
MySQL Cluster Manager 9.6.0 User Manual

Abstract

This is the User Manual for the MySQL Cluster Manager, version 9.6.0. It documents the MySQL Cluster Manager
Agent and MySQL Cluster Manager Client software applications, which can be used to administer MySQL NDB
Cluster, a version of the MySQL Database System (referred to hereafter as “MySQL Server” or simply “MySQL”)
that incorporates the NDB storage engine for high availability and data redundancy in a distributed computing
environment.

This manual applies to MySQL Cluster Manager 9.6.0 and contains information that may not apply to older
versions of the MySQL Cluster Manager software. For documentation covering previous MySQL Cluster Manager
releases, see MySQL Documentation: MySQL NDB Cluster, on the MySQL website.

MySQL Cluster Manager features. This manual describes features that may not be included in every version
of MySQL Cluster Manager, and such features may not be included in the version of MySQL Cluster Manager
licensed to you. If you have any questions about the features included in your version of MySQL Cluster Manager,
refer to your MySQL Cluster Manager license agreement or contact your Oracle sales representative.

MySQL Cluster Manager, MySQL Server, and MySQL NDB Cluster features. This manual contains certain
basic information about MySQL Server and MySQL NDB Cluster; however, it is not in any way intended as an
exhaustive reference for either of these products.

MySQL Cluster Manager 9.6 supports MySQL NDB Cluster 9.6, MySQL NDB Cluster 8.4, and MySQL NDB
Cluster 8.0.

MySQL NDB Cluster functionality varies between MySQL NDB Cluster releases; MySQL Cluster Manager cannot
supply or emulate MySQL NDB Cluster features that are not present in the version of the MySQL NDB Cluster
software in use.

For complete information about MySQL Server and MySQL NDB Cluster see MySQL NDB Cluster 9.6, MySQL
NDB Cluster 8.4, and MySQL NDB Cluster 8.0.

If you do not have the MySQL Server and MySQL NDB Cluster documentation, you can obtain it free of charge
from the MySQL Documentation Library, on the MySQL website.

For notes detailing the changes in each release of MySQL Cluster Manager , see MySQL Cluster Manager 9.6
Release Notes.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2026-01-15 (revision: 84253)

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
http://dev.mysql.com/doc/index-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
http://dev.mysql.com/doc
https://dev.mysql.com/doc/relnotes/mysql-cluster-manager/9.6/en/
https://dev.mysql.com/doc/relnotes/mysql-cluster-manager/9.6/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 Overview of MySQL Cluster Manager ... 1

1.1 MySQL Cluster Manager Terminology .. 1
1.2 MySQL Cluster Manager Architecture .. 2
1.3 Basic Operational Concepts for MySQL Cluster Manager .. 4

1.3.1 Quorum Requirement ... 4
1.3.2 Eventual Consistency ... 4

2 What Is New in MySQL Cluster Manager 9.6 .. 5
3 MySQL Cluster Manager Installation, Configuration, Cluster Setup ... 7

3.1 Obtaining MySQL Cluster Manager .. 7
3.2 Supported Platforms and MySQL NDB Cluster Versions ... 7
3.3 MySQL Cluster Manager Installation .. 7

3.3.1 Installing MySQL Cluster Manager on Unix-like Platforms 7
3.3.2 Installing MySQL Cluster Manager on Windows Platforms 11
3.3.3 Setting the MySQL Cluster Manager Agent User Name and Password 14

3.4 MySQL Cluster Manager Configuration File .. 15
3.5 Upgrading MySQL Cluster Manager ... 16

4 Using MySQL Cluster Manager .. 19
4.1 mcmd, the MySQL Cluster Manager Agent .. 19
4.2 Starting and Stopping the MySQL Cluster Manager Agent ... 28

4.2.1 Starting and Stopping the Agent on Linux .. 29
4.2.2 Starting and Stopping the MySQL Cluster Manager Agent on Windows 30

4.3 Starting the MySQL Cluster Manager Client ... 31
4.4 Setting Up MySQL NDB Clusters with MySQL Cluster Manager 34

4.4.1 Creating a MySQL NDB Cluster with MySQL Cluster Manager 34
4.5 Importing MySQL NDB Clusters into MySQL Cluster Manager ... 36

4.5.1 Importing a Cluster Into MySQL Cluster Manager: Basic Procedure 36
4.5.2 Importing a Cluster Into MySQL Cluster Manager: Example 38

4.6 MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager 47
4.6.1 Requirements for Backup and Restore .. 47
4.6.2 Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager 47

4.7 Backing Up and Restoring MySQL Cluster Manager Agents .. 54
4.8 Restoring a MySQL Cluster Manager Agent with Data from Other Agents 55
4.9 Setting Up MySQL NDB Cluster Replication with MySQL Cluster Manager 56
4.10 Using Encrypted Connections for MySQL Cluster Manager Agents and Clients 58
4.11 Using TLS Connections for NDB Clusters .. 60

5 MySQL Cluster Manager Client Commands .. 63
5.1 Online Help and Information Commands .. 69
5.2 MySQL Cluster Manager Site and Agent Commands .. 75

5.2.1 The add hosts Command ... 75
5.2.2 The remove hosts Command .. 76
5.2.3 The change log-level Command .. 77
5.2.4 The rotate log Command ... 77
5.2.5 The collect logs Command .. 78
5.2.6 The create site Command ... 79
5.2.7 The delete site Command ... 80
5.2.8 The list sites Command ... 81
5.2.9 The list hosts Command ... 81
5.2.10 The show settings Command .. 82
5.2.11 The stop agents Command .. 83
5.2.12 The version Command .. 83
5.2.13 The show warnings Command .. 83
5.2.14 The list warnings Command .. 84

5.3 MySQL Cluster Manager Package Commands ... 84
5.3.1 The add package Command ... 84

iii

MySQL Cluster Manager 9.6.0 User Manual

5.3.2 The delete package Command .. 86
5.3.3 The list packages Command .. 87

5.4 MySQL Cluster Manager Cluster Commands ... 88
5.4.1 The create cluster Command .. 88
5.4.2 The delete cluster Command .. 92
5.4.3 The list clusters Command .. 93
5.4.4 The list nextnodeids Command .. 93
5.4.5 The restart cluster Command .. 93
5.4.6 The show status Command ... 94
5.4.7 The start cluster Command .. 98
5.4.8 The stop cluster Command .. 100
5.4.9 The autotune Command .. 100
5.4.10 The upgrade cluster Command .. 101

5.5 MySQL Cluster Manager Configuration Commands .. 104
5.5.1 The get Command .. 107
5.5.2 The reset Command .. 119
5.5.3 The set Command .. 125
5.5.4 The show variables Command .. 134

5.6 MySQL Cluster Manager Process Commands .. 134
5.6.1 The add process Command .. 134
5.6.2 The change process Command .. 137
5.6.3 The list processes Command .. 139
5.6.4 The start process Command .. 140
5.6.5 The stop process Command .. 141
5.6.6 The update process Command .. 142
5.6.7 The remove process Command .. 143

5.7 MySQL Cluster Manager TLS Connection Commands .. 144
5.7.1 The create certs Command .. 144
5.7.2 The list certs Command .. 145

5.8 MySQL Cluster Manager Backup and Restore Commands .. 146
5.8.1 The abort backup Command .. 146
5.8.2 The backup cluster Command .. 147
5.8.3 The list backups Command .. 149
5.8.4 The delete backup Command .. 150
5.8.5 The restore cluster Command .. 150
5.8.6 The backup agents Command .. 153

5.9 MySQL Cluster Manager Cluster Importation Commands .. 153
5.9.1 The import cluster Command .. 153
5.9.2 The import config Command .. 154

6 MySQL Cluster Manager Limitations and Known Issues ... 157
6.1 MySQL Cluster Manager Usage and Design Limitations .. 157
6.2 MySQL Cluster Manager 9.6.0 Limitations Relating to the MySQL Server 157
6.3 MySQL Cluster Manager Limitations Relating to MySQL NDB Cluster 158
6.4 Syntax and Related Issues in MySQL Cluster Manager ... 159

A Attribute Summary Tables .. 161
A.1 Management Node Configuration Parameters .. 161
A.2 Data Node Configuration Parameters ... 162
A.3 API Node Configuration Parameters .. 169
A.4 Other Node Configuration Parameters ... 170
A.5 MySQL Server Option and Variable Reference for MySQL Cluster 171

Index .. 183

iv

Preface and Legal Notices
This is the User Manual for the MySQL Cluster Manager, version 9.6.0. It documents the MySQL
Cluster Manager Agent and MySQL Cluster Manager Client software applications, which can be used
to administer MySQL NDB Cluster, a version of the MySQL Database System (referred to hereafter as
“MySQL Server” or simply “MySQL”) that incorporates the NDB storage engine for high availability and
data redundancy in a distributed computing environment.

Licensing information. This product may include third-party software, used under license. See
the MySQL Cluster Manager 9.6 License Information User Manual for licensing information, including
licensing information relating to third-party software that may be included in this release.

Legal Notices
Copyright © 2009, 2026, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

v

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://downloads.mysql.com/docs/licenses/cluster-manager-9.6-com-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Overview of MySQL Cluster Manager

Table of Contents
1.1 MySQL Cluster Manager Terminology ... 1
1.2 MySQL Cluster Manager Architecture .. 2
1.3 Basic Operational Concepts for MySQL Cluster Manager ... 4

1.3.1 Quorum Requirement ... 4
1.3.2 Eventual Consistency ... 4

This chapter provides a overview of MySQL Cluster Manager, as well as its architecture, purpose, and
capabilities.

1.1 MySQL Cluster Manager Terminology

This section provides definitions of key terms used to describe MySQL Cluster Manager and its
components in this manual and in other documentation relating to MySQL Cluster Manager and
MySQL NDB Cluster.

Site.
A set of hosts on which MySQL NDB Cluster processes to be managed by MySQL Cluster Manager
are located. A site can include one or more clusters.

Cluster.
A MySQL NDB Cluster deployment. A cluster consists of a set of MySQL NDB Cluster processes
running on one or more hosts. A minimal cluster is usually considered to include one management
node, two data nodes, and one SQL node. A typical production cluster may have one or two
management nodes, several SQL nodes, and 4 or more data nodes. The exact numbers of data
and SQL nodes can vary according to data size, type and rating of hardware used on the hosts,
expected throughput, network characteristics, and other factors; the particulars are beyond the scope
of this document, and you should consult MySQL NDB Cluster 9.6, for more specific information and
guidelines.

Host.
A computer. The exact meaning depends on the context:

• A computer where one or more MySQL NDB Cluster processes are run. In this context, we
sometimes refer more specifically to a cluster host.

The number of cluster processes and number of cluster hosts may be, but are not necessarily, the
same.

• A computer where an instance of the MySQL Cluster Manager agent runs.

In order to run a MySQL NDB Cluster using MySQL Cluster Manager, the MySQL Cluster Manager
agent must be running on each host where cluster processes are to be run. In other words, when using
MySQL Cluster Manager, all cluster hosts must also be MySQL Cluster Manager agent hosts (although
the reverse is not necessarily true). Therefore, you should understand that anytime we use the term
host, we are referring to a host computer in both of the senses just given.

Process.
In the context of MySQL NDB Cluster, a process (more specifically, a cluster process) is a MySQL
NDB Cluster node, of one of the following 3 types: management node (ndb_mgmd), data node (ndbd or
ndbmtd), or SQL node (mysqld). For more information about these node types and their functions in a
cluster, see NDB Cluster Core Concepts, and NDB Cluster Nodes, Node Groups, Fragment Replicas,
and Partitions.

1

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-basics.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-nodes-groups.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-nodes-groups.html

MySQL Cluster Manager Architecture

Package.
A copy of the MySQL NDB Cluster software. This includes the binary executables needed to run the
cluster processes of the desired types on a given host. The simplest way to make sure that this is done
is to place a copy of the entire MySQL NDB Cluster distribution on each computer that you intend to
use as a cluster host.

Configuration attribute.
A value whose setting affects cluster operations in a clearly defined and measurable way. When
running MySQL NDB Cluster manually, configuration is accomplished using cluster configuration
parameters, MySQL server options, and MySQL system and status variables; MySQL Cluster Manager
masks the differences between these, providing a unified view of them; see Configuration attributes, for
more information.

Agent.
A MySQL Cluster Manager process that runs on each cluster host, responsible for managing the
cluster processes running on that host.

Client.
The MySQL Cluster Manager client is a software application that allows a user to connect to MySQL
Cluster Manager and perform administrative tasks, such as (but not limited to): creating, starting, and
stopping clusters; obtaining cluster and cluster process status reports; getting cluster configuration
information and setting cluster configuration attributes.

1.2 MySQL Cluster Manager Architecture
This section provides an architectural overview of MySQL Cluster Manager, its components, and their
deployment.

MySQL Cluster Manager is a distributed client/server application consisting of two main components.
The MySQL Cluster Manager agent is a set of one or more agent processes that manage NDB Cluster
nodes, and the MySQL Cluster Manager client provides a command-line interface to the agent's
management functions.

Agent.
The MySQL Cluster Manager agent is comprised of the set of all MySQL Cluster Manager agent
processes running on the hosts making up a given management site. A MySQL Cluster Manager
agent process is a daemon process that runs on each host to be used in the cluster. In MySQL Cluster
Manager, there is no single central server or process; all agents collaborate in managing a cluster as
a whole. This means that any connected agent can be used to carry out tasks that effect the entire
cluster.

Each agent process is responsible for managing the MySQL NDB Cluster nodes running on the host
where the agent is located. MySQL NDB Cluster management and SQL nodes are managed directly
by the MySQL Cluster Manager agent; cluster data nodes are managed indirectly, using the cluster
management nodes.

Management responsibilities handled by the MySQL Cluster Manager agent include the following:

• Creating and deleting clusters

• Starting, stopping, and restarting cluster nodes

• Cluster configuration changes

• Backing up and restoring clusters

• Cluster software upgrades

• Host and node status reporting

• Recovery of failed cluster nodes

2

MySQL Cluster Manager Architecture

Creating, performing initial configuration of, or starting a cluster, requires that agent processes be
running on all cluster hosts. Once the cluster has been started, it continues to run even if one or more
agent processes fail. However, any failed agent processes must be restarted before you can perform
additional cluster management functions.

Client.
A MySQL Cluster Manager client is a software application used to access an MySQL Cluster Manager
agent. The mcm client in the MySQL Cluster Manager release package is based on the mysql client.

By way of example, we show how MySQL Cluster Manager would be deployed for use with a MySQL
NDB Cluster running on 4 host computers. This is illustrated in the following diagram:

Figure 1.1 MySQL Cluster Manager Deployment

In this example cluster, two of the hosts each house a management server (ndb_mgmd) and an SQL
node (mysqld); the other 2 hosts each house two data nodes (ndbd). However, regardless of the
distribution of cluster nodes among the hosts, a MySQL Cluster Manager agent process must be
running on each host.

A MySQL Cluster Manager client can be used to access the agent from any of the hosts making up the
management site to which the cluster belongs. In addition, the client can be used on any computer that
has a network connection to at least one of the hosts where an agent process is running. The computer
where the client itself runs is not required to be one of these hosts. The client can connect to and use
different agent processes on different hosts within the management site, at different times, to perform
cluster management functions.

3

Basic Operational Concepts for MySQL Cluster Manager

1.3 Basic Operational Concepts for MySQL Cluster Manager

This section explains some basic operational concepts for MySQL Cluster Manager.

1.3.1 Quorum Requirement

MySQL Cluster Manager uses the XCom (a Paxos variant) as its consensus protocol. Before XCom
allows a new message to be delivered, it requires a majority vote by all agents to decide who can send
the next message. This majority is referred to as a "quorum." In general, a simple majority of the agents
(that is, half of the total number of agents plus one) constitutes a quorum. So, the quorum for a cluster
with 4 agents is 3, and for 6 agents is 4, and so on. Here are some special cases:

• An agent for a single-host cluster forms a quorum. All messages are automatically delivered.

• A 2-host group does not require a simple majority of agents—if full consensus by both agents is not
obtained, XCom allows a message to be sent only by the agent on the first host in the host list of the
create site command.

On top of the quorum requirement described above, for any execution plans, any agent that has work
to do in the plan needs to accept the plan before it can be executed.

1.3.2 Eventual Consistency

MySQL Cluster Manager guarantees eventual consistency among agents, meaning that:

• Any message communicated among agents is either delivered or not delivered to ALL agents
(instead of delivered to some and missed by others).

• Order of delivery for any sequence of messages is always identical for all agents (that is, messages
cannot get out of order for some agents).

Beyond that, there is no guarantee for message synchronization: a message is not guaranteed to be
received and executed within a specific window of time for all agents. The result is that any agent may
lag behind in processing messages for any reasons such as network traffic, machine loading, or thread
scheduling. Situations like the following might then occur: while Agent C is lagging behind Agent A
and B, the two agents have completed some cluster reconfiguration that does not involve any local
actions for Agent C; a client connected to Agent A or B might have received a success message for the
reconfiguration, while a client querying Agent C is told that the reconfiguration is still in process, since
the completion message has not yet reached Agent C.

Such temporary inconsistency among the agents should not be a concern. While an agent might be
lagging behind, the guaranteed eventual consistency means that, unless prevented by a network error
or some other issues, any lagging agent will eventually catch up with the other agents, and all agents
will eventually get a consistent view of the site.

4

Chapter 2 What Is New in MySQL Cluster Manager 9.6
MySQL Cluster Manager 9.6 is an Innovation release, which means it has new features in addition to
bug fixes, and it is supported until the next Innovation release comes out. MySQL Cluster Manager 9.6
is recommended for use on production systems. With this new Innovation series, the existing 8.4 series
focuses on security and bug fixes only.

For notes detailling the changes in MySQL Cluster Manager 9.6, see MySQL Cluster Manager 9.6
Release Notes

5

https://dev.mysql.com/doc/relnotes/mysql-cluster-manager/9.6/en/
https://dev.mysql.com/doc/relnotes/mysql-cluster-manager/9.6/en/

6

Chapter 3 MySQL Cluster Manager Installation, Configuration,
Cluster Setup

Table of Contents
3.1 Obtaining MySQL Cluster Manager ... 7
3.2 Supported Platforms and MySQL NDB Cluster Versions ... 7
3.3 MySQL Cluster Manager Installation .. 7

3.3.1 Installing MySQL Cluster Manager on Unix-like Platforms ... 7
3.3.2 Installing MySQL Cluster Manager on Windows Platforms .. 11
3.3.3 Setting the MySQL Cluster Manager Agent User Name and Password 14

3.4 MySQL Cluster Manager Configuration File .. 15
3.5 Upgrading MySQL Cluster Manager ... 16

This chapter discusses basic installation and configuration of the MySQL Cluster Manager
Management Agent, connecting to the agent with the MySQL Cluster Manager client, and the basics of
creating or importing a cluster using MySQL Cluster Manager.

3.1 Obtaining MySQL Cluster Manager
MySQL Cluster Manager is available only through commercial license. To learn more about licensing
terms, and to obtain information about where and how to download MySQL Cluster Manager, visit
https://www.mysql.com/products/cluster/mcm/, or contact your Oracle representative.

3.2 Supported Platforms and MySQL NDB Cluster Versions
For a list of platforms supported by MySQL Cluster Manager 9.6.0, see Supported Platforms: MySQL
Cluster Manager at https://www.mysql.com/support/supportedplatforms/cluster-manager.html, or
contact your Oracle representative.

MySQL Cluster Manager 9.6.0 supports the following MySQL NDB Cluster release versions:

• MySQL NDB Cluster 9.6 (see MySQL NDB Cluster 9.6).

• MySQL NDB Cluster 8.4 (see MySQL NDB Cluster 8.4). Notice that there are Unsupported MySQL
8.4 and 8.0 Features.

• MySQL NDB Cluster 8.0 (see MySQL NDB Cluster 8.0), beginning with MySQL NDB Cluster 8.0.24.
Notice that there are Unsupported MySQL 8.4 and 8.0 Features.

Prior to installation, you must obtain the correct build of MySQL Cluster Manager for your operating
system and hardware platform. For Unix-like platforms, MySQL Cluster Manager is delivered either as
a .tar.gz archive, whose name is in the format of mcm-9.6.0-cluster-9.6.0-linux-distro-
arch.tar.gz, or as an RPM package (for selected distros). For Windows platforms, an MSI installer
file is provided. All MySQL Cluster Manager 9.6.0 packages include MySQL NDB Cluster 9.6.0.

3.3 MySQL Cluster Manager Installation
Installation of the MySQL Cluster Manager agent and client programs varies according to platform. See
the installation instructions below.

3.3.1 Installing MySQL Cluster Manager on Unix-like Platforms

Install MySQL Cluster Manager on Linux and similar platforms by following the instructions below for
the different methods.

7

https://www.mysql.com/products/cluster/mcm/
https://www.mysql.com/support/supportedplatforms/cluster-manager.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Installing MySQL Cluster Manager on Unix-like Platforms

3.3.1.1 Installing MySQL Cluster Manager Using Tarballs

Extract the MySQL Cluster Manager 9.6.0 program and other files from the distribution
archive.
You must install a copy of MySQL Cluster Manager on each computer that you intend to use as a
MySQL NDB Cluster host. In other words, you need to install MySQL Cluster Manager on each host
that is a member of a MySQL Cluster Manager management site. For each host, you should use
the MySQL Cluster Manager build that matches that computer's operating system and processor
architecture.

On Linux systems, you can unpack the archive using the following command, which uses mcm-9.6.0-
cluster-9.6.0-linux-glibc2.17-x86-64bit.tar.gz as an example (the actual filename will
vary according to the MySQL Cluster Manager build that you intend to deploy):

$> tar -zxvf mcm-9.6.0-cluster-9.6.0-linux-glibc2.17-x86-64bit.tar.gz

This command unpacks the archive into a directory having the same name as the archive, less
the .tar.gz extension. The top-level directories under the unpacked directory are cluster and
mcm-9.6.0.

Important

Because the Solaris version of tar cannot handle long filenames correctly,
the MySQL Cluster Manager program files may be corrupted if you try to use
it to unpack the MySQL Cluster Manager archive. To get around this issue on
Solaris operating systems, you should use GNU tar (gtar) rather than the
default tar supplied with Solaris. On Solaris, gtar is often already installed
in the /usr/sfw/bin directory, although the gtar executable may not be
included in your path. If gtar is not present on your system, please consult the
Oracle Solaris Documentation for information on how to obtain and install it.

In general, the location where you place the unpacked MySQL Cluster Manager directory and the
name of this directory can be arbitrary. However, we recommend that you use a standard location for
optional software, such as /opt on Linux systems, and that you name the directory using the 9.6.0
version number (this facilitates subsequent upgrades). On a typical Linux system you can accomplish
this task like this:

$> cd mcm-9.6.0-cluster-9.6.0-linux-glibc2.17-x86-64bit
$> mv mcm-9.6.0 /opt/mcm-9.6.0

For ease of use, we recommend that you put the MySQL Cluster Manager files in the same directory
on each host where you intend to run it.

Contents of the MySQL Cluster Manager Unix Distribution Archive.
If you change to the directory where you placed the extracted MySQL Cluster Manager archive and list
the contents, you should see something similar to what is shown here:

$> cd /opt/mcm-9.6.0
$> ls
bin docs etc lib licenses share var

These directories are described in the following table:

Table 3.1 Contents of the MySQL Cluster Manager Unix distribution archive, by directory

Directory Contents

bin MySQL Cluster Manager agent and client
executables

docs Contains the sample configuration file,
sample_mcmd.conf, the LICENSE file, and the
README.txt file

8

https://docs.oracle.com/en/operating-systems/solaris.html

Installing MySQL Cluster Manager on Unix-like Platforms

Directory Contents

etc/init.d Contains the init scripts

lib and subdirectories Libraries needed to run the MySQL Cluster
Manager agent

var XML files containing information needed by
MySQL Cluster Manager about processes,
attributes, and command syntax

Normally, the only directories of those shown in the preceding table that you need be concerned with
are the bin, docs, and etc directories.

For MySQL Cluster Manager 9.6.0 distributions that include MySQL NDB Cluster, the complete MySQL
NDB Cluster 9.6.0 binary distribution is included in the cluster directory. Within this directory, the
layout of the MySQL NDB Cluster distribution is the same as that of the standalone MySQL NDB
Cluster binary distribution. For example, MySQL NDB Cluster binary programs such as ndb_mgmd,
ndbd, ndbmtd, and ndb_mgm can be found in cluster/bin. For more information, see MySQL
Installation Layout for Generic Unix/Linux Binary Package, and Installing an NDB Cluster Binary
Release on Linux, in the MySQL Manual.

If you wish to use the included MySQL NDB Cluster software, it is recommended that you move the
cluster directory and all its contents to a location outside the MySQL Cluster Manager installation
directory, such as /opt/ndb-version. For example, on a Linux system, you can move the MySQL
NDB Cluster NDB 9.6.0 software that is bundled with MySQL Cluster Manager 9.6.0 to a suitable
location by first navigating to the directory unpacked from the distribution archive and then using a shell
command similar to what is shown here:

$> mv cluster /opt/ndb-9.6.0

Note

The mcmd --bootstrap option uses the MySQL NDB Cluster binaries in
the cluster folder that is under the same directory as the MySQL Cluster
Manager installation directory, and bootstrapping fails if the binaries cannot be
found there. To work around this issue, create a symbolic link to the correct
directory in the directory above the installation directory, like this:

$> ln -s /opt/ndb-9.6.0 cluster

After doing this, you can use the mcm client commands add package and upgrade cluster to
upgrade any desired cluster or clusters to the new MySQL NDB Cluster software version.

Important

On Linux platforms, do not attempt to install the MySQL NDB Cluster
software by the RPM, Debian, or other installation packages for any package
management systems. They install MySQL NDB Cluster differently than the
binary distribution that comes with the MySQL Cluster Manager archive, and
that will cause issue in the future when you try to upgrade your cluster with
MySQL Cluster Manager.

The MySQL Cluster Manager agent by default writes its log file as mcmd.log in the same directory
where the installation directory is found. When the agent runs for the first time, it creates a directory
where the agent stores its own configuration data; by default, that is mcm_data in the parent directory
of the MySQL Cluster Manager installation directory. The configuration data, log files, and data node
file systems for a given MySQL NDB Cluster under MySQL Cluster Manager control, and named
cluster_name, can be found in clusters/cluster_name under this data directory (sometimes
also known as the MySQL Cluster Manager data repository).

The location of the MySQL Cluster Manager agent configuration file, log file, and data directory can
be controlled with mcmd startup options or by making changes in the agent configuration file. To

9

https://dev.mysql.com/doc/refman/9.6/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/9.6/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-install-linux-binary.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-install-linux-binary.html

Installing MySQL Cluster Manager on Unix-like Platforms

simplify upgrades of MySQL Cluster Manager, we recommend that you change the data repository to
a directory outside the MySQL Cluster Manager installation directory, such as /var/opt/mcm. See
Section 3.4, “MySQL Cluster Manager Configuration File”, and Section 4.2, “Starting and Stopping the
MySQL Cluster Manager Agent”, for more information.

MySQL Cluster Manager init script. On Linux and other Unix-like systems, you can set up the
MySQL Cluster Manager agent to run as a daemon, using the init script that is supplied with the
MySQL Cluster Manager distribution.

To do this, follow the steps listed here:

1. Copy the file /etc/init.d/mcmd under the MySQL Cluster Manager installation directory to
your system's /etc/init.d/ directory (or equivalent). On a typical Linux system, you can do this
using the following command in the system shell, where mcmdir is the MySQL Cluster Manager
installation directory:

$> cd mcmdir/etc/init.d
$> cp mcmd /etc/init.d/mcmd

2. Make sure that this file has appropriate permissions and is executable by the user account that runs
MySQL Cluster Manager. On a typical Linux system, this can be done by executing commands in
your system shell similar to those shown here:

$> chown mcmuser /etc/init.d/mcmd
$> chmod 755 /etc/init.d/mcmd

Be sure to refer to your operating system documentation for exact information concerning the
commands needed to perform these operations, as they may vary between platforms.

3. Open the file /etc/init.d/mcmd in a text editor. Here, we show a portion of this file, in which we
have highlighted the two lines that need to be updated:

 MCMD_SERVICE="mcmd"
 MCMD_PSERVICE="MySQL Cluster Manager"
 MCMD_ROOTDIR=@@MCMD_ROOTDIR@@
 MCMD_BIN="$MCMD_ROOTDIR/bin/mcmd"
 MCMD_CONFIG="$MCMD_ROOTDIR/etc/mcmd.conf"

 # Run service as non-root user
 MCMD_USER=@@MCMD_USER@@
 SU="su --login $MCMD_USER --command"

In the first of the highlighted lines, replace the placeholder @@MCMD_ROOTDIR@@ with the complete
path to the MySQL Cluster Manager installation directory. In the second of these lines, replace
the placeholder @@MCMD_USER@@ with the name of the system user that runs the MySQL Cluster
Manager agent (note that this must not be the system root account). Save the edited file.

The MySQL Cluster Manager agent should now be started automatically whenever the system is
restarted.

When the agent is configured as a daemon, cluster processes are started automatically when the agent
is restarted, as long as the cluster was running when the agent shut down; however, StopOnError
must be disabled (set to 0) for all data nodes in order for that to work. If the cluster was stopped when
the agent shut down, it is necessary to have in place a script that waits for the agent to complete its
startup and recovery phases, and then, when the agent is ready, starts the cluster using a command
such as mcmdir/bin/mcm -e 'start cluster cluster_name;'.

Install MySQL Cluster Manager as a service using systemd. On Linux and other Unix-like
systems that supports systemd, you can set up the MySQL Cluster Manager agent to run as a service
by following theses steps:

1. Create the system user mcm to run the mcm service

sudo useradd --no-create-home -s /bin/false mcm

10

Installing MySQL Cluster Manager on Windows Platforms

2. Set the necessary file and folder permissions (replace mcmdir with the path for your MySQL
Cluster Manager installation directory)

sudo chown -R mcm:mcm mcmdir
chmod 600 mcmdir/mcmd.conf

3. Create the systemd configuration file /etc/systemd/system/mcm.service for the mcm service:

[Unit]
Description=MySQL Cluster Manager
Documentation=https://dev.mysql.com/doc/mysql-cluster-manager/en/
After=network-online.target

[Service]
User=mcm
Group=mcm
Restart=always
Type=simple

ExecStart=mcmdir/mcm9.6.0/bin/mcmd --config=mcmdir/mcmd.conf

[Install]
WantedBy=multi-user.target

4. Reload systemd configuration files for your system, to make service addition take effect:

sudo systemctl daemon-reload

5. Start, enable, and check status of the service by these commands

sudo systemctl start mcm
sudo systemctl enable mcm
sudo systemctl status mcm

If the service is not started correctly, look in the messages file:

sudo tail -150f /var/log/messages

When the agent is configured as a service, cluster processes are started automatically when the agent
is restarted, as long as the cluster was running when the agent shut down; however, StopOnError
must be disabled (set to 0) for all data nodes in order for this to happen. If the cluster was stopped
when the agent shut down, it is necessary to have in place a script that waits for the agent to complete
its startup and recovery phases, and then, when the agent is ready, starts the cluster using a command
such as mcmdir/bin/mcm -e 'start cluster cluster_name;'.

3.3.1.2 Installing MySQL Cluster Manager Using RPM Packages

Oracle provides RPM packages for installing MySQL Cluster Manager on Oracle Linux, Red Hat
Enterprise Linux, CentOS, and SUSE Linux Enterprise Server.

Note

RPM packages for MySQL Cluster Manager are not available on the MySQL
Yum Repository.

Use the rpm command (instead of your OS distribution's package management system) to install the
RPM package. For example:

rpm -ivh mcm-9.6.0-linux-distro-arch.rpm #install mcm by stand-alone rpm

3.3.2 Installing MySQL Cluster Manager on Windows Platforms

To install MySQL Cluster Manager on Windows platforms, obtain the MSI installer for it (see
Section 3.1, “Obtaining MySQL Cluster Manager”), then follow these steps:

11

Installing MySQL Cluster Manager on Windows Platforms

• Run the installer by double-clicking it in Windows Explorer (some versions of Windows also provide
an Install item in the Windows Explorer menu that can be used to run the installer). When you start
the installer, you may see a Windows Security Warning screen. If you obtained the installer from
a trusted source and know that it has not been tampered with, choose Run from the dialog, which
allows the installer to continue to the Welcome screen.

• Click the Next button to continue to the License Agreement screen. You should read the license
text in the text area, and when you have done so, check the box labelled I accept the terms in the
License Agreement. Until you have checked the box, you cannot complete the MySQL Cluster
Manager installation; it is possible only to print the license, go back to the previous screen, or cancel
the installation (using the buttons labelled Print, Back, and Cancel, respectively). Checking the box
enables the Next button.

• Click the Next button to continue to the Destination Folder screen, where you can choose the
installation directory. The default location is C:\Program Files\MySQL\MySQL Cluster
Manager\. You can click the Change button to change the directory where MySQL Cluster Manager
should be installed; the default directory is adequate for most cases.

Once you have selected the destination directory, the installer has gathered all the information that it
requires to perform the installation. Click Next to continue to the Ready screen

• Click the Install button to install MySQL Cluster Manager. As the installer begins to copy files and
perform other tasks affecting the system, you may see a warning dialog from Windows User Access
Control. If this occurs, click the Yes button to allow the installation to continue. A Setup Wizard
screen with a progress bar is displayed while the installer runs.

The Setup Wizard may require several minutes to copy all of the necessary files for MySQL
Cluster Manager and MySQL NDB Cluster to the installation directory and to perform other required
changes.

Note

The MySQL Cluster Manager installer places MySQL NDB Cluster in the
cluster directory under the installation directory (by default, that is C:
\Program Files\MySQL\MySQL Cluster Manager\cluster). The
location of the MySQL NDB Cluster binaries is not separately configurable
when using the MySQL Cluster Manager installer.

• When the Setup Wizard finishes, the installer displays the Installation Completed screen. MySQL
Cluster Manager has now been installed to the destination directory; click the Finish button to exit
the installer.

As mentioned elsewhere (see, for example, Section 4.4.1, “Creating a MySQL NDB Cluster with
MySQL Cluster Manager”), you must install a copy of MySQL Cluster Manager on each computer
where you intend to host a MySQL NDB Cluster node. Therefore, the above procedure must be
performed separately on each host computer. For ease of installations and upgrades on multiple
machines, it is recommended that you install MySQL Cluster Manager to the same location on
each host. C:\Program Files\MySQL\MySQL Cluster Manager\ is the default location for
installation, but it is possible to install MySQL Cluster Manager to an alternate location such as C:\mcm
\.

3.3.2.1 Installing the MySQL Cluster Manager Agent as a Windows Service

Important

Installation of the MySQL Cluster Manager agent as a service is
recommended. However, you should not install MySQL NDB Cluster processes
(ndb_mgmd.exe, ndbd.exe, ndbmtd.exe, mysqld.exe) as services on
Windows hosts to be used as MySQL NDB Cluster nodes under management
by MySQL Cluster Manager, since the MySQL Cluster Manager agent itself

12

Installing MySQL Cluster Manager on Windows Platforms

controls MySQL NDB Cluster nodes independently of the Windows Services
application.

After installing the MySQL Cluster Manager Agent as a Windows service, you can start and stop the
agent using the Windows Services application. The installation also configures the agent to start
automatically whenever Windows starts, and to shut down safely whenever Windows shuts down.

Note

The Windows service can be used to control the running of MySQL Cluster
Manager agents on a single host only. To shut down agents on multiple hosts,
you can use the stop agents command in the MySQL Cluster Manager client.

The installation is performed using the command prompt (cmd.exe); as with installing or removing
any Windows service, it must also be done as a user having sufficient permissions, such the system
Administrator account. Follow these steps:

• If the account you are currently using has Administrator privileges, you can simply start cmd.exe.
Otherwise, you must run the command prompt program as the Administrator. To do this, first locate a
shortcut to the command prompt. You can do this by typing cmd into the search box in the Windows
Taskbar, and then select from the search results Command Prompt > Run as Administrator.

If a Windows UAC dialog referring to cmd.exe appears, click Yes to allow the command prompt to
run as Administrator and thus to continue. You should now have a command prompt window open
on your desktop, running a session with Administrator privileges.

• To install the MySQL Cluster Manager agent as a service, we use the SC CREATE command. This
command allows us to specify a name for the service (for use with SC START and SC STOP or
NET START and NET STOP commands), a display name (to be shown in the Services application),
a startup mode (automatic or manual start), and a path to the executable to be run as a service.
The path must also include any arguments needed by the program; in the case of MySQL Cluster
Manager, mcmd.exe must be told where to find its configuration file by the --config option. Both
of these paths must be absolute. Assume that you have installed MySQL Cluster Manager to the
default location (C:\Program Files\MySQL\MySQL Cluster Manager\mcm9.6.0), and
that its configuration file is located in C:\Program Files\MySQL\MySQL Cluster Manager
\mcm9.6.0\; then, the following command installs MySQL Cluster Manager as a service named
MCM, with the display name “MySQL Cluster Manager 9.6.0”:

SC CREATE "MCM" DisplayName= "MySQL Cluster Manager 9.6.0" Start= "auto"
 BinPath= "C:\Program Files\MySQL\MySQL Cluster Manager\mcm9.6.0\bin\mcmd.exe
 --config=\"C:\Program Files\MySQL\MySQL Cluster Manager\mcm9.6.0\mcmd.conf\""

This command can be quite long. For enhanced legibility, we have broken it across several lines, but
you should always enter it on a single line, allowing it to wrap naturally. In addition, you should keep
in mind that the spaces after the equal signs following the DisplayName, Start, and BinPath
arguments are required.

Starting and stopping the MySQL Cluster Manager agent Windows service. After installing
the service successfully, you can start and stop the service manually, if the need arises, with the SC
START and SC STOP commands.

C:\>SC START MCM
C:\>SC STOP MCM

Alternatively, use the NET START and NET STOP commands:

C:\Windows\system32>NET START MCM
C:\Windows\system32>NET STOP MCM

Once the service is installed, the MySQL Cluster Manager agent starts automatically whenever
Windows is started. You can verify that the service is running with the Windows Task Manager

13

Setting the MySQL Cluster Manager Agent User Name and Password

(which can be searched and then run using the search box in the Windows Taskbar). Open the Task
Manager, and switch to the Services tab if it is not already displayed. If the MySQL Cluster Manager
agent is running, you can find it in the list of services under MCM in the Name, column and MySQL
Cluster Manager 9.6.0 in the Description column.

You can also verify if the service is running using the Windows Services application(which can be
searched and then run using the search box in the Windows Taskbar). The application also allows you
to start, stop, or pause the MySQL Cluster Manager agent service manually using a GUI.

Note

When first installing the MySQL Cluster Manager agent as a service, the service
is not started automatically until Windows is restarted. If you do not wish to
restart Windows, then you must start the service manually using either SC
START or NET START on the command line or the graphical control provided in
the Windows Services application.

You can remove the service using the SC DELETE command and the name of the service—in this case
MCM—that was used in the SC CREATE command. If the service is running at the time that SC DELETE
is executed, the removal of the service takes effect the next time the service is stopped. In such a case,
you must stop the previous instance of the service manually, and allow it to be removed, before you
can reinstall the service.

Once you have installed the MySQL Cluster Manager agent and the service is running correctly, you
are ready to connect to it using the MySQL Cluster Manager client. See Section 4.3, “Starting the
MySQL Cluster Manager Client”, for information about how to do this.

3.3.3 Setting the MySQL Cluster Manager Agent User Name and Password

Normally it is not necessary to alter the user name or password used by the user agent to administer
mysqld processes. However, if you should wish to do so, you can change either or both of these,
using the procedure outlined here:

1. Stop all agents. (You can use stop agents for this purpose.)

2. Update the agent configuration file. Set a new password by uncommenting the line containing
mcmd_password= and adding the new password as its value; set a new administrative user
account name by uncommenting the line containing mcmd_user= and setting the value to the new
user name. See Section 4.1, “mcmd, the MySQL Cluster Manager Agent”, for more information
about these options.

3. For each mysqld do the following:

a. Log in (using the mysql client) as the MySQL root user

b. If you are changing the user name, do this first, using the following statement, where olduser
is the current user name and newuser is the new manager-user that you set previously in the
agent configuration file:

RENAME USER 'olduser'@'127.0.0.1' TO 'newuser'@'127.0.0.1';

If you are changing the user name for the first time, use mcmd for olduser. In addition, you
should use 127.0.0.1 for the host name (and not localhost).

c. Execute the following statement, where newuser is the new user name, and newpass is the
new password:

SET PASSWORD FOR 'newuser'@'127.0.0.1' = PASSWORD('newpass');

Use mcmd for the user name if you have not changed it—that is, if mcmd-user has been left
unset in the agent configuration file. Use 127.0.0.1 for the host name (and not localhost).

14

https://dev.mysql.com/doc/refman/9.6/en/rename-user.html
https://dev.mysql.com/doc/refman/9.6/en/set-password.html

MySQL Cluster Manager Configuration File

d. Issue a FLUSH PRIVILEGES statement.

4. Restart the agents. All agents should now be using the new password for the mcmd accounts on the
MySQL servers (mysqld processes).

3.4 MySQL Cluster Manager Configuration File
The mcmd configuration file allows you to configure mcmd with its application options. A sample
configuration file is provided with the MySQL Cluster Manager distribution at mcmd9.6.0/doc/
sample_mcmd.conf. Edit the [mcmd] section of the file and save it as mcmd.conf at a desired
location, which you will provide to mcmd with the --config option when you start the agent. If the
option is not used, mcmd looks for the configuration file at these default locations, in the following order
of priority:

• mcmd-installation-directory/mcmd.conf

• mcmd-installation-directory/mcmd.ini

• For Linux systems: OS-user's-home-directory/mcmd.conf

For Windows systems: C:\Users\user\AppData\Roaming/mcmd.conf

• For Linux systems: OS-user's-home-directory/mcmd.ini

For Windows systems: C:\Users\user\AppData\Roaming/mcmd.ini

Notes

• For Linux platforms: The configuration file must have proper file permissions:
mcmd refuses to start if the configuration file has permissions more open than
just read and write for just the owner and the group owner (that is, more open
than 660 in numeric notation for permissions).

• For Windows platforms: It is recommended that you save the configuration file
to a convenient location for which the path does not contain any spaces, such
as C:\mcm\data.

The format of the configuration file follows that of the MySQL Router configuration file; see
Configuration File Syntax for an explanation of the file format.

The following is the sample configuration file; uncomment and adjust the values of the listed options, or
add other options:

Copyright (c) 2018, 2021, Oracle and/or its affiliates.
#
MySQL Cluster Manager sample configuration
#

#[DEFAULT]
#logging_folder = /var/log
#data_folder = /var/lib/mcm_data
#pid_file = mcmd.pid

[logger]
#level = INFO
#filename = mcmd.log

The MySQL Cluster Manager plugin
[mcmd]
#mcmd_user = mcmd
#mcmd_password = super
#bind_address = ::
#bind_port = 1862
#xcom_port = 18620

15

https://dev.mysql.com/doc/refman/9.6/en/flush.html#flush-privileges
https://dev.mysql.com/doc/mysql-router/9.6/en/mysql-router-configuration-file-syntax.html

Upgrading MySQL Cluster Manager

#copy_port = 0

For more information about the options that can be set in the agent configuration file, see Section 4.1,
“mcmd, the MySQL Cluster Manager Agent”.

3.5 Upgrading MySQL Cluster Manager

This section discusses upgrading MySQL Cluster Manager from a previous release to the latest
release (currently 9.6.0), as well as providing basic guidance on upgrading the bundled MySQL NDB
Cluster software.

Notes

• Only upgrades from MySQL Cluster Manager 8.0 and later are supported.

• You cannot upgrade from MySQL Cluster Manager 1.4.x or earlier to release
9.6 or later directly; upgrade to release 8.0.34 or later first and then upgrade
to 9.6, using the method outlined below.

The basic steps for upgrading a MySQL Cluster Manager installation are listed here:

1. Install the new version of the MySQL Cluster Manager software in the desired location.

2. Create a configuration for the new installation such that it uses the previous installation's data.

3. Stop all running MySQL Cluster Manager agent processes on all hosts.

4. Start the new agent processes, ensuring that they use the new configuration just created.

A more detailed explanation is provided of each of these steps in the next few paragraphs. For
illustrative purposes, we assume an upgrade from an existing installation of MySQL Cluster Manager
8.0.44 to a new installation of MySQL Cluster Manager 9.6.0. For a Linux or a Unix-like system, we
assume that the installation directories are /opt/mcm-8.0.44 and /opt/mcm-9.6.0, respectively;
on Windows, we assume the installation directories are C:\Program Files\MySQL\MySQL
Cluster Manager 8.0.44\ and C:\Program Files\MySQL\MySQL Cluster Manager
9.6.0\, respectively.

Step 1: Install new MySQL Cluster Manager version. You can obtain and install a new version
of MySQL Cluster Manager in the same way as for a new installation (see Section 3.1, “Obtaining
MySQL Cluster Manager”, and Section 3.3, “MySQL Cluster Manager Installation”), with the additional
requirement that you should not attempt to install the new version in the same location as the version
that you are currently using.

Step 2: Configure new installation. In order for the new MySQL Cluster Manager agent binaries
to manage the same MySQL NDB Cluster instances, they must be able to find the data contained in
the agent repository used by the old installation's binaries, which is mcm_data in the parent directory
of the MySQL Cluster Manager installation directory by default, but can be set using the data_folder
option in the agent configuration file.

It is simplest for MySQL Cluster Manager software upgrades if the agent repository and the agent
configuration file are located outside of the agent installation directory. Suppose the old version of the
agent is installed to /opt/mcm-8.0.44, and that it uses the directory /var/opt/mcm for its agent
repository and /etc/mcm/mcmd.ini for its configuration file. In this case, to make the new binaries
use the same configuration and repository, create first the new configuration file (in the format for
MySQL Cluster Manager 9.6), at a desired location. You can do this by making a copy of the sample
configuration file to the described location.

cp /mcm-install-dir/doc/sample_mcmd.conf /etc/mcm/mcmd.conf

You should then copy over the old configuration settings from the 8.0 configuration file to the new
configuration file, paying special attention to any differences in the configuration file format and the

16

Upgrading MySQL Cluster Manager

agent options (see Chapter 2, What Is New in MySQL Cluster Manager 9.6 and Section 3.4, “MySQL
Cluster Manager Configuration File” for details; for upgrade from the 8.1 series and later, you can just
reuse the old configuration file, making adjustments only for options that have changed from version to
version.)

To use the old data repository, add the following line to the new copy of the mcmd.conf file:

data_folder=/var/opt/mcm

After this, you can save and close the file. See also Section 3.4, “MySQL Cluster Manager
Configuration File”.

Step 3: Stop all agents. Stop the agent processes using the old binaries on all hosts making up the
management installation. You can stop all agents for a given site, for example mysite, using the stop
agents command in the MySQL Cluster Manager client, as shown here:

mcm> stop agents mysite;

You should execute a stop agents command, similar to the one just shown, for each site listed in the
output of list sites.

Step 4: Start new MySQL Cluster Manager binaries. Start the new mcmd agent binaries with the
--config option so that it uses the correct configuration file, like this:

$> mcmd --config=/etc/mcm/mcmd.conf &

Note

A majority of the agents (i.e., at least half of the total number plus one) should
be started within a period of 10 seconds; otherwise, the lack of a quorum of
nodes for decision making might cause the communication among the nodes to
break down.

