne_dir,--innodb_| og_group_hone_dir, and - -

i nnodb_undo_di r ect ory options). The same cleanup is not required for
restoring backups created with the- - use-t t s option (in which case other
requirements described in Section 5.2.4, “Restoring Backups Created with the
--use-tts Option” apply though).

Before restoring a hot directory backup using the copy- back command, the backup has to be
prepared and made consistent using the appl y- | og command. See Section 5.1, “Preparing the
Backup to be Restored” for details. You can combine the appl y- | og and the copy- back operations
(as well as a number of other operations, depending on the kind of backup you are restoring) into a
single step by using the copy- back- and- appl y- | og option instead:

Example 5.5 Restoring a Backup Directory using copy- back- and- appl y-1 og
nysql backup --defaults-file=<ny.cnf>\
- - backup- di r =/ export/backups/ful |l \
copy- back- and- appl y- | og
The same command is typically used for single-file backups to perform the same functions:
Example 5.6 Restoring a Single-file Backup using copy- back- and- appl y-1 og

nysql backup --defaul ts-fil e=<ny.cnf> -uroot --backup-inmge=<i mage_nane> \
- - backup- di r =<backupTnpDi r > - -dat adi r =<r est or eDi r > copy- back- and- appl y- | og

The - - backup- di r option specifies a temporary directory into which temporary output, status files,
and backup metadata are be saved.

created with MySQL Enterprise Backup 3.11 or earlier requires using the - -

Note
@ Due to a known issue (Bug# 20485910), restoring a partial image backup
f or ce option.

The following subsections describe a number of different scenarios for restoring a backup.

5.2.1 Restoring a Compressed Backup

Restore a compressed directory backup at <backupDi r > to <r est or eDi r > on the server using
copy- back- and- appl y- I og and the - - unconpr ess option:

Example 5.7 Restoring a Compressed Backup

nmysql backup --defaul ts-fil e=<nmy.cnf> -uroot --backup-dir=<backupDir> --datadir=<restorebDir> \
- -unconpress copy- back-and- appl y-1 og

To restore a compressed and prepared directory backup created with the backup- and- appl y- 1 og
command (which is only supported for MySQL Enterprise Backup 3.12.3 and later), use the copy-
back command and the - - unconpr ess option:

nmysql backup --defaul ts-fil e=<my.cnf> -uroot --backup-dir=<backupDir> --datadir=<restorebDir> \
- -unconpr ess copy- back

To restore a compressed backup image named <i mage_nane>, use the copy- back- and- appl y-
| og command and the - - unconpr ess option, with the - - backup- di r option specifying a temporary
directory into which temporary output, status files, and backup metadata will be saved:

59

https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file

Restoring an Encrypted Backup Image

nysql backup --defaults-file=<my.cnf> -uroot --backup-imge=<i mage_nanme> \
- - backup- di r =<backupTnpDi r> --dat adi r=<restoreDi r> --unconpress copy-back-and-appl y-| og

See Section 4.3.3, “Making a Compressed Backup” and Section 14.6, “Compression Options” for more
details on compressed backups.

5.2.2 Restoring an Encrypted Backup Image

Restore an encrypted backup image named <i nage_nane> to <r est or eDi r > on the server with
copy- back- and- appl y- | og, using the encryption key contained in a file named <keyFi | e>:

Example 5.8 Restoring an Encrypted Backup Image

nysql backup --defaults-file=<ny.cnf> --backup-i mage=<i mrage_nane> \
- - backup- di r =<backupTnpDi r> --datadir=<restoreDir> --decrypt --key-fil e=<keyFil e> copy-back-and-apply-Iog

See Section 14.13, “Encryption Options” for more details on backup encryption and decryption.

5.2.3 Restoring an Incremental Backup

There are different ways to use incremental backups to restore a database under different scenarios.
The preferred method is to first restore the full backup and make it up-to-date to the time at which the
full backup was performed using the copy- back- and- appl y-| og command (see Example 5.5,
“Restoring a Backup Directory using copy- back- and- appl y- | 0g” or Example 5.6, “Restoring a
Single-file Backup using copy- back- and- appl y-1 0g” on how to do it); then use copy- back- and-
app! y- | og again to restore the incremental backup image on top of the full backup that was just
restored:

Example 5.9 Restoring an Incremental Backup Image

nmysql backup --defaul ts-fil e=<ny.cnf> -uroot --backup-imge=<i nc_i mage_nanme> \
- - backup- di r =<i ncBackupTnpDi r > --datadi r=<restoreDi r> --increnental \
copy- back- and- appl y- | og

In this example, the incremental backup image named <i nc_i mage_nane> is restored to

<rest or eDi r > on the server (where the full backup that the incremental backup image was based
on has already been restored). The - - backup- di r option is used to specify the temporary directory
into which temporary output, status files, and backup metadata are saved. Repeat the step with other
incremental backup images that you have, until the data has been restored to a desired point in time.

Alternatively you can bring your full backup up-to-date with your incremental backup. First, apply to the
full backup any changes that occurred while the backup was running:

$ nysql backup --backup-dir=/full-backup/2010-12-08_17-14-11 appl y-I|og
..many lines of output...
101208 17:15:10 nysql backup: Full backup prepared for recovery successfully!

101208 17: 15: 10 nysgl backup: nysql backup conpl eted OK

Then, we apply the changes from the incremental backup:

$ nysql backup --increnental - backup-dir=/incr-backup/2010-12-08_17-14-48 \
- -backup-dir=/full -backup/2010-12-08_17-14-11 appl y-i ncrenent al - backup

...many lines of output...

101208 17: 15: 12 nysgl backup: nysgl backup conpl eted K

Now, the data files in the full backup directory are fully up-to-date, as of the time of the last incremental
backup. You can keep updating it with more incremental backups, so it is ready to be restored anytime.

When an incremental backup is being restored using either the copy- back- and- appl y-1 og or
appl y-i ncrenent al - backup command, the binary log (and also the relay log, in the case of a
replica server), if included in the incremental backup, is also restored to the target server by default.
This default behavior is overridden when either (1) the - - ski p- bi nl og option (or the - - ski p-
rel ayl og option for the relay log) is used with the restore command, or (2) if the full backup the

60

Restoring Backups Created with the - - use-t t s Option

incremental backup was based on or any prior incremental backup that came in between the full
backup and this incremental backup has the binary log (or relay log) missing.

See Section 4.3.2, “Making a Differential or Incremental Backup”, and Section 14.7, “Incremental
Backup Options”, for more details on incremental backups.

5.2.4 Restoring Backups Created with the - - use-t t s Option

There are some special requirements for restoring backups created with transportable tablespaces
(TTS) (that is, created with the - - use-t t s option):

» The destination server must be running.

» Make sure that the required parameters for connecting to the server (port number, socket name, etc.)
are provided as command-line options for mysql backup, or are specified inthe [cl i ent] section
of a defaults file.

» The destination server must be using the same page size that was used on the server on which the
backup was made.

» The innodb_file_per_table option must be enabled on the destination server.
» The tables being restored must not exist on the destination server.

» A restore fails if the InnoDB file format of a per-table data file (. i bd file) to be restored does not
match the value of the i nnodb_fil e format system variable on the destination server. In that
case, use the - - f or ce option with the restore commands to change temporarily the value of
i nnodb_file format onthe server, in order to allow restores of per-table data files regardless of
their format.

When restoring a single-file backup created with the option setting use-tt s=wi t h- m ni num

| ocki ng, the folder specified with - - backup- di r, besides holding temporary output, status files,
and metadata, is also used for extracting temporarily all the tables in the backup and for performing an
appl y- | og operation to make the data up-to-date before restoring them to the server's data directory.

Selected tables can be restored from a backup created with transportable tablespaces (TTS) using the
--include-tabl es and - - excl ude-t abl es options. The following command restores all tables in
the “sales” database from the backup, but excludes the table with the name “hardware” :

Example 5.10 Restoring Selected Tables from a TTS Backup

nmysql backup --socket=/tnp/restoreserver.sock --datadir=/1ogs/restoreserverdata --backup-dir=/Iogs/backu
--include-tabl es=""sal es\." --exclude-tabl es=""sal es\. hardware$" copy-back-and-appl y-I og

This following commands rename a table when restoring it from a TTS Backup by using the - - r enane
option:

Example 5.11 Restoring and Renaming a Table from a TTS Backup

Using fully qualified table nanes:
nmysql backup --socket=/tnp/restoreserver.sock --datadir=/1ogs/restoreserverdata --backup-dir=/Iogs/backu
--include-tabl es=""sal es\.cars" --renane="sal es.cars to sal es. aut os" copy- back-and- appl y-1 og

It works the sanme if database nanes are omtted in the argunment for --renane:
nysql backup --socket=/tnp/restoreserver.sock --datadir=/1ogs/restoreserverdata --backup-dir=/Iogs/backu
--include-tabl es=""sal es\.cars" --renanme="cars to autos" copy-back-and-appl y-Iog

5.2.5 Restoring External InnoDB Tablespaces to Different Locations

When a backup contains external InnoDB tablespaces that resided outside of the backed-up server's
data directory, you can restore them to locations different from their original ones by updating their
path names in the .bl file inside the backup; see description of the file in Table 1.1, “Files in a MySQL
Enterprise Backup Output Directory” for details.

61

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_format
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_format

Restoring a Backup from Cloud Storage to a MySQL Server

5.2.6 Restoring a Backup from Cloud Storage to a MySQL Server

To restore a backup image from cloud storage to dat adi r on the server, use the cloud storage
options, and also the - - backup- di r option to specify the temporary directory into which temporary
output, status files, and backup metadata will be saved:

Example 5.12 Restoring a Single-file Backup from an Oracle Cloud Infrastructure (OCI) Object
Storage Classic Container to a MySQL Server

nysql backup \

--defaul ts-fil e=<ny.cnf>\

--cl oud- servi ce=openstack --cloud-contai ner=<OCl Object Storage Cl assic container> \

--cl oud- user-i d=<servi cel nst anceNane>- <i dent i t yDomai nNane>: <user Nane> - - cl oud- passwor d=<passwor d> \
--cl oud- t empaut h-ur | =ht t ps: / / <dat aCent er Code>. st or age. or acl ecl oud. com \

- - cl oud- obj ect =<backup_i nage_nane> \

- -dat adi r=/ horme/ user / dba/ dat adi r \

- - backup- di r =/ hone/ user/ dba/ or backupt npdi r \

- - backup-i mage=- \

copy- back- and- appl y- | og

Example 5.13 Restoring a Single-file Backup from an Oracle Cloud Infrastructure (OCI) Object
Storage to a MySQL Server

nmysql backup \

--defaul ts-fil e=<ny.cnf> \

--cl oud- servi ce=openstack --cl oud-contai ner=<CCl Obj ect Storage bucket> \
-cl oud- user-i d=<OCl user Name> - -cl oud- password=' <OCl auth token>" \
--cloud-ca-info=/etc/ssl/certs/ca-certificates.crt

--cl oud- basi caut h-url =htt ps://sw ftobj ect st orage. <r egi on>. oracl ecl oud. com v1/ <CCl Obj ect Storage nanespace:
- -cl oud- obj ect =<backup_i mage_nanme> \

- -dat adi r=<server _dat adi r> \

- - backup- di r =/ hone/ user / dba/ or backupt npdi r \

- - backup-i mage=- \

copy- back- and- appl y-1 og

Example 5.14 Restoring a Cloud Incremental Backup from an Oracle Cloud Infrastructure (OCI)
Object Storage Service to a MySQL Server

nmysql backup \--defaul ts-fil e=<ny.cnf>\

--cl oud-servi ce=openstack --cloud-contai ner=<OCl Object Storage bucket> \

-cl oud-user-i d=<OCl userNanme> --cl oud- password='<OCl auth token>" \
--cloud-ca-info=/etc/ssl/certs/ca-certificates.crt

--cl oud- basi caut h-url =https://sw ftobj ect st orage. <regi on>. oracl ecl oud. com v1/ <OCl Obj ect Storage nanespace:
- - ¢l oud- obj ect =<backup_i nmage_nane> \

- - backup-i mage=- --datadir=<server_datadir> \
- - backup-di r =/ hone/ user/ dba/ ori ncr backupt npdi r \
--increnental

copy- back- and- appl y- 1 og

Example 5.15 Restoring a Single-file Backup from an OpenStack Object Storage to a MySQL
Server

nmysql backup \

--defaul ts-fil e=<ny.cnf> \

--cl oud- servi ce=openst ack --cl oud-cont ai ner=<swi ft container> \

--cl oud-user-i d=<keyst one user> --cl oud- passwor d=<keyst one password> \
--cl oud-r egi on=<keyst one regi on> --cl oud-t enant =<keyst one tenant> \
--cloud-identity-url =<keystone url> --cl oud- obj ect =i mage_800. nbi \

- - backup-di r =/ hone/ user/ dba/ swi f t backupt npdi r \

--dat adi r=/ hone/ user/ dba/ datadi r \

- - backup-i mage=- \

copy- back- and- appl y- | og

Example 5.16 Restoring a Single-file Backup from Amazon S3 to a MySQL Server

nmysql backup\

--defaul ts-fil e=<ny.cnf> \

--cloud-servi ce=s3 --cl oud- aws-r egi on=<aws regi on> \

--cl oud- access- key-i d=<aws access key id> --cl oud-secret-access-key=< aws secret access key> \

62

Point-in-Time Recovery

- -cl oud- bucket =<s3 bucket nane> --cl oud- obj ect - key=<aws obj ect key> \
- - backup- di r =/ hone/ user / dba/ s3backupt npdi r \

--dat adi r =/ hone/ user/ dba/ dat adi r \

- - backup-i mage=- \

copy- back- and- appl y- 1 og

5.3 Point-in-Time Recovery

You can restore your database to its state at an arbitrary time using the binary log files included in the
backups. The process assumes that following conditions are met:

e The backed-up MySQL Server has had its binary logging enabled. To check if this condition has
been satisfied, perform this query on the server:

nysql > SHOW VARI ABLES LI KE 'l og_bin';

dimccccccoocccooo dhmccccoe +
| Variable_nane | Val ue |
dimccccccoocccooo dhmccccoe +
| log_bin | ON [
dimccccccoocccooo dhmccccoe +

1 rowin set (0.00 sec)

If the value of | og_bi n is OFF, binary logging has not been enabled. See The Binary Log on how to
enable binary logging for the server.

» A series of backups, consisting typically of a full backup followed by a series of incremental backups,
has been created for the server. The last backup in the series covers the targeted point in time for
recovery. The example below illustrates such a typical case.

» The last backup in the backup series you have taken include in itself the relevant binary log files.
(To ensure this requirement is satisfied, do not use any of the following MySQL Enterprise Backup
options when creating the backup: - - ski p- bi nl og, --use-tts,--no-locking,or--start-
I sn.)

These are the steps for a point-in-time recovery:

1. Restore the series of backups to the server, except for the last incremental backup in the
series (which covers the targeted point in time for recovery). When finished, note the binary
log position to which you have restored the server. The information is available from the
backup_vari abl es. t xt file in the restored data directory of the server: look for the value of the
entry bi nl og_posi ti on in the file. For example:

bi nl og_posi ti on=bi nl og. 000012: 426

This means after the restore of the backup series, the server is now at log position 426 found in the
binary log file bi nl og. 000012. You will need the information later.

the restore, that is not a reliable means for obtaining the ending log position
of your restore, as there could be DDL events and non-InnoDB changes that

Note
@ While the last binary log position recovered is also displayed by InnoDB after
have taken place after the time reflected by the displayed position.

2. Extract the binary log from the last incremental backup in the backup series (that is, the backup that
covers the targeted point in time for recovery). You do this by unpacking the incremental backup
image into a backup directory using the i mage-t o- backup- di r command; for example:

mysql backup --backup-dir=incr-backup-dir2 --backup-imge=i ncrenental _i nage2. bi i mage-to-backup-dir

Next, go into the resulting backup directory (i ncr - backup- di r 2 in this example) and, under the
data directory inside, find the binary log file[s] (bi nl og. 000012 in this example):

63

https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/5.6/en/binary-log.html

Restoring a Backup with a Database Upgrade or Downgrade

i ncr-backup-dir2$ |s datadir
bi nl og. 000012 i bbackup_| ogfile nysql pets undo_002

3. Roll forward the database to its state at the targeted point in time for recovery, identified as t rin
this example, using the binary log file extracted in the last step. Then, using the nysql bi nl og
utility, replay to the server the SQL activities recorded in the binary log file[s], from the log position
the server has been restored to in Step 1 above (which is 426 in our example) all the way to time
t r- Specify the range of binary log events to replay using the - - st art - posi ti on option and the
- - st op- posi ti on option (which indicates the corresponding binary log position for t g), and pipe
the output to the nysql client:

nysqgl bi nl og --start-position="hbinary-|og-position-at-the-end-of-backup-restores" \
--stop-position="binary-|og-position-corresponding-to-tg" \
bi nary-1og-filenane | nysql -uadnmin -p

Notes
@ e Usingthe --start-datetineor--stop-datetine option to specify
the range of binary log segment to replay is not recommended: there is
a higher risk of missing binary log events when using the option. Use - -
start-positionand--stop-positioninstead.

« If you have more than one binary log files in your incremental backup and
they are all needed for bringing the server up to its state at t g, you need
to pipe all of them to the server in a single connection; for example:

nmysql binl og --start-position="426" --stop-position="binary-|og-position-correspondir
bi nl og. 000012 bi nl og. 000013 bi nl og. 000014 | nysqgl -u admin -p

You can also dump all the nysqgl bi nl og output to a single file first, and then pipe or play the file to
the nysql client.

For more explanations on using the binary log for point-in-time recovery, see Point-in-Time
(Incremental) Recovery Using the Binary Log.

4. Check that the server has been restored to the desired point in time.

5.4 Restoring a Backup with a Database Upgrade or Downgrade

Important

A You may encounter technical challenges during a server upgrade or
downgrade, and it is beyond the function of MySQL Enterprise Backup, as
a backup tool, to ensure a successful server upgrade or downgrade. Users
interested in the topic are advised to consult the MySQL server manual,
especially the Upgrading MySQL and Downgrading MySQL sections, and pay
careful attention to the requirements and restrictions discussed there.

You can facilitate a server upgrade or downgrade by using MySQL Enterprise Backup to make
a backup of your data from a source server, restore it to a new target server, and, after some
preparations, start a different version of MySQL Server on the restored data. Here are a number
of things that users should pay attention to when restoring a backup with a database upgrade or
downgrade:

» Restoring a database with a server downgrade should only be performed when the MySQL servers
on the source and the target servers are in the same release series. Downgrading to a lower series
(for example, from 5.6.33 to 5.5.33) might cause server crashes or data corruption.

* Restoring a database with a server upgrade requires the following steps, the skipping of any of which
might crash the restored server:

64

https://dev.mysql.com/doc/refman/5.6/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.6/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/5.6/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/5.6/en/upgrading.html
https://dev.mysql.com/doc/refman/5.6/en/downgrading.html

Restoring a Backup with a Database Upgrade or Downgrade

Back up the data on the source server.

Using the same version of MySQL Enterprise Backup with which the backup was taken, restore
the data to the target server by running a copy- back- and- appl y- | og operation on the
backup.

Install on the target server the same version of MySQL Server that was running on the source
server when your backup was created.

Start the MySQL Server you just installed. Your restored data go through an abbreviated crash
recovery process in preparation for a server upgrade.

Perform a slow shutdown of the MySQL Server you just started in the last step by issuing the
SET GLOBAL innodb_fast shut down=0 statement and then shutting the server down. This
ensures that all dirty pages are flushed, and hence there will be no redo log processing later for
the upgraded server.

Install the newer MySQL Server version on the target server.

Start the newer MySQL Server version you just installed on the data directory you have restored
and prepared in the earlier steps.

Perform any other additional upgrade steps that might be required for your platform or distribution
as documented in the MySQL reference manual. Make sure the mysqgl_upgrade that comes with
your newer server version is applied.

After performing these steps, check your data to make sure that your restore has been successful.

65

https://dev.mysql.com/doc/refman/5.6/en/upgrading.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-upgrade.html

66

Chapter 6 Using MySQL Enterprise Backup with Replication

Table of Contents

6.1 Setting Up @ NEW REPIICAccuuiiiiiiii e e e e e e e e e an e 67
6.2 Backing up and Restoring a Replica Databaseccouuiiiiiiiiiiiiii e 69
6.3 Restoring @ SOUICe Dat@bhasecc.uiiiiiiiiiiaii et et e 69

Backup and restore operations are especially important in systems that use MySQL replication to
synchronize data across a source server and a set of replica servers. In a replication configuration,
MySQL Enterprise Backup helps you manage images for the entire system, set up new replica servers,
or restore a source server in an efficient way that avoids unnecessary work for the replica servers.

On the other hand, having multiple replica servers to choose from gives you more flexibility about
where to perform backups. When the binary log is enabled, you have more flexibility about restoring the
database to a specific point in time, even a time that is later than that of the last backup.

6.1 Setting Up a New Replica

MySQL Enterprise Backup allows you to set up a replica by backing up the source and restoring the
backup on a new replica server, without having to stop the source.

For servers NOT using GTID:

1. Take a full backup of the source and then use, for example, the copy- back- and- appl y- I og
command, to restore the backup and the log files to the right directories on the new replica and
prepare the data.

Note
@ Do not use the - - no- | ocki ng option when backing up the server, or
you will be unable to get a proper binary log position in Step 4 below for
initializing the replica.
2. Editthe ny. cnf file of the new replica and put ski p- sl ave-start and event _schedul er =of f
(if the source uses the Event Scheduler) under the [mysql d] section.

3. Start the new replica mysql d (version >=5.1). You see the following in the server's output:

I nnoDB: Last MySQL binlog file position 0 128760007, file nane ./hundi n-bin. 000006

While a Last MySQL binlog file position hasbeen displayed, itis NOT necessarily the
latest binary log position on the backed up server, as InnoDB does not store binary log position
information for any DDL operations or any changes to non-InnoDB tables. Do not use this binary
log position to initialize the replica. The next step explains how to find the correct binary log position
to use.

4. Look for the file dat adi r/ met a/ backup_vari abl es. t xt where dat adi r is the data directory
of the new replica. Look into the file to retrieve the latest binary log position and the corresponding
log file number stored inside:

bi nl og_posi ti on=hundi n- bi n. 000006: 128760128

5. Use the CHANGE MASTER TOSQL statement and the information you have retrieved in the last
step to initialize the replica properly:

CHANGE MASTER TO
MASTER LOG FI LE=' hundi n- bi n. 000006’

67

https://dev.mysql.com/doc/refman/5.6/en/event-scheduler.html

Setting Up a New Replica

MASTER LOG POS=128760128;

6. Set the statuses of any events that were copied from the source to SLAVESI DE_DI SABLED. For
example:

nysql > UPDATE nysql . event SET status = ' SLAVESI DE_Dl SABLED ;

7. Remove the line ski p- sl ave-start and event schedul er =of f entries you added to the
ny. cnf file of the replica in step 2. (You can also leave the ski p- sl ave- st art entry in, but then
you will always need to use the START SLAVE statement to start replication whenever you restart
the replica server.)

8. Restart the replica server. Replication starts.

For servers using GTIDs (supported by MySQL Server 5.6 and after; see Setting Up Replication Using
GTIDs on how to enable servers to use GTIDs):

1. Take a full backup of the source and then use, for example, the copy- back- and- appl y- I og
command, to restore the backup and the log files to the right directories on a new GTID-enabled
replica and prepare the data.

2. Editthe ny. cnf file of the new replica and put ski p- sl ave-start and event schedul er =of f
(if the source uses the Event Scheduler) under the [mysql d] section.

3. Start the new replica server.

4. Connect to the replica server with the nysql client. Then, execute the following statement to reset
the binary log:

nysql > RESET MASTER

And execute the following statement to stop the binary logging:

nmysql > SET sql _| og_bi n=0;

5. When a server using the GTID feature is backed up, nysql backup produces a file named
backup_gtid execut ed. sqgl , which can be found in the restored data directory of the new
replica server. The file contains a SQL statement that sets the GI'l D_PURGED configuration option
on the replica:

On a newreplica, issue the follow ng conmand if GIlIDs are enabl ed:
SET @aBLOBAL. GTl D_PURGED=" f 65db8e2- Oela- 11e5- a980- 080027755380: 1- 3" ;

It also contains a commented-out CHANGE NMASTER TO statement for initializing the replica:

Use the followi ng command if you want to use the GTID handshake protocol :
CHANGE MASTER TO MASTER_AUTO POSI TION = 1;

Uncomment the command and add any needed connection and authentication parameters to it (for
example, MASTER _HOST, MASTER _USER, MASTER _PASSWORD, and MASTER_PORT):

Use the followi ng command if you want to use the GIlD handshake protocol :
CHANGE MASTER TO MASTER HOST=' 127.0.0.1', MASTER USER=' muser', MASTER PASSWORD=' npass', MASTER PORT=186

Execute the file with the nysql client

nysql > source /path-to-backup_gtid_executed. sql / backup_gti d_execut ed. sql

6. Set the statuses of any events that were copied from the source to SLAVESI DE_DI SABLED. For
example:

nysql > UPDATE nysql . event SET status = ' SLAVESI DE_Dl SABLED ;

7. Remove the ski p-sl ave-start and event _schedul er =of f entries you added to the ny. cnf
file of the replica in step 2. (You can also leave the ski p- sl ave- st art entry in, but then you

68

https://dev.mysql.com/doc/refman/5.6/en/start-slave.html
https://dev.mysql.com/doc/refman/5.6/en/replication-gtids-howto.html
https://dev.mysql.com/doc/refman/5.6/en/replication-gtids-howto.html
https://dev.mysql.com/doc/refman/5.6/en/event-scheduler.html

Backing up and Restoring a Replica Database

will always need to use the START SLAVE statement to start replication whenever you restart the
replica server.)

8. Restart the replica server. Replication starts.

For more information on the GTIDs, see GTID feature.

6.2 Backing up and Restoring a Replica Database

To backup a replica database, add the - - sl ave- i nf o option to your backup command.

To restore the backup on a replica server, follow the same steps outlined in Section 6.1, “Setting Up a
New Replica”.

Temporary tables on statement-based replication (SBR) replica. MySQL Enterprise Backup
does not include temporary tables inside a backup. As a result, for a replica server in a statement-
based replication (SBR) or a mixed-based replication setup (see Replication Formats for details),

any temporary tables still open at the end of the backup process will be missing in the restored

replica server, making the replication state of the replica inconsistent, and any subsequent replicated
statements that refer to the temporary tables will fail. To avoid the issue, after the hot backup phase in
which mysqgl backup copies all the InnoDB tables, it enters into a loop, in which the following happens:

1. nysqgl backup waits until all temporary tables have been closed by the replication SQL thread.
nysql backup tells if that is the case by checking if the variable SI ave_open_t enp_t abl es has
a zero value.

2. After Sl ave_open_tenp_t abl es=0 is detected, mysql backup stops the replication SQL thread
to prevent more changes to the tables on the replica.

3. To avoid the unexpected consequence by a race condition, after the replication SQL thread has
been stopped, mysql backup checks once more if Sl ave _open_tenp_t abl es=0 is still true:

 Ifitistrue, nysql backup exits the loop and finishes the backup by asserting a global read lock
and copies all the non-InnoDB tables.

« Ifitis not true, new temporary tables have just been created and opened on the replica.
mysql backup then restarts the replication SQL thread, so more updates can be made on the
replica servers. mysql backup then goes back to step 1 of this loop

Besides the exit condition described in step (3) above (which is, there really are no more open
temporary tables and mysql backup is ready to complete the backup), mysql backup will time out
after staying in the above loop for too long to wait for all temporary tables to be closed. The duration
nmysql backup waits until it times out is specified by the - - saf e- sl ave- backup-ti nmeout option.

In addition, nysql backup also runs an initial check at the beginning of a replica backup to see if
Sl ave_open_t enp_t abl es=0 becomes true within the duration set by - - saf e- sl ave- backup-
t i meout . See description for - - saf e- sl ave- backup-ti nmeout on details about the check.

Notice that the above-described issue with temporary tables does not exist for a row-based replication
(RBR) setup, for which temporary tables are not replicated onto the replica. User who are certain that

SBR is not occurring for the replica can set - - saf e- sl ave- backup-ti neout =0, which will prevent
nysql backup from entering the above-mentioned loop.

Note
@ See the limitation that applies when backing up a replica in Appendix B,
Limitations of MySQL Enterprise Backup.

6.3 Restoring a Source Database

69

https://dev.mysql.com/doc/refman/5.6/en/start-slave.html
https://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html
https://dev.mysql.com/doc/refman/5.6/en/replication-formats.html
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Slave_open_temp_tables

Restoring a Source Database

To fix a corruption problem in a replication source database, you can restore the backup, taking care
not to propagate unnecessary SQL operations to the replica servers:

1. Shut down the source database and then use, for example, the copy- back- and- appl y- | og
command, to restore a backup of it and prepare the data.

2. Edit the source ny. cnf file and comment out | og- bi n, so that the replicas do not receive twice
the binary log needed to recover the source.

3. Replication in the replicas must be stopped temporarily while you pipe the binary log to the source.
In the replicas, do:

nmysql > STOP SLAVE;
4. Start the source nysql d on the restored backup:

$ nysql d

I nnoDB: Doi ng recovery: scanned up to | og sequence nunber 0 64300044
I nnoDB: Last MySQL binlog file position 0 5585832, file nane
./ ommi book- bi n. 000002

InnoDB prints the binary log file (. / ormi book- bi n. 000002 in this case) and the position
(5585832 in this case) it was able to recover to.

5. Pipe the remaining of the binary log files to the restored server. The number of remaining binary log
files varies depending on the length of the timespan between the last backup and the time to which
you want to bring the database up to date. The longer the timespan, the more remaining binary log
files there may be. All the binary log files, containing all the continuous binary log positions in that
timespan, are required for a successful restore.

You also need to supply the starting position in the binary log by which the piping of the events
should start. Deduce that information from the et a/ backup_vari abl es. t xt file in the backup
you just restored in step 1 above (access backup_vari abl es. t xt by, for example, going

to the temporary backup directory you specified with - - backup- di r during the restore, and

find the file under the net a folder): look for the entry bi nl og_posi ti on=val ue in et a/
backup_vari abl es. t xt, and supply val ue to nysql bi nl og with the - -start-position
option.

Note

S While the last binary log position recovered is also displayed by InnoDB after
the restore (see step 4 above), that is not a reliable number for deducing the
start position for mysql bi nl og to use, as there could be DDL events and
non-InnoDB changes that have taken place after the time reflected by the
displayed position.

For example, if there are two more binary log files, ormi book- bi n. 000003 and ormi book-
bi n. 000004 that come after ormi book- bi n. 000002 and the recovery in step 4 above has
ended by 5585834 according to the backup_vari abl es. t xt file, pipe the binary log with a
single connection to the server with this command:

$ nysql binl og --start-position=5585834 /mysql dat adi r/ ommi book- bi n. 000002 \
/ nysql dat adi r/ ommi book- bi n. 000003 / nysql dat adi r/ ommi book- bi n. 000004 | mysql

See Point-in-Time (Incremental) Recovery Using the Binary Log for more instructions on using
nysql bi nl og.