You should now be able to start the mcm client from the new installation and perform management
tasks as usual. Once the client successfully starts and connects to the agent, you can verify that it is
running the correct version of the MySQL Cluster Manager software using the version command, as
shown here:

mcm> version;
+------------------------------+
| Version |
+------------------------------+
| MySQL Cluster Manager 9.6.0 |
+------------------------------+
1 row in set (0.00 sec)

Next, check that all hosts, clusters, and processes on all sites are visible to the new mcm client, and are
operational; for example:

mcm> list hosts mysite;
+-----------+-----------+----------+
| Host | Status | Version |
+-----------+-----------+----------+
tonfisk	Available	9.6.0
flundra	Available	9.6.0
alpha	Available	9.6.0
beta	Available	9.6.0
gamma	Available	9.6.0
+-----------+-----------+----------+

5 rows in set (0.16 sec)

mcmc> list clusters mysite;
+------------------+-----------+
| Cluster | Package |
+------------------+-----------+

17

Upgrading MySQL Cluster Manager

| mycluster | mypackage |
| yourcluster | mypackage |
+------------------+-----------+
2 rows in set (2.07 sec)

mcm> show status --cluster mycluster;
+-----------+-------------------+---------+
| Cluster | Status | Comment |
+-----------+-------------------+---------+
| mycluster | fully operational | |
+-----------+-------------------+---------+
1 row in set (0.01 sec)

mcm> show status --cluster yourcluster;
+-------------+-------------------+---------+
| Cluster | Status | Comment |
+-------------+-------------------+---------+
| yourcluster | fully operational | |
+-------------+-------------------+---------+
1 row in set (0.01 sec)

mcm> show status -r mycluster;
+--------+----------+----------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------+---------+-----------+-----------+
145	ndb_mgmd	tonfisk	running		mypackage
1	ndbdt	tonfisk	running	0	mypackage
2	ndbdt	flundra	running	0	mypackage
146	mysqld	tonfisk	running		mypackage
147	mysqld	flundra	running		mypackage
148	ndbapi	*tonfisk	added		
149	ndbapi	*flundra	added		
+--------+----------+----------+---------+-----------+-----------+
7 rows in set (0.08 sec)

mcm> show status -r yourcluster;
+--------+----------+-------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+-------+---------+-----------+-----------+
50	ndb_mgmd	alpha	running		mypackage
1	ndbd	beta	running	n/a	mypackage
2	ndbd	gamma	running	n/a	mypackage
+--------+----------+-------+---------+-----------+-----------+
3 rows in set (0.01 sec)

See Chapter 4, Using MySQL Cluster Manager, for more information about performing common cluster
management tasks with the mcm client.

Upgrading MySQL NDB Cluster. Although the MySQL NDB Cluster software typically comes
bundled with the MySQL Cluster Manager distribution, it is important to keep in mind that upgrading
the MySQL Cluster Manager software does not upgrade any existing MySQL NDB Cluster installations.
Since the new MySQL Cluster Manager installation uses the same configuration as the old one, the
clusters under its control remain unchanged. If you wish to upgrade a cluster using the bundled MySQL
NDB Cluster software, you should move the cluster directory (see Contents of the MySQL Cluster
Manager Unix Distribution Archive) and all of its contents to a location outside the MySQL Cluster
Manager installation directory. After this, you can use add package and upgrade cluster to
upgrade one or more clusters to the new version of the MySQL NDB Cluster software.

18

Chapter 4 Using MySQL Cluster Manager

Table of Contents
4.1 mcmd, the MySQL Cluster Manager Agent ... 19
4.2 Starting and Stopping the MySQL Cluster Manager Agent .. 28

4.2.1 Starting and Stopping the Agent on Linux ... 29
4.2.2 Starting and Stopping the MySQL Cluster Manager Agent on Windows 30

4.3 Starting the MySQL Cluster Manager Client ... 31
4.4 Setting Up MySQL NDB Clusters with MySQL Cluster Manager .. 34

4.4.1 Creating a MySQL NDB Cluster with MySQL Cluster Manager 34
4.5 Importing MySQL NDB Clusters into MySQL Cluster Manager .. 36

4.5.1 Importing a Cluster Into MySQL Cluster Manager: Basic Procedure 36
4.5.2 Importing a Cluster Into MySQL Cluster Manager: Example .. 38

4.6 MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager 47
4.6.1 Requirements for Backup and Restore .. 47
4.6.2 Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager 47

4.7 Backing Up and Restoring MySQL Cluster Manager Agents .. 54
4.8 Restoring a MySQL Cluster Manager Agent with Data from Other Agents 55
4.9 Setting Up MySQL NDB Cluster Replication with MySQL Cluster Manager 56
4.10 Using Encrypted Connections for MySQL Cluster Manager Agents and Clients 58
4.11 Using TLS Connections for NDB Clusters .. 60

This chapter discusses starting and stopping the MySQL Cluster Manager agent and client, and setting
up, backing up, and restoring MySQL NDB Clusters using the MySQL Cluster Manager.

4.1 mcmd, the MySQL Cluster Manager Agent
mcmd is the MySQL Cluster Manager agent program. Invoking this executable starts the MySQL
Cluster Manager Agent, to which you can connect using the mcm client (see Section 4.3, “Starting the
MySQL Cluster Manager Client” and Chapter 5, MySQL Cluster Manager Client Commands for more
information).

You can modify the behavior of the agent by specifying one or more of the options discussed in this
section. Depending on the option of interest, there are up to three ways to set it:

1. Include the option directly on the command line when invoking mcmd. This can be done for all
options that has Yes under the Cmd-Line column in Table 4.1 MySQL Cluster Manager Agent
(mcmd) Option Summary. Some options can only be specified by this method on the command
line (for example, --config and --bootstrap).

When specifying an agent configuration option on the command line using this method, the
name of the option is prefixed with two leading dash characters (--); for example, --mcmd-
user=johndoe. See the Command-Line Format for each option given in the option description
table.

2. Include the option in the agent configuration file. This can be done for all options that has Yes
under the Option File column in Table 4.1 MySQL Cluster Manager Agent (mcmd) Option
Summary. These rules apply:

• The name of the option should not be prefixed with dashes, or any other characters.

• Any hyphens in the option names should be changed to underscores.

• The format of the configuration file follows that of the MySQL Router configuration file; see
Configuration File Syntax for an explanation of the file format. An option must be specified in the
correct section in the configuration file; see Table 4.1, “MySQL Cluster Manager Agent (mcmd)
Option Summary” for which section each option belongs to.

19

https://dev.mysql.com/doc/mysql-router/9.6/en/mysql-router-configuration-file-syntax.html

MySQL Cluster Manager Agent (mcmd) Option Descriptions

• Each option must be specified on a separate line. You can comment out a line by inserting a
leading hash character (#).

3. Any options configurable in the configuration file (i.e., by method 2 above), with the exception of
mcmd_password, can be set or overridden at the mcmd command line by specifying the option in
the format of --section_name.option=value, where section_name is name of the section in
the configuration file that the option belongs to. For example, --mcmd.bind_port=12345 and --
logger.level=DEBUG.

The following table contains a summary of agent options that are read on startup by mcmd. More
detailed information about each of these options can be found in the option descriptions.

Table 4.1 MySQL Cluster Manager Agent (mcmd) Option Summary

Name Cmd-Line Option File Configuration File
Section

bind_address - Yes mcmd

bind-port - Yes mcmd

bootstrap Yes - -

config Yes - -

copy-port - Yes mcmd

core-file Yes - -

data-folder Yes Yes DEFAULT

extra-config Yes - -

filename - Yes logger, syslog,
filelog, eventlog

help Yes - -

initial Yes - -

level - Yes logger

logging_folder - Yes DEFAULT

max_total_connections - Yes DEFAULT

mcmd_password - Yes mcmd

mcmd-user - Yes mcmd

pid-file Yes Yes DEFAULT

sinks - Yes DEFAULT

ssl_ca - Yes mcmd

ssl_cert - Yes mcmd

ssl_cipher - Yes mcmd

ssl_key - Yes mcmd

ssl_mode - Yes mcmd

unknown_config_option - Yes DEFAULT

version Yes - -

xcom-port - Yes mcmd

MySQL Cluster Manager Agent (mcmd) Option Descriptions

The following list contains descriptions of each configuration option available for use with mcmd,
including allowed and default values. Options with their Type unmentioned need only be specified in
order to take effect— you should not try to set a value for them.

20

MySQL Cluster Manager Agent (mcmd) Option Descriptions

• bind_address

Type String

Default Value 127.0.0.1

Specify the address for MySQL Cluster Manager client connections. Binding to a specific IPv4 or
IPv6 address ensures that mcmd is not starting on a network interface controller (NIC) on which
nothing is allowed to execute.

It is not possible to specify more than one bind address. Using :: binds all network interfaces (IPs)
on the host.

When set in the configuration file, the option should be put inside the [mcmd] section.

• bind-port=#

Type Numeric

Default Value 1862

Minimum Value 1

Maximum Value 65535

Specify the port used by MySQL Cluster Manager client connections. Any valid TC/IP port number
can be used. Normally, there is no need to change it from the default value (1862).

• --bootstrap, -B

Command-Line Format --bootstrap

Start the agent with default configuration values, create a default one-machine cluster named
mycluster in a site named mysite, and start it. This option works only if no sites have been
created yet.

• --config=filename, -c

Command-Line Format --config=file_name

Type File name

Default Value mcmd.conf, in the MCM installation
directory

Set the file from which to read configuration options. mcmd.conf in the installation directory of
MySQL Cluster Manager is the first default location mcmd looks for the file. See Section 3.4, “MySQL
Cluster Manager Configuration File” for more information.

• copy-port

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 65535

Allows you to specify the port for file copy operations. The default is 0.

• --core-file

Command-Line Format --core-file[=value]

21

MySQL Cluster Manager Agent (mcmd) Option Descriptions

Type Boolean

Default Value 1

Valid Values 1 (Write a core file)

0 (Do not write a core file)

Write a core file to the location where mcmd was started (or to another core dump location as
specified by the operating system) when mcmd quits unexpectedly. The default value is 1.

• --data-folder=dir_name, -d dir_name

Command-Line Format --data-folder=dir_name

Type Directory name

Default Value mcm_data in the parent directory of
the MCM installation directory

Set the location of the agent repository, which contains collections of MySQL Cluster Manager data
files and MySQL NDB Cluster configuration and data files. The value must be a valid absolute path.

The default location is mcm_data in the parent directory of the MySQL Cluster Manager installation
directory. If you change the default, you should use a standard location external to the MySQL
Cluster Manager installation directory, such as /var/opt/mcm on Linux.

In addition to the data files for all the clusters under the control of MySQL Cluster Manager, the data-
folder also contains a rep directory in which mcmd configuration and metadata are kept. Normally,
there is no need to interact with these directories beyond specifying the --data-folder option; see
exceptions in, for example, Section 4.8, “Restoring a MySQL Cluster Manager Agent with Data from
Other Agents” and Section 4.7, “Backing Up and Restoring MySQL Cluster Manager Agents”.

• --extra-config=filename , -a

Command-Line Format --extra-config=file_name

Type File name

Read this file after configuration files are read from either default locations or from the location
specified by the --config option. Multiple --extra-config options can be passed, and the files
are loaded in the order they are specified.

• filename=filename

Type File name

Default Value mcmd.log

Set the name of the file to write the log to. The default is mcmd.log, located in the same directory
where the MySQL Cluster Manager installation directory is found. The location of this file can be
overridden with the logging_folder option.

• --help, -?

Command-Line Format --help

mcmd help output provides information on some file paths and all the program options; it also
provides some usage examples of the mcmd command:

$> mcmd --help
MySQL Cluster Manager v9.6.0 on linux-glibc2.17 (64-bit) (MySQL Enterprise - Commercial)
Copyright (c) 2007, 2026, Oracle and/or its affiliates.

22

MySQL Cluster Manager Agent (mcmd) Option Descriptions

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Configuration read from the following files in the given order (enclosed
in parentheses means not available for reading):
 (/opt/mcm9.6.0/bin/.././mcmd.conf)
 (/opt/mcm9.6.0/bin/.././mcmd.ini)
 (/home/johndoe/.mcmd.conf)
 (/home/johndoe/.mcmd.ini)
Plugins Path:
 /opt/mcm9.6.0/lib/mysqlrouter

Default Log Directory:
 /opt

Default Persistent Data Directory:
 /opt/mcm_data

Default Runtime State Directory:
 /opt

Usage

mcmd (-?|--help)

mcmd (-V|--version)

mcmd [-B|--bootstrap] [-c|--config=<path>] [--core-file=[<0|1>]]
 [-d|--data-folder=<directory>] [-a|--extra-config=<path>]
 [-i|--initial] [--pid-file=<pidfile>]

mcmd [--bind-port=<portnumber>] [--copy-port=<portnumber>]
 [--mcmd-user=<username>] [--xcom-port=<portnumber>]

Options

 -B, --bootstrap
 Bootstrap a MySQL Cluster using MySQL Cluster Manager
 -c <path>, --config <path>
 Only read configuration from given file.
 --core-file [<0|1>]
 Write a core file if mcmd dies.
 -d <directory>, --data-folder <directory>
 Data directory for MySQL Cluster Manager.
 -a <path>, --extra-config <path>
 Read this file after configuration files are read from either
 default locations or from files specified by the --config
 option.
 -?, --help
 Display this help and exit.
 -i, --initial
 Reinitialize configuration metadata directory
 --pid-file <pidfile>
 Path and filename of pid file
 -V, --version
 Display version information and exit.
 --bind-port <portnumber>
 Portnumber to use for mcmd. [DEPRECATED]
 --copy-port <portnumber>
 Portnumber to use for file copying. [DEPRECATED]
 --mcmd-user <username>
 The username used to access MySQL Cluster Manager [DEPRECATED]
 --xcom-port <portnumber>
 Portnumber to use for XCOM. [DEPRECATED]

Examples

Bootstrap a NDB cluster on localhost

23

MySQL Cluster Manager Agent (mcmd) Option Descriptions

 mcmd --bootstrap

Bootstrap a NDB cluster with a specified mcm_data directory

 mcmd --bootstrap -d my_mcm_data

Start mcmd with additional config file options on cmdline

 mcmd --logger.level=NOTE --mcmd.copy_port=12345

• --initial, -i

Command-Line Format --initial

After making a backup of the agent's configuration store (mcm_data/rep/) like the backup
agents command would do for the local host, wipe the configuration store's contents before starting
mcmd. The agent's configuration is then recovered from other agents. This is useful when an agent
has fallen into an inconsistent state and cannot be properly restarted.

• level=level

Type Enumeration

Default Value info

Valid Values fatal

system

error

warning

info

note

debug

Sets the mcmd log severity level. Possible values for this option and their descriptions are listed in
Table 4.2, “MySQL Cluster Manager Agent Log Levels” in descending level of severity. When the
option is set to a certain severity level, all events of that or higher levels are logged. info is the
default log level, and is the recommended setting for a production environment; running on a more
severe log level produces fewer messages and makes it harder to trace a problem when it occurs.

Table 4.2 MySQL Cluster Manager Agent Log Levels

Level of Severity Description

fatal Conditions that should be corrected immediately,
such as a corrupted MySQL Cluster Manager
data repository

system Informational messages about the product

error Conditions that should be corrected, such as
configuration errors

warning Conditions that do not fail executions, but may
require user attention

info Messages on main events of the site and from
command execution (default)

note Informational messages to provide users with
some execution details

24

MySQL Cluster Manager Agent (mcmd) Option Descriptions

Level of Severity Description

debug Debugging messages that give execution details
useful for developers. This causes large log files
if used over a long period of time.

While the setting of the level option is applied only to the host whose mcmd agent uses the option,
the change log-level client command can be used to apply the logging level to an entire
management site or to specific hosts.

• logging_folder=dir_name

Type Directory name

Default Value The parent directory of the MCM
installation directory

Path to the mcmd log file directory. The default is the parent directory of the MySQL Cluster Manager
installation directory.

• max_total_connections

Type Integer

Default Value 512

Minimum Value 1

Maximum Value 9223372036854775807

The maximum number of client connections to mcmd. Setting this option helps prevent mcmd from
running out of file descriptors. This is similar to MySQL Server's max_connections system variable.

The default value is 512, and the option is set in the [DEFAULT] section of the configuration file.

• mcmd_password=password

The option serves the following two purposes:

• Sets the user password for an mcm client to connect to the mcmd agent with the user name set by
--mcmd-user. The client must supply the same value using the --password client option when
trying to connect to the agent.

• Sets a password for the MySQL account to be used by the mcmd agent to access the SQL nodes.
When an SQL node is initialized, the mcmd agent creates a new MySQL user account on it
using the user name set by the --mcmd-user option and the password set by this option. See
descriptions of --mcmd-user for more details about the account.

• When using TLS connections for NDB clusters, the password is also used as the certificate
passphrase. If you changed the password, you must also update manually the certificate
passphrase, or the TLS connections will fail. Alternatively, if the situation allows, you can disable
TLS connections for the cluster, recreate the certificates, and then reanable TLS connections.

The option can only be set in the [mcmd] section of configuration file, not on the command line.

This option must be specified, including for bootstrapping, or mcmd fails to start.

25

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_max_connections

MySQL Cluster Manager Agent (mcmd) Option Descriptions

• mcmd-user=user_name

The option serves the following two purposes:

• Sets the user name for an mcm client to connect to the mcmd agent. If the option is not specified,
the default value of mcmd is used. If the option is specified with another value, the client must
supply it using the --user client option when trying to connect to the agent.

The password for using this user name to connect to the agent is set with the mcmd_password
option.

• Sets a user name for the MySQL account to be used by the mcmd agent to access the SQL nodes.
When an SQL node is initialized, the mcmd agent creates a new MySQL user account on it using
the user name set by the option and the password set by the mcmd_password option. This
account is created with all privileges on the MySQL server including the granting of privileges. In
other words, it is created as if you had executed GRANT ALL PRIVILEGES ON *.* ... WITH
GRANT OPTION in the mysql client. The existing MySQL root account is not altered in such
cases, and the default test database is preserved.

If the option is not specified, the default value of mcmd is used.

• --pid-file=file

Command-Line Format --pid-file=file_name

Type File name

Default Value mcmd.pid

Set the name and path to a process ID (.pid) file. Not normally used or needed. This option is not
supported on Windows systems.

• sinks

Type String

Valid Values (Windows) consolelog

filelog

eventlog

Valid Values (Other) consolelog

filelog

syslog

The different logging methods used by mcmd.

Supported sink values are: consolelog, filelog, eventlog (on Windows only), and syslog
(on Unix-based systems only). Use a comma-separated list to define multiple values. If you have
multiple sinks defined, they can be customized under the corresponding sections of [syslog],
[filelog], and [eventlog] in the configuration file using the filename and level options.

Default value: filelog if the logging_folder option is not empty in the [DEFAULT] section, and
consolelog otherwise.

• ssl_ca

Type File name

26

https://dev.mysql.com/doc/refman/9.6/en/grant.html
https://dev.mysql.com/doc/refman/9.6/en/grant.html

MySQL Cluster Manager Agent (mcmd) Option Descriptions

Default Value NULL

The path name of the Certificate Authority (CA) certificate file in PEM format. The file contains a list
of trusted SSL Certificate Authorities.

• ssl_cert

Type File name

Default Value NULL

The path name of the SSL public key certificate file in PEM format.

If ssl_cert is set to a certificate that uses any restricted cipher or cipher category, mcmd starts
with support for encrypted connections disabled. For information about cipher restrictions, see
Connection Cipher Configuration.

• ssl_cipher

Type String

Default Value NULL

The list of permissible encryption ciphers for connections that use TLS protocol TLSv1.2. If no cipher
in the list is supported, encrypted connections that use these TLS protocols do not work.

For greatest portability, the cipher list should be a list of one or more cipher names, separated by
colons. The following example shows two cipher names separated by a colon:

[mcmd]
ssl_cipher="DHE-RSA-AES128-GCM-SHA256:AES128-SHA"

OpenSSL supports the syntax for specifying ciphers described in the OpenSSL documentation at
https://www.openssl.org/docs/manmaster/man1/ciphers.html.

For information about which encryption ciphers MySQL supports, see Encrypted Connection TLS
Protocols and Ciphers.

• ssl_key

Type File name

Default Value NULL

The path name of the server SSL private key file in PEM format. For better security, use a certificate
with an RSA key size of at least 2048 bits.

• ssl_mode

Type Enumeration

Default Value PREFERRED

Valid Values DISABLED

REQUIRED

27

https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_ssl_cert
https://dev.mysql.com/doc/refman/9.6/en/encrypted-connection-protocols-ciphers.html#encrypted-connection-cipher-configuration
https://www.openssl.org/docs/manmaster/man1/ciphers.html
https://dev.mysql.com/doc/refman/9.6/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/9.6/en/encrypted-connection-protocols-ciphers.html

Starting and Stopping the MySQL Cluster Manager Agent

PREFERRED

ssl_mode sets the security state of the connections. The possible values are as follows:

DISABLED Establish an unencrypted connection (the default if certificate and
key have not been set).

REQUIRED Establish a secure connection if the secure connections are
supported by the target of connection.

PREFERRED Establish an encrypted connection if the target of connection
supports encrypted connections, falling back to an unencrypted
connection if an encrypted connection cannot be established. This
is the default if ssl_mode is not specified.

• unknown_config_option=string

Type String

Default Value error

Valid Values error

warning

Determines the behavior for handling unknown configuration options, such as those containing typos.
Here are the values this option takes:

• error (default): mcmd returns an error when an unknown option is encountered

• warning: mcmd prints a warning when an unknown option is encountered and continues with
starting

MySQL Cluster Manager versions before 8.0.29 ignore any unknown configuration options.

• --version, -V

Command-Line Format --version

Display version information and exit. Output may vary according to the MySQL Cluster Manager
software version, operating platform, and versions of libraries used on your system, but should
closely resemble what is shown here, with the first line of output containing the MySQL Cluster
Manager release number:

$> mcmd --version
MySQL Cluster Manager v9.6.0 on linux-glibc2.17 (64-bit) (MySQL Enterprise - Commercial)

• xcom-port

Type Numeric

Default Value 18620

Minimum Value 1

Maximum Value 65535

Specify the XCOM port. The default in 18620.

4.2 Starting and Stopping the MySQL Cluster Manager Agent

28

Starting and Stopping the Agent on Linux

Before you can start using MySQL Cluster Manager to create and manage a MySQL NDB Cluster, the
MySQL Cluster Manager agent must be started on each computer that is intended to host one or more
nodes in the MySQL NDB Cluster to be managed.

The MySQL Cluster Manager agent employs a MySQL user account for administrative access to
mysqld processes. It is possible, but not a requirement, to change the default user name, the default
password used for this account, or both. For more information, see Section 3.3.3, “Setting the MySQL
Cluster Manager Agent User Name and Password”.

4.2.1 Starting and Stopping the Agent on Linux

To start the MySQL Cluster Manager agent on a given host running a Linux or similar operating
system, you should run mcmd, found in the bin directory within the manager installation directory on
that host. Typical options used with mcmd are shown here:

mcmd [--config=filename | --bootstrap]

See Section 4.1, “mcmd, the MySQL Cluster Manager Agent”, for information about additional options
that can be used when invoking mcmd from the command line, or in a configuration file.

mcmd normally runs in the foreground. If you wish, you can use your platform's usual mechanism for
backgrounding a process. On a Linux system, you can do this by appending an ampersand character
(&), like this (not including any options that might be required):

$> ./bin/mcmd &

By default, the agent assumes that the agent configuration file is mcmd.conf in the MySQL Cluster
Manager installation directory (see Section 3.4, “MySQL Cluster Manager Configuration File” for more
details). You can tell the agent to use a different configuration file by passing the path to this file to the
--config option, as shown here:

$> ./bin/mcmd --config=/home/mcm/mcm-agent.conf

The --bootstrap option causes the agent to start with default configuration values, create a default
one-machine cluster named mycluster, and start it. This option works only if no sites have been
created yet.

The use of the --bootstrap option with mcmd is shown here on a system having the host name
torsk, where MySQL Cluster Manager has been installed to /home/jon/mcm:

$> ./mcmd --bootstrap
logging facility initialized, switching logging to loggers specified in configuration
MySQL Cluster Manager 9.6.0 (64bit) started
Connect to MySQL Cluster Manager by running "/home/clusteradmin/mcm9.6.0/bin/mcm" -h torsk -P 1862
Configuring default cluster 'mycluster'...
Setting default_storage_engine to ndbcluster...
Starting default cluster 'mycluster' version '9.6.0-cluster'...
Cluster 'mycluster' started successfully
 ndb_mgmd torsk:1186
 ndbmtd torsk
 ndbmtd torsk
 mysqld torsk:3306
 mysqld torsk:3307
 ndbapi *
Connect to the database by running "/home/clusteradmin/cluster/bin/mysql" -h 127.0.0.1 -P 3306 -u root

You can then connect to the agent using the mcm client (see Section 4.3, “Starting the MySQL Cluster
Manager Client”), and to either of the MySQL Servers running on ports 3306 and 3307 using mysql or
another MySQL client application.

See Section 4.1, “mcmd, the MySQL Cluster Manager Agent”, for more information about options that
can be used with mcmd.

The MySQL Cluster Manager agent must be started on each host in the MySQL NDB Cluster to be
managed.

29

Starting and Stopping the MySQL Cluster Manager Agent on Windows

To stop one or more instances of the MySQL Cluster Manager agent, use the stop agents
command in the MySQL Cluster Manager client. If the client is unavailable, you can stop each agent
process using the system's standard method for doing so, such as ^C or kill.

You can also set the agent up as a daemon or service on Linux and other Unix-like systems. (See
Section 3.3.1, “Installing MySQL Cluster Manager on Unix-like Platforms”.) If you also want data node
failed processes from a running MySQL NDB Cluster to be started when the agent fails and restarts in
such cases, you must make sure that StopOnError is set to 0 on each data node (and not to 1, the
default).

4.2.2 Starting and Stopping the MySQL Cluster Manager Agent on Windows

To start the MySQL Cluster Manager agent manually on a Windows host, you should invoke
mcmd.exe, found in the bin directory under the manager installation directory on that host. If the
configuration file's location is not specified with the --config option, mcmd looks for the file at its
default locations (see Section 3.4, “MySQL Cluster Manager Configuration File” for details).

Typical options for mcmd are shown here:

mcmd[.exe] [--config=filename | --bootstrap]

For information about additional options that can be used with mcmd on the command line or in an
option file, see Section 4.1, “mcmd, the MySQL Cluster Manager Agent”.

By default, the agent assumes that the agent configuration file is mcmd.conf in the MySQL Cluster
Manager installation directory (see Section 3.4, “MySQL Cluster Manager Configuration File” for more
details). You can tell the agent to use a different configuration file by passing the path to this file to the
--config option, as shown here:

C:\Program Files (x86)\MySQL\MySQL Cluster Manager 9.6.0\bin>
 mcmd --config="C:\Program Files (x86)\MySQL\MySQL Cluster Manager 9.6.0\etc\mcmd.ini"

The --bootstrap option causes the agent to start with default configuration values, create a default
one-machine cluster named mycluster, and start it. The use of this option with mcmd is shown here
on a system having the host name torsk, where MySQL Cluster Manager has been installed to the
default location:

C:\Program Files\MySQL\MySQL Cluster Manager 9.6.0\bin>mcmd --bootstrap
MySQL Cluster Manager 9.6.0 started
Connect to MySQL Cluster Manager by running "C:\Program Files\MySQL\MySQL Cluster Manager 9.6.0\bin\mcm" -h TORSK -P 1862
Configuring default cluster 'mycluster'...
Starting default cluster 'mycluster'...
Cluster 'mycluster' started successfully
 ndb_mgmd TORSK:1186
 ndbd TORSK
 ndbd TORSK
 mysqld TORSK:3306
 mysqld TORSK:3307
 ndbapi *
Connect to the database by running "C:\Program Files\MySQL\MySQL Cluster Manager 9.6.0\cluster\bin\mysql" -h TORSK -P 3306 -u root

You can then connect to the agent using the mcm client (see Section 4.3, “Starting the MySQL Cluster
Manager Client”), and to either of the MySQL Servers running on ports 3306 and 3307 using mysql or
another MySQL client application.

When starting the MySQL Cluster Manager agent for the first time, you may see one or more Windows
Security Alert dialogs. You should grant permission to connect to private networks for any of the
programs mcmd.exe, ndb_mgmd.exe, ndbd.exe, ndbmtd.exe, or mysqld.exe. To do so, check
the Private Networks... box and then click the Allow access button. It is generally not necessary to
grant MySQL Cluster Manager or MySQL NDB Cluster access to public networks such as the Internet.

See Section 4.1, “mcmd, the MySQL Cluster Manager Agent”, for more information about options that
can be used with mcmd.

30

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror

Starting the MySQL Cluster Manager Client

The MySQL Cluster Manager agent must be started on each host in the MySQL NDB Cluster to be
managed.

It is possible to install MySQL Cluster Manager as a Windows service, so that it is started automatically
each time Windows starts. See Section 3.3.2.1, “Installing the MySQL Cluster Manager Agent as a
Windows Service”.

To stop one or more instances of the MySQL Cluster Manager agent, use the stop agents
command in the MySQL Cluster Manager client. You can also stop an agent process using the
Windows Task Manager. In addition, if you have installed MySQL Cluster Manager as a Windows
service, you can stop (and start) the agent using the Windows Service Manager, CTRL-C, or the
appropriate SC STOP (or SC START) or NET STOP (or NET START) command. See Starting and
stopping the MySQL Cluster Manager agent Windows service, for more information about each of
these options.

4.3 Starting the MySQL Cluster Manager Client

This section covers starting the MySQL Cluster Manager client and connecting to the MySQL Cluster
Manager agent.

MySQL Cluster Manager 9.6.0 includes a command-line client mcm, located in the installation bin
directory. mcm can be invoked with any one of the options shown in the following table (see Connecting
to the agent with the mcm client for detailed descriptions of some of the options):

Table 4.3 mcm options

Long form Short form Description

--help -? Display mcm client options

--host=<hostname> -h <hostname> Host to use when connecting to
mcmd

--user=<username> -u <username> The user name for connecting to
the agent

--password[=<password>] -p[<password>] The password for connecting to
the agent

--port=<portnum> -P <portnum> Optional port to use when
connecting to mcmd

--version -V Shows MySQL Cluster Manager
agent/client version

The client/server protocol used by MySQL Cluster Manager is platform-independent. You can connect
to any MySQL Cluster Manager agent with an mcm client on any platform where it is available. This
means, for example, that you can use an mcm client on Microsoft Windows to connect to a MySQL
Cluster Manager agent that is running on a Linux host.

You can also use the mysql client to run MySQL Cluster Manager client sessions on platforms where
mcm itself (or even mcmd) is not available. For more information, see Connecting to the agent using the
mysql client.

If you experience problems starting an MySQL Cluster Manager client session because the client fails
to connect, see Can't connect to [local] MySQL server, for some reasons why this might occur, as well
as suggestions for some possible solutions.

To end a client session, use the exit or quit command (short form: \q). Neither of these commands
requires a separator or terminator character.

For more information, see Chapter 5, MySQL Cluster Manager Client Commands.

31

https://dev.mysql.com/doc/refman/9.6/en/can-not-connect-to-server.html

Starting the MySQL Cluster Manager Client

Connecting to the agent with the mcm client. You can connect to the MySQL Cluster Manager
agent by invoking mcm (or, on Windows, mcm.exe). You may also need to specify one or more of the
following command-line options:

• --host=hostname or -h[]hostname

This option takes the name or IP address of the host to connect to. The default is localhost (which
may not be recognized on all platforms when starting a mcm client session even if it works for starting
mysql client sessions).

You should keep in mind that the mcm client does not perform host name resolution; any name
resolution information comes from the operating system on the host where the client is run. For this
reason, it is usually best to use a numeric IP address rather than a hostname for this option.

• --port=portnumber or -P[]portnumber

This option specifies the TCP/IP port for the client to use. This must be the same port that is used
by the MySQL Cluster Manager agent. As mentioned elsewhere, if no agent port is specified in the
MySQL Cluster Manager agent configuration file (mcmd.ini), the default number of the port used by
the MySQL Cluster Manager agent is 1862, which is also used by default by mcm.

• --user=username or -u[]username

The option specifies the user name for connecting to the agent. The default value of “mcmd” is used if
the option is not specified. To connect successfully, the value of the option must match that specified
by the mcmd configuration option mcmd-user of the agent you are connecting to, which is also
“mcmd” by default.

• --password[=password] or -p[password]

The option specifies the password for connecting to the agent. To connect successfully, the value of
the option must match that specified by the mcmd configuration option mcmd_password of the agent
you are connecting to.

If you use the short option form (-p), you must not leave a space between this option and the
password. If you omit the password value following the --password or -p option on the command
line, the mcm client prompts you for one.

Specifying a password on the command line should be considered insecure. It is preferable that
you either omit the password when invoking the client and then supply it when prompted, or put the
password in a startup script or configuration file.

This option must be specified for the client to connect to the agent.

mcm accepts additional mysql client options, some of which may possibly be of use for MySQL Cluster
Manager client sessions. For example, the --pager option might prove helpful when the output of
get contains too many rows to fit in a single screen. The --prompt option can be used to provide
a distinctive prompt to help avoid confusion between multiple client sessions. However, options not
shown in the current manual have not been extensively tested with mcm and so cannot be guaranteed
to work correctly (or even at all). See mysql Client Options, for a complete listing and descriptions of all
mysql client options.

Note

Like the mysql client, mcm also supports \G as a statement terminator, which
causes the output to be formatted vertically. This can be helpful when using a
terminal whose width is restricted to some number of (typically 80) characters.
See Chapter 5, MySQL Cluster Manager Client Commands, for examples.

Connecting to the agent using the mysql client. A mysql client from any MySQL distribution
should work without any issues for connecting to mcmd. In addition, since the client/server protocol

32

https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_pager
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_prompt
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html

Starting the MySQL Cluster Manager Client

used by MySQL Cluster Manager is platform-independent, you can use a mysql client on any platform
supported by MySQL. (This means, for example, that you can use a mysql client on Microsoft
Windows to connect to a MySQL Cluster Manager agent that is running on a Linux host.) Connecting
to the MySQL Cluster Manager agent using the mysql client is accomplished by invoking mysql
and specifying a hostname, port number, username and password using the following command-line
options:

• --host=hostname or -h hostname

This option takes the name or IP address of the host to connect to. The default is localhost.
Like the mcm client, the mysql client does not perform host name resolution, and relies on the host
operating system for this task. For this reason, it is usually best to use a numeric IP address rather
than a hostname for this option.

• --port=portnumber or -P portnumber

This option specifies the TCP/IP port for the client to use. This must be the same port that is used
by the MySQL Cluster Manager agent. Although the default number of the port used by the MySQL
Cluster Manager agent is 1862 (which is also used by default by mcm), this default value is not known
to the mysql client, which uses port 3306 (the default port for the MySQL server) if this option is not
specified when mysql is invoked.

Thus, you must use the --port or -P option to connect to the MySQL Cluster Manager agent using
the mysql client, even if the agent process is using the MySQL Cluster Manager default port, and
even if the agent process is running on the same host as the mysql client. Unless the correct agent
port number is supplied to it on startup, mysql is unable to connect to the agent.

• --user=username or -u username

The option specifies the user name for connecting to the agent. By default, the mysql client tries to
use the name of the current system user on Unix systems and “ODBC” on Windows, so you must
supply this option and the username when trying to access the MySQL Cluster Manager agent with
the mysql client; otherwise, mysql cannot connect to the agent.

To connect successfully, the value of the option must match that specified by the mcmd configuration
option --mcmd-user of the agent you are connecting to, which is “mcmd” by default.

• --password[=password] or -p[password]

The option specifies the password for connecting to the agent. If you do not include the --password
or -p option when invoking mysql, it cannot connect to the agent. To connect successfully, the value
of the option must match that specified by the mcmd configuration option mcmd_password of the
agent you are connecting to, which is “super” by default.

If you use the short option form (-p), you must not leave a space between this option and the
password. If you omit the password value following the --password or -p option on the command
line, the mysql client prompts you for one.

Specifying a password on the command line should be considered insecure. It is preferable that
you either omit the password when invoking the client and then supply it when prompted, or put the
password in a startup script or configuration file.

In addition, you can use the --prompt option to set the mysql client's prompt. This is recommended,
since allowing the default prompt (mysql>) to be used could lead to confusion between a MySQL
Cluster Manager client session and a MySQL client session.

Thus, you can connect to a MySQL Cluster Manager agent by invoking the mysql client on the same
machine from the system shell in a manner similar to what is shown here.

$> mysql -h127.0.0.1 -P1862 -umcmd -p --prompt='mcm> '

33

https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_host
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_port
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_port
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_port
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/9.6/en/mysql-command-options.html#option_mysql_prompt

Setting Up MySQL NDB Clusters with MySQL Cluster Manager

For convenience, on systems where mcm itself is not available, you might even want to put this
invocation in a startup script. On a Linux or similar system, this script might be named mcm-
client.sh, with contents similar to what is shown here:

#!/bin/sh
/usr/local/mysql/bin/mysql -h127.0.0.1 -P1862 -umcmd -p --prompt='mcm> '

In this case, you could then start up a MySQL Cluster Manager client session using something like this
in the system shell:

$> ./mcm-client

On Windows, you can create a batch file with a name such as mcm-client.bat containing something
like this:

C:\mysql\bin\mysql.exe -umcmd -psuper -h localhost -P 1862 --prompt="mcm> "

(Adjust the path to the mysql.exe client executable as necessary to match its location on your
system.)

If you save this file to a convenient location such as the Windows desktop, you can start a MySQL
Cluster Manager client session merely by double-clicking the corresponding file icon on the desktop (or
in Windows Explorer); the client session opens in a new cmd.exe (DOS) window.

4.4 Setting Up MySQL NDB Clusters with MySQL Cluster Manager
This section provides basic information about setting up a new MySQL NDB Cluster with MySQL
Cluster Manager. It also supplies guidance on migration of an existing MySQL NDB Cluster to MySQL
Cluster Manager.

For more information about obtaining and installing the MySQL Cluster Manager agent and client
software, see Chapter 3, MySQL Cluster Manager Installation, Configuration, Cluster Setup.

See Chapter 5, MySQL Cluster Manager Client Commands, for detailed information on the MySQL
Cluster Manager client commands shown in this chapter.

4.4.1 Creating a MySQL NDB Cluster with MySQL Cluster Manager

In this section, we discuss the procedure for using MySQL Cluster Manager to create and start a new
MySQL NDB Cluster. We assume that you have already obtained the MySQL Cluster Manager and
MySQL NDB Cluster software, and that you are already familiar with installing MySQL Cluster Manager
(see Chapter 3, MySQL Cluster Manager Installation, Configuration, Cluster Setup).

MySQL Cluster Manager also supports importing existing, standalone MySQL NDB Clusters; for more
information, see Section 4.5, “Importing MySQL NDB Clusters into MySQL Cluster Manager”.

We also assume that you have identified the hosts on which you plan to run the cluster and have
decided on the types and distributions of the different types of nodes among these hosts, as well as
basic configuration requirements based on these factors and the hardware characteristics of the host
machines.

Note

You can create and start a MySQL NDB Cluster on a single host for testing or
similar purposes, simply by invoking mcmd with the --bootstrap option. See
Section 4.2, “Starting and Stopping the MySQL Cluster Manager Agent”.

Creating a new cluster consists of the following tasks:

• MySQL Cluster Manager agent installation and startup. Install the MySQL Cluster Manager
software distribution, make any necessary edits of the agent configuration files, and start the agent
processes as explained in Chapter 3, MySQL Cluster Manager Installation, Configuration, Cluster
Setup. Agent processes must be running on all cluster hosts before you can create a cluster. This

34

Creating a MySQL NDB Cluster with MySQL Cluster Manager

means that you need to place a complete copy of the MySQL Cluster Manager software distribution
on every host. The MySQL Cluster Manager software does not have to be in a specific location,
or even the same location on all hosts, but it must be present; you cannot manage any cluster
processes hosted on a computer where mcmd is not also running.

• MySQL Cluster Manager client session startup. Starting the MySQL Cluster Manager client
and connect to the MySQL Cluster Manager agent. You can connect to an agent process running
on any of the cluster hosts, using the mcm client on any computer that can establish a network
connection to the desired host. See Section 4.3, “Starting the MySQL Cluster Manager Client”, for
details.

On systems where mcm is not available, you can use the mysql client for this purpose. See
Connecting to the agent using the mysql client.

• MySQL NDB Cluster software deployment. The simplest and easiest way to do this is to copy
the complete MySQL NDB Cluster distribution to the same location on every host in the cluster.
(If you have installed MySQL Cluster Manager 9.6.0 on each host, the MySQL NDB Cluster 9.6.0
distribution is already included, in mcm_installation_dir/cluster.) If you do not use the same
location on every host, be sure to note it for each host. Do not yet start any MySQL NDB Cluster
processes or edit any configuration files; when creating a new cluster, MySQL Cluster Manager
takes care of these tasks automatically.

On Windows hosts, you should not install as services any of the MySQL NDB Cluster node process
programs, including ndb_mgmd.exe, ndbd.exe, ndbmtd.exe, and mysqld.exe. MySQL Cluster
Manager manages MySQL NDB Cluster processes independently of the Windows Service Manager
and does not interact with the Service Manager or any Windows services when doing so.

Note

You can actually perform this step at any time up to the point where the
software package is registered (using add package). However, we
recommend that you have all required software—including the MySQL NDB
Cluster software—in place before executing any MySQL Cluster Manager
client commands.

• Management site definition. Using the create site command in the MySQL Cluster
Manager client, define a MySQL Cluster Manager management site—that is, the set of hosts to be
managed. This command provides a name for the site, and must reference all hosts in the cluster.
Section 5.2.6, “The create site Command”, provides syntax and other information about this
command. To verify that the site was created correctly, use the MySQL Cluster Manager client
commands list sites and list hosts.

• MySQL NDB Cluster software package registration. In this step, you provide the location
of the MySQL NDB Cluster software on all hosts in the cluster using one or more add package
commands. To verify that the package was created correctly, use the list packages and list
processes commands.

• Cluster definition. Execute a create cluster command to define the set of MySQL NDB
Cluster nodes (processes) and hosts on which each cluster process runs, making up a the MySQL
NDB Cluster. This command also uses the name of the package registered in the previous step so
that MySQL Cluster Manager knows the location of the binary running each cluster process. You can
use the list clusters and list processes commands to determine whether the cluster has
been defined as desired.

If you wish to use SQL node connection pooling, see Setting up mysqld connection pooling before
creating the cluster.

• Initial configuration. Perform any configuration of the cluster that is required or desired prior to
starting it. You can set values for MySQL Cluster Manager configuration attributes (MySQL NDB
Cluster parameters and MySQL Server options) using the MySQL Cluster Manager client set

35

Importing MySQL NDB Clusters into MySQL Cluster Manager

command. You do not need to edit any configuration files directly—in fact, you should not do so.
Keep in mind that certain attributes are read-only, and that some others cannot be reset after the
cluster has been started for the first time. You can use the get command to verify that attributes
have been set to the correct values.

• Cluster startup. Once you have completed the previous steps, including necessary or desired
initial configuration, you are ready to start the cluster. The start cluster command starts all
cluster processes in the correct order. You can verify that the cluster has started and is running
normally after this command has completed, using the MySQL Cluster Manager client command
show status. At this point, the cluster is ready for use by MySQL NDB Cluster applications.

4.5 Importing MySQL NDB Clusters into MySQL Cluster Manager
It is possible to bring a “wild” MySQL NDB Cluster—that is, a cluster not created using MySQL Cluster
Manager—under the control of MySQL Cluster Manager. The following sections provide an outline
of the procedure required to import such a cluster into MySQL Cluster Manager, followed by a more
detailed example.

4.5.1 Importing a Cluster Into MySQL Cluster Manager: Basic Procedure

The importing process consists generally of the steps listed here:

1. Prepare the “wild” cluster for migration.

2. Verify PID files for cluster processes.

3. Create and configure in MySQL Cluster Manager a “target” cluster whose configuration matches
that of the “wild” cluster.

4. Perform a test run, and then execute the import cluster command.

This expanded listing breaks down each of the tasks just mentioned into smaller steps:

1. Prepare the “wild” cluster for migration

a. It is highly recommended that you take a complete backup of the “wild” cluster before you make
changes to it, using the ndb_mgm client. For more information, see Using The NDB Cluster
Management Client to Create a Backup.

b. Any cluster processes that are under the control of the system's boot-time process management
facility, such as /etc/init.d on Linux systems or the Services Manager on Windows
platforms, should be removed from its control.

c. The wild cluster's configuration must meet the following requirements, and it should be
reconfigured and restarted if it does not:

• NodeID must be assigned for every node.

• DataDir must be specified for each management and data node, and the data directories for
different nodes cannot overlap with each other.

• A “free” API node not bounded to any host must be provisioned, through which the mcmd
agent can communicate with the cluster.

d. Create a MySQL user named mcmd on each SQL node, and grant root privileges to the user.

e. Make sure that the configuration cache is disabled for each management node. Since the
configuration cache is enabled by default, unless the management node has been started with
the --config-cache=false option, you will need to stop and restart it with that option, in
addition to other options that it has been started with previously.

2. Verify cluster process PID files.

36

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-cache

Importing a Cluster Into MySQL Cluster Manager: Basic Procedure

a. Verify that each process in the “wild” cluster has a valid PID file.

b. If a given process does not have a valid PID file, you must create one for it.

See Section 4.5.2.2, “Verify All Cluster Process PID Files”, for a more detailed explanation and
examples.

3. Create and configure “target” cluster under MySQL Cluster Manager control

a. Install MySQL Cluster Manager and start mcmd on all hosts with the same system user who
started the wild cluster processes.

b. Create a MySQL Cluster Manager site encompassing these hosts, using the create site
command.

c. Add a MySQL Cluster Manager package referencing the MySQL NDB Cluster binaries, using
the add package command. Use this command's --basedir option to point to the location of
the MySQL NDB Cluster installation directory.

d. Create the target cluster using the create cluster command, including the same processes
and hosts used by the wild cluster. Use the command's --import option to specify that the
cluster is a target for import.

If the wild cluster adheres to the recommendation for node ID assignments given in the
description for the create cluster command, you need not specify the node IDs for the
processes in the create cluster command.

Also, this step may be split into a create cluster command followed by one or more add
process commands (see Section 4.5.2.3, “Creating and Configuring the Target Cluster”).

e. For importing a cluster that uses TLS connections, perform the following steps (see TLS Link
Encryption for NDB Cluster and Section 4.11, “Using TLS Connections for NDB Clusters” for
details):

• Copy a set of API certificates and its private key to the default certificate directory on every
host for mcmd to use.

• Set --ndb-tls-search-path for all the processes to the correct folders.

• Set RequireTls, RequireCertificate, and --ndb-mgm-tls for the processes to their
respective values

f. Use import config to copy the wild cluster's configuration data into the target cluster. Use
this command's --dryrun option (short form: -y) to perform a test run that merely logs the
configuration information the command copies when it is executed without the option.

If any ndb_mgmd or mysqld processes in the wild cluster are running on ports other than the
default, you must first perform set commands to assign the correct port numbers for them in
the target cluster. When all such processes are running on the correct ports and the dry run
is successful, you can execute import config (without the --dryrun option) to copy the
wild cluster's configuration data. Following this step, you should check the log as well as the
configuration of the target cluster to ensure that all configuration attributes were copied correctly
and with the correct scope. Correct any inconsistencies with the wild cluster's configuration
using the appropriate set commands.

37

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tls.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tls.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-requiretls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requirecertificate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-mgm-tls

Importing a Cluster Into MySQL Cluster Manager: Example

4. Test and perform migration of wild cluster.

a. Perform a test run of the proposed migration using import cluster with the --dryrun
option, which causes MySQL Cluster Manager to check for errors, but not actually migrate any
processes or data.

b. Correct any errors found using --dryrun. Repeat the dry run from the previous step to ensure
that no errors were missed.

c. When the dry run no longer reports any errors, you can perform the migration using import
cluster, but without the --dryrun option.

4.5.2 Importing a Cluster Into MySQL Cluster Manager: Example

As discussed previously (see Section 4.5.1, “Importing a Cluster Into MySQL Cluster Manager: Basic
Procedure”), importing a standalone or “wild” cluster that was not created with MySQL Cluster Manager
into the manager requires the completion of four major tasks. The example provided over the next few
sections shows all the steps required to perform those tasks.