6. The source database is now recovered. Shut down the source and edit ny. cnf to uncomment
| og- bi n.

https://dev.mysql.com/doc/refman/5.6/en/mysqlbinlog.html#option_mysqlbinlog_start-position
https://dev.mysql.com/doc/refman/5.6/en/point-in-time-recovery.html

Restoring a Source Database

7. Start the source again.

8. Start replication in the replicas again:

nysql > START SLAVE;

71

72

Chapter 7 Performance Considerations for MySQL Enterprise
Backup

Table of Contents

7.1 Optimizing Backup PerfOrMAaNCEccuuiiiiiii e e e e e e e e e e e e e e e eees 73
7.2 Optimizing ReStOre PerfOrManCEecoivuiiiiiiiiiie e e e e e aan s 76

This chapter describes the performance considerations for backing up and restoring databases using
MySQL Enterprise Backup.

7.1 Optimizing Backup Performance

Full or

This section describes the performance considerations for backing up a database with MySQL
Enterprise Backup. When optimizing and tuning the backup procedure, measure both the raw
performance (how long it takes the backup to complete) and the amount of overhead on the database
server. When measuring backup performance, consider:

» The limits imposed by your backup procedures. For example, if you take a backup every 8 hours, the
backup must take less than 8 hours to finish.

» The limits imposed by your network and storage infrastructure. For example, if you need to fit many
backups on a particular storage device, you might use compressed backups, even if that made the
backup process slower.

» The tradeoff between backup time and restore time. You might choose a set of options resulting
in a slightly slower backup, if those options enable the restore to be much faster. See Section 7.2,
“Optimizing Restore Performance” for performance information for the restore process.

Incremental Backup

After taking a full backup, subsequent backups can be performed more quickly by doing incremental
backups, where only the changed data is backed up. For an incremental backup, specify the
--increnental or--increnmental -w th-redo-I| o0g-only optionto nysql backup. See
Section 14.7, “Incremental Backup Options” for information about these options. For usage instructions
for the backup and apply stages of incremental backups, see Section 4.3.2, “Making a Differential or
Incremental Backup” and Example 5.3, “Applying an Incremental Backup to a Full Backup”.

Compressed Backup

Compressing the backup data before transmitting it to another server involves additional CPU
overhead on the database server where the backup takes place, but less network traffic and less disk
I/0 on the server that is the final destination for the backup data. Consider the load on your database
server, the bandwidth of your network, and the relative capacities of the database and destination
servers when deciding whether or not to use compression. See Section 4.3.3, “Making a Compressed
Backup” and Section 14.6, “Compression Options” for information about creating compressed backups.

Compression involves a tradeoff between backup performance and restore performance. In an
emergency, the time needed to uncompress the backup data before restoring it might be unacceptable.
There might also be storage issues if there is not enough free space on the database server to hold
both the compressed backup and the uncompressed data. Thus, the more critical the data is, the more
likely that you might choose not to use compression: accepting a slower, larger backup to ensure that
the restore process is as fast and reliable as possible.

Single-File Backups

The single-file backup by itself is not necessarily faster than the traditional type of backup that
produces a directory tree of output files. Its performance advantage comes from combining different

73

InnoDB Configuration Options Settings

steps that you might otherwise have to perform in sequence, such as combining the backup data
into a single output file and transferring it to another server. See Section 13.5, “Single-File Backup
Operations” for the options related to single-file backups, and Section 4.3.5, “Making a Single-File
Backup” for usage instructions.

InnoDB Configuration Options Settings

Prior to MySQL 5.5, it was common practice to keep the redo logs fairly small to avoid long startup
times when the MySQL server was killed rather than shut down normally. In MySQL 5.5 and higher,
the performance of crash recovery is significantly improved, as explained in Optimizing InnoDB
Configuration Variables. With those releases, you can make your redo log files bigger if that helps your
backup strategy and your database workload.

As discussed later, there are a number of reasons why you might prefer to run with the setting
i nnodb_file per_table=1.

Parallel Backup

nmysqgl backup can take advantage of modern multicore CPUs and operating system threads to
perform backup operations in parallel. See Section 14.10, “Performance / Scalability / Capacity
Options” for the options to control how many threads are used for different aspects of the backup
process. If you see that there is unused system capacity during backups, consider increasing the
values for these options and testing whether doing so increases backup performance:

» When tuning and testing backup performance using a RAID storage configuration, consider the
combination of option settings - - r ead- t hr eads=3 --process-threads=6 --wite-
t hr eads=3. Compare against the combination - - r ead-t hr eads=1 --process-threads=6 --
write-threads=1.

» When tuning and testing backup performance using a hon-RAID storage configuration, consider
the combination of option settings - - r ead- t hr eads=1 --process-threads=6 --wite-
t hr eads=1.

« When you increase the values for any of the 3 “threads” options, also increase the value of the - -
[i mt-nmenory option, to give the extra threads enough memory to do their work.

« If the CPU is not too busy (less than 80% CPU utilization), increase the value of the - - pr ocess-
t hr eads option.

« If the storage device that you are backing up from (the source drive) can handle more 1/O requests,
increase the value of the - - r ead- t hr eads option.

« If the storage device that you are backing up to (the destination drive) can handle more I/O requests,
increase the value of the - - wri t e-t hr eads option.

Depending on your operating system, you can measure resource utilization using commands such as
top,iostat, sar, dtrace, or a graphical performance monitor. Do not increase the number of read
or write threads once the system i owai t value reaches approximately 20%.

MyISAM Considerations

Important

A e Although nysqgl backup backs up InnoDB tables without interrupting
database use, the final stage that copies non-InnoDB files (such as MylISAM
tables and . f r mfiles) temporarily puts the database into a read-only state,
using the statement FLUSH TABLES W TH READ LOCK. For best backup
performance and minimal impact on database processing:

1. Do not run long SELECT queries or other SQL statements at the time of
the backup run.

74

https://dev.mysql.com/doc/refman/5.6/en/optimizing-innodb-configuration-variables.html
https://dev.mysql.com/doc/refman/5.6/en/optimizing-innodb-configuration-variables.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table

Network Performance

2. Keep your MyISAM tables relatively small and primarily for read-only or
read-mostly work.

Then the locked phase at the end of a mysql backup run is short (maybe a
few seconds), and does not disturb the normal processing of nysql d much.
If the preceding conditions are not met in your database application, use the
--only-innodb or--only-innodb-w th-frmoption to back up only
InnoDB tables, or use the - - no- | ocki ng option to back up non-InnoDB
files. Note that MyISAM, . f r m and other files copied under the - - no-

| ocki ng setting cannot be guaranteed to be consistent, if they are updated
during this final phase of the backup.

« For a large database, a backup run might take a long time. Always check
that mysql backup has completed successfully, either by verifying that
mysql backup returned exit code 0, or by observing that mysql backup has
printed the text “mysqglbackup completed OK!".

« mysqgl backup is not the same as the former “MySQL Backup” open source
project from the MySQL 6.0 source tree. The MySQL Enterprise Backup
product supersedes the MySQL Backup initiative.

¢ Schedule backups during periods when no DDL operations involving tables
are running. See Appendix B, Limitations of MySQL Enterprise Backup for
restrictions on backups at the same time as DDL operations.

Network Performance

For data processing operations, you might know the conventional advice that Unix sockets are faster
than TCP/IP for communicating with the database. Although the mysql backup command supports
the options - - pr ot ocol =t cp, - - pr ot ocol =socket, and - - pr ot ocol =pi pe, these options do
not have a significant effect on backup or restore performance. These processes involve file-copy
operations rather than client/server network traffic. The database communication controlled by the - -
pr ot ocol option is low-volume. For example, mysql backup retrieves information about database
parameters through the database connection, but not table or index data.

Data Size

If certain tables or databases contain non-critical information, or are rarely updated, you can leave
them out of your most frequent backups and back them up on a less frequent schedule. See

Section 14.8, “Partial Backup and Restore Options” for information about the relevant options, and
Section 4.3.4, “Making a Partial Backup” for instructions about leaving out data from specific tables,
databases, or storage engines. Partial backups are faster because they copy, compress, and transmit
a smaller volume of data.

To minimize the overall size of | nnoDB data files, consider enabling the MySQL configuration option
i nnodb_fil e_per_tabl e. This option can minimize data size for | nnoDB tables in several ways:

« It prevents the | nnoDB system tablespace from ballooning in size, allocating disk space that
can afterwards only be used by MySQL. For example, sometimes huge amounts of data are
only needed temporarily, or are loaded by mistake or during experimentation. Without the
i nnodb_file_ per_tabl e option, the system tablespace expands to hold all this data, and never
shrinks afterward.

+ It immediately frees the disk space taken up by an | nnoDB table and its indexes when the table is
dropped or truncated. Each table and its associated indexes are represented by a .ibd file that is
deleted or emptied by these DDL operations.

« It allows unused space within a . i bd file to be reclaimed by the OPTI M ZE TABLE statement, when
substantial amounts of data are removed or indexes are dropped.

75

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/optimize-table.html

The Apply-Log Phase

« It enables partial backups where you back up some | nnoDB tables and not others, as discussed in
Section 4.3.4, “Making a Partial Backup”.

« It allows the use of table compression for InnoDB tables.

In general, using table compression by having ROW FORMAT=COVPRESSED decreases table sizes and
increase backup and restore performance. However, as a trade-off, table compression can potentially
increase redo log sizes and thus slow down incremental backups and restores, as well as appl y- | og
operations. See How Compression Works for InnoDB Tables for details.

Avoid creating indexes that are not used by queries. Because indexes take up space in the backup
data, unnecessary indexes slow down the backup process. (The copying and scanning mechanisms
used by mysql backup do not rely on indexes to do their work.) For example, it is typically not helpful
to create an index on each column of a table, because only one index is used by any query. Because
the primary key columns are included in each | nnoDB secondary index, it wastes space to define
primary keys composed of numerous or lengthy columns, or multiple secondary indexes with different
permutations of the same columns.

The Apply-Log Phase

If you store the backup data on a separate machine, and that machine is not as busy the machine
hosting the database server, you can offload some postprocessing work (the apply-log phase) to that
separate machine. Section 13.2, “Apply-Log Operations”

There is always a performance tradeoff between doing the apply-log phase immediately after the
initial backup (makes restore faster), or postponing it until right before the restore (makes backup
faster). In an emergency, restore performance is the most important consideration. Thus, the more
crucial the data is, the more important it is to run the apply-log phase immediately after the backup.
Either combine the backup and apply-log phases on the same server by specifying the backup- and-
appl y- | og option, or perform the fast initial backup, transfer the backup data to another server, and
then perform the apply-log phase using one of the options from Section 13.2, “Apply-Log Operations”.

7.2 Optimizing Restore Performance

This section describes the performance considerations for restoring a database with MySQL Enterprise
Backup. This subject is important because:

» The restore operation is the phase of the backup-restore cycle that tends to vary substantially
between different backup methods. For example, backup performance might be acceptable using
nysql dunp, but mysql dunp typically takes much longer than MySQL Enterprise Backup for a
restore operation.

* The restore operation is often performed during an emergency, where it is critical to minimize the
downtime of the application or web site.

» The restore operation is always performed with the database server shut down.

» The restore operation is mainly dependent on low-level considerations, such as I/O and network
speed for transferring files, and CPU speed, processor cores, and so on for uncompressing data.

For the combination of options you can specify for a restore job, see Section 13.3, “Restore
Operations”.

Restoring Different Classes of Backup Data

Restoring a partial backup takes less time than restoring a full backup, because there is less data to
physically copy. See Section 14.8, “Partial Backup and Restore Options” for information about making
partial backups.

Restoring a compressed backup takes more time than restoring an uncompressed backup, because
the time needed to uncompress the data is typically greater than any time saved by transferring less

76

https://dev.mysql.com/doc/refman/5.6/en/innodb-compression-internals.html

The Apply-Log Phase

data across the network. If you need to rearrange your storage to free up enough space to uncompress
the backup before restoring it, include that administration work in your estimate of the total time
required. In an emergency, the time needed to uncompress the backup data before restoring it might
be unacceptable. on the database server to hold both the compressed backup and the uncompressed
data. Thus, the more critical the data is, the more likely that you might choose not to use compression:
accepting a slower, larger backup to ensure that the restore process is as fast and reliable as possible.
See Section 14.6, “Compression Options” for information about making compressed backups.

The unpacking process to restore a single-file backup is typically not expensive either in terms of
raw speed or extra storage. Each file is unpacked directly to its final destination, the same as if it
was copied individually. Thus, if you can speed up the backup substantially or decrease its storage
requirements by using single-file backups, that typically does not involve a tradeoff with restore time.
See Section 13.5, “Single-File Backup Operations” for information about making single-file backups.

The Apply-Log Phase

See The Apply-Log Phase for performance considerations regarding the apply-log phase.

Network Performance

For data processing operations, you might know the conventional advice that Unix sockets are faster
than TCP/IP for communicating with the database. Although the mysql backup command supports
the options - - pr ot ocol =t cp, - - prot ocol =socket , and - - pr ot ocol =pi pe, these options do
not have a significant effect on backup or restore performance. These processes involve file-copy
operations rather than client/server network traffic. The database communication controlled by the - -
pr ot ocol option is low-volume. For example, mysql backup retrieves information about database
parameters through the database connection, but not table or index data.

Parallel Restore

nysqgl backup can take advantage of modern multicore CPUs and operating system threads to
perform backup operations in parallel. See Section 14.10, “Performance / Scalability / Capacity
Options” for the options to control how many threads are used for different aspects of the restore
process. If you see that there is unused system capacity during a restore, consider increasing the
values for these options and testing whether doing so increases restore performance:

« When tuning and testing backup performance using a RAID storage configuration, consider the
combination of option settings - - r ead- t hr eads=3 --process-threads=6 --wite-
t hr eads=3. Compare against the combination - - r ead- t hr eads=1 --process-threads=6 --
write-threads=1.

» When tuning and testing backup performance using a non-RAID storage configuration, consider
the combination of option settings - - r ead-t hreads=1 --process-threads=6 --wite-
t hreads=1.

* When you increase the values for any of the 3 “threads” options, also increase the value of the - -
[i mt-menory option, to give the extra threads enough memory to do their work.

« If the CPU is not too busy (less than 80% CPU utilization), increase the value of the - - pr ocess-
t hr eads option.

« If the storage device that you are restoring from (the source drive) can handle more 1/O requests,
increase the value of the - - r ead- t hr eads option.

« If the storage device that you are restoring to (the destination drive) can handle more I/O requests,
increase the value of the - - wri t e-t hr eads option.

Depending on your operating system, you can measure resource utilization using commands such as
top,iostat, sar, dtrace, or a graphical performance monitor. Do not increase the number of read
or write threads i owai t once the system i owai t value reaches approximately 20%.

77

78

Chapter 8 Encryption for Backups

In order to enhance security for backed up data, MySQL Enterprise Backup provides encryption
for single-file backups. The encryption can also be applied when creating a partial, compressed, or
incremental single-file backups, and for streaming backup data to another device or server.

The encryption is performed with Advanced Encryption Standard (AES) block cipher in CBC mode,
with a key string of 64 hexadecimal digits supplied by the user. Decryption is performed using the same
key. The key can be created manually just by putting together 64 random hexadecimal bytes, or it can
be generated by shasum(or similar programs for hash calculations that work on your platform) by
supplying it with a keyphrase:

$ echo -n "ny secret passphrase" | shasum-a 256
a7e845b0854294da9aa743b807¢ch67b19647c1195€a8120369f 3d12c70468f 29 -

Note that the “-" at the end is not part of the key and should be ignored. Supply the key to
nmysql backup with the - - key option, or paste the key into a key file and supply the file's pathname to
nysql backup with the --key-fil e option.

To generate a key randomly, you can use tools like OpenSSL:

$ openssl rand -hex 32
8f 3ca9b850ec6366f 4a54f eba99f 2dc42f a79577158911f e8cd641f fff 1e63d6

To put an OpenSSL-generated key into a key file, you can do the following:

$ openssl rand -hex 32 >keyfile
$ cat keyfile
6ald325e6ef 0577f 3400b7cd624ae574f 5186d0da2eeb946895de418297ed75b

The encryption function uses MySQL Enterprise Backup's own encryption format, which means
decryption is possible only by using MySQL Enterprise Backup. For Unix-like operating systems,
different magic numbers are used to identify encrypted and unencrypted backup files. For example, you
can add these lines to the / et ¢/ nagi c file of your operating system:

0 string MBackuP\n M/SQL Enterprise Backup backup inage
0 string MebEncR n M/SQL Enterprise Backup encrypted backup

The f i | e command can then be used to identify the file types:

$ file /backups/imgel /backups/i nage2
/ backups/i magel: MySQL Enterprise Backup backup i mage
/ backups/i mage2: MySQL Enterprise Backup encrypted backup

The command options used for encryption and decryption are - - encrypt, - - decrypt, - - key,
and - - key-fi | e. These options can be used with various operations on backup images. See
Section 14.13, “Encryption Options” for details.

The following is a sample command for creating an encrypted backup:

nysql backup --backup-i mage=/ backups/i mage. enc --encrypt
- - key=23D987F3A047B475C900127148F9E0394857983645192874A2B3049570C12A34
- -backup-di r=/var/tnp/ backup backup-to-imge

To use a key file for the same task:

nmysql backup --backup-i mage=/ backups/i mage. enc --encrypt
--key-fil e=/mebl/ key --backup-dir=/var/tnp/backup backup-to-inage

To decrypt a backup when extracting it;

nmysql backup --backup-i mage=/ backups/i mage. enc --decrypt
--key-fil e=/ meb/ key --backup-dir=/backups/extract-dir extract

To validate an encrypted backup image:

79

nmysql backup --backup-image=/1 ogs/ enci nage. b

--decrypt

--key-fil e=/ meb/ enckey val i date

80

Chapter 9 Using MySQL Enterprise Backup with Media
Management Software (MMS) Products

Table of Contents

9.1 Backing Up to Tape with Oracle Secure Backupcc.oiiiiiiiiiiiiiii e 81

This section describes how you can use MySQL Enterprise Backup in combination with media
management software (MMS) products. Such products are typically used for managing large volumes
of backup data, often with high-capacity backup devices such as tape drives.

9.1 Backing Up to Tape with Oracle Secure Backup

Tape drives are affordable, high-capacity storage devices for backup data. MySQL Enterprise Backup
can interface with media management software (MMS) such as Oracle Secure Backup (OSB) to drive
MySQL backup and restore jobs. The media management software must support Version 2 or higher of
the System Backup to Tape (SBT) interface.

On the MySQL Enterprise Backup side, you run the backup job as a single-file backup using the - -
backup-i mage parameter, with the prefix sbt : in front of the filename, and optionally pass other - -
sbt - * parameters to nysql backup to control various aspects of the SBT processing. The - - sbt - *
options are listed in Section 14.9, “Single-File Backup Options”.

On the OSB side, you can schedule MySQL Enterprise Backup jobs by specifying a configurable
command that calls nysql backup. You control OSB features such as encryption by defining a
“storage selector” that applies those features to a particular backup, and passing the name of
the storage selector to OSB using the MySQL Enterprise Backup parameter - - sbt - dat abase-
nanme=st or age_sel ect or.

To back up MySQL data to tape:

» Specify the - - backup- i nrage=sbt : nanme parameter of mysql backup to uniquely identify the
backup data. The sbt : prefix sends the backup data to the MMS rather than a local file, and the
remainder of the argument value is used as the unique backup name within the MMS.

» Specify the - - sbt - dat abase- nane parameter of nysql backup to enable the OSB operator
to configure a storage selector for backups from this MySQL source. (This parameter refers to a
“storage selector” defined by the OSB operator, not to any MySQL database name.) By default,
nysql backup supplies a value of My SQL for this MMS parameter. The argument to this option is
limited to 8 bytes.

« If you have multiple media management programs installed, to select the specific SBT library to
use, specify the - - sbt - | i b- pat h parameter of the nysql backup command. If you do not specify
the - - sbt - | i b- pat h parameter, mysql backup uses the normal operating system paths and
environment variables to locate the SBT library, which is named | i bobk. so on Linux and Unix
systems and ORASBT. DLL on Windows systems. When you specify - - sbt - | i b- pat h, you can use
a different filename for the library in addition to specifying the path.

» Specify any other product-specific settings that are normally controlled by environment variables
using the - - sbt - envi r onment option.

A backup to tape always uses one write thread.

To restore MySQL data from tape:

81

Backing Up to Tape with Oracle Secure Backup

» Specify the - - backup- i nage=sbt : nane parameter of mysql backup as part of the restore
operation. Use the same nane value as during the original backup. This single parameter retrieves
the appropriate data from the appropriate tape device.

» Optionally use the - - sbt - | i b- pat h option, using the same values as for the backup operation.

» Specify any other product-specific settings that are normally controlled by environment variables
using the - - sbt - envi r onnment option.

For product-specific information about Oracle Secure Backup, see the Oracle Secure Backup
documentation.

Example 9.1 Sample nysql backup Commands Using MySQL Enterprise Backup with Oracle
Secure Backup

Uses |ibobk.so or ORASBT.DLL in standard pl aces)

nysql backup --port=3306 --protocol =tcp --user=root --password \
- - backup- i mage=sbt : backup- shoepr od- 2011- 05- 30 \
- - backup- di r =/ backup backup-to-i mage

Associates this backup with storage sel ector 'shoeprod'

nysql backup --port=3306 --protocol =tcp --user=root --password \
- - backup- i mage=sbt : backup- shoepr od- 2011- 05- 30 \
- - sbt - dat abase- nane=shoepr od \
- - backup- di r =/ backup backup-to-i mage

Uses an alternative SBT library, /opt/Q her-MVS. so

nysql backup --port=3306 --protocol =tcp --user=root --password \
- - backup- i mage=sbt : backup- shoepr od- 2011- 05- 30 \
--sbt-1ib-path=/opt/CQ her- M. so \
- - backup- di r =/ backup backup-to-i mage

82

http://www.oracle.com/technetwork/database/database-technologies/secure-backup/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/secure-backup/documentation/index.html

Chapter 10 Monitoring Backups with MySQL Enterprise
Monitor

The MySQL Enterprise Monitor is a companion product to the MySQL Server that enables monitoring
of MySQL instances and their hosts, notification of potential issues and problems, and advice on how
to correct issues. Among its other functions, it can be used to monitor the progress and history of
backup jobs. Check the MySQL Enterprise Monitor User's Guide for detail.

83

http://dev.mysql.com/doc/mysql-monitor/en/

84

Chapter 11 Troubleshooting for MySQL Enterprise Backup

Table of Contents

11.1 Error codes of MySQL ENterpris@ BACKUPciuuuiiiuiiiiiieiee e 85
11.2 Working Around Corruption Problems 85
11.3 Using the MySQL EnterprisSe BacCKUP LOGScuuiiuuiiiiiaiiiieeei et e et e e eees 86
11.4 Using the MySQL Enterprise Backup Manifestc..oiiiiiiiiiiiiii e 88

To troubleshoot issues regarding backup and restore with the MySQL Enterprise Backup product,
consider the following aspects:

» Before troubleshooting any problem, familiarize yourself with the known limits and restrictions on the
product, in Appendix B, Limitations of MySQL Enterprise Backup.

» If mysql backup encounters problems during operating system calls, it returns the corresponding OS
error codes. You might need to consult your operating system documentation for the meaning and
solution of these error codes.

e The output from nysql backup is sent to st der r rather than st dout . By default, the same
output is also saved to a log file in the backup_di r for use in error diagnosis. See Section 14.11,
“Message Logging Options” for details on how to configure this logging feature.

» Incremental backups require care to specify a sequence of time periods You must record the final
LSN value at the end of each backup, and specify that value in the next incremental backup. You
must also make sure that the full backup you restore is prepared correctly first, so that it contains all
the changes from the sequence of incremental backups.

» As mysql backup proceeds, it writes progress information into the nysql . backup_pr ogr ess
table. When the command finishes the backup operation, it records status information in the
nysql . backup_hi st ory table. You can query those tables to monitor ongoing backup jobs, see
how much time has been used for various stages, and check if any errors have occurred.

11.1 Error codes of MySQL Enterprise Backup

The return code of the MySQL Enterprise Backup (nysql backup) process is 0 if the backup or restore
run succeeds. If the run fails for any reason, the return code is 1.

11.2 Working Around Corruption Problems

Sometimes the operating system or the hardware can corrupt a data file page, in a location that does
not cause a database error but prevents nysql backup from completing:

nmysql backup: Re-readi ng page at offset 0 3185082368 in /sql data/nts/ibdatal5
nmysql backup: Re-readi ng page at offset 0 3185082368 in /sql data/nts/ibdatal5
mysql backup: Error: page at offset 0O 3185082368 in /sql data/nts/ibdatal5 seens corrupt!

A corruption problem can have different causes. Here are some suggestions for dealing with it:

* The problem can occur if the MySQL server is too busy. Before trying other solutions, you might
want to perform the backup again using some non-default settings for the following nysql backup
options:

e --page-reread-tinme=NMs. Try set the value to, for example, “0.05", for faster rereads during
checksum failures.

e --page-reread-count=retry |imt.Try setthe value to, for example, “1000", to allow more
rereads during checksum failures before MySQL Enterprise Backup gives up and throws an error.

85

Using the MySQL Enterprise Backup Logs

e Scrambled data in memory can cause the problem even though the data on disk is actually
uncorrupted. Reboot the database server and the storage device to see if the problem persists.

« If the problem persists after the database server and the storage device have been restarted, you
might really have a corruption on your disk. You might consider restoring data from an earlier backup
and "roll forward" the recent changes to bring the database back to its current state.

* If you want to make MySQL Enterprise Backup finish a backup anyway before you go and
investigate the root cause of the issue, you can rewrite the checksum values on the disk by running
the innochecksum utility on the server:

i nnochecksum - - no- checksum --write=crc32

The option - - no- checksumdisable the verification function of the tool, and the option - -
wr i t e=cr c32 makes innochecksum rewrite the checksum values on the disk.

IMPORTANT: Do not treat corruption problems as a minor annoyance. Find out what is wrong with the
system that causes the corruption—however, such troubleshooting is beyond the scope of this manual.

11.3 Using the MySQL Enterprise Backup Logs

Besides the message output of MySQL Enterprise Backup to the st der r stream and the log file,
progress and history of each backup are also logged into the nysql . backup_pr ogress and
nmysql . backup_hi st ory tables on the backed-up servers (to skip updating the two tables, use the
--no- hi story-1 oggi ng option with the backup command).

backup_ progress Table

Each row in the backup_pr ogr ess table records a state change or message from a running backup
job. The backup_pr ogr ess table has the following columns:

nmysql > DESCRI BE nysql . backup_pr ogr ess;
+

e S S oioioio- +ooioio- S S e _ ...
| Field | Type | Null | Key | Default | Extra

S S S oioioio- +ooioio- S S e _ ...
| backup_id | bigint(20) | NO | | NuULL |

| tool _nane | varchar (4096) | NO | | NULL |

| error_code | int(11) | NO | | NULL |

| error_message | varchar(4096) | NO | | NULL |

| current_tinme | tinestanp | NO | | CURRENT_TI MESTAMP | DEFAULT_CGENERATED on updat e CURRENT_TI M
| current_state | varchar(200) | NO | | NULL |

S S S oioioio- +ooioio- S S e _ ...

6 rows in set (0.00 sec)

The backup_progr ess table is in CSV format. You can query the table with the mysql client, or
parse the corresponding . CSV file with an application or script.

Here are some ways to make use of the information in the backup_pr ogr ess table:

» Use the backup_i d value to query all the information for different stages of a single backup
operation, and to find the corresponding row in the backup_hi st ory table for the same backup
(the row is written to the backup_hi st or y table only after the backup is finished).

» Usetheerror code anderror_nessage values to track any errors that have occurred, and to
see if the backup operation should be terminated because of any serious errors.

* Usethecurrent tinmeandcurrent state values to track the progress of the operation. They
also allow you to measure how long each stage of the backup takes, which helps you plan for your
future backups.

backup hi story Table

Each row in the backup_hi st ory table records the details of one completed backup produced by a
nysgl backup command. The backup_hi st ory table has the following columns:

86

https://dev.mysql.com/doc/refman/5.6/en/innochecksum.html
https://dev.mysql.com/doc/refman/5.6/en/innochecksum.html

backup_hi st ory Table

nmysql > DESCRI BE nmysql

. backup_hi story;

fooccooccccocoocococooooocoooao ooccoocccooccooan foooocoo +
| Field | Type | Null |
fooccooccccocoocococooooocoooao ooccoocccooccooan foooocoo +
backup_id	bigint(20)	NO	
tool _nane	varchar (4096)	NO	
start_tinme	timestanp	NO	
end_tine	timestanp	NO	
binlog_pos	bigint(20)	NO	
binlog file	varchar(255)	NO	
conpression_	evel	int(11)	NO
engines	varchar(100)	NO	
innodb_data_file_path	varchar(2048)	NO	
innodb_file_format	varchar(100)	NO	
start_Isn	bigint(20)	NO	
end_Ilsn	bigint(20)	NO	
increnental base_I sn	bigint(20)	NO	
backup_type	varchar (50)	NO	
backup_f or mat	varchar (50)	NO	
mysql _data_dir	varchar(2048)	NO	
innodb_data_hone_dir	varchar(2048)	NO	
innodb_l og_group_home_dir	varchar(2048)	NO	
innodb_log_files_in_group	varchar(100)	NO	
innodb_log_file_size	varchar(100)	NO	
backup_destination	varchar (4096)	NO	
lock_tinme	doubl e(7,3)	NO	
exit_state	varchar (10)	NO	
last_error	varchar (4096)	NO	
last_error_code	int(11)	NO	
start_time_utc	bigint(20)	NO	
end_tinme_utc	bigint(20)	NO	
consistency_time_utc	bigint(20)	NO	
meb_version	varchar (20)	NO	
fooccooccccocoocococooooocoooao ooccoocccooccooan foooocoo ooooo

29 rows in set (0.00 sec)

° |

Warning

NULL
0000- 00- 00 00: 00: 00
0000- 00- 00 00: 00: 00
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
0.0.0

Because a successful backup is always recorded as such in the
backup_hi st ory table, a failure in the appl y- | og phase of a backup- and-
appl y-1 og command is not reflected in the backup_hi st ory table. Itis

always important to check the output of mysql backup to see if an operation is
completed fully without an error.

Here is information on some columns of the backup_hi st ory table, and some ways to make use of
the information:

The t ool _nane column records the full mysgl backup command that triggers the backup, including

all the options used.

You can use the end_| sn value of your latest backup as the starting LSN value for you next

incremental backup by specifying it with the - - st art - | sn option. (An alternative to specifying the
start LSN value for an incremental backup is to use the - - i ncr enent al - base option).

The bi nl og_pos column gives the position of the binary log up to where log events have been
covered by the backup. Because the backup_hi st ory table used to be in the CSV format, which

cannot register NULL values directly, if binary logging is not enabled, a value of - 1 is entered into the
column; the same applies to other columns for the logging of NULL values.

The value for backup_t ype is one of FULL, PARTI AL, | NCREMENTAL, or TTS.

The value for backup_f or mat is one of | MAGE (for single-file backups) or DI RECTORY (for directory

backups).

Use the values that show the backup's settings such as nysql data_ dir,

i nnodb_dat a_hone_di r, and backup_dest i nati on to confirm that the backups are using the

right source and destination directories.

87

Using the MySQL Enterprise Backup Manifest

e The value for exi t _st at e is either SUCCESS or FAI LURE. If the exi t _st at e is SUCCESS and
l ast _error is' NO ERROR , the backup operation has been successful; when it is not the case,
seel ast _error and| ast_error_code for the latest error of the operation. To retrieve the full list
of errors for that backup operation, go to the backup_pr ogr ess table.

11.4 Using the MySQL Enterprise Backup Manifest

Each backup directory includes some files in the net a subdirectory that detail how the backup was
produced, and what files it contains. The files containing this information are known collectively as the
manifest.

nysql backup produces these files for use by database management tools; it does not consult or
modify the manifest files after creating them. Management tools can use the manifest during diagnosis
and troubleshooting procedures, for example where the original MySQL instance has been lost entirely
and the recovery process is more involved than copying files back to a working MySQL server.

The files in the manifest include:
* backup_creat e. xn : information about the backup operation.

e backup_content. xnl : information about the files in the backup. This information is only
complete and consistent when the backup operation succeeds. A management tool might use this
information to confirm which tables are part of a full backup, or a partial backup performed with the
- - dat abases option (the information is not present for partial backups taken with the - - i ncl ude,
--increnental ,--increnental -wi th-redo-1o0g-only,--only-innodb,or--only-

i nnodb-wi t h- f r moptions). A management tool might compare the checksum recorded in the
manifest for a single-file backup against the checksum for the file after the single-file backup is
unpacked. The file also contains details of all the plugins defined on the backed-up server, by which
users should make sure the same plugins are defined in the same manner on the target server for
restoration.

« image_fil es. xnl :information about the files in a single-file backup. (Only produced for backups
taken with the backup-t o- i mage and backup- di r -t o- i mage commands.) A management tool
might use the paths recorded in this file to plan or automate the unpacking of a single-file backup
using the i mage- t o- backup-di r or extract commands, or to remap the paths of extracted files
withthe - - src-entry and - - dst - ent ry options.

88

Part Ill nysql backup Command Reference

Table of Contents

12 MY SOl DACKUPD e e et e e e et et e e e eeas 93
13 My sl DaCKUP COMMEANTSuuiiiiiiiei ittt ettt e e et et e e e e et eeeeae e eeees 95
13.1 BACKUP OPEIALIONS ...cevtueeiiiti i eeeiit ettt e ettt e e et e e ettt e et et e e ettt r e e e eebreeeesbaeeeennnaeeees 95
13.2 APPIY-LOG OPEIALIONSevuiieiii ettt ettt e et e et e et e e e s 96
13.3 RESIOIE OPEIALIONS .. .ciiitieieiii ettt ettt ettt ettt et e e e e e e e e ne s 97
13.4 Validation OPEIAtiONSoieuiiiiii et et e e et e et e et e e et e e et e e e tn e aenaeeans 99
13.5 Single-File Backup OPEratiONSoiciiiiiiiiiiiiiieeei e e 100
14 nysql backup Command-Line OPLIONSuuiiiiiiiieeiiii ettt eeera e 105
14.1 Standard OPLIONScceeiiiieiiiii et ettt 112
14.2 CONNECHION OPLIONSeeitiieeiii ettt ettt et e e e e et et et e e e b e e eeaanns 114
14.3 Server RepOSILOrY OPLIONSiiieiieieiii ettt ettt e e e e 115
14.4 Backup RepPOSILOrY OPLIONSueiiiiieiiiiiie ettt ettt e et e e e 117
14.5 Metadata OPLiONScouuieiiiii ettt ettt et 121
14.6 COMPIreSSION OPLIONSuiiiiii ittt et et et e e e e e e e e 122
14.7 Incremental BACKUP OPLIONScoouuiiiiiiiiieeiii et 123
14.8 Partial Backup and ReStore OPLIONSoviieuiiieiiiiie ettt 125
14.9 Single-File Backup OPLIONSc.uuuiiiiiiiiee et 131
14.10 Performance / Scalability / Capacity OPLONScceeutniiiiiiiieeeiii e 133
14.11 Message Logging OPLONScc.uuiiiiiiiiieeiii ettt e e e 140
14.12 Progress RePOIT OPLIONScciiiiiieiiitie ettt ettt e s 142
14.13 ENCrYPioN OPLIONS «.o.vuuiiiiiiieteii ettt ettt ettt e et e e et eeeeba s 145
14.14 CloUd STOrage OPLIONSiiiiiiieeiiiii ettt e ettt e e et e e et e et e e e et e e e eab e eeentnaaeeen 145
14.15 Options for Special BaCKUP TYPES ...couuuiiiiiiieieiei et 147
15 Configuration Files and Parameterscoouiiiiiiiii e 151

91

92

Chapter 12 nysqgl backup

The nysql backup client is an easy-to-use tool for all backup and restore operations. During backup
operations, nysql backup backs up:

» All InnoDB tables and indexes, including:
» The InnoDB system tablespace, which, by default contains all the InnoDB tables.

* Any separate data files produced with the InnoDB file-per-table setting. Each one contains one
table and its associated indexes. Each data file can use either the original Antelope or the new
Barracuda file format.

* All MyISAM tables and indexes.
» Tables managed by other storage engines.

 Other files underneath the MySQL data directory, such as the . f r mfiles that record the structure of
each table.

» Any other files in the database subdirectories under the server's data directory.

In addition to creating backups, nysql backup can pack and unpack backup data, apply to the backup
data any changes to InnoDB tables that occurred during the backup operation, and restore data, index,
and log files back to their original locations, or to other places.

Here are some sample commands to start a backup operation with mysql backup are:

Informati on about data files can be retrieved through the database connection
Specify connection options on the command |ine
nysql backup --user=dba --password --port=3306 \

--with-tinestanp --backup-dir=/export/backups \

backup

O we can include the above options in the configuration file

under the [nysql backup] section, and just specify the configuration file
and the 'backup' operation

nmysql backup --defaul ts-file=/usr/local/mysql/my.cnf backup

Or we can specify the configuration file as above, but

override sone of those options on the command |ine

nmysql backup --defaul ts-file=/usr/local/nmysql/my.cnf \
--conpress --user=backupadm n --password --port=18080 \
backup

The - - user and the - - passwor d you specify are used to connect to the MySQL server. This MySQL
user must have certain privileges in the MySQL server, as described in Section 4.1.2, “Grant MySQL
Privileges to Backup Administrator”.

The - -wi t h-ti mest anp option places the backup in a subdirectory created under the directory you
specified above. The name of the backup subdirectory is formed from the date and the clock time of the
backup run.

For the meanings of other command-line options, see Chapter 14, nysql backup Command-Line
Options. For information about configuration files, see Chapter 15, Configuration Files and Parameters.

Make sure that the user or the cron job running nmysql backup has the rights to copy files from the
MySQL database directories to the backup directory.

Make sure that your connection timeouts are long enough so that the nysql backup command can
keep the connection to the server open for the duration of the backup run. mysql backup pings the
server after copying each database to keep the connection alive.

93

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_file_per_table

A

Important

e Although nysql backup backs up InnoDB tables without interrupting

database use, the final stage that copies non-InnoDB files (such as MyISAM
tables and . f r mfiles) temporarily puts the database into a read-only state,
using the statement FLUSH TABLES W TH READ LOCK. For best backup
performance and minimal impact on database processing:

1. Do not run long SELECT queries or other SQL statements at the time of
the backup run.

2. Keep your MyISAM tables relatively small and primarily for read-only or
read-mostly work.

Then the locked phase at the end of a mysql backup run is short (maybe a

few seconds), and does not disturb the normal processing of nysql d much.
If the preceding conditions are not met in your database application, use the
--onl y-i nnodb option to back up only InnoDB tables, or use the - - no-

| ocki ng option to back up non-InnoDB files. Note that MyISAM, . f r m} and
other files copied under the - - no- | ocki ng setting cannot be guaranteed to
be consistent, if they are updated during this final phase of the backup.

For a large database, a backup run might take a long time. Always check
that the mysqgl backup command has been completed successfully by
verifying that nysql backup has returned the exit code 0, or by observing
that mysql backup has printed the text “mysqlbackup completed OK!".

mysql backup is not the same as the former “MySQL Backup” open source
project from the MySQL 6.0 source tree. The MySQL Enterprise Backup
product supersedes the MySQL Backup initiative.

Schedule backups during periods when no DDL operations involving tables
are running. See Appendix B, Limitations of MySQL Enterprise Backup for
restrictions on creating backups in parallel with the DDL operations.

94

Chapter 13 nysqgl backup commands

Table of Contents

13.1 BACKUP OPEIALIONS ...cevtueiiitiieeeiit e ettt e ettt e ettt e ettt e e et ettt e et ett e e e e e bt e e e eetb e e e eeneaeeeeneaeaees 95
13.2 APPIY-LOG OPEIALIONSvuneieieiieteeti ettt ettt ettt et e et e e et e et et e e e et e e e eba s 96
13.3 RESIOIE OPEIALIONSeeitiieiiiti ettt ettt ettt ettt e et e et et e et et r e e e et e e e e eba s 97
13.4 Validation OPEIAtIONSuuuiiieitueeeeit ettt ettt e e e e et et et e et e e e e e e e e eaaaeeeaea e e eenan s 99
13.5 Single-File Backup OPEIAtiONSiiiiiiiieiiiiie ettt ettt e e e eeaens 100

These are commands for the major operations for mysql backup. Only one of them can be specified
for each nysql backup invocation, and, unlike the command options, the name of a command is not
preceded by any dashes.

Each of these commands has its own set of required or allowed command options. For example, the
backup command typically requires connection information to the database server. The appl y- 1 og
and other commands that operate on the backup data after it is produced require the options that
specify where the backup data is located.

The major groups of commands are:

» Backup operations: backup, backup- and- appl y- | og, backup-t o-i nage
* Apply-log operations: appl y- | og, appl y-i ncrenent al - backup

* Restore operations: copy- back, copy- back- and- appl y-1 og

» Validation operation: val i dat e

 Single-file backup operations: i mage- t o- backup- di r, backup-dir-to-image,|ist-inmge,
extract

13.1 Backup Operations

The backup operations are the most frequently performed tasks by MySQL Enterprise Backup.
Various kinds of backups can be performed by adding different options, like using - - conpr ess or
--increnental for compressed or incremental backups. Here is the syntax for the mysql backup
commands for performing a backup operation:

nysql backup [STD- OPTI ONS]
[CONNECTI ON- OPTI ONS]
[SERVER- REPCS| TORY- OPTI ONS]
[BACKUP- REPCS| TORY- OPTI ONS]
[METADATA- OPTI ONS]
[COVPRESSI ON- OPTI ONS]
[SPECI AL- BACKUP- TYPES- OPTI ONS]
[I NCREMENTAL- BACKUP- OPTI ONS]
[PARTI AL- BACKUP- RESTORE- OPTI ONS]
[PERFORVANCE- SCALABI LI TY- CAPACI TY- OPTI ONS]
[MESSAGE- LOGG NG OPTI ONS]
[PROGRESS- REPORT- OPTI ONS]
backup | backup-and-appl y-1og

nysql backup [STD- OPTI ONS]
[CONNECTI ON- OPTI ONS]
[SERVER- REPCSI TORY- OPTI ONS]
[BACKUP- REPCSI TORY- OPTI ONS]
[METADATA- OPTI ONS]
[COVPRESSI ON- OPTI ONS]
[SPECI AL- BACKUP- TYPES- OPTI ONS]
[| NCREMVENTAL - BACKUP- OPTI ONS]
[PARTI AL- BACKUP- RESTORE- OPTI ONS]
[SI NGLE- FI LE- BACKUP- OPTI ONS]
[PERFORMANCE- SCALABI LI TY- CAPACI TY- OPTI ONS]

95

Apply-Log Operations

[MESSAGE- LOGG NG- OPTI ONS]
[PROGRESS- REPORT- OPTI ONS]
[ENCRYPTI ON- OPTI ONS]

[CLOUD- STORAGE- OPTI ONS]
backup-t o-i nage

* backup

Backs up data to a directory. In most cases, single-file backups, which are created using the
backup-t o-i nage command, are preferred over directory backups.

The command only performs the initial phase of a complete backup process. The second phase is
performed later by running nmysql backup again with the appl y- | og command, which makes the
backup consistent.

backup- and- appl y-1 og

A combination of backup and appl y- 1 og. It cannot be used for an incremental backup.

Note
@ For the backup- and- appl y- | og command, the compression options are
only supported for MySQL Enterprise Backup 3.12.3 and later.

backup-to-i mage

Produces a single-file backup holding the backup data. In most cases, single-file backups are
preferred over directory backups, which are created using the backup command.

The command requires the - - backup- i mage option to specify the destination file. Can be used

to stream the backup to a storage device or another system without ever storing the data on the
database server. You can specify - - backup- i nage=-, representing standard output, allowing

the output to be piped to another command. To avoid mixing normal informational messages with
backup output, the - - hel p message, errors, alerts, and normal informational messages are always
printed to standard error stream.

The command also requires the use of the - - backup- di r option to supply a temporary folder to
save the backup metadata (including the mysql backup message log, the start and end LSN, and
so on) and some temporary output. Note that, however, except when streaming the backup image
with - - backup- i mage=-, if - - backup- i nage does not give a full path name, nmysql backup
will actually take the value of - - backup- i mage as a path relative to the directory specified by

- - backup- di r, and thus store the single-file backup under - - backup- di r (or, if the - - wi t h-
ti mest anp option is used, under a subdirectory created under - - backup- di r that bears the
timestamp in its name).

13.2 Apply-Log Operations

These operations bring the backup files up-to-date with any changes to InnoDB tables that happened
while the backup was in progress. Although for convenience you can combine this operation with the
initial backup using the backup- and- appl y- | og command, you must run the steps separately when
performing incremental backups.

nmysql backup [STD- OPTI ONS]

[--1imt-menory=MB] [--unconpress] [--backup-dir=PATH]
[MESSAGE- LOGG NG OPTI ONS]

[PROGRESS- REPORT- OPTI ONS]

appl y-1og

nmysql backup [STD- OPTI ONS]

[--incremental - backup-di r=PATH] [--backup-di r=PATH]|
[--1imt-menory=MB] [--unconpress]

[MESSAGE- LOGG NG OPTI ONS]

[PROGRESS- REPORT- OPTI ONS]

appl y-i ncrenent al - backup

96

Restore Operations

« apply-1og

Brings the InnoDB tables in the backup up-to-date, including any changes made to the data while
the backup was running.

e appl y-i ncrenent al - backup
Brings the backup up-to-date using the data from an incremental backup.

Example 13.1 Apply Log to Full Backup

nysql backup --backup-dir=/path/to/ backup apply-I|og

It reads the backup- my. cnf file inside backup- di r to understand the backup. The ny. cnf defaults
files have no effect other than supplying the | i mi t - nenor y=MB value, which limits usage of memory
while doing the appl y- | og operation.

Because the apply-log operation does not apply to incremental backups, no i ncr enent al - backup-
di r is needed for this operation.

You can also perform appl y- | og and copy- back (which restores the prepared backup) together with
a single copy- back- and- appl y- | og command.

13.3 Restore Operations

The restore operations restores the data files from a backup to their original locations on the database
server, or to other desired locations. The MySQL instance must be shut down first before a restore
operation (except for backups created using transportable tablespace (TTS)). The options dat adi r,

i nnodb_| og_files_in_group,andinnodb_| og_fil e_size mustbe specified either in the
target server's configuration file, in the file specified by the - - def aul t s-f i | e option, or as command-
line options. For usage examples, see Chapter 5, Recovering or Restoring a Database.

nysql backup [STD- OPTI ONS]
[SERVER- REPCS| TORY- OPTI ONS]
[- - backup- di r =PATH]
[--unconpress]
[MESSAGE- LOGG NG- OPTI ONS]
[PARTI AL- BACKUP- RESTORE- OPTI ONS]
[PROGRESS- REPORT- OPTI ONS]
[CLOUD- STORAGE- OPTI ONS]
copy- back

nysql backup [STD- OPTI ONS]
[SERVER- REPCS| TORY- OPTI ONS]
[- - backup- i mage=I MAGE]
[- - backup- di r =PATH]
[--unconpress]
[MESSAGE- LOGG NG- OPTI ONS]
[PARTI AL- BACKUP- RESTORE- OPTI ONS]
[PROGRESS- REPORT- OPTI ONS]
[ENCRYPTI ON- OPTI ONS]
[CLOUD- STORAGE- OPTI ONS]
copy- back- and- appl y-1 og

e copy- back
Restores files from a directory backup to their original locations within the MySQL server.

Before restoring a hot backup using the copy- back command, the backup has to be prepared and
made consistent using the appl y- | og command. See Section 5.1, “Preparing the Backup to be
Restored” for details. You can also perform appl y- | og and copy- back together with a single
copy- back- and- appl y- | og command.

Some clean-up efforts on the target directory for restoration might be needed before performing a
full restore (for example, when the backup data is used to set up a new MySQL server or to replace

97

https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file

Restore Operations

all data of an existing MySQL server). See Section 5.2, “Performing a Restore Operation” [59] for
details.

There are some special requirements when restoring backups created with the - - use-t t s option;
see Section 5.2.4, “Restoring Backups Created with the - - use-t t s Option” for details.

copy- back- and- appl y- | og

In a single step, restores a single-file backup specified by the - - backup- i mage option or a backup
from the directory specified by the - - backup- di r option to a server's data directory and performs
an appl y- | og operation to the restored data to bring them up-to-date. Comparing with a multi-step
approach for restoring a single-file backup (which typically consists of performing the successive
steps of extract, uncompress,apply-log, and copy-back for restoring compressed image, or extract
,apply-log, and copy-back for uncompressed image), the command makes the restoration process
simpler and faster, and also saves the disk space required.

The following are some special requirements for different kinds of backup restoration using copy-
back- and- appl y- | og:

* To restore a compressed directory or image, include the - - unconpr ess option in the command
line.

« To restore a single-file backup, besides specifying the location of the backup image with the - -
backup-i mage option, also supply with the - - backup- di r option the location of a folder that will
be used for storing temporary files produced during the restoration process.

< To restore an incremental backup directory, assuming the full backup (on which the incremental
backup was based) has already been restored:

 Include the - - i ncr enent al option in the command line.

» Use either the - - backup-di r or--increnent al - backup- di r option to specify the
incremental backup directory.

< To restore a single-file incremental backup, besides specifying the location of the incremental
backup image with the - - backup- i nage option, also supply with the - - backup- di r option
the location of a folder that will be used for storing temporary files produced during the restoration
process.

« To restore a backup created with the - - use-tts option:

» See the general requirements described in Section 5.2.4, “Restoring Backups Created with the
--use-tts Option”.

« When restoring a single-file backup created with the option setting use-tt s=wi t h- m ni num
I ocki ng, the folder specified with - - backup- di r is also used for extracting temporarily all the
tables in the backup and for performing an appl y- | og operation to make the data up-to-date
before restoring them to the server's data directory.

* When restoring a backup directory created with the option - - use-tt s=wi t h- m ni num
| ocki ng, an appl y- | og operation will be performed on the backup directory. That means the
backup taken will be altered during the process, and users might want to make an extra copy
of the backup directory before proceeding with the restoration, in order to prevent the loss of
backup data in case something goes wrong.

Also note that:

« Backups created with the - - ski p- unused- pages option cannot be restored using copy- back-
and- appl y-1 og.

Validation Operations

« For image backups taken with MySQL Enterprise Backup 3.8.2 or earlier, per-table . i bd files
pointed to by . i s| files in a backup are restored by copy- back- and- appl y- | og to the server's
data directory rather than the locations pointed to by the .isl files.

< Due to a known issue, when restoring a compressed backup created with MySQL Enterprise
Backup 3.9 or earlier and containing any InnoDB tables that were created on the server as
compressed tables (by using the ROV FORVMAT=COVPRESSED option, the KEY BLOCK_ S| ZE=
option, or both), do not use copy- back- and- appl y- 1 og; instead, perform an appl y- 1 og first,
and then a copy- back. See entry for Bug# 17992297 in the MySQL Enterprise Backup 3.10.0
changelog for details.

At the end of the copy- back- and- appl y- | og operation, the file backup _vari abl es. t xt

is being created or updated in the data directory. This file contains metadata about the restored
contents and is being used by successive single-step restores of incremental backups; it should not
be deleted or modified by users.

For some sample commands for restoring different kinds of backups with the copy- back- and-
appl y-1 og command, see Section 5.2, “Performing a Restore Operation”.

Warning
O When restoring a server for replication purpose, if the backed-up server has
used the i nnodb_undo_di r ect ory option to put the undo logs outside
of the data directory, when using the file ser ver - ny. cnf or server -
al | . cnf forthe - - def aul t s-fi | e option with copy- back or copy-
back- and- appl y- | og, care should be taken to configure correctly the
i nnodb_undo_di r ect ory option in the file. Otherwise, the data or log files on
the original server might be overwritten by accident.

13.4 Validation Operations

To ensure the integrity of the backup data, MySQL Enterprise Backup provides a val i dat e command
for validating a backup by the checksum values of its data pages after the backup is created or
transferred to another system.

nysql backup [STD- OPTI ONS]
[--backup-di r=PATH] [- - backup- i mage=l MAGE]
[MESSAGE- LOGG NG OPTI ONS]
[PROGRESS- REPORT- OPTI ONS]
[CLOUD- STORAGE- OPTI ONS]
val i dat e

e validate

Verifies that a backup is not corrupted, truncated, or damaged. This operation validates the
checksum value for each data page in a backup.

To avoid spending excessive time and resources on files that are too heavily corrupted,

nysql backup stops validating a .ibd file after more than twenty corrupted pages are found in it, and
proceeds to the next file instead. In that case, the operation's summary will not give a full count of
corrupted pages, but only says “at least 20 pages are corrupted.”

The operation also has the following limitations:

« For any backup directory, the operation can only validate the InnoDB data files (i bdat a* and
* 1 bd files) in it. Problems with other file types within a backup directory (for example, . f r mfile
corruptions) are not detected.

99

https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/3.10/en/news-3-10-0.html
https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/3.10/en/news-3-10-0.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file

Single-File Backup Operations

e Ifany . i bd or. f r mfiles are missing from a backup directory during a backup or have been
deleted from a backup directory after the backup was made, the val i dat e operation will not be
able to detect the problem.

« If a backup directory has been corrupted by removing or truncating pages from any of the .ibd files
inside , the val i dat e operation will not be able to detect the problem.

Here is a sample command for validating a backup directory:

nmysql backup -uroot --backup-dir=/1ogs/backupext validate

Here is a sample command for validating a backup image:

nmysql backup -uroot --backup-image=/1ogs/fullinage.m validate

The following is a sample command for validating an encrypted backup image and the output for the
successful validation:

$ nysql backup —backup-i mage=/ neb/ backups/ i mage. nbi --decrypt --key-file=/neb/enckeyfile validate

140219 11:22: 44 nysql backup: INFG Validating image ... /logs/ing. bi

140219 11: 22: 44 nysql backup: |INFG Validate: [Dir]: meta

140219 11: 22: 45 nysql backup: INFG Total files as specified in i mage: 44
nmysql backup: | NFO datadir/tpch/tabnornv.ibd Validated...

nmysql backup: | NFO datadir/tpch/tabnornB.ibd Validated...

nmysql backup: | NFO datadir/tpch/tabnornd.ibd Validated...

140219 11:22: 45 nysqgl backup: |INFG Validate operation conpleted successfully.
140219 11: 22: 45 nysql backup: | NFG Backup | mage validation successful.

nmysql backup: I NFO Source |Image Path = /1 ogs/i mg. bi

nmysql backup conpl eted OK!

This is a sample output for a checksum mismatch in the header:

nmysql backup: ERROR: Checksum m snat ch.

Conmput ed checksum ### Checksum in image: ### nysqgl backup: ERROR: Probl em verifyi ng checksum
| mage Path = /neb/ backups/i nage. nbi

nmysql backup: ERROR: Backup i nmage validation failed.

This is a sample output for an image containing corrupted . i bd files:

nmysql backup: ERROR: dat adi r/ db2/ bi gt abl.i bd has corrupt page nunber : 64 page nunber from page header
nmysql backup: ERROR: dat adir/db2/bigtabl.ibd is corrupt and has : 10 corrupt pages

nmysql backup: ERROR: datadir/db2/t1.ibd has corrupt page nunber : 4 page nunber from page header : (
nmysql backup: ERROR: datadir/db2/tl.ibd is corrupt and has : 5 corrupt pages

nmysql backup: ERROR: datadir/ibdatal has corrupt page number : 63 page nunmber from page header : 63
nmysql backup: ERROR: datadir/ibdatal has corrupt page nunber : 7 page nunber from page header : 7

nmysql backup: ERROR: datadir/ibdatal is corrupt and has : 10 corrupt pages

nmysql backup failed with errors!

This is a sample output for a successful validation for a compressed backup directory

nmysql backup: | NFO [/ backups/ backup-dir/datadir/tpch/tabnornb.ibz Validated...

nmysql backup: | NFO /backups/ backup-dir/datadir/tpch/tabnorn6.ibz Validated...

nmysql backup: | NFO [/ backups/ backup-dir/datadir/tpch/tabnornv.ibz Validated...

nmysql backup: | NFO /backups/ backup-dir/datadir/tpch/tabnornB.ibz Validated...

nmysql backup: | NFO /backups/ backup-dir/datadir/tpch/tabnornd.ibz Validated...

nmysql backup: | NFO [/ backups/ backup-dir/datadir/tpch/tabrowformat.ibz Validated...

140219 11:22: 45 nysql backup: |INFG Validate backup directory operation conpl eted successfully.

13.5 Single-File Backup Operations

To simplify transfer and management of backup data, you can keep each backup in a single file (the
backup image). The backup-t o- i nage command performs a backup directly to a single file, and
there are the commands for packing an existing backup into a single file or unpacking a single-file

100

Single-File Backup Operations

backup to a full backup directory structure. These and other commands for working with single-file

backups are explained below. For usage examples, see Section 4.3.5, “Making a Single-File Backup”.

nmysql backup

nmysql backup

nmysql backup

nmysql backup

nmysql backup

nmysql backup

[STD- OPTI ONS]

[CONNECTI ON- OPTI ONS]

[SERVER- REPCS| TORY- OPTI ONS]

[BACKUP- REPCS| TORY- OPTI ONS]

[METADATA- OPTI ONS]

[COVPRESSI ON- OPTI ONS]

[SPECI AL- BACKUP- TYPES- OPTI ONS]

[I NCREMENTAL - BACKUP- OPTIl ONS]

[PARTI AL- BACKUP- RESTORE- OPT| ONS]
[SI NGLE- FI LE- BACKUP- OPTIl ONS]

[PERFORMANCE- SCALABI LI TY- CAPACI TY- OPTI ONS]
[MESSAGE- LOGG NG- OPTI ONS]

[PROGRESS- REPORT- OPT| ONS]

[ENCRYPTI ON- OPTI ONS]

[CLOUD- STORAGE- OPTI ONS]
backup-to-i nage

[STD- OPTI ONS]

[- - backup-i nage=I MAGE] [--backup-di r=PATH]
[MESSAGE- LOGG NG- OPTI ONS]

[PROGRESS- REPORT- OPTl ONS]

[ENCRYPTI ON- OPTI ONS]

[CLOUD- STORAGE- OPTI ONS]

i mage-t o- backup-dir

[STD- OPTI ONS]

[- - backup-di r=PATH] [--backup-i nage=I MAGE]
[MESSAGE- LOGG NG- OPTI ONS]

[PROGRESS- REPORT- OPT| ONS]

[ENCRYPTI ON- OPTI ONS]

[CLOUD- STORAGE- OPTI ONS]
backup-dir-to-inmge

[STD- OPTI ONS]

[- - backup- i nage=I MAGE]

[MESSAGE- LOGG NG- OPTI ONS]
[ENCRYPTI ON- OPTI ONS]

[CLOUD- STORAGE- OPTI ONS]
list-inage

[STD- OPTI ONS]

[- - backup- i nage=I MAGE]

[- - backup- di r =PATH]

[--src-entry=PATH] [--dst-entry=PATH]|
[MESSAGE- LOGG NG- OPTI ONS]

[PROGRESS- REPORT- OPT| ONS]

[ENCRYPTI ON- OPTI ONS]

[CLOUD- STORAGE- OPTI ONS]

extract

[STD- OPTI ONS]

[SERVER- REPCS| TORY- OPTI ONS]

[- - backup- i mage=I MAGE]

[- - backup- di r =PATH]

[MESSAGE- LOGG NG- OPTI ONS]

[PARTI AL- BACKUP- RESTORE- OPT| ONS]
[PROGRESS- REPORT- OPTl ONS]

[ENCRYPTI ON- OPTI ONS]

[CLOUD- STORAGE- OPTI ONS]

copy- back- and- appl y-1 og

e i mage-to- backup-dir

Unpacks a single-file backup to a full backup directory structure. You specify the paths to both the
image file and the destination directory for the unpacking. For usage examples, see Section 4.3.5,
“Making a Single-File Backup”.

101

Single-File Backup Operations

Note

@ i mage-t o- backup-di r only creates a raw backup directory, which is NOT
ready to be restored by the copy- back command. To become a prepared
backup, the backup directory has to go through an apply-log operation,
executed either by a stand-alone appl y- | og command or as a part of a
copy- back-and- appl y-|1 og command.

» backup-dir-to-inage

Packs an existing backup directory into a single file. The value for the - - backup- i mage parameter
should either be “- "(stands for standard output) or an absolute path outside of the backup- di r
directory. Specify a - - backup- i nage value of - (standard output) to stream an existing backup
directory structure to a tape device or a command that transfers the backup to another server. For
usage examples, see Section 4.3.5, “Making a Single-File Backup”.

[ist-inmage

Display the contents of a single-file backup. Lists all files and directories in the image. For usage
examples, see Section 4.3.5, “Making a Single-File Backup”.

Note
@ The | i st -i nage operation can be performed on a cloud backup only if the
cloud proxy supports HTTP range headers.

extract

Unpacks individual files or directories from a single-file backup. It is useful for troubleshooting, or for
restorations that do not require the full set of backup data. The resulting file or directory goes into the
current directory, or into the backup directory, if specified with - - backup- di r ; in either case, the
destination directory must be empty. For usage examples, see Section 4.3.5, “Making a Single-File
Backup”.

The - - src-entry=stri ng option can be used for selective extraction of files or directories whose
path names in the image contain the st r i ng specified with the option.

--src-entry for details.

Notes
@ « Some items are always extracted from the backup; see the descriptions of
» The option is currently not supported for the extraction of cloud backups,
which can only be extracted in full.
The - - dst - ent r y=pat h option, along with - - sr c- ent r y=pat h option, can be used to extract
files or directories into user-specified locations; see the description for the option for details.

The default destination for the extract is the current working directory. All the files with relative
pathnames in the image are extracted to pathnames relative to the destination directory. If the image
contains some entries with absolute pathnames, those entries are extracted to the same absolute
pathnames on the local system even if the - - backup- di r option is specified. The - - dst-entry
option must be used to relocate an absolute pathname; see Example 4.14, “Dealing with Absolute
Path Names”.