Sample cluster used in example. The “wild” cluster used in this example consists of four nodes—
one management node, two data nodes, and one SQL node. Each of these nodes resides on one of
three hosts, the IP address for each is shown in the following table:

Table 4.4 Nodes in the example cluster

Node type (executable) Host name

Management node (ndb_mgmd) 198.51.100.102

Data node (ndbd) 198.51.100.103

Data node (ndbd) 198.51.100.104

SQL node (mysqld) 198.51.100.102

We assume that these hosts are on a dedicated network or subnet, and that each of them is running
only the MySQL NDB Cluster binaries and applications providing required system and network
services. We assume on each host that the MySQL NDB Cluster software has been installed from
a release binary archive (see Installing an NDB Cluster Binary Release on Linux). We also assume
that management node is using /home/ari/bin/cluster/wild-cluster/config.ini as the
cluster's global configuration file, which is shown here:

[ndbd default]
NoOfReplicas= 2

[ndb_mgmd]
HostName= 198.51.100.102
DataDir= /home/ari/bin/cluster/wild-cluster/50/data
NodeId= 50

[ndbd]
HostName= 198.51.100.103
DataDir= /home/ari/bin/cluster/wild-cluster/2/data
NodeId=2

[ndbd]
HostName= 198.51.100.104
DataDir= /home/ari/bin/cluster/wild-cluster/3/data
NodeId=3

[mysqld]
HostName= 198.51.100.102
NodeId= 51

[api]
NodeId= 52

38

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-install-linux-binary.html

Importing a Cluster Into MySQL Cluster Manager: Example

Notice that for the import into MySQL Cluster Manager to be successful, the following must be true for
the cluster's configuration:

• NodeID must be explicitly assigned for every node.

• DataDir must be specified for each management and data node, and the data directories for
different nodes cannot overlap with each other.

• A “free” API node not bounded to any host must be provisioned, through which the mcmd agent can
communicate with the cluster.

4.5.2.1 Preparing the Standalone Cluster for Migration

The next step in the import process is to prepare the wild cluster for migration. This requires, among
other things, removing cluster processes from control by any system service management facility, and
making sure all management nodes are running with configuration caching disabled. More detailed
information about performing these tasks is provided in the remainder of this section.

a. Before proceeding with any migration, the taking of a backup using the ndb_mgm client's START
BACKUP command is strongly recommended.

b. Any cluster processes that are under the control of a system boot process management facility
such as /etc/init.d on Linux systems or the Services Manager on Windows platforms
should be removed from this facility's control. Consult your operating system's documentation for
information about how to do this. Be sure not to stop any running cluster processes in the course of
doing so.

c. Create a MySQL user account on each of the wild cluster's SQL nodes for MySQL Cluster Manager
to execute the import config and import cluster commands in the steps to follow. The
account name and password MySQL Cluster Manager uses to access MySQL nodes are specified
by the mcmd agent options mcmd-user and mcmd_password (the default values are mcmd and
super, respectively); use those credentials when creating the account on the wild cluster's SQL
nodes, and grant the user all privileges on the server, including the privilege to grant privileges. For
example, log in to each of the wild cluster's SQL nodes with the mysql client as root and execute
the SQL statements shown here:

CREATE USER 'mcmd'@'localhost' IDENTIFIED BY 'super';

GRANT ALL PRIVILEGES ON *.* TO 'mcmd'@'localhost' WITH GRANT OPTION;

Keep in mind that this must be done on all the SQL nodes, unless distributed privileges are enabled
on the wild cluster.

d. Make sure every node of the wild cluster has been started with its node ID specified with the
--ndb-nodeid option at the command line, not just in the cluster configuration file. That is
required for each process to be correctly identified by mcmd during the import. You can check if the
requirement is fulfilled by the ps -ef | grep command, which shows the options the process
has been started with:

$> ps -ef | grep ndb_mgmd
ari 8118 1 0 20:51 ? 00:00:04 /home/ari/bin/cluster/bin/ndb_mgmd --config-file=/home/ari/bin/cluster/wild-cluster/config.ini
--configdir=/home/ari/bin/cluster/wild-cluster --initial --ndb-nodeid=50

(For clarity's sake, in the command output for the ps -ef | grep command in this and the
upcoming sections, we are skipping the line of output for the grep process itself.)

If the requirement is not fulfilled, restart the process with the --ndb-nodeid option; the restart can
also be performed in step (e) or (f) below for any nodes you are restarting in those steps.

e. Make sure that the configuration cache is disabled for each management node. Since the
configuration cache is enabled by default, unless the management node has been started with the
--config-cache=false option, you will need to stop and restart it with that option, in addition to
other options that it has been started with previously.

39

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-cache

Importing a Cluster Into MySQL Cluster Manager: Example

On Linux, we can once again use ps to obtain the information we need to accomplish this step. In a
shell on host 198.51.100.102, on which the management node resides:

$> ps -ef | grep ndb_mgmd
ari 8118 1 0 20:51 ? 00:00:04 /home/ari/bin/cluster/bin/ndb_mgmd --config-file=/home/ari/bin/cluster/wild-cluster/config.ini
--configdir=/home/ari/bin/cluster/wild-cluster --initial --ndb-nodeid=50

The process ID is 8118. The configuration cache is turned on by default, and a configuration
directory has been specified using the --configdir option. First, terminate the management
node using kill as shown here, with the process ID obtained from ps previously:

$> kill -15 8118

Verify that the management node process was stopped—it should no longer appear in the output of
another ps command.

Now, restart the management node as described previously, with the configuration cache disabled
and with the options that it was started with previously. Also, as already stated in step (d) above,
make sure that the --ndb-nodeid option is specified at the restart:

$> /home/ari/bin/cluster/bin/ndb_mgmd --config-file=/home/ari/bin/cluster/wild-cluster/config.ini --config-cache=false --ndb-nodeid=50
MySQL Cluster Management Server mysql-9.6.0
2020-11-08 21:29:43 [MgmtSrvr] INFO -- Skipping check of config directory since config cache is disabled.

Caution

Do not use 0 or OFF for the value of the --config-cache option when
restarting ndb_mgmd in this step. Using either of these values instead of
false at this time causes the migration of the management node process to
fail at later point in the import process.

Verify that the process is running as expected, using ps:

$> ps -ef | grep ndb_mgmd
ari 10221 1 0 19:38 ? 00:00:09 /home/ari/bin/cluster/bin/ndb_mgmd --config-file=/home/ari/bin/cluster/wild-cluster/config.ini --config-cache=false --ndb-nodeid=50

The management node is now ready for migration.

Important

While our example cluster has only a single management node, it is possible
for a MySQL NDB Cluster to have more than one. In such cases, you must
make sure the configuration cache is disabled for each management with
the steps described in this step.

4.5.2.2 Verify All Cluster Process PID Files

You must verify that each process in the wild cluster has a valid PID file. For purposes of this
discussion, a valid PID file has the following characteristics:

• The file name is in the format of ndb_node_id.pid, where node_id is the node ID used for the
process.

• The file is located in the data directory used by the process.

• The first line of the file contains the process ID of the node process, and only that process ID.

a. To check the PID file for the management node process, log in to a system shell on host
198.51.100.102, change to the management node's data directory as specified by the Datadir
parameter in the cluster's configuration file, then check to see whether the PID file is present. On
Linux, you can use the command shown here:

$> ls ndb_*.pid

40

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_configdir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_ndb-nodeid

Importing a Cluster Into MySQL Cluster Manager: Example

ndb_50.pid

Check the content of the matching .pid file using a pager or text editor. We use more for this
purpose here:

$> more ndb_50.pid
10221

The number shown should match the ndb_mgmd process ID. We can check this on Linux using the
ps command:

$> ps -ef | grep ndb_mgmd
ari 10221 1 0 19:38 ? 00:00:09 /home/ari/bin/cluster/bin/ndb_mgmd --config-file=/home/ari/bin/cluster/wild-cluster/config.ini --config-cache=false --ndb-nodeid=50

The management node PID file satisfies the requirements listed at the beginning of this section.

b. Next, we check the PID files for the data nodes, on hosts 198.51.100.103 and
198.51.100.104. Log in to a system shell on 198.51.100.103, then obtain the process ID of
the ndbd process on this host, as shown here:

$> ps -ef | grep ndbd
ari 12838 1 0 Nov08 ? 00:10:12 ./bin/ndbd --initial --ndb-nodeid=2 --ndb-connectstring=198.51.100.102

As specified in the cluster's configuration file, the node's DataDir is /home/ari/bin/cluster/
wild-cluster/2/data. Go to that directory to look for a file named ndb_2.pid:

$> ls ndb_*.pid
ndb_2.pid

Now check the content of this file, and you are going to see the process ID for angel process for the
data node:

$> more ndb_2.pid
12838

There should be no need to adjust the PID files to contain the data node processes' own PIDs,
as that should have been taken care of by the --remove-angel option used with the import
cluster command at the last step of the import process. The data nodes are ready for import as
long as they have valid PID files containing the PIDs for their angel processes.

We are ready to proceed to the mysqld node running on host 198.51.100.102.

c. To check the PID file for the mysqld node: the default location for it is the data directory of the
node, specified by the datadir option in either a configuration file or at the command line at the
start of the mysqld process. Let's go to the data directory /home/ari/bin/cluster/wild-
cluster/51/data on host 198.51.100.104 and look for the PID file.

$> ls *.pid
localhost.pid

Notice that the MySQL Server could have been started with the --pid-file option, which puts a
PID file at a specified location. In the following case, the same mysqld node has been started with
the mysqld_safe script, and the ps command reveals the value for the --pid-file used:

$> ps -ef | grep mysqld
ari 11999 5667 0 13:15 pts/1 00:00:00 /bin/sh ./bin/mysqld_safe --defaults-file=/home/ari/bin/cluster/wild-cluster.cnf --ndb-nodeid=51
ari 12136 11999 1 13:15 pts/1 00:00:00 /home/ari/bin/cluster/bin/mysqld --defaults-file=/home/ari/bin/cluster/wild-cluster.cnf
--basedir=/home/ari/bin/cluster/ --datadir=/home/ari/bin/cluster/wild-cluster/51/data/ --plugin-dir=/home/ari/bin/cluster//lib/plugin
--ndb-nodeid=51 --log-error=/home/ari/bin/cluster/wild-cluster/51/data//localhost.localdomain.err
--pid-file=/home/ari/bin/cluster/wild-cluster/51/data//localhost.localdomain.pid

As in the example, it is likely that you have a PID file that is not named in the required format for
cluster import (ndb_node_id.pid); and if the --pid-file option was used, the PID file might
not be at the required location (the data directory). Let us look into the PID file being referred to in
the last example:

41

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_pid_file
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_pid_file
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_pid_file

Importing a Cluster Into MySQL Cluster Manager: Example

$> more /home/ari/bin/cluster/wild-cluster/51/data//localhost.localdomain.pid
12136

The PID file for the SQL node is at an acceptable location (inside the data directory) and has
the correct contents (the right PID), but has the wrong name. Let us just copy the PID file into a
correctly named file in the same directory, like this

$> cd /home/ari/bin/cluster/wild-cluster/51/data/
$> cp localhost.localdomain.pid ndb_51.pid

4.5.2.3 Creating and Configuring the Target Cluster

The next task is to create a “target” cluster. Once this is done, we modify the target cluster's
configuration until it matches that of the wild cluster that we want to import. At a later point in the
example, we also show how to test the configuration in a dry run before attempting to perform the
actual configuration import.

To create and then configure the target cluster, follow these steps:

a. Install MySQL Cluster Manager and start mcmd on all hosts with the same system user who started
the wild cluster processes. Once you have done this, you can start the mcm client (see Section 4.3,
“Starting the MySQL Cluster Manager Client”) on any one of these hosts to perform the next few
steps.

Important

The cluster import is going to fail due to insufficient rights for the mcmd
agents to perform their tasks if the mcmd agents are not started by the same
system user who started the wild cluster processes.

b. Create a MySQL Cluster Manager site encompassing all four of the wild cluster's hosts, using the
create site command, as shown here:

mcm> create site --hosts=198.51.100.102,198.51.100.103,198.51.100.104 newsite;
+---------------------------+
| Command result |
+---------------------------+
| Site created successfully |
+---------------------------+
1 row in set (0.15 sec)

We have named this site newsite. You should be able to see it listed in the output of the list
sites command, similar to what is shown here:

mcm> list sites;
+---------+------+-------+--+
| Site | Port | Local | Hosts |
+---------+------+-------+--+
| newsite | 1862 | Local | 198.51.100.102,198.51.100.103,198.51.100.104 |
+---------+------+-------+--+
1 row in set (0.01 sec)

c. Add a MySQL Cluster Manager package referencing the MySQL NDB Cluster binaries using the
add package command; use the command's --basedir option to point to the correct location of
the MySQL NDB Cluster executables. The command shown here creates such a package, named
newpackage:

mcm> add package --basedir=/home/ari/bin/cluster newpackage;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.70 sec)

42

Importing a Cluster Into MySQL Cluster Manager: Example

You do not need to include the bin directory containing the MySQL NDB Cluster executables in
the --basedir path. If the executables are in /home/ari/bin/cluster/bin, it is sufficient to
specify /home/ari/bin/cluster; MySQL Cluster Manager automatically checks for the binaries
in a bin directory within the directory specified by --basedir.

d. Create the target cluster including at least some of the same processes and hosts used by the
standalone cluster. Do not include any processes or hosts that are not part of this cluster. In order
to prevent potentially disruptive process or cluster operations from interfering by accident with
the import process, it is strongly recommended that you create the cluster for import using the --
import option for the create cluster command.

You must also take care to preserve the correct node ID (as listed in the config.ini file shown
previously) for each node.

The following command creates the cluster newcluster for import and includes the management
and data nodes, but not the SQL or “free” API node (which we add in the next step):

mcm> create cluster --import --package=newpackage \
 --processhosts=ndb_mgmd:50@198.51.100.102,ndbd:2@198.51.100.103,ndbd:3@198.51.100.104 \
 newcluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster created successfully |
+------------------------------+
1 row in set (0.96 sec)

You can verify that the cluster was created correctly by checking the output of show status with
the --process (-r) option, like this:

mcm> show status -r newcluster;
+--------+----------+----------------+--------+-----------+------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------------+--------+-----------+------------+
50	ndb_mgmd	198.51.100.102	import		newpackage
2	ndbd	198.51.100.103	import	n/a	newpackage
3	ndbd	198.51.100.104	import	n/a	newpackage
+--------+----------+----------------+--------+-----------+------------+
3 rows in set (0.05 sec)

e. If necessary, add any remaining processes and hosts from the wild cluster not included in the
previous step using one or more add process commands. We have not yet accounted for two
of the nodes from the wild cluster: the SQL node with node ID 51, on host 198.51.100.102, and
the API node with node ID 52, which is not bound to any specific host. You can use the following
command to add both of these processes to newcluster:

mcm> add process --processhosts=mysqld:51@198.51.100.102,ndbapi:52@* newcluster;
+----------------------------+
| Command result |
+----------------------------+
| Process added successfully |
+----------------------------+
1 row in set (0.41 sec)

Once again checking the output from show status -r, we see that the mysqld and ndbapi
processes were added as expected:

mcm> show status -r newcluster;
+--------+----------+----------------+--------+-----------+------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------------+--------+-----------+------------+
50	ndb_mgmd	198.51.100.102	import		newpackage
2	ndbd	198.51.100.103	import	n/a	newpackage
3	ndbd	198.51.100.104	import	n/a	newpackage
51	mysqld	198.51.100.102	import		newpackage
52	ndbapi	*	import		

43

Importing a Cluster Into MySQL Cluster Manager: Example

+--------+----------+----------------+--------+-----------+------------+
5 rows in set (0.06 sec)

You can also see that since newcluster was created using the create cluster command's
--import option, the status of all processes in this cluster—including those we just added—is
import. This means we cannot yet start newcluster or any of its processes. The import status
and its effects on newcluster and its cluster processes persist until we have completed importing
another cluster into newcluster.

The target newcluster cluster now has the same processes, with the same node IDs, and on the
same hosts as the original standalone cluster. We are ready to proceed to the next step.

f. Duplicate the wild cluster's configuration attributes in the target cluster using the import config
command. Test out first the effects of the command by running it with the --dryrun option (the
step only works if you have created the mcmd user on the cluster's mysqld nodes):

Important

Before executing this command it is necessary to set any non-default ports
for ndb_mgmd and mysqld processes using the set command in the mcm
client.

mcm> import config --dryrun newcluster;
+---+
| Command result |
+---+
| Import checks passed. Please check /home/ari/bin/mcm_data/clusters/newcluster/tmp/import_config.49d541a9_294_0.mcm on host localhost.localdomain for settings that will be applied. |
+---+
1 row in set (6.87 sec)

As indicated by the output from import config --dryrun, you can see the configuration
attributes and values that would be copied to newcluster by the command without the --
dryrun option in the file /path-to-mcm-data-repository/clusters/clustername/tmp/
import_config.message_id.mcm. If you open this file in a text editor, you will see a series of
set commands that would accomplish this task, similar to what is shown here:

The following will be applied to the current cluster config:
set NoOfReplicas:ndbd=2 newcluster;
set DataDir:ndb_mgmd:50=/home/ari/bin/cluster/wild-cluster/50/data newcluster;
set DataDir:ndbd:2=/home/ari/bin/cluster/wild-cluster/2/data newcluster;
set DataDir:ndbd:3=/home/ari/bin/cluster/wild-cluster/3/data newcluster;
set basedir:mysqld:51=/home/ari/bin/cluster/ newcluster;
set datadir:mysqld:51=/home/ari/bin/cluster/wild-cluster/51/data/ newcluster;
set sql_mode:mysqld:51="NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES" newcluster;
set ndb_connectstring:mysqld:51=198.51.100.102 newcluster;

Options used at the command line instead of in a configuration file to start a node of the standalone
cluster are not imported into the target cluster by the import config command; moreover, they
will cause one of the following to happen when the import config --dryrun is run:

i. For some options, MySQL Cluster Manager will issue a warning that “Option <param> may be
removed on next restart of process <type><nodeid>,” meaning that those options will not be
imported into the target cluster, and thus will not be applied when those nodes are restarted
after the import. Here are the lists of such options for each node type:

• For ndb_mgmd nodes: ---configdir, --initial, --log-name, --reload, --verbose

• For ndbd and ndbmtd nodes: --connect-retries, --connect-delay, --
daemon=false, --nodaemon, --verbose, --core-file

• For mysqld nodes: --ndbcluster, the --ndbinfo-* options, --verbose, --datadir,
--defaults-group-suffix, --core-file

44

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_configdir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_initial
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_log-name
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_reload
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_verbose
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_connect-retries
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_connect-delay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_daemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_daemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_nodaemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_verbose
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_core-file
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndbcluster
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_verbose
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_defaults-group-suffix
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_core-file

Importing a Cluster Into MySQL Cluster Manager: Example

ii. For some other options, while their values will also not be imported into the target cluster, no
warnings will be issued for them. Here are lists of such options for each node type:

• For ndb_mgmd nodes: --config-cache, --daemon, --ndb-nodeid, ---
nodaemon=false, --config-file, --skip-config-cache

• For ndbd and ndbmtd nodes: --daemon, --foreground, --initial, --ndb-
connectstring, --connect-string, --ndb-mgmd-host, --ndb-nodeid, --
nodaemon=false

• For mysqld nodes: --ndb-connectstring, --ndb-mgmd-host, --ndb-nodeid, --
defaults-file, --no-defaults, --basedir

iii. For options that belong to neither of the two groups described above, having started the
standalone cluster's nodes with them at the command line will cause the import config --
dryrun command to fail with an error, complaining that the options are unsupported.

When you run into the first or third case described above, you have to do one of the following:

• If the options are required for the target cluster and they can be set using the set command (see
Command-line-only attributes), set them for the target cluster using the set command, and then
retry the import config --dryrun command.

• If the options are not needed for the target cluster, or it cannot be set using the set command,
restart the wild cluster's node without those options, and then retry the import config --
dryrun command.

After the successful dry run, you are now ready to import the wild cluster's configuration into
newcluster, with the command shown here:

mcm> import config newcluster;
+--+
| Command result |
+--+
| Configuration imported successfully. Please manually verify plugin options, abstraction level and default values |
+--+

As an alternative, instead of importing all the settings using the import config command, you
can make changes to the /path-to-mcm-data-repository/clusters/clustername/tmp/
import_config.message_id.mcm file generated by the dry run as you wish, and then import
the settings by executing the file with the mcm agent:

mcm> source /path-to-mcm-data-repository/clusters/clustername/tmp/import_config.message_id.mcm

You should check the resulting configuration of newcluster carefully against the configuration of
the wild cluster. If you find any inconsistencies, you must correct these in newcluster using the
appropriate set commands.

4.5.2.4 Testing and Migrating the Standalone Cluster

Testing and performing the migration of a standalone MySQL NDB Cluster into MySQL Cluster
Manager consists of the following steps:

1. Perform a test run of the proposed import using import cluster with the --dryrun option.
When this option is used, MySQL Cluster Manager checks for mismatched configuration attributes,
missing or invalid processes or hosts, missing or invalid PID files, and other errors, and warns of
any it finds, without actually performing any migration of processes or data (the step only works if
you have created the mcmd user on the cluster's mysqld nodes):

mcm> import cluster --dryrun newcluster;

45

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-cache
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_daemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_ndb-nodeid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_nodaemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_nodaemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-file
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_config-cache
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_daemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_foreground
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-connectstring
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-connectstring
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_connect-string
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-mgmd-host
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_ndb-nodeid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_nodaemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_nodaemon
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-connectstring
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-mgmd-host
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-nodeid
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_defaults-file
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_defaults-file
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_no-defaults
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_basedir

Importing a Cluster Into MySQL Cluster Manager: Example

2. If errors occur, correct them, and repeat the dry run shown in the previous step until it returns no
more errors. The following list contains some common errors you may encounter, and their likely
causes:

• MySQL Cluster Manager requires a specific MySQL user and privileges to manage SQL nodes. If
the mcmd MySQL user account is not set up properly, you may see No access for user...,
Incorrect grants for user..., or possibly other errors. Follow the instructions given in
this step in Section 4.5.2.1, “Preparing the Standalone Cluster for Migration” to remedy the issue.

• As described previously, each cluster process (other than a process whose type is ndbapi)
being brought under MySQL Cluster Manager control must have a valid PID file. Missing,
misnamed, or invalid PID files can produce errors such as PID file does not exist
for process..., PID ... is not running ..., and PID ... is type See
Section 4.5.2.2, “Verify All Cluster Process PID Files”.

• Process version mismatches can also produce seemingly random errors whose cause can
sometime prove difficult to track down. Ensure that all nodes are supplied with the correct release
of the MySQL NDB Cluster software, and that it is the same release and version of the software.

• Each data node angel process in the standalone cluster must be killed prior to import. A running
angel process can cause errors such as Angel process pid exists ... or Process pid
is an angel process for If you see such errors, proceed to the next step if these
are the only errors you get. The angel processes and the data node PIDs will be taken care of by
the --remove-angel option used with the import cluster command at the last step of the
import process.

• The number of processes, their types, and the hosts where they reside in the standalone
cluster must be reflected accurately when creating the target site, package, and cluster for
import. Otherwise, you may get errors such as Process id reported # processes ...,
Process id ... does not match configured process ..., Process id not
configured ..., and Process id does not match configured process See
Section 4.5.2.3, “Creating and Configuring the Target Cluster”.

• Other factors that can cause specific errors include processes in the wrong state, processes
that were started with unsupported command-line options (see Section 4.5.2.3, “Creating and
Configuring the Target Cluster” for details) or without required options, and processes having the
wrong process ID, or using the wrong node ID.

3. When import cluster --dryrun no longer warns of any errors, you can perform the import
with the import cluster command, this time omitting the --dryrun option. Use the --
remove-angel option for the import cluster command, which kills the angel processes for
the data nodes and adjusts the data nodes' PID files to contain the data node processes' own PIDs
before importing the cluster:

mcm> import cluster --remove-angel newcluster;
+-------------------------------+
| Command result |
+-------------------------------+
| Cluster imported successfully |
+-------------------------------+
1 row in set (5.58 sec)

You can check that the wild cluster has now been imported, and is now under management of
MySQL Cluster Manager:

mcm> show status -r newcluster;
+--------+----------+----------------+---------+-----------+------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------------+---------+-----------+------------+
50	ndb_mgmd	198.51.100.102	running		newpackage
2	ndbd	198.51.100.103	running	0	newpackage
3	ndbd	198.51.100.104	running	0	newpackage
51	mysqld	198.51.100.102	running		newpackage

46

MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager

| 52 | ndbapi | * | added | | |
+--------+----------+----------------+---------+-----------+------------+
5 rows in set (0.01 sec)

4.6 MySQL NDB Cluster Backup and Restore Using MySQL
Cluster Manager

This section describes usage of the NDB native backup and restore functionality implemented in
MySQL Cluster Manager, to perform a number of common tasks.

4.6.1 Requirements for Backup and Restore

This section provides information about basic requirements for performing backup and restore
operations using MySQL Cluster Manager.

Requirements for MySQL NDB Cluster backup. Basic requirements for performing MySQL
backups using MySQL Cluster Manager are minimal. At least one data node in each node group must
be running, and there must be sufficient disk space on the node file systems. Partial backups are not
supported.

Requirements for MySQL NDB Cluster restore. In general, the following requirements apply when
you try to restore a MySQL NDB Cluster using MySQL Cluster Manager:

• A complete restore requires that all data nodes are up and running, and that all files belonging to a
given backup are available.

• A partial restore is possible, but must be specified as such. This can be accomplished using the
restore cluster client command with its --skip-nodeid option. See Section 4.6.2.3, “Partial
restore—missing images” for details.

• In the event that data nodes have been added to the cluster since the backup was taken, only
those data nodes for which backup files exist are restored. In such cases data is not automatically
distributed to the new nodes, and, following the restore, you must redistribute the data manually by
issuing an ALTER ONLINE TABLE ... REORGANIZE PARTITION statement in the mysql client
for each NDB table in the cluster. See Adding NDB Cluster Data Nodes Online: Basic procedure, for
details.

• To restore a backup created by MySQL Cluster Manager to a cluster with fewer data nodes, you
need to restore first the logical backup of the metadata of the NDB tables using the mysqldump
utility and then restore the table data using the ndb_restore program. See Section 4.6.2.5,
“Restoring a Backup to a Cluster with Fewer Data Nodes” for details.

4.6.2 Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster
Manager

This section describes backing up and restoring a MySQL NDB Cluster, with examples of complete
and partial restore operations. Note that the backup cluster and restore cluster commands
work with NDB tables only; tables using other MySQL storage engines (such as InnoDB or MyISAM)
are ignored.

For purposes of example, we use a MySQL NDB Cluster named mycluster whose processes and
status can be seen here:

mcm> show status -r mycluster;
+--------+----------+----------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------+---------+-----------+-----------+
49	ndb_mgmd	tonfisk	running		mypackage
1	ndbd	tonfisk	running	0	mypackage
2	ndbd	tonfisk	running	0	mypackage
50	mysqld	tonfisk	running		mypackage

47

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-online-add-node-basics.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.6/en/myisam-storage-engine.html

Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager

51	mysqld	tonfisk	running		mypackage
52	ndbapi	*tonfisk	added		
53	ndbapi	*tonfisk	added		
+--------+----------+----------+---------+-----------+-----------+
7 rows in set (0.08 sec)

You can see whether there are any existing backups of mycluster using the list backups
command, as shown here:

mcm> list backups mycluster;
+----------+--------+---------+---------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+---------------------+-------+---------+
1	1	tonfisk	2020-12-04 12:03:52	1	
1	2	tonfisk	2020-12-04 12:03:52	1	
2	2	tonfisk	2020-12-04 12:04:15	1	
3	1	tonfisk	2020-12-04 12:17:41	1	
3	2	tonfisk	2020-12-04 12:17:41	1	
+----------+--------+---------+---------------------+-------+---------+
6 rows in set (0.12 sec)

4.6.2.1 Simple backup

To create a backup, use the backup cluster command with the name of the cluster as an
argument, similar to what is shown here:

mcm> backup cluster mycluster;
+-------------------------------+
| Command result |
+-------------------------------+
| Backup completed successfully |
+-------------------------------+
1 row in set (3.31 sec)

backup cluster requires only the name of the cluster to be backed up as an argument; for
information about additional options supported by this command, see Section 5.8.2, “The backup
cluster Command”. To verify that a new backup of mycluster was created with a unique ID, check
the output of list backups, as shown here (where the rows corresponding to the new backup files
are indicated with emphasized text):

mcm> list backups mycluster;
+----------+--------+---------+---------------------+--------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+---------------------+--------+---------+
1	1	tonfisk	2020-12-04 12:03:52	1	
1	2	tonfisk	2020-12-04 12:03:52	1	
2	1	tonfisk	2020-12-04 12:04:15	1	
2	2	tonfisk	2020-12-04 12:04:15	1	
3	1	tonfisk	2020-12-04 12:17:41	1	
3	2	tonfisk	2020-12-04 12:17:41	1	
4	1	tonfisk	2020-12-12 14:24:35	1	
4	2	tonfisk	2020-12-12 14:24:35	1	
+----------+--------+---------+---------------------+--------+---------+
8 rows in set (0.04 sec)

If you attempt to create a backup of a MySQL NDB Cluster in which each node group does not have at
least one data node running, backup cluster fails with the error Backup cannot be performed
as processes are stopped in cluster cluster_name.

4.6.2.2 Simple complete restore

To perform a complete restore of a MySQL NDB Cluster from a backup with a given ID, follow the
steps listed here:

1. Identify the backup to be used.

In this example, we use the backup having the ID 4, that was created for mycluster previously in
this section.

48

Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager

2. Wipe the MySQL NDB Cluster data.

The simplest way to do this is to stop and then perform an initial start of the cluster as shown here,
using mycluster:

mcm> stop cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster stopped successfully |
+------------------------------+
1 row in set (15.24 sec)

mcm> start cluster --initial mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster started successfully |
+------------------------------+
1 row in set (34.47 sec)

3. Restore the backup.

This is done using the restore cluster command, which requires the backup ID and the name
of the cluster as arguments. Thus, you can restore backup 4 to mycluster as shown here:

mcm> restore cluster --backupid=4 mycluster;
+--------------------------------+
| Command result |
+--------------------------------+
| Restore completed successfully |
+--------------------------------+
1 row in set (16.78 sec)

4.6.2.3 Partial restore—missing images

It is possible using MySQL Cluster Manager to perform a partial restore of a MySQL NDB Cluster—that
is, to restore from a backup in which backup images from one or more data nodes are not available.
This is required if we wish to restore mycluster to backup number 6, since an image for this backup
is available only for node 1, as can be seen in the output of list backups in the mcm client :

mcm> list backups mycluster;
+----------+--------+---------+---------------------+--------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+---------------------+--------+---------+
1	1	tonfisk	2020-12-04 12:03:52	1	
1	2	tonfisk	2020-12-04 12:03:52	1	
2	1	tonfisk	2020-12-04 12:04:15	1	
2	2	tonfisk	2020-12-04 12:04:15	1	
3	1	tonfisk	2020-12-04 12:17:41	1	
3	2	tonfisk	2020-12-04 12:17:41	1	
4	1	tonfisk	2020-12-12 14:24:35	1	
4	2	tonfisk	2020-12-12 14:24:35	1	
5	1	tonfisk	2020-12-12 14:31:31	1	
5	2	tonfisk	2020-12-12 14:31:31	1	
6	1	tonfisk	2020-12-12 14:32:09	1	
+----------+--------+---------+---------------------+--------+---------+
11 rows in set (0.08 sec)

To perform a restore of only those nodes for which we have images (in this case, node 1 only), we can
use the --skip-nodeid option when executing a restore cluster command. This option causes
one or more nodes to be skipped when performing the restore. Assuming that mycluster has been
cleared of data (as described earlier in this section), we can perform a restore that skips node 2 as
shown here:

mcm> restore cluster --backupid=6 --skip-nodeid=2 mycluster;
+--------------------------------+
| Command result |

49

Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager

+--------------------------------+
| Restore completed successfully |
+--------------------------------+
1 row in set (17.06 sec)

Because we excluded node 2 from the restore process, no data has been distributed to it. To cause
MySQL NDB Cluster data to be distributed to any such excluded or skipped nodes following a partial
restore, it is necessary to redistribute the data manually by executing an ALTER ONLINE TABLE ...
REORGANIZE PARTITION statement in the mysql client for each NDB table in the cluster. To obtain
a list of NDB tables from the mysql client, you can use multiple SHOW TABLES statements or a query
such as this one:

SELECT CONCAT('' TABLE_SCHEMA, '.', TABLE_NAME)
 FROM INFORMATION_SCHEMA.TABLES
 WHERE ENGINE='ndbcluster';

You can generate the necessary SQL statements using a more elaborate version of the query just
shown, such the one employed here:

mysql> SELECT
 -> CONCAT('ALTER ONLINE TABLE `', TABLE_SCHEMA,
 -> '`.`', TABLE_NAME, '` REORGANIZE PARTITION;')
 -> AS Statement
 -> FROM INFORMATION_SCHEMA.TABLES
 -> WHERE ENGINE='ndbcluster';
+--+
| Statement |
+--+
| ALTER ONLINE TABLE `mysql`.`ndb_apply_status` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `mysql`.`ndb_index_stat_head` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `mysql`.`ndb_index_stat_sample` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `db1`.`n1` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `db1`.`n2` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `db1`.`n3` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n1` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n2` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n3` REORGANIZE PARTITION; |
| ALTER ONLINE TABLE `test`.`n4` REORGANIZE PARTITION; |
+--+
10 rows in set (0.09 sec)

4.6.2.4 Partial restore—data nodes added

A partial restore can also be performed when new data nodes have been added to a MySQL NDB
Cluster following a backup. In this case, you can exclude the new nodes using --skip-nodeid when
executing the restore cluster command. Consider the MySQL NDB Cluster named mycluster
as shown in the output of the following show status command:

mcm> show status -r mycluster;
+--------+----------+----------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------+---------+-----------+-----------+
49	ndb_mgmd	tonfisk	stopped		mypackage
1	ndbd	tonfisk	stopped	0	mypackage
2	ndbd	tonfisk	stopped	0	mypackage
50	mysqld	tonfisk	stopped		mypackage
51	mysqld	tonfisk	stopped		mypackage
52	ndbapi	*tonfisk	added		
53	ndbapi	*tonfisk	added		
+--------+----------+----------+---------+-----------+-----------+
7 rows in set (0.03 sec)

The output of list backups shows us the available backup images for this cluster:

mcm> list backups mycluster;
+----------+--------+---------+---------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+---------------------+-------+---------+
| 1 | 1 | tonfisk | 2020-12-04 12:03:52 | 1 | |

50

https://dev.mysql.com/doc/refman/9.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/9.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/show-tables.html

Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager

1	2	tonfisk	2020-12-04 12:03:52	1	
2	1	tonfisk	2020-12-04 12:04:15	1	
2	2	tonfisk	2020-12-04 12:04:15	1	
3	1	tonfisk	2020-12-04 12:17:41	1	
3	2	tonfisk	2020-12-04 12:17:41	1	
4	1	tonfisk	2020-12-12 14:24:35	1	
4	2	tonfisk	2020-12-12 14:24:35	1	
+----------+--------+---------+---------------------+-------+---------+
8 rows in set (0.06 sec)

Now suppose that, at a later point in time, 2 data nodes have been added to mycluster using an add
process command. The show status output for mycluster now looks like this:

mcm> show status -r mycluster;
+--------+----------+----------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------+---------+-----------+-----------+
49	ndb_mgmd	tonfisk	running		mypackage
1	ndbd	tonfisk	running	0	mypackage
2	ndbd	tonfisk	running	0	mypackage
50	mysqld	tonfisk	running		mypackage
51	mysqld	tonfisk	running		mypackage
52	ndbapi	*tonfisk	added		
53	ndbapi	*tonfisk	added		
3	ndbd	tonfisk	running	1	mypackage
4	ndbd	tonfisk	running	1	mypackage
+--------+----------+----------+---------+-----------+-----------+
9 rows in set (0.01 sec)

Since nodes 3 and 4 were not included in the backup, we need to exclude them when performing
the restore. You can cause restore cluster to skip multiple data nodes by specifying a comma-
separated list of node IDs with the --skip-nodeid option. Assume that we have just cleared
mycluster of MySQL NDB Cluster data using the mcm client commands stop cluster and start
cluster --initial as described previously in this section; then we can restore mycluster (now
having 4 data nodes numbered 1, 2, 3, and 4) from backup number 4 (made when mycluster had
only 2 data nodes numbered 1 and 2) as shown here:

mcm> restore cluster --backupid=4 --skip-nodeid=3,4 mycluster;
+--------------------------------+
| Command result |
+--------------------------------+
| Restore completed successfully |
+--------------------------------+
1 row in set (17.61 sec)

No data is distributed to the skipped (new) nodes; you must force nodes 3 and 4 to be included in a
redistribution of the data using ALTER ONLINE TABLE ... REORGANIZE PARTITION as described
previously in this section.

An alternative to generating and running the ALTER ONLINE TABLE ... REORGANIZE PARTITION
steps is to make use of the logical backup of the NDB tables' metadata, which is part of the cluster
backup created by MySQL Cluster Manager. To do this, before you run the restore cluster step
outlined above:

1. Locate the logical backup for the metadata; see Locations of backup files in Section 4.6.2.5,
“Restoring a Backup to a Cluster with Fewer Data Nodes” for instructions.

2. Restore the logical backup; see Restore the Logical Backup of NDB Table Metadata [53] in
Section 4.6.2.5, “Restoring a Backup to a Cluster with Fewer Data Nodes” for instructions.

You can then run the restore cluster step, and the data is going to be redistributed across all the
data nodes, without the need for further manual intervention.

4.6.2.5 Restoring a Backup to a Cluster with Fewer Data Nodes

Sometimes, you want to transfer data from your cluster to another one that has fewer data nodes—for
example, when you want to scale down your cluster or prepare a smaller replica cluster for a replication

51

https://dev.mysql.com/doc/refman/9.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/9.6/en/alter-table-partition-operations.html

Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager

setup. While the methods described in Section 4.6.2, “Basic MySQL NDB Cluster Backup and Restore
Using MySQL Cluster Manager” will not work in that case, you can perform the transfer by just using
the backup cluster command and the ndb_restore program.

The process starts with creating a backup for the original cluster using the backup cluster
command. Next, create a new cluster with fewer data nodes using the create cluster command.
Before the NDB table data can be transferred, the metadata for the NDB tables must first be restored
to the new cluster. The backup cluster command also creates a logical backup for the metadata
of the NDB tables (see Logical Backup for NDB Table Metadata, for details). Use the --all option
with the list backups command to list all backups, including the logical backups for the NDB tables'
metadata, which are marked by the comment “Schema”:

mcm> list backups --all mycluster;
+----------+--------+---------+----------------------+------+--------+
| BackupId | NodeId | Host | Timestamp | Part |Comment |
+----------+--------+---------+----------------------+------+--------+
1	1	tonfisk	2020-09-21 21:13:09Z	1	
1	2	tonfisk	2020-09-21 21:13:09Z	1	
1	3	tonfisk	2020-09-21 21:13:09Z	1	
1	4	tonfisk	2020-09-21 21:13:09Z	1	
1	50	tonfisk	2020-09-21 21:13:12Z		Schema
2	1	tonfisk	2020-09-21 21:17:50Z	1	
2	2	tonfisk	2020-09-21 21:17:50Z	1	
2	3	tonfisk	2020-09-21 21:17:50Z	1	
2	4	tonfisk	2020-09-21 21:17:50Z	1	
2	50	tonfisk	2020-09-21 21:17:52Z		Schema
+----------+--------+---------+----------------------+------+--------+
10 rows in set (0.01 sec)

Next, we have to find out the locations of the logical backup file and the backup files for each data node
of the original cluster.

Locations of backup files. The backup files for each node are to be found under the
folder specified by the cluster parameter BackupDataDir for data nodes and the parameter
backupdatadir for mysqld nodes. Because the get command is not case sensitive, you can use
this single command to check the values of both parameters:

mcm> get BackupDataDir mycluster;
+---------------+----------------+----------+---------+----------+---------+---------+----------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+---------------+----------------+----------+---------+----------+---------+---------+----------+
BackupDataDir	/opt/mcmbackup	ndbmtd	1			Process	
BackupDataDir	/opt/mcmbackup	ndbmtd	2			Process	
BackupDataDir	/opt/mcmbackup	ndbmtd	3			Process	
BackupDataDir	/opt/mcmbackup	ndbmtd	4			Process	
backupdatadir	/opt/mcmbackup	mysqld	50			Process	MCM only
+---------------+----------------+----------+---------+----------+---------+---------+----------+
5 rows in set (0.18 sec)

The backup files for each backup of a specific BackupID are found under BackupDataDir/BACKUP/
BACKUP-ID/ for each data node, and under backupdatadir/BACKUP/BACKUP-ID/ for each
mysqld node. The comment “MCM only” in the row returned for the parameter backupdatadir
indicates that backupdatadir is used by MySQL Cluster Manager only, and the directory it specifies
contains only backups for the NDB tables' metadata. Notice that If BackupDataDir is not specified,
the get command will return no value for it, and it takes up the value of DataDir, so that the image
is stored in the directory Datadir/BACKUP/BACKUP-backup_id. If backupdatadir has not
been specified, the get command will again return no value for it, and the logical backup files for
the mysqld node are to be found at the default locations of /path-to-mcm-data-repository/
clusters/clustername/nodeid/BACKUP/BACKUP-Id.

The process of restoring the backed-up data from the original cluster to the new one consists of the
following steps:

1. Stop the original cluster:

52

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir

Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager

mcm> stop cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster stopped successfully |
+------------------------------+
1 row in set (19.54 sec)

mcm> show status mycluster;
+-----------+---------+---------+
| Cluster | Status | Comment |
+-----------+---------+---------+
| mycluster | stopped | |
+-----------+---------+---------+
1 row in set (0.05 sec)

2. Start your new cluster. Make sure the new cluster is operational and it has at least one free ndbapi
slot for the ndb_restore utility to connect to the cluster:

mcm> start cluster newcluster2nodes;
+------------------------------+
| Command result |
+------------------------------+
| Cluster started successfully |
+------------------------------+
1 row in set (33.68 sec)

mcm> show status -r newcluster2nodes;
+--------+----------+---------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+---------+---------+-----------+-----------+
49	ndb_mgmd	tonfisk	running		mypackage
1	ndbmtd	tonfisk	running	0	mypackage
2	ndbmtd	tonfisk	running	0	mypackage
50	mysqld	tonfisk	running		mypackage
51	ndbapi	*	added		
+--------+----------+---------+---------+-----------+-----------+
5 rows in set (0.09 sec)

3. Restore the logical backup of the metadata of the NDB tables onto the new cluster. See Reloading
SQL-Format Backups for different ways to restore a logical backup. One way to do it is to open a
mysql client, connect it to a mysqld node of the cluster, and then source the logical backup file
with the mysql client:

mysql> source path-to-logical-backup-file/BACKUP-BackupID.mysqld_nodeid.schema.sql

See Locations of backup files above on how to find the path of the logical backup file. For our
sample clusters, this is how the command looks like for restoring the NDB table metadata from the
backup with the BackupID 2:

mysql> source /opt/mcmbackup/BACKUP/BACKUP-2/BACKUP-2.50.schema.sql

4. Restore one by one the backup for each data node of the original cluster to the new cluster, using
the ndb_restore program:

$> ndb_restore -b BackupID -n nodeID -r --backup_path=backup-folder-for-data_node

See Locations of backup files above on how to find the path of the data node backup files. For our
sample clusters, to restore the data from the backup with the BackupID 2 for data node 1 to 4 of
mycluster, execute the following commands:

$> ndb_restore --backupid=2 --nodeid=1 --restore_data --backup_path=/opt/mcmbackup/BACKUP/BACKUP-2/ --disable-indexes

$> ndb_restore --backupid=2 --nodeid=2 --restore_data --backup_path=/opt/mcmbackup/BACKUP/BACKUP-2/ --disable-indexes

$> ndb_restore --backupid=2 --nodeid=3 --restore_data --backup_path=/opt/mcmbackup/BACKUP/BACKUP-2/ --disable-indexes

$> ndb_restore --backupid=2 --nodeid=4 --restore_data --backup_path=/opt/mcmbackup/BACKUP/BACKUP-2/ --disable-indexes

53

https://dev.mysql.com/doc/refman/9.6/en/reloading-sql-format-dumps.html
https://dev.mysql.com/doc/refman/9.6/en/reloading-sql-format-dumps.html

Backing Up and Restoring MySQL Cluster Manager Agents

The option --disable-indexes is used so indexes are ignored during the restores. This is
because if we also try to restore the indexes node by node, they might not be restored in the right
order for the foreign keys and unique key constraints to work properly. Therefore, the --disable-
indexes option is used in the above commands, after the execution of which we rebuild the
indexes with the following ndb_restore command and the --rebuild-indexes option (you
only need to run this on one of the data nodes):

$> ndb_restore --backupid=2 --nodeid=1 --rebuild-indexes --backup_path=/opt/mcmbackup/BACKUP/BACKUP-2/

The data and indexes have now been fully restored to the new cluster.

4.7 Backing Up and Restoring MySQL Cluster Manager Agents
This section explains how to back up configuration data for mcmd agents and how to restore the
backed-up agent data. Used together with the backup cluster command, the backup agents
command allows you to backup and restore a complete cluster-plus-manager setup.

If no host names are given with the backup agents command, backups are created for all agents of
the site:

mcm> backup agents mysite;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Agent backup created successfully |
+-----------------------------------+
1 row in set (0.07 sec)

To backup one or more specific agents, specify them with the --hosts option:

mcm> backup agents --hosts=tonfisk mysite;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Agent backup created successfully |
+-----------------------------------+
1 row in set (0.07 sec)

If no site name is given, only the agent that the mcm client is connected to is backed up.

The backup for each agent includes the following contents from the agent repository (mcm_data
folder):

• The rep subfolder

• The metadata files high_water_mark and repchksum

The repository is locked while the backup are in progress, to avoid creating an inconsistent backup.
The backup for each agent is created in a subfolder named rep_backup/timestamp under the
agent's mcm_data folder, with timestamp reflecting the time the backup began. If you want the
backup to be at another place, create a soft link from mcm_data/rep_backup to your desired storage
location.

You can list agent backups using the list backups command with the --agent option and the site
name:

mcm> list backups --agent mysite;
+------------+-------+---------+----------------------+-------+--------------+
| BackupId | Agent | Host | Timestamp | Files | Comment |
+------------+-------+---------+----------------------+-------+--------------+
1522914101	0	tonfisk	2020-04-05 07:41:41Z	5	Agent backup
1522914105	0	tonfisk	2020-04-05 07:41:45Z	5	Agent backup
1522914121	0	tonfisk	2020-04-05 07:42:01Z	5	Agent backup
+------------+-------+---------+----------------------+-------+--------------+
3 rows in set (0.00 sec)

54

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes

Restoring a MySQL Cluster Manager Agent with Data from Other Agents

To restore the backup for an agent:

• Wipe the contents of the agent's mcm_data/rep folder

• Delete the metadata files high_water_mark and repchksum from the mcm_data folder

• Copy the contents in the mcm_data/rep_backup/timestamp/rep folder back into the
mcm_data/rep folder

• Copy the metadata files high_water_mark and repchksum from the mcm_data/
rep_backup/timestamp folder back into the mcm_data folder

• Restart the agent

The steps are illustrated below:

mysql@tonfisk$ cd mcm_data

mysql@tonfisk$ cp mcm_data/rep_backup/timestamp/rep/* ./rep/

mysql@tonfisk$ cp mcm_data/rep_backup/timestamp/high_water_mark ./

mysql@tonfisk$ cp mcm_data/rep_backup/timestamp/repchksum ./

mysql@tonfisk$ mcm9.6.0/bin/mcmd

The backup may be manually restored on just one, or more than one agents. If backup is restored for
only one agent on, say, host A, host A will contact the other agents of the site to make them recover
their repositories from host A using the usual mechanism for agent recovery. If all agents on all hosts
are restored and restarted manually, the situation will be similar to the normal restarting all agents after
stopping them at slightly different points in time.