Important

raw backup directory, which is NOT ready to be restored by the copy- back

A Even with all files extracted from the backup image, ext r act only creates a
command. To become a prepared backup, the backup directory has to go

102

Single-File Backup Operations

through an apply-log operation, executed either by a stand-alone appl y- | og
command or as a part of a copy- back-and- appl y-1 og command.

» copy- back-and- appl y-1 og

See description for copy- back- and- appl y- 1 og in Section 13.3, “Restore Operations”.

103

104

Chapter 14 nysqgl backup Command-Line Options

Table of Contents

14.1 StANAArd OPLIONScieiiiieieii ettt ettt e s 112
14.2 CONNECHION OPLIONS ...eeitiieieiii ettt ettt ettt et e et et e et et e e e et e e e et s 114
14.3 Server REPOSILOrY OPLIONSoiieieieieeiii ettt ettt ettt et e e e e e e ra s 115
14.4 Backup RePOSItOrY OPLIONSciiieii ittt ettt ettt e e e e e e e s 117
14.5 Metadata OPLIONScouueiiiiii ettt ettt e e e e e 121
14.6 COMPIreSSION OPLIONSiiiitiieeiii ettt et e et e et e et e e et e e e e et aeeeena s 122
14.7 Incremental BACKUP OPLIONS .. .c.uuuiiiiiiieiiii ettt e e e e e e 123
14.8 Partial Backup and ReStOre OPLIONSiciieriieiiiiii ettt ettt e e 125
14.9 Single-File BACKUP OPLIONScouuiiiiiitiei ittt ettt e e et e e e et e eeenaaeeees 131
14.10 Performance / Scalability / Capacity OPLIONScc.uuiiiiiiiieieiiie et 133
14.11 Message LOggiNg OPLIONSc.uuuiiiiiiiieeiiti ettt et e et e et e et e e e e e e e eeta e eeees 140
14.12 Progress RePOIT OPLIONScciuuiiiiiiiiee ittt ettt e et e e et e e e eet e e e eabaaeeees 142
14.13 ENCIYPLION OPLIONS ..oeviiiiiiiieeeeiie ettt ettt e e et e et et e e et b e e e e et e e e e raa s 145
14.14 CloUd STOrage OPLIONSciiiiiieeiii ettt e e et ettt e et e e e et e eeee e e e eete e e e enba e eeenes 145
14.15 Options for Special BaCKUP TYPES ...covuiiiiiiiiieieii ettt 147

The following sections describe the command-line options for the different modes of operation of
nysql backup.

The table below list all the command options for mysql backup. Use the hyperlinks at the option
names to jump to the detailed descriptions for the options.

Note

@ The command options can also be specified in configuration files; see
explanations in Chapter 15, Configuration Files and Parameters. nmysql backup
follows the MySQL standard practice for handling duplicate options, whether
specified in a configuration file, on the command line, or both. Options are
processed first from configuration files, then from the command line. If an option
is specified more than once, the last instance takes precedence.

Table 14.1 List of All Options

Option Name Description Introduced
--backup-dir The directory to store the backup

data.
--backup-image Specifies the path name of the

backup image.

- The name of the checksum
backup_innodb_checksum_algoritlahgorithm used for validating
InnoDB tablespaces.

--backup_innodb_data file_path |Specifies Innodb system
tablespace files' path and size in
backup.

--backup_innodb_data _home_dir |Backup base directory for all
InnoDB data files in the system
tablespace.

--backup_innodb_log_file_size | The size in bytes of each InnoDB
backup log file.

-- Number of InnoDB log files in
backup_innodb_log_files_in_groufbackup.

105

Option Name

Description

Introduced

backup_innodb_log_group_home|

Backup directory for InnoDB log
| files.

--backup_innodb_page_size

The page size for all InnoDB
tablespaces in a MySQL
instance.

--backup_innodb_undo_directory

The relative or absolute directory
path where InnoDB creates
separate tablespaces for the
undo logs.

--backup_innodb_undo_logs

Number of rollback segments
in the system tablespace
that InnoDB uses within a
transaction.

backup_innodb_undo_tablespace

The number of tablespace files
ghat the undo logs are divided
between when a non-zero
innodb_undo_logs setting is
used.

--character-sets-dir

Directory for character set files.

--cloud-access-key-id

AWS access key ID for logging
onto Amazon S3.

--cloud-aws-region

Region for Amazon Web
Services that mysqlbackup
access for S3.

--cloud-bucket

The storage bucket for the
backup image.

--cloud-ca-info Absolute path to the CA bundle {3.12.3
file for host authentication for
SSL connections.

--cloud-ca-path CA certificate directory, in 3.12.3

addition to the system's default
folder.

--cloud-container

The Swift container for the
backup image.

--cloud-identity-url

The URL of the Keystone identity
service.

--cloud-object

The storage object for the
backup image.

--cloud-object-key

The Amazon S3 object key for
the backup image.

--cloud-password

Password for user specified by --
cloud-user-id.

--cloud-proxy Proxy address and port number
for overriding the environment's
default proxy settings for
accessing cloud service.

--cloud-region The Keystone region for the user

specified by --cloud-user-id.

--cloud-secret-access-key

AWS secret access key.

106

Option Name

Description

Introduced

--cloud-service

Cloud service for data backup or
restoration.

--cloud-tempauth-url

The URL of the identity
service for authenticating
user credentials with Swift's
TempAuth authentication
system.

--cloud-tenant

The Keystone tenant for the user
specified by --cloud-user-id.

--cloud-trace Print trace information for cloud
operations.

--cloud-user-id User ID for accessing Swift.

--comments Specifies comments string.

--comments-file

Specifies path to comments file.

--Compress

Create backup in compressed
format.

--compress-level

Specifies the level of
compression.

--compress-method

Specifies the compression
algorithm.

--connect-if-online

Use connection only if available.

--connect_timeout

Connection timeout in seconds.

--databases

[Legacy] Specifies the list of non-
InnoDB tables to back up.

--databases-list-file

[Legacy] Specifies the pathname
of afile that lists the non-InnoDB
tables to be backed up.

--datadir Path to mysql server data
directory.

--debug Print debug information.

--decrypt Decrypt backup image written in

an MEB Secure File.

--default-character-set

Set the default character set.

--defaults-extra-file

Read this file after the global files
are read.

--defaults-file

Only read default options from
the given file.

--defaults-group-suffix

Also read option groups with the
usual names and a suffix of str.

--disable-manifest

Disable generation of manifest
files for a backup operation.

--dst-entry Used with single-file backups to
extract a single file or directory to
a user-specified path.

--encrypt Encrypt backup image and write

it in an MEB Secure File.

107

Option Name

Description

Introduced

--exclude-tables

Exclude in a backup or restore
tables whose names match the
regular expression REGEXP.

--exec-when-locked

Execute the specified utility in the
lock phase near the end of the
backup operation.

--force

Force overwriting of data, log,
or image files, depending on the
operation.

--free-os-buffers

Free filesystem cache by syncing
the buffers

3.12.3

--help Display help.
--host Host name to connect.
--include [Legacy] Backup only those per-

table innodb data files which
match the regular expression
REGEXP.

--include-tables

Include in a backup or a restore
tables whose names match the
regular expression REGEXP.

--incremental

Specifies that the associated
backup or backup-to-image
operation is incremental.

--incremental-backup-dir

Specifies the location for an
incremental directory backup.

--incremental-base

The specification of base backup
for --incremental option.

--incremental-with-redo-log-only

Specifies the incremental backup
of InnoDB tables to be based on
copying redo log to the backup,
without including any InnoDB
data files in the backup.

--innodb_checksum_algorithm

The name of the checksum
algorithm used for validating
InnoDB tablespaces.

--innodb_data_file_path

Specifies InnoDB system
tablespace files' path and size.

--innodb_data_home_dir

Specifies base directory for all
InnoDB data files in the shared
system tablespace.

--innodb_log_file_size

The size in bytes of each InnoDB
log file in the log group.

--innodb_log_files_in_group

The number of InnoDB log files.

--innodb_log_group_home_dir

The directory path to InnoDB log
files.

--innodb_page_size

The page size for all InnoDB
tablespaces in a MySQL
instance.

Option Name Description Introduced
--innodb_undo_directory The directory path to InnoDB

undo tablespaces.
--key The symmetric key used for

encryption and decryption.
--key-file The pathname of a file that

contains the symmetric key used

for encryption and decryption.
--limit-memory The memory in MB available for

the MEB operation.
--lock-wait-timeout Specify the timeout in seconds |3.12.4

for the FLUSH TABLES WITH
READ LOCK statement that
mysqlbackup issues during the
final stage of a backup.

--log-bin-index Specifies the absolute path of the
index file that lists all the binary
log files.

--login-path Read options from the named

login path in the .mylogin.cnf
login file.

--master-info-file

Specifies the absolute path of
the information file in which a
replica records information about
its source (for offline backups of
replica servers only).

--messages-logdir

Specifies the path name of an
existing directory for storing the
message log.

--no-connection

Do not connect to server.

--no-defaults

Do not read default options from
any given file.

--no-history-logging

Disable history logging even if
connection is available.

--no-locking

Disable all locking of tables
during backups.

--number-of-buffers

Specifies the exact number of
memory buffers to be used for
the backup operation.

--on-disk-full Specifies the behavior when a
backup process encounters a
disk-full condition.

--only-innodb Back up only InnoDB data and

log files.

--only-innodb-with-frm

[Legacy] Back up only InnoDB
data, log files, and the .frm files
associated with the InnoDB
tables.

--only-known-file-types

Includes only files of a list of
known types in the backup.

109

Option Name

Description

Introduced

--optimistic-busy-tables

Perform an optimistic backup,
using the regular expression
specified with the option to select
tables that will be skipped in

the first phase of an optimistic
backup.

--optimistic-time

Perform an optimistic backup
with the value specified with the
option as the optimistic time—a
time after which tables that have
not been modified are believed to
be inactive tables.

--page-reread-count

Maximum number of page re-
reads.

--page-reread-time

Wait time before a page re-read.

--password Connection password.
--pipe alias for —protocol=pipe.
--port TCP portnumber to connect to.

--print-defaults

Print a list of option values
supplied by defaults files and
exit.

--process-threads

Specifies the number of process-
threads for the backup operation.

--progress-interval

Interval between progress
reports in seconds.

--protocol

Connection protocol.

--read-threads

Specifies the number of read-
threads for the backup operation.

--relay-log-index

Specifies the absolute path of the
index file that lists all the relay
log files.

--relaylog-info-file

Specifies the absolute path of the
information file in which a replica
records information about the
relay logs (for offline backups of
replica servers only).

--rename

Rename a single table when it is
selected by the --include-tables
option to be restored

--safe-slave-backup-timeout

When backing up a replica
server, the timeout value for
waiting for the replication SQL
thread to drop its temporary
tables.

3.12.3

--sbt-database-name

Used as a hint to the Media
Management Software (MMS)
for the selection of media and
policies for tape backup.

--sht-environment

Comma separated list
of environment variable

110

Option Name

Description

Introduced

assignments to be given to the
SBT library.

--sbt-lib-path

Path name of the SBT library
used by software that manages
tape backups.

--secure-auth

Refuse client connecting to
server if it uses old (pre-4.1.1)
protocol.

--shared-memory-base-name

It designates the shared-memory
name used by a Windows server
to permit clients to connect using
shared memory (Windows only).

--show-progress

Instructs mysqlbackup to
periodically output short progress
reports known as progress
indicators on its operation.

--skip-binlog

Do not include binary log files
during backup, or do not restore
binary log files during restore.

--skip-final-rescan

Skip the final rescan for InnoDB
tables that are modified by DDL
operations.

3.12.4

--skip-messages-logdir

Disable logging to teelog file.

--skip-relaylog

Do not include relay log files
during backup, or do not restore
relay log files during a restore.

--skip-unused-pages

Skip unused pages in
tablespaces when backing up
InnoDB tables.

--slave-info Capture information needed to
set up an identical replica server.

--sleep Time to sleep in milliseconds
after copying each 1MB of data.

--socket Socket file to use to connect.

--src-entry Identifies a file or directory to
extract from a single-file backup.

--ssl Enable SSL for connection
(automatically enabled with other
--ssl- flags).

--ssl-ca CA file in PEM format (implies —
ssl).

--ssl-capath CA directory (check OpenSSL
docs,implies --ssl).

--ssl-cert X509 cert in PEM format (implies
--ssl).

--ssl-cipher SSL cipher to use (implies --ssl).

--ssl-key X509 key in PEM format (implies

--ssl).

111

Standard Options

Option Name Description Introduced

--ssl-verify-server-cert Verify server's "Common Name"
in its cert against hostname used
when connecting.

--start-Isn Specifies the highest LSN value
included in a previous backup.

--suspend-at-end Pauses the mysqglbackup
command when the backup
procedure is close to ending.

--trace Trace level of messages by
mysqlbackup.

--uncompress Uncompress a backup during an
operation.

--use-tts Enable selective backup

of InnoDB tables using
transportable tablespaces (TTS).

--user Database user name to connect.
--verbose Print more verbose information.
--version Display version information.
--with-timestamp Create a subdirectory

underneath the backup directory
with a name formed from

the timestamp of the backup
operation.

--write-threads Specifies the number of write-
threads for the backup operation.

14.1 Standard Options

The standard options are options of a general nature, or options that are not classified under any other
specific option group.

Here is a list of the standard options:

» The following standard options also exist for the mysql command. Full descriptions for these options
can be found in the MySQL reference manual, accessible through, e.g., Server Option, System
Variable, and Status Variable Reference. These options must be specified ahead of any other
nysql backup options, including the rest of the standard options:

--print-defaul ts Print the program argunent |ist and exit.
--no-defaul ts Don't read default options fromany option file.
--defaul ts-fil e=PATH Only read default options fromthe given file. It has to be the first optior

--defaults-extra-file=PATH Read this file after the global files are read.
--defaul ts-group-suffix=str Also read option groups with the usual nanmes and a suffix of str.

» The following options are also common between nysql backup and nysql , and full descriptions
for them can be found in the MySQL reference manual, accessible through, e.g., Server Option,
System Variable, and Status Variable Reference. However, nmysql backup does not accept any
short forms for these options as nmysql does (for example, you must use - - hel p instead of - h for
nysql backup):

--hel p Di spl ay hel p.
--version Di spl ay version information.

» More standard options are available for mysql backup:

112

https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_print-defaults
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_no-defaults
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-extra-file
https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-group-suffix
https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html

Standard Options

- -ver bose: Print more verbose information.

- - debug=STRI NG: Print additional debug information. The option accepts the following arguments:
 al | : Print additional debug information for all operations

« sbt : Print additional debug information for operations using the System Backup to Tape (SBT)
interface

« null: When a null string or no argument at all is specified for the option, nysql backup behaves as
if the - - ver bose option is used.

- - f or ce: By default, some of the operations halt rather than overwrite any user data or log files
when told to write to existing files. - - f or ce allows the following:

Warning

O For any restore operations, do NOT attempt to restore data to a non-empty
data directory using the - - f or ce option; doing so may cause data corruption
and other unexpected behaviors. Do not use the - - f or ce option with a
copy- back or a copy- back-and- appl y- | og operation, except for the
special cases described below.

» Overwriting of InnoDB data and log files during the appl y- | og and appl y-i ncrenent al -
backup operations.

* When restoring a TTS backup, changing temporarily the value of i nnodb_fil e_f ornat onthe
server, in order to allow restores of per-table InnoDB data files regardless of their format.

« Replacing of an image file during an backup-t o-i nage or backup-di r -t 0- i mage operation.

» Restoring a partial image backup created with MySQL Enterprise Backup 3.11 or earlier; the - -
f or ce option is required, due to a known issue (Bug# 20485910).

* Restoring a backup onto a server where the directory pointed to by the . bl file in the backup (a
copy of the . i sl file from the backed-up server) already contains . i bd data files.

--trace=| evel

Command-Line Format --trace=LEVEL
Type Enumeration
Default Value 0
Valid Values 0

1

2

113

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_format

Connection Options

3

Trace level of mysql backup messages. The permissible levels, in the order of increasing fineness,
are:

¢ 0 - INFO (information, warnings, errors)

« 1 - FINE (more information given than at trace level 0)

2 - FINER (finer level of information given than at trace level 1)

3 - FINEST (finest level of information that can be given)

14.2 Connection Options

When nysql backup creates a backup, it sends SQL commands to MySQL server using a database
connection. The general connection details are the same as described in Connecting to the MySQL
Server Using Command Options in the MySQL Reference Manual.

As part of the mysql backup invocation, specify the appropriate - - user, - - passwor d, - - port, and/
or - - socket options that are necessary to connect to the MySQL server.

You can specify the following connection-specific options in the [mysql backup] or[client]
sections of a MySQL configuration file, or through nmysql backup command-line options.
nysql backup reads your default configuration files and then the ny. cnf file specified on the
command line.

Note
@ e nmysql backup reads only - - user, - - password, - - port, and - - socket
options from the [cl i ent] group, and ignores any other connection options.

 If you do not provide a value for the - - passwor d, the command prompts for
one from the keyboard.

e The - - host option is allowed in the configuration file for compatibility, but
currently it has no effect. mysql backup always connects to the local server's
IP address.

Opti ons Conmon to nysqld

- -1 ogi n- pat h=nane

- - port=port-num
--protocol =t cp| socket | pi pe| menory

--pipe [alias for --protocol =pipe]
--user=name [short option: -u]

- - host =host nanme

- - socket =nane

- - shar ed- menor y- base- nane=val ue [Wndows onl y]
--charact er-set s-di r =PATH

--def aul t - char act er - set =VALUE

--secure-auth [Don't connect to pre-4.1.1 server |
--password[=val ue] [short option: -p]
--connect -ti meout

--ssl [Enable SSL for connection]
--ssl-key=fil e_nane

--ssl-cert=file_nane

--ssl-ca=fil e_nane

- -ssl - capat h=di rect ory_nane

--ssl -ci pher=ci pher _|i st
--ssl-verify-server-cert

Connection Options Specific to nysqgl backup

114

https://dev.mysql.com/doc/refman/5.6/en/connecting.html
https://dev.mysql.com/doc/refman/5.6/en/connecting.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_login-path
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_port
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_protocol
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_pipe
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_socket
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_shared_memory_base_name
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_character-sets-dir
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_default-character-set
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_secure-auth
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/5.6/en/mysql-command-options.html#option_mysql_connect-timeout
https://dev.mysql.com/doc/refman/5.6/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/5.6/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/5.6/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/5.6/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/5.6/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/5.6/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/5.6/en/connection-options.html#option_general_ssl-verify-server-cert

Server Repository Options

--Nno- connecti on
--connect-if-online

Most other connection parameters used by the mysql command are recognized, but silently ignored.
Unknown connection parameters cause nysql backup to stop.

The following connections options are specific to nysql backup:
e --no-connection

The - - no- connect i on option supersedes the other connection options and uses file-level
operations to perform the backup. When you use this option, you must specify in the configuration
file or on the command line many options whose values are normally retrieved automatically through
the database connection.

Warning
O This option also turns on the - - no- hi st ory- | oggi ng and - - no- | ocki ng

options, which might result in inconsistencies in non-InnoDB data if the tables
are modified during the backup operation. It might also affect subsequent
incremental backups; see the description for the - - i ncr enent al - base
option for details.

e --connect-if-online

By default, a database connection is used for backup operations both during the initial stage to
retrieve source repository configuration, and to lock tables while copying non-InnoDB data. This
option allows nysql backup to make connection attempts in both phases, but continues even if
the connection cannot be established. If a connection cannot be established, the processing is the
same as with the - - no- connect i on option. This option can be useful in emergency situations: for
example, when the database server goes down during the backup operation.

14.3 Server Repository Options

These repository options specify various parameters related to the database server, from which the
data is backed up or to which a backup is restored.

These options are used only with the following operations:
» Backup creation operations: backup, backup- and- appl y- 1 og, backup-t o-i nage.
» Restore operations: copy- back, copy- back- and- appl y- | og.

When a database connection is available during a backup, the parameters describing the source
repository are ignored, overridden by the corresponding values retrieved from the database connection.

For information about how these options are specified for the MySQL server, click the option names to
see the descriptions in the MySQL Reference Manual.

e dat adi r =PATH

This is the dat adi r value used by the MySQL instance. The . f r mfiles reside here inside
subdirectories named after the databases inside the instance.

When a database connection exists, the value is retrieved automatically and overrides any value you
specify. This is a crucial parameter for both the MySQL server and MySQL Enterprise Backup.

e i nnodb_dat a_hone_di r =PATH

Specifies the directory where InnoDB data files reside. Usually the same as dat adi r, but can be
different.

115

https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_data_home_dir
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_datadir

Server Repository Options

This parameter, together with i nnodb_dat a_fi |l e_pat h=SI ZE, determines where the InnoDB
data files such as i bdat al, i bdat a2, and so on, are situated within the MySQL server.

Typically, you do not need to specify this option, because its value is retrieved automatically using
the database connection.

Its value is derived as follows:
e Ifi nnodb_dat a_homne_di r is not specified, it inherits the value of dat adi r.

e Ifi nnodb_dat a_hone_di r is arelative path, the path is located relative to (that is, underneath)
the dat adi r value.

e Aninnodb_data hone_dir of"" refersto the/ root directory.
e Ifi nnodb_dat a_home_di r is an absolute path, its value is used as-is.
i nnodb_data file_pat h=VALUE

Specifies InnoDB data file names and sizes. Examples:

i bdat al: 32M i bdat a2: 32M aut oext end
/ abs/ pat h/ i bdat al: 32M aut oext end
i nnodb-di r/i bdat al: 32M aut oext end

When a database connection exists, the value is retrieved automatically and overrides any value you
specify.

This parameter together with innodb_data_home_dir determines where the InnoDB data files (such
asi bdat al, i bdat a2, and so on) reside in server repository.

Typically, you do not need to specify this option, because its value is retrieved automatically using
the database connection. If no database connection is available, you must specify it.

Whether the initial file name begins with a/ character or not, the files are located relative to the
i nnodb_dat a_hone_di r value.

i nnodb_| og_group_home_di r =PATH

Specifies where InnoDB logs reside within the server repository. Usually the same as dat adi r, but
can be different.

Its value is derived as follows:
e Ifi nnodb_I og_group_hone_di r is not specified, it inherits the value of dat adi r .

e Ifi nnodb_| og_group_hone_di r is a relative path, the path is taken to be relative to (that is,
underneath) the dat adi r value.

e Ifi nnodb_| og_group_hone_di r is an absolute path, its value is used as-is.
i nnodb_l og_files_in_group=N
Specifies the number of InnoDB log files before being rotated.

Typically, you do not need to specify this option, because its value is retrieved automatically using
the database connection. If no database connection is available, you must specify it.

When a database connection exists, the value is retrieved automatically and overrides any value you
specify.

e innodb_log file_ size=SIZE

116

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_group_home_dir
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size

Backup Repository Options

Specifies maximum single InnoDB log file size before switching to next log file. Example: 20M.

Typically, you do not need to specify this option, because its value is retrieved automatically using
the database connection. If no database connection is available, you must specify it.

When a database connection exists, the value is retrieved automatically and overrides any value you
specify.

» innodb_page_si ze=SI ZE
Specifies the page size for all InnoDB tablespaces.

Typically, you do not need to specify this option, because its value is retrieved automatically using
the database connection. If no database connection is available, you must specify it.

When a database connection exists, the value is retrieved automatically and overrides any value you
specify.

e i nnodb_checksum al gori t hn=ENANVE

Specifies the name of the checksum algorithm used for validating InnoDB tablespaces. Default is
i nnodb.

Typically, you do not need to specify this option, because its value is retrieved automatically using
the database connection. If no database connection is available, you must specify it.

When a database connection exists, the value is retrieved automatically and overrides any value you
specify.

e i nnodb_undo_di rect or y=PATH

Specifies where the InnoDB undo log reside within the server repository. Usually the same as
dat adi r, but can be different.

For backups: Typically, you do not need to specify this option, because its value is retrieved
automatically using the database connection. Specifies the option for an offline backup if the InnoDB
undo log files do not reside under the server's data directory.

For restores: The directory where InnoDB undo log files are to be restored. Specify the option only if
the undo log files are to be restored outside of the server's data directory.

Its value is derived as follows:
e Ifi nnodb_undo_di r ect ory is not specified, it inherits the value of dat adi r .

« Ifi nnodb_undo_di rect ory is a relative path, the path is taken to be relative to (that is,
underneath) the dat adi r value.

e Ifi nnodb_undo_di r ect ory is an absolute path, its value is used as-is.

Warning

O When using this option, make sure the undo log location does not change
between successive restores of a full and an incremental backups, or of two
incremental backups. Otherwise, the restore is going to fail.

14.4 Backup Repository Options

These options specify various parameters related to the backup directory and its layout, or to how the
backup will be restored. Typically, - - backup- di r is the only option from the group that you need to
specify when using nysql backup.

117

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_checksum_algorithm
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_datadir

Backup Repository Options

The backup repository options are used with the following operations:
» Backup operations: backup, backup- and- appl y- | og, backup-t o-i nage.
» Restore operations: copy- back, copy- back- and- appl y- | og.

The backup repository options are divided into two groups: the first one determines the structure of the
backup, and the second one provides information on the original structure of the data on the backed-up
server for future operations on the backup.

The following options determine the structure of the backup:

e --backup_dir=PATH

Same as - - backup- di r. The directory under which the backup data and metadata are stored,
permanently or temporarily. It is a crucial parameter required for most kinds of backup and restore
operations.

The option is used differently for different operations and under different situations:

« For backup to a directory: Use - - backup- di r to specify the directory to store the backup data
and metadata (including the nmysql backup message log, the start and end LSN, and so on). The
directory specified by - - backup- di r cannot be a subdirectory of the directory specified by - -
dat adi r.

When the - - wi t h- t i mest anp option is also specified, an additional level of subdirectory, with
the timestamp in its name, is created under - - backup- di r (see description for the - - wi t h-
ti mest anp option for details). Unless the - - wi t h-t i nest anp option is used, the directory
specified by - - backup- di r must be empty, or the backup operation will fail with an error.

« For backup to a single file (including incremental, compressed, encrypted, and cloud backups):
Use - - backup- di r to supply a temporary folder to save the backup metadata (including the
mysql backup message log, the start and end LSN, and so on) and some temporary output. The
backup data, together with a copy of the metadata, will be stored in a singe file whose name is
specified with the - - backup- i mage option. Note that, however, if - - backup- i nage does not
give a full path name, nysql backup will actually take the value of - - backup- i mage as a path
relative to the directory specified by - - backup- di r, and thus store the single-file backup under
--backup-dir (or, ifthe--wi t h-ti nmest anp option is used, under a subdirectory created
under - - backup- di r, which bears the timestamp in its name).

« For restoring a backup directory: Use - - backup- di r to specify the location of the backup
directory, from which data will be restored to the server.

< For restoring a single-file backup (including incremental, compressed, encrypted, and cloud
backups): When using copy- back- and- appl y- | og to restore a single-file backup, use - -
backup- di r to supply a temporary folder to store the temporary data of the restore operation.
The directory specified by - - backup- di r should be empty—if a non-empty directory is used, the
restore operation will still be carried out, but the restore data might be corrupted.

When restoring a single-file backup created with the option setting use-tt s=wi t h- m ni num

| ocki ng, the folder specified with - - backup- di r is also used for extracting temporarily all the
tables in the backup and for performing an appl y- | og operation to make the data up-to-date
before restoring them to the server's data directory.

* backup_i nnodb_dat a_hone_di r =PATH

The directory under which the backup's InnoDB data files are to be stored. Specify the option if you
want to put the data files at somewhere other than the default location (which is backup-di r/

dat adi r). If the value of the parameter is different from backup- di r/ dat adi r, it is stored into
the backup- ny. cnf file asi nnodb_dat a_hone_di r for information, so that nysql backup can
understand the structure of the backup when it performs various operations on the backup. Together

118

Backup Repository Options

with backup_i nnodb_data_fil e_pat h option, it determines the actual file paths of the InnoDB
data files inside the backup.

The value for the parameter is derived as follows:

e If backup_i nnodb_dat a_hone_di r is not specified, its value will be backup- di r/ dat adi r.

If backup_i nnodb_dat a_hone_di r is an absolute path, its value is used as-is.

If backup_i nnodb_dat a_hone_di r is a relative path, the path is taken to be relative to (that is,
underneath) backup-dir.

(1th}

e An empty string (*”) for backup_i nnodb_dat a_hone_di r means the value of
i nnodb_data fil e path isto be taken as an absolute path..

This parameter is applicable only for backup operations; during a restore, the InnoDB data files are
restored under the data directory specified by - - dat adi r, unless another location is specified using
the - -i nnodb_dat a_hone_di r option during restore.

backup_i nnodb_data_fil e_pat h=VALUE

The InnoDB data file names and sizes. Examples:

i bdat al: 32M i bdat a2: 32M aut oext end
/ abs/ pat h/ i bdat al: 32M aut oext end
i nnodb-di r/i bdat al: 32M aut oext end

This parameter, together with backup_i nnodb_dat a_hone_di r, determines where the InnoDB
data files are stored within the backup repository. Any file path specified with this option is taken to
be relative to the value of the backup_i nnodb_dat a_hone_di r option (that is true even if the file
path is specified in the form of an absolute path, like / abs/ pat h/ i bdat al: 32M aut oext end).
To specify truly absolute paths for InnoDB data files in the backup with this option, you must set the
backup_i nnodb_dat a_hone optionto"" [empty string], in addition to using an absolute path for
this option.

When the parameter is not specified, it inherits the value from the value of the

i nnodb_dat a_fi | e_pat h option on the backed-up server. If both the source and destination of
the backup attempt to use the same absolute paths that resolves to the same files, the backup is
cancelled.

The value of the parameter is stored into the backup- nmy. cnf file asi nnodb_data_file_path
for information, so that mysql backup can understand the structure of the backup when it performs
various operations on the backup.

backup_i nnodb_I og_group_home_di r =PATH

The directory under which the backup's InnoDB logs will be stored. Specify this option only if you
want to put the logs at somewhere other than the default location (which is backup- di r/ dat adi r).
If the value of the parameter is different from backup- di r/ dat adi r, it is stored in the backup-
ny. cnf fileasi nnodb_| og_group_home_di r for information, so that mysql backup can
understand the structure of the backup when it performs various operations on the backup. Note
that while you can specify a directory for saving the logs, the names of the log files are fixed and not
reconfigurable.

This parameter is applicable only for backup operations; during a restore, the InnoDB log files are
restored under the data directory specified by - - dat adi r, unless another location is specified using
the - -i nnodb_| og_group_hone_di r option during restore. The value of the parameter is derived
as follows:

e If backup_i nnodb_| og_group_hone_di r is not specified, its value will be backup- di r/
dat adi r.

119

Backup Repository Options

e If backup_i nnodb_| og _group_hone_dir is an absolute path, its value is used as-is.

e If backup_i nnodb_I og_gr oup_hone_di r is a relative path, the path is taken to be relative to
(that is, underneath) backup-di r.

* An empty string (*”) for the option produces an error.

e backup_i nnodb_undo_di r ect or y=PATH

The relative or absolute directory path where separate tablespaces are created for the InnoDB
undo logs during the backup. When unspecified, the option takes up the same value as

backup i nnodb_| og group_hone_di r; specify this option only if you want to put the undo
logs at some other location. If the value of the parameter is different from backup- di r/ dat adi r,
it is stored in the backup- my. cnf file asi nnodb_undo_di r ect ory for information, so that
nysql backup can understand the structure of the backup when it performs various operations on
the backup.

This parameter is applicable only for backup operations; during a restore, the InnoDB undo log
tablespaces are restored under the data directory specified by - - dat adi r, unless another location
is specified by the - - i nnodb_undo_di r ect or y option during restore.

e --with-tinmestanp

Creates a subdirectory underneath the backup directory, with a name formed with the timestamp of
the backup operation. It is useful for maintaining a single backup directory containing many backup
shapshots put under different subdirectories.

Default: no timestamped subdirectory is created. To reuse the same backup directory for a new
backup without using this option, either remove the previous backup files manually or, for a single-file
backup, specify the - - f or ce option to overwrite the old backup file.

The following parameters provide information on the original structure of the data on the backed-up
server for future operations on the backup, but do not affect the structure of the backup itself:

* backup_innodb_l og files_in_group=N

The number of InnoDB log files in a log group on the restored server. See the description for
i nnodb_| og_files_in_group inthe MySQL server manual. The value for this parameter, saved
asinnodb_|log files_in_group inthe backup-ny. cnf file, is derived as follows:

e Use the backup_innodb_| og files_in_group value from command line or configuration file,
if specified.

* Else, use theinnodb_| og_fil es_i n_group value from the backed-up server, if it is an online
backup.

e Else, use theinnodb_| og files_in_group value from the nysql backup command line or
configuration file.

e backup_innodb_log file_size=SIZE

The maximum single InnoDB log file size in backup before switching to next log file, on the restored
server. See the description for i nnodb_| og fil e_si ze in the MySQL server manual. The value
for this parameter, saved as i nnodb_| og fil e_si ze inthe backup- ny. cnf file, is derived as
follows:

e Use the backup_i nnodb | og file_size value from command line or configuration file, if
specified.

* Else, use theinnodb_| og file_size value from the backed-up server, if it is an online backup.

120

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_files_in_group
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_log_file_size

Metadata Options

« Else, use the specified i nnodb_| og fil e_si ze value from the mysql backup command line or
configuration file.

» backup_i nnodb_page_si ze=S| ZE

Specifies, for an offline backup, the page size for all InnoDB tablespaces on the restored server. This
option should be specified carefully, because the page size must be the same as that of the backed
up MySQL instance, or the backup could become useless. For an online backup, the value is taken
from the value of the i nnodb_page_si ze option on the backed-up server.

Value of this option is saved in the backup- ny. cnf file, to be used for restoring the database.

e backup_i nnodb_undo_| ogs=NUVBER

Specifies, for an offline backup, the number of rollback segments in the InnoDB system tablespace
on the restored server. This option should be specified carefully, because the value must be the
same as that of i nnodb_undo_| ogs on the backed-up MySQL instance, or the backup could
become useless. For an online backup, the value for the parameter is taken from the value of the

i nnodb_undo_| ogs option on the backed-up server.

e backup_i nnodb_undo_t abl espaces=NUMBER

Specifies the number of tablespace files that the undo logs are divided between, when you use a
non-zero backup_i nnodb_undo_| ogs setting. This option should be specified carefully, because
the value must be the same as that of i nnodb_undo_t abl espaces on the backed-up MySQL
instance, or the backup could become useless. For an online backup, the value for the parameter
is taken from the value of the i nnodb_undo_t abl espaces option on the backed-up server. By
default, all the undo logs are part of the system tablespace, and the system tablespace will always
contain one undo tablespace in addition to those configured by innodb_undo_tablespaces.

» backup_i nnodb_checksum al gorit hnENAVE

Specifies, for an offline backup, the name of the checksum algorithm used for validating the
InnoDB tablespaces on the restored server. This option should be specified carefully, because
the checksum algorithm must be the same use on the backed-up MySQL instance, or the
backup could become useless. For an online backup, the value is taken from the value of the

i nnodb_checksum al gori t hmoption on the backed-up server.

Default value of the option is “innodb”.

Value of this option is saved in the backup- ny. cnf file, to be used for restoring the database.

14.5 Metadata Options

These options control the generation of metadata about backups. Some metadata is stored in the
backup directory, other metadata is stored in tables within the mysql database of the backed-up
instance.

e --no-history-1ogging

Turns off the recording of backup progress and history in logging tables inside the backed-up
database. See Section 11.3, “Using the MySQL Enterprise Backup Logs” for details about these
tables.

Default: history logging is enabled. When - - no- connect i on is specified, history logging is
automatically disabled. When - - connect - i f - onl i ne is specified, history logging only works if a
database connection is successfully established during the backup.

e --coment s=STRI NG

121

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_logs
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_logs
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces

Compression Options

Command-Line Format - -coment s=STRI NG

Type String

Specifies a comment string that describes or identifies the backup. Surround multi-word comments
with appropriate quotation marks. The string is saved in a file net a/ corment s. t xt in the backup.
For example: - - comment s="Backup of HR data on 2010/ 12/10".

e --coments-fil e=PATH

Command-Line Format --coment s-fil e=PATH

Type File name

Specifies path to a file containing comments describing the backup. This file is saved as net a/
conment s. t xt in the backup. For example: - - comment s-fi | e=/ pat h/t o/ conment s. t xt .

This option overrides the - - conment s option if both are specified.

14.6 Compression Options

For an overview on backup compression, see Section 4.3.3, “Making a Compressed Backup”.

e --conpress

Create backup in compressed format. For a regular backup, among all the storage engines
supported by MySQL, only data files of the InnoDB format are compressed, and they bear the . i bz
extension after the compression. Similarly, for a single-image backup, only data files of the InnoDB
format inside the backup image are compressed. The binary log and relay log files are compressed
and saved with the . bz extension when being included in a compressed backup.

Default: compression is disabled.

e --conpress-nmet hod=ALGORI THV

Command-Line Format --conpr ess- nmet hod=ALGORI THM
Type Enumeration
Default Value | z4
Valid Values zlib
| z4
[zma

punch-hol e

none

Specifies the compression algorithm. The supported arguments for the option and the algorithms

they represent are:

e | z4: LZ4 r109. Out of the three algorithms that are supported, this is the most efficient one,
typically taking the shortest backup and restore times with the lowest CPU cost. See [1z4—
Extremely Fast Compression algorithm for more details, including a comparison with other

compression algorithms.

e | zma: LZMA 9.20. Out of the three supported algorithms, this typically provides the highest
compression ratio; but it is also far more expensive in terms of CPU cost than the other two

122

http://code.google.com/p/lz4/
http://code.google.com/p/lz4/

Incremental Backup Options

options. Thus we do not recommend this for active systems, but only for off-hour or inactive
databases, or where I/O rates are extremely low.

e zIli b: ZLIB v1.2.3. This is in between the other two supported algorithms in terms of both speed

and compression ratio. ZLIB was the only compression algorithm available for MySQL Enterprise
Backup versions prior to 3.10.

Default: 1z4. Explicitly specifying a value for the option through a configuration file or command line
automatically enables the - - conpr ess option.

e --conpress-| evel =LEVEL

Command-Line Format --conpress- | evel =LEVEL
Type Numeric

Default Value 1

Minimum Value 0

Maximum Value 9

Specifies the level of compression, ranging from “0” to “9”: “0 "disables compression; “1” is fastest
compression, and “9” is highest (and slowest) compression. The option is only meaningful for

compression using the ZLIB or LZMA algorithm; it is ignored when any other algorithms are selected
by the - - conpr ess- net hod option.

Default: 1 (lowest and fastest compression). Explicitly specifying a non-zero value through a
configuration file or command line automatically enables the - - conpr ess option.

e --unconpress

When used with the appl y-1 og or copy- back- and- appl y- | og operation, uncompresses a
compressed backup before applying the InnoDB log. When used with the copy- back operation,
uncompresses a compressed prepared backup (created by the backup- and- appl y-1 og

command with the - - conpr ess option) before restoring it to a server (only supported for MySQL
Enterprise Backup 3.12.3 and later).

14.7 Incremental Backup Options

For an overview of incremental backups and usage examples for these options, see Section 4.3.2,
“Making a Differential or Incremental Backup”.

To take an incremental backup, specify the - -i ncrenent al or--increnental -wi th-redo-

| og- onl y, along with the - - backup- di r option. All InnoDB data modified after the specified LSN
is copied in the incremental backup. Depending on whether - -i ncrenent al or--increnental -
wi t h-redo- 1 og- onl y is used, other options are required or recommended.

e --increnental

Specifies that the associated backup or backup-t o- i mage operation is incremental. Also requires
either the - - i ncr enent al - base option or the - - st art - | sn option.

Only InnoDB tables are backed up incrementally. By default, all non-InnoDB and . f r mfiles are
included into the incremental backup and in their fullness. To exclude non-InnoDB data in an
incremental backup, use the - - onl y-i nnodb option.

e --increnental -wi th-redo-|og-only

Specifies that an incremental backup is to be created using only the redo log. This alternate type of
incremental backup has different performance characteristics and operational limitations comparing
to backups created with the - - i ncr enent al option; see Creating Incremental Backups Using Only
the Redo Log for a discussion on their differences.

123

Incremental Backup Options

To use this option, you also need to specify the - - i ncr enent al - base option orthe --start-1|sn
option. Just like with the - - i ncr enent al option, only InnoDB tables are backed up incrementally.
By default, all non-InnoDB and . f r mfiles are included in incremental backup and in their fullness. To
exclude non-InnoDB data in an incremental backup, use the - - onl y-i nnodb option.

--increnent al - base=node:ar gunent

Command-Line Format --increnent al - base=node: ar gunent

Type String

With this option, the nysql backup retrieves the information needed to perform incremental
backups from the metadata inside the backup directory rather than from the - - st art - | sn option.
It saves you from having to specify an ever-changing, unpredictable LSN value when doing a
succession of incremental backups. Instead, you specify a way to locate the previous backup
directory through the combination of node and ar gunment in the option syntax. The alternatives are:

e dir:directory_path

You specify the prefix di r : followed by a directory path. The path argument points to the directory
where the data from the previous backup is stored. With the first incremental backup, you specify
the directory holding the full backup; with the second incremental backup, you specify the directory
holding the first incremental backup, and so on.

e history:last_backup

You specify the prefix hi st ory: followed by | ast _backup, the only valid argument for this
mode. This makes nysql backup query the end_I sn value from the last successful non-TTS
backup as recorded in the backup_hi st ory table of the server instance that is being backed up.

skips it, and keeps searching the backup history until it finds the last non-

Note
@ If the last full or partial backup made was a TTS backup, nysql backup
TTS backup and then returns its end_| sn value.

taken with the - - no- connect i on option, which always turns off the
recording of backup history and might cause errors for a subsequent

Warning
o Do not use the hi st ory: mode if the previous backup was a full backup
incremental backup using this mode of the - - i ncr enent al - base option.

e --start-|sn=LSN

Command-Line Format --start-lsn=LSN

Type Numeric

In an incremental backup, specifies the highest LSN value included in a previous backup. You can
get this value from the output of the previous backup operation, or from the backup_hi st ory
table's end_| sn column for the previous backup operation. Always used in combination with
the - - i ncrenent al option; not needed when you use the - - i ncr enent al - base option; not
recommended when you use the - -i ncrenment al -wi t h-r edo- | og- onl y mechanism for
incremental backups.

Note
@ No binary log files are copied into the incremental backup if the - - start -
| sn option is used. To include binary log files for the period covered by the

124

Partial Backup and Restore Options

incremental backup, instead of - - st art -1 sn, use the --i ncrenent al -
base option, which provides the necessary information for nysql backup to
ensure that no gap exists between binary log data included in the previous
backup and the current incremental backup.

e --incremental - backup-di r =PATH

Specifies the location for data of an incremental directory backup. When creating or restoring
an incremental directory backup, the option serves the same function as - - backup- di r does
for backups and restores in general, and the option can in fact be used interchangeably with - -
backup- di r for directory backups. See the description for - - backup- di r for details.

For an appl y-i ncrenent al - backup operation, the option specifies the incremental backup
directory whose data is used to update a directory backup specified by the - - backup- di r option.

Note
@ Do not use this option with any operations for image backups, for which the
option has no meaning.

14.8 Partial Backup and Restore Options

Note

@ Since MySQL Enterprise Backup 3.10, the two options - - i ncl ude-t abl es
and - - excl ude-t abl es have been introduced. These were intended for
replacing the older options of - - i ncl ude, - - dat abases, - - dat abases-
[ist-file,and--only-innodb-w th-frm which are incompatible with
the new options and will be deprecated in future releases. For references
purpose, we have included information on the older options at the end of this
section in Legacy Partial Backup Options.

To select specific data to be backed up or restored, use the partial backup and restore options
described in this section.

For an overview of partial backup and usage examples on the following options, see Section 4.3.4,
“Making a Partial Backup”. See also Section 5.2.4, “Restoring Backups Created with the - - use-tts
Option”, on selective restore of tables from a backup.

e --incl ude-tabl es=REGEXP

Command-Line Format --include-t abl es=REGEXP
Type String

Include for backup or restoration only those tables (both Innodb and non-Innodb) whose fully
qualified names (in the form of db_nane. t abl e_nane) match the regular expression REGEXP. The
regular expression syntax used is the extended form specified in the POSIX 1003.2 standard. For
example, - - i ncl ude- t abl es="nydb\ . t [12] $ matches the tables t 1 and t 2 in the database
nmydb. On Unix-like systems, quote the regular expression appropriately to prevent interpretation
of shell meta-characters. nysql backup throws an error when the option is used without a regular
expression being supplied with it.

While mysql backup understands the MySQL convention of quoting the database or the table name
(or both) by backticks (see Schema Object Names), there is no need to include the backticks in the
regular expression for - - i ncl ude-t abl es.

While the option can be used for different kinds of backups, selective restore is only supported for
backups created using transportable tablespace (TTS) (that is, backups created with the - - use-tts
option). The option can also be used with the backup-di r-t o-i nage and i mage-t o- backup-

di r commands to select tables when creating or unpacking a backup image.

125

https://dev.mysql.com/doc/refman/5.6/en/identifiers.html

Partial Backup and Restore Options

The option cannot be used together with the legacy - - i ncl ude, - - dat abases, - - dat abases-
list-file,or--only-innodb-w th-frmoption.

When used together with the - - excl ude- t abl es option, - -i ncl ude-t abl es is applied first,
meaning nysql backup first selects all tables specified by - - i ncl ude-t abl es and then excludes
from the set those tables specified by - - excl ude-t abl es.

- -excl ude-t abl es=REGEXP

Command-Line Format --excl ude-t abl es=REGEXP

Type String

Exclude for backup or restoration all tables (both Innodb and non-Innodb) whose fully qualified
names (in the form of db_nane. t abl e_nane) match the regular expression REGEXP. The regular
expression syntax is the extended form specified in the POSIX 1003.2 standard. For example, - -
excl ude-tabl es="nydb\ . t [12] $ matches the tables t 1 and t 2 in the database mydb. On
Unix-like systems, quote the regular expression appropriately to prevent interpretation of shell meta-
characters. nysql backup throws an error when the option is used without a regular expression
being supplied with it.

While nysqgl backup understands the MySQL convention of quoting the database or the table name
(or both) by backticks (see Schema Object Names), there is no need to include the backticks in the
regular expression for - - excl ude-t abl es.

While the option can be used for different kinds of backups, selective restore is only supported

for backups created using transportable tablespaces (TTS) (that is, backups created with the - -
use-tts option). The option can also be used with the backup-di r -t o-i nage and i mage-t o-
backup- di r commands to select tables when creating or unpacking a backup image.

The option cannot be used together with the - - i ncl ude, - - dat abases, - - dat abases- | i st -
file,or--only-innodb-w th-frmoption.

When used together with the - - i ncl ude-t abl es option, - - i ncl ude- t abl es is applied first,
meaning nysql backup first select all tables specified by - - i ncl ude- t abl es, and then exclude
from the set those tables specified by - - excl ude-t abl es.

--only-known-file-types

For back up only. By default, all files in the database subdirectories under the data directory of the
server are included in the backup (see Section 1.4, “Files that Are Backed Up” for details). If the - -
onl y-known-fil e-types option is specified, mysql backup only backs up those types of files
that are data files for MySQL or its built-in storage engines, which, besides the i bdat a* files, have
the following extensions:

* . ARM ARCHIVE table metadata

e . ARZ: ARCHIVE table data

e . CSM CSV table metadata

o . CSV: CSV table data

o . frm table definitions

« .1 bd: InnoDB tablespace created using the file-per-table mode
« . MRG Merge storage engine references to other tables

e . MYD: MyISAM data

126

https://dev.mysql.com/doc/refman/5.6/en/identifiers.html

Partial Backup and Restore Options

e . MYl : MylISAM indexes

« . opt : database configuration information
e . par : partition definitions

e . TRG trigger parameters

e . TRN: trigger namespace information

--only-innodb

For back up only. When this option is used, only InnoDB data and log files are included in the
backup, and all files created by other storage engines are excluded. Typically used when no
connection to nysql d is allowed or when there is no need to copy MyISAM files.

The option is not compatible with the - - sl ave- i nf o option.

--use-tts[={wi th-m ni mum | ocki ng|wi th-full-Iocking}]

Command-Line Format --use-tts[={w th-m ni rum| ocki ng|
with-full-1ocking}]

Type Enumeration

Default Value Wi t h-m ni mum | ocki ng

Valid Values wi t h-m ni mum | ocki ng
with-full-1ocking

Enable selective backup of InnoDB tables using transportable tablespaces (TTS). This is to be used
in conjunction with the - - i ncl ude-t abl es and - - excl ude-t abl es options for selecting the
InnoDB tables to be backed up by regular expressions. Using TTS for backups offers the following
advantages:

» Backups can be restored to a different server
* The system tablespace is not backed up, saving disk space and I/O resources

« Data consistency of the tables is managed by MySQL Enterprise Backup

However, the option has the following limitations:
e Supports only MySQL version 5.6 and after (as earlier versions of MySQL do not support TTS)

« Can only backup tables that are stored in their own individual tablespaces (i.e., tables created with
the innodb_file_per_table option enabled)

« Non-InnoDB tables are not backed up
e Cannot back up partitioned tables
« Cannot be used for incremental backups

« Does not include the binary log or the relay log in the backup
See also Appendix B, Limitations of MySQL Enterprise Backup for some more minor limitations.

There are two possible values for the option:

« wi th-m ni mum | ocki ng: Hot copies of the selected tables are backed up, and the tables are
then locked in read-only mode while the redo log (with only the portion containing the relevant

127

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_file_per_table

Legacy Partial Backup Options

changes made after the hot backup) is being included in the backup. Any tables created during the
locking phase are ignored.

« with-full-Iocking: The selected tables are locked in read-only mode while they are being
backed up. The redo log is not included in the backup. Any tables created during the locking phase
are ignored.

Note

@ Due to a known issue, when creating a backup using TTS for a server
containing tables with a mix of the Antelope and Barracuda file formats, do
NOT apply full locking on the tables.

Default: wi t h- mi ni num | ocki ng

To use the - - use-t t s option, extra privileges are required of the user through which
nysql backup connects to the server; see Section 4.1.2, “Grant MySQL Privileges to Backup
Administrator” for details.

There are some special requirements for restoring backups created with the - - use-t t s option; see
Section 5.2.4, “Restoring Backups Created with the - - use- t t s Option” for details.

--rename="ol d_t abl e_nan®e to new_t abl e_nane”

Rename a single table when it is selected by the - - i ncl ude-t abl es or - - excl ude-t abl es
option (or both together) to be restored to a database from a backup created using the - - use-tts
option. The table named ol d_t abl e_nane is renamed to new_t abl e_nane. Note that when using
the option:

e The--include-tabl es or--exclude-tabl es option (or both together) must be used in the
restore command for the - - r enane option to work, unless there is only one table in the backup.
Also, the - - i ncl ude-t abl es or - - excl ude-t abl es option (or both together) should specify
one and only one table for restore when - - r enane is used, or the restore will fail.

e ol d _tabl e nane and new t abl e_nane can be fully qualified (containing the database
names, in the format of db_nane.t b_nane) or not. Regular expressions are not accepted for
ol d_t abl e _nane and new _t abl e_nane.

* The restore fails if ol d_t abl e_nane does not match with the table specified using the - -
i ncl ude-t abl es or - - excl ude-t abl es option (or both together), or if new_t abl e_nane
already exists in the target database.

« The requirements listed in Section 5.2.4, “Restoring Backups Created with the - - use-t t s Option”
apply.

See Section 5.2.4, “Restoring Backups Created with the - - use-t t s Option”, for more information

on selective restores, and for an example of table renaming.

Legacy Partial Backup Options

Important

A Information in this subsection is only for using the legacy options of - -

i ncl ude, - - dat abases, - - dat abases-1list-file,and--only-

i nnodb-wi t h-f r m which will be deprecated in the upcoming issues. For
creating partial backups, it is strongly recommended that the new options of
--include-tabl es and--excl ude-t abl es be used instead. Note that
you cannot combine the legacy and the new partial-backup options in a single
command.

128

Legacy Partial Backup Options

Besides the legacy options, some other options are also discussed below, but
the information is only for using the options together with the legacy partial-
backup options.

For an overview of partial backups and usage examples for these legacy options, see Making a Partial
Backup with the Legacy Options.

e --incl ude=REGEXP

This option is for filtering InnoDB tables for backup. The InnoDB tables' fully qualified names

are checked against the regular expression specified by the option. If the REGEXP matches
db_nane. t abl e_nane, the table is included. The regular expression syntax used is the extended
form specified in the POSIX 1003.2 standard. For example, - - i ncl ude=nydb\ . t[12] matches
the tables t 1 and t 2 in the database nydb. mysql backup throws an error when the option is used
without a regular expression being supplied with it.

This option only applies to InnoDB tables created with the MySQL option

i nnodb_file per_tabl e enabled (which is the default setting for MySQL 5.6 and after), in which
case the tables are in separate files that can be included or excluded from the backup. All tables in
the InnoDB system tablespace are always backed up.

When no InnoDB table hames match the specified regular expression, an error is thrown with a
message indicating there are no matches.

Default: Backs up all InnoDB tables.

Note

@ This option does not filter non-InnoDB tables, for which options like - -
dat abases and - - dat abases-|ist-fil e canbe used.
Important

A This option does not filter the . f r mfiles associated with InnoDB tables,

meaning that regardless of the option’s value, all the . f r mfiles for all InnoDB
tables are always backed up unless they are excluded by other options.
Those . f r mfiles for InnoDB tables that are not backed up should be deleted
before the database backup is restored. See Making a Partial Backup with the
Legacy Options for details.

e --dat abases=LI ST

Specifies the list of non-InnoDB tables to back up. The argument specifies a space-separated list of
database or table names of the following form:

"db_nane[.tabl e_nanme] db_nanel[.table nanel] ..."

If the specified values do not match any database or table, then no non-InnoDB data files are backed
up. See Making a Partial Backup with the Legacy Options for details.

By default, all non-InnoDB tables from all databases are backed up.

the databases or tables it specifies. To filter InnoDB data files, use the - -

Note
@ The option has no filtering effects on the InnoDB data files (. i bd files) for
i ncl ude option instead.

e --databases-list-fil e=PATH

129

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table

Legacy Partial Backup Options

Specifies the pathname of a file that lists the non-InnoDB tables to be backed up. The file contains
entries for databases or fully qualified table names separated by newline or space. The format of the
entries is the same as for the - - dat abases option:

db_nane[. t abl e_nane]
db_nanel[.t abl e_nanel]

Remove any white spaces surrounding the database or table names, as the white spaces are
not removed automatically. Begin a line with the # character to include a comment. No regular
expressions are allowed.

If the specified entries do not match any database or table, then no non-InnoDB data files are backed
up.

the databases or tables it specifies. To filter InnoDB data files, use the - -
i ncl ude option instead.

Note
@ The option has no filtering effects on the InnoDB data files (. i bd files) for
--only-innodb-with-frnf={all|rel ated}]
Back up only InnoDB data, log files, and the . f r mfiles associated with the InnoDB tables.
e --only-innodb-w t h-frmral | includes the . f r mfiles for all InnoDB tables in the backup.

e --only-innodb-w t h-frmerel at ed, in combination with the - - i ncl ude option, copies only
the . f r mfiles for the tables that are included in the partial backup.

e --onl y-innodb-w t h-frmwith no argument is the same as - - onl y-i nnodb-wi t h-
frmer el at ed.

Note

S For incremental backups, even only changed . i bd files are backed up, . frm
files associated with all specified InnoDB tables are included.

This option saves you having to script the backup step for InnoDB . f r mfiles, which you would
normally do while the server is put into a read-only state by a FLUSH TABLES W TH READ LOCK
statement. The . f r mfiles are copied without putting the server into a read-only state, so that the
backup operation is a true hot backup and does not interrupt database processing. You must ensure
that no ALTER TABLE or other DDL statements change . f r mfiles for InnoDB tables while the
backup is in progress. If mysql backup detects changes to any relevant . f r mfiles during the
backup operation, it halts with an error. If it is not practical to forbid DDL on InnoDB tables during the
backup operation, use the - - onl y-i nnodb option instead and use the traditional method of copying
the . f r mfiles while the server is locked.

All files created by other storage engines are excluded. Typically used when no connection to

nysql d is allowed or when there is no need to copy MyISAM files, for example, when you are sure
there are no DDL changes during the backup. See Making a Partial Backup with the Legacy Options
for instructions and examples.

The option is not compatible with the - - sl ave- i nf o option.

Default: backups include files from all storage engines.

130

https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

Single-File Backup Options

e o --use-tts[=w th-m ni mun| ocki ng|wi th-full-1ocking}]

Enable selective backup of InnoDB tables using transportable tablespaces (TTS). This is to be
used in conjunction with the - - i ncl ude option, which selects the InnoDB tables to be backed up
by a regular expression. Using TTS for backups offers the following advantages:

» Backups can be restored to a different server
» The system tablespace is not backed up, saving disk space and I/O resources

« Data consistency of the tables is managed by MySQL Enterprise Backup
See important discussions here on the limitations with using the - - use- t t s option.

There are two possible values for the option:

« wi th-m ni mum | ocki ng: Hot copies of the selected tables are backed up, and the tables are
then locked in read-only mode while the redo log (with only the portion containing the relevant
changes made after the hot backup) is being included in the backup. Any tables created during
the locking phase are ignored.

« wi th-full-1locking: The selected tables are locked in read-only mode while they are being
backed up. The redo log is not included in the backup. Any tables created during the locking
phase are ignored.

Default: back up with minimum locking

There are some special requirements for restoring backups created with the - - use-t t s option;
see the explanations in Section 5.2, “Performing a Restore Operation” for details.

14.9 Single-File Backup Options

These options are associated with single-file backups. You use them in combination with the
nmysql backup commands backup-t o-i mage, i mage-t o- backup-di r, backup-di r-to-inage,
I'ist-inmage, and extract . For usage examples, see Section 4.3.5, “Making a Single-File Backup”.

e --backup-i mage=I MAGE

Command-Line Format - - backup-i nage=I MAGE

Type File name

Specify the path name of the file used for a single-file operation. By default, the single-file backup
is streamed to standard output, so that you can pipe it directly to other commands such as a tape
backup or an ssh-related network command.

You can optionally prefix the image name with fi | e: to signify a file I/O (the default). For tape
backups, prefix the image name with sht : . See Section 4.3.5.2, “Backing Up to Tape” for details
about tape backups.

e --src-entry=STRI NG

Command-Line Format --src-entry=STRI NG

Type Path name

Identifies files or directories whose pathnames contain the STRING to be extracted from a single-
file backup. This option is used with the ext r act command. Optionally, you can also specify the - -
dst - ent r y option to extract a file or directory to a location different from its original path name.

131

Single-File Backup Options

For example: src-entry=d1/ f 2 extracts only one file, f 1, while src- ent ry=d1/ extracts the
entire directory tree for the d1 folder (notice the slash (/) at the end of the argument, without which
all files or folders containing the string d1 in their pathnames will be extracted).

Default: All entries are extracted.

Notes
@ » The following items are always extracted from the backup, irrespective
of the value of - - sr c- ent ry (and the locations of their extraction are
unaffected by the - - dst - ent r y option):

» The file backup-ny. cnf.

e Adat adi r folder (which only contains items matched by the - - sr c-
ent ry option).

» A net a folder, which contains the file backup_vari abl es.txt,a
log file for the extract operation, and also items matched by the - - sr c-
ent ry option.

« The option is currently not supported for the ext r act command for cloud
backups, which can only be extracted in full.

e --dst-entry=PATH

Command-Line Format --dst-entry=PATH

Type Path name

Used with single-file backups to extract a single file or directory to a user-specified path. Use of this
option requires specifying the - - sr c- ent r y option. This option specifies the destination path for
the entry selected from the backup image by - - sr c- ent ry. The entry could point to a single file or
single directory. For example, to retrieve the comments file from a backup image and store it as /

t mp/ my- comrent s. t xt, use a command like the following:

nmysql backup --src-entry=neta/ comments.txt \
--dst-entry=/tnp/ ny-comments.txt \
- - backup- i mage=/ var/ nyi mage. bki extract

Similarly, to extract all the contents of the dat adi r/ pet s/ directory in a single-file backup as /
pet s- extract ed/, use a command like the following:

nysql backup --src-entry=datadir/pets/ \
--dst-entry=/pets-extracted/ \
- - backup- i mage=/ var/ nyi mage. bki extract

The specified path is a simple path name without any wildcard expansion or regular expressions.
In case the argument for - - sr c- ent r y matches multiple files or folders, they are all extracted into a
folder whose pathname, relative to the destination folder, is given by the argument of - - dst -entry

(unless the argument specifies an absolute path).

Default: Original pathnames are used to create files under the destination folder.

e --sbt - dat abase- nane=NAVE

Command-Line Format - - sht - dat abase- nane=NAME

Type String

132

Performance / Scalability / Capacity Options

Default Value

[WsQ

For tape backups, this option can be used as a hint to the Media Management Software (MMS) for
the selection of media and policies. This name has nothing to do with MySQL database names. It is
a term used by the MMS. See Section 4.3.5.2, “Backing Up to Tape” for usage details.

e --sbt-1ib-pat h=PATH

Command-Line Format

--sbt-1ib-pat h=PATH

Type

File name

Path name of the SBT library used by the software that manages tape backups. If this is not
specified, operating system-specific search methods are used to locate | i bobk. so (UNIX) or
orasbt. dl | (Windows). See Section 4.3.5.2, “Backing Up to Tape” for usage details.

e --sbt-environnment =VAR=val ue,...

Command-Line Format

--sht-
envi ronnent =VARL=val uel[, VAR2=val ue2|
SBT APl provider)

Type

String

Passes product-specific environment variables to Oracle Secure Backup or another SBT-compliant
backup management product, as an alternative to setting and unsetting environment variables before

and after each nmysql backup invocation.

The parameter to this option is a comma-separated list of key-value pairs, using
syntax similar to that of the RMAN tool for the Oracle Database. For example, - - sbt -
envi ronnent =VARL=val 1, VAR2=val 2, VAR3=val 3.