If configuration changes has been made to the cluster since the restored backup was created, the
same changes must be made again after the agent restores have been completed, to ensure that
the agents' configurations match those of the actual running cluster. For example: sometime after a
backup was done, a set MaxNoOfTables:ndbmtd=500 mycluster command was issued and
soon afterward, something happened and corrupted the agent repository; after the agent backup was
restored, the same set command has to be rerun in order to update the mcmd agents' configurations.
While the command does not effectively change anything on the cluster itself, after it has been run, a
rolling restart of the cluster processes using the restart cluster command is still required.

4.8 Restoring a MySQL Cluster Manager Agent with Data from
Other Agents

Sometimes, an mcmd agent can fail to restart after a failure because its configuration store has been
corrupted (for example, by an improper shutdown of the host). If there is at least one other mcmd agent
that is still functioning properly on another host of the cluster, you can restore the failed agent by the
following steps:

• Make sure the mcmd agent has really been stopped.

• Restart mcmd with the --initial option, which wipes the contents of the rep folder after backing
them up and then starts the agent.

The agent then recovers the configuration store from other agents on the other hosts.

However, if all the mcmd agents for the cluster are malfunctioning, you will have to do one of the
following:

• Restore one of the agents first using an agent backup (see Section 4.7, “Backing Up and Restoring
MySQL Cluster Manager Agents” for details), and then restore the other agents with it .

55

Setting Up MySQL NDB Cluster Replication with MySQL Cluster Manager

• Recreate the whole cluster and restore it using a cluster backup (see Section 4.6, “MySQL NDB
Cluster Backup and Restore Using MySQL Cluster Manager” for details).

4.9 Setting Up MySQL NDB Cluster Replication with MySQL
Cluster Manager

This section provides sample steps for setting up a MySQL NDB Cluster replication with a single
replication channel using the MySQL Cluster Manager.

Before trying the following steps, it is recommended that you first read NDB Cluster Replication to
familiarize yourself with the concepts, requirements, operations, and limitations of MySQL NDB Cluster
replication.

1. Create and start a source cluster:

mcm> create site --hosts=tonfisk msite;

mcm> add package --basedir=/usr/local/cluster-mgt/cluster-9.6.0 9.6.0;

mcm> create cluster -P 9.6.0 -R \
 ndb_mgmd@tonfisk,ndbmtd@tonfisk,ndbmtd@tonfisk,mysqld@tonfisk,mysqld@tonfisk,ndbapi@*,ndbapi@* \
 source;

mcm> set portnumber:ndb_mgmd=4000 source;

mcm> set port:mysqld:51=3307 source;

mcm> set port:mysqld:50=3306 source;

mcm> set server_id:mysqld:50=100 source;

mcm> set log_bin:mysqld:50=binlog source;

mcm> set binlog_format:mysqld:50=ROW source;

mcm> set ndb_connectstring:mysqld:50=tonfisk:4000 source;

mcm> start cluster source;

2. Create and start a replica cluster (we begin with creating a new site called “ssite” just for the replica
cluster; you can also skip that and put the source and replica cluster hosts under the same site
instead):

mcm> create site --hosts=flundra ssite;

mcm> add package --basedir=/usr/local/cluster-mgt/cluster-9.6.0 9.6.0;

mcm> create cluster -P 9.6.0 -R \
 ndb_mgmd@flundra,ndbmtd@flundra,ndbmtd@flundra,mysqld@flundra,mysqld@flundra,ndbapi@*,ndbapi@* \
 replica;

mcm> set portnumber:ndb_mgmd=4000 replica;

mcm> set port:mysqld:50=3306 replica;

mcm> set port:mysqld:51=3307 replica;

mcm> set server_id:mysqld:50=101 replica;

mcm> set ndb_connectstring:mysqld:50=flundra:4000 replica;

mcm> set replica_skip_errors:mysqld=all replica;

mcm> start cluster replica;

56

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-replication.html

Setting Up MySQL NDB Cluster Replication with MySQL Cluster Manager

3. Create a replica account (with the user name “myreplica” and password “mypw”) on the source
cluster with the appropriate privilege by logging into the source replication client (mysqlM) and
issuing the following statements:

mysqlM> CREATE USER 'myreplica'@'flundra' IDENTIFIED BY 'mypw';
mysqlM> GRANT REPLICATION SLAVE ON *.* TO 'myreplica'@'flundra';

4. Log in to the replica cluster client (mysqlS) and issue the following statements:

mysqlS> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='tonfisk',
 -> SOURCE_PORT=3306,
 -> SOURCE_USER='myreplica',
 -> SOURCE_PASSWORD='mypw';

5. Start replication by issuing the following statement with the replica cluster client:

mysqlS> START REPLICA;

The above example assumes that the source and replica clusters are created at about the same time,
with no data on both before replication starts. If the source cluster has already been operating and has
data on it when the salve cluster is created, after step 3 above, follow these steps to transfer the data
from the source cluster to the replica cluster and prepare the replica cluster for replication:

1. Back up your source cluster using the backup cluster command of MySQL Cluster Manager:

mcm> backup cluster source;

Note

Only NDB tables are backed up by the command; tables using other MySQL
storage engines are ignored.

2. Look up the backup ID of the backup you just made by listing all backups for the source cluster:

mcm> list backups source;
+----------+--------+---------+---------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+---------------------+-------+---------+
1	1	tonfisk	2014-10-17 20:03:23	1	
1	2	tonfisk	2014-10-17 20:03:23	1	
2	1	tonfisk	2014-10-17 20:09:00	1	
2	2	tonfisk	2014-10-17 20:09:00	1	
+----------+--------+---------+---------------------+-------+---------+

From the output, you can see that the latest backup you created has the backup ID “2”, and backup
data exists for node “1” and “2”.

3. Using the backup ID and the related node IDs, identify the backup files just created under /
mcm_data/clusters/cluster_name/node_id/data/BACKUP/BACKUP-backup_id/ in
the source cluster's installation directory (in this case, the files under the /mcm_data/clusters/
source/1/data/BACKUP/BACKUP-2 and /mcm_data/clusters/source/2/data/BACKUP/
BACKUP-2), and copy them over to the equivalent places for the replica cluster (in this case, /
mcm_data/clusters/replica/1/data/BACKUP/BACKUP-2 and /mcm_data/clusters/
replica/2/data/BACKUP/BACKUP-2 under the replica cluster's installation directory). After the
copying is finished, use the following command to check that the backup is now available for the
replica cluster:

mcm> list backups replica;
+----------+--------+---------+---------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+---------------------+-------+---------+
| 2 | 1 | flundra | 2014-10-17 21:19:00 | 1 | |
| 2 | 2 | flundra | 2014-10-17 21:19:00 | 1 | |
+----------+--------+---------+---------------------+-------+---------+

57

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html

Using Encrypted Connections for MySQL Cluster Manager Agents and Clients

4. Restore the backed up data to the replica cluster (note that you need an unused ndbapi slot for
the restore cluster command to work):

mcm> restore cluster --backupid=2 replica;

5. On the source cluster client, use the following command to identify the correct binary log file and
position for replication to start:

mysqlM> SHOW MASTER STATUS\G;
*************************** 1. row ***************************
 File: binlog.000017
 Position: 2857
 Binlog_Do_DB:
 Binlog_Ignore_DB:
Executed_Gtid_Set:

6. On the replica cluster client, provide to the replica cluster the information of the source cluster,
including the binary log file name (with the SOURCE_LOG_FILE option) and position (with the
SOURCE_LOG_POS option) you just discovered in step 5 above:

mysqlS> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='tonfisk',
 -> SOURCE_PORT=3306,
 -> SOURCE_USER='myreplica',
 -> SOURCE_PASSWORD='mypw',
 -> SOURCE_LOG_FILE='binlog.000017',
 -> SOURCE_LOG_POS=2857;

7. Start replication by issuing the following statement with the replica cluster client:

mysqlS> START REPLICA;

As an alternative to these steps, you can also follow the steps described in NDB Cluster Backups With
NDB Cluster Replication to copy the data from the source to the replica and to specify the binary log file
and position for replication to start.

4.10 Using Encrypted Connections for MySQL Cluster Manager
Agents and Clients

MySQL Cluster Manager supports secure connections using TLS for the following:

• mcm client and mcmd agent connections

• mcmd agent and mysqld node connections

• mcmd agent connections

The following options are used to configure the secure connections (see the option descriptions for
details):

• ssl_ca

• ssl_cert

• ssl_key

• ssl_mode

• ssl_cipher

Enable and Disable Secure Connections. Secure connections can be enabled or disabled by
configuring the relevant options in the mcmd configuration file in the mcmd section:

58

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-replication-backups.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-replication-backups.html

Using Encrypted Connections for MySQL Cluster Manager Agents and Clients

[mcmd]
ssl_key = /absolute/path/to/key
ssl_cert = relative/path/cert
ssl_ca = /path/to/ca_cert

The options can also be configured at the command line:

$> mcmd --mcmd.ssl_key=/absolute/path/to/key --mcmd.ssl_cert=relative/path/cert --mcmd.ssl_ca=/path/to/ca_cert

ssl_key and ssl_cert may specify the file name of the TLS key and certificate. Both absolute and
relative paths are allowed—relative paths are relative to the current working directory.

To enable or disable secure connections, stop all agents, reconfigure the secure connection options,
and restart all agents.

Client Connections. With ssl_ca specified, mcmd enforces client certificates validation. The mcm
client should then provide ssl_key and ssl_cert information when connecting

$> ./bin/mcmd --mcmd.ssl_key=/foo/server-key.pem --mcmd.ssl_cert=/foo/server-cert.pem --mcmd.ssl_ca=/foo/cacert.pem --mcmd.ssl_mode=REQUIRED
MySQL Cluster Manager 9.6.0 (64bit) started

$> ./bin/mcm --ssl-key=/foo/client-key.pem --ssl-cert=/foo/client-cert.pem
Welcome to the MySQL Cluster Manager client. Commands end with ; or \g.
Your connection id is 0
Agent version: 9.6.0 MySQL Cluster Manager

The client may also connect using --ssl-mode=VERIFY_CA and --ssl-ca=cacert.pem to
validate certificates from the client side:

$> ./bin/mcm --ssl-mode=VERIFY_CA --ssl-ca=/foo/cacert.pem --ssl-key=/foo/client-key.pem --ssl-cert=/foo/client-cert.pem
Welcome to the MySQL Cluster Manager client. Commands end with ; or \g.
Your connection id is 0
Agent version: 9.6.0 MySQL Cluster Manager

Information on Secure Connections. The show settings command has an --tls option to
show the TLS-specific settings

$> ./mcm -e 'show settings --tls'
+---------+------------+----------+
| Section | Key | Value |
+---------+------------+----------+
mcmd	ssl_ca	
mcmd	ssl_cert	
mcmd	ssl_cipher	
mcmd	ssl_key	
mcmd	ssl_mode	DISABLED
+---------+------------+----------+

The show variables commands shows the supported tls versions and the supported SSL ciphers:

$> ./mcm -e 'show variables'
+--------------------------+---------------------------+
| Variable_name | Value |
+--------------------------+---------------------------+
auto_increment_increment	1
character_set_client	latin1
ssl_cipher_list	LIST-OF-SUPPORTED-CIPHERS
tls_version_list	TLSv1.2,TLSv1.3
+--------------------------+---------------------------+

The show status command, used with no operands, shows runtime information of the connected
mcmd, including the TLS version and the cipher in use::

$> ./mcm -e 'show status'
+--------------+------------------------------------+
| Property | Value |
+--------------+------------------------------------+
| agent number | 1 |

59

Using TLS Connections for NDB Clusters

cwd	/path/to/current/working/directory
max_msg_id	234
max_synode	{1a2b3c4d 0 234}
ssl_cipher	ECDCH-THE-CIPHER-NAME
tls_version	TLSv1.3
uptime	45
version	9.6.0
+--------------+------------------------------------+

4.11 Using TLS Connections for NDB Clusters

MySQL Cluster Manager 9.6 supports TLS Link Encryption for NDB Cluster, which is available for NDB
Cluster 8.3.0 and later. This section describes a few scenarios for using MySQL Cluster Manager to
configure or manage TLS connections in an NDB Cluster.

Create a new cluster with TLS enabled on initial startup

Create a site, package, and a cluster with the desired configuration—see Section 4.4, “Setting Up
MySQL NDB Clusters with MySQL Cluster Manager” for instructions. Then follow the steps for a basic
or a user-defined setup.

Basic setup. Create the CA and certificates for the cluster; this also defines --ndb-tls-search-
path for any managed process in the cluster:

mcm> create certs mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Certificates created successfully |
+-----------------------------------+
1 row in set (8.56 sec)

Verify --ndb-tls-search-path settings:

mcm> get -d ndb-tls*: mycluster;
+---------------------+--+----------+---------+----------+---------+-------+--------------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+---------------------+--+----------+---------+----------+---------+-------+--------------+
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndb_mgmd	145				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndbmtd	1				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndbmtd	2				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	mysqld	146				
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	mysqld	147				
+---------------------+--+----------+---------+----------+---------+-------+--------------+
5 rows in set (0.10 sec)

User-defined setup. Set --ndb-tls-search-path (the command is split into multiple lines for
easy reading only; it should be entered in a single line):

mcm> set
 ndb_tls_search_path:ndb_mgmd=/foo/mcm_data/clusters/mycluster/certs,
 ndb_tls_search_path:ndbmtd=/foo/mcm_data/clusters/mycluster/certs,
 ndb_tls_search_path:mysqld=/foo/mcm_data/clusters/mycluster/certs
 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (3.17 sec)

Ensure --ndb-tls-search-path is set correctly for all managed processes (and issue more set
commands for corrections, if needed):

mcm> get -d ndb-tls*: mycluster;
+---------------------+--+----------+---------+----------+---------+-------+--------------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |

60

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tls.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path

Enable TLS for an Existing Cluster

+---------------------+--+----------+---------+----------+---------+-------+--------------+
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndb_mgmd	145				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndbmtd	1				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndbmtd	2				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	mysqld	146				
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	mysqld	147				
+---------------------+--+----------+---------+----------+---------+-------+--------------+
5 rows in set (0.10 sec)

For both kinds of setups, create CA and certificates for the cluster (notice that the certificates are only
loaded once by the processes at startup):

mcm> create certs mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Certificates created successfully |
+-----------------------------------+
1 row in set (8.56 sec)

Enable RequireTls for ndb_mgmd and datanodes with another set command.

mcm> set RequireTls:ndb_mgmd=true,RequireTls:ndbmtd=true mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (3.56 sec)

Optionally one may also enable RequireCertificate, or set --ndb-mgm-tls mode to strict:

mcm> set RequireCertificate:ndb_mgmd=true,RequireCertificate:ndbmtd=true mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (2.53 sec)

mcm> set ndb_mgm_tls:ndb_mgmd=strict,ndb_mgm_tls:ndbmtd=strict mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (2.39 sec)

Start the cluster:

mcm> start cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster started successfully |
+------------------------------+
1 row in set (1 min 33.62 sec)

Cluster is now running with TLS enabled, required, and (optionally) with certificates required for peers,
and in strict mode.

Enable TLS for an Existing Cluster

Assuming you have a cluster already created and started by MySQL Cluster Manager, follow these
steps to enable TLS connections for it.

Ensure --ndb-tls-search-path is set correctly for all managed processes, and issue the needed
set commands for corrections if needed:

61

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-requiretls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requirecertificate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-mgm-tls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path

Enable TLS for an Existing Cluster

mcm> get -d ndb-tls*: mycluster;
+---------------------+--+----------+---------+----------+---------+-------+--------------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+---------------------+--+----------+---------+----------+---------+-------+--------------+
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndb_mgmd	145				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndbmtd	1				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	ndbmtd	2				Command Line
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	mysqld	146				
ndb_tls_search_path	/foo/mcm_data/clusters/mycluster/certs	mysqld	147				
+---------------------+--+----------+---------+----------+---------+-------+--------------+
5 rows in set (0.10 sec)

Create the CA and certificates for the cluster using MySQL Cluster Manager:

mcm> create certs mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Certificates created successfully |
+-----------------------------------+
1 row in set (8.57 sec)

Restart the cluster so that processes load the certificates created (notice that the certificates are only
loaded once by the processes at startup):

mcm> restart cluster mycluster;
+--------------------------------+
| Command result |
+--------------------------------+
| Cluster restarted successfully |
+--------------------------------+
1 row in set (1 min 38.09 sec)

Enable RequireTls for ndb_mgmd and datanodes with another set command:

mcm> set RequireTls:ndb_mgmd=true,RequireTls:ndbmtd=true mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (1 min 47.38 sec)

Cluster is now running with TLS enabled and required.

Optionally, one may also enable RequireCertificate, or set either --ndb-mgm-tls mode to
strict:

mcm> set RequireCertificate:ndb_mgmd=true,RequireCertificate:ndbmtd=true mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (1 min 42.53 sec)

mcm> set ndb_mgm_tls:ndb_mgmd=strict,ndb_mgm_tls:ndbmtd=strict mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (1 min 48.13 sec)

Cluster is now running with TLS enabled, required, and (optionally) with certificates required for peers,
and strict mode.

62

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-requiretls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requirecertificate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-mgm-tls

Chapter 5 MySQL Cluster Manager Client Commands

Table of Contents
5.1 Online Help and Information Commands .. 69
5.2 MySQL Cluster Manager Site and Agent Commands .. 75

5.2.1 The add hosts Command ... 75
5.2.2 The remove hosts Command ... 76
5.2.3 The change log-level Command .. 77
5.2.4 The rotate log Command ... 77
5.2.5 The collect logs Command ... 78
5.2.6 The create site Command ... 79
5.2.7 The delete site Command ... 80
5.2.8 The list sites Command ... 81
5.2.9 The list hosts Command ... 81
5.2.10 The show settings Command .. 82
5.2.11 The stop agents Command .. 83
5.2.12 The version Command .. 83
5.2.13 The show warnings Command .. 83
5.2.14 The list warnings Command .. 84

5.3 MySQL Cluster Manager Package Commands ... 84
5.3.1 The add package Command ... 84
5.3.2 The delete package Command .. 86
5.3.3 The list packages Command .. 87

5.4 MySQL Cluster Manager Cluster Commands ... 88
5.4.1 The create cluster Command .. 88
5.4.2 The delete cluster Command .. 92
5.4.3 The list clusters Command .. 93
5.4.4 The list nextnodeids Command .. 93
5.4.5 The restart cluster Command .. 93
5.4.6 The show status Command ... 94
5.4.7 The start cluster Command .. 98
5.4.8 The stop cluster Command .. 100
5.4.9 The autotune Command .. 100
5.4.10 The upgrade cluster Command .. 101

5.5 MySQL Cluster Manager Configuration Commands .. 104
5.5.1 The get Command .. 107
5.5.2 The reset Command .. 119
5.5.3 The set Command .. 125
5.5.4 The show variables Command .. 134

5.6 MySQL Cluster Manager Process Commands .. 134
5.6.1 The add process Command .. 134
5.6.2 The change process Command .. 137
5.6.3 The list processes Command .. 139
5.6.4 The start process Command .. 140
5.6.5 The stop process Command .. 141
5.6.6 The update process Command .. 142
5.6.7 The remove process Command .. 143

5.7 MySQL Cluster Manager TLS Connection Commands .. 144
5.7.1 The create certs Command .. 144
5.7.2 The list certs Command .. 145

5.8 MySQL Cluster Manager Backup and Restore Commands .. 146
5.8.1 The abort backup Command .. 146
5.8.2 The backup cluster Command .. 147
5.8.3 The list backups Command .. 149
5.8.4 The delete backup Command .. 150

63

5.8.5 The restore cluster Command .. 150
5.8.6 The backup agents Command .. 153

5.9 MySQL Cluster Manager Cluster Importation Commands .. 153
5.9.1 The import cluster Command .. 153
5.9.2 The import config Command .. 154

Identifiers in client commands

Case-sensitivity rules for client commands

Options common to client commands

The sections in this chapter describe commands used in the MySQL Cluster Manager 9.6.0 client for
tasks such as defining sites, packages, and MySQL NDB Cluster instances (“clusters”); configuring
a MySQL NDB Cluster; and getting the status of a running MySQL NDB Cluster. These commands
are issued to the management agent using the mysql client program included with the MySQL
NDB Cluster distribution (for information about the mysql client not specific to using MySQL Cluster
Manager, see mysql — The MySQL Command-Line Client). Each MySQL Cluster Manager client
command takes the form shown here:

instruction [options] [arguments]

options:
 option [option] [...]

option:
 --option-long-name[=value-list]
 | -option-short-name [value-list]

value-list:
 value[,value[,...]]

arguments:
 argument [argument] [...]

Consider the following MySQL Cluster Manager command, which adds a host named torsk to the site
mysite:

add hosts --hosts=torsk mysite;

In this example, the command contains a add hosts instruction. An instruction consists of one or two
keywords, such as set, or show status.

Most command options have short forms, consisting of single letters, in addition to their long forms.
Using the short form of the --hosts option, the previous example could also be written like this:

add hosts -h torsk mysite;

The long form of an option must be preceded by a double dash (--), and is not case-sensitive (lower
case being the canonical form). The short form of an option must be preceded by a single dash (-),
and is case-sensitive. In either case, the dash character or characters must come immediately before
the option name, and there must be no space characters between them. Otherwise, the MySQL Cluster
Manager client cannot parse the command correctly. More information about long and short forms of
options is given later in this section.

Important

Do not confuse options given to MySQL Cluster Manager client commands
with mysql client options. A MySQL Cluster Manager client command option is
always employed as part of a MySQL Cluster Manager client command; it is not
passed to the mysql client when invoking it.

64

https://dev.mysql.com/doc/refman/9.6/en/mysql.html

In addition, you cannot issue queries or other SQL statements in the MySQL
Cluster Manager client. These are not recognized by the client, and are rejected
with an error. The converse of this is also true: MySQL Cluster Manager client
commands are not recognized by the standard mysql client.

The instruction just shown takes the argument mysite. The argument is usually an identifier that
names the object to be effected; in this case, the command deletes the site whose name matches the
argument. (For more information, see Section 5.2.6, “The create site Command”.)

An additional --verbose option can be used for the create cluster ,add process, and list
hosts commands. In both cases, using the option causes the command to return a list of the MySQL
NDB Cluster processes affected by the command; this includes their node IDs, process types, and the
hosts where they are located.

Identifiers in client commands.
A legal MySQL Cluster Manager identifier consists of any sequence of characters from among the
following:

• The letters a through z and A through Z

• The digits 0 through 9

• The dash (-), period (.), and underscore (_) characters

A MySQL Cluster Manager identifier must begin with a letter or digit.

Case-sensitivity rules for client commands.
The rules for case-sensitivity of MySQL Cluster Manager identifiers, commands, command options,
process names, and configuration attributes are as follows:

• Identifiers are case-sensitive. For example, delete site mycluster cannot be used to delete a
site named myCluster.

• Command keywords and the long forms of command options are case-insensitive. For example,
any of the three commands delete cluster mycluster, DELETE CLUSTER mycluster,
and DeLeTe cLuStEr mycluster works to delete the MySQL NDB Cluster instance named
mycluster.

In this manual, we show command keywords and the long forms of command options in lowercase,
but you are not required to follow this convention if you do not wish to do so.

• The short forms of command options are case-sensitive. For example, for the backup cluster
command, the -w (lowercase) is the short form of the --waitstarted option, but -W (uppercase) is
the short form of the --waitcompleted option.

• Names of MySQL NDB Cluster processes are case-insensitive. For example, either of the
commands get --include-defaults DataMemory:ndbd mycluster or get --include-
defaults datamemory:NDBD mycluster reports the data memory allocated for each ndbd
process in the cluster named mycluster.

In this manual, we show names of MySQL NDB Cluster processes in lowercase. You are not
required to follow this convention if you do not wish to do so; however, since the corresponding
executables are named and must be invoked in lowercase, we suggest that you use lowercase.

•
Configuration attribute names are case-insensitive. For example, either of the commands get
--include-defaults DataMemory:ndbd mycluster or get --include-defaults
datamemory:ndbd mycluster returns the data memory allocated for each ndbd process
in the cluster named mycluster; either of the commands set engine-condition-
pushdown:mysqld:4=0 mycluster or set Engine-Condition-Pushdown:mysqld:4=0

65

mycluster disables the condition pushdown optimization in the mysqld process having the node
ID 4 in the MySQL NDB Cluster named mycluster.

Note

Configuration attributes in the MySQL Cluster Manager derive from two
different sources: MySQL NDB Cluster configuration parameters, and
MySQL Server options. MySQL NDB Cluster configuration parameters
are case-insensitive, but their canonical forms use upper camelcase (that
is, medial capitalization including the first letter). This means that whether
you set a value for data memory using the MySQL Cluster Manager
client or in the config.ini file, you can refer to it as DataMemory,
datamemory, or dATAmEMORY without any negative impact. However,
MySQL Server command-line options are case-sensitive and use only
lowercase. This means that, for example, set Engine-Condition-
Pushdown:mysqld:4=0 mycluster in the MySQL Cluster Manager client
works to disable condition pushdown in the indicated mysqld process, but if
you invoke the mysqld executable from a system prompt using --Engine-
Condition-Pushdown=0, mysqld fails to start.

In this manual, for easy recognition, we show configuration attribute names as having the same
lettercase used in other MySQL documentation; thus, we always refer to DataMemory, rather
than datamemory or DATAMEMORY, and engine-condition-pushdown, rather than Engine-
Condition-Pushdown or ENGINE-CONDITION-PUSHDOWN. While you are not required to do this
when using MySQL Cluster Manager, we suggest that you also follow this convention.

Note

Values that contain space characters must be quoted using single quote (')
characters. For example, if you wish to define a package named mypackage
for a site named mysite using /usr/local/mysql cluster/9.6 (where a
space occurs between mysql and cluster) as the path to the base directory
on all hosts, the correct command would be add package --basedir='/
usr/local/mysql cluster/9.6' mypackage.

To decrease the possibility of errors in reading and entering MySQL Cluster
Manager commands, we recommend avoiding the use of space characters
whenever possible.

Each command must end with a terminator character. By default, this is the semicolon (;) character.
However, the sequences \g and \G are also supported as command terminators. The \G terminator
causes the output to be vertically formatted (the same as in the standard mysql client), as shown in
this example:

mcm> get DataMemory mycluster\G
*************************** 1. row ***************************
 Name: DataMemory
 Value: 500M
Process1: ndbd
 Id1: 2
Process2:
 Id2:
 Level: Process
 Comment:
*************************** 2. row ***************************
 Name: DataMemory
 Value: 500M
Process1: ndbd
 Id1: 3
Process2:
 Id2:
 Level: Process
 Comment:

66

2 rows in set (0.22 sec)

By convention (for reasons of readability), we do not normally include the command terminator
when showing the syntax for a command in Backus-Naur format or when including a MySQL Cluster
Manager command inline in this text. However, if you do not use a statement terminator when you
enter the command in the MySQL Cluster Manager client, the client displays a special “waiting...”
prompt -> until you supply a terminator, as shown here:

mcm> list sites
 ->
 ->
 ->
 -> ;
Empty set (1.50 sec)

(The is the same as the behavior of the mysql client when you fail to end a statement with a
terminator.)

A command option can also in many cases accept (or even require) a set of one or more values. The
next example includes such an option, and also demonstrates setting of multiple values in a single
option by passing them to the option as a comma-separated list:

mcm> create site --hosts=tonfisk,flundra mysite;
+---------------------------+
| Command result |
+---------------------------+
| Site created successfully |
+---------------------------+
1 row in set (7.41 sec)

The command just shown creates a site named mysite, consisting of two hosts named tonfisk
and flundra. (See Section 5.2.6, “The create site Command”, for more information about this
command.) Since we used the long form of the --hosts option, we were required to use an equals
sign (=) to mark the end of the option name and the beginning of the values list. You must not insert
any space characters before or after the equal sign; doing so causes an error, as shown here:

mcm> create site --hosts =grindval,haj yoursite;
ERROR 7 (00MGR): Option --hosts requires a value
mcm> create site --hosts= grindval,haj yoursite;
ERROR 7 (00MGR): Option --hosts requires a value

The short form of an option does not use an equal sign. Instead, the value-list is separated from the
option by a space. Using the -h option, which is the short form of the --hosts option, the previous
create site command can be entered and executed like this:

mcm> create site -h tonfisk,flundra mysite;
+---------------------------+
| Command result |
+---------------------------+
| Site created successfully |
+---------------------------+
1 row in set (7.41 sec)

The short forms of options actually accept multiple spaces between the option name and the values
list; however, a single space is sufficient. If you omit the space, or try to use an equal sign, the
command fails with an error, as shown here:

mcm> create site -htonfisk,flundra mysite;
ERROR 6 (00MGR): Illegal number of operands
mcm> create site -h=tonfisk,flundra mysite;
ERROR 3 (00MGR): Illegal syntax

Any option value containing one or more whitespace characters, one or more dash characters (-), or
both, must be quoted using single quotation marks. Multiple values should be separated by commas
only; do not insert spaces before or after any of the commas. Using spaces before or after the commas
in a list of values causes the command to fail with an error, as shown here:

67

mcm> create site --hosts=tonfisk, flundra mysite;
ERROR 6 (00MGR): Illegal number of operands

As you can see from the examples just shown, a MySQL Cluster Manager client command returns a
result set, just as an SQL statement does in the standard mysql client. The result set returned by a
MySQL Cluster Manager client command consists of one of the following:

• A single row that contains a message indicating the outcome of the command. The create
site command in the last example returned the result Site created successfully, to inform
the user that the command succeeded.

• One or more rows listing requested objects or properties. An example of such a command is
list processes, as shown here:

mcm> list processes mycluster;
+--------+----------+----------+
| NodeId | Name | Host |
+--------+----------+----------+
49	ndb_mgmd	flundra
1	ndbd	tonfisk
2	ndbd	grindval
50	mysqld	haj
51	mysqld	torsk
52	ndbapi	*
+--------+----------+----------+
6 rows in set (0.03 sec)

In the case of list processes, each row in the result contains the ID and type of a node in the
MySQL NDB Cluster named mycluster, together with the name of the host on which the process is
running.

• An empty result set. This can occur with one of the list commands when there is nothing to
report, such as when list sites is used before any sites have been created:

mcm> list sites;
Empty set (0.72 sec)

Each command must be entered separately; it is not possible to combine multiple commands on a
single line.

Options common to client commands.
The following three options are common to most MySQL Cluster Manager client commands:

1. --help (short form: -?): Common to all client commands. Provides help output specific to the
given command. See Section 5.1, “Online Help and Information Commands”, for more information
about this option.

2. --force (short form -f): Causes any safety checks to be bypassed when executing the
command. For example, delete cluster mycluster normally fails if any of the MySQL NDB
Cluster processes in the MySQL NDB Cluster named mycluster are running; however, delete
cluster --force mycluster forces the shutdown of mycluster, followed by the deletion of
mycluster from MySQL Cluster Manager's inventory.

The --force option is supported for the following MySQL Cluster Manager client commands:

• delete site

• start cluster

• restart cluster

• stop cluster

• delete cluster

68

Online Help and Information Commands

• upgrade cluster

• add process

• start process

• stop process

• remove process

• set

• reset

5.1 Online Help and Information Commands

Online help is available in the MySQL Cluster Manager client for MySQL Cluster Manager client
commands. The client can provide both general and command-specific information. In addition, you
can obtain information about mysql client commands that are independent of the MySQL server and
thus are also available for use when connected to the MySQL Cluster Manager agent.

Listing MySQL Cluster Manager client commands.
For a list of all commands with brief descriptions, use the list commands command, as shown here:

mcm> list commands;
+---+
| Help |
+---+
| COMMANDS |
| |
| abort backup Abort an ongoing cluster backup. |
| add hosts Add hosts to site. |
| add package Add a package alias. |
| add process Add cluster process. |
| autotune Autotune a cluster to given use-case template. |
| backup agents Backup the agents repository and metadata. |
| backup cluster Backup a cluster. |
| change log-level Change the log-level |
| change process Change process type. |
| collect logs Collect log files. |
| create cluster Create a cluster. |
| create site Create a site. |
| delete cluster Delete a cluster. |
| delete package Delete a package. |
| delete site Delete a site. |
| get Get configuration variables. |
| import cluster Import a running cluster. |
| import config Import the configuration of a running cluster. |
| list backups List backup images. |
| list clusters List all clusters. |
| list commands List the help text. |
| list hosts List hosts in site. |
| list nextnodeids List next nodeids to be allocated. |
| list packages List all packages. |
| list processes List processes. |
| list sites List all sites. |
| remove hosts Remove hosts from site. |
| remove process Remove a cluster process. |
| reset Reset configuration variables. |
| restart cluster Restart a cluster. |
| restore cluster Restore a cluster. |
| rotate log Rotate the mcmd log. |
| set Set configuration variables. |
| show settings Show agent settings. |
| show status Show cluster, process, operation or backup status. |
| start cluster Start a cluster. |
| start process Start a cluster process. |

69

Online Help and Information Commands

| stop agents Stop agents in site. |
| stop cluster Stop a cluster. |
| stop process Stop a cluster process. |
| upgrade cluster Upgrade a cluster. |
| version Print version information. |
| |
| GLOBAL OPTIONS |
| Options that can be used with all commands |
| |
| --help|-? Print detailed help. |
| |
| Use '<COMMAND> --help' to see verbose help for individual commands. |
+---+
51 rows in set (0.03 sec)

Obtaining information about specific MySQL Cluster Manager client commands.
To obtain more detailed help specific to a given command, invoke the command using the --help
option, as shown in this example:

mcm> create site --help;
+--+
| Help |
+--+
| |
| create site [options] <sitename> |
| |
| Creates a site from the hosts listed in --hosts. |
| |
| Required options: |
| --hosts|-h Comma separated list of hostnames. |
| Format: --hosts = <host>[,<host>]*. |
| |
+--+
9 rows in set (0.00 sec)

For any MySQL Cluster Manager client command, the --help option may be abbreviated to -?:

mcm> list processes -?;
+---+
| Help |
+---+
| |
| list processes <sitename> |
| |
| Lists all processes defined in the specified cluster. |
+---+
4 rows in set (0.00 sec)

As mentioned elsewhere in this manual (see Chapter 5, MySQL Cluster Manager Client Commands),
many other MySQL Cluster Manager command options have short forms as well. These are included
in the documentation for each command. You can also find out what these are for a given command by
invoking it with the --help or -? option.

You can obtain the release version of the MySQL Cluster Manager software in use from the output of
the version command.

mysql client commands in the MySQL Cluster Manager client.
You can also use most standard mysql client commands in the MySQL Cluster Manager client (but
not SQL statements, which depend on being connected to a MySQL server), such as prompt, quit,
and status. For example, the output of the status command when connected to the MySQL Cluster
Manager agent looks something like this (depending on the exact version of the client and agent that
you are using and possibly other factors):

mcm> status

./bin/mcm Ver 9.6.0 for Linux on x86_64 (MySQL Enterprise Server - Commercial)

Connection id: 3
Current database: <n/a>

70

Online Help and Information Commands

Current user: mcmd
SSL: Not in use
Current pager: stdout
Using outfile: ''
Using delimiter: ;
Server version: 9.6.0 MySQL Cluster Manager
Protocol version: 10
Connection: 127.0.0.1 via TCP/IP
Server characterset: latin1
Db characterset: latin1
Client characterset: latin1
Conn. characterset: latin1
TCP port: 1862
Binary data as: Hexadecimal
Uptime: 4 hours 11 min 54 sec

Agent no: 0 Connections: 1 Max msg id: {658358e0 102 0}

Note

You may use the command delimiter with mysql client commands, but you are
not required to do so. For instance, assuming that the delimiter in use was the
default semicolon (;) character, we could have executed the status command
like this:

mcm> status;

/home/jon/bin/mcm/cluster/bin/mysql Ver 14.14 Distrib 9.6.0,...

A particularly useful mysql client command that you can also employ with mcm is the source
command (short form: \.), which you can use for executing scripts containing MySQL Cluster Manager
client commands. On a Linux system, you might have a text file in your home directory named get-
attributes.mcm, whose contents are shown here:

get :ndb_mgmd mycluster\G
get :ndbd mycluster\G
get :mysqld mycluster\G

Assuming that you have created a cluster named mycluster, you can run this script in the client; the
results vary according to how this cluster is actually configured, but should be similar to this:

mcm> \. ~/get-attributes.mcm
mcm> get :ndb_mgmd mycluster\G
*************************** 1. row ***************************
 Name: DataDir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/49/data
Process1: ndb_mgmd
 NodeId1: 49
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 2. row ***************************
 Name: HostName
 Value: flundra
Process1: ndb_mgmd
 NodeId1: 49
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 3. row ***************************
 Name: NodeId
 Value: 49
Process1: ndb_mgmd
 NodeId1: 49
Process2:

71

Online Help and Information Commands

 NodeId2:
 Level:
 Comment: Read only
*************************** 4. row ***************************
 Name: PortNumber
 Value: 1186
Process1: ndb_mgmd
 NodeId1: 49
Process2:
 NodeId2:
 Level: Process
 Comment:
4 rows in set (0.09 sec)

mcm> get :ndbd mycluster\G
*************************** 1. row ***************************
 Name: DataDir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/1/data
Process1: ndbd
 NodeId1: 1
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 2. row ***************************
 Name: HostName
 Value: tonfisk
Process1: ndbd
 NodeId1: 1
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 3. row ***************************
 Name: NodeId
 Value: 1
Process1: ndbd
 NodeId1: 1
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 4. row ***************************
 Name: DataDir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/2/data
Process1: ndbd
 NodeId1: 2
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 5. row ***************************
 Name: HostName
 Value: grindval
Process1: ndbd
 NodeId1: 2
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 6. row ***************************
 Name: NodeId
 Value: 2
Process1: ndbd
 NodeId1: 2
Process2:
 NodeId2:
 Level:
 Comment: Read only
6 rows in set (0.10 sec)

mcm> get :mysqld mycluster\G

72

Online Help and Information Commands

*************************** 1. row ***************************
 Name: datadir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/50/data
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 2. row ***************************
 Name: HostName
 Value: haj
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 3. row ***************************
 Name: log_error
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/50/data/mysqld_50_out.err
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 4. row ***************************
 Name: ndb_nodeid
 Value: 50
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 5. row ***************************
 Name: ndbcluster
 Value:
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 6. row ***************************
 Name: NodeId
 Value: 50
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 7. row ***************************
 Name: port
 Value: 3306
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 8. row ***************************
 Name: socket
 Value: /tmp/mysql.mycluster.50.sock
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:

73

Online Help and Information Commands

*************************** 9. row ***************************
 Name: tmpdir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/50/data/tmp
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 10. row ***************************
 Name: datadir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/51/data
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 11. row ***************************
 Name: HostName
 Value: torsk
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 12. row ***************************
 Name: log_error
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/51/data/mysqld_51_out.err
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 13. row ***************************
 Name: ndb_nodeid
 Value: 51
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 14. row ***************************
 Name: ndbcluster
 Value:
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 15. row ***************************
 Name: NodeId
 Value: 51
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 16. row ***************************
 Name: port
 Value: 3307
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:

74

MySQL Cluster Manager Site and Agent Commands

*************************** 17. row ***************************
 Name: socket
 Value: /tmp/mysql.mycluster.51.sock
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 18. row ***************************
 Name: tmpdir
 Value: /home/jon/bin/mcm/mcm_data/clusters/mycluster/51/data/tmp
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
18 rows in set (0.05 sec)

mcm>

Note

You are not returned to the client prompt until the script has finished executing.

Similarly, on Windows, you can create a batch file using Notepad or another text editor, copy the same
get commands as shown previously into it, and save it as get-attributes.bat in a convenient
location such as the Windows desktop.

You can view a list of available mysql client commands using the help command. For more
information about these, view the help output or see mysql Client Commands, in the MySQL Manual.

5.2 MySQL Cluster Manager Site and Agent Commands

In this section, we discuss commands used to work with MySQL Cluster Manager management sites.
In addition, the stop agents, show settings, version, and show warnings commands, which
relate to management agents, are also covered in this section.

A site, in terms of MySQL NDB Cluster and MySQL Cluster Manager, is a collection of one or more
host computers where MySQL Cluster Manager agents are running. Each agent is identified by the
combination of two pieces of information:

• The hostname or IP address of the machine where the agent is running

• The number of the port used by the agent for communications

Note

MySQL NDB Cluster makes extremely intensive use of network connections,
and DNS lookups can contend with MySQL NDB Cluster and MySQL Cluster
Manager for bandwidth, resulting in a negative impact on the performance
of MySQL NDB Cluster and the applications using it. For this reason, we
recommend that you use numeric IP addresses rather than hostnames for
MySQL NDB Cluster and MySQL Cluster Manager host computers whenever
feasible.

5.2.1 The add hosts Command
add hosts {--hosts=|-h }host_list site_name

host_list:
 host[, host[, ...]]

75

https://dev.mysql.com/doc/refman/9.6/en/mysql-commands.html

The remove hosts Command

This command adds one or more hosts to an existing management site. Agents using the same port
as the management site must be running on any hosts added using this command. This command
takes two mandatory arguments: a list of hosts (using the --hosts option or its short form -h), and the
name of the site to which the hosts are to be added.

The --hosts takes a comma-separated list of one or more hosts to be added to the site.

For example, the following command adds two hosts named torsk and kolja to management site
mysite:

mcm> add hosts --hosts=torsk,kolja mysite;
+--------------------------+
| Command result |
+--------------------------+
| Hosts added successfully |
+--------------------------+
1 row in set (0.48 sec)

None of the hosts added by this command may already be members of management site site_name.
Do not attempt to add again a host that is already a member of the management site using its
secondary (or alternate) IP address—the mcmd process on the host is already bound to the IP address
that was supplied when the host was first added, and it cannot be bound again to another IP address.

Notes

• This command does not support the --force option.

• Do not use localhost in the host list, as MySQL Cluster Manager relies
on the operating system for host name resolution, and localhost might be
resolved differently on different systems. Use proper host names for the host
list or, preferably, use the IP addresses for the hosts instead.

• When IPv6-enabled Windows systems are used as MySQL NDB Cluster
hosts under MySQL Cluster Manager, you must reference these hosts
using IPv4 addresses. Otherwise, MySQL Cluster Manager will be unable to
connect to the agent processes on those hosts. See Section 6.1, “MySQL
Cluster Manager Usage and Design Limitations”.

5.2.2 The remove hosts Command
remove hosts {--hosts=|-h }host_list site_name

host_list:
 host[, host[, ...]]

This command removes one or more hosts from an existing management site. It takes as arguments a
required option --hosts (or its short form -h), whose value is a comma-separated list of one or more
hosts to be removed, and the name of the site from which the hosts are to be removed. A number of
limitations apply:

• The name of the host to be removed must not be localhost or 127.0.0.1.

• The host to be removed must not have any managed processes from any clusters assigned to
them (remove those processes first with the remove process command); it can have unmanaged
processes assigned to them though (typically, ndbapi@hostname or mysqld@*hostname).

• There should not be any packages defined with explicit paths pointing to the host to be removed.

• A quorum consists of a majority of hosts (i.e., half of the total number of hosts plus one) must exist
for the site both before and after the host's removal, or it will not be possible to execute the remove
host command.

• You cannot remove the last host from a site; use the delete site command instead.

76

The change log-level Command

The following command removes two hosts named tonfisk and flundra from the management site
mysite:

mcm> remove hosts --hosts=tonfisk,flundra mysite;
+----------------------------+
| Command result |
+----------------------------+
| Hosts removed successfully |
+----------------------------+
1 row in set (0.48 sec)

5.2.3 The change log-level Command
change log-level [{--hosts=|-h }host_list] log_level site_name

host_list:
 host[,host[,...]]

Set the management agent's cluster logging level. This has the same effect as using the logger level
option; however, unlike the option, this command can be used at run time and does not require a
restart of mcmd. Issuing this command overrides any value for level set in the agent configuration file.

When used with the log_level alone without a host_list and a site_name, this command
applies only to the agent the mcm client is connected to. In the following example, the logging level is
set to warning only on the host managed directly by the agent to which the mcm client is connected:

mcm> change log-level warning;
+--------------------------------+
| Command result |
+--------------------------------+
| Log-level changed successfully |
+--------------------------------+
1 row in set (0.00 sec)

You can specify the name of a site to be affected by the command. For example, the following
invocation of the command applies to the site named mysite:

mcm> change log-level debug mysite;
+--------------------------------+
| Command result |
+--------------------------------+
| Log-level changed successfully |
+--------------------------------+
1 row in set (0.05 sec)

You can also restrict the change to one or more hosts in a given site using the --hosts option (or its
short form -h), with multiple host names separated by commas. The following command changes the
logging level to debug on the hosts named tonfisk and haj, but not on any other hosts in mysite:

mcm> change log-level --hosts=tonfisk,haj debug mysite;
+--------------------------------+
| Command result |
+--------------------------------+
| Log-level changed successfully |
+--------------------------------+
1 row in set (0.09 sec)

You must specify a site when using the --hosts option; trying to use --hosts alone results in an
error.

Accepted values for log_level are the same as for the level option: one of debug, note, info,
warning, error, system, or fatal. For more detailed information about the meanings and effects of
these values, see NDB Cluster Logging Management Commands.

5.2.4 The rotate log Command
rotate log [{--hosts=|-h }host_list] [site_name]

77

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-logging-management-commands.html

The collect logs Command

host_list:
 host[,host[,...]]

Rotate mcmd logs for the connected MySQL Cluster Manager agent, for agents running on certain
hosts, or for agents on all hosts in a management site.

For example, to rotate logs for the agent to which the client session is connected:

mcm> rotate log;
+--------------------------+
| Command result |
+--------------------------+
| Log rotated successfully |
+--------------------------+
1 row in set (0.03 sec)

A new log file, with an underscore and then a timestamp inserted into its file name before the file
extension, is created as a result:

-rw-r----- 1 mcmd cluster 74265 Jul 15 22:45 mcmd.log
-rw-r----- 1 mcmd cluster 1197573 Jul 15 22:45 mcmd_2021-07-15T22-45-28.log

To rotate logs for agents on specific hosts like nanna12 and nanna13, use the --hosts option (or its
short form -h):

mcm> rotate log --hosts=nanna12,nanna13 mysite;

To rotate logs on all agents in the management site mysite:

mcm> rotate log mysite;

5.2.5 The collect logs Command
collect logs [cluster_name]

This command collects log files and other related files from all hosts. When the name of a
cluster (cluster_name) is supplied with the command, it collects all the log files (.log,
mcmd_eventlog.csv) as well as the configuration files (.ini, .cnf), error files (.err), and trace
files (.trace.log.*) used by all processes belonging to the cluster, and also all the agent log files. If
cluster_name is omitted, only the agent log files are collected.

When an mcmd agent receives the collect logs command from the mcm agent it is connected with,
it sets up a TCP server socket using port 0 by default, and lets the operating system assign the actual
port number. All agents in the site are then instructed to perform the copying, and each of them spawns
a TCP client, which connects to the TCP server socket set up earlier to copy the files over.

To assign a specific port manually for file copying, use the --copy-port option when starting
mcmd. Default value for the option is 0. The collect logs command times out if, in 30 seconds, no
connections can be established by any of the clients or no incoming connections are detected by the
TCP server.

Warning

If a firewall or other networking issues prohibit the TCP clients to connect to the
TCP server socket, the collect logs command will never complete.