Consult the documentation for your backup management product to see which of its features can be
controlled through environment variables. For example, the Oracle Secure Backup product defines
environment variables such as OB_MEDI A_FAM LY, OB_DEVI CE, and OB_RESOURCE_WAI T_TI ME.
You might set such variables with the nysql backup by specifying an option such as - - sbt -

envi ronnent =" OB_MEDI A FAM LY=ny_nf, OB_DEVI CE=ny_t ape".

If the argument string contains any whitespace or special characters recognized by the
command shell, enclose the entire argument string in quotation marks. To escape an equal
sign or comma, use the \ character. For example, - - sbt - envi ronnent =" VARL=nul t i pl e
wor ds, VAR2=<angl e_br acket s>, VAR3=2+2\ =4" .

e --di sabl e- mani f est

Disable generation of manifest files for a backup operation, which are backup_creat e. xnm and
backup content. xmn presentin the net a subdirectory.

14.10 Performance / Scalability / Capacity Options

These options limit the resources used by the backup process, in order to minimize backup overhead
for busy or huge databases, or specify behaviors of the process when encountering resource issues.

e --number - of - buf f er s=num buffers

Command-Line Format

- - nunber - of - buf f er s=NUVBER

Type Numeric
Default Value 14
Minimum Value 1

133

http://docs.oracle.com/cd/E14812_01/doc/doc.103/e12838/rman_params.htm
http://docs.oracle.com/cd/E14812_01/doc/doc.103/e12838/rman_params.htm

Performance / Scalability / Capacity Options

Specifies the number of buffers, each 16MB in size, to use during multithreaded options.

Use a high number for CPU-intensive processing such as backup, particularly when using
compression. Use a low number for disk-intensive processing such as restoring a backup. This value
should be at least as high as the number of read threads or write threads, depending on the type of
operation.

Default: currently 14.

For compression or incremental backup operations, the buffer size is slightly more than 16 MB to
accommodate the headers.

One additional buffer is used for single-file incremental backup and single-file compressed backup.

Compressed backup, compressed single-file backup, and uncompress apply-log operations require
one additional buffer for each process thread.

If you change the number of read, write, and processing threads, you can experiment with changing
this value so that it is slightly larger than the total number of threads specified by those other
options. See Section 7.1, “Optimizing Backup Performance” and Section 7.2, “Optimizing Restore
Performance” for additional advice about recommended combinations of values for this and other
performance-related options for various hardware configurations, such as RAID or non-RAID storage
devices.

--read-t hreads=num t hr eads

Command-Line Format - -read-t hr eads=NUVBER
Type Numeric

Default Value 1

Minimum Value 1

Maximum Value 15

Specifies the number of threads to use for reading data from disk.

Default: currently 1. This default applies to these kinds of operations: copy- back, ext ract, and
backup. If you specify a value of 0, it is silently adjusted to 1. The maximum is 15; if you supply a
negative value, it is silently adjusted to 15. For appl y- | og operations, the number of read threads
is always 1 regardless of this option setting. See Section 7.1, “Optimizing Backup Performance”

and Section 7.2, “Optimizing Restore Performance” for advice about recommended combinations of
values for - - read-t hr eads, - - process-t hreads, and - -wri t e-t hr eads for various hardware
configurations, such as RAID or non-RAID storage devices.

e --process-threads=num t hr eads

Command-Line Format --process-t hr eads=NUVBER
Type Numeric

Default Value 6

Minimum Value 1

134

Performance / Scalability / Capacity Options

Maximum Value 15

Specifies the number of threads to use for processing data, such as compressing or uncompressing
backup files.

Default: currently 6. This default applies to these kinds of operations: ext r act , and backup. It
is ignored when you use any of the options - - i ncrenent al - wi t h-redo-1 og-only, appl y-
i ncrement al - backup, copy- back, or backup-dir-to-imge.

If you specify a value of 0, it is silently adjusted to 1. The maximum is 15; if you supply a negative
value, it is silently adjusted to 15. For appl y- | og operations, the number of process threads is
always 1 regardless of this option setting. See Section 7.1, “Optimizing Backup Performance” and
Section 7.2, “Optimizing Restore Performance” for advice about recommended combinations of
values for - - r ead-t hr eads, - - process-t hreads, and - -wri t e-t hr eads for various hardware
configurations, such as RAID or non-RAID storage devices.

e --wite-threads=numt hreads

Command-Line Format

--wite-threads=NUVBER

Type

Numeric

Default Value 1
Minimum Value 1
Maximum Value 15

Specifies the number of threads to use for writing data to disk.

Specifies the number of threads to use for writing data to disk. This option applies to these kinds of
operations: copy- back, copy- back- and- appl y- I og, ext ract, backup-t o-i nage, backup,
and backup- and- appl y- | og. Multiple write threads are supported for any write target that is
seekable; - -wri t e-t hr eads is forced to be 1 only when the write target is non-seekable (e.qg.,
when the backup is written to st dout , to tape, or to cloud storage). The option is ignored when used
with other single-file backup operations like | i st - i nage or val i dat e

If you specify a value of 0, it is silently adjusted to 1. The maximum is 15; if you supply a negative
value, it is silently adjusted to 15. For appl y- | og operations, the number of write threads is

always 0 regardless of this option setting. See Section 7.1, “Optimizing Backup Performance” and
Section 7.2, “Optimizing Restore Performance” for advice about recommended combinations of
values for - - read-t hr eads, - - process-t hreads, and - -wri t e-t hr eads for various hardware

configurations, such as RAID or non-RAID storage devices.

Default: 1.

e --limt-nmenory=NMB

Command-Line Format

--limt-nmenory=NMB

Type

Numeric

Default Value

100 for apply-log (w thout
unconpression), 400 for other
operations

Minimum Value 0
Maximum Value 999999
Unit megabyte

135

Performance / Scalability / Capacity Options

Specify maximum memory in megabytes that can be used by nysql backup. Formerly applied only
to appl y- | og operation, but in MySQL Enterprise Backup 3.8 and higher it applies to all operations.
Do not include any suffixes such as nb or kb in the option value.

Default: 100 for appl y- | og not used with - - unconpr ess, 400 for all operations (in megabytes).

The memory limit specified by this option also caps the number of 16MB buffers available for
multithreaded processing. For example, with a 400 MB limit, the maximum number of buffers is 25
(except for a cloud backup, for which extra memory is needed, and the maximum number of buffers
is 18). If additional buffers are required because you increased the values for - - r ead- t hr eads, - -
process-threads,--wite-threads, and/or - - nunber - of - buf f er s, increasethe --1init-
nmenory value proportionally.

* --sl eep=MB
Command-Line Format --sl eep=M5
Type Numeric
Default Value 0
Unit millisecond

Specify the number in milliseconds to sleep after copying a certain amount of data from InnoDB
tables. Each block of data is 1024 InnoDB data pages, typically totalling 16MB. This is to limit the
CPU and I/O overhead on the database server.

Default: 0 (no voluntary sleeps).

* --no- | ocking

Disables locking during backup of non-InnoDB files, even if a connection is available. Can be
used to copy non-InnoDB data with less disruption to normal database processing. There could be
inconsistencies in non-InnoDB data if any changes are made while those files are being backed up.

e --lock-wait-timeout
Command-Line Format --l ock-wait-tinmeout=S
Introduced 3.12.4
Type Numeric
Default Value 60
Minimum Value 1
Unit second

Specify the timeout in seconds for the FLUSH TABLES W TH READ LOCK statement, which

nysql backup issues during the final stage of a backup to temporarily put the database into a read-
only state. If the timeout is exceeded, the statement is failed and the lock on the tables is released,
so that queries held up by the lock can then be executed. mysql backup then retries the statement
and continues with the backup. The timeout prevents the case in which a long query running on the
server prevents the FLUSH TABLES W TH READ LOCK statement from finishing, holding up further
queries and eventually bringing down the server. Default is 60. Minimum value is 1.

e --page-reread-ti me=Ms

Command-Line Format - - page-reread-ti me=Ms
Type Numeric
Default Value 100

136

Performance / Scalability / Capacity Options

Unit

millisecond

Interval in milliseconds that mysql backup waits before re-reading a page that fails a checksum
test. A busy server could be writing a page at the same moment that mysql backup is reading it.
Can be a floating-point number, such as 0.05 meaning 50 microseconds. Best possible resolution is
1 microsecond, but it could be worse on some platforms. Default is 100 milliseconds (0.1 seconds).

* --page-reread-count=retry limt

Command-Line Format

- - page- r er ead- count =nunber

Type

Numeric

Default Value

500

Maximum number of re-read attempts, when a page fails a checksum test. A busy server could be
writing a page at the same moment that mysql backup is reading it. If the same page fails this many
checksum tests consecutively, with a pause based on the - - page- r er ead- t i ne option between

each attempt, the backup fails. Default is 500.

e --on-di sk-full ={abort|abort_and_renove| war n}

Command-Line Format

--on-di sk-ful |l =option

Type Enumeration
Default Value abort
Valid Values abort

war n

abort _and_renove

Specifies the behavior when a backup process encounters a disk-full condition. This option is only

for backup operations (backup, backup- and- appl y-1 og, and backup-t o-i mage).

e abort : Abort backup, without removing the backup directory. The disk remains full.

e abort _and_r enove: Abort backup and remove the backup directory.

« war n: Write a warning message every 30 seconds and retry backup until disk space becomes

available.
Default: abort .

e --ski p-unused- pages

Skip unused pages in tablespaces when backing up InnoDB tables. This option is applicable to the
backup and backup-t o-i nmage operations, but not to incremental backups. The option is ignored

by the backup- and- appl y- | og operation.

Note that backups created with the - - ski p- unused- pages option cannot be restored using copy-

back- and- appl y- | og.

Unused pages are free pages often caused by bulk delete of data. By skipping the unused pages

during backups, this option can reduce the backup sizes and thus the required disk space and 1/0O
resources for the operations. However, subsequent appl y- | og operations on the backups will take
more time to complete, as the unused pages are inserted back into the tables during the operations.

137

https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_page
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_page

Performance / Scalability / Capacity Options

» --skip-binlog

Skip including the binary log files in the backup during a backup operation, or skip copying the
binary log files onto a server during a restore operation.

Binary log files, together with the binary log index file, are included by default for all kinds of online
backups (full, incremental, compressed, partial, single-file, etc.). See Table 1.1, “Files in a MySQL
Enterprise Backup Output Directory”, for details. Use this option to skip backing up binary logs for the
following situations:

« If resource or performance issues arise.

« If any binary log files are missing on the server you are backing up, in order to avoid
mysql backup throwing an error for the missing files.

« If you are making an incremental backup that is based on a backup (full or incremental)
created using the - - no- | ocki ng option, as binary log information will then be unavailable to
mysql backup in that situation.

The binary log files and the binary log index file, when included in a backup, are always copied into
the restored server's data directory during a restore operation; if that is not the behavior you desire,
use this option to skip the restoring of the binary log.

--ski p-rel ayl og

When working with a replica server, skip including the relay log files in the backup during a backup
operation, or skip copying the relay log files onto a server during a restore operation.

Relay log files, together with the relay log index file and the mast er . i nf o and the sl ave. i nfo
files, are included by default for all kinds of online backups (full, incremental, compressed, partial,
single-file, etc.) of a replica server. See Section 1.4, “Files that Are Backed Up”, for details. Use this
option to skip backing up relay logs if resource, performance, or other issues arise.

Note
@ If a user runs a FLUSH LOGS statement while backup is in progress for a
replica, the backup process will fail. Use the- - ski p-r el ayl og option if you
expect a FLUSH LOGS statement will be run during the backup and it is not
necessary to include the relay logs in the backup.
The relay log files and the files backed up together with them, when included in a backup, are always
copied into the restored server's data directory during a restore operation; if that is not the behavior
you desire, use this option to skip the restoring of the relay log.

--skip-final-rescan

Skip the final rescan for InnoDB tables that are modified by DDL operations after the database has
been read-locked near the end of a backup operation. This potentially shortens the duration for the
lock and reduces the backup's impact on the server's normal operation, especially when many tables
are being backed up.

Warning
O This option can cause an incomplete or inconsistent backup if, during the
backup operation, DDL operations are executed on any InnoDB tables whose
file-per-table tablespaces are outside the MySQL data directory (i.e., any
InnoDB tables created using the DATA DI RECTCORY table option).
The option is ignored for backups using the - -i ncremrent al -wi t h-r edo- | og- onl y option and
for non-backup operations.

138

https://dev.mysql.com/doc/refman/5.6/en/flush.html
https://dev.mysql.com/doc/refman/5.6/en/flush.html
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/innodb-create-table-external.html

Performance / Scalability / Capacity Options

e --10g-bin-i ndex[=PATH]

Command-Line Format

- -1 0g- bi n-i ndex=FI LENANMVE

Type

File name

Default Value

dat a_di r/ host _nane- bi n. i ndex

For MySQL 5.5 and earlier, as well as all offline backups: specify the absolute path (including file
name and extension) of the index file on the MySQL server that lists all the used binary log files, if it
is different from the default path given below, in order to include the binary log files in the backup.

Default: dat a_di r/ host _nane- bi n. i ndex.

o --relay-1 og-i ndex[=PATH|

Command-Line Format

--rel ay-1 og-i ndex=FI LENAVE

Type

File name

Default Value

dat a_di r/ host _nane-rel ay- bi n. i ndex

For offline backups of replica servers only: specify the absolute path (including file name and
extension) of the index file on the MySQL server that lists all the used relay log files, if it is different
from the default path given below, in order to include the relay log files in the backup.

Default: dat a_di r/ host _nane-rel ay- bi n. i ndex.

o --master-info-fil e[=PATH|

Command-Line Format

--master-info-fil e=FI LENAVE

Type

File name

Default Value

data dir/master.info

For offline backups of replica servers only: specify the absolute path (including file name and
extension) of the information file in which a replica records information about its source, if it is
different from the default path given below, in order to include the information file in the backup.

Default: dat a_di r/ mast er. i nf o.

 --relaylog-info-fil e[=PATH]|

Command-Line Format

--relayl og-info-fil e=FI LENAMVE

Type

File name

Default Value

data dir/relay-1og.info

For offline backups of replica servers only: specify the absolute path (including file name and
extension) of the information file in which a replica records information about the relay logs, if it is
different from the default path given below, in order to include the information file in the backup.

Default: dat a_di r/rel ay-1 og. i nf o.

e --optimstic-tinme[=DATE- TI Mg]

Command-Line Format

--optimstic-ti ne=DATE- Tl ME

Type

String

Default Value

now

Perform an optimistic backup with the value specified with the option as the “optimistic time"’—a
time after which the tables that have not been modified are taken as “inactive tables.” The “inactive

139

Message Logging Options

tables”are believed to be unlikely to change during the backup process. The inactive tables are
backed up in the optimistic phase of the backup, and all other tables are backed up in the normal
phase. See Section 4.3.6, “Making an Optimistic Backup” for details on the concept, use cases, and
command samples for an optimistic backup.

Accepted formats for specifying the option include:

e now: This includes all tables into the optimistic phase of the backup process. It is the default value
for the option when no value is specified.

* {Number }{ Uni t } : Indicates the optimistic time as a time at a certain duration into the past.
{Uni t} can be any one of year s, nont hs, hour s, and ni nut es. Some examples for option
strings in this format include: 5year s, 2days,13nont hs, 23hour s, and 35mi nut es.

« A date-time format in any of the following forms: YYMVDD, YYYYMVDD, YYMVDDHHWVSS,
YYYYMVDDHHWES, YY- MM DD, YYYY- MMt DD, YY- Mt DD HH. MM SS, or YYYYMVDDTHHMWVES
(where T is the character T).

When both the opti mi stic-tine andthe opti m stic-busy-tabl es options are used and
they come into conflict on determining which tables are to be backed up in the optimistic phase,
optim stic-busy-tabl es takes precedence over opti m stic-tine.

e --optimstic-busy-tabl es=REGEXP

Command-Line Format --optimstic-busy-tabl es=REGEXP

Type String

Perform an optimistic backup, using the regular expression specified with the option to select
tables that will be skipped in the first phase of an optimistic backup, because they are likely
to be modified during the backup process. Tables whose fully qualified names (in the form of
dat abase_nane.t abl e_nane) are matched by the regular expression are taken as “busy tables”,
which will be backed up in the second or the “normal” phase of the backup. Tables whose fully
qualified names are NOT matched by the regular expression are taken as “inactive tables”, which
will be backed up in the first or the “optimistic” phase of the backup. See Section 4.3.6, “Making an
Optimistic Backup” for details on the concept, use cases, and command samples for an optimistic
backup.

MySQL Enterprise Backup will throw an error if the option is used but no regular expression is
supplied with it.

When both the opti mi stic-tinme andthe optimi stic-busy-tabl es options are used and they
come into conflict on determining which tables are to be “optimistic”, opt i mi sti c- busy-t abl es
takes precedence over opti m stic-tine.

» --free-os-buffers
(For release 3.12.3 and later) Free the system buffer cache at the end of a backup operation by
syncing all data from the buffer cache to the hard disk. Using the option might increase the backup
time significantly for systems with slow storage devices and databases with many tables.

Default: Automatic syncing disabled.

14.11 Message Logging Options

nmysql backup writes important progress and error information to the st der r stream. The information
is often very valuable for tracking down problems that occur during an operation. Starting from MySQL
Enterprise Backup 3.9, the output to the st der r stream is also saved to a log file by default (for most

nmysql backup operations), so that the error information can be easily accessed in any debug process.

140

Message Logging Options

The message logging works like a t ee process on a Unix-like system, in which the output of a program
is split to be both displayed and saved to a file. The log file thus produced is named in the following
format: MEB_ti nest anp_oper ati on. | og, where oper ati on is the nysql backup operation that
was run (e.g., backup, appl y- 1 og, etc.), and t i nest anp is the date and time at which the operation
was run. Here are some examples of names for the log files:

MEB_2013- 06- 24. 16- 32- 43_backup. | og

MEB _2013- 06-28. 11-07-18_appl y_I og. | og
MEB_2013- 06- 29. 10- 08-06_1 i st _i mage. | og

The following options control the message logging function:

» --ski p-nmessages-| ogdir
Skip message logging. Logging is turned on by default (except for the | i st - i nage and val i dat e
operations; see the description for the - - nessages- | ogdi r option for details), and it is turned off

by this option.

* --nessages-| ogdi r=path

Command-Line Format --messages- | ogdi r =PATH
Type Directory name
Default Value backup_dir/nmeta

Specifies the path name of an existing directory for storing the message log. If the specified directory
does not exist, message logging fails and returns an error message. When this option is omitted, the
default directory of backup_di r/ net a is used, where backup_di r is the directory specified with
the - - backup- di r option.

Note

@ Use this option to turn on message logging for the | i st -1 nage and
val i dat e operations. Message logging is turned off by default for the
two operations, because they do not modify any files and a message log
is usually not required for debugging them. And because the default path
name of backup_di r/ net a is not meaningful for the two operations, this
option is required for both turning on message logging and for supplying
the path name of a directory in which to save the log file. However, if the - -
ski p- messages- | ogdi r option is also specified, it takes precedence and
message logging is skipped.

The following are some examples showing how the message logging is controlled.

This creates a log file for the backup operation in the directory / hone/ backup_di r/ net a due to the
default settings:

nmysql backup -uroot --port=3306 --backup-dir=/honme/backup_dir backup

This skips message logging for the backup operation:

nmysql backup -uroot --port=3306 --backup-dir=/home/backup_dir \
--ski p- messages- 1 ogdi r backup

This creates a log file for the appl y- | og operation in an existing directory named / hone/
t eel og_di r, rather than the default location:

nmysql backup -uroot --port=3306 --backup-dir=/home/backup_dir \
--messages- | ogdi r=/ honme/ t eel og_dir appl y-1 og

This creates a log file for the | i st - i mage operation in an existing directory named / hone/
teelog_dir:

141

Progress Report Options

nmysql backup -uroot --port=3306 --backup-image=/backup/ my.nbi \
--messages-| ogdi r=/ honme/ teel og_dir |ist-image

14.12 Progress Report Options

There are two options for controlling the progress reporting function of mysql backup: - - show
progress and - - progress-interval:

e --show progress[={stderr|stdout|file:FILENAVE|fifo:Fl FONAVE| t abl e|
vari abl e}]

Command-Line Format - -show progress[=desti nati ons]
Type Enumeration
Valid Values stderr

st dout

file: Fl LENAVE
fifo:Fl FONAVE
t abl e

vari abl e

The option instructs nmysql backup to periodically output short progress reports known as progress
indicators on its operation.

The argument of the option controls the destination to which the progress indicators are sent:

« st derr: Progress indicators are sent to the standard error stream. The report is embedded in a
time-stamped nysql backup INFO message. For example:

130607 12:22: 38 nysql backup: I NFO Progress: 191 of 191 MB; state: Conpleted

e st dout : Progress indicators are sent to the standard output stream. A single newline character is
printed after each progress indicator.

file: FI LENAME: Progress indicators are sent to a file. Each new progress report overwrites the
file, and the file contains the most recent progress indicator followed by a single newline character.

fifo: FI FONAMVE: Progress indicators are sent to a file system FIFO. A single newline character is
printed after each progress indicator.

Warning
o If there is no process reading the FIFO, the mysql backup process hangs
at the end of the execution.

t abl e: Progress indicators are sent to the nmysql . backup_pr ogr ess table. This

requires a connection to the MySQL server, and therefore, only works when backing up a
running MySQL instance. nysql backup first adds one row of the progress report to the

nysql . backup_progr ess table, and then updates the row afterwards with the latest progress
indicator. The progress indicator is stored in the cur r ent _st at us column of the table.

If the backup locks the MySQL instance (for example, by issuing a FLUSH TABLES W TH READ
LOCK statement), the progress reports are not delivered to the nmysql . backup_progr ess table
until the MySQL instance is unlocked.

e vari abl e: Progress indicators are sent to the system variable backup_pr ogr ess.

142

Progress Report Options

Warning
o The system variable backup_pr ogr ess is not yet defined for the MySQL
Server. Users need to create their own plugin to define the variable. See
The MySQL Plugin API for more information on user plugins.
When there is no argument specified for - - show pr ogr ess, progress indicators are sent to
stderr.

Progress can be reported to multiple destinations by specifying the - - show pr ogr ess option
several times on the command line. For example the following command line reports progress of the
backup command to st derr and to a file called neb_out put :

nysql backup --show progress --show progress=file: meb_output --backup-dir=/full-backup
backup

The progress indicators are short strings that indicate how far the execution of a nysql backup
operation has progressed. A progress indicator consists of one or more meters that measure the
progress of the operation. For example:

Progress: 100 of 1450 MB; state: Copying .ibd files

This shows that 100 megabytes of a total of 1450 megabytes have been copied or processed so far,
and mysql backup is currently copying InnoDB data files (. i bd files).

The progress indicator string begins with Pr ogr ess: , followed by one or more meters measuring
the progress. If multiple meters are present, they are separated by semicolons. The different types of
meters include:

« Total data meter: It is always the first meter in the progress indicator. It is in the format of:

DATA of TOTAL UNIT

DATA and TOTAL are unsigned decimal integers, and UNIT is either MB (megabytes), KB
(kilobytes), or bytes (1IMB=1024KB and 1KB=1024 bytes).

The total data meter has two slightly different meanings depending on the nysql backup
operation:

» The amount of data copied or processed and the total amount of data to be copied or processed
by the nysql backup operation. For example:

Progress: 200 of 1450 MB

When the operation is for, e.g., backup, the indicator means 200MB is copied of 1450MB. But
when the operation is for, e.g., val i dat e ori ncrenent al , it means 200MB is processed out
of 1450MB.

» Total amount of data copied or processed and an estimate for the total that will be copied by
the end of the operation. The estimated total is updated as per the data on the server, as the
execution of the command progresses.

For some operations such as backup, it is not possible to know exactly at the start of the
execution how much data will be copied or processed. Therefore, the total data meter shows the

143

https://dev.mysql.com/doc/extending-mysql/5.6/en/plugin-api.html

Progress Report Options

estimated amount of the total data for a backup. The estimate is updated during the execution of
the command. For example:

Progress: 200 of 1450 MB
is followed by:
Progress: 200 of 1550 MB

when 100MB of data is added on the server.

If the operation is successful, the final progress indicator shows the actual amount of data
copied at the end of the operation.

« Compression meter: It indicates the sliding average of the compression ratio, which is defined for

each block of data that is compressed as (ori g_si ze - conpressed_size) / orig_size.
For example:

conpr essi on: 40%

This means that after compression, the data takes 40% less space (calculated as an average over
the last 10 data blocks).

The compression meter is included in the progress indicator if the - - conpr ess option is enabled
for the nysql backup operation. The value of the compression meter is undefined until at least 10
data blocks have been compressed. The undefined meter value is denoted by the '-' in the meter:

conpr essi on:

< State meter: It is a short description of the major step the command is currently executing. For

example:

state: Copying |nnoDB data

state: Waiting for |ocks

state: Copying systemtabl espace

state: Copying .ibd files

state: Copyi ng non-lnnoDB data

state: Conpl eted

Here are some examples of progress indicators with different meters:

Progress: 300 of 1540 MB;

Progress: 400 of 1450 MB;

state: Waiting for |ocks

state: Copying |nnoDB data: conpression: 30%

The exact set of meters included in the progress indicator depends on the command and the options

used for it.

e --progress-interval =SECONDS

Command-Line Format - - progress-interval =SECONDS
Type Numeric

Default Value 2

Minimum Value 1

Maximum Value 100000

144

Encryption Options

Unit second

Interval between progress reports in seconds. Default value is two seconds. The shortest interval is
1 second and the longest allowed interval is 100000 seconds.

14.13 Encryption Options

These options are for creating encrypted single-file backups and for decrypting them. See Chapter 8,
Encryption for Backups for more details and usage examples for the encryption and decryption
functions of MySQL Enterprise Backup.

« --encrypt

Encrypt the data when creating a backup image by a backup-t o- i nage operation, or when
packing a backup directory into a single file with the backup- di r - t o- i rage command. It cannot
be used with the backup or backup- and- appl y- | og command.

e --decrypt

Decrypt an encrypted backup image when performing an ext r act, i nage-t o- backup-dir,
or copy- back- and- appl y- | og operation. It is also used for performing aval i date orl i st -
i mage operation on an encrypted backup image.

The option cannot be used in a appl y- | og, backup- and- appl y-1 og, or copy- back operation.
For restoration using the copy- back command, the encrypted backup image has to be unpacked
and decrypted first using the i mage-t o- backup-di r or extract command, together with the - -
decrypt option.

* --key=STRI NG

Command-Line Format - - key=KEY
Type String

The symmetric key for encryption and decryption of a backup image. It should be a 256-bit key,
encoded as a string of 64 hexadecimal digits. See Chapter 8, Encryption for Backups on how to
create a key. The option is incompatible with the - - key-f i | e option.

» --key-fil e=PATH

Command-Line Format --key-file=FILE

Type File name

The pathname to file that contains a 256-bit key, encoded as a string of 64 hexadecimal digits, for
encryption and decryption of a backup image. The option is incompatible with the - - key option.

14.14 Cloud Storage Options

These options are for using cloud storage for single-file operations. See Section 4.3.5.3, “Backing Up
to Cloud Storage”, and Section 5.2.6, “Restoring a Backup from Cloud Storage to a MySQL Server”, for
more information and instructions on using cloud storage with MySQL Enterprise Backup.

e --cl oud-servi ce=SERVI CE

Cloud service for data backup or restoration. Currently, there are two types of cloud storage services
supported by nysql backup, represented by the following values for the options:

e openst ack: OpenStack Swift or compatible object storage services (for example, Oracle Cloud
Infrastructure Object Storage and Oracle Cloud Infrastructure Object Storage Classic).

145

Cloud Storage Options

« s3: Amazon Simple Storage Service (S3).

Note
g Due to some issues, Amazon S3 is currently not supported by MySQL
Enterprise Backup 3.12.

e --cloud-trace

Print trace information for cloud operations. It works independently of - - t r ace, which specifies the
trace level for the non-cloud operations of mysql backup. Any non-zero value for the option enables
the trace function.

Default value is “0.”
e --cl oud- proxy=proxy-url: port

Proxy address and port number for overriding the environment's default proxy settings for accessing
a cloud storage service.

Note
@ The | i st -i nage operation can be performed on a cloud backup only if the
cloud proxy supports HTTP range headers.

e --cloud-ca-i nf o=PATH

(For release 3.12.3 and later) Absolute path to the CA bundle file for host authentication for SSL
connections. When the option is specified, the usage of the CA bundle file is preferred over the
usage of individual . pemfiles for host authentication. .

e --cl oud- ca- pat h=PATH

(For release 3.12.3 and later) CA certificate directory, in addition to the system's default folder.

» Options used only for OpenStack Swift (using them when the argument for - - cl oud- servi ce is
anything other than openst ack will cause nysql backup to throw an error):

¢ --cl oud-cont ai ner =SW FT_CONTAI NER

The Swift container for the backup image. For Oracle Cloud Infrastructure (OCI) Object Storage,
this is the object storage bucket.

e --cl oud-obj ect =SW FT_OBJECT

The Swift object for the backup image. Note that names of objects within the same container (or
bucket, for OCI Object Storage) have to be unique.

e --cloud-user-id=SWFT_USER | D

User ID for accessing Swift. The user credentials are authenticated using the Swift TempAuth
identity system when the - - cl oud- t enpaut h- ur | option is used and by the OpenStack
Keystone identity service when the - - cl oud-i dentity-url option is used.

¢ --cl oud- passwor d=SW FT_PASSWORD

Password for accessing Swift for the user specified by the - - cl oud- user - i d option. The user
credentials are authenticated using the Swift TempAuth identity system when the - - ¢l oud-

146

Options for Special Backup Types

t enpaut h- ur | option is used and by the OpenStack Keystone identity service when the - -
cl oud-identity-url option is used.

e --cl oud-tenpaut h-url =SW FT_TEMPAUTH URL

The TempAuth URL for authenticating user credentials. Either this option or - - cl oud-
i dentity-url (butnotboth) should be used when accessing a Swift service.

e --cloud-identity-url=SW FT_KEYSTONE- URL

The URL of the Keystone identity service, when it is used for authenticating user credentials.
Either this option or - - cl oud-t enrpaut h- ur | (but not both) should be used when accessing a
Swift service.

e --cl oud-tenant =SW FT_KEYSTONE- TENANT

The Keystone tenant for the user specified by - - cl oud- user - i d, when the Keystone identity
service is used for authenticating user credentials.

e --cl oud-regi on=SW FT_KEYSTONE- REG ON

The Keystone region for the user specified by - - cl oud- user - i d, when the Keystone identity
service is used for authenticating user credentials.

» Options used only for Amazon S3 (using them when the argument for - - cl oud- servi ce is
anything other than s3 will cause mysqlbackup to throw an error):

e --cl oud-bucket =S3_BUCKET
The storage bucket on Amazon S3 for the backup image.

In order to perform cloud backups and restores with the bucket, the user identified by the - -
cl oud- access- key-i d option must have at least the following permissions on the bucket:

e s3: Li st Bucket : For listing information on items in the bucket.
e s3: Li stBucket Mul ti part Upl oads: For listing multipart uploads in progress to the bucket.
e s3: Get oj ect : For retrieving objects from the bucket.
e s3: Put nj ect : For adding objects to the bucket.
e --cl oud- obj ect - key=S3_OBJECT_KEY
The Amazon S3 object key for the backup image.
e --cloud-access-key-i d=S3_KEY-1D
AWS access key ID for logging onto Amazon S3.
e --cl oud-secret-access- key=S3_ACCESS- KEY
AWS secret access key for the AWS access key id specified with - - cl oud- access- key-i d.
e --cl oud- aws-regi on=S3_REG ON

Region for Amazon Web Services that mysql backup accesses for S3.

14.15 Options for Special Backup Types

These options are for backing up database servers that play specific roles in replication, or contain
certain kinds of data that require special care in backing up.

147

Options for Special Backup Types

e --slave-info

When backing up a replica server, this option captures information needed to set up an identical
replica server. It creates a file net a/ i bbackup_sl ave_i nf o inside the backup directory,
containing a CHANGE MASTER statement with the binary log position and name of the binary log
file of the source server. This information is also printed in the mysql backup output. To set up

a new replica for this source, restore the backup data on another server, start a replica server on
the backup data, and issue a CHANGE MASTER command with the binary log position saved in the
i bbackup_sl ave_i nf o file. See Section 6.1, “Setting Up a New Replica” for instructions.

Note
@ Only use this option when backing up a replica server. Its behavior is
undefined when used on a source or non-replication server.

This option is not compatible with the - - no- | ocki ng option; using both
options together will make nmysql backup throw an error.

This option is not compatible with the - - onl y-i nnodb or - - onl y-i nnodb-
wi t h- f r moptions.

» --safe-slave- backup-ti nmeout =SECONDS

(For release 3.12.3 and later) For a statement-based replication (SBR) or a mixed-based

replication setup, the option specifies the time (in seconds) mysql backup will wait for

Sl ave_open_t enp_t abl es to become “0” (which is true when no temporary tables are open)

to complete the backup for a replica server by asserting a global read lock and copies all the non-
InnoDB tables. If the duration of the wait exceeds that specified with the option, nysql backup times
out and throws an error. The wait is for preventing nysql backup from finishing a replica backup
when there are temporary tables still open. See descriptions in Temporary tables on statement-
based replication (SBR) replica for details on how nmysql backup deals with temporary tables on a
replica server.

In addition, nysql backup also runs an initial check at the beginning of a replica backup to see if

Sl ave_open_tenp_t abl es=0 becomes true within the duration set by - - saf e- sl ave- backup-
ti meout . If it does not, mysql backup takes it as an early sign that before the backup is completed,
some temporary tables are likely to remain open after the timeout limit is exceeded; nysql backup
then throws an error, instead of continuing with the backup. When that happens, you can either
restart the backup with a higher value for - - saf e- sl ave- backup-ti neout, or retry at a time
when fewer temporary tables are being used.

Default: 300

Warning

O Proper setting of this value depends on the use case, and it can vary a lot
according to the situation. Setting the value for this option either too high or
too low will affect adversely the performance of the backup operation:

* Too high: If you need to wait for a long time for there to be no more
temporary tables, the chance is that the change rate for your database is
quite high, which means the amount of redo log data to be included in the
backup will be large and the restore time for the backup will be long. In
such a case, it would have been better to have let nysql backup timeout
and then restart the backup operation, so the tables are copied in their final
states. It is therefore not helpful to set a high timeout value for the option.
As a very general rule of thumb: even for busy databases that use many
contemporary tables, do not set the value to more than an a few hours.

148

https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Slave_open_temp_tables
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Slave_open_temp_tables

Options for Special Backup Types

« Too low: Setting the wait time value too low would make the backup
process time out very easily and when that happens, the process has to
be restarted. With a repeating cycle of restarts, the backup might then take
a long time to complete, and resources used on the failed backups will be
wasted. As a very general rule of thumb, do not set the timeout to below the
default value of 300s.

For a row-based replication (RBR) setup, temporary tables are not replicated onto the replica.

Users who are certain that SBR is not occurring for the replica can set - - saf e- sl ave- backup-

t i meout =0, with which nysql backup will not check for any open temporary tables before finishing
the backup.

- - suspend- at - end

This option pauses the nysql backup command when the backup procedure is close to ending. It
creates a file called i bbackup_suspended in the backup log group home directory and waits until
you delete that file before proceeding. This option is useful to customize locking behavior and backup
of non-InnoDB files through custom scripting.

All tables are locked before suspending, putting the database into a read-only state, unless you turn
off locking with the - - no- | ocki ng or - - no- connect i on option. The - - onl y-i nnodb and - -

onl y-innodb-wi t h-fr moptions also prevent the locking step. Because locking all tables could be
problematic on a busy server, you might use a combination of - - onl y-i nnodb and - - suspend-

at - end to back up only certain InnoDB tables.

- -exec-when-| ocked="utility arglarg2.."

Command-Line Format --exec-when-| ocked="utility argl
arg2 ..."
Type String

You can use this option to run a script that backs up any information that is not included as part of
the usual backup. For example, with - - exec- when- | ocked, you can use nysql dunp to back up
tables from the MEMORY storage engine, which are not on disk.

Set any variable you want to use within your script before you run nysql backup. In the following
example, the BACKUP_DI R environment variable is set to point to the current backup directory
(quotes are used for the argument of - - exec- when- | ocked, to prevent premature expansion of
the variable BACKUP_DI R):

On Unix or Linux systems:

export BACKUP_DI R=pat h_t o_backupdi r
nysql backup - -exec-when-| ocked="nysql dunp nydb t1 > $BACKUP_DI R/t1.sql" other_options nysql backup_cor

Or on Windows systems:

set BACKUP_DI R=pat h_t o_backupdi r
nysql backup - -exec-when-| ocked="nysql dunp nmydb t1 > %BACKUP_DI R¥t1.sql" other_options mysql backup_cc

If the utility cannot be executed or returns a non-zero exit status, the whole backup process is
cancelled. If you also use the - - suspend- at - end option, the utility specified by - - exec- when-
| ocked is executed after the suspension is lifted.

149

150

Chapter 15 Configuration Files and Parameters

You can specify nysql backup options either on the command line or as configuration parameters
inside a configuration file. This section describes the use of configuration files.

In general, nysql backup follows the mysql style of processing configuration options:

[mysqgl backup] and [client] group options are passed as command-line options. Any command-
line options that you specify override the values from the configuration file, and in the case of duplicate
options, the last instance takes precedence. mysql backup also reads options in the [mysqgl d] group
to detect parameters related to the source repository when no connection to mysql d is available.

Within mysql backup option names, dashes (-) and underscores (_) may be used interchangeably,
similar to mysql d parameters that use this same convention (see Using Options on the Command Line
in the MySQL Reference Manual for details). The MySQL server's reference manual typically lists the
parameter names with underscores, to match the output of the SHOW VARI ABLES statement.

Options Files
nysql backup reads the location of the MySQL data to back up from (in order of priority):

» The connection information from the running database, whenever possible. Thus, in most cases, you
can avoid specifying most options on the command line or in a configuration file.

» Parameters you specify on the nysql backup command line. You can specify certain options for
individual backup jobs this way.

» The MySQL configuration file (by default, my. cnf on Unix and ny. i ni on Windows). The
parameters are searched for first under the [nysql backup] group, then under the [cl i ent]
group. You can put common parameters that apply to most of your backup jobs into the configuration
file.

Because nmysql backup does not overwrite any files during the initial backup step, the backup
directory must not contain any old backup files. mysql backup stops when asked to create a file
that already exists, to avoid harming an existing backup. For convenience, specify the - - wi t h-

ti mest anp option, which always creates a unique timestamped subdirectory for each backup job
underneath the main backup directory.

Configuration Files Stored with the Backup Data

Each set of backup data includes a configuration file, backup- ny. cnf , containing a minimal set of
configuration parameters. The mysql backup command generates this file to record the settings that
apply to this backup data. Subsequent operations, such as the appl y- | og process, read options from
this file to determine how the backup data is structured.

Example 15.1 Example backup- ny. cnf file

Here is an example backup- my. cnf file generated by mysql backup:

[nysql d]

i nnodb_data_fil e_pat h=i bdat al: 256M i bdat a2: 256M aut oext end
innodb_| og_fil e_size=256M

innodb_l og_files_in_group=3

All paths in the generated backup- ny. cnf file point to a single backup directory. For ease of
verification and maintenance, you typically store all data for a backup inside a single directory rather
than scattered among different directories.

During a backup, the configuration parameters that are required for later stages (such as the restore
operation) are recorded in the backup- ny. cnf file that is generated in the backup directory.
Only the minimal required parameters are stored in backup- ny. cnf , to allow you to restore the

151

https://dev.mysql.com/doc/refman/5.6/en/command-line-options.html

Configuration Files Stored with the Backup Data

backup to a different location without extensive changes to that file. For example, although the
i nnodb_data_hone_di r andi nnodb_| og _group_hone_di r options can go into backup-
ny. cnf , they are omitted when those values are the same as the backup- di r value.

152

Part IV Appendixes

Table of Contents

A Frequently Asked Questions for MySQL Enterprise Backupcccoooviiiiiiniiiiiiinieeeei, 157
B Limitations of MySQL Enterprise BacCKUpcooouuiiiiiiiiiiiiii e 159
C Compatibility Information for MySQL Enterprise Backupoooieiiiiiiiiiiiiiiiiiiiieceiieeeeii e 161
C.1 SUPPOItEd PIAFOIMS ... ittt ettt e et e e et e eeent e eeees 161
C.2 Cross-Platform CompatibDilityouuieiieiiiii e 161
C.3 Compatibility with MYSQL VEISIONSuuiiiiiiiieiiiie et 161
C.4 Compatibility with Older Versions of MySQL Enterprise Backupoccevviiiiiiiiniennnnn. 161
C.5 Compatibility Notes for Specific MySQL VErSiONScccuuuiiiiiiiiiiiiiiiiieeeeie e 161
D MySQL Enterprise Backup Release NOLESuuiiiiiiiiiiiiiiiee et 163
MySQL Enterprise BaCKUP GIOSSANYcccouuuiiiiiiii ittt e e e et e e e e e e e 165

155

156

Appendix A Frequently Asked Questions for MySQL Enterprise
Backup

This section lists some common questions about MySQL Enterprise Backup, with answers and pointers
to further information.

Questions

» A.1l: Does MySQL Enterprise Backup work with MySQL Server version x.y.z?
* A.2: What is the big i bdat a file that is in all the backups?

* A.3: Can | back up non-InnoDB data with MySQL Enterprise Backup?

* A.4: What happens if the apply-log step is interrupted?

* A.5: Why is the option - - def aul t s-fi | e not recognized?

* A.6: Can | back up a database on one OS platform and restore it on another one using MySQL
Enterprise Backup?

e A.7: What if I have included the binary log or relay log in my backup but do not want to restore it?
Questions and Answers
A.l: Does MySQL Enterprise Backup work with MySQL Server version x.y.z?

See Section C.3, “Compatibility with MySQL Versions” for details of compatibility between different
releases of MySQL Enterprise Backup and MySQL Server.

A.2: What is the big i bdat a file that is in all the backups?

You might find your backup data taking more space than expected because of a large file with a name
such as i bdat al. This file represents the InnoDB system tablespace, which grows but never shrinks,
and is included in every full and incremental backup. To reduce the space taken up by this file in your
backup data:

 After doing a full backup, do a succession of incremental backups, which take up less space. The
i bdat al file in the incremental backups is typically much smaller, containing only the portions of the
system tablespace that changed since the full backup.

» Set the configuration option i nnodb_fi |l e _per tabl e=1 before creating your biggest or most
active InnoDB tables. Those tables are split off from the system tablespaces into separate . i bd
files, which are more flexible in terms of freeing disk space when dropped or truncated, and can be
individually included or excluded from backups.

* If your system tablespace is very large because you created a high volume of InnoDB data before
turning on the i nnodb_fi | e_per _t abl e setting, you might use nysql dunp to dump the entire
instance, then turn oni nnodb_fil e_per t abl e before re-creating it, so that all the table data is
kept outside the system tablespace.

A.3: Can | back up non-InnoDB data with MySQL Enterprise Backup?

While MySQL Enterprise Backup can back up non-InnoDB data (like MYISAM tables), the MySQL
server to be backed up must support InnoDB (i.e., the backup process will fail if the server was started
up with the - - i nnodb=0OFF or - - ski p- i nnodb option), and the server must contain at least one
InnoDB table.

A.4: What happens if the apply-log step is interrupted?

157

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_file_per_table
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#option_mysqld_innodb
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#option_mysqld_innodb

If mysql backup is interrupted during the appl y- | og or appl y-i ncr enent al - backup stage, the
backup data is OK. The file operations performed by those options can be performed multiple times
without harming the consistency of the backup data. Just run the same nysql backup command
again, and when it completes successfully, all the necessary changes are present in the backup data.

A.5: Why is the option --def aul t s-fi | e not recognized?

When you specify the - - def aul t s-fi | e option, it must be the first option after the name of the
command. Otherwise, the error message makes it look as if the option name is not recognized.

A.6: Can | back up a database on one OS platform and restore it on another one using MySQL
Enterprise Backup?

See Section C.2, “Cross-Platform Compatibility” for details.

A.7: What if | have included the binary log or relay log in my backup but do not want to restore
it?

If you want to skip the restore of the binary log, relay log, or both during a restore, use the - - ski p-
bi nl og option, the - - ski p-r el ayl og option, or both with your copy- back or copy- back- and-
appl y-1 og command.

158

https://dev.mysql.com/doc/refman/5.6/en/option-file-options.html#option_general_defaults-file

Appendix B Limitations of MySQL Enterprise Backup

Please refer to the MySQL Enterprise Backup version history in Appendix D, MySQL Enterprise
Backup Release Notes for a list of fixed nysql backup bugs. Here are a list of limitaions of MySQL
Enterprise Backup:

The group commit feature in MySQL 5.6 and higher changes the frequency of flush operations for
the | nnoDB redo log, which could affect the point in time associated with the backup data from
| nnoDB tables. See Section C.5, “Compatibility Notes for Specific MySQL Versions” for details.

In some cases, backups of non-transactional tables such as Myl SAMtables could contain additional
uncommitted data. If autocommit is turned off, and both | nnoDB tables and non-transactional
tables are modified within the same transaction, data can be written to the non-transactional table
before the binary log position is updated. The binary log position is updated when the transaction is
committed, but the non-transactional data is written immediately. If the backup occurs while such a
transaction is open, the backup data contains the updates made to the non-transactional table.

If the mysql backup process is interrupted by, for example, a Unix ki | | -9 command, a FLUSH
TABLES W TH READ LOCK operation might remain running. In this case, use the KI LL QUERY
statement from the mysqgl command line to kill the FLUSH TABLES W TH READ LOCK statement.
This issue is more likely to occur if the FLUSH TABLES operation is stalled by a long-running query
or transaction. Refer to Section 7.1, “Optimizing Backup Performance” for guidelines about backup
timing and performance.

Do not run the DDL operations (for example, ALTER TABLE, TRUNCATE TABLE, OPTI M ZE
TABLE, REPAI R TABLE, RESTORE TABLE or CREATE | NDEX) while a backup operation is going
on. The resulting backup might become corrupted.

The engi nes column in the nysql . backup_hi st ory table does not correctly reflect the storage
engines of the backed-up databases.

Hot backups for large databases with heavy writing workloads (say, in the order of gigabytes per
minute) can take a very long time to complete due to the huge redo log files that are generated on
the server while the backup is running. However, when it is a relatively small subset of tables in the
database that are being modified frequently, the Optimistic Backup feature can be used to improve
performance and reduce backup size, as well as backup and recovery times. See Section 4.3.6,
“Making an Optimistic Backup” for details.

Compressed InnoDB tables from MySQL server 5.6.10 and earlier cannot be restored with MySQL
Enterprise Backup 3.9.0 or later, due to a known issue with the InnoDB storage engine (see Bug#
72851 on the MySQL Bug System).

While it is possible to backup to or restore from a Network Attached Storage (NAS) device using
MySQL Enterprise Backup, due to networking issues that might arise, the consistency of the backups
and the performance of the backup or restore operations might be compromised.

When creating a backup using transportable tablespace (TTS) for a server containing tables with
a mix of the Antelope and Barracuda file formats, do not apply full locking on the tables (that is,
do not specify - -use-tts=wi t h-ful | -1 ocki ng). Instead, just specify - - use-tts or--use-
tts=w t h-m ni num | ocki ng, both of which will apply minimum locking to the tables (Bug
#20583946).

Tables created on the MySQL server with the ANSI _ QUOTES SQL mode cannot be backed up using
transportable tablespace (TTS).

When a file of an unrecognized file type exists under a subdirectory in the server's data directory,

it will be backed up by mysql backup unless the - - onl y- known-fi | e-t ypes option is used.
However, if the name of the file does not have an extension, it will cause mysql backup to throw an
error when it tries to restore the backup to a server.

159

https://dev.mysql.com/doc/refman/5.6/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_autocommit
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/sql-mode.html#sqlmode_ansi_quotes

If a table on the server is dropped while mysql backup is backing up that table, nysql backup
throws an error and exits.

Offline backups using MySQL Enterprise Backup 3.12.2 sometimes fail, with occasional crashes of
nysql backup.

Cloud operations by MySQL Enterprise Backup are not supported on macOS and Windows
platforms, and also on Linux platforms when generic Linux builds are used for both the server and
MySQL Enterprise Backup (i.e., when both the server and MySQL Enterprise Backup have been
installed using generic Linux tarballs).

Using the - - sr c- ent r y option with the ext r act command on cloud backups will cause the
command to fail. Cloud backups can only be extracted in full.

Due to some issues, cloud backup and restore using Amazon S3 is currently not supported by
MySQL Enterprise Backup 3.12.

A compressed directory backup fails when a general tablespace bears the same basename as the
database's system tablespace (usually i bdat al) and exists in the same directory with it (usually the
server's data directory). A compressed single-file backup created under the same situation will be
corrupted, and cannot be restored. To avoid the problem, the server administrator should not put into
the same directory the system tablespace and a general tablespace of the same basename; if that is
unavoidable, do not perform a compressed backup for the database.

When working with a replication set up whose source server also belongs to a separate Group
Replication setup, over time, create backups consistently either from the source or the replica, but
not from both. Otherwise, there will be conflicts between the i d values generated by the source and
the replica, causing backups to fail.

160

Appendix C Compatibility Information for MySQL Enterprise
Backup

Table of Contents

L ST 0T o] o Yo i (=T I = F= a0 41 161
C.2 Cross-Platform Compatibilityoorieiiiiii e e e 161
C.3 Compatibility with MySQL VEISIONSuiiiiiiiii it e e e e e e e e e e eaes 161
C.4 Compatibility with Older Versions of MySQL Enterprise Backupcccoovvviviviiieviiiiiiiiieeinens 161
C.5 Compatibility Notes for Specific MySQL VEISIONScouviiiiiiiiii e e e 161

This section describes information related to compatibility issues for MySQL Enterprise Backup
releases.

C.1 Supported Platforms

See Supported Platforms: MySQL Database (MySQL platform support evolves over time; please refer
to the page for the latest updates).

C.2 Cross-Platform Compatibility

MySQL Enterprise Backup is cross-platform compatible when running on the Linux and Windows
operating systems: backups on a Linux machine can be restored on a Windows machine, and vice
versa. However, to avoid data transfer problems arising from letter cases of database or table names,
the variable | ower _case_t abl e_nanes must be properly configured on the MySQL servers. For
details, see Identifier Case Sensitivity.

C.3 Compatibility with MySQL Versions

MySQL Enterprise Backup 3.12 supports MySQL 5.5 and 5.6.

C.4 Compatibility with Older Versions of MySQL Enterprise
Backup

MySQL Enterprise Backup 3.12 can be used to restore the following kinds of backups created by
earlier versions of the product:

» Backups created for MySQL 5.5 by MySQL Enterprise Backup 3.5 to 3.11.
» Backups created for MySQL 5.6 by MySQL Enterprise Backup 3.8 to 3.11.

Note

S For any restore that involves a server upgrade or downgrade, see the important
discussion in Section 5.4, “Restoring a Backup with a Database Upgrade or
Downgrade”.

C.5 Compatibility Notes for Specific MySQL Versions

This section lists any performance-related features and settings in specific MySQL Server versions that
affect various aspects of the backup process.

MySQL 5.6

Some new MySQL 5.6 features introduce changes in directory layout and file contents for InnoDB
tables. Backing up servers that use these features requires MySQL Enterprise Backup 3.8.1 or higher:

161

https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/5.6/en/identifier-case-sensitivity.html

MySQL 5.6

e innodb_page_si ze configuration option.

* innodb_undo_directory,innodb_undo_| ogs, andi nnodb_undo_t abl espaces
configuration options.

» innodb_checksum al gori t hmconfiguration option.

DATA DI RECTORY clause of the CREATE TABLE statement, which produces a .isl file in the
database directory and stores the .ibd file in a user-specified location.

* Online DDL.

See MySQL Enterprise Backup 3.9 Release Notes for details on the fixes and enhancements related to
these MySQL 5.6 features.

162

https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_directory
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_logs
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_undo_tablespaces
https://dev.mysql.com/doc/refman/5.6/en/innodb-parameters.html#sysvar_innodb_checksum_algorithm
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_isl_file
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos_online_ddl
https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/3.9/en/news-3-8-1.html

Appendix D MySQL Enterprise Backup Release Notes

Release notes for MySQL Enterprise Backup are published separately. See MySQL Enterprise Backup
3.12 Release Notes.

163

https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/3.12/en/
https://dev.mysql.com/doc/relnotes/mysql-enterprise-backup/3.12/en/

164

MySQL Enterprise Backup Glossary

These terms are commonly used in information about the MySQL Enterprise Backup product.

A

ARM file
Metadata for ARCHIVE tables. Contrast with .ARZ file. Files with this extension are always included in
backups produced by the nysql backup command of the MySQL Enterprise Backup product.
See Also .ARZ file.

ARZ file
Data for ARCHIVE tables. Contrast with .ARM file. Files with this extension are always included in backups
produced by the nysql backup command of the MySQL Enterprise Backup product.
See Also .ARM file.

Antelope
The code name for the original InnoDB file format. It supports the redundant and compact row formats, but
not the newer dynamic and compressed row formats available in the Barracuda file format.

If your application could benefit from InnoDB table compression, or uses BLOBs or large text columns that
could benefit from the dynamic row format, you might switch some tables to Barracuda format. You select the
file format to use by setting the i nnodb_f i | e_f or mat option before creating the table.

See Also Barracuda, compression, file format.

apply
The operation that transforms a raw backup into a prepared backup by incorporating changes that occurred
while the backup was running, using data from the log.
See Also log, prepared backup, raw backup.

B

bz file
When nysql backup performs a compressed backup for a server that has binary logging enabled, it
transforms each binary log file and relay log file (for a replica server in a replication setting) to a bi nary-
or-relay-log-file-nane. bz file. The . bz files are uncompressed at the time of restore.
See Also binary log, .bz file, compression, compression level, .ibz file, relay log.

backup
The process of copying some or all table data and metadata from a MySQL instance, for safekeeping. Can
also refer to the set of copied files. This is a crucial task for DBAs. The reverse of this process is the restore
operation.

With MySQL, physical backups are performed by the MySQL Enterprise Backup product, and logical
backups are performed by the nysql dunp command. These techniques have different characteristics in
terms of size and representation of the backup data, and speed (especially speed of the restore operation).

Backups are further classified as hot, warm, or cold depending on how much they interfere with normal
database operation. (Hot backups have the least interference, cold backups the most.)
See Also cold backup, hot backup, logical backup, mysgldump, physical backup, warm backup.

backup directory
The directory under which the backup data and metadata are stored, permanently or temporarily. It is used in
most kinds of backup and restore operations, including single-file backups and restores. See the description
of the - - backup- di r option on how the backup directory is used for different purposes and for different
operations.

backup repository
Contrast with server repository.

165

See Also repository, server repository.

backup-my.cnf
A small configuration file generated by MySQL Enterprise Backup, containing a minimal set of
configuration parameters. This file records the settings that apply to this backup data. Subsequent operations,
such as the apply process, read options from this file to determine how the backup data is structured. This file
always has the extension . cnf, rather than . cnf on Unix-like systems and . i ni on Windows systems.
See Also apply, configuration file.

Barracuda
The code name for an InnoDB file format that supports compression for table data. This file format was
first introduced in the InnoDB Plugin. It supports the compressed row format that enables InnoDB table
compression, and the dynamic row format that improves the storage layout for BLOB and large text columns.
You can select it through the i nnodb_f il e_f or mat option.

Because the InnoDB system tablespace is stored in the original Antelope file format, to use the Barracuda
file format you must also enable the file-per-table setting, which puts newly created tables in their own
tablespaces separate from the system tablespace.

The MySQL Enterprise Backup product version 3.5 and above supports backing up tablespaces that use the
Barracuda file format.
See Also Antelope, file format, MySQL Enterprise Backup, row format, system tablespace.

binary log
A file containing a record of all statements that attempt to change table data. These statements can be
replayed to bring replica servers up to date in a replication scenario, or to bring a database up to date after
restoring table data from a backup. The binary logging feature can be turned on and off, although Oracle
recommends always enabling it if you use replication or perform backups.

You can examine the contents of the binary log, or replay those statements during replication or recovery, by
using the mysql bi nl og command. For full information about the binary log, see The Binary Log. For MySQL
configuration options related to the binary log, see Binary Log Options and Variables.

For the MySQL Enterprise Backup product, the file name of the binary log and the current position within the
file are important details. To record this information for the source server when taking a backup in a replication
context, you can specify the - - sl ave- i nf o option.

The binary log, if enabled on the server, is backed up by default.
See Also binlog, relay log, replication.

binlog
An informal name for the binary log file. For example, you might see this abbreviation used in e-mail
messages or forum discussions.
See Also binary log.

C

cold backup
A backup taken while the database is shut down. For busy applications and websites, this might not be
practical, and you might prefer a warm backup or a hot backup.
See Also backup, connection, hot backup, warm backup.

compression
A technique that produces smaller backup files, with size reduction influenced by the compression level
setting. Suitable for keeping multiple sets of non-critical backup files. (For recent backups of critical data, you
might leave the data uncompressed, to allow fast restore speed in case of emergency.)

MySQL Enterprise Backup can apply compression to the contents of InnoDB tables during the backup
process, turning the .ibd files into .ibz files.

166

https://dev.mysql.com/doc/refman/5.6/en/binary-log.html
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html

Compression adds CPU overhead to the backup process, and requires additional time and disk space during
the restore process.
See Also backup, compression level, .ibd file, .ibz file, InnoDB, restore.

compression level
A setting that determines how much compression to apply to a compressed backup. This setting ranges
from 0 (none), 1 (default level when compression is enabled) to 9 (maximum). The amount of compression for
a given compression level depends on the nature of your data values. Higher compression levels do impose
additional CPU overhead, so ideally you use the lowest value that produces a good balance of compression
with low CPU overhead.
See Also compression.

configuration file
The file that holds the startup options of the MySQL server and related products and components. Often
referred to by its default file name, my.cnf on Linux, Unix, and macOS systems, and my.ini on Windows
systems. The MySQL Enterprise Backup stores its default configuration settings in this file, under a
[mysqgl backup] section. For convenience, MySQL Enterprise Backup can also read settings from the
[client] section, for configuration options that are common between MySQL Enterprise Backup and other
programs that connect to the MySQL server.
See Also my.cnf, my.ini.

connection
The mechanism used by certain backup operations to communicate with a running MySQL server. For
example, the nysql backup command can log into the server being backed up to insert and update data
in the progress table and the history table. A hot backup typically uses a database connection for
convenience, but can proceed anyway if the connection is not available. A warm backup always uses a
database connection, because it must put the server into a read-only state. A cold backup is taken while the
MySQL server is shut down, and so cannot use any features that require a connection.
See Also cold backup, history table, hot backup, progress table, server, warm backup.

crash recovery
The cleanup activities for InnoDB tables that occur when MySQL is started again after a crash. Changes
that were committed before the crash, but not yet written to the tablespace files, are reconstructed from
the doublewrite buffer. When the database is shut down normally, this type of activity is performed during
shutdown by the purge operation.

D

data dictionary
A set of tables, controlled by the InnoDB storage engine, that keeps track of InnoDB-related objects such as
tables, indexes, and table columns. These tables are part of the InnoDB system tablespace.

Because the MySQL Enterprise Backup product always backs up the system tablespace, all backups
include the contents of the data dictionary.
See Also hot backup, MySQL Enterprise Backup, system tablespace.

database
A set of tables and related objects owned by a MySQL user. Equivalent to “schema” in Oracle Database
terminology. MySQL Enterprise Backup can perform a partial backup that includes some databases and
not others. The full set of databases controlled by a MySQL server is known as an instance.
See Also instance, partial backup.

differential backup
A backup that captures only the data changed since the last full backup. It has the potential to be smaller
and faster than a full backup, but is usually bigger and takes longer to create than an incremental backup.
See Section 4.3.2, “Making a Differential or Incremental Backup” for usage details. Related mysql backup
options are - -i ncrenmental ,--increnmental -wi t h-redo-1 og-only,--increnmental - backup-dir,
--increnental -base,and--start-1|sn.
See Also full backup, incremental backup.

167

downtime
A period when the database is unresponsive. The database might be entirely shut down, or in a read-only
state when applications are attempting to insert, update, or delete data. The goal for your backup strategy is
to minimize downtime, using techniques such as hot backup for InnoDB tables, cold backup using replica
servers in a replication configuration, and minimizing the duration of the suspend stage where you run
customized backup logic while the MySQL server is locked.
See Also cold backup, hot backup, InnoDB, locking, replica, replication, suspend.

E

exclude
In a partial backup, to select a set of tables, databases, or a combination of both to be omitted from the
backup. Contrast with include.
See Also partial backup.

extract
The operation that retrieves some content from an image file produced by a single-file backup. It can apply
to a single file (unpacked to an arbitrary location) or to the entire backup (reproducing the original directory
structure of the backup data). These two kinds of extraction are performed by the mysql backup options
extract andi mage-t o- backup-dir, respectively.
See Also image, single-file backup.

F

frm file
A file containing the metadata, such as the table definition, of a MySQL table.

For backups, you must always keep the full set of . f r mfiles along with the backup data to be able to restore
tables that are altered or dropped after the backup.

Although each InnoDB table has an . f r mfile, InnoDB maintains its own table metadata in the system
tablespace; the . f r mfiles are not needed for InnoDB to operate on InnoDB tables.

These files are backed up by the MySQL Enterprise Backup product. These files must not be modified by
an ALTER TABLE operation while the backup is taking place, which is why backups that include non-InnoDB
tables perform a FLUSH TABLES W TH READ LOCK operation to freeze such activity while backing up the

. f r mfiles. Restoring a backup can resultin . f r mfiles being created, changed, or removed to match the state
of the database at the time of the backup.

file format
The format used by InnoDB for its data files named i bdat al, i bdat a2, and so on. Each file format supports
one or more row formats.
See Also Antelope, Barracuda, ibdata file, row format.

full backup
A backup that includes all the tables in each MySQL database, and all the databases in a MySQL instance.
Contrast with partial backup and incremental backup. Full backups take the longest, but also require the
least amount of followup work and administration complexity. Thus, even when you primarily do partial or
incremental backups, you might periodically do a full backup.
See Also backup, incremental backup, partial backup, table.