The collected files are put under the MySQL Cluster Manager data repository (mcm_data in the parent
directory of the MySQL Cluster Manager installation directory) by default, or specified by the option --
data-folder) inside a folder named collected_files, under which the files are organized under
a hierarchy that looks like the following:

/mcm_data_repository/collected-files/
|── timestamp/

78

The create site Command

| ├── mcmd/
| | ├── mcmd#/
| | ├── mcmd.log
| | └── mcmd_timestamp.log
| | └── mcmd_eventlog.csv
| | └── ...
| ├── cluster_name/
| ├── node#_nodetype/
| | ├── log files (.log)
| | ├── configuration files (.ini, .cnf)
| | ├── error files (.err)
| | └── trace files (.trace.log.*)
| ├── node#_nodetype/
| | ├── log files (.log)
| | ├── configuration files (.ini, .cnf)
| | ├── error files (.err)
| | └── trace files (.trace.log.*)
| ├── node#_nodetype/
| | └── ...
| └── other/
| ├── utilities files (.err, .out)
| └── ...
|
├── timestamp/
| ├── mcmd/
| | ├── mcmd#/
| | ├── mcmd.log
| | ├── mcmd_timestamp.log
| | └── ...
| ├── cluster_name/
| | ├── node#_nodetype/
...

For example, the error log for the mysqld node of node number 146 is found at:

 /opt/mcm_data/collected-files/2021-07-31T07:44:05Z/51_mysqld/mysqld_146_out.err

5.2.6 The create site Command
create site {--hosts=|-h }host_list site_name

host_list:
 host[,host[,...]]

The create site command is used to create a MySQL Cluster Manager management site; that is,
a set of MySQL Cluster Manager management agents running on one or more host computers. The
command requires a list of one or more hosts where management agents are running and a name for
the site. The host list is passed as the value of the --hosts option (short form: -h).

This is an example of a create site command that creates a site named mysite, consisting of the
hosts tonfisk and flundra:

mcm> create site --hosts=tonfisk,flundra mysite;
+---------------------------+
| Command result |
+---------------------------+
| Site created successfully |
+---------------------------+
1 row in set (0.31 sec)

Tip

You can verify that the site was created as intended, using the list sites
command, as shown here:

mcm> list sites;

79

The delete site Command

+--------+------+-------+-----------------+
| Site | Port | Local | Hosts |
+--------+------+-------+-----------------+
| mysite | 1862 | Local | tonfisk,flundra |
+--------+------+-------+-----------------+
1 row in set (0.06 sec)

(See Section 5.2.8, “The list sites Command”, for more information about
this command.)

Agents must be running on all hosts specified in the --hosts option when create site is executed;
otherwise, the command fails with the error Agent on host host:port is unavailable. The
host where the agent used to issue the command is running must be one of the hosts listed. Otherwise,
the command fails with the error Host host_name is not a member of site site_name.

Warning

Moreover, if the client and the agent it is connected to are on the same host,
that host must be included in the host list using its host name or its own
loopback address (which can be something other than 127.0.0.1 on some
systems); otherwise, the cluster might become not restartable in the future.

A given agent may be a member of one site only; if one of the management agents specified in the
host_list already belongs to a site, the command fails with the error Host host is already a
member of site site.

Notes

• Using localhost as the argument for the --hosts option will result in the
creation of a single-host site (consisting of the host on which the command
is run) that cannot be scaled up later by the add hosts command. Also
notice that you cannot mix localhost with other host names in the host
list. Therefore, it is recommended that you use IP addresses (but not any
addresses belonging to the localhost subnet 127.*.*.*) or proper host
names in the list.

• When IPv6-enabled Windows systems are used as MySQL NDB Cluster
hosts under MySQL Cluster Manager, you must reference these hosts
using IPv4 addresses. Otherwise, MySQL Cluster Manager will be unable to
connect to the agent processes on those hosts. See Section 6.1, “MySQL
Cluster Manager Usage and Design Limitations”.

5.2.7 The delete site Command
delete site site_name

The delete site command deletes an existing management site. The command does not stop
or remove any agents making up the deleted site; instead, these agents continue to run, and remain
available for use in other sites.

The command takes a single argument, the name of the site to be deleted. This example shows the
deletion of a management site named mysite:

mcm> delete site mysite;
+---------------------------+
| Command result |
+---------------------------+
| Site deleted successfully |
+---------------------------+
1 row in set (0.38 sec)

If the site to be deleted does not exist, the command fails with the error Command requires a site
to be defined. If there are any packages referencing hosts belonging to the site, delete site

80

The list sites Command

fails with the error Packages exist in site site_name. The command also fails if there are
defined any clusters that include hosts belonging to the site.

Note

The management client must be connected to a site in order to be able to delete
it.

In addition, if you execute a delete site command with the --force
option using one management agent while a different management agent is
not running, you must remove the “missing” management agent's site files
manually. For more information on site files, see Section 3.4, “MySQL Cluster
Manager Configuration File”.

5.2.8 The list sites Command
list sites

This command returns a list of the sites known to the management agent. It does not require any
arguments. An example is shown here:

mcm> list sites;
+--------+------+-------+-----------------+
| Site | Port | Local | Hosts |
+--------+------+-------+-----------------+
| mysite | 1862 | Local | tonfisk,flundra |
+--------+------+-------+-----------------+
1 row in set (0.06 sec)

The output of list sites contains the following columns:

• Site. The name of the site.

• Port. The TCP/IP port used for communications between clients and management agents.

• Local. Either one of Local or Remote.

• Hosts. A comma-separated list of the hosts making up the site.

5.2.9 The list hosts Command
list hosts [--verbose|-v] site_name

The list hosts command is used to obtain a list of the hosts comprising a given management site.
The command requires a single argument, the name of the site to be examined. For each host listed,
the information returned includes the hostname, status, and version of the management agent software
in use, as shown in this example:

mcm> list hosts mysite;
+-----------+-----------+---------+
| Host | Status | Version |
+-----------+-----------+---------+
| tonfisk | Available | 9.6.0 |
| flundra | Available | 9.6.0 |
+-----------+-----------+---------+
2 rows in set (0.16 sec)

Status can be one of :

• Available: Agent on the host is active

• Recovery: Agent on the host is in the process of recovering itself

• Unresponsive: Agent on the host rejected an attempt to connect

• Unavailable: Agent on the host is unreachable

81

The show settings Command

If an agent is reported persistently as Unresponsive or Unavailable, you may have to restart it.

If you omit the site_name argument, the command fails with an error, as shown here:

mcm> list hosts;
ERROR 6 (00MGR): Illegal number of operands

Using the --verbose option (short form : -v) causes the command to print additional information on
the hosts:

mcm> list hosts --verbose mysite;
+---------+-----------+---------+-------+---------+--------------------------+
| Host | Status | Version | Cores | Memory | OS |
+---------+-----------+---------+-------+---------+--------------------------+
| tonfisk | Available | 9.6.0 | 1 | 1819 Mb | Linux 4.15.0-147-generic |
| flundra | Available | 9.6.0 | 1 | 1819 Mb | Linux 4.15.0-147-generic |
+---------+-----------+---------+-------+---------+--------------------------+
2 rows in set (0.07 sec)

5.2.10 The show settings Command

show settings [--hostinfo | --tls]

This command lists the current values of a number of mcmd options:

mcm> show settings;
+---------+----------------+---+
| Section | Setting | Value |
+---------+----------------+---+
DEFAULT	data_folder	/home/dso/extra3/mcm-9.6.0-cluster-9.6.0/mcm_data
DEFAULT	logging_folder	/home/dso/extra3/mcm-9.6.0-cluster-9.6.0
logger	filename	mcmd.log
logger	level	info
mcmd	bind_port	1862
mcmd	copy_port	0
mcmd	mcmd_password	********
mcmd	mcmd_user	mcmd
mcmd	xcom_port	18062
+---------+----------------+---+
9 rows in set (0.10 sec)

Using the --hostinfo option makes the command print out information on the host that the mcm client
is connected to:

mcm> show settings --hostinfo;
+-----------------+-------------------------------+
| Property | Value |
+-----------------+-------------------------------+
Hostname	localhost.localdomain
Platform	Linux 3.13.11-100.fc19.x86_64
Processor cores	1
Total memory	1819 Mb
+-----------------+-------------------------------+
4 rows in set (0.00 sec)

Using the --tls option makes the command print out the TLS-specific settings:

mcm> show settings --tls;
+---------+------------+----------+
| Section | Key | Value |
+---------+------------+----------+
mcmd	ssl_ca	
mcmd	ssl_cert	
mcmd	ssl_cipher	
mcmd	ssl_key	
mcmd	ssl_mode	DISABLED
+---------+------------+----------+
5 rows in set (0.00 sec)

82

The stop agents Command

5.2.11 The stop agents Command
stop agents [[--hosts=host_list] site_name]

This command stops one or more MySQL Cluster Manager agents on one or more hosts.

When used without any arguments, stop agents stops the agent to which the client is currently
connected.

When used with the name of a management site, the command stops all agents running on hosts
making up the site. The following stops all MySQL Cluster Manager agents running on hosts in
mysite:

mcm> stop agents mysite;

You can also stop a subset of the agents in a given management site by listing the hosts where they
are running with the --hosts option (short form: -h), along with the name of the site to which they
belong. The result of the following command is to stop MySQL Cluster Manager agents running on
hosts kolja and torsk, both of which are members of the management site mysite:

mcm> stop agents --hosts=kolja,torsk mysite;

Multiple host names following the --hosts option should be separated by commas, with no
intervening spaces. Invoking stop agents with this option without supplying a site_name causes
a syntax error. Using an undefined site_name or names of hosts not belonging to the site with this
command also results in an error.

Note

When IPv6-enabled Windows systems are used as MySQL NDB Cluster hosts
under MySQL Cluster Manager, you must reference these hosts using IPv4
addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the
agent processes on those hosts. See Section 6.1, “MySQL Cluster Manager
Usage and Design Limitations”.

5.2.12 The version Command
version

This command displays the version of the MySQL Cluster Manager software in use by the MySQL
Cluster Manager agent to which this client is connected, as shown here:

mcm> version;
+--------------------------------------+
| Version |
+--------------------------------------+
| MySQL Cluster Manager 9.6.0 (64bit) |
+--------------------------------------+
1 row in set (0.00 sec)

The version command takes no arguments.

5.2.13 The show warnings Command

Using the show warnings command, you can check the warnings (up to the last five) issued to the
agent log (mcmd.log). For example:

mcm> set delayed_insert_timeout:mysqld=400 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+

83

The list warnings Command

mcm> show warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	0	2021-07-12 21:27:38 Config variable delayed_insert_timeout was deprecated in mysqld 5.6.7
Warning	1287	2021-07-12 21:27:38 '@@delayed_insert_timeout' is deprecated and will be removed in a future release.
Warning	1287	2021-07-12 21:27:38 '@@delayed_insert_timeout' is deprecated and will be removed in a future release.
+---------+------+---+
3 rows in set (0.10 sec)

5.2.14 The list warnings Command
list warnings [--max=n]

Using this command, you can check important warnings issued across the whole site during the
executions of MySQL Cluster Manager client commands since the agent was started (or restarted). It
provides additional information that is not exposed by the show warnings command. Use the --max
option to specify the maximum number of warnings to be returned by this command. The default value
for the option is 5, and the maximum value is 100.

mcm> list warnings --max=4
Timestamp Host Message
2022-01-06 06:49:09 torsk ndb_cluster_connection_pool specified without ndb_cluster_connection_pool_nodeids
2022-01-06 10:17:22 flundra Config variable max_delayed_threads was deprecated in mysqld 5.6.7
2022-01-06 11:19:25 flundra Parameter names use underscore: ndb-use-exact_count rewritten to ndb_use_exact_count
2022-01-10 12:38:01 torsk At least one mysqld is not running. Schema dump may be missing

5.3 MySQL Cluster Manager Package Commands
This section contains information about MySQL Cluster Manager client commands used to register,
extend, unregister, and obtain information about the software packages making up instances of MySQL
NDB Cluster that are to be managed using the MySQL Cluster Manager.

5.3.1 The add package Command
add package {--basedir=|-b }path
 [{--hosts=|-h }host_list] package_name

host_list:
 host[,host[,...]]

This command creates a new package, or, if the package named package_name already exists, this
command extends the package definition.

The --basedir option (short form: -b) indicates the location of the MySQL NDB Cluster installation
directory on the listed hosts, and is required. This must be the path to the top-level directory where the
MySQL NDB Cluster software is located (for example, /usr/local/mysql), and should not include
the MySQL NDB Cluster bin, libexec, or other subdirectory within the installation directory.

Hosts may be specified as a comma-separated list, using the --hosts option (short form: -h);
however, this option is not required. If --hosts is omitted, the path is assumed to be valid for all
hosts in the cluster that is created using this package (see Section 5.4.1, “The create cluster
Command”).

Important

• You cannot perform add package if you have not yet defined any sites
(each host referenced in an add package command must be associated
with a site). See Section 5.2.6, “The create site Command”, for more
information about defining sites.

• When a package is first added for a site with the add package command,
whenever the --hosts option is used, the host list must contain the host
for the mcmd agent to which the mcm client is currently connected, in order to

84

The add package Command

allow the MySQL Cluster Manager to access the version information of the
package.

Suppose we have two Linux hosts named tonfisk and flundra, and the MySQL NDB Cluster
software is installed in /usr/local/mysql on both hosts. In this case, you can create a package
named mypackage that accounts for both hosts as shown here:

mcm> add package --basedir=/usr/local/mysql mypackage;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.71 sec)

When this package is used to create a cluster, the MySQL Cluster Manager knows that it should find
the MySQL NDB Cluster software in the /usr/local/mysql directory on each of the hosts.

For options to MySQL Cluster Manager client command options having Windows paths as values, you
must use forward slashes (/) in place of backslashes (\), so if tonfisk and flundra are Windows
hosts where MySQL NDB Cluster has been installed to the directory C:\mysql, the corresponding add
package command would look like this (with the --basedir option highlighted):

mcm> add package --basedir=c:/mysql mypackage;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.71 sec)

In the example just given, we could also have issued the command as add package --
basedir=/usr/local/mysql --hosts=tonfisk,flundra mypackage (or add package --
basedir=c:/mysql --hosts=tonfisk,flundra mypackage on Windows) with the same result,
but the --hosts option was not required, since the MySQL NDB Cluster software's location is the
same on each host. Let us suppose, however, that the software is installed in /usr/local/ndb-host-10 on
host tonfisk and in /usr/local/ndb-host-20 on host flundra. In this case, we must issue 2 separate
commands, specifying the host as well as the base directory in each case, as shown here:

mcm> add package --basedir=/usr/local/ndb-host-10
 > --hosts=tonfisk yourpackage;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.68 sec)

mcm> add package --basedir=/usr/local/ndb-host-20
 > --hosts=flundra yourpackage;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.81 sec)

Assuming that both hosts belong to a site called mysite, you can verify that these packages have
been created as desired using the list packages command, as shown here:

mcm> list packages mysite;
+-------------+---------------------------------------+-----------------+
| Package | Path | Hosts |
+-------------+---------------------------------------+-----------------+
yourpackage	/usr/local/ndb-host-10	tonfisk
	/usr/local/ndb-host-20	flundra
mypackage	/usr/local/mysql	tonfisk,flundra
+-------------+---------------------------------------+-----------------+

85

The delete package Command

3 rows in set (1.07 sec)

(For more information about this command, see Section 5.3.3, “The list packages Command”.)

It is possible to assign the same base directory (or directories) on the same host (or hosts) to multiple
packages, as shown in this example, in which we assume that hosts tonfisk and flundra have
previously been assigned to a site named mysite:

mcm> add package -b /usr/local/mysql-cluster mypackage;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (1.41 sec)

mcm> add package -b /usr/local/mysql-cluster yourpackage;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (1.58 sec)

mcm> list packages mysite;
+-------------+--------------------------+-----------------+
| Package | Path | Hosts |
+-------------+--------------------------+-----------------+
| mypackage | /usr/local/mysql-cluster | tonfisk,flundra |
| yourpackage | /usr/local/mysql-cluster | tonfisk,flundra |
+-------------+--------------------------+-----------------+
2 rows in set (0.50 sec)

Note

When IPv6-enabled Windows systems are used as MySQL NDB Cluster hosts
under MySQL Cluster Manager, you must reference these hosts using IPv4
addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the
agent processes on those hosts. See Section 6.1, “MySQL Cluster Manager
Usage and Design Limitations”.

5.3.2 The delete package Command
delete package [{--hosts=|-h }host_list] package_name

host_list:
 host[,host[,...]]

This command is used to unregister a package. More specifically, it removes any references to MySQL
NDB Cluster software installations added to the agent's repository when the package was created.
delete package does not remove any MySQL NDB Cluster installations; the command removes
only references to the installations. Once a package has been unregistered, it can no longer be used
for a create cluster command. The MySQL NDB Cluster binaries remain, but cannot be used
in a MySQL NDB Cluster administered using the MySQL Cluster Manager unless and until the base
directory containing them has been registered with another package. (It is possible to register a
base directory with multiple packages; see Section 5.3.1, “The add package Command”, for more
information and an example.)

If the --hosts option (short form: -h) is used with this command, the base directory settings for the
host or hosts named by the option are removed as well. All hosts given in the host_list must be
members of the site to which the package is registered. Otherwise, the command fails.

A package that is in use by a cluster cannot be unregistered; the cluster must first be deleted (see
Section 5.4.2, “The delete cluster Command”).

Here is an example that demonstrates how to unregister a package named mypackage:

86

The list packages Command

mcm> delete package mypackage;
+------------------------------+
| Command result |
+------------------------------+
| Package deleted successfully |
+------------------------------+
1 row in set (1.23 sec)

You can also verify that the package was unregistered using the list packages command; the
package name should no longer appear in the output of this command. If you attempt to use the
unregistered package in a create cluster command, the command fails, as shown here:

mcm> create cluster --package=mypackage
 > --processhosts=ndb_mgmd@tonfisk,ndbd@grindval,ndbd@flundra,mysqld@tonfisk mycluster;
ERROR 4001 (00MGR): Package mypackage not defined

An upgrade cluster command that references an unregistered package also fails.

Note

When IPv6-enabled Windows systems are used as MySQL NDB Cluster hosts
under MySQL Cluster Manager, you must reference these hosts using IPv4
addresses. Otherwise, MySQL Cluster Manager will be unable to connect to the
agent processes on those hosts. See Section 6.1, “MySQL Cluster Manager
Usage and Design Limitations”.

5.3.3 The list packages Command
list packages [package_name] site_name

This command lists registered packages. It requires a single argument, that being the name of the site
with which the packages are registered, as shown in this example:

mcm> list packages mysite;
+-------------+---------------------------------------+-----------------+
| Package | Path | Hosts |
+-------------+---------------------------------------+-----------------+
yourpackage	/usr/local/ndb-host-10	tonfisk
	/usr/local/ndb-host-20	flundra
mypackage	/usr/local/mysql	tonfisk,flundra
+-------------+---------------------------------------+-----------------+
3 rows in set (1.07 sec)

If tonfisk and flundra are Windows hosts, the list of packages might look something like this:

mcm> list packages mysite;
+-------------+---------------------------------------+-----------------+
| Package | Path | Hosts |
+-------------+---------------------------------------+-----------------+
yourpackage	c:/cluster/ndb-host-10	tonfisk
	c:/cluster/ndb-host-20	flundra
mypackage	c:/mysql	tonfisk,flundra
+-------------+---------------------------------------+-----------------+
3 rows in set (1.07 sec)

In the example just shown, yourpackage uses the MySQL NDB Cluster binaries installed at C:
\cluster\ndb-host-10 on host tonfisk, and at C:\cluster\ndb-host-20 on flundra;
mypackage uses MySQL NDB Cluster binaries installed at C:\mysql on both hosts.

The output contains three columns; these are described in the following list:

• Package. The name of the package. This can sometimes be empty when a package includes
MySQL NDB Cluster installations that are in different locations on different hosts (see next example).

• Path. The path to the MySQL NDB Cluster installation directory (base directory) on the indicated
host or hosts. This is the same as the value given for the --basedir option in the add package
command that was used to create or augment the package.

87

MySQL Cluster Manager Cluster Commands

On Windows, paths shown in this column have any backslash characters converted to forward
slashes, just as must be done for the --basedir option (see the earlier example in this section).

• Hosts. The host or hosts where the MySQL NDB Cluster installation or installations are located.

You can filter the results so that information relating to only a single package is displayed by supplying
the package name before the site name, as shown here:

mcm> list packages yourpackage mysite;
+-------------+---------------------------------------+-----------------+
| Package | Path | Hosts |
+-------------+---------------------------------------+-----------------+
| yourpackage | /usr/local/ndb-host-10 | tonfisk |
| | /usr/local/ndb-host-20 | flundra |
+-------------+---------------------------------------+-----------------+
2 rows in set (0.55 sec)

(See Section 5.3.1, “The add package Command”, for the add package commands that were used
to create yourpackage.)

When a package contains MySQL NDB Cluster installations using different base directories on different
hosts, each unique combination of path and host is shown in its own row. However, the name of the
package is displayed in the first row only; all rows that immediately follow this row and that do not
contain the package name also relate to the same package whose name is shown in the first preceding
row to display a package name. For example, consider the list packages command and output
shown here:

mcm> list packages mysite;
+-------------+---------------------------------------+---------+
| Package | Path | Hosts |
+-------------+---------------------------------------+---------+
yourpackage	/usr/local/ndb-host-10	tonfisk
	/usr/local/ndb-host-20	flundra
mypackage	/usr/local/mysql	tonfisk
	/usr/local/bin/mysql	flundra
+-------------+---------------------------------------+---------+
3 rows in set (1.07 sec)

This output shows that there are two packages defined for the site named mysite; these packages
are named yourpackage and mypackage. The package yourpackage consists of the MySQL NDB
Cluster binaries in the directory /usr/local/ndb-host-10 on host tonfisk, and in the directory
/usr/local/ndb-host-20 on host flundra. The package named mypackage consists of the
MySQL NDB Cluster binaries in the directory /usr/local/mysql on host tonfisk, and in the
directory /usr/local/bin/mysql on host flundra.

If you omit the site_name argument, the command fails with an error, as shown here:

mcm> list packages;
ERROR 6 (00MGR): Illegal number of operands

5.4 MySQL Cluster Manager Cluster Commands

This section contains descriptions of MySQL Cluster Manager commands used to perform operations
on clusters. These include creating and deleting a cluster; starting, stopping, and restarting a cluster;
upgrading a cluster (that is, upgrading the MySQL NDB Cluster software used by a given cluster); and
listing clusters known to MySQL Cluster Manager.

5.4.1 The create cluster Command

create cluster {--package=|-P }package_name
 {--processhosts=|-R }process_host_list cluster_name
 [(--import|-m) cluster_name] [--verbose | -v]

88

The create cluster Command

process_host_list:
 process_name[:node_id]@host[,process_name@host[,...]]

process_name:
 {ndb_mgmd|ndbd|ndbmtd|mysqld|ndbapi}

This command creates a cluster to be managed by the MySQL Cluster Manager. However, it does not
start the cluster (see Section 5.4.7, “The start cluster Command”).

This command can also be used to create a cluster earmarked specifically as a target for importing
another cluster that is not already under MySQL Cluster Manager control, as described later in this
section, by employing the --import option. See also Section 4.5, “Importing MySQL NDB Clusters
into MySQL Cluster Manager”.

create cluster requires the following arguments:

•
A package_name, supplied as the value of the --package option (short form: -P). This must be the
name of a package previously registered using add package.

•
A list (process_host_list) of MySQL NDB Cluster processes, the hosts on which they are to
run, and—optionally—their node IDs, supplied as the value of the --processhosts option (short
form: -R), with list items separated by commas. As with other lists passed as option values in MySQL
Cluster Manager commands, you must not use spaces before or after the commas.

Each item in the process_host_list consists of the name of a MySQL NDB Cluster process—
possibly suffixed with a colon (:) character followed by the process node ID—joined with the name
of the host on which it is located using an amphora (@) sign (also sometimes known as the “at” sign).
Permitted values for processes are ndb_mgmd, ndbd, and mysqld. You can also use ndbmtd as
process name; in other words, a valid process name is the name of a MySQL NDB Cluster process
daemon binary. If node IDs are specified, they must be within the allowed range for the type of node
defined.

To support running your own NDB API applications with a cluster under MySQL Cluster Manager,
it is also possible to use ndbapi as a process type. Such applications can be connected to a
managed cluster. Currently, MySQL Cluster Manager recognises only that an NDB API application
is connected to the cluster; the NDB API application itself must be started, stopped, and configured
manually.

It is also possible to specify one or more “free” mysqld and ndbapi processes without any hosts.
To do this, simply use the wildcard * (asterisk character) in place of the hostname or IP address, as
shown below:

• “Free” mysqld process: mysqld@*

• “Free” ndbapi process: ndbapi@*

It is also possible to specify a node ID for a “free” process. (If this is not specified, MySQL Cluster
Manager assigns a suitable node ID automatically.)

A mysqld process or ndbapi process that is specified without a host in this fashion is permitted to
connect to the cluster from any host that can access the cluster over the network. Otherwise, the
process may connect to the cluster only from the specified host.

By convention, items in the process_host_list are listed according to the process type, in the
following order:

1. Management node processes (ndb_mgmd)

2. Data node processes (ndbd, ndbmtd)

89

The create cluster Command

3. SQL node processes (mysqld)

4. Custom NDB API applications (ndbapi)

For information about writing your own NDB API applications, see The NDB API, in the MySQL
NDB Cluster API Developer Guide.

While the order in which the items are listed does not affect whether the create cluster
command succeeds, we suggest that you follow this convention for readability, as well as
compatibility with other MySQL NDB Cluster management tools such as ndb_mgm.

create cluster causes cluster node IDs to be assigned consecutively, in the order that the
nodes are specified in the process_host_list, with node IDs for data node processes starting
with 1, and node IDs for processes other than data node processes starting with 145. You are
recommended to follow the best practice of reserving node ID 1 to 144 for data nodes.

Each host referenced in the list must be part of the site for which the package used in create
cluster is defined.

For processes of types mysqld and ndbapi, the hostname is required, but not enforced in the
running cluster. In other words, an [api] section is created in the cluster config.ini file, but
no HostName parameter is specified; thus, the mysqld or ndbapi can connect from any host.
(Currently, there is no way using MySQL Cluster Manager to specify that a mysqld or ndbapi
process is restricted to connecting from a single host.)

• A name for the cluster. Once the cluster has been created, this name is used to refer to it in
other cluster management commands such as delete cluster, start cluster, and stop
cluster. Like other object names used with MySQL Cluster Manager, the cluster_name must be
valid according to the rules given elsewhere in this document for identifiers (see Chapter 5, MySQL
Cluster Manager Client Commands).

An additional --verbose option for this command causes create cluster to output extra
information as it is executed, as shown later in this section.

The --import option flags the cluster as being created as a target for importing a cluster created
outside MySQL Cluster Manager. This option causes the cluster's status to appear as import in the
output of show status, as shown here:

mcm> show status --process newcluster;
+--------+----------+-------+--------+-----------+--------------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+-------+--------+-----------+--------------+
1	ndb_mgmd	alpha	import		newpackage
5	ndbd	beta	import	n/a	newpackage
6	ndbd	gamma	import	n/a	newpackage
10	mysqld	delta	import		newpackage
11	ndbapi	*	import		
+--------+----------+-------+--------+-----------+--------------+
6 rows in set (0.04 sec)

Having the import status causes any of the commands start cluster, restart cluster,
start process, and stop process to fail if they are executed before an import cluster
command has been executed against this cluster. It is also not possible to execute upgrade cluster
on a cluster having processes with import status. Other operations on this cluster continue to be
performed normally.

Caution

While it is possible to import into a cluster that was created without this option,
it is not advisable, since the cluster is not protected against accidentally
performing any of the operations listed previously, which may result in confusing

90

https://dev.mysql.com/doc/ndbapi/en/ndbapi.html

The create cluster Command

or misleading errors, and possibly other problems. For this reason, it is strongly
recommended that you always use the --import option for creating the cluster
in such cases.

For more information about importing clusters into MySQL Cluster Manager, including examples, see
Section 4.5, “Importing MySQL NDB Clusters into MySQL Cluster Manager”.

Example

Consider the following command issued in the MySQL Cluster Manager client, which creates a cluster
named mycluster:

mcm> create cluster --package=mypackage
 -> --processhosts=ndb_mgmd@flundra,ndbd@tonfisk,ndbd@grindval,mysqld@flundra
 -> mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster created successfully |
+------------------------------+
1 row in set (7.71 sec)

As defined by the command just shown, mycluster consists of four nodes: a management node on
host flundra; two data nodes—one on each of the hosts tonfisk and grindval; and one SQL
node, also on host flundra.

Using the --verbose option causes the command to print output similar to that produced by the list
processes command, as shown here:

mcm> create cluster --verbose --package=mypackage
 -> --processhosts=ndb_mgmd@flundra,ndbd@tonfisk,ndbd@grindval,mysqld@flundra
 -> mycluster;
+--------+----------+----------+
| NodeId | Name | Host |
+--------+----------+----------+
49	ndb_mgmd	flundra
1	ndbd	tonfisk
2	ndbd	grindval
50	mysqld	flundra
+--------+----------+----------+
4 rows in set (0.32 sec)

You can also create this cluster in such a way that the mysqld process is permitted to connect to the
cluster from any host able to reach the other cluster hosts over the network as shown here:

mcm> create cluster --package=mypackage
 -> --processhosts=ndb_mgmd@flundra,ndbd@tonfisk,ndbd@grindval,mysqld@*
 -> mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster created successfully |
+------------------------------+
1 row in set (7.71 sec)

Note

In the case of a “free” ndbapi process, it is not necessary to have the MySQL
Cluster Manager software installed on the host where the ndbapi process is
running.

Configuration changes to the newly-created cluster can be made using the set command prior to
starting the cluster. This is often preferable to doing after the cluster has been started, since set
commands used to make configuration changes in a running cluster can require a rolling restart, and
rolling restarts of clusters having many nodes or large quantities of data (or both) may take a great deal
of time to complete.

91

The delete cluster Command

Note

When creating a cluster having more than one mysqld process on the same
host machine, MySQL Cluster Manager assigns the MySQL default port (3306)
to each of them. Therefore, you must assign a unique port for each mysqld
process in the cluster.

5.4.2 The delete cluster Command
delete cluster [--removedirs] cluster_name

This command deletes the cluster named cluster_name, removing it from the list of clusters
managed by MySQL Cluster Manager.

delete cluster does not remove any MySQL NDB Cluster binaries from hosts. However, it does
remove the cluster configuration, data, and log files that reside in the MySQL Cluster Manager data
repository.

This example demonstrates how to delete a cluster named mycluster:

mcm> delete cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster deleted successfully |
+------------------------------+
1 row in set (1.22 sec)

A look at the MySQL Cluster Manager data repository (at /opt/mcm_data/ in this case) shows that
the folder that used to host the configuration, data, and log files for mycluster (/opt/mcm_data/
clusters/mycluster) no longer exists:

$> ls -l /opt/mcm_data/clusters
total 0

To remove the configuration and data files outside of the MySQL Cluster Manager data repository,
delete cluster must be invoked with the --removedirs option, like this:

mcm> delete cluster --removedirs mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster deleted successfully |
+------------------------------+
1 row in set (1.22 sec)

For example, if one of the data node on mycluster has its data directory outside of the MySQL
Cluster Manager data repository:

mcm> get Datadir mycluster;
+---------+---------------------------+----------+---------+----------+---------+---------+---------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+---------+---------------------------+----------+---------+----------+---------+---------+---------+
| DataDir | /home/dso/mycluster/cdata | ndbd | 1 | | | Process | |
...

Deleting mycluster without using --removedirs does not remove the data directory for node 1:

$> ls -l /home/dso/mycluster
total 4 drwxr-xr-x. 3 dso dso 4096 Sep 10 18:00 cdata

However, if the --removedirs option is used, the data directory for node 1 also gets removed:

$> ls -l /home/dso/mycluster
total 0

delete cluster fails if the cluster to be deleted is running, as shown here:

92

The list clusters Command

mcm> delete cluster mycluster;
ERROR 5010 (00MGR): All processes must be stopped to delete cluster mycluster

You must shut down the cluster first, using stop cluster.

 The delete cluster command also fails if a backup of the cluster exists somewhere under /path-
to-mcm-data-repository/clusters/clustername (the default arrangement). The backup
should be moved to another other location or be deleted first before the delete cluster command
is executed. This is to prevent an unexpected loss of the cluster backup.

5.4.3 The list clusters Command
list clusters site_name

This command lists all clusters defined for a given management site named site_name, together with
the package used by each cluster. For example, the command shown here displays a list of all clusters
defined for the site named mysite:

mcm> list clusters mysite;
+------------------+----------+
| Cluster | Package |
+------------------+----------+
mycluster	m-7.1.26
yourcluster	y-7.1.26
someothercluster	s-7.2.9
+------------------+----------+
3 rows in set (2.07 sec)

If site_name is omitted, the command fails with an error, as shown here:

mcm> list clusters;
ERROR 6 (00MGR): Illegal number of operands

5.4.4 The list nextnodeids Command
list nextnodeids cluster_name

MySQL Cluster Manager normally assigns IDs to new node processes automatically (although this
can be overridden when issuing the create cluster or add process command). The list
nextnodeids command can be used to see the next node ID that MySQL Cluster Manager has
reserved for the next new process (of each possible process type) to be added to the cluster named
cluster_name, which is required.

mcm> list nextnodeids mycluster;
+-----------+--------------+-------------+--------------------------+
| Category | NodeId Range | Next NodeId | Processes |
+-----------+--------------+-------------+--------------------------+
| Datanodes | 1 - 144 | 3 | ndbd, ndbmtd |
| Others | 145 - 255 | 149 | ndb_mgmd, mysqld, ndbapi |
+-----------+--------------+-------------+--------------------------+
2 rows in set (0.07 sec)

5.4.5 The restart cluster Command
restart cluster [--sequential-restart] cluster_name

This command performs a rolling restart (see Performing a Rolling Restart of an NDB Cluster) of the
cluster named cluster_name. The cluster must already be running in order for this command to
succeed. (For information about how to determine the operation state of the cluster, see Section 5.4.6,
“The show status Command”.)

For example, the command shown here performs a rolling restart of the cluster named mycluster:

mcm> restart cluster mycluster;
+--------------------------------+

93

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-rolling-restart.html

The show status Command

| Command result |
+--------------------------------+
| Cluster restarted successfully |
+--------------------------------+
1 row in set (1 min 22.53 sec)

If the cluster is not already running, restart cluster fails with an error, as shown here:

mcm> show status --cluster mycluster;
+-----------+---------+---------+
| Cluster | Status | Comment |
+-----------+---------+---------+
| mycluster | stopped | |
+-----------+---------+---------+
1 row in set (1.49 sec)

mcm> restart cluster mycluster;
ERROR 5009 (00MGR): Restart can not be performed as processes are
stopped in cluster mycluster

 By default, a rolling restart is performed on the nodes in a parallel manner (that is, half of the nodes
are stopped and restarted together, followed by the second half of the nodes). In some situations, you
might want to have a rolling restart performed in a sequential manner for the data nodes by adding the
--sequential-restart option, in which case the data nodes ares stopped and restarted one after
another.

Note

Depending on the number of nodes and the amount of data stored in the
cluster, a rolling restart can take a considerable amount of time, up to several
hours for a cluster with a great many data nodes and a large amount of data.

Currently, there is no mechanism in MySQL Cluster Manager for performing system initial restarts of a
cluster. This means that attributes that require an initial restart to be changed must be set before the
cluster is started for the first time.

5.4.6 The show status Command
show status
show status --cluster|-c cluster_name
show status --operation|-o cluster_name
show status --backup|-b cluster_name
show status --process|-r cluster_name
show status --progress cluster_name
show status --progressbar cluster_name

This command is used to check the status of clusters, cluster processes, backups, and commands
issued in the MySQL Cluster Manager client. The type of status returned depends on whether an
option is used with the command and, if so, which of the four options of --cluster (short form: -c),
--operation (short form: -o), --backup (short form: -b), or --process (short form -r) is used.

 When no option is used, show status reports runtime information from the mcmd to which the client
is connected. For example:

mcm> show status;
+--------------+--+
| Property | Value |
+--------------+--+
agent_number	0
cwd	/opt/mcm9.6.0/
connections	1
max_msg_id	105
max_synode	{4c0f56d8 105 0}
ssl_cipher	
tls_version	
uptime	90
version	9.6.0

94

The show status Command

+--------------+--+
9 rows in set (0.00 sec)

 --cluster option

When this option is used, show status reports on the status of the cluster named cluster_name,
as shown in this example:

mcm> show status --cluster mycluster;
+-----------+-------------------+---------+
| Cluster | Status | Comment |
+-----------+-------------------+---------+
| mycluster | fully operational | |
+-----------+-------------------+---------+
1 row in set (0.01 sec)

When used with the --cluster option (short form: -c), the output of this command consist of two
columns. The Cluster column contains the name of the cluster. The Status column contains a
description of the cluster's status; possible values and their meanings are shown in the following table:

Table 5.1 Status values shown by show status --cluster

Status Value Meaning

fully operational All cluster processes are running.

operational All node groups are up and running, but at least
one data node process (ndbd or ndbmtd) is not
running. The cluster is online, but you should
determine why any “missing” data nodes are
not running and correct the problem as soon as
possible.

non-operational The cluster is not operational, because at least
one node group is offline. You must investigate
and fix the problem or problems, then restart the
cluster, before the cluster can be used for data
storage and retrieval operations.

failed All processes in the cluster have exited, but, unlike
stopped, some nodes did not exit cleanly.

stopped The cluster is not running, because it has been
stopped by the user. This normally does not
indicate any problem as such, but you must
restart the cluster before it can be used by any
applications.

created The cluster has been created successfully using
the create cluster command, but has never
been started. You must start the cluster using the
start cluster command before you can make
use of it.

unknown The MySQL Cluster Manager was unable to
determine the cluster's status. This may or may
not indicate a problem with the cluster; it is
possible that the problem lies with one or more
MySQL Cluster Manager agents or the MySQL
Cluster Manager client. You should attempt
to determine the status of the cluster by other
means, such as using show status --process
in the MySQL Cluster Manager client (described
later in this section), or employing one of the
commands available in the ndb_mgm client (see

95

The show status Command

Status Value Meaning
ndb_mgm — The NDB Cluster Management
Client) such as SHOW or ALL STATUS.

 --operation option

When the --operation option (short form: -o) is used, it causes SHOW STATUS to display the status
of the latest command to be executed. An example of this command is shown here:

mcm> show status --operation mycluster;
+---------------+----------+------------------------+
| Command | Status | Description |
+---------------+----------+------------------------+
| start cluster | finished | Completed successfully |
+---------------+----------+------------------------+
1 row in set (0.10 sec)

The output contains 3 columns, described in the following list:

• Command. The text of the command last issued (previous to the show status --operation
command), less any options or arguments.

• Status. The current state of the command. Possible values and their meanings are listed later in
this section.

• Description. Depending on the command and its status, this column may contain additional
information. Otherwise, No information available is displayed here.

Possible values for the Status column, together with descriptions of these values, are shown in the
following table:

Table 5.2 Status values shown by show status --operation

Status Value Description

executing MySQL Cluster Manager is executing the
command, but has not yet completed doing so.

finished The command has executed (and completed)
successfully.

failed The command failed to execute. The
Description column may contain information
about the reason for the failure.

unknown MySQL Cluster Manager was unable to determine
the status of this command.

 --backup option

When this option is used, show status reports on the status of the backup process for the cluster
named cluster_name, as shown in the following examples:

mcm> show status --backup mycluster;
+---+
| Command result |
+---+
| No backup currently active in mycluster |
+---+
1 row in set (0.05 sec)

mcm> show status --backup mycluster;
+---+
| Command result |
+---+
| BackupId 5 currently active in mycluster|

96

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-show
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-status

The show status Command

+---+
1 row in set (0.09 sec)

 --process option

When run with this option, show status returns information about each process in the cluster named
cluster_name, as shown in this example:

mcm> show status --process mycluster;
+------+----------+----------+---------+-----------+
| Id | Process | Host | Status | Nodegroup |
+------+----------+----------+---------+-----------+
1	ndb_mgmd	tonfisk	running	
2	ndbd	flundra	running	0
3	ndbd	grindval	running	0
4	mysqld	lax	running	
+------+----------+----------+---------+-----------+
4 rows in set (1.67 sec)

When the --process option (short form: -r) is used with show status, the output contains 5
columns, described in the following list:

• Id. This is the node ID of the process as a node in cluster cluster_name.

• Process. The type of process, that is, the name of the corresponding MySQL NDB Cluster
executable. Allowed values are ndb_mgmd, ndbd, ndbmtd, and mysqld.

• Host. The hostname or IP address of the computer where the process is running.

• Status. The state or condition of this process. Possible values for this column are given later in
this section.

• Nodegroup. If the Process is ndbd or ndbmtd—that is, if the process is a data node process—
then this column shows the ID of the node group to which the process belongs. For any other value
of Process, this column is empty.

Possible values for the Status column are shown in the following table, together with a description of
what this value represents:

Table 5.3 Status values shown by show status --process

Status Value Meaning

running The process is running normally.

stopped The process has been stopped by the user.

added The process has been added to the cluster, but
not yet started.

connected The ndbapi or mysqld process is connected to
the cluster.

starting The process has been started, but is not yet fully
running. (For data nodes, you can determine
which start phase the node is currently in by using
the status command in the ndb_mgm client.)

stopping The process has received a command to stop,
and is now shutting down.

failed The process has shut down unexpectedly (likely to
have crashed). You should determine the cause
for this unplanned shutdown, fix the problem, and
restart the process as soon as possible.

import The process is part of a cluster that was created
for import, but the actual migration of processes

97

The start cluster Command

Status Value Meaning
and data from the original cluster has not
yet taken place. start process and stop
process commands fail for this process until this
migration has occurred.

unknown MySQL Cluster Manager is unable to establish the
current status of this process. You should try to
determine its status using other means.

 --progress option

When run with this option, show status returns, when available, progress on the current action of
mcmd on the cluster named cluster_name, in terms of the percentage of the total number of steps
completed:

mcm> show status --progress mycluster;
+-----------------+-----------+----------+
| Command | Status | Progress |
+-----------------+-----------+----------+
| restore cluster | executing | 47% |
+-----------------+-----------+----------+
1 row in set (0.02 sec)

 --progressbar option

The option provides the same function as the --progress option, but also adds an ASCII-art progress
bar:

mcm> show status --progressbar mycluster;
+-----------------+-----------+-----------------------------+
| Command | Status | Progress |
+-----------------+-----------+-----------------------------+
| restore cluster | executing | 47% [#########] |
+-----------------+-----------+-----------------------------+
1 row in set (0.02 sec)

You must supply the name of an existing cluster with this command, or else show status fails with an
error, as shown here:

mcm> show status;
ERROR 6 (00MGR): Illegal number of operands

mcm> show status -c nosuchcluster;
ERROR 5001 (00MGR): Cluster nosuchcluster not defined

Important

Do not confuse this command with the MySQL SHOW STATUS statement, which
has a different syntax and can be used only in the standard mysql client. The
MySQL Cluster Manager client command accepts only those options shown at
the beginning of this section, and does not accept a LIKE or WHERE clause.

5.4.7 The start cluster Command
start cluster [--initial|-i] [--skip-init=process_id_list] cluster_name

This command starts the cluster named cluster_name, as shown in this example:

mcm> start cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster started successfully |
+------------------------------+
1 row in set (45.37 sec)

98

https://dev.mysql.com/doc/refman/9.6/en/show-status.html

The start cluster Command

In order for the command to succeed, the cluster named in the command must already exist; otherwise
the command fails with the error Cluster cluster_name not defined, as shown here:

mcm> list sites;
+--------+------+-------+------------------------------+
| Site | Port | Local | Hosts |
+--------+------+-------+------------------------------+
| mysite | 1862 | Local | tonfisk,flundra,grindval,haj |
+--------+------+-------+------------------------------+
1 row in set (1.72 sec)

mcm> list clusters mysite;
+-----------+-----------+
| Cluster | Package |
+-----------+-----------+
| mycluster | mypackage |
+-----------+-----------+
1 row in set (1.70 sec)

mcm> start cluster yourcluster;
ERROR 5001 (00MGR): Cluster yourcluster not defined

In addition, the cluster must not already be running, as shown here:

mcm> show status --cluster mycluster;
+-----------+-------------------+---------+
| Cluster | Status | Comment |
+-----------+-------------------+---------+
| mycluster | fully operational | |
+-----------+-------------------+---------+
1 row in set (0.01 sec)

mcm> start cluster mycluster;
ERROR 5005 (00MGR): Cluster mycluster is running

A cluster created for import cannot be started until the import has been completed. See Section 5.4.1,
“The create cluster Command”, and Section 4.5, “Importing MySQL NDB Clusters into MySQL
Cluster Manager”, for more information.

 --initial option

The --initial option (short form: -i) causes the following to happen:

• All cluster data node are started as if start process --initial had been used on them, which
means that all data nodes wipe their data and start with clean data node file systems. NDB tables that
were previously stored in the cluster are lost.

• All cluster SQL nodes are started as if start process --initial have been used on them,
which means MySQL Cluster Manager rebuilds the mysqld data directory with the mysqld --
initialize-insecure command . However, the node's data directory must be empty, or the
reinitialization will not be attempted.

 To skip reinitialization for any SQL nodes, list their process IDs (separated by commas if there are
more than one) using the --skip-init=process_id_list option, for example:

mcm> start cluster --initial --skip-init=50,51 mycluster;

The --skip-init option only accepts SQL node IDs as its argument; it cannot be used to skip the
initialization of data nodes.

Under normal circumstances, you should use this option to start a cluster only when either you do not
wish to preserve any of its data (and want to make a clean start), or you intend to restore the cluster
from backup to a known good state (see Section 5.8.5, “The restore cluster Command”). You
should also be aware that no special warnings are printed by the mcm client when --initial is used
with start cluster; the command is immediately executed.

99

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_initialize-insecure

The stop cluster Command

For information about creating cluster backups, see Section 5.8.2, “The backup cluster Command”.
If you need to know which backups are available (if any), use list backups.

5.4.8 The stop cluster Command
stop cluster cluster_name

This command stops the cluster named cluster_name, if it is running, as shown in this example:

mcm> stop cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster stopped successfully |
+------------------------------+
1 row in set (21.31 sec)

stop cluster fails if the cluster is not in an operational state (see Section 5.4.6, “The show status
Command”, for information about obtaining the cluster's status):

mcm> show status --cluster mycluster;
+-----------+---------+---------+
| Cluster | Status | Comment |
+-----------+---------+---------+
| mycluster | stopped | |
+-----------+---------+---------+
1 row in set (0.01 sec)

mcm> stop cluster mycluster;
ERROR 5006 (00MGR): Cluster mycluster is stopped

stop cluster cannot be used on a cluster created for import until the import has been completed.
See Section 5.4.1, “The create cluster Command”, and Section 4.5, “Importing MySQL NDB
Clusters into MySQL Cluster Manager”, for more information.

5.4.9 The autotune Command
autotune [--dryrun] [--sequential-restart] [--writeload=writeload] template cluster_name

writeload:
 {low|medium|high}

template:
 {web|realtime|test}

The command autotune a number of parameters for the cluster according to the specified values
for the template argument and the [optional] writeload option, in order to optimize the cluster's
performance.

The valid values for template are:

• web: Maximize performance for the given hardware.

• realtime: Maximize performance while maximizing sensitivity to timeouts in order to minimize the
time needed to detect failed cluster processes.

• test: Minimal resource usage for small-scale testing. Not intended for production environments.

The valid values for --writeload are:

• low: The expected load includes fewer than 100 write transactions for second.

• medium: The expected load includes 100 to 1000 write transactions per second. This is the default
value used when --writeload is not specified.

100

The upgrade cluster Command

• high: The expected load includes more than 1000 write transactions per second.

The cluster must be in the created or fully operational status for this command to work, or
an error will result. The command tunes the cluster by issuing a number of set commands to adjust
different parameters, and then performs a rolling restart for the cluster. Use the --sequential-
restart option to make the rolling restart a sequential one.

When the --dryrun option is used, the command does not make any actual changes to the
cluster, but writes the set commands that it will issue for tuning into the file /path-to-mcm-data-
repository/clusters/clustername/tmp/autotune.message_id.mcm.

mcm> autotune --dryrun --writeload=high realtime mycluster;
+--+
| Command result |
+--+
| Autotuning calculation complete. Please check /opt/mcm_data/clusters/mycluster/tmp/autotune.30fcce24_2184_0.mcm on host flundra for settings that will be applied. |
+--+
1 row in set (0.62 sec)

$> cat /opt/mcm_data/clusters/mycluster/tmp/autotune.30fcce24_2184_0.mcm
The following will be applied to the current cluster config:
set HeartbeatIntervalDbDb:ndbmtd=1500 mycluster;
set HeartbeatIntervalDbApi:ndbmtd=1500 mycluster;
set RedoBuffer:ndbmtd=64M mycluster;
set SharedGlobalMemory:ndbmtd=20M mycluster;
set DataMemory:ndbmtd=83886080 mycluster;
set IndexMemory:ndbmtd=18874368 mycluster;
set MaxNoOfExecutionThreads:ndbmtd=2 mycluster;
set FragmentLogFileSize:ndbmtd=256M mycluster;
set NoOfFragmentLogFiles:ndbmtd=3 mycluster;

After checking out those changes in the .mcm file, if you do not want to apply all of them to your
cluster, you can edit the .mcm file as desired, and then execute it at the mcm client (see Section 4.5.2.3,
“Creating and Configuring the Target Cluster” for how to do that). If you are happy with all the changes
described in the file, issue the autotune command again without the --dryrun option, to perform the
tuning:

mcm> autotune --writeload=high realtime mycluster;
+---+
| Command result |
+---+
| Cluster successfully autotuned to template realtime |
+---+
1 row in set (2 min 58.09 sec)

5.4.10 The upgrade cluster Command
upgrade cluster {--package=|-P }package_name
 [{--nodeid|-n }node_id_list] [--force|-f]
 [--retry|-L] [--set=attribute_assignment_list] cluster_name

node_id_list:
 node_id[, node_id[, ...]]

attribute_assignment_list:
 attribute_assignment[,attribute_assignment][,...]

attribute_assignment:
 attribute_name:process_name[=value]

This command upgrades the cluster named cluster_name to the software package package_name
specified with the --package. It finishes an upgrade by performing a rolling restart for the cluster, in
which data nodes are restarted with the --initial option to have their data file systems rebuilt.

The new package must be registered using add package before you can use it for an upgrade;
otherwise, upgrade cluster fails with an error.

101

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_initial

The upgrade cluster Command

To use the command to perform an upgrade on a cluster, unless some special options are used (see
explanations on the --force, --retry, and --nodeid options below), the cluster must be in the
fully operational status (you can check that using the command show status --cluster
cluster_name). A cluster created for import cannot be upgraded until the import has been completed.
See Section 5.4.1, “The create cluster Command”, and Section 4.5, “Importing MySQL NDB
Clusters into MySQL Cluster Manager”, for more information.

Suppose mycluster is using MySQL NDB Cluster 8.0.34, and the binaries are registered with a
package named 8.0.34, as shown by this list clusters command:

mcm> list clusters mysite;
+-----------+---------+
| Cluster | Package |
+-----------+---------+
| mycluster | 8.0.34 |
+-----------+---------+
1 row in set (1.80 sec)

Now you wish to upgrade mycluster to MySQL NDB Cluster. Assuming that you have placed the
NDB 9.6.0 binaries in the same directory on each host, the add package command to create a new
package named 9.6.0 that contains these binaries might look something like this:

mcm> add package --basedir=/usr/local/ndb-9.6.0 9.6.0;
+----------------------------+
| Command result |
+----------------------------+
| Package added successfully |
+----------------------------+
1 row in set (0.88 sec)

Note

On Windows, you must replace any backslash (\) characters in the path used
for the add package command's --basedir option with forward slashes (/).
See Section 5.3.1, “The add package Command”, for additional information
and examples.

Both packages should now be listed in the output of the command list packages mysite. To
perform the upgrade to the 9.6.0 package, use the upgrade cluster command as shown here:

mcm> upgrade cluster --package=9.6.0 mycluster;
+--------------------------------------+
| Command result |
+--------------------------------------+
| Cluster version changed successfully |
+--------------------------------------+
1 row in set (3 min 17.00 sec)

Once the upgrade cluster command has been successfully executed, you can verify that
mycluster is now using the 9.6.0 package from the output of the appropriate list clusters
command:

mcm> list clusters mysite;
+-----------+---------+
| Cluster | Package |
+-----------+---------+
| mycluster | 9.6.0 |
+-----------+---------+
1 row in set (1.80 sec)

The command can perform major as well as minor series upgrades. Despite the name of this
command, upgrade cluster can also be used to perform MySQL NDB Cluster downgrades.

Not all upgrades and downgrades between different versions of MySQL NDB Cluster are supported by
the command. These criteria must be met:

102

The upgrade cluster Command

• The upgrade or downgrade must be supported by the MySQL NDB Cluster versions involved. See
Upgrading and Downgrading NDB Cluster for lists of allowed upgrades and downgrades.

• Both the versions you upgrade or downgrade to and from must be supported by the version of
MySQL Cluster Manager you are using.

When using the upgrade cluster command, you can use the --set option to reconfigure
your MySQL NDB Cluster at the same time. This is particularly helpful when the upgrade requires
configuration changes to your cluster. This option takes as its argument an attribute assignment list
similar in format to that used with the get and set commands; see description of the set command
on the proper way to formulate an attribute assignment list. For example: if you want to change the
memory assigned to each data node for storing database records to 750M, specify that with the --set
option in your upgrade cluster command:

mcm> upgrade cluster --package=9.6.0 --set=DataMemory:ndbd=750M mycluster;
+--------------------------------------+
| Command result |
+--------------------------------------+
| Cluster version changed successfully |
+--------------------------------------+
1 row in set (3 min 17.04 sec)

Note

Unlike the way you use the set command, an equal sign (=) immediately
following the --set option is required.

Options for dealing with failed upgrades

The --force option (-f for short) should be used when you want to run the upgrade cluster
command again after a failed upgrade attempt that ends up with any failed management or data nodes.
Without the --force option, the upgrade cluster command only runs when the cluster is in the
fully operational status.

The --retry option (-L for short) should be used when you want to retry the upgrade cluster
command after a failed attempt that ends up with some nodes being upgraded, and some not. Without
the --retry option, the upgrade cluster command cannot be run on the same cluster twice using
the same package.

In the case of a failed or incomplete upgrade, instead of using the --force and --retry option, you
can also choose to retry the upgrade only on the failed nodes by specifying them using the --nodeid
option (-n in short). Check for any failed nodes after a failed upgrade:

mcm> upgrade cluster -P next mycluster;
ERROR 7006 (00MGR): Process error: <reason of failure>
mcm> show status --process mycluster;
+--------+----------+----------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+----------+---------+-----------+-----------+
49	ndb_mgmd	thinkpad	running		next
1	ndbmtd	thinkpad	running	0	next
2	ndbmtd	thinkpad	running	0	next
50	mysqld	thinkpad	running		next
51	mysqld	thinkpad	failed		next
52	ndbapi	*	added		
+--------+----------+----------+---------+-----------+-----------+
6 rows in set (0.03 sec)

Then, issue the command again, specifying the failed node with the --nodeid option:

mcm> upgrade cluster --nodeid=51 -P next mycluster;
+--------------------------------------+
| Command result |

103

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-upgrade-downgrade.html

MySQL Cluster Manager Configuration Commands

+--------------------------------------+
| Cluster version changed successfully |
+--------------------------------------+
1 row in set (26.03 sec)

Warning

Using the --nodeid option inappropriately with the upgrade cluster
command may result in a partial upgrade. Use it only when a previous attempt
to upgrade failed, and only with guidance from the proper support personnel.

5.5 MySQL Cluster Manager Configuration Commands

This section covers the commands used in the MySQL Cluster Manager for getting and setting values
of various types used in MySQL NDB Cluster configuration. We begin with a discussion of what we
mean by the term “configuration attribute”, and how this relates to the manual configuration of a MySQL
NDB Cluster using MySQL NDB Cluster configuration parameters and MySQL Server options and
variables that you may already be familiar with.

Configuration attributes.
Traditionally, when administering MySQL NDB Cluster, it has been necessary to distinguish between 3
types of configuration data:

• Configuration parameters set in the MySQL NDB Cluster global configuration file read by the
management server (or servers), by convention named config.ini

• Configuration variables set in a running MySQL server (SQL node) by using the SQL SET statement
in the mysql command-line client (or in another MySQL client application)

• Configuration options passed to MySQL NDB Cluster executable programs when invoking them

Note

Configuration options passed to mysqld often have the effect of setting
values for configuration variables, many—but not all—of which can be
overridden in a running MySQL server using a MySQL client application such
as mysql.

MySQL Cluster Manager simplifies this configuration scheme by treating all 3 types of configuration
data as attributes, where the term “attribute” refers to a MySQL NDB Cluster configuration parameter,
a MySQL Server variable, or a command-line option used with one or more MySQL NDB Cluster binary
programs. It does this transparently, handling all necessary changes in a unified interface.

Suppose that you wish to know how much data memory is allocated to the data nodes in a given
MySQL NDB Cluster. Rather than having to determine that this is controlled using the DataMemory
configuration parameter that is written in the config.ini file and then reading that file to find the
value, you merely invoke the MySQL Cluster Manager get command, and MySQL Cluster Manager
handles reading from the file for you, and displays the value without the necessity of opening the file
in a separate application such as more or less. If you wish to change the amount of data memory
allocated to the data nodes, you can issue a MySQL Cluster Manager set (or reset) command;
MySQL Cluster Manager then writes the desired value to config.ini. If—as is the case with
DataMemory—updating a configuration value in a running MySQL NDB Cluster requires a rolling
restart to be performed, MySQL Cluster Manager can perform this operation automatically so that the
configuration change takes effect without further intervention required on the part of the operator.

Configuration attribute levels.
A configuration attribute value applies at one of the three levels, described here:

• Default: This value is always used by any MySQL NDB Cluster process of the type or types (such as
ndbd or mysqld) to which the attribute applies, unless this value is overridden by the user.

104

https://dev.mysql.com/doc/refman/9.6/en/set.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory

MySQL Cluster Manager Configuration Commands

• Process: This value is used for all instances of a given type of MySQL NDB Cluster process.

• Instance: This value is used for a specific instance of a MySQL NDB Cluster process, the instance
being identified by its MySQL NDB Cluster node ID.

Default values are hard-coded into MySQL NDB Cluster; you can override a default value for a
given configuration attribute (using the set command) or reset a given attribute value to its default
(using the reset command), but you cannot change a default value itself. You can set or reset an
configuration attribute's value on either the process level or the instance level using a single set or
reset command. Once you have set or reset the value of a configuration attribute, this value persists
until it is changed by executing another set or reset command.

Note

When setting or resetting a configuration attribute value, you must specify the
level at which the setting applies.

MySQL Cluster Manager determines what value to use for a configuration attribute relating to a given
process by following these steps for each MySQL NDB Cluster process:

(For each configuration attribute:)

1. Is an attribute value defined for the node ID of this process?

Yes: Use the value that was defined for this node ID, and exit.

No: Proceed to the next step.

2. Is an attribute value specified on the process level, that is, for all processes of this type?

Yes: Use the value that was specified for all processes of this type, and exit.

No: Use the default value that applies to processes of this type, and exit.

(In the steps just shown, “exit” can be taken to mean “If there are more configuration attributes
applicable to this process that have not yet been set, proceed to the next attribute until there are no
more attributes to be set for this process”.)

Note

The most recently specified value takes precedence. This means that if you set
a configuration attribute for a specific process, then later specify a process-level
value for this attribute, the process-level value is used for all processes of that
type, including the instance for which you earlier set an instance-specific value.

Mandatory attributes.
Some attributes must be defined in the MySQL Cluster Manager at the process type or instance
level for all processes of the applicable type or types for the cluster configuration to be valid. Such
mandatory attributes may be changed, but not reset; in other words, the definition can be changed, but
the definition itself cannot be removed entirely. Another way of stating this is that a mandatory attribute
has no default value.

An example of a mandatory attribute is NodeId. If you try to reset a mandatory attribute, the attempt
fails with an error, as shown here:

mcm> reset NodeId:ndb_mgmd:1 mycluster;
ERROR 6007 (00MGR): Config attribute NodeId is mandatory and cannot be reset
mcm> reset NodeId:ndbd:2 mycluster;
ERROR 6007 (00MGR): Config attribute NodeId is mandatory and cannot be reset
mcm> reset NodeId:mysqld:4 mycluster;
ERROR 6007 (00MGR): Config attribute NodeId is mandatory and cannot be reset

105

MySQL Cluster Manager Configuration Commands

Read-only attributes.
A read-only attribute is an attribute that must be defined by the MySQL Cluster Manager when a cluster
is created. A read-only attribute can be neither changed nor reset by the user. This means that a read-
only attribute is always a mandatory attribute.

One such attribute is HostName, which is read only for any type of MySQL NDB Cluster process. Any
attempt to change or reset a read-only attribute fails, as shown here:

mcm> reset HostName:ndb_mgmd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> reset HostName:ndbd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> reset HostName:mysqld mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed

mcm> set HostName:ndb_mgmd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> set HostName:ndbd mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed
mcm> set HostName:mysqld mycluster;
ERROR 6008 (00MGR): Config attribute HostName is readonly and cannot be changed

An attribute that is mandatory or read only is set when a cluster is created. Neither a mandatory
attribute nor a read-only attribute can be reset. (Neither type of attribute has a default value other than
what is set for it when the cluster is created.) A mandatory attribute can be changed at any time by the
user; a read-only attribute cannot be changed once the cluster has been created. You can obtain a
listing of mandatory and read-only attributes using the get command.

A listing of attribute properties also can be found in the output of ndb_config --configinfo --
xml (see ndb_config — Extract NDB Cluster Configuration Information); for more complete information,
see Configuration of NDB Cluster.

MySQL Cluster Manager determines internally which attributes are considered read-only for reasons of
cluster stability and performance. You can use the get command to see which attributes are read only.

Command-line-only attributes.
Command-line-only attributes are attributes that, when outside of MySQL Cluster Manager, must
be specified as command-line options instead of parameters in a configuration file (for example,
config.ini or my.cnf). These include all the command-line options of the ndb_mgmd, ndbd,
and ndbmtd nodes, as well as mysqld options listed in Server Option, System Variable, and Status
Variable Reference as not valid in option files. A small number of these command-line-only attributes
can, however, be configured with MySQL Cluster Manager using the set and reset commands, and
their values can be checked with the get command; they include:

• For ndb_mgmd: --log-name, --verbose

• For ndbd and ndbmtd: --core-file, --verbose

• The mysqld --core-file option.

These command-line-only attributes supported by the get, set, and reset commands are marked
with Command Line in the Comment column of the get command's output:

mcm> set log-name:ndb_mgmd=Mgm145 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (27.37 sec)

mcm> get -d log-name:ndb_mgmd mycluster;
+----------+--------+----------+---------+----------+---------+---------+--------------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+----------+--------+----------+---------+----------+---------+---------+--------------+

106

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-config.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-configuration.html
https://dev.mysql.com/doc/refman/9.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/9.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_log-name
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgmd.html#option_ndb_mgmd_verbose
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_core-file
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_verbose
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_core-file

The get Command

| log-name | Mgm145 | ndb_mgmd | 145 | | | Process | Command Line |
+----------+--------+----------+---------+----------+---------+---------+--------------+
1 row in set (0.10 sec)

mcm> reset log-name:ndb_mgmd mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (5.85 sec)

mcm> get -d log-name:ndb_mgmd mycluster;
+----------+----------+----------+---------+----------+---------+---------+--------------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+----------+----------+----------+---------+----------+---------+---------+--------------+
| log-name | MgmtSrvr | ndb_mgmd | 145 | | | Default | Command Line |
+----------+----------+----------+---------+----------+---------+---------+--------------+
1 row in set (0.10 sec)

5.5.1 The get Command
get [--include-defaults|-d] [--all] [filter_specification_list] cluster_name

filter_specification_list:
 filter_specification[,filter_specification][,...]

filter_specification:
 [attribute_name][:process_specification][+process_specification]]

process_specification:
 [process_name][:process_id]

process_name:
 {ndb_mgmd|ndbd|ndbmtd|mysqld|ndbapi}

This command is used in the MySQL Cluster Manager client to obtain configuration attribute values
from a MySQL NDB Cluster. (See Section 5.5, “MySQL Cluster Manager Configuration Commands”,
for a definition of the term “attribute” as it applies in the MySQL Cluster Manager.) The output includes
the following columns:

• Name: This column contains the name of the configuration attribute.

• Value: This column shows the attribute's current value.

• Process1: This column holds the process type to which the attribute applies. This is one of
ndb_mgmd, ndbd, ndbmtd, or mysqld.

• Id1: This is the process ID of the process to which the attribute applies.

• Process2: For attributes that require specifying two nodes, such as those relating to TCP/IP
connections, this column shows the process type of the second node.

• Id2: For attributes that require specifying two nodes, this column shows the process ID for the
second node.

• Level: This is the attribute process level. This value in this column can be Default, Process, or
empty; if this column is empty, it means that the attribute applies on the instance level.

• Comment: This column is used to show whether the attribute is Mandatory, Read only, Default
attribute, or user defined (in which case the Comment column is empty).

By default, get returns only those attributes that have been set explicitly, either by the MySQL Cluster
Manager itself, or by the user. In other words, it shows only attributes that are mandatory (including
read-only attributes), or that have been set by the user after the cluster was created. Hereafter in this
discussion, we refer to these as “non-default attributes”.

107

The get Command

Thus, prior to setting any configuration attributes, you can obtain a list of all mandatory and read-only
attributes by running the simplest possible form of this command, as shown here:

mcm> get mycluster\G
*************************** 1. row ***************************
 Name: Name
 Value: mycluster
Process1:
 NodeId1:
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 2. row ***************************
 Name: DataDir
 Value: /opt/mcm_data/clusters/mycluster/49/data
Process1: ndb_mgmd
 NodeId1: 49
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 3. row ***************************
 Name: HostName
 Value: torsk
Process1: ndb_mgmd
 NodeId1: 49
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 4. row ***************************
 Name: NodeId
 Value: 49
Process1: ndb_mgmd
 NodeId1: 49
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 5. row ***************************
 Name: PortNumber
 Value: 1186
Process1: ndb_mgmd
 NodeId1: 49
Process2:
 NodeId2:
 Level: Process
 Comment:
*************************** 6. row ***************************
 Name: DataDir
 Value: /opt/mcm_data/clusters/mycluster/1/data
Process1: ndbmtd
 NodeId1: 1
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 7. row ***************************
 Name: HostName
 Value: torsk
Process1: ndbmtd
 NodeId1: 1
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 8. row ***************************
 Name: NodeId
 Value: 1
Process1: ndbmtd
 NodeId1: 1

108

The get Command

Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 9. row ***************************
 Name: DataDir
 Value: /opt/mcm_data/clusters/mycluster/2/data
Process1: ndbmtd
 NodeId1: 2
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 10. row ***************************
 Name: HostName
 Value: torsk
Process1: ndbmtd
 NodeId1: 2
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 11. row ***************************
 Name: NodeId
 Value: 2
Process1: ndbmtd
 NodeId1: 2
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 12. row ***************************
 Name: datadir
 Value: /opt/mcm_data/clusters/mycluster/50/data
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 13. row ***************************
 Name: default_storage_engine
 Value: ndbcluster
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level: Process
 Comment:
*************************** 14. row ***************************
 Name: HostName
 Value: torsk
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 15. row ***************************
 Name: ndb_nodeid
 Value: 50
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 16. row ***************************
 Name: ndbcluster
 Value: on
Process1: mysqld
 NodeId1: 50

109

The get Command

Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 17. row ***************************
 Name: NodeId
 Value: 50
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 18. row ***************************
 Name: port
 Value: 3306
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 19. row ***************************
 Name: socket
 Value: /tmp/mysql.mycluster.50.sock
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 20. row ***************************
 Name: tmpdir
 Value: /opt/mcm_data/clusters/mycluster/50/tmp
Process1: mysqld
 NodeId1: 50
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 21. row ***************************
 Name: datadir
 Value: /opt/mcm_data/clusters/mycluster/51/data
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 22. row ***************************
 Name: default_storage_engine
 Value: ndbcluster
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level: Process
 Comment:
*************************** 23. row ***************************
 Name: HostName
 Value: torsk
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 24. row ***************************
 Name: ndb_nodeid
 Value: 51
Process1: mysqld
 NodeId1: 51

110

The get Command

Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 25. row ***************************
 Name: ndbcluster
 Value: on
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 26. row ***************************
 Name: NodeId
 Value: 51
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 27. row ***************************
 Name: port
 Value: 3307
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 28. row ***************************
 Name: socket
 Value: /tmp/mysql.mycluster.51.sock
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 29. row ***************************
 Name: tmpdir
 Value: /opt/mcm_data/clusters/mycluster/51/tmp
Process1: mysqld
 NodeId1: 51
Process2:
 NodeId2:
 Level:
 Comment:
*************************** 30. row ***************************
 Name: NodeId
 Value: 52
Process1: ndbapi
 NodeId1: 52
Process2:
 NodeId2:
 Level:
 Comment: Read only
30 rows in set (0.07 sec)

On Windows, no substitutions for backslashes or other characters used in values of paths reported
by the get command is performed. However, it is possible to see forward slashes used in such
paths if the values were set using the set command. See Setting Attributes Containing Paths on
Windows [129], for more information.

Although a socket attribute is shown for mysqld nodes in the get output from the previous example
and is not marked Read only, MySQL Cluster Manager does not support socket files on Windows.
For this reason; you should not attempt to set socket attributes for Windows mysqld processes using
MySQL Cluster Manager.

111

The get Command

To include default values for attributes that have not (or not yet) been set explicitly, you can invoke this
command with the --include-defaults option (short form: -d), as shown here (in part):

mcm> get --include-defaults mycluster\G
*************************** 1. row ***************************
 Name: Name
 Value: mycluster
Process1:
 NodeId1:
Process2:
 NodeId2:
 Level:
 Comment: Read only
*************************** 2. row ***************************
 Name: Checksum
 Value: false
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 3. row ***************************
 Name: Group
 Value: 55
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 4. row ***************************
 Name: HostName1
 Value: NULL
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 5. row ***************************
 Name: HostName2
 Value: NULL
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 6. row ***************************
 Name: NodeId1
 Value: NULL
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment: Mandatory
*************************** 7. row ***************************
 Name: NodeId2
 Value: NULL
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment: Mandatory
*************************** 8. row ***************************
 Name: NodeIdServer
 Value: NULL
Process1: ndb_mgmd
 NodeId1: 49

112

The get Command

Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment: Mandatory
*************************** 9. row ***************************
 Name: OverloadLimit
 Value: 0
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 10. row ***************************
 Name: Proxy
 Value: NULL
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 11. row ***************************
 Name: ReceiveBufferMemory
 Value: 2097152
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 12. row ***************************
 Name: SendBufferMemory
 Value: 2097152
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 13. row ***************************
 Name: SendSignalId
 Value: true
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:
*************************** 14. row ***************************
 Name: TCP_MAXSEG_SIZE
 Value: 0
Process1: ndb_mgmd
 NodeId1: 49
Process2: ndbmtd
 NodeId2: 1
 Level: Default
 Comment:

...

*************************** 1901. row ***************************
 Name: StartConnectBackoffMaxTime
 Value: 0
Process1: ndbapi
 NodeId1: 52
Process2:
 NodeId2:
 Level: Default
 Comment:
*************************** 1902. row ***************************
 Name: TotalSendBufferMemory

113

The get Command

 Value: 0
Process1: ndbapi
 NodeId1: 52
Process2:
 NodeId2:
 Level: Default
 Comment:
*************************** 1903. row ***************************
 Name: wan
 Value: false
Process1: ndbapi
 NodeId1: 52
Process2:
 NodeId2:
 Level: Default
 Comment:
1903 rows in set (0.11 sec)

As you can see, the output from this get command is quite long (and the number of rows generated
increases with the number of nodes in the cluster.) However, it is possible to filter the output so that
you can view only the attribute or attributes in which you are interested. This can be done by using a
comma-separated list of one or more filter specifications. A filter specification is defined as shown here
(condensed from that given at the beginning of this section, but effectively the same):

[attribute_name][:[process_name][:process_id]]

Filtering can be applied per attribute, per process type, and per process instance. We now provide
some examples illustrating the use of such filters.

To obtain the value of a given attribute for all processes to which it applies in the cluster, you need only
use the name of the attribute as a filter. For example, to obtain the HostName of all processes in the
cluster named mycluster, you can execute the command shown here:

mcm> get HostName mycluster;
+----------+----------+----------+---------+----------+---------+-------+-----------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+----------+----------+----------+---------+----------+---------+-------+-----------+
HostName	flundra	ndbd	1				Read only
HostName	tonfisk	ndbd	2				Read only
HostName	grindval	ndb_mgmd	49				Read only
HostName	haj	mysqld	50				Read only
HostName	torsk	mysqld	51				Read only
+----------+----------+----------+---------+----------+---------+-------+-----------+
5 rows in set (0.04 sec)

The wildcard * (asterisk character) can be used to match a single or multiple attribute names; for
example:

mcm> get Host* mycluster;
+----------+----------+----------+---------+----------+---------+-------+-----------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+----------+----------+----------+---------+----------+---------+-------+-----------+
HostName	flundra	ndbd	1				Read only
HostName	tonfisk	ndbd	2				Read only
HostName	grindval	ndb_mgmd	49				Read only
HostName	haj	mysqld	50				Read only
HostName	torsk	mysqld	51				Read only
+----------+----------+----------+---------+----------+---------+-------+-----------+
5 rows in set (0.04 sec)

mcm> get H* yourcluster;
+------------------------+---------+----------+---------+----------+---------+---------+-----------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+------------------------+---------+----------+---------+----------+---------+---------+-----------+
HostName	tonfisk	ndb_mgmd	49				Read only
HostName	flundra	ndb_mgmd	53				Read only
HeartbeatIntervalDbApi	1500	ndbmtd	1			Process	
HeartbeatIntervalDbDb	1500	ndbmtd	1			Process	
HostName	tonfisk	ndbmtd	1				Read only

114

The get Command

HeartbeatIntervalDbApi	1500	ndbmtd	2			Process	
HeartbeatIntervalDbDb	1500	ndbmtd	2			Process	
HostName	flundra	ndbmtd	2				Read only
HostName	tonfisk	mysqld	50				Read only
HostName	flundra	mysqld	51				Read only
+------------------------+---------+----------+---------+----------+---------+---------+-----------+
10 rows in set (0.09 sec)

To obtain the value of a given attribute for all processes of a given type, you can specify a filter of the
form attribute_name:process_name. The following command retrieves the HostName of all ndbd
processes (only) in the cluster mycluster:

mcm> get HostName:ndbd mycluster;
+----------+---------+----------+------+----------+------+-------+----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+----------+---------+----------+------+----------+------+-------+----------+
| HostName | flundra | ndbd | 1 | | | | Readonly |
| HostName | tonfisk | ndbd | 2 | | | | Readonly |
+----------+---------+----------+------+----------+------+-------+----------+
2 rows in set (0.12 sec)

To retrieve the value of a given attribute for a particular instance of a process, you can use a filter
that takes the form attribute_name:process_name:process_id. For example, you can use the
following command to obtain the hostname for the process having 2 as its process ID:

mcm> get HostName:ndbd:2 mycluster;
+----------+---------+----------+------+----------+------+-------+----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+----------+---------+----------+------+----------+------+-------+----------+
| HostName | tonfisk | ndbd | 2 | | | | Readonly |
+----------+---------+----------+------+----------+------+-------+----------+
1 row in set (1.67 sec)

The command works the same if the process type is omitted:

mcm> get HostName::2 mycluster;
+----------+---------+----------+------+----------+------+-------+----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+----------+---------+----------+------+----------+------+-------+----------+
| HostName | tonfisk | ndbd | 2 | | | | Readonly |
+----------+---------+----------+------+----------+------+-------+----------+
1 row in set (1.67 sec)

You can obtain information about multiple attributes within a single get command by specifying a list
of filters, separated by commas. Each filter in the list must be a complete, valid filter. The command
shown here retrieves the HostName and DataDir for all processes in mycluster:

mcm> get HostName,DataDir mycluster;
+----------+--------------+----------+---------+----------+---------+-------+-----------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+----------+--------------+----------+---------+----------+---------+-------+-----------+
DataDir	/opt/c1data	ndbd	1				
HostName	flundra	ndbd	1				Read only
DataDir	/opt/c2data	ndbd	2				
HostName	tonfisk	ndbd	2				Read only
DataDir	/opt/c49data	ndb_mgmd	49				
HostName	grindval	ndb_mgmd	49				Read only
datadir	/opt/c50data	mysqld	50				
HostName	haj	mysqld	50				Read only
datadir	/opt/c51data	mysqld	51				
HostName	torsk	mysqld	51				Read only
+----------+--------------+----------+---------+----------+---------+-------+-----------+
10 rows in set (0.05 sec)

To retrieve the values of HostName and DataDir for only the data nodes in mycluster, you can use
the get command shown here:

mcm> get HostName:ndbd,DataDir:ndbd mycluster;
+----------+-------------+----------+-----+----------+-----+-------+-----------+

115

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-hostname
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-hostname
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir

The get Command

| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+----------+-------------+----------+-----+----------+-----+-------+-----------+
DataDir	/opt/c2data	ndbd	1				
HostName	tonfisk	ndbd	1				Read only
DataDir	/opt/c3data	ndbd	2				
HostName	flundra	ndbd	2				Read only
+----------+-------------+----------+-----+----------+-----+-------+-----------+
4 rows in set (1.36 sec)

In the example just shown, each filter includes a process type specifier. If you omit this specifier from
one of the filters, you obtain a result that you might not expect:

mcm> get HostName,DataDir:ndbd mycluster;
+----------+-------------+----------+-----+----------+-----+-------+-----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+----------+-------------+----------+-----+----------+-----+-------+-----------+
HostName	grindval	ndb_mgmd	49				Read only
DataDir	/opt/c2data	ndbd	1				
HostName	tonfisk	ndbd	1				Read only
DataDir	/opt/c3data	ndbd	2				
HostName	flundra	ndbd	2				Read only
HostName	haj	mysqld	50				Read only
HostName	torsk	mysqld	51				Read only
+----------+-------------+----------+-----+----------+-----+-------+-----------+
6 rows in set (0.58 sec)

The filter list HostName,DataDir:ndbd is perfectly valid. However, it actually consists of the filters
HostName and DataDir:ndbd—in other words, it means “the HostName for all processes, and the
DataDir for ndbd processes”.

Suppose you wish to obtain the values for HostName for just the ndb_mgmd and mysqld processes in
mycluster. You might be tempted to try using something like HostName:ndb_mgmd,mysqld for the
filter list, but this does not work, as you can see here:

mcm> get HostName:ndb_mgmd,mysqld mycluster;
ERROR 6003 (00MGR): No such config variable mysqld for process

This is due to the fact that each filter in the filter list must be a valid filter, and must include an attribute
name. (In the filter list just shown, MySQL Cluster Manager tries to interpret the first string following
the comma as an attribute name.) The correct filter list to use in a get command for retrieving the
HostName for the ndb_mgmd and mysqld processes in mycluster is shown in this example:

mcm> get HostName:ndb_mgmd,HostName:mysqld mycluster;
+----------+----------+----------+------+----------+------+-------+-----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+----------+----------+----------+------+----------+------+-------+-----------+
HostName	grindval	ndb_mgmd	49				Read only
HostName	haj	mysqld	50				Read only
HostName	torsk	mysqld	51				Read only
+----------+----------+----------+------+----------+------+-------+-----------+
2 rows in set (0.21 sec)

It is also possible to obtain a list of attributes and their values for a given process type or instance of
a process. For a given process type, use a filter having the form :process_name. For example, to
retrieve all non-default attributes applying to ndbd processes in a cluster named mycluster, you can
use the filter :ndbd, as shown here:

mcm> get :ndbd mycluster;
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
DataDir	/opt/c2data	ndbd	1				
HostName	tonfisk	ndbd	1				Read only
NodeId	1	ndbd	1				Read only
DataDir	/opt/c3data	ndbd	2				
HostName	flundra	ndbd	2				Read only
NodeId	2	ndbd	2				Read only
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
6 rows in set (0.77 sec)

116

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-hostname
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir

The get Command

(The example just shown assumes that no attributes are set to non-default values.)

To get a list of all non-default attributes for a single instance of a process, use a filter having the form
:process_name:process_id, as shown in this example, which retrieves all non-default attributes
for the ndbd process having 2 as its process ID:

mcm> get :ndbd:2 mycluster;
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
DataDir	/opt/c2data	ndbd	2				
HostName	flundra	ndbd	2				Read only
NodeId	2	ndbd	2				Read only
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
4 rows in set (0.32 sec)

If you try to obtain values for an attribute that you know is supported by your MySQL NDB Cluster
version, but the result is empty, this almost certainly means that it is a default attribute that either has
not been changed since the cluster was created or has been reset. In order to view default attributes
using get, you must execute the command using the --include-defaults option (short form: -d).

Suppose you want to see how much DataMemory is configured for the ndbd processes in the cluster
named mycluster, and you execute what appears to be the correct get command, but an empty
result is returned, as shown here:

mcm> get DataMemory:ndbd mycluster;
Empty set (1.19 sec)

This means that the DataMemory attribute has its default value for all data nodes in the cluster. If you
do not recall what this value is, you can determine it easily by repeating the same command with the
addition of the --include-defaults (-d) option:

mcm> get --include-defaults DataMemory:ndbd mycluster;
+------------+----------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+----------+----------+-----+----------+-----+---------+---------+
| DataMemory | 83886080 | ndbd | 1 | | | Default | |
| DataMemory | 83886080 | ndbd | 2 | | | Default | |
+------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (0.62 sec)

Now suppose that you increase the DataMemory to 500 megabytes per data node, then repeat the
get command to verify the new value:

mcm> set DataMemory:ndbd=500M mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.77 sec)

mcm> get --include-defaults DataMemory:ndbd mycluster;
+------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+-------+----------+-----+----------+-----+---------+---------+
| DataMemory | 500M | ndbd | 1 | | | Process | |
| DataMemory | 500M | ndbd | 2 | | | Process | |
+------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.46 sec)

You can see that, not only has the Value column in the get command output been updated to the new
value, but the Level column has also been updated from Default to Process. This means that you
no longer need the --include-defaults option to view this attribute, as shown here:

mcm> get DataMemory:ndbd mycluster;
+------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |

117

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory

The get Command

+------------+-------+----------+-----+----------+-----+---------+---------+
| DataMemory | 500M | ndbd | 1 | | | Process | |
| DataMemory | 500M | ndbd | 2 | | | Process | |
+------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (0.63 sec)

However, if you reset DataMemory (also on the process level), this is no longer the case. Then,
DataMemory once again assumes its default value, after which you must use the --include-
defaults option to retrieve it, as shown in this example:

mcm> reset DataMemory:ndbd mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.65 sec)

mcm> get DataMemory:ndbd mycluster;
Empty set (1.76 sec)

mcm> get --include-defaults DataMemory:ndbd mycluster;
+------------+----------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+----------+----------+-----+----------+-----+---------+---------+
| DataMemory | 83886080 | ndbd | 1 | | | Default | |
| DataMemory | 83886080 | ndbd | 2 | | | Default | |
+------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.01 sec)

For more information about these commands, see Section 5.5.3, “The set Command”, and
Section 5.5.2, “The reset Command”.

The get command also tags multi-entry replication attributes as so in the Comment column; for
example:

mcm> get replicate_ignore_table:mysqld mycluster;
+------------------------+--------------+----------+---------+----------+---------+---------+-------------+
| Name | Value | Process1 | NodeId1 | Process2 |NodeId2 | Level | Comment |
+------------------------+--------------+----------+---------+----------+---------+---------+-------------+
replicate_ignore_table	mydb.t1	mysqld	50				Multi-entry
replicate_ignore_table	mydb.t50	mysqld	50				Multi-entry
replicate_ignore_table	mydb.mytable	mysqld	50			Process	Multi-entry
replicate_ignore_table	mydb.t51	mysqld	51				Multi-entry
replicate_ignore_table	mydb.mytable	mysqld	51			Process	Multi-entry
+------------------------+--------------+----------+---------+----------+---------+---------+-------------+
5 rows in set (0.05 sec)

On how to reset multi-entry attributes, see Section 5.5.2, “The reset Command”.

The get command does not normally display configuration attributes applying to TCP or SHM
connections. However, such attributes can be set in the MySQL Cluster Manager client (using the
set command); and once they have been set, they are displayed by applicable get commands. See
Setting TCP Connection Attributes, which provides an example of this.

The --all option of the get command creates two extra columns, Type and Restart, in the output:

mcm> get -d --all TimeBetween*:ndbmtd mycluster;

+--+--------+----------+---------+----------+---------+---------+----------+--------------------+---------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Type | Restart | Comment |
+--+--------+----------+---------+----------+---------+---------+----------+--------------------+---------+
TimeBetweenEpochs	100	ndbmtd	1			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenEpochsTimeout	0	ndbmtd	1			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenGlobalCheckpoints	2000	ndbmtd	1			Default	unsigned	all	
TimeBetweenGlobalCheckpointsTimeout	120000	ndbmtd	1			Default	unsigned	all	
TimeBetweenInactiveTransactionAbortCheck	1000	ndbmtd	1			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenLocalCheckpoints	20	ndbmtd	1			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenWatchDogCheck	6000	ndbmtd	1			Default	unsigned	ndb_mgmd, instance	

118

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory

The reset Command

TimeBetweenWatchDogCheckInitial	6000	ndbmtd	1			Default	unsigned	ndb_mgmd, instance	
TimeBetweenEpochs	100	ndbmtd	2			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenEpochsTimeout	0	ndbmtd	2			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenGlobalCheckpoints	2000	ndbmtd	2			Default	unsigned	all	
TimeBetweenGlobalCheckpointsTimeout	120000	ndbmtd	2			Default	unsigned	all	
TimeBetweenInactiveTransactionAbortCheck	1000	ndbmtd	2			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenLocalCheckpoints	20	ndbmtd	2			Default	unsigned	ndb_mgmd, ndbd	
TimeBetweenWatchDogCheck	6000	ndbmtd	2			Default	unsigned	ndb_mgmd, instance	
TimeBetweenWatchDogCheckInitial	6000	ndbmtd	2			Default	unsigned	ndb_mgmd, instance	
+--+--------+----------+---------+----------+---------+---------+----------+--------------------+---------+
16 rows in set (0.11 sec)

The Type column shows the expected type of the configuration attribute.

The Restart column shows the expected process restarts needed when changing the configuration
attribute. There are three kinds of values in the column

• all means all nodes need restarts.

• A specific node type (ndbd, ndbmtd, ndb_mgmd, or mysqld) means all nodes of the type need
restarts.

• instance means only the process instances affected by the change need restarts.

5.5.2 The reset Command
reset [--sequential-restart] filter_specification_list cluster_name

filter_specification_list:
 filter_specification[,filter_specification][,...]

filter_specification:
 attribute_name[:process_specification][+process_specification]]

process_specification:
 [process_name][:process_id]

process_name:
 {ndb_mgmd|ndbd|ndbmtd|mysqld|ndbapi}

This command resets an attribute to its default value. Attributes can be set on either the process
level or instance level. To reset an attribute on the process level, use a filter specification
having the form attribute_name:process_name, where attribute_name is the name of
the attribute to be reset, and process_name is the name of a MySQL NDB Cluster process.
To reset a configuration attribute on the instance level, use a filter specification of the form
attribute_name:process_name:process_id, where process_id is the process ID.

You cannot issue a reset command that resets all values for a given configuration attribute regardless
of process type; each reset command must specify a process type or instance of a process.
Otherwise, the command fails, as shown here:

mcm> reset DataMemory mycluster;
ERROR 3 (00MGR): Illegal syntax

You also cannot revert all configuration attributes for a given process type or instance of a process
using a single filter specification; you must always include the name of the attribute to be reset.
Otherwise, the reset command fails, as shown here:

mcm> reset :ndbd mycluster;
ERROR 3 (00MGR): Illegal syntax

mcm> reset :ndbd:3 mycluster;
ERROR 3 (00MGR): Illegal syntax

Suppose that the data memory for all ndbd processes in the cluster named mycluster has been set
to 500 MB, as shown in the output of this get command:

119

The reset Command

mcm> get DataMemory mycluster;
+------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+-------+----------+-----+----------+-----+---------+---------+
| DataMemory | 500M | ndbd | 2 | | | Process | |
| DataMemory | 500M | ndbd | 3 | | | Process | |
+------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.91 sec)

We can see from the entries in the Level column that the DataMemory setting for both ndbd
processes applies on the process level. A process-level setting cannot be reset on the instance level,
as shown here:

mcm> reset DataMemory:ndbd:2 mycluster;
ERROR 6010 (00MGR): No matching user defined setting was
found for config attribute DataMemory
mcm> reset DataMemory:ndbd:3 mycluster;
ERROR 6010 (00MGR): No matching user defined setting was
found for config attribute DataMemory

The following reset command also does not work, although you might think that it would do so, since
it attempts to reset the attribute's value for both ndbd processes:

mcm> reset DataMemory:ndbd:2,DataMemory:ndbd:3 mycluster;
ERROR 6010 (00MGR): No matching user defined setting was
found for config attribute DataMemory

The previous command fails because MySQL Cluster Manager regards this as an attempt to apply two
instance-level configuration changes. Because the DataMemory setting is a process-level setting, you
must instead reset DataMemory to its default value on the process level; you can do this by using the
filter specification DataMemory:ndbd in the reset command, as shown here:

mcm> reset DataMemory:ndbd mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.16 sec)

If you execute the same get command as shown previously, the result is now empty:

mcm> get DataMemory mycluster;
Empty set (0.74 sec)

This is because the get command by default does not report default values. To retrieve the
DataMemory values after resetting them, you must invoke get using the --include-defaults
(short form: -d) option:

mcm> get --include-defaults DataMemory mycluster;
+------------+----------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+----------+----------+-----+----------+-----+---------+---------+
| DataMemory | 83886080 | ndbd | 2 | | | Default | |
| DataMemory | 83886080 | ndbd | 3 | | | Default | |
+------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.21 sec)

The DataMemory values are now included in the output, and are marked with the word Default in the
Comments column.

Now suppose that the mysqld configuration attribute wait_timeout for the mysqld process having
the ID 4 in the cluster named mycluster has previously been set to the value 200 as shown here,
and that no other changes have been to this attribute:

mcm> set wait_timeout:mysqld:4=200 mycluster;
+-----------------------------------+

120

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory

The reset Command

| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.78 sec)

mcm> get -d wait_timeout:mysqld:4 mycluster;
+--------------+-------+----------+-----+----------+-----+-------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------+----------+-----+----------+-----+-------+---------+
| wait_timeout | 200 | mysqld | 4 | | | | |
+--------------+-------+----------+-----+----------+-----+-------+---------+
1 row in set (0.98 sec)

Because the Level column is empty, we know that this setting applies on the instance level. If you try
to reset it on the process level, the attempt fails, as shown here:

mcm> reset wait_timeout:mysqld mycluster2;
ERROR 6010 (00MGR): No matching user defined setting was
found for config attribute wait_timeout

If you wish to reset this attribute to its default value, you must use the reset command with the
instance-level filter specification wait_timeout:mysqld:4, as shown here:

mcm> reset wait_timeout:mysqld:4 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.61 sec)

Once you have reset wait_timeout, it no longer appears in the output of the earlier get command:

mcm> get wait_timeout:mysqld mycluster;
Empty set (1.42 sec)

This is because the default behavior of the get command is to display only those values that have
been set either by the MySQL Cluster Manager or by the user. Since wait_timeout has been
allowed to revert to its default value, you must use the --include-defaults (short form: -d) option
to retrieve it, as shown here:

mcm> get -d wait_timeout:mysqld mycluster;
+--------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------+----------+-----+----------+-----+---------+---------+
| wait_timeout | 28800 | mysqld | 4 | | | Default | |
+--------------+-------+----------+-----+----------+-----+---------+---------+
1 row in set (1.66 sec)

Now consider a situation in which process-level and instance-level settings have been made to a
configuration attribute; in this example, we use IndexMemory. First, verify that IndexMemory is set to
its default value for all data node processes (in this case, there are two of them):

mcm> get -d IndexMemory mycluster;
+-------------+----------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+----------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 18874368 | ndbd | 2 | | | Default | |
| IndexMemory | 18874368 | ndbd | 3 | | | Default | |
+-------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.24 sec)

Now apply both a process-level change and an instance-level change to this attribute. You can do this
with a single set command, as shown here:

mcm> set IndexMemory:ndbd=500M,IndexMemory:ndbd:3=750M mycluster;
+-----------------------------------+
| Command result |

121

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory

The reset Command

+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.29 sec)

Because the process-level change was specified first, it is overridden for the ndbd process by the
instance-level change specified second. The output from the following get command confirms that this
is the case:

mcm> get IndexMemory mycluster;
+-------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+-------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 500M | ndbd | 2 | | | Process | |
| IndexMemory | 750M | ndbd | 3 | | | | |
+-------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (0.85 sec)

If the instance-level IndexMemory setting for the ndbd process with process ID 3 is reset, the process-
level setting still applies, as shown here:

mcm> reset IndexMemory:ndbd:3 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.41 sec)

mcm> get IndexMemory mycluster;
+-------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+-------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 500M | ndbd | 2 | | | Process | |
| IndexMemory | 500M | ndbd | 3 | | | Process | |
+-------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.09 sec)

Now, re-apply the instance-level IndexMemory setting, and verify using get that it has taken effect:

mcm> set IndexMemory:ndbd:3=750M mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.79 sec)

mcm> get IndexMemory mycluster;
+-------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+-------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 500M | ndbd | 2 | | | Process | |
| IndexMemory | 750M | ndbd | 3 | | | | |
+-------------+-------+----------+-----+----------+-----+---------+---------+
2 rows in set (1.76 sec)

If you reset the process-level setting, the instance-level setting remains, and only the ndbd process
having process ID 2 has its IndexMemory reset to the default value; the instance-level setting remains
in effect, as you can see from the following sequence of commands:

mcm> reset IndexMemory:ndbd mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.36 sec)

mcm> get -d IndexMemory mycluster;

122

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory

The reset Command

+-------------+----------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+-------------+----------+----------+-----+----------+-----+---------+---------+
| IndexMemory | 18874368 | ndbd | 2 | | | Default | |
| IndexMemory | 750M | ndbd | 3 | | | | |
+-------------+----------+----------+-----+----------+-----+---------+---------+
2 rows in set (0.10 sec)

Note

If the order of the specifiers in the original command that set IndexMemory had
been reversed as IndexMemory:ndbd:3=750M,IndexMemory:ndbd=500M,
the instance-level change would have been overridden by the process-level
change, and the resulting IndexMemory setting for both ndbd processes
would be 500M. As discussed elsewhere, a process-level setting made after
an instance-level setting that affects the same process completely removes
the instance-level setting; the instance-level setting is not preserved, and
resetting the attribute on the process level merely restores the default setting
for all processes of that type. See Section 5.5, “MySQL Cluster Manager
Configuration Commands”, for more information.