H

history table
The table nysqgl . backup_hi st ory that holds details of completed backup operations. While a backup job
is running, the details (especially the changing status value) are recorded in the progress table.
See Also backup, progress table.

168

hot backup
A backup taken while the MySQL instance and is running and applications are reading and writing to it.
Contrast with warm backup and cold backup.

A hot backup involves more than simply copying data files: it must include any data that was inserted or
updated while the backup was in process; it must exclude any data that was deleted while the backup was in
process; and it must ignore any changes started by transactions but not committed.

The Oracle product that performs hot backups, of InnoDB tables especially but also tables from MyISAM and
other storage engines, is MySQL Enterprise Backup.

The hot backup process consists of two stages. The initial copying of the InnoDB data files produces a raw
backup. The apply step incorporates any changes to the database that happened while the backup was
running. Applying the changes produces a prepared backup; these files are ready to be restored whenever
necessary.

A full backup consists of a hot backup phase that copies the InnoDB data, followed by a warm backup
phase that copies any non-InnoDB data such as MyISAM tables and .frm files.

See Also apply, cold backup, .frm file, full backup, InnoDB, instance, prepared backup, raw backup, warm
backup.

.ibd file
Each InnoDB tablespace created using the file-per-table setting has a filename with a . i bd extension. This
extension does not apply to the system tablespace, which is made up of files named i bdat al, i bdat a2,
and so on.
See Also .ibz file, system tablespace, tablespace.

ibz file
When the MySQL Enterprise Backup product performs a compressed backup, it transforms each
tablespace file that is created using the file-per-table setting from a . i bd extensionto a . i bz extension.

The compression applied during backup is distinct from the compressed row format that keeps table data
compressed during normal operation. An InnoDB tablespace that is already in compressed row format is not
compressed a second time, but is, nevertheless, still saved as an . i bz file in the compressed backup.

See Also .bz file, compression, compression level, .ibd file, .ibz file, MySQL Enterprise Backup, tablespace.

ibdata file
A set of files with names such as i bdat al, i bdat a2, and so on, that make up the InnoDB system
tablespace. These files contain metadata about InnoDB tables, and can contain some or all of the table and
index data also (depending on whether the file-per-table option is in effect when each table is created). For
backward compatibility these files always use the Antelope file format.
See Also Antelope, system tablespace.

image
The file produced as part of a single-file backup operation. It can be a real file that you store locally, or
standard output (specified as -) when the backup data is streamed directly to another command or remote
server. This term is referenced in several mysql backup options such as backup-di r-to-i nage and
i mge-to-backup-dir.
See Also single-file backup, streaming.

include
In a partial backup, to select a set of tables, databases, or a combination of both to be backed up. Contrast
with exclude.
See Also partial backup.

incremental backup
A backup that captures only data changed since the previous backup. It has the potential to be smaller and
faster than a full backup. The incremental backup data must be merged with the contents of the previous

169

backup before it can be restored. See Section 4.3.2, “Making a Differential or Incremental Backup” for usage
details. Related nmysql backup options are - - i ncrenental , --i ncrenental -wi th-redo-1og-only,--
i ncrenent al - backup-dir,--increnental -base,and--start-1Isn.

See Also full backup.

InnoDB
The type of MySQL table that works best with MySQL Enterprise Backup. These tables can be backed
up using the hot backup technique that avoids interruptions in database processing. For this reason, and
because of the higher reliability and concurrency possible with InnoDB tables, most deployments should use
InnoDB for the bulk of their data and their most important data. In MySQL 5.5 and higher, the CREATE TABLE
statement creates InnoDB tables by default.
See Also hot backup, table.

instance
The full contents of a MySQL server, possibly including multiple databases. A backup operation can back up
an entire instance, or a partial backup can include selected databases and tables.
See Also database, partial backup.

L

locking

See Also suspend, warm backup.

log
Several types of log files are used within the MySQL Enterprise Backup product. The most common is the
InnoDB redo log that is consulted during incremental backups.
See Also incremental backup, redo log.

log sequence number
See LSN.

logical backup
A backup that reproduces table structure and data, without copying the actual data files. For example, the
mysql dunp command produces a logical backup, because its output contains statements such as CREATE
TABLE and | NSERT that can re-create the data. Contrast with physical backup.
See Also backup, physical backup.

LSN
Acronym for log sequence number. This arbitrary, ever-increasing value represents a point in time
corresponding to operations recorded in the redo log. (This point in time is regardless of transaction
boundaries; it can fall in the middle of one or more transactions.) It is used internally by InnoDB during crash
recovery and for managing the buffer pool.

In the MySQL Enterprise Backup product, you can specify an LSN to represent the point in time from which
to take an incremental backup. The relevant LSN is displayed by the output of the nmysql backup command.
Once you have the LSN corresponding to the time of a full backup, you can specify that value to take a
subsequent incremental backup, whose output contains another LSN for the next incremental backup.

See Also crash recovery, hot backup, incremental backup, redo log.

M

.MRG file
A file containing references to other tables, used by the MERGE storage engine. Files with this extension are
always included in backups produced by the nmysql backup command of the MySQL Enterprise Backup
product.

.MYD file
A file that MySQL uses to store data for a MyISAM table.
See Also .MYI file.

170

https://dev.mysql.com/doc/refman/5.6/en/create-table.html

MYI file
A file that MySQL uses to store indexes for a MyISAM table.
See Also .MYD file.

manifest
The record of the environment (for example, command-line arguments) and data files involved in a backup,
stored in the files net a/ backup_creat e. xm and net a/ backup_cont ent . xnl , respectively. This data
can be used by management tools during diagnosis and troubleshooting procedures.

master
See source.

media management software
A class of software programs for managing backup media, such as libraries of tape backups. One example is
Oracle Secure Backup. Abbreviated MMS.
See Also Oracle Secure Backup.

my.cnf
The typical name for the MySQL configuration file on Linux, Unix, and macOS systems.
See Also configuration file, my.ini.

my.ini
The typical name for the MySQL configuration file on Windows systems.
See Also configuration file, my.cnf.

MyISAM
A MySQL storage engine, formerly the default for new tables. In MySQL 5.5 and higher, InnoDB becomes
the default storage engine. MySQL Enterprise Backup can back up both types of tables, and tables from other
storage engines also. The backup process for InnoDB tables (hot backup) is less disruptive to database
operations than for MyISAM tables (warm backup).
See Also hot backup, InnoDB, warm backup.

MySQL Enterprise Backup
A licensed products that performs hot backups of MySQL databases. It offers the most efficiency and
flexibility when backing up InnoDB tables; it can also back up MylSAM and other kinds of tables. It is included
as part of the MySQL Enterprise Edition subscription.
See Also Barracuda, hot backup, InnoDB.

mysqlbackup
The primary command of the MySQL Enterprise Backup product. Different options perform backup and
restore operations.
See Also backup, restore.

mysqldump
A MySQL command that performs logical backups, producing a set of SQL commands to recreate tables
and data. Suitable for smaller backups or less critical data, because the restore operation takes longer than
with a physical backup produced by MySQL Enterprise Backup.
See Also logical backup, physical backup, restore.

N

non-TTS backup
A backup that is NOT created using transportable tablespace (TTS), that is, not with the - - use-t t s option.
See Also transportable tablespace, TTS backup.

O

.opt file
A file containing database configuration information. Files with this extension are always included in backups
produced by the backup operations of the MySQL Enterprise Backup product.

171

offline
A type of operation performed while the database server is stopped. With the MySQL Enterprise Backup
product, the main offline operation is the restore step. You can optionally perform a cold backup, which is
another offline operation. Contrast with online.
See Also cold backup, online, restore.

online
A type of operation performed while the database server is running. A hot backup is the ideal example,
because the database continues to run and no read or write operations are blocked. For that reason,
sometimes “hot backup” and “online backup” are used as synonyms. A cold backup is the opposite of
an online operation; by definition, the database server is shut down while the backup happens. A warm
backup is also a kind of online operation, because the database server continues to run, although some write
operations could be blocked while a warm backup is in progress. Contrast with offline.
See Also cold backup, hot backup, offline, warm backup.

optimistic backup
Optimistic backup is a feature for improving performance for backing up and restoring huge databases in
which only a small number of tables are modified frequently. An optimistic backup consists of two phases: (1)
the optimistic phase in which tables that are unlikely to be modified during the backup process (identified by
the user with the opt i m sti c-ti e option or, by exclusion, with the opti m sti c- busy-t abl es option)
are backed up without any locks on the MySQL instance; (2) a normal phase, in which tables that are not
backed up in the first phase are being backed up in a manner similar to how they are processed in an ordinary
backup: the InnoDB files are copied first, and then other relevant files and copied or processed with various
locks applied to the database. The redo logs, undo logs, and the system tablespace are also backed up in this
phase. See Section 4.3.6, “Making an Optimistic Backup” for details.

Oracle Secure Backup
An Oracle product for managing backup media, and so classified as media management software (MMS).
Abbreviated OSB. For MySQL Enterprise Backup, OSB is typically used to manage tape backups.
See Also backup, media management software, OSB.

0SB
Abbreviation for Oracle Secure Backup, a media management software product (MMS).
See Also Oracle Secure Backup.

P

.par file
A file containing partition definitions. Files with this extension are always included in backups produced by the
nysql backup command of the MySQL Enterprise Backup product.

parallel backup
The default processing mode in MySQL Enterprise Backup 3.8 and higher, employing multiple threads for
different classes of internal operations (read, process, and write). See Section 1.3, “Overview of Backup
Performance and Capacity Considerations” for an overview, Section 14.10, “Performance / Scalability /
Capacity Options” for the relevant nysql backup options, and Chapter 7, Performance Considerations for
MySQL Enterprise Backup for performance guidelines and tips.

partial backup
A backup that contains some of the tables in a MySQL database, or some of the databases in a MySQL
instance. Contrast with full backup. Related nysql backup options are - - i ncl ude-t abl es, - - excl ude-
tabl es,--use-tts,--only-known-file-types,and--only-innodb.
See Also backup, database, full backup, partial restore, table.

partial restore
A restore operation that applies to one or more tables or databases, but not the entire contents of a
MySQL server. The data being restored could come from either a partial backup or a full backup. Related
nysql backup options are - - i ncl ude-t abl es, - - excl ude-t abl es, and - - r enane.

172

See Also database, full backup, partial backup, restore, table.

physical backup
A backup that copies the actual data files. For example, the MySQL Enterprise Backup command produces
a physical backup, because its output contains data files that can be used directly by the nmysql d server.
Contrast with logical backup.
See Also backup, logical backup.

point in time
The time corresponding to the end of a backup operation. A prepared backup includes all the changes that
occurred while the backup operation was running. Restoring the backup brings the data back to the state at
the moment when the backup operation completed.
See Also backup, prepared backup, restore.

prepared backup
The set of backup data that is entirely consistent and ready to be restored. It is produced by performing the
apply operation on the raw backup.
See Also apply, raw backup.

progress table
The table mysql . backup_pr ogr ess that holds details of running backup operations. When a backup job
finishes, the details are recorded in the history table.
See Also backup, history table.

R

raw backup
The initial set of backup data, not yet ready to be restored because it does not incorporate changes that
occurred while the backup was running. The apply operation transforms the backup files into a prepared
backup that is ready to be restored.
See Also apply, prepared backup.

redo log
A set of files, typically named i b_| ogfileOandi b | ogfil el, that record statements that attempt
to change data in InnoDB tables. These statements are replayed automatically to correct data written
by incomplete transactions, on startup following a crash. The passage of data through the redo logs is
represented by the ever-increasing LSN value. The 4GB limit on maximum size for the redo log is raised in
MySQL 5.6.
See Also LSN.

regular expression
Some MySQL Enterprise Backup features use POSIX-style regular expressions, for example to specify
tables, databases, or both to include or exclude from a partial backup. Regular expressions require
escaping for dots in filenames, because the dot is the single-character wildcard; no escaping is needed for
forward slashes in path names. When specifying regular expressions on the command line, surround them
with quotation marks as appropriate for the shell environment, to prevent expansion of characters such as
asterisks by the shell wildcard mechanism.
See Also exclude, include, partial backup.

relay log
A record on a replica server for the events read from the binary log of the source server and written by the
replication 1/O thread. The relay log, like the binary log, consists of a set of numbered files containing events
that describe database changes, and an index file that contains the names of all used relay log files. For more
information on relay log, see The Relay Log. The relay log on a server is backed up by default.
See Also binary log, replication.

replica
In a replication configuration, a database server that receives updates from a source server. Typically used
to service user queries, to minimize the query load on the source server. With MySQL Enterprise Backup,

173

https://dev.mysql.com/doc/refman/5.6/en/replica-logs-relaylog.html

you might take a backup on one server, and restore on a different system to create a new replica server
with the data already in place. You might also back up data from a replica server rather than the source, to
minimize any slowdown of the overall system.

See Also replication, source.

replication
A common configuration for MySQL deployments, with data and DML operations from a source server
synchronized with a set of replica servers. With MySQL Enterprise Backup, you might take a backup on one
server, and restore on a different system to create a new replica server with the data already in place. You
might also back up data from a replica server rather than the source, to minimize any slowdown of the overall
system.
See Also replica, source.

repository
We distinguish between the server repository and the backup repository.
See Also backup repository, server repository.

restore
The converse of the backup operation. The data files from a prepared backup are put back into place to
repair a data issue or bring the system back to an earlier state.
See Also backup, prepared backup.

row format
The disk storage format for a row from an InnoDB table. As InnoDB gains new capabilities such as
compression, new row formats are introduced to support the resulting improvements in storage efficiency and
performance.

Each table has its own row format, specified through the RON FORVAT option. To see the row format for
each InnoDB table, issue the command SHOW TABLE STATUS. Because all the tables in the system
tablespace share the same row format, to take advantage of other row formats typically requires setting the
i nnodb_f il e_per_tabl e option, so that each table is stored in a separate tablespace.

S

SBT
Acronym for system backup to tape.
See Also system backup to tape.

selective backup
Another name for partial backup
See Also partial backup, selective restore.

selective restore
Another name for partial restore
See Also partial restore, selective backup.

server
A MySQL instance controlled by a nysql d daemon. A physical machine can host multiple MySQL servers,
each requiring its own backup operations and schedule. Some backup operations communicate with the
server through a connection.
See Also connection, instance.

server repository
Contrast with backup repository.
See Also backup repository, repository.

single-file backup
A backup technique that packs all the backup data into one file (the backup image), for ease of storage and
transfer. The streaming backup technique requires using a single-file backup.

174

See Also image, streaming.

slave
See replica.

source
In a replication configuration, a database server that sends updates to a set of replica servers. It typically
dedicates most of its resources to write operations, leaving user queries to the replicas. With MySQL
Enterprise Backup, typically you perform backups on the replica servers rather than the source, to minimize
any slowdown of the overall system.
See Also replica, replication.

streaming
A backup technique that transfers the data immediately to another server, rather than saving a local copy.
Uses mechanisms such as Unix pipes. Requires a single-file backup, with the destination file specified as -
(standard output).
See Also single-file backup.

suspend
An optional stage within the backup where the MySQL Enterprise Backup processing stops, to allow for user-
specific operations to be run. The nysql backup command has options that let you specify commands to
be run while the backup is suspended. Most often used in conjunction with backups of InnoDB tables only,
where you might do your own scripting for handling .frm files.
See Also .frm file, InnoDB.

system backup to tape
An API for media management software. Abbreviated SBT. Several mysql backup options (with sbt in
their names) pass information to media management software products such as Oracle Secure Backup.
See Also Oracle Secure Backup, SBT.

system tablespace
By default, this single data file stores all the table data for a database, as well as all the metadata for InnoDB-
related objects (the data dictionary).

Turning on the innodb_file_per_table option causes each newly created table to be stored in its own
tablespace, reducing the size of, and dependencies on, the system tablespace.

Keeping all table data in the system tablespace has implications for the MySQL Enterprise Backup product
(backing up one large file rather than several smaller files), and prevents you from using certain InnoDB
features that require the newer Barracuda file format. on the

See Also Barracuda, data dictionary, file format, ibdata file, tablespace.

T

.TRG file
A file containing trigger parameters. Files with this extension are always included in backups produced by
the nysql backup command of the MySQL Enterprise Backup product.

table
Although a table is a distinct, addressable object in the context of SQL, for backup purposes we are often
concerned with whether the table is part of the system tablespace, or was created under the file-per-table
setting and so resides in its own tablespace.
See Also backup, system tablespace, tablespace.

tablespace
For InnoDB tables, the file that holds the data and indexes for a table. Can be either the system tablespace
containing multiple tables, or a table created with the file-per-table setting that resides in its own tablespace
file.
See Also InnoDB, system tablespace.

175

transportable tablespace

A feature that allows a tablespace to be moved from one instance to another. Traditionally, this has not
been possible for InnoDB tablespaces because all table data was part of the system tablespace. In MySQL
5.6 and higher, the FLUSH TABLES ... FOR EXPORT syntax prepares an InnoDB table for copying to
another server; running ALTER TABLE ... DI SCARD TABLESPACE and ALTER TABLE ... | MPORT
TABLESPACE on the other server brings the copied data file into the other instance. A separate . cf g file,
copied along with the .ibd file, is used to update the table metadata (for example the space ID) as the
tablespace is imported. See Importing InnoDB Tables for usage information.

Use the - - use- t t s option to create a backup with transportable tablespace. See also Section 5.2.4,
“Restoring Backups Created with the - - use- t t s Option”.
See Also partial backup.

TTS

Short form for transportable tablespace.
See Also partial backup, transportable tablespace.

TTS backup

W

A backup that is created using transportable tablespace (TTS), that is, with the - - use-t t s option.
See Also non-TTS backup, partial backup, transportable tablespace.

warm backup

A backup taken while the database is running, but that restricts some database operations during the backup
process. For example, tables might become read-only. For busy applications and websites, you might prefer a
hot backup.

See Also backup, cold backup, hot backup.

176

https://dev.mysql.com/doc/refman/5.6/en/flush.html#flush-tables-for-export-with-list
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-table-import.html

Index
Symbols

--exclude-tables option, 43
--include-tables option, 43
frm file, 43

A

Antelope, 93, 165
apply, 165

apply-incremental-backup option, 58, 97

--apply-log option, 97
ARM file, 165
ARZ file, 165

B

backup, 165
backup directory, 165
backup option, 96
backup repository, 165
backup-and-apply-log option, 96
--backup-dir option, 118
backup-dir-to-image option, 102
backup-image option, 131
backup-my.cnf, 166
backup-my.cnf file, 7
backup-to-image option, 96, 131
backups

cold, 5

compressed, 6, 42, 46, 58, 122
controlling overhead, performance, and scalability,

133

encrypted, 79

full, 37

hot, 5

incremental, 6, 38, 123

InnoDB tables only, 93

logical, 6

message logging, 140

optimistic, 52

parallel, 6

partial, 43, 125

physical, 6

prepared, 7, 57

preparing to restore, 57

progress report, 142

raw, 7, 57

scheduled, 53

single-file, 6, 47

streaming, 6, 49

to cloud, 50

to tape, 50, 81

troubleshooting, 85

uncompressed, 6, 46

verifying, 34

warm, 5
backup_content.xml, 7

backup_content.xml file, 88
backup_create.xml, 7
backup_create.xml file, 88
backup_history table, 86
backup_progress table, 86
backup_variables.txt file, 7
Barracuda, 93, 166
benchmarking, 73

binary log, 63, 166

binlog, 166

.bz file, 165

C

changelog, 163
changes

release notes, 163
cloud backups, 50
--cloud-access-key-id option, 147
--cloud-aws-region option, 147
--cloud-bucket option, 147
--cloud-ca-info option, 146
--cloud-ca-path option, 146
--cloud-identity-url, 147
--cloud-object, 146
--cloud-object-key option, 147
--cloud-password, 146
--cloud-proxy option, 146
--cloud-region, 147

--cloud-secret-access-key option, 147

--cloud-service option, 145
--cloud-tempauth-url, 147
--cloud-tenant, 147
--cloud-trace option, 146
--cloud-user-id, 146

cold backup, 5, 166
command-line tools, 6
--comments option, 122
--comments-file option, 122
comments.txt file, 7, 122
--compress option, 42, 122
--compress-level option, 42, 123
--compress-method option, 122

compressed backups, 6, 42, 46, 58, 122

compression, 166
compression level, 167
configuration file, 167
configuration options, 151
connection, 167

connection options, 114
copy-back option, 19, 57, 97

copy-back-and-apply-log option, 34, 98

corruption problems, 85
--counter-container, 146
crash recovery, 57, 167
cron jobs, 54

.CSM file, 7

.CSV file, 7

D

data dictionary, 167

database, 167

--databases option, 129
--databases-list-file option, 130
datadir directory, 7

--datadir option, 115
--data_home_dir option, 115
--decrypt option, 145
decryption, 79

differential backup, 167
--disable-manifest option, 133
disk storage for backup data, 6, 49
distributed file system, 54
downtime, 168

--dst-entry option, 132

E

--encrypt option, 145

encrypted backups, 79
encryption, 79

error codes, 85

exclude, 168

--exclude-tables option, 126
--exec-when-locked option, 149
extract, 168

extract option, 102, 131

F

FAQ, 157

file format, 168

files backed up, 7

frequently asked questions, 157
frm file, 7, 168

full backup, 37, 168

G
GRANT statement, 31

H

history table, 168
hot backup, 5, 169

ibbackup_lodfile file, 7

.ibd file, 7, 169

ibdata file, 7, 169

ibreset command, 85

bz file, 7

bz file, 7, 169

ib_lodfile file, 7

image, 169
image-to-backup-dir option, 101, 131, 131
image_files.xml file, 7, 88
include, 169

--include option, 43, 129
--include-tables option, 125

incremental backup, 6, 123, 169
--incremental option, 123
--incremental-backup-dir option, 125
--incremental-base option, 124
--incremental-with-redo-log-only option, 123
InnoDB, 170
InnoDB tables, 5, 7, 93, 93
compressed backup feature, 42
incremental backup feature, 38
installing MySQL Enterprise Backup, 21
instance, 170

K
--key option, 145
--key-file option, 145

L
--limit-memory option, 136
list-image option, 102, 131
--lock-wait-timeout option, 136
locking, 170
log, 7, 96, 170
--log-bin-index, 139
logical backup, 6, 170
logs

of backup operations, 86
LSN, 38, 123, 170

M

manifest, 7, 88, 133, 171
--master-info-file, 139
media management software, 171
media management software (MMS) products, 81
MEMORY tables, 53
message logging, 140
meta directory, 7
MMS products, 81
monitoring backup jobs, 83
.MRG file, 170
my.cnf, 171
my.ini, 171
.MYD file, 7
.MYD file, 170
MY file, 7
MYl file, 171
MyISAM, 171
MyISAM tables, 93
MySQL Enterprise Backup, 171
mysqlbackup, 93, 171
and media management software (MMS) products,
81
configuration options, 151
examples, 37
files produced, 7
modes of operation, 95
options, 105
overview, 6

178

required privileges, 31
using, 29
mysqlbinlog command, 63
mysqldump, 53, 171

N

--no-history-logging option, 121
--no-locking option, 136
non-TTS backup, 171
--number-of-buffers option, 134

@)
offline, 172
--on-disk-full option, 137
online, 172
--only-innodb option, 127
--rename option, 128
--only-innodb option, 130
--only-known-file-types option, 126
.optfile, 7, 171
optimistic backup, 52, 139, 140, 172
--optimistic-busy-tables, 140
--optimistic-time, 139
options, mysqlbackup, 105
connection, 114
for cloud storage, 145
for compression, 122
for controlling backup overhead, performance, and
scalability, 133
for controlling message logging, 140
for controlling progress reporting, 142
for encryption, 145
for generating metadata, 121
for incremental backups, 123
for partial backups, 125
for single-file backups, 131
for special types of backups, 147
in configuration files, 151
layout of backup files, 117
layout of database files, 115
modes of operation, 95
options in common with mysql, 112
standard options, 112
Oracle Secure Backup, 172
OS user, 32
0SB, 172

P

--page-reread-count option, 137
--page-reread-time option, 137
par file, 7, 172
parallel backup, 73, 76, 172
parallel backups, 6
partial backup, 43, 125, 172
partial restore, 172
performance

of backups, 73

of restores, 76
performance of backup operations, 6
permissions, 32
physical backup, 6, 173
point in time, 173
point-in-time recovery, 63
posix_fadvise() system call, 6
prepared backup, 7, 57, 173
privileges, 31
--process-threads option, 135
progress indicator, 142
progress table, 173
--progress-interval, 145

R

RAID, 73, 76

raw backup, 7, 57, 173

--read-threads option, 134

redo log, 173

regular expression, 173

relay log, 173

--relay-log-index, 139

--free-os-buffers, 140

--relaylog-info-file, 139

release notes, 163

replica, 67, 69, 173

replication, 67, 69, 69, 174

repository, 174

restore, 174

restoring a backup, 57
at original location, 34
backup created with the --use-tts option, 61
examples, 58
mysqlbackup options, 97
overview, 19
point-in-time recovery, 63
preparation, 57

restore external tablespaces at different locations, 61

row format, 174

S

--safe-slave-backup-timeout, 148
SBT, 174

--sbt-database-name option, 133
--sbt-environment option, 133
--sbt-lib-path option, 133
selective backup, 174

selective restore, 174

server, 174

server repository, 174
--show-progress, 142

single-file backup, 6, 47, 100, 131, 174
--skip-binlog, 138
--skip-final-rescan, 138
--skip-relaylog, 138
--skip-unused-pages, 137
--slave-info option, 148

179

--sleep option, 136

source, 70, 175

space for backup data, 6
--src-entry option, 131
--start-Isn option, 124
storage access network, 54
streaming, 49, 175
streaming backups, 6
suspend, 175
--suspend-at-end option, 149
system backup to tape, 175
system tablespace, 7, 175

T

table, 175

tablespace, 175

tape backups, 50, 81
transportable tablespace, 176
.TRG file, 7

.TRG file, 175

.TRN file, 7

troubleshooting for backups, 85
TTS, 176

TTS backup, 176

U

--uncompress option, 123
uncompressed backups, 6, 46
--use-tts option, 127

\%

validate option, 99
validating a backup, 99
verifying a backup, 34

W

warm backup, 5, 176

what is new, 23
--with-timestamp option, 120
--write-threads option, 135

180

	MySQL Enterprise Backup User's Guide (Version 3.12.5)
	Table of Contents
	Preface and Legal Notices
	Part I Getting Started with MySQL Enterprise Backup
	Chapter 1 Introduction to MySQL Enterprise Backup
	1.1 Types of Backups
	1.2 The mysqlbackup Client
	1.3 Overview of Backup Performance and Capacity Considerations
	1.4 Files that Are Backed Up
	1.5 Overview of Restoring a Database

	Chapter 2 Installing MySQL Enterprise Backup
	Chapter 3 What's New in MySQL Enterprise Backup 3.12?

	Part II Using MySQL Enterprise Backup
	Chapter 4 Backing Up a Database Server
	4.1 Before the First Backup
	4.1.1 Collect Database Information
	4.1.2 Grant MySQL Privileges to Backup Administrator
	4.1.3 Designate a Location for Backup Data

	4.2 The Typical Backup / Verify / Restore Cycle
	4.2.1 OS User for Running mysqlbackup
	4.2.2 Backing Up an Entire MySQL Instance
	4.2.3 Verifying a Backup
	4.2.4 Restoring a Database

	4.3 Backup Scenarios and Examples
	4.3.1 Making a Full Backup
	4.3.2 Making a Differential or Incremental Backup
	4.3.3 Making a Compressed Backup
	4.3.4 Making a Partial Backup
	4.3.5 Making a Single-File Backup
	4.3.5.1 Streaming the Backup Data to Another Device or Server
	4.3.5.2 Backing Up to Tape
	4.3.5.3 Backing Up to Cloud Storage

	4.3.6 Making an Optimistic Backup
	4.3.7 Making a Back Up of In-Memory Database Data
	4.3.8 Making Scheduled Backups

	4.4 Making Backups with a Distributed File System (DFS) or Storage Access Network (SAN)

	Chapter 5 Recovering or Restoring a Database
	5.1 Preparing the Backup to be Restored
	5.2 Performing a Restore Operation
	5.2.1 Restoring a Compressed Backup
	5.2.2 Restoring an Encrypted Backup Image
	5.2.3 Restoring an Incremental Backup
	5.2.4 Restoring Backups Created with the --use-tts Option
	5.2.5 Restoring External InnoDB Tablespaces to Different Locations
	5.2.6 Restoring a Backup from Cloud Storage to a MySQL Server

	5.3 Point-in-Time Recovery
	5.4 Restoring a Backup with a Database Upgrade or Downgrade

	Chapter 6 Using MySQL Enterprise Backup with Replication
	6.1 Setting Up a New Replica
	6.2 Backing up and Restoring a Replica Database
	6.3 Restoring a Source Database

	Chapter 7 Performance Considerations for MySQL Enterprise Backup
	7.1 Optimizing Backup Performance
	7.2 Optimizing Restore Performance

	Chapter 8 Encryption for Backups
	Chapter 9 Using MySQL Enterprise Backup with Media Management Software (MMS) Products
	9.1 Backing Up to Tape with Oracle Secure Backup

	Chapter 10 Monitoring Backups with MySQL Enterprise Monitor
	Chapter 11 Troubleshooting for MySQL Enterprise Backup
	11.1 Error codes of MySQL Enterprise Backup
	11.2 Working Around Corruption Problems
	11.3 Using the MySQL Enterprise Backup Logs
	11.4 Using the MySQL Enterprise Backup Manifest

	Part III mysqlbackup Command Reference
	Chapter 12 mysqlbackup
	Chapter 13 mysqlbackup commands
	13.1 Backup Operations
	13.2 Apply-Log Operations
	13.3 Restore Operations
	13.4 Validation Operations
	13.5 Single-File Backup Operations

	Chapter 14 mysqlbackup Command-Line Options
	14.1 Standard Options
	14.2 Connection Options
	14.3 Server Repository Options
	14.4 Backup Repository Options
	14.5 Metadata Options
	14.6 Compression Options
	14.7 Incremental Backup Options
	14.8 Partial Backup and Restore Options
	14.9 Single-File Backup Options
	14.10 Performance / Scalability / Capacity Options
	14.11 Message Logging Options
	14.12 Progress Report Options
	14.13 Encryption Options
	14.14 Cloud Storage Options
	14.15 Options for Special Backup Types

	Chapter 15 Configuration Files and Parameters

	Part IV Appendixes
	Appendix A Frequently Asked Questions for MySQL Enterprise Backup
	Appendix B Limitations of MySQL Enterprise Backup
	Appendix C Compatibility Information for MySQL Enterprise Backup
	C.1 Supported Platforms
	C.2 Cross-Platform Compatibility
	C.3 Compatibility with MySQL Versions
	C.4 Compatibility with Older Versions of MySQL Enterprise Backup
	C.5 Compatibility Notes for Specific MySQL Versions

	Appendix D MySQL Enterprise Backup Release Notes
	MySQL Enterprise Backup Glossary

	Index