The get and reset commands fully support multi-entry replication attributes; for example, if the
replicate_ignore_table attribute has multiple entries:

mcm> get replicate_ignore_table:mysqld mycluster;
+------------------------+--------------+----------+---------+----------+---------+---------+-------------+
| Name | Value | Process1 | NodeId1 | Process2 |NodeId2 | Level | Comment |
+------------------------+--------------+----------+---------+----------+---------+---------+-------------+
replicate_ignore_table	mydb.t1	mysqld	50				Multi-entry
replicate_ignore_table	mydb.t50	mysqld	50				Multi-entry
replicate_ignore_table	mydb.mytable	mysqld	50			Process	Multi-entry
replicate_ignore_table	mydb.t51	mysqld	51				Multi-entry
replicate_ignore_table	mydb.mytable	mysqld	51			Process	Multi-entry
+------------------------+--------------+----------+---------+----------+---------+---------+-------------+
5 rows in set (0.05 sec)

Without specifying a node ID, all the attribute's entries associated with the specified process type are
reset with the following command:

mcm> reset replicate_ignore_table:mysqld mycluster; # removes all process level entries
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (0.47 sec)

mcm> get replicate_ignore_table:mysqld mycluster;
+------------------------+----------+----------+---------+----------+---------+-------+-------------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+------------------------+----------+----------+---------+----------+---------+-------+-------------+
replicate_ignore_table	mydb.t1	mysqld	50				Multi-entry
replicate_ignore_table	mydb.t50	mysqld	50				Multi-entry
replicate_ignore_table	mydb.t51	mysqld	51				Multi-entry
+------------------------+----------+----------+---------+----------+---------+-------+-------------+
3 rows in set (0.08 sec)

With a node ID specified, only the instance entries associated with the node ID are reset by the
following command:

mcm> reset replicate_ignore_table:mysqld:51 mycluster; # removes all instance level entries for nodeid 51
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (0.57 sec)

123

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory

The reset Command

mcm> get replicate_ignore_table:mysqld mycluster;
+------------------------+----------+----------+---------+----------+---------+-------+-------------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+------------------------+----------+----------+---------+----------+---------+-------+-------------+
| replicate_ignore_table | mydb.t1 | mysqld | 50 | | | | Multi-entry |
| replicate_ignore_table | mydb.t50 | mysqld | 50 | | | | Multi-entry |
+------------------------+----------+----------+---------+----------+---------+-------+-------------+
2 rows in set (0.09 sec)

 reset commands are executed whether or not the cluster has been started. In a cluster that is
not running, the MySQL Cluster Manager merely updates the configuration files. However, in a
running cluster, the MySQL Cluster Manager in addition automatically performs any node restarts or
rolling restarts (see Performing a Rolling Restart of an NDB Cluster) that are required to cause the
attribute changes to take effect (use the --sequential-restart option to make the rolling restart a
sequential one). However, since restart operations—particularly rolling restarts—can take a great deal
of time, it is preferable to make configuration changes before starting the cluster and putting it into use.

Resetting TCP Connection Attributes. Certain configuration attributes, such as those relating
to TCP connections, apply to connections between processes rather than to individual processes
or individual process types. As shown elsewhere (see Setting Attributes for mysqld nodes), when
you set such an attribute on the process level using MySQL Cluster Manager, this means that the
attribute applies to all connections between the two types of processes specified when issuing the set
command. It is also possible to set such an attribute on the instance level, in which case it applies only
to a single connection between two process instances.

Similarly, it is possible to reset such an attribute on either the process or instance level, depending
on the level or levels at which it was set. In either case, an extended form of the process specifier is
required, just as it is when setting an attribute that applies to a connection between processes. Assume
that the SendBufferMemory attribute has previously been set for all connections between the two
ndbd processes and the two mysqld processes that are found in a MySQL NDB Cluster named
mycluster2, as shown in the output of this get command:

mcm> get SendBufferMemory mycluster2;
+------------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------------+-------+----------+-----+----------+-----+---------+---------+
SendBufferMemory	4M	ndbd	2	mysqld	4	Process	
SendBufferMemory	4M	ndbd	2	mysqld	5	Process	
SendBufferMemory	4M	ndbd	3	mysqld	4	Process	
SendBufferMemory	8M	ndbd	3	mysqld	5		
+------------------+-------+----------+-----+----------+-----+---------+---------+
4 rows in set (0.59 sec)

Suppose that you wish to reset SendBufferMemory only for the connection between the ndbd
process having process ID 3 and the mysqld process having process ID 5. The SendBufferMemory
setting that applies to this connection is specified on the instance level, as you can see because the
Level column value corresponding to this connection is empty; this means that it is possible to reset
this value on the instance level. You can do this using the reset command shown here:

mcm> reset SendBufferMemory:ndbd:3+mysqld:5 mycluster2;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.03 sec)

You can verify that the attribute was reset using the get command. However, as noted previously,
once the instance-level setting has been removed, the process-level setting for this attribute again
takes effect, so that the same setting applies to all connections between ndbd and mysqld processes,
as shown here:

mcm> get SendBufferMemory mycluster2;
+------------------+-------+----------+-----+----------+-----+---------+---------+

124

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-rolling-restart.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendbuffermemory

The set Command

| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------------+-------+----------+-----+----------+-----+---------+---------+
SendBufferMemory	4M	ndbd	2	mysqld	4	Process	
SendBufferMemory	4M	ndbd	2	mysqld	5	Process	
SendBufferMemory	4M	ndbd	3	mysqld	4	Process	
SendBufferMemory	4M	ndbd	3	mysqld	5	Process	
+------------------+-------+----------+-----+----------+-----+---------+---------+
4 rows in set (0.87 sec)

To reset this attribute on the process level, you can use the following reset command:

mcm> reset SendBufferMemory:ndbd+mysqld mycluster2;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (8.01 sec)

You can verify that the attribute has been reset for all connection between ndbd processes and
mysqld processes, by using the get command, as shown here:

mcm> get -d SendBufferMemory mycluster2;
Empty set (1.39 sec)

As noted elsewhere in this manual (see Section 5.5.1, “The get Command”), the empty result set is to
be expected in this case, even when get is invoked using the --include-defaults (or -d) option,
because the MySQL Cluster Manager client does not display attributes that appear in the [tcp] or
[shm] sections of the config.ini configuration file if they have not been explicitly set by the user.

5.5.3 The set Command

• Performing a reset with a set command

• Setting Attributes for mysqld nodes

• Setting TCP Connection Attributes

• Setting up mysqld connection pooling

• Setting Up Encryption

• Overriding the Default Restart Type

set [--sequential-restart] [--retry] [--restart=restart_level] attribute_assignment_list cluster_name

attribute_assignment_list:
 attribute_assignment[,attribute_assignment][,...]

attribute_assignment:
 [~]attribute_name:process_specification[+process_specification][=value]

process_specification:
 [process_name][:process_id]

process_name:
 {ndb_mgmd|ndbd|ndbmtd|mysqld|ndbapi}

restart_level:
 {N|NI}

This command is used to set values for one or more configuration attributes. Attributes can be set on
either the process level or instance level.

set commands are executed whether or not the cluster has been started. In a cluster that is not
running, the MySQL Cluster Manager merely updates the configuration files. However, in a running
cluster, the MySQL Cluster Manager in addition automatically performs any node restarts or rolling

125

The set Command

restarts (see Performing a Rolling Restart of an NDB Cluster) that are required to cause the attribute
changes to take effect. However, since restart operations—particularly rolling restarts—can take a
great deal of time, it is preferable to make configuration changes before starting the cluster and putting
it into use.

For any configuration options that normally require the nodes of the cluster to be restarted for the a
running cluster to be reconfigured, if a set command is attempted with the same value as was already
in use, the command returns an error, telling the user that the command results in no changes to
the cluster. If it is really necessary to run the set command in the situation and force a restart of the
relevant processes, use the --retry option.

 Use the --sequential-restart option to make the rolling restart performed by the set command
a sequential one.

 Sets the path to a password file when NDB Cluster TDE is in use. This is actually implemented as a
configuration attribute. Example:

mcm> set filesystem-password-file:ndbmtd:=/home/myndb/myc.pwd mycluster;

See Setting Up Encryption, for more information.

To set an attribute on the process level, use a set statement that contains an attribute assignment
having the form attribute_name:process_name=value.

For example, to set DataMemory to 500 MB on the ndbd process level, so that the new value applies
to all ndbd processes in the cluster, you can issue a set command containing the attribute assignment
DataMemory:ndbd=500M, as shown here:

mcm> set DataMemory:ndbd=500M mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (5.68 sec)

To verify that the new setting is being used, you can issue the following get command:

mcm> get DataMemory mycluster;
+------------+-------+----------+------+----------+------+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------+-------+----------+------+----------+------+---------+---------+
| DataMemory | 500M | ndbd | 1 | | | Process | |
| DataMemory | 500M | ndbd | 2 | | | Process | |
+------------+-------+----------+------+----------+------+---------+---------+
2 rows in set (0.79 sec)

Note

For more information about this command, see Section 5.5.1, “The get
Command”.

To set an attribute for a specific process instance, include the process ID in the attribute assignment;
the form of such an attribute assignment is attribute_name:process_name:process_id=value.
For example, to set the wait_timeout attribute for the mysqld process that has process
ID 50 to 200, you would issue a set command that contains the attribute assignment
wait_timeout:mysqld:51=200, like this:

mcm> set wait_timeout:mysqld:50=200 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.18 sec)

126

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-rolling-restart.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory

The set Command

You can verify that the setting has taken effect using an applicable get command:

mcm> get wait_timeout mycluster;
+--------------+-------+----------+------+----------+------+-------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------+----------+------+----------+------+-------+---------+
| wait_timeout | 200 | mysqld | 50 | | | | |
+--------------+-------+----------+------+----------+------+-------+---------+
1 row in set (0.50 sec)

Attributes that are marked Read only cannot be set. Attempting to do so fails with an error, as shown
here:

mcm> get :ndbd mycluster;
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
DataDir	/opt/c2data	ndbd	1				
HostName	tonfisk	ndbd	1				Read only
NodeId	2	ndbd	1				Read only
DataDir	/opt/c3data	ndbd	2				
HostName	grindval	ndbd	2				Read only
NodeId	3	ndbd	2				Read only
+--------------+-------------+----------+-----+----------+-----+-------+-----------+
6 rows in set (1.42 sec)
mcm> set HostName:ndbd:1=lax mycluster;
ERROR 6008 (00MGR): Config attribute HostName is read only and cannot be changed

However, you can set mandatory attributes, such as in the example shown previously in this section
where the DataDir configuration attribute was set to a user-defined value.

Warning

The mandatory NoOfReplicas attribute must be set on the process level only.
Attempting to set it on the instance level may leave the cluster, the MySQL
Cluster Manager, or both in an unusable configuration.

Unlike the case with the get command, you cannot issue a set acting on a “global” scope—that
is, you cannot, in a single attribute assignment, set a single value for an attribute such that the new
attribute value applies to all processes regardless of process type, even if the attribute having that
name can be applied to all process types. Nor can you specify multiple process types in a single
attribute assignment. Attempting to do either of these things causes an error, as shown here:

mcm> set DataDir=/var/cluster-data mycluster;
ERROR 3 (00MGR): Illegal syntax

mcm> set DataDir:ndb_mgmd,ndbd,mysqld=/var/cluster-data mycluster;
ERROR 3 (00MGR): Illegal syntax

Instead, you must use a process-level attribute assignment for each process type. However, you are
not necessarily required to issue a separate set command for each process type. Instead, you can
also make multiple attribute assignments in a single set command, supplying the assignments as a
comma-separated list. This set command assigns /var/cdata as the data directory (DataDir) for
all MySQL NDB Cluster processes in the cluster named mycluster:

mcm> set DataDir:ndb_mgmd=/var/cdata, \
 DataDir:ndbd=/var/cdata, \
 DataDir:mysqld=/var/cdata mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.66 sec)

127

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir

The set Command

mcm> get DataDir mycluster;
+---------+------------+----------+---------+----------+---------+-------+---------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+---------+------------+----------+---------+----------+---------+-------+---------+
DataDir	/var/cdata	ndbmtd	1				
DataDir	/var/cdata	ndbmtd	2				
DataDir	/var/cdata	ndb_mgmd	49				
datadir	/var/cdata	mysqld	50				
datadir	/var/cdata	mysqld	51				
+---------+------------+----------+---------+----------+---------+-------+---------+
5 rows in set (0.08 sec)

As you can see from the get command just shown, the attribute assignments were successful, and
took effect on the process level.

Note

In MySQL Cluster Manager, configuration attribute names are not case-
sensitive. See Case Sensitivity in String Searches for more information about
case-sensitivity issues in MySQL Cluster Manager.

Similarly, you cannot reference multiple process IDs in a single attribute assignment, even if they are
processes of the same type; the following command does not work:

mcm> set DataMemory:ndbd:1,2=750M mycluster;
ERROR 3 (00MGR): Illegal syntax

Instead, you would need to use the following command:

mcm> set DataMemory:ndbd:1=750M,DataMemory:ndbd:2=750M mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.70 sec)

(Of course, if these are the only two data nodes in mycluster, then the command set
DataMemory:ndbd=750M mycluster also accomplishes the same task.)

Note

A few configuration attributes apply to connections between processes and so
require you to refer to both processes in the course of setting them. In such
cases, you must use a special process specification syntax; see Setting TCP
Connection Attributes, for information about how this is done.

You also cannot set values for multiple attributes in a single attribute assignment; this means that the
following commands do not work:

mcm> set UndoDataBuffer=32M,UndoIndexBuffer=8M:ndbd mycluster;
ERROR 3 (00MGR): Illegal syntax

mcm> set DataMemory,IndexMemory:ndbd=1G mycluster;
ERROR 3 (00MGR): Illegal syntax

However, if you write a complete and valid attribute assignment for each attribute whose value you
wish to update, you can rewrite these two commands so that they execute successfully, as shown
here:

mcm> set UndoDataBuffer:ndbd=32M,UndoIndexBuffer:ndbd=8M mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |

128

https://dev.mysql.com/doc/refman/9.6/en/case-sensitivity.html

The set Command

+-----------------------------------+
1 row in set (6.62 sec)

mcm> set DataMemory:ndbd=1G,IndexMemory:ndbd=1G mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.04 sec)

In fact, there is no reason that you cannot perform all four assignments in a single set command,
using a list of four attribute assignments, like this:

mcm> set UndoDataBuffer:ndbd=32M,UndoIndexBuffer:ndbd=8M, \
 DataMemory:ndbd=1G, IndexMemory:ndbd=1G mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.24 sec)

However, it a good idea not to perform too many attribute assignments in any single set command,
since this makes it more difficult to spot errors.

On Windows, when setting attributes whose values contain paths (such as DataDir), you must
replace any backslash characters in the path with forward slashes. Suppose that you want to use C:
\temp\node50 for the tmpdir attribute of the mysqld process having node ID 50 in a MySQL NDB
Cluster named mycluster that is running on Windows. The original value for this attribute can be
seen using the appropriate get command:

mcm> get tmpdir mycluster;
+--------+----------------+----------+-----+----------+-----+-------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------+----------------+----------+-----+----------+-----+-------+---------+
| tmpdir | c:\c50data\tmp | mysqld | 50 | | | | |
+--------+----------------+----------+-----+----------+-----+-------+---------+
1 row in set (0.22 sec)

The correct set command to make the desired configuration change is shown here:

mcm> set tmpdir:mysqld:50=c:/temp/node50 mycluster;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (2.62 sec)

When you check the value using get—even though it was originally shown using backslashes—the
forward slashes are used when displaying the new value:

mcm> get tmpdir mycluster;
+--------+----------------+----------+-----+----------+-----+-------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+--------+----------------+----------+-----+----------+-----+-------+---------+
| tmpdir | c:/temp/node50 | mysqld | 50 | | | | |
+--------+----------------+----------+-----+----------+-----+-------+---------+
1 row in set (0.22 sec)

However, if you try to use backslashes in the path when issuing the set command, the command fails:

mcm> set tmpdir:mysqld:4=c:\temp\4 mycluster;
Outfile disabled.
ERROR:
Unknown command '\4'.
ERROR 6014 (00MGR): Path name for parameter tmpdir must be absolute.
The value 'c:mp4' is illegal.

129

The set Command

Performing a reset with a set command

 You can reset a configuration attribute's value using a set command by putting a tilde (~) before the
attribute name. For example, this command is equivalent to reset ndb_batch_size:mysqld:146
mycluster:

mcm> set ~ndb_batch_size:mysqld:146 mycluster

The notation allows you to run a set and a reset command together, which can potentially save the
cluster from going through an extra rolling restart. For example:

mcm> set ndb_recv_thread_activation_threshold:mysqld:146=8,~ndb_batch_size:mysqld mycluster

Setting Attributes for mysqld nodes

When a dynamic variable is set, mcmd sends a SET GLOBAL statement to the mysqld to apply the
value and saves the value to the mysqld configuration file, so that the value can be applied again
the next time this mysqld process is restarted. Setting a variable which is not dynamic triggers an
immediate restart.

When no data nodes are available, a set command that restarts a mysqld node without also
restarting the data nodes is rejected. This is to make sure that any issues with the data nodes are
handled first, so that the mysqld restart actually succeeds.

Setting TCP Connection Attributes

 For a few attributes that apply only when using TCP connections (such as the SendBufferMemory
and ReceiveBufferMemory attributes), it is necessary to use a modified syntax for attribute value
assignments. In this case, the attribute assignment contains two process specifications, one for each
process type or instance to which the setting applies, joined with a plus sign (+). For the following
example, consider the cluster named mycluster2, consisting of the processes shown here:

mcm> list processes mycluster2;
+------+----------+-------------+
| Id | Name | Host |
+------+----------+-------------+
49	ndb_mgmd	grindval
1	ndbd	tonfisk
2	ndbd	flundra
50	mysqld	haj
51	mysqld	torsk
+------+----------+-------------+
5 rows in set (0.16 sec)

(See Section 5.6.3, “The list processes Command”, for more information about this command.)

TCP connection attributes are not shown in the output from the get command unless they have been
set. This means that, prior to setting SendBufferMemory for the first time, you obtain an empty result
if you try to retrieve its value, as shown here:

mcm> get SendBufferMemory mycluster2;
Empty set (0.18 sec)

mcm> get --include-defaults SendBufferMemory mycluster2;
Empty set (0.93 sec)

To set the SendBufferMemory to 4 MB for all TCP connections between data nodes and SQL nodes,
you can use the command shown here:

mcm> set SendBufferMemory:ndbd+mysqld=4M mycluster2;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (6.44 sec)

130

https://dev.mysql.com/doc/refman/9.6/en/set.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-receivebuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendbuffermemory

The set Command

If you check the attribute's value afterwards using get, you can see that the value is applied to all
possible connections between each of the two ndbd processes and each of the two mysqld processes
in mycluster2, thus there are four rows in the output:

mcm> get SendBufferMemory mycluster2;
+------------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------------+-------+----------+-----+----------+-----+---------+---------+
SendBufferMemory	4M	ndbd	2	mysqld	4	Process	
SendBufferMemory	4M	ndbd	2	mysqld	5	Process	
SendBufferMemory	4M	ndbd	3	mysqld	4	Process	
SendBufferMemory	4M	ndbd	3	mysqld	5	Process	
+------------------+-------+----------+-----+----------+-----+---------+---------+
4 rows in set (1.63 sec)

To override this setting for only the connection between the data node with process ID 2 and the
mysqld process (process ID 4), you can include the process ID in each of the two parts of the process
specification, as shown here:

mcm> set SendBufferMemory:ndbd:2+mysqld:4=8M mycluster2;
+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+
1 row in set (7.95 sec)

When you check the result using a get command, you can see that the new setting applies on the
instance level, and only to the connection between processes having IDs 2 and 4; the process-level
setting made previously still applies to the remaining 3 connections:

mcm> get SendBufferMemory mycluster2;
+------------------+-------+----------+-----+----------+-----+---------+---------+
| Name | Value | Process1 | Id1 | Process2 | Id2 | Level | Comment |
+------------------+-------+----------+-----+----------+-----+---------+---------+
SendBufferMemory	8M	ndbd	2	mysqld	50		
SendBufferMemory	4M	ndbd	2	mysqld	51	Process	
SendBufferMemory	4M	ndbd	3	mysqld	50	Process	
SendBufferMemory	4M	ndbd	3	mysqld	51	Process	
+------------------+-------+----------+-----+----------+-----+---------+---------+
4 rows in set (0.24 sec)

You cannot set a connection attribute on the process level in one part of the process specification (that
is, for one end of the connection) and on the instance level in the other. Attempting to do so fails with
an error, as shown here:

mcm> set SendBufferMemory:ndbd+mysqld:4=2M mycluster2;
ERROR 3 (00MGR): Illegal syntax
mcm> set SendBufferMemory:ndbd:2+mysqld=2M mycluster2;
ERROR 3 (00MGR): Illegal syntax

Setting up mysqld connection pooling

Enabling connection pooling for mysqld can be done by setting the ndb-cluster-connection-
pool attribute to the desired number of connections, but also requires an extra step in creating the
cluster.

Because the mysqld process attempts to make multiple connections to the cluster when connection
pooling is enabled, the cluster must be configured with “spare” or “empty” connections. You can do this
by adding (otherwise) unused ndbapi entries in the process_host list used in the create cluster
command, as shown here:

mcm> create cluster -P mypackage
 > -R ndb_mgmd@10.100.10.97,ndbd@10.100.10.98,ndbd@10.100.10.99, \
 mysqld@10.100.10.100,ndbapi@10.100.10.100, \
 ndbapi@10.100.10.100,ndbapi@10.100.10.100
 > mycluster;

131

The set Command

+------------------------------+
| Command result |
+------------------------------+
| Cluster created successfully |
+------------------------------+
1 row in set (6.58 sec)

After this, you can use a set command like this one to set the size of the connection pool according to
the number of excess connections available in the config.ini file:

mcm> set ndb_cluster_connection_pool:mysqld=4;

Note

Trying to set the user attribute for a mysqld process is not supported, and
results in a warning being written to the MySQL Cluster Manager log.

Setting Up Encryption

NDB Cluster 8.0.31 and later supports transparent data encryption (TDE) for user data stored in
NDB tables (see File System Encryption for NDB Cluster); this is also supported by MySQL Cluster
Manager 8.0.31 and later. File system encryption is enabled on the data nodes by setting the
EncryptedFileSystem configuration parameter equal to 1 on all data nodes. (Disable encryption by
setting the parameter to 0.)

Encrypting and decrypting data require that the data nodes have the encryption password, which must
be stored in a file readable by the data node processes. You can supply this to the data nodes with
a set command that uses the filesystem-password-file option (introduced in MySQL Cluster
Manager 8.0.31). This must be done before setting EncryptedFileSystem = 1, as shown later in
this section.

The following example makes use of the cluster mycluster running as shown in the output of this
show status command in the mcm client:

mcm> show status -r mycluster;

+--------+----------+--------+---------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+--------+---------+-----------+-----------+
145	ndb_mgmd	myndb3	running		mypackage
1	ndbmtd	myndb1	running	0	mypackage
2	ndbmtd	myndb2	running	0	mypackage
146	mysqld	myndb3	running		mypackage
147	mysqld	myndb4	running		mypackage
148	ndbapi	*	added		
+--------+----------+--------+---------+-----------+-----------+

Setting the password directly from the command line in the mcm client is not supported. Using a file
on disk instead helps protect against unprivileged user access, provided that file system access rights
are sufficiently strict. (On Linux and similar platforms, this file must have its permissions set to 0600.)
This file should contain only the encryption password, which follows the same rules as passwords for
encrypted NDB backups; see Using The NDB Cluster Management Client to Create a Backup, for more
information.

Assuming that the password file exists and has the proper permissions, you can supply the password
to the data nodes using the following set command:

mcm> set filesystem-password-file:ndbmtd=/opt/mcm_data/my.pwd mycluster;

+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+

Once the path to the password file has been set, you can enable encryption, like this:

132

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tde.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html

The set Command

mcm> set EncryptedFileSystem:ndbmtd=1 mycluster;

+-----------------------------------+
| Command result |
+-----------------------------------+
| Cluster reconfigured successfully |
+-----------------------------------+

If the encryption password file has not been set, the set command just shown is rejected with an error.

You can verify that encryption is enabled using a get command similar to this one:

mcm> get -d filesystem-pass*,encrypt* mycluster;

+--------------------------+---------------------------+----------+---------+----------+---------+---------+----------+
| Name | Value | Process1 | NodeId1 | Process2 | NodeId2 | Level | Comment |
+--------------------------+---------------------------+----------+---------+----------+---------+---------+----------+
EncryptedFileSystem	1	ndbmtd	1			Process	
filesystem-password-file	/opt/mcm_data/my.pwd	ndbmtd	1			Process	MCM only
EncryptedFileSystem	1	ndbmtd	2			Process	
filesystem-password-file	/opt/mcm_data/my.pwd	ndbmtd	2			Process	MCM only
+--------------------------+---------------------------+----------+---------+----------+---------+---------+----------+

You can also verify, outside of MySQL Cluster Manager or even a running NDB Cluster, that cluster
data files have been encrypted using the ndbxfrm utility supplied with NDB Cluster, similarly to what is
shown here:

$> ndbxfrm -i /home/mcm/clusters/mycluster/1/data/ndb_1_fs/LCP/0/T10F0.Data

File=/home/mcm/clusters/mycluster/1/data/ndb_1_fs/LCP/0/T10F0.Data, compression=no, encryption=yes

You can rotate file system passwords by changing the existing file (or setting a new file), then issuing
set --retry EncryptedFilesystem:ndbmtd=1 to trigger an initial rolling restart. Alternatively,
you can use stop process followed by start process --initial to replace the password used
by each data node process, one at a time.

Overriding the Default Restart Type

Warning

The overriding of default restart type using the --restart option may cause
unintended consequences. It should only be performed under guidance by the
support personnel from Oracle.

When setting the MaxNoOfExecutionThreads or ThreadConfig parameter for data nodes, their
default restart type (which is SI, System Initial) could be overridden with the --restart option to
become NI (Node Initial) or N (Node). This can be used to change the configuration parameter without
actually reconfiguring the number of LDM threads. For example:

mcm> set --restart=N ThreadConfig:ndbmtd='main={count=1},tc={count=0},ldm={count=4},io={count=1},
 rep={count=1},recv={count=1},send={count=0}', MaxNoOfExecutionThreads:ndbmtd=10 mycluster;

Cluster reconfigured successfully

Use of the option requires the following:

• At least one ndb_mgmd node is running.

• All data nodes and ndb_mgmd nodes are running for --restart=NI.

• The cluster remains alive while restarting the data nodes (i.e., there are at least two data nodes
running in each nodegroup) for --restart=N.

• The set statement does not contain any additional parameters that only affect a ndb_mgmd or
mysqld node.

133

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-restart-types

The show variables Command

5.5.4 The show variables Command
show variables

The command displays the relevant settings for the current agent, including the cipher list and TLS
version.

mcm> show variables;
+--------------------------+---------------------------+
| Variable_name | Value |
+--------------------------+---------------------------+
auto_increment_increment	1
character_set_client	latin1
ssl_cipher_list	LIST-OF-SUPPORTED-CIPHERS
tls_version_list	TLSv1.2,TLSv1.3
+--------------------------+---------------------------+
4 rows in set (0.00 sec)

5.6 MySQL Cluster Manager Process Commands

This section contains information about MySQL Cluster Manager client commands used to start and
stop MySQL NDB Cluster processes, and to determine which processes are currently running.

MySQL Cluster Manager, ndb_mgm, and starting or stopping processes. For a MySQL NDB
Cluster under MySQL Cluster Manager control, it is recommended not to use the ndb_mgm command-
line client that comes with the MySQL NDB Cluster distribution to perform operations that involve
starting or stopping nodes. These include but are not limited to the following ndb_mgm client commands
(Commands in the NDB Cluster Management Client):

• START

• STOP

• RESTART

• SHUTDOWN

5.6.1 The add process Command
add process {--processhosts=|-R }process_host_list
 [--set=attribute_assignment_list] [--verbose | -v] [--sequential-restart] cluster_name

process_host_list:
 process_name[:node_id]@host[,process_name@host[,...]]

process_name:
 {ndb_mgmd|ndbd|ndbmtd|mysqld|ndbapi}

attribute_assignment_list:
 attribute_assignment[,attribute_assignment][,...]

attribute_assignment:
 attribute_name:process_name[=value]

This command adds to an existing cluster one or more processes, which are specified using a
process_host_list with the --processhosts option, the format of which is the same as that used
with the create cluster command. Any hosts referenced in the list must be members of the site to
which the cluster belongs. In addition, all hosts must be resolvable.

For example, the following add process command adds two mysqld processes on hosts tonfisk
and flundra to the cluster named mycluster:

mcm> add process --processhosts=mysqld@tonfisk,mysqld@flundra mycluster;
+------------------------------+

134

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-start
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-restart
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown

The add process Command

| Command result |
+------------------------------+
| Processes added successfully |
+------------------------------+
1 row in set (2 min 10.39 sec)

With the --verbose option, the command shows an updated process list, after the new processes
have been added:

mcm> add process --processhosts=ndbmtd@tonfisk,ndbmtd@flundra --verbose mycluster;
+--------+----------+---------+
| NodeId | Name | Host |
+--------+----------+---------+
49	ndb_mgmd	tonfisk
53	ndb_mgmd	flundra
1	ndbmtd	tonfisk
2	ndbmtd	flundra
3	ndbmtd	tonfisk
4	ndbmtd	flundra
50	mysqld	tonfisk
51	mysqld	flundra
52	ndbapi	*
+--------+----------+---------+
9 rows in set (2 min 7.57 sec)

You can also manually assign a node ID to the new process you are adding to the cluster by adding
“:node_ID.” after the process_name. You are still recommended to follow the best practice of
reserving node ID 1 to 144 for data nodes. The following command adds two ndbd processes with
node IDs 10 and 11 on hosts tonfisk and flundra, respectively, to mycluster:

mcm> add process --processhosts=ndbd:10@tonfisk,ndbd:11@flundra mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Processes added successfully |
+------------------------------+
1 row in set (2 min 13.40 sec)

If the cluster is not running when you run the add process command, it is recommended that you
start all the new processes added by this command together using the start process --added
command or start them together with the whole cluster using the start cluster command—besides
starting the nodes, either of the two commands also initializes the added nodes and causes new cluster
nodegroups to be formed by issuing a CREATE NODEGROUP command to the cluster. If the added
nodes are started with start process --initial instead, you are then required to run CREATE
NODEGROUP manually via the ndb_mgm client.

If the cluster is running when you run the add process command, a rolling restart for the cluster is
performed at the end of the add process command. Use the --sequential-restart option to
make the rolling restart a sequential one.

Adding Free Processes

Using the add process command, you can add unmanaged mysqld processes, or ndbapi slots
for ndbapi applications such as ndb_restore. To add an unmanaged mysqld process, prefix the
hostname with the wildcard * (asterisk character):

mcm> add process --processhosts=mysqld@*tonfisk,mysqld@*flundra mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Processes added successfully |
+------------------------------+
1 row in set (2 min 3.14 sec)

To allow the unmanaged mysqld nodes to connect from any host, use the wildcard * (asterisk
character) in place of the hostname or IP address:

135

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup

The add process Command

mcm> add process --processhosts=mysqld@*,mysqld@* mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Processes added successfully |
+------------------------------+
1 row in set (2 min 3.14 sec)

The same applies to ndbapi slots for ndbapi applications such as ndb_restore: prefix the
hostname with the wildcard character to limit connectivity to a specific host, or use only a wildcard,
without hostname, to allow ndbapi applications from any host:

mcm> add process --processhosts=ndbapi@*tonfisk,ndbapi@* mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Processes added successfully |
+------------------------------+
1 row in set (2 min 8.13 sec)

Because “free” processes are not managed by MySQL Cluster Manager, there is no need to run the
start process --added command after they have been successfully added to the cluster.

Using add process to Simplify create cluster Commands

Processes added before the cluster is started for the first time are started with the cluster. This makes
it possible to use this command to break down what would otherwise be very long create cluster
commands. Consider the following set of commands that creates and then starts a cluster named
mycluster:

create cluster --processhosts=ndb_mgmd@host1,ndbd@host1,ndbd@host2, \
 mysqld@host3,mysqld@host4 mycluster;
start cluster mycluster;

The long create cluster command can be divided into a shorter (and more manageable) version
of itself, plus several add process commands. This set of commands performs the same task as
the previous set, creating mycluster with exactly the same processes and hosts as before, and then
starting it:

create cluster --processhosts=ndb_mgmd@host1 mycluster;
add process --processhosts=ndbd@host1,ndbd@host2 mycluster;
add process --processhosts=mysqld@host3,mysqld@host4 mycluster;
start cluster mycluster;

Notice that a process that is added to a cluster that was created using create cluster --import
and before the import takes place is added with status import, which means it cannot be started or
stopped using start process or stop process before an import has taken place.

Configuring a New Process when Adding it

A newly added process inherits its configuration attribute settings from those in effect for its process
type on the parent cluster, or assume the default settings for that process type if none apply. Existing
attribute settings in the cluster must have process-level scope to be inherited by new processes added
later; instance-level settings set for existing process instances prior to adding any new ones do not
apply to any of the added processes. (See Configuration attributes, for more information about the
scope of attribute settings.)

Inherited attribute settings can be overridden when adding processes; to do this, use the add
process command's --set option. This option takes as its argument an attribute assignment
list similar in format to that used with the get and set commands. Suppose that the current ndbd
process-level setting in the cluster named mycluster for the DataDir attribute is /home/users/
ndb/cluster-data, but you wish to add two new ndbd processes that use /tmp/cluster/data
instead. You can do this using the following command:

136

The change process Command

mcm> add process --set=ndbd:DataDir=/tmp/cluster/data
 > --processhosts=mysqld@tonfisk,mysqld@flundra
 > mycluster;

Note

Unlike the way you use the set command, an equal sign (=) immediately
following the --set option is required.

When setting attributes this way, which involves specifying paths for processes running on Windows,
you must replace any backslashes (\) used with forward slashes (/), just as with the set command.
See Setting Attributes Containing Paths on Windows [129], for more information.

After a process has been added using add process, you can also use the set command to modify
its configuration attribute settings (or specify additional ones) as you would with any other cluster
process being managed with MySQL Cluster Manager.

Note

When IPv6-enabled Windows systems are used as MySQL NDB Cluster hosts
under MySQL Cluster Manager, you must reference these hosts using IPv4
addresses. Otherwise, MySQL Cluster Manager is unable to connect to the
agent processes on those hosts. See Section 6.1, “MySQL Cluster Manager
Usage and Design Limitations”.

5.6.2 The change process Command
change process [--sequential-restart] old_proc_type[:proc-id]=new_proc_type cluster_name

old_proc_type | new_proc_type:
 {ndbd|ndbmtd}

This command is used to change the process type for a given MySQL NDB Cluster process or group of
MySQL NDB Cluster processes from one process type (old-process-type) to another process type
(new-process-type).

Currently, the only two process types available for use with this command are ndbd and ndbmtd.
This means that change process can be used to change the data node process running on one or
more data nodes from the single-threaded data node daemon (ndbd) to the multithreaded data node
daemon (ndbmtd) or vice versa.

By default, change process affects all data nodes running the old-process-type. By specifying
an optional process_id, its action can be restricted to the data node having that process ID.

Suppose you have a cluster that is named mycluster and has two data nodes using ndbd processes,
as reflected in the output of the following show status command:

mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
49	ndb_mgmd	flundra	running	
1	ndbd	tonfisk	running	n/a
2	ndbd	grindval	running	n/a
50	mysqld	haj	running	
51	mysqld	torsk	running	
52	ndbapi	*	running	
+--------+----------+----------+----------+-----------+
6 rows in set (0.06 sec)

To change both data nodes to so that they use multithreaded (ndbmtd) processes, issue the command
shown here, without any process_id specifier:

mcm> change process ndbd=ndbmtd mycluster;

137

The change process Command

+------------------------------+
| Command result |
+------------------------------+
| Process changed successfully |
+------------------------------+
1 row in set (2 min 17.51 sec)

After the command has executed, you can verify that both data nodes are now using ndbmtd by
checking the output of the appropriate show status command, as shown here:

mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
49	ndb_mgmd	flundra	running	
1	ndbmtd	tonfisk	running	n/a
2	ndbmtd	grindval	running	n/a
50	mysqld	haj	running	
51	mysqld	torsk	running	
52	ndbapi	*	running	
+--------+----------+----------+----------+-----------+
6 rows in set (0.09 sec)

A rolling restart for the cluster is performed at the end of the change process command. Use the --
sequential-restart option to make the rolling restart a sequential one.

Note

The change process command can be used whether or not the cluster or the
data node or data nodes to be changed are running. However, the command
executes much more quickly if the data node or data nodes to be changed are
not running. The next set of examples illustrates this.

It is possible (and sometimes desirable) to use ndbd and ndbmtd data node processes concurrently;
thus, it is also possible using the change process command to change a single data node process
from single-threaded to multithreaded, or from multithreaded to single-threaded. To do this, you must
specify the data node process using its process ID.

First, we stop the cluster and verify that all processes are no longer running, as shown here:

mcm> stop cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster stopped successfully |
+------------------------------+
1 row in set (22.93 sec)

mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
49	ndb_mgmd	flundra	stopped	
1	ndbmtd	tonfisk	stopped	n/a
2	ndbmtd	grindval	stopped	n/a
50	mysqld	haj	stopped	
51	mysqld	torsk	stopped	
52	ndbapi	*	stopped	
+--------+----------+----------+----------+-----------+
6 rows in set (0.05 sec)

The following command changes only the node having the process ID 2 from using the multithreaded
data node daemon to the single-threaded version:

mcm> change process ndbmtd:2=ndbd mycluster;
+------------------------------+
| Command result |

138

The list processes Command

+------------------------------+
| Process changed successfully |
+------------------------------+
1 row in set (6.52 sec)

As you can see, change process operates much more quickly when the process to be changed is
not running. As before, you can verify that the command succeeded using show status:

mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
49	ndb_mgmd	flundra	stopped	
1	ndbmtd	tonfisk	stopped	n/a
2	ndbd	grindval	stopped	n/a
50	mysqld	haj	stopped	
51	mysqld	torsk	stopped	
52	ndbapi	*	stopped	
+--------+----------+----------+----------+-----------+
6 rows in set (0.07 sec)

To complete the example, we start the cluster again, using start cluster, then change node
number 2 back from ndbd (single-threaded) to ndbmtd (multithreaded) using change process, then
verify the change using show status:

mcm> start cluster mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Cluster started successfully |
+------------------------------+
1 row in set (36.43 sec)

mcm> change process ndbd:2=ndbmtd mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process changed successfully |
+------------------------------+
1 row in set (2 min 10.41 sec)

mcm> show status --process mycluster;
+--------+----------+----------+----------+-----------+
| NodeId | Process | Host | Status | Nodegroup |
+--------+----------+----------+----------+-----------+
49	ndb_mgmd	flundra	running	
1	ndbmtd	tonfisk	running	n/a
2	ndbmtd	grindval	running	n/a
50	mysqld	haj	running	
51	mysqld	torsk	running	
52	ndbapi	*	running	
+--------+----------+----------+----------+-----------+
6 rows in set (0.11 sec)

You can see that it can require much less time to stop the cluster, change a data node process, and
then start the cluster again than it is to change the process while the cluster is running. However, if you
do this, the cluster is not available while it is stopped.

As noted previously, change process works only with ndbd and ndbmtd processes; attempting to
use any other process type causes the command to fail with an error, as shown here:

mcm> change process ndb_mgmd=mysqld mycluster;
ERROR 7009 (00MGR): Processes ndb_mgmd and mysqld are not interchangeable in this package
mcm> change process ndbd=mysqld mycluster;
ERROR 7009 (00MGR): Processes ndbd and mysqld are not interchangeable in this package

5.6.3 The list processes Command
list processes cluster_name

139

The start process Command

This command displays all processes making up a given cluster. The following example demonstrates
how to list all processes that are part of the cluster named mycluster:

mcm> list processes mycluster;
+--------+----------+----------+
| NodeId | Name | Host |
+--------+----------+----------+
49	ndb_mgmd	flundra
1	ndbd	tonfisk
2	ndbd	grindval
50	mysqld	haj
51	mysqld	torsk
52	ndbapi	*
+--------+----------+----------+
6 rows in set (0.03 sec)

The cluster_name argument is required. If this argument is omitted, the command fails with an error,
as shown here:

mcm> list processes;
ERROR 6 (00MGR): Illegal number of operands

5.6.4 The start process Command
start process {[--initial|-i] nodespec | --added} cluster_name

nodespec:
 {nodetype | process_id_list}
process_id_list:
 process_id[, process_id[, ...]]

This command starts the MySQL NDB Cluster processes specified by nodespec in the cluster named
cluster_name. The status of the processes to be started, as shown by show status --process,
must be added, stopped, or failed (only if the failed process has exited properly can it be restarted
with the command).

This example demonstrates how to start the process having the process ID 1 belonging to the cluster
mycluster:

mcm> start process 1 mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process started successfully |
+------------------------------+
1 row in set (13.93 sec)

You can obtain process IDs for all processes in a given cluster using show status --process or
list processes. These are the same as the node IDs for these processes as shown in the output of
other mcm client commands such as get or in the output of ndb_mgm -e "show" (see ndb_mgm —
The NDB Cluster Management Client).

Instead of a single node, you can also specify the type of nodes or a list of nodes to start :

mcm> start process mysqld mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process started successfully |
+------------------------------+
1 row in set (15.72 sec)

mcm> start process 146,147 mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process started successfully |
+------------------------------+

140

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html

The stop process Command

1 row in set (3.92 sec)

The following requirements must be fulfilled when you specify a list of nodes to start, or the command
will fail:

• All nodes in the list must be of the same process type.

• The list should not include all managed nodes of the cluster.

• After the command finishes running, there should be at least 1 running data node per node group,
and more than half of all data nodes in the cluster should be running.

• The general rules on process dependencies are satisfied (for example, a mysqld node depends on
some data nodes running, a data node depends on some management nodes running, and so on).

• StartPartitionedTimeout > 0 is needed to allow a single data node out of a total of two to be
started alone.

When the --initial option (short form: -i) is used, the following happens:

• For a data node, MySQL Cluster Manager starts it with the --initial option, causing the data
node to rebuild its file system.

• For an SQL node, MySQL Cluster Manager rebuilds the mysqld data directory with the mysqld --
initialize-insecure command for MySQL 9.6, 8.4, and 8.0 . The node's data directory must be
empty, or the reinitialization will not be attempted.

Invoking this command with the --added option rather than with a nodespec starts all nodes that
were added previously to the cluster using add process but not yet started. For the added data and
mysqld nodes, the use of the --added option also implies the use of the --initial option, meaning
that mcmd will attempt to initialize the added nodes (see description for the --initial option above).
Also, when the --added option is used, once all the added nodes are running, a CREATE NODEGROUP
command is issued to the management node for the creation of new nodegroups.

You cannot use this command to start a mysqld process in a stopped or unavailable cluster—trying
to do so will cause an error. This applies, for example, to the case in which a cluster has been created
for a cluster import, but the import is not yet completed (see Section 5.4.1, “The create cluster
Command”, and Section 4.5, “Importing MySQL NDB Clusters into MySQL Cluster Manager”).

5.6.5 The stop process Command

stop process nodespec cluster_name

nodespec:
 {nodetype | process_id_list}
process_id_list:
 process_id[, process_id[, ...]]

This command stops the MySQL NDB Cluster processes specified by nodespec in the cluster named
cluster_name. The status of the processes to be stopped, as shown by show status --process,
must be running.

Suppose that the process ID of a data node in the cluster named mycluster is 3. Then this data node
can be stopped as shown here:

mcm> stop process 3 mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process stopped successfully |
+------------------------------+

141

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-startpartitionedtimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/9.6/en/server-options.html#option_mysqld_initialize-insecure
http://dev.mysql.com/doc/refman/5.7/en/mysqld.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup

The update process Command

1 row in set (33.07 sec)

Instead of a single node, you can also specify the type of nodes or a list of nodes (must be of the same
type) to be stopped. For example:

mcm> stop process mysqld mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process stopped successfully |
+------------------------------+
1 row in set (15.70 sec)

mcm> stop process 146,147 mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process stopped successfully |
+------------------------------+
1 row in set (3.82 sec)

You can use show status --process or list processes to obtain process IDs for all processes
in a given cluster.

In the event of a disk failure where MySQL Cluster Manager loses its manager directory (including
its repository), the agent is able to recover information from other agents, but it does not actually
control processes any longer, although it can detect them. This is due to the fact that the MySQL
Cluster Manager agent cannot access the PID files. In this case, stop process no longer works, and
you must kill such processes manually. Keep in mind that, if StopOnError is 0, the MySQL Cluster
Manager agent restarts the data node process automatically; if StopOnError is 1 (the default), then
you must execute the start process command manually.

Note

For release 9.3.0 and later: For bootstrapped clusters, StopOnError is 1 by
default.

This command does not work with processes in a cluster created for import where the import has not
yet actually been completed. See Section 5.4.1, “The create cluster Command”, and Section 4.5,
“Importing MySQL NDB Clusters into MySQL Cluster Manager”, for more information.

5.6.6 The update process Command
update process [--remove-angel] --pid=os_pid process_id cluster_name

This command updates the status of the MySQL NDB Cluster process having the process ID
process_id in the cluster named cluster_name when the status of the process is no longer
reflected correctly in the output of the show status --process command. This typically happens in
the following cases:

• The process is a data node configured with StopOnError=true, so that it would not be
automatically restarted by mcmd after it has stopped. Instead of using the start process
command to restart the process, a user might have restarted the process manually, which would
have restored the process but left mcmd without the knowledge of the restore. An update process
is then needed to restore the control of the process by mcmd.

• The process is a node that has been stopped by mcmd but, for some reasons, its PID remains valid
with the operating system. In some cases, the process might even be running again, without mcmd
knowing or being able to control it.

• mcmd cannot connect to a mysqld node due to various reasons (for example, there are already too
many connections to the node); process status for the node becomes failed, while the PID file
continues to exist.

142

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror

The remove process Command

• When a start process command for a mysqld node times out, mcmd looses control of the node.
After fixing the issue on the mysqld node, run update process to restore control of the node by
mcmd.

The command works by importing the process into the control of mcmd again. Checks performed on a
process by mcmd during a cluster import are performed for the update process command. Both the
process's ID in the cluster (process_id) and its PID on the operating system (specified with the --
pid option) are required. Suppose that the process ID of a data node in the cluster named mycluster
is 3 and its PID on the operating system is 9846, the data node can be updated as shown here:

mcm> update process --pid=9846 3 mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process updated successfully |
+------------------------------+
1 row in set (33.07 sec)

For a data node or an SQL node, the command only works if there is at least 1 replica per nodegroup
running.

 update process supports a --remove-angel option, which should be used when updating data
nodes: it kills any running angel process for a data node and updates its PID file prior to the actual
update; those steps are necessary for the update process.

Note

Some options, when used to start an applicable NDB node, are not preserved
after the update process:

• --initial-start

• --nowait-nodes

• --logbuffer-size

. The same applies now to the

5.6.7 The remove process Command
remove process [--removedirs] process_id_list cluster_name

process_id_list:
 process_id[, process_id[, ...]]

This command removes permanently the processes in the process_id_list from the cluster named
cluster_name. It provides a means to scale down a cluster offline.

If the --removedirs option is used, all data for the specified processes will be deleted.

The following restrictions apply when using this command:

1. The cluster must be in the status of created or stopped.

2. The processes to be removed must be in the status of stopped, added, or import.

3. The command cannot remove all processes from a cluster in the created status; at least one
process must be left.

4. The command cannot remove all process of the same type from a cluster in the stopped status; at
least one process must be left in the cluster for each type of nodes (management, data, and API).

5. The command cannot remove a data node that is in the stopped status if it is already a member of
a node group (i.e., if it has ever been started and was fully functional).

143

https://dev.mysql.com/doc/refman/9.6/en/faqs-mysql-cluster.html#faq-cluster-what-angel-process
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_initial-start
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_nowait-nodes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_logbuffer-size

MySQL Cluster Manager TLS Connection Commands

You can use the show status --process or list processes command to obtain the process IDs
for all the processes in a given cluster:

mcm> show status --process mycluster;
+--------+----------+---------+--------+-----------+-----------+
| NodeId | Process | Host | Status | Nodegroup | Package |
+--------+----------+---------+--------+-----------+-----------+
49	ndb_mgmd	flundra	added		mypackage
1	ndbmtd	flundra	added	n/a	mypackage
2	ndbmtd	flundra	added	n/a	mypackage
50	mysqld	flundra	added		mypackage
51	mysqld	flundra	added		mypackage
52	ndbapi	*	added		
53	ndbapi	*	added		
+--------+----------+---------+--------+-----------+-----------+
7 rows in set (0.03 sec)

The process IDs are the same as the node IDs for the processes shown in the output of the above
or some other mcm client commands, or in the output of the ndb_mgm -e "show" command (see
ndb_mgm — The NDB Cluster Management Client). In the above example, the SQL node with the
process ID 50 in mycluster can be removed by the following command:

mcm> remove process 50 mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process removed successfully |
+------------------------------+
1 row in set (0.48 sec)

And in this case, since the cluster was never started, we may also remove both data nodes:

mcm> remove process 1,2 mycluster;
+------------------------------+
| Command result |
+------------------------------+
| Process removed successfully |
+------------------------------+
1 row in set (0.40 sec)

5.7 MySQL Cluster Manager TLS Connection Commands

This section contains information about MySQL Cluster Manager client commands relating to
Section 4.11, “Using TLS Connections for NDB Clusters”.

5.7.1 The create certs Command
create certs [--ca|--keys|--renew] [--added] cluster_name

The command creates all certificate authorities (CAs), keys, and certificate files needed for a cluster to
use TLS connections on all hosts in the site.

The --ca option limits the command to only create the CA key and certificate

The --keys option limits the command to only create the keys and certificates for all nodes.

The --added option limits the command to only create CAs and API certificates for recently added
hosts and nodes. A CA and key must be present on at least one host in the site for the --added option
to work.

The --renew option renews the keys and certificates for all nodes.

The host with the client connection runs ndb_sign_keys to create the CA in the cluster's default
certificate directory, <mcm_data>/clusters/<cluster_name>/certs, and the CA is distributed

144

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-sign-keys.html

The list certs Command

over the site. To allow secure CA distribution across the MCM site, the mcmd agent connections must
be encrypted (see Section 4.10, “Using Encrypted Connections for MySQL Cluster Manager Agents
and Clients” for details).

Certificates are created for every host using the available CA. The CA and certificates are created
using the default CA and certificate file names defined on the NDB Cluster. The certificates are created
in two locations:

• An agent, and any NDB tools that it spawns, uses an API certificate from the cluster's default
certificate directory, which must be present on all hosts in the site.

• A cluster process uses the certificate from the process as specified by the ndb_mgm --ndb-tls-
search-path option.

The command creates both sets of certificates—the API certificate in the cluster's default certificate
folder, and a single certificate/key pair for each process in the process' certificate directories. If multiple
processes use the same certificate type and share the same certificate directory on the same file
system, only a single instance of the certificate will be created. Creation of subsequent certificates of
the same type at the same location is skipped.

The command fails if any of the following conditions is true:

• A CA already exists when creating the CA, unless the --renew option is used (in which case the
command fails if a CA does not already exist).

• A certificate already exists when creating the certificate, unless the --renew option is used (in which
case the command fails if a certificate does not already exist). .

• When the --renew is used together with the --added or the --ca option.

• All hosts are not present.

Limitations: The following limitations apply for the command:

• If multiple hosts share the same network-mounted certificate directory, the certificates embedded
hostnames may be incorrect.

• No actions are taken on the certificate folders or certificate files created by the command on delete
cluster --removedirs.

• For now, only keys can be renewed. Always use the --keys option with the --renew option.

5.7.2 The list certs Command
list certs [--active|-A] [--all|-a] [--retired|-r] cluster_name

The command lists the files created by the create certs command for the MySQL NDB Cluster
named cluster_name. By default, it shows for each host the number of active, retired, and pending
certificates, as well as the total number of certificates:

mcm> list certs mycluster;
+---------+--------+---------+---------+-------+
| Host | Active | Retired | Pending | Total |
+---------+--------+---------+---------+-------+
| tonfisk | 8 | 1 | 0 | 9 |
| flundra | 6 | 1 | 0 | 7 |
+---------+--------+---------+---------+-------+

With the --active option, the command shows the active certificates found on each host, listing the
last-modification timestamp, full path, and filename for each certificate:

mcm> list certs --active mycluster;
+---------+----------------------+---+

145

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_ndb-tls-search-path

MySQL Cluster Manager Backup and Restore Commands

| Host | Timestamp | File |
+---------+----------------------+---+
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-private-key
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-private-key
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-private-key
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-mgm-server-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-mgm-server-private-key
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-cert
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-private-key
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-private-key
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-cert
flundra	2024-09-25 11:59:13Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-private-key
flundra	2024-09-25 11:59:13Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-cert
+---------+----------------------+---+

With the --retired option, the command shows the same information for the retired certificates
found on each host:

mcm> list certs --retired mycluster;
+---------+----------------------+---+
| Host | Timestamp | File |
+---------+----------------------+---+
| tonfisk | 2024-11-05 13:05:06Z | /opt/mcm_data/clusters/mycluster/certs/ndb-data-node-retired-cert |
| flundra | 2024-10-23 14:05:57Z | /opt/mcm_data/clusters/mycluster/certs/ndb-data-node-retired-cert |
+---------+----------------------+---+

With the --all option, the command shows the active, retired, and pending certificates found on each
host:

mcm> list certs --all mycluster;
+---------+----------------------+---+
| Host | Timestamp | File |
+---------+----------------------+---+
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-private-key
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-private-key
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-private-key
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-retired-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-mgm-server-cert
tonfisk	2024-11-05 13:05:06Z	/opt/mcm_data/clusters/mycluster/certs/ndb-mgm-server-private-key
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-cert
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/NDB-Cluster-private-key
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-cert
flundra	2024-09-25 11:59:11Z	/opt/mcm_data/clusters/mycluster/certs/ndb-api-private-key
flundra	2024-09-25 11:59:13Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-cert
flundra	2024-09-25 11:59:13Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-private-key
flundra	2024-10-23 14:05:57Z	/opt/mcm_data/clusters/mycluster/certs/ndb-data-node-retired-cert
+---------+----------------------+---+

5.8 MySQL Cluster Manager Backup and Restore Commands

This section contains information about MySQL Cluster Manager client commands relating to backing
up a MySQL NDB Cluster and restoring it from backup.

5.8.1 The abort backup Command
abort backup --backupid=backup_id cluster_name

This command aborts a backup of cluster cluster_name having the ID backup_id specified with
the --backupid option. You can obtain a list of backups and their IDs known to this MySQL Cluster
Manager instance using the list backups. If the backup is not actually in progress, the command
has no effect.

146

The backup cluster Command

5.8.2 The backup cluster Command
backup cluster [{--backupid=|-I }backup_id]
 [{--snapshotstart|-S} | {--snapshotend|-E}]
 [{--waitstarted|-w} | {--waitcompleted|-W}]
 [{--password-file=|-F }filepath]
 cluster_name

This command creates a backup of the MySQL NDB Cluster named cluster_name. backup
cluster takes a backup of the cluster's NDB tables only; tables using other MySQL storage engines
(such as InnoDB or MyISAM) are ignored.

By default, this command uses the backup ID assigned and returned by ndb_mgmd (see the
discussions on backup_id in Using The NDB Cluster Management Client to Create a Backup for
more information); you can override this behavior by specifying a backup ID using the --backupid
option (short form is -I).

The --snapshotstart option (short form is -S) causes the backup to match the state of the cluster
when the backup began.

The --snapshotend option (short form is -E) causes the backup to reflect the state of the cluster
when the backup was finished. If neither option is specified, the MySQL Cluster Manager client acts as
though --snapshotend had been used.

When the --waitstarted option (short form is -w) is used, the MySQL Cluster Manager client waits
until the backup has started before returning control to the user, after which the user can check the
backup process's status with the show status command and the --backup option.

When the --waitcompleted option (short form is -W) is used, the MySQL Cluster Manager
client waits until the backup process is complete before returning control to the user. If neither --
waitstarted nor --waitcompleted is specified, the client behaves as if --waitcompleted had
been used.

mcm> backup cluster mycluster;
+-------------------------------+
| Command result |
+-------------------------------+
| Backup completed successfully |
+-------------------------------+
1 row in set (33.50 sec)

You can verify that the backup was performed by checking the output of list backups, as shown
here:

mcm> list backups mycluster;
+----------+--------+---------+----------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+----------------------+-------+---------+
1	1	tonfisk	2016-10-24 22:24:54Z	1	
1	2	tonfisk	2016-10-24 22:24:54Z	1	
2	1	tonfisk	2016-10-24 22:24:54Z	1	
2	2	tonfisk	2016-10-24 22:24:54Z	1	
+----------+--------+---------+----------------------+-------+---------+
4 rows in set (0.02 sec)

Each row in the output represents a backup image—that is, a set of backup files specific to a given
backup of a named cluster on a given data node. Timestamp values are in UTC. The backup image
is saved in the folder BackupDataDir/BACKUP/BACKUP-Id, where BackupDataDir is a cluster
parameter. If BackupDataDir is not specified, it takes up the value of DataDir, so that the image is
stored in the directory Datadir/BACKUP/BACKUP-backup_id.

It is possible to remove an unwanted backup from a given node by deleting this image directory and
its contents. To remove a given backup completely, you must remove the corresponding image from
each data node's BACKUP directory. You can do this as long as a backup or restore operation is not in

147

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/9.6/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir

The backup cluster Command

progress. It is not necessary to stop the cluster or MySQL Cluster Manager agent prior to removing the
images.

The BackupId is used with abort backup and restore cluster.

MySQL Cluster Manager supports the creation of NDB native encrypted cluster backups using
AES-256-CBC. To create an encrypted backup, use the --password-file option (short form is -F)
to provide a file that contains the password. See Using The NDB Cluster Management Client to Create
a Backup for restrictions on the choice of passwords. The password file must satisfy the following
requirements:

• The file must be present on the same host as the mcmd agent that the client issuing the backup
cluster command is connected to.

• A relative file path is considered relative to the working directory of the mcmd agent mentioned in the
last bullet.

• On Unix-like platforms, the file should only be readable and writable by the file owner; on Windows
platforms, it should not be readable by the Everyone group.

Logical Backup for NDB Table Metadata

To allow more flexibility for cluster reconfiguration during a restore, the backup cluster command
also creates a logical backup for the metadata of the NDB tables in the cluster. Use the --all option
with the list backups command to list all backups, including the logical backups for the NDB tables'
metadata, which are marked by the comment “Schema”:

mcm> list backups --all newcluster;
+----------+--------+---------+----------------------+------+---------+
| BackupId | NodeId | Host | Timestamp | Part | Comment |
+----------+--------+---------+----------------------+------+---------+
1	1	tonfisk	2016-08-12 16:55:52Z	1	
1	2	tonfisk	2016-08-12 16:55:52Z	1	
1	3	tonfisk	2016-08-12 16:55:52Z	1	
1	4	tonfisk	2016-08-12 16:55:52Z	1	
1	50	tonfisk	2016-08-12 16:55:55Z		Schema
+----------+--------+---------+----------------------+------+---------+
5 rows in set (0.02 sec)

The logical backup was created using the mysqldump utility. The backup is saved with the
file name BACKUP-BackupID.mysql_nodeid.schema.sql extension, to be found in
the folder backupdatadir/BACKUP/BACKUP-id, where backupdatadir (notice that
the name is in lowercase) is a mysqld parameter used only for specifying the location of
the logical backup created by MySQL Cluster Manager. If backupdatadir is not specified
using the set command with the mcm client, the default value of /mcm_data_repository/
clusters/clustername/mysqld_nodeid/ is used, so that the logical backup is saved in
the folder /mcm_data_repository/clusters/clustername/mysqld_nodeid/BACKUP/
BACKUP-Id.

The following restrictions apply for the creation of the logical backups for NDB table metadata:

• At least one mysqld node must be running on the cluster for the logical backup to be performed

• No backup was created for any mysqld node that was not running.

• Metadata for non-NDB tables are not backed up.

• The logical backup is NOT a proper point-in-time backup—no DDL operations should be performed
on the cluster when the backup process is running on the cluster, or the backed-up metadata will
become inconsistent with the backed-up data.

The backup for the NDB table metadata is helpful for restoring data from a cluster to another one with
a different configuration (for example, when the target cluster for restore has a different number of data

148

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html

The list backups Command

nodes); see Section 4.6.2.4, “Partial restore—data nodes added” and Section 4.6.2.5, “Restoring a
Backup to a Cluster with Fewer Data Nodes” for some use cases.

5.8.3 The list backups Command
list backups [{--backupid=|-I }backup_id] [--all|-a] cluster_name

list backups [{--backupid=|-I }backup_id] [--agent|-A] site_name

Without the --agent option, the command lists all backups of the MySQL NDB Cluster named
cluster_name that are known to this instance of MySQL Cluster Manager. The output includes the
backup and node ID as well as a UTC timestamp for each backup, as shown here:

mcm> list backups mycluster;
+----------+--------+---------+----------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+----------------------+-------+---------+
1	1	tonfisk	2016-10-24 22:24:54Z	1	
1	2	tonfisk	2016-10-24 22:24:54Z	1	
2	1	tonfisk	2016-10-24 22:24:54Z	1	
2	2	tonfisk	2016-10-24 22:24:54Z	1	
+----------+--------+---------+----------------------+-------+---------+
4 rows in set (0.02 sec)

The Timestamp column shows the timestamp (in UTC) of the first file to appear in any backup
instance folder. There are 3 files in each backup fileset: *.ctl, *.data, and *.log. If the backup
instance folder is empty, the timestamp of the folder itself is shown.

With the --backupid option used, the commands only list backups with the specified ID:

mcm> list backups --backupid=2 mycluster;
+----------+--------+---------+----------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+----------------------+-------+---------+
| 2 | 1 | tonfisk | 2016-10-24 22:24:54Z | 1 | |
| 2 | 2 | tonfisk | 2016-10-24 22:24:54Z | 1 | |
+----------+--------+---------+----------------------+-------+---------+
2 rows in set (0.02 sec)

The backup cluster command also creates backups of the metadata for a cluster's NDB tables,
which are listed by the list backups command when the --all option is used. The metadata
backups are marked by the comment Schema in the backup listing:

mcm> list backups --all newcluster;
+----------+--------+---------+----------------------+------+---------+
| BackupId | NodeId | Host | Timestamp | Part | Comment |
+----------+--------+---------+----------------------+------+---------+
1	1	tonfisk	2016-08-12 16:55:52Z	1	
1	2	tonfisk	2016-08-12 16:55:52Z	1	
1	3	tonfisk	2016-08-12 16:55:52Z	1	
1	4	tonfisk	2016-08-12 16:55:52Z	1	
1	50	tonfisk	2016-08-12 16:55:55Z		Schema
+----------+--------+---------+----------------------+------+---------+
5 rows in set (0.02 sec)

See Logical Backup for NDB Table Metadata, for details about the metadata backup.

When the --agent option is used and a site_name is specified, the command lists agent backups
created for a specific site:

mcm> list backups --agent mysite;
+------------+-------+---------+----------------------+-------+--------------+
| BackupId | Agent | Host | Timestamp | Files | Comment |
+------------+-------+---------+----------------------+-------+--------------+
1522914101	0	tonfisk	2018-04-05 07:41:41Z	5	Agent backup
1522914105	0	tonfisk	2018-04-05 07:41:45Z	5	Agent backup
1522914121	0	tonfisk	2018-04-05 07:42:01Z	5	Agent backup
+------------+-------+---------+----------------------+-------+--------------+

149

The delete backup Command

3 rows in set (0.00 sec)

The backup IDs reflect the Unix Epoch times at which the backups were taken.

The output can be filtered with the --backupid option:

mcm> list backups --agent --backupid=1522914121 mysite;
+------------+-------+---------+----------------------+-------+--------------+
| BackupId | Agent | Host | Timestamp | Files | Comment |
+------------+-------+---------+----------------------+-------+--------------+
| 1522914121 | 0 | tonfisk | 2018-04-05 07:42:01Z | 5 | Agent backup |
+------------+-------+---------+----------------------+-------+--------------+
1 row in set (0.07 sec)

5.8.4 The delete backup Command
delete backup {--backupid=|-I }backup_id [--skip-nodeid=nodeid-list] cluster_name

nodeid-list:
 nodeid[, nodeid[, ...]]

The command removes a backup's directories and their contents on both data nodes and mysqld
nodes of the cluster named cluster_name:

mcm> list backups mycluster;
+----------+--------+---------+----------------------+-------+---------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+----------------------+-------+---------+
| 1 | 1 | flundra | 2018-04-04 06:31:12Z | 1 | |
| 1 | 2 | tonfish | 2018-04-04 06:31:12Z | 1 | |
+----------+--------+---------+----------------------+-------+---------+
2 rows in set (0.04 sec)

mcm> delete backup --backupid=1 mycluster;
+-----------------------------+
| Command result |
+-----------------------------+
| Backup deleted successfully |
+-----------------------------+
1 row in set (1.22 sec)

mcm> list backups mycluster;
+----------+--------+---------+----------------------+-------+------------------+
| BackupId | NodeId | Host | Timestamp | Parts | Comment |
+----------+--------+---------+----------------------+-------+------------------+
| None | 2 | tonfish | | | No backups found |
| None | 1 | flundra | | | No backups found |
+----------+--------+---------+----------------------+-------+------------------+
2 rows in set (0.09 sec)

The ID of the backup to be deleted must be specified using the --backupid option. To delete all
backups, run the command on every single backup.

If any data nodes or mysqld nodes have been added after the specified backup was created, list their
node IDs with the --skip-nodeid option, or the operation will fail with the complaint that no backup
directories exist on those nodes.

Note

The command fails if there are files other than the backup files in any of the
backup directories to be deleted. Remove those extra files manually before
running the command.

5.8.5 The restore cluster Command
restore cluster
 {--backupid=|-I }backup_id
 [--disable-indexes|-x]

150

The restore cluster Command

 [--disable-metadata|-M]
 [--epoch|-e]
 [--exclude-databases=db_name]
 [--exclude-intermediate-sql-tables]
 [--exclude-missing-columns]
 [--exclude-missing-tables]
 [--exclude-tables=db_name.tbl_name[,db_name.tbl_name][,...]]
 [--include-databases=db_name]
 [--include-stored-grants]
 [--include-tables=db_name.tbl_name[,db_name.tbl_name][,...]]
 [--lossy-conversions]
 [--no-binlog|-l]
 [--no-restore-disk-objects]
 [{--parallelism=|-p }#]
 [--progress-frequency]
 [--promote-attributes]
 [--rewrite-database]
 [--skip-broken-objects]
 [{--skip-nodeid=|-s }id_list]
 [--skip-table-check]
 [--skip-unknown-objects]
 [--password-file=filepath]
 cluster_name

This command restores a cluster from a backup having the specified backup ID (--backupid option;
short form: -I) to the MySQL NDB Cluster named cluster_name. In its simplest form, it can be
used as shown here, to restore the cluster named mycluster to the state saved in the backup having
backup ID 3:

mcm> restore cluster --backupid=3 mycluster;
+--------------------------------+
| Command result |
+--------------------------------+
| Restore completed successfully |
+--------------------------------+
1 row in set (18.60 sec)

If you are restoring an existing cluster to a known good state, you must wipe any existing data first.
Stop the cluster using stop cluster, then restart it using start cluster with the --initial
option, which causes the data node file systems to be cleared. Following this, you can restore the
cluster from the desired backup using restore cluster.

Important

In order to restore a backup using restore cluster, the cluster must have
an unused slot for an ndbapi process in its configuration. Otherwise, the
command fails with the error Unable to perform restore - no vacant
ndbapi slots in config for cluster cluster_name. See Adding
Free Processes, for information on how to add a free ndbapi slot to your
cluster.

Additional options that can be employed with this command include:

--disable-indexes and --disable-metadata. To cause indexes to be ignored when
restoring the table data, use the --disable-indexes option. Doing this can decrease the time
required to restore a large data set, particularly where many indexes were in use. Similarly, you can
cause metadata to be ignored during the restoration process by using the --disable-metadata
option (short form: -M).

--epoch. When the --epoch option (short form: -e) is used, epoch information is restored to
the cluster replication status table (mysql.ndb_apply_status), which can be useful for replicas in
MySQL NDB Cluster replication.

--exclude-databases and --exclude-tables. Prevent one or more databases or
tables from being restored using the options --exclude-databases and --exclude-tables.

151

The restore cluster Command

--exclude-databases takes a comma-delimited list of one or more databases that should not
be restored. --exclude-tables takes a comma-delimited list of one or more tables (using the
database.table format) that should not be restored. When --exclude-databases or --
exclude-tables is used, only those databases or tables named by the option are excluded; all other
databases and tables are restored.

--exclude-missing-columns. When this option is used, restore cluster ignores any
columns missing from tables being restored as compared to the versions of those tables found in the
backup.

--exclude-missing-tables. When this option is used, restore cluster ignores any tables
from the backup that are not found in the target database.

--exclude-intermediate-sql-tables[=TRUE|FALSE]. When performing ALTER TABLE
operations, mysqld creates intermediate tables (whose names are prefixed with #sql-). When TRUE,
the --exclude-intermediate-sql-tables option keeps restore cluster from restoring such
tables that may have been left over from such operations. This option is TRUE by default.

--include-databases and --include-tables. Use the --include-databases option
or the --include-tables option for restoring only specific databases or tables, respectively. --
include-databases takes a comma-delimited list of databases to be restored. --include-tables
takes a comma-delimited list of tables (in the database.table format) to be restored. When --
include-databases or --include-tables is used, only those databases or tables named by the
option are restored; all other databases and tables are excluded by restore cluster, and are not
restored.

--include-stored-grants. When managing NDB Cluster 8.0.19 and later, the restore
cluster command does not restore shared users and grants to the mysql.ndb_sql_metadata
table by default; use the --include-stored-grants option to override this behavior and enable the
restore of shared user and grant data and metadata.

--lossy-conversions. Using --lossy-conversions allows lossy conversions of column
values (type demotions or changes in sign) when restoring data from backup. With some exceptions,
the rules governing demotion are the same as for MySQL replication; see Replication of Columns
Having Different Data Types, for information about specific type conversions currently supported by
attribute demotion. restore cluster reports any truncation of data that it performs during lossy
conversions once per attribute and column.

--no-binlog. The --no-binlog option (short form: -l) stops any SQL nodes (mysqld
processes) in the cluster from writing data from the restore into their binary logs.

--no-restore-disk-objects. This option stops restore cluster from restoring any
MySQL NDB Cluster Disk Data objects, such as tablespaces and log file groups; see NDB Cluster Disk
Data Tables, for more information about these objects.

--parallelism=#. The --parallelism option (short form: -p) sets the maximum number of
parallel transactions that the restore cluster command attempts to use. The default value is 128;
the maximum is 1024, and the minimum is 1.

--progress-frequency=N. Print a status report each N seconds to a temporary stdout dump file
mcm creates at mcm_data/clusters/cluster_name/nodeid/tmp while the backup is in progress.
0 (the default) causes no status reports to be printed. The maximum is 65535.

--promote-attributes. Allow attributes to be promoted when MySQL Cluster Manager
restores data from a backup. See the discussion on attribute promotion in the MySQL NDB Cluster
manual for more details.

--rewrite-database=old_dbname,new_dbname. This option causes a database with the
name old_dbname in the backup to be restored under the name new_dbname.

152

https://dev.mysql.com/doc/refman/9.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/9.6/en/replication-features-differing-tables.html#replication-features-different-data-types
https://dev.mysql.com/doc/refman/9.6/en/replication-features-differing-tables.html#replication-features-different-data-types
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-disk-data.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-disk-data.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_promote-attributes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_promote-attributes

The backup agents Command

--skip-nodeid. The --skip-nodeid option (short form: -s) takes a comma-separated list
of node IDs. The nodes whose IDs are listed may include of data nodes, SQL nodes, or both. Nodes
having these IDs are skipped by the restoration process.

--skip-broken-objects. This option causes restore cluster to ignore corrupt tables
while reading a backup, and to continue restoring any remaining tables (that are not also corrupted).
Currently, the --skip-broken-objects option works only in the case of missing blob parts tables.

--skip-table-check. It is possible to restore data without restoring table metadata. The default
behavior when doing this is for restore cluster to fail with an error if table data do not match the
table schema; this can be overridden using the --skip-table-check option.

--skip-unknown-objects. This option causes restore cluster to ignore any schema
objects it does not recognize while reading a backup. This can be used for restoring, for example, a
backup made from a newer version of MySQL NDB Cluster to an older version.

Supports the restoring of NDB native encrypted cluster backups. To restore an encrypted backup, use
the --password-file option to provide a file that contains the encryption password for the backup.
The following must be true for the password file:

• The file must be present on each host where mcmd runs a data node that is being restored.

• If the file path is relative, it is relative to the working directory of the mcmd agent mentioned in the last
bullet.

5.8.6 The backup agents Command
backup agents [--hosts=host_list] [site_name]

host_list:
 host[, host[, ...]]

This command backs up the configuration data for the mcmd agents on the hosts specified in
host_list with the --hosts option (short form: -h) for the site named site_name. If no host names
are specified, all agents of the site are backed up. If no site_name is given, only the agent that the
mcm client is connected to is backed up.

The backup for each agent is created in a subfolder named rep_backup/timestamp under the agent
repository (the mcm_data folder), with timestamp reflecting the time the backup began. If you want
the backup to be at another place, create a soft link from mcm_data/rep_backup to your desired
storage location.

An empty file named INCOMPLETE is created in the folder in which the backup is created when the
backup begins, and is deleted after the backup is finished. The continuous existence of the file after the
backup process is over indicates that the backup is incomplete.

Notice that the backup agents command works differently from the backup cluster command,
which backs up cluster data; the backup agents command, on the other hand, backs up agent
configuration data. Using together the backups created by both commands, you can restore not just
the cluster, but the complete cluster-plus-manager setup. See Section 4.7, “Backing Up and Restoring
MySQL Cluster Manager Agents” for more details about backing up and restoring mcmd agents.

5.9 MySQL Cluster Manager Cluster Importation Commands

This section contains descriptions of MySQL Cluster Manager commands used to perform operations
connected with importing clusters into MySQL Cluster Manager. These operations include migration of
cluster processes and copying of configuration data.

5.9.1 The import cluster Command

153

The import config Command

import cluster [--dryrun|-y] [--remove-angel] cluster_name

This command imports a MySQL NDB Cluster created independently of MySQL Cluster Manager into
a cluster named cluster_name that has been created in MySQL Cluster Manager. You are strongly
advised to create cluster_name using the create cluster command's --import option; see that
command's description for more information about the --import option and its effects.

import cluster requires a single argument, the name of the cluster created using MySQL Cluster
Manager (cluster_name) into which you wish to import a MySQL NDB Cluster created externally into
MySQL Cluster Manager and bring it under MySQL Cluster Manager control. The cluster named in the
command must already exist in MySQL Cluster Manager.

import cluster also supports a --dryrun option. When this option is used, only the checks
required for importation are performed against the existing cluster. This makes it possible to test a
given configuration without actually placing any cluster processes under MCM control. -y is supported
as a short form of this option.

import cluster supports a --remove-angel option. When this option is used, any running
angel processes for the data nodes of the cluster to be imported are stopped by mcmd prior to the
actual import, which is a necessary step for a cluster import unless the angel processes have already
been stopped manually. When this option is used together with the --dryrun option, no removals
of angel processes will actually be performed, but the checks for angel processes (which occur when
the --dryrun option is used alone) will be skipped. It is recommended that you use the two options
separately: perform the checks with the --dryrun option only, and once the only errors observed
are with the angel processes, run import cluster again with the --remove-angel option only to
complete the import.

For more information about importing clusters into MySQL Cluster Manager, including examples, see
Section 4.5, “Importing MySQL NDB Clusters into MySQL Cluster Manager”.

5.9.2 The import config Command
import config [--dryrun|-y] [--retry] cluster_name

This command imports the configuration of an autonomous or “wild” cluster into the cluster named
cluster_name.

import config requires a single argument, cluster_name, which is the name of the cluster
created using MySQL Cluster Manager into which you wish to import the configuration of a MySQL
NDB Cluster created externally. The cluster named in the command must already exist in MySQL
Cluster Manager; you are also strongly advised to use create cluster --import when creating
cluster_name.

Note

When importing configuration attributes for a mysqld node, if a relative
path is used for the socket value or for any directory value (for example,
plugin_dir), the import will be rejected by the mcm client. Make sure an
absolute path is used in those cases and, if necessary, make adjustments to
the attributes in the .mcm file produced by the import config --dryrun
command and then import the settings by executing the file with the mcm client.

import config also supports a --dryrun option (short form: -y). When this option is used,
the checks required for importing the configuration data are performed, and the set commands
for performing the actual import are written to the file /path-to-mcm-data-repository/
clusters/clustername/tmp/import_config.message_id.mcm for your examination. This
makes it possible to test the configuration import without actually copying any of the settings into the
cluster controlled by MySQL Cluster Manager. You can then import all the settings using the import
config command (without the --dryrun option), or adjust some of the settings in the /path-to-

154

https://dev.mysql.com/doc/refman/9.6/en/faqs-mysql-cluster.html#faq-cluster-what-angel-process
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_socket
https://dev.mysql.com/doc/refman/9.6/en/server-system-variables.html#sysvar_plugin_dir

The import config Command

mcm-data-repository/clusters/clustername/tmp/import_config.message_id.mcm file
and then import the settings by executing the file with the mcm agent. See Section 4.5.2.3, “Creating
and Configuring the Target Cluster” for examples on using the import config command.

import config supports a --retry option, which reimports the cluster configuration from the
config.ini file after the cluster is already running.

Warning

The --retry option might cause unexpected effects on the cluster. It should
only be used at the instruction of Oracle Support.

155

156

Chapter 6 MySQL Cluster Manager Limitations and Known
Issues

Table of Contents
6.1 MySQL Cluster Manager Usage and Design Limitations .. 157
6.2 MySQL Cluster Manager 9.6.0 Limitations Relating to the MySQL Server 157
6.3 MySQL Cluster Manager Limitations Relating to MySQL NDB Cluster 158
6.4 Syntax and Related Issues in MySQL Cluster Manager ... 159

In this chapter we discuss limitations of and known issues in MySQL Cluster Manager version 9.6.0.

6.1 MySQL Cluster Manager Usage and Design Limitations
The limitations discussed in this section occur by intention or design in MySQL Cluster Manager 9.6.0.
Some of these items may become obsolete in future versions; we will update this section accordingly if
and as those changes come about.

change process command. Currently, the change process command can be used only to
exchange an ndbd process for an ndbmtd process, or the reverse. That is, in effect, it can be used
only to switch a data node between a single-threaded process and a multithreaded process. It cannot
be used for changing a cluster node's type (for example, you cannot change a data node to an SQL
node, management node, or NDB API application node).

Concurrent client sessions. Currently there is no negotiation or arbitration between multiple mcm
clients. While it is possible to use the client from multiple locations, you should be careful always to
allow a reconfiguration command issued in one mcm client session to finish executing before issuing a
new command in a different client session.

IPv6 and host names (Windows). When IPv6 support is enabled on Windows systems, host
names other than localhost are resolved using IPv6. When an IPv6-enabled Windows system is
used as a MySQL NDB Cluster host under MySQL Cluster Manager, you must reference it using its
IPv4 address. Otherwise, mcm will be unable to connect to the agent process on that host.

This applies to host names used with the MySQL Cluster Manager client commands create
cluster, create site, add hosts, add package, delete package, stop agents, and add
process.

Use of antivirus software on Windows platforms. On-access scanning by antivirus software
on Windows platforms might cause access to the cluster configuration file being denied for the mcmd
agent, causing updates for the cluster configuration to fail sometimes.

6.2 MySQL Cluster Manager 9.6.0 Limitations Relating to the
MySQL Server

 The limitations described in this section relate to functionality in the MySQL Server that is unsupported
or reduced, or otherwise differs when using it with MySQL Cluster Manager.

Replication. Replication is currently not directly supported by MySQL Cluster Manager. See
Section 6.3, “MySQL Cluster Manager Limitations Relating to MySQL NDB Cluster”, for more
information.

Limited mysqld option modifier support. MySQL Cluster Manager does not recognize the --
loose, --maximum, --enable, and --disable prefixes for mysqld options used as MySQL Cluster
Manager configuration attributes (for a description of these modifiers, see Program Option Modifiers).

157

https://dev.mysql.com/doc/refman/9.6/en/option-modifiers.html

MySQL Cluster Manager Limitations Relating to MySQL NDB Cluster

For example, the command set loose-skip-innodb:mysqld=true mycluster; fails with the
error No such config variable loose-skip-innodb for process mysqld.

The --skip option modifier is supported in some but not all cases, so that commands such as set
skip-innodb:mysqld=true mycluster; and set skip-grant-tables:mysqld=true
mycluster; can be used with MySQL Cluster Manager, while set skip-column-
names:mysqld=true mycluster; cannot. (Bug #48559, Bug #47779)

Dashes and underscores in MySQL option and variable names. When using the mysql
client or other MySQL client applications, many MySQL system options and variables can be
named using either dashes or underscores in their names. For example, you can use either
ndb_batch_size or ndb-batch-size with the MySQL Server, and the variable is set correctly.
This is not the case in MySQL Cluster Manager, where only the forms using underscores are accepted
as attribute names. For example, assuming that mycluster is a viable cluster, the command set
ndb_batch_size:mysqld=65536 mycluster; works to set the size of ndb_batch_size on all
mysqld processes in the cluster, but set ndb-batch-size:mysqld=65536 mycluster; fails.

Dependencies between MySQL Cluster Manager mysqld attributes and MySQL server
variables. MySQL Cluster Manager does not track dependencies between mysqld attributes
(MySQL server options and system variables). That means MySQL Cluster Manager might have
mysqld started successfully and report so, even though the server has ended up in a non-functional
state because dependent attributes were set inconsistently. It is therefore a good idea for users to
check the mysqld attributes before starting the node and the mysql log for status of the node after it
has been started.

MySQL Cluster Manager mysqld attributes and MySQL user variables. MySQL user variables
are not accessible as MySQL Cluster Manager configuration attributes.

Unsupported MySQL 8.4 and 8.0 Features. These MySQL 8.4 and 8.0 features are not supported
by MySQL Cluster Manager 9.6:

• The --upgrade option for mysqld.

• The SET PERSIST statement for persisting system variables.

6.3 MySQL Cluster Manager Limitations Relating to MySQL NDB
Cluster

This section describes limitations relating to MySQL NDB Cluster functionality that is unsupported or
curtailed by MySQL Cluster Manager 9.6.

MySQL Cluster Manager and replication. MySQL Cluster Manager currently does not provide
any explicit support for MySQL NDB Cluster Replication. However, you should still be able to perform
manual setup of replication of a MySQL NDB Cluster that is managed by MySQL Cluster Manager.

Backup and restore operations. MySQL Cluster Manager provides integrated backup and
restore functionality. You can back up NDB databases and tables using the mcm client backup
cluster command, and restore them using the restore cluster client command. MySQL Cluster
Manager also supports restoration of distributed privileges.

You can also back up NDB databases and tables using the ndb_mgm client START BACKUP command,
and restore them using the ndb_restore program; however MySQL Cluster Manager is not aware of
backups that it was not employed to create. Both of the programs just mentioned are supplied with the
MySQL NDB Cluster distribution.

Note

Backups of tables using storage engines other than NDB, as well as of all other
database objects that are not tables, cannot be made using MySQL Cluster
Manager, and must be made using some other method, such as mysqldump.

158

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html

Syntax and Related Issues in MySQL Cluster Manager

Rolling restarts. Currently, all cluster nodes must be running in order to perform a rolling restart
using MySQL Cluster Manager. However, MySQL NDB Cluster itself requires only that at least one
management server and all data nodes are running (in other words, any mysqld processes and any
additional ndb_mgmd processes can be stopped). In such cases, you can perform the rolling restart
manually, after stopping the MySQL Cluster Manager agent.

When making changes in configuration attributes only those nodes requiring a restart to make the
change take effect are actually restarted. ndbapi nodes are never restarted by MySQL Cluster
Manager.

Cluster Imports.
MySQL Cluster Manager will reject an import if it cannot access the process information of the cluster
being imported. Therefore, the MySQL Cluster Manager agents must be run by a sufficiently privileged
user—normally the same user that runs the cluster.

Cluster Reconfiguration. Cluster configuration updates (using the set or reset command)
that would trigger a rolling restart of the nodes are not executed by MySQL Cluster Manager unless
there are more than one data node defined for each node group; to perform such updates when the
requirement is not met, a user should, using MySQL Cluster Manager, stop the cluster, use the set
or reset command to change the cluster configurations, and then start the cluster again. If, however,
your configuration changes require an initial restart of your cluster, you will need to backup the data,
recreate your cluster form scratch with the new settings, and then restore your old data onto it.

6.4 Syntax and Related Issues in MySQL Cluster Manager

This section covers MySQL Cluster Manager issues relating to limitations in SQL and other syntax.

159

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-params-ndbd.html

160

Appendix A Attribute Summary Tables

Table of Contents
A.1 Management Node Configuration Parameters .. 161
A.2 Data Node Configuration Parameters ... 162
A.3 API Node Configuration Parameters .. 169
A.4 Other Node Configuration Parameters ... 170
A.5 MySQL Server Option and Variable Reference for MySQL Cluster .. 171

This appendix provides tables of configuration attributes, grouped according to their process type or
by the section of the MySQL NDB Cluster configuration file in which they appear. This information is
current for MySQL NDB Cluster 9.6. For information regarding MySQL NDB Cluster 9.4, see MySQL
NDB Cluster 9.6. For information regarding MySQL NDB Cluster 8.4, see MySQL NDB Cluster 8.4. For
information regarding MySQL NDB Cluster 8.0, see MySQL NDB Cluster 8.0.

Each table provides the following information:

• Name: The name of the attribute. The name of the attribute is linked to the attribute's full description
in the online MySQL NDB Cluster documentation.

• Type/Units: The data type or unit by which the attribute is measured.

• Range: The default value of the attribute, if not set by the user, and the minimum and maximum
values that can be set for the attribute.

• Restart Type: The type of restart required for a change in value in this attribute to be applied in a
running MySQL NDB Cluster. The restart type is indicated in this column by an N for a node restart,
or an S for a system restart. Data node attributes: The presence of an I in this column indicates that
a data node must be restarted using the --initial option for a change to take effect.

Attributes having restart type N can be changed using a rolling restart of the cluster, and thus can
be changed at any time, even if the cluster is running. Changing an attribute whose restart type is S
requires a complete shutdown of all cluster nodes, followed by a restart of the nodes once all of them
have been stopped. Currently, such attributes can be set only before starting a cluster for the first
time.

A.1 Management Node Configuration Parameters
• ArbitrationDelay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

• ArbitrationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order
1, 2.

• DataDir: Data directory for this node.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatIntervalMgmdMgmd: Time between management-node-to-management-node
heartbeats; connection between management nodes is considered lost after 3 missed heartbeats.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

• HostName: Host name or IP address for this management node.

161

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.4/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-arbitrationdelay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-arbitrationrank
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-datadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-executeoncomputer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-extrasendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-heartbeatintervalmgmdmgmd
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-heartbeatthreadpriority
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-hostname

Data Node Configuration Parameters

• Id: Number identifying management node. Now deprecated; use NodeId instead.

• LocationDomainId: Assign this management node to specific availability domain or zone. 0
(default) leaves this unset.

• LogDestination: Where to send log messages: console, system log, or specified log file.

• NodeId: Number uniquely identifying management node among all nodes in cluster.

• PortNumber: Port number to send commands to and fetch configuration from management server.

• PortNumberStats: Port number used to get statistical information from management server.

• RequireTls: Client connection must authenticate with TLS before being used otherwise.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

A.2 Data Node Configuration Parameters
• ApiFailureHandlingTimeout: Maximum time for API node failure handling before escalating. 0

means no time limit; minimum usable value is 10.

• Arbitration: How arbitration should be performed to avoid split-brain issues in event of node
failure.

• ArbitrationTimeout: Maximum time (milliseconds) database partition waits for arbitration signal.

• BackupDataBufferSize: Default size of databuffer for backup (in bytes).

• BackupDataDir: Path to where to store backups. Note that string '/BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

• BackupDiskWriteSpeedPct: Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

• BackupLogBufferSize: Default size of log buffer for backup (in bytes).

• BackupMaxWriteSize: Maximum size of file system writes made by backup (in bytes).

• BackupMemory: Total memory allocated for backups per node (in bytes).

• BackupReportFrequency: Frequency of backup status reports during backup in seconds.

• BackupWriteSize: Default size of file system writes made by backup (in bytes).

• BatchSizePerLocalScan: Used to calculate number of lock records for scan with hold lock.

• BuildIndexThreads: Number of threads to use for building ordered indexes during system or
node restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to 0
disables multithreaded building of ordered indexes.

• CompressedBackup: Use zlib to compress backups as they are written.

• CompressedLCP: Write compressed LCPs using zlib.

• ConnectCheckIntervalDelay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

• CrashOnCorruptedTuple: When enabled, forces node to shut down whenever it detects
corrupted tuple.

• DataDir: Data directory for this node.

162

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-id
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-locationdomainid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-logdestination
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-nodeid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-portnumber
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-portnumberstats
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-requiretls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-totalsendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-mgm-definition.html#ndbparam-mgmd-wan
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-apifailurehandlingtimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-arbitration
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-arbitrationtimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatabuffersize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatadir
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdiskwritespeedpct
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backuplogbuffersize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupmaxwritesize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupreportfrequency
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupwritesize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-batchsizeperlocalscan
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-buildindexthreads
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-compressedbackup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-compressedlcp
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-connectcheckintervaldelay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-crashoncorruptedtuple
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir

Data Node Configuration Parameters

• DataMemory: Number of bytes on each data node allocated for storing data; subject to available
system RAM and size of IndexMemory.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are
supported: 0, 240, and 3840.

• DictTrace: Enable DBDICT debugging; for NDB development.

• DiskDataUsingSameDisk: Set to false if Disk Data tablespaces are located on separate physical
disks.

• DiskIOThreadPool: Number of unbound threads for file access, applies to disk data only.

• Diskless: Run without using disk.

• DiskPageBufferEntries: Memory to allocate in DiskPageBufferMemory; very large disk
transactions may require increasing this value.

• DiskPageBufferMemory: Number of bytes on each data node allocated for disk page buffer
cache.

• DiskSyncSize: Amount of data written to file before synch is forced.

• EnablePartialLcp: Enable partial LCP (true); if this is disabled (false), all LCPs write full
checkpoints.

• EnableRedoControl: Enable adaptive checkpointing speed for controlling redo log usage.

• EncryptedFileSystem: Encrypt local checkpoint and tablespace files. EXPERIMENTAL; NOT
SUPPORTED IN PRODUCTION.

• EventLogBufferSize: Size of circular buffer for NDB log events within data nodes.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• FileSystemPath: Path to directory where data node stores its data (directory must exist).

• FileSystemPathDataFiles: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

• FileSystemPathDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

• FileSystemPathUndoFiles: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise,
value of DataDir is used.

• FragmentLogFileSize: Size of each redo log file.

• HeartbeatIntervalDbApi: Time between API node-data node heartbeats. (API connection
closed after 3 missed heartbeats).

• HeartbeatIntervalDbDb: Time between data node-to-data node heartbeats; data node
considered dead after 3 missed heartbeats.

• HeartbeatOrder: Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

163

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datamemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-defaulthashmapsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-dicttrace
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskdatausingsamedisk
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskiothreadpool
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskless
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebufferentries
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-disksyncsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-enablepartiallcp
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-enableredocontrol
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-encryptedfilesystem
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-eventlogbuffersize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-executeoncomputer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-extrasendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-filesystempath
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-filesystempathdatafiles
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-filesystempathdd
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-filesystempathundofiles
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-fragmentlogfilesize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-heartbeatintervaldbapi
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-heartbeatintervaldbdb
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-heartbeatorder

Data Node Configuration Parameters

• HostName: Host name or IP address for this data node.

• IndexMemory: Number of bytes on each data node allocated for storing indexes; subject to
available system RAM and size of DataMemory.

• IndexStatAutoCreate: Enable/disable automatic statistics collection when indexes are created.

• IndexStatAutoUpdate: Monitor indexes for changes and trigger automatic statistics updates.

• IndexStatSaveScale: Scaling factor used in determining size of stored index statistics.

• IndexStatSaveSize: Maximum size in bytes for saved statistics per index.

• IndexStatTriggerPct: Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

• IndexStatTriggerScale: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

• IndexStatUpdateDelay: Minimum delay between automatic index statistics updates for given
index. 0 means no delay.

• InitFragmentLogFiles: Initialize fragment log files, using sparse or full format.

• InitialLogFileGroup: Describes log file group that is created during initial start. See
documentation for format.

• InitialNoOfOpenFiles: Initial number of files open per data node. (One thread is created per
file).

• InitialTablespace: Describes tablespace that is created during initial start. See documentation
for format.

• InsertRecoveryWork: Percentage of RecoveryWork used for inserted rows; has no effect unless
partial local checkpoints are in use.

• KeepAliveSendInterval: Time between keep-alive signals on links between data nodes, in
milliseconds. Set to 0 to disable.

• LateAlloc: Allocate memory after connection to management server has been established.

• LcpScanProgressTimeout: Maximum time that local checkpoint fragment scan can be stalled
before node is shut down to ensure systemwide LCP progress. Use 0 to disable.

• LocationDomainId: Assign this data node to specific availability domain or zone. 0 (default) leaves
this unset.

• LockExecuteThreadToCPU: Comma-delimited list of CPU IDs.

• LockMaintThreadsToCPU: CPU ID indicating which CPU runs maintenance threads.

• LockPagesInMainMemory: 0=disable locking, 1=lock after memory allocation, 2=lock before
memory allocation.

• LogLevelCheckpoint: Log level of local and global checkpoint information printed to stdout.

• LogLevelCongestion: Level of congestion information printed to stdout.

• LogLevelConnection: Level of node connect/disconnect information printed to stdout.

• LogLevelError: Transporter, heartbeat errors printed to stdout.

• LogLevelInfo: Heartbeat and log information printed to stdout.

164

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-hostname
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatautocreate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatautoupdate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatsavescale
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatsavesize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstattriggerpct
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstattriggerscale
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-indexstatupdatedelay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initfragmentlogfiles
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initiallogfilegroup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initialnoofopenfiles
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-initialtablespace
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-insertrecoverywork
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-keepalivesendinterval
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-latealloc
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lcpscanprogresstimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-locationdomainid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lockexecutethreadtocpu
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lockmaintthreadstocpu
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-lockpagesinmainmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelcheckpoint
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelcongestion
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelconnection
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelerror
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelinfo

Data Node Configuration Parameters

• LogLevelNodeRestart: Level of node restart and node failure information printed to stdout.

• LogLevelShutdown: Level of node shutdown information printed to stdout.

• LogLevelStartup: Level of node startup information printed to stdout.

• LogLevelStatistic: Level of transaction, operation, and transporter information printed to stdout.

• LongMessageBuffer: Number of bytes allocated on each data node for internal long messages.

• MaxAllocate: No longer used; has no effect.

• MaxBufferedEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

• MaxBufferedEpochBytes: Total number of bytes allocated for buffering epochs.

• MaxDiskDataLatency: Maximum allowed mean latency of disk access (ms) before starting to
abort transactions.

• MaxDiskWriteSpeed: Maximum number of bytes per second that can be written by LCP and
backup when no restarts are ongoing.

• MaxDiskWriteSpeedOtherNodeRestart: Maximum number of bytes per second that can be
written by LCP and backup when another node is restarting.

• MaxDiskWriteSpeedOwnRestart: Maximum number of bytes per second that can be written by
LCP and backup when this node is restarting.

• MaxFKBuildBatchSize: Maximum scan batch size to use for building foreign keys. Increasing this
value may speed up builds of foreign keys but impacts ongoing traffic as well.

• MaxDMLOperationsPerTransaction: Limit size of transaction; aborts transaction if it requires
more than this many DML operations.

• MaxLCPStartDelay: Time in seconds that LCP polls for checkpoint mutex (to allow other data
nodes to complete metadata synchronization), before putting itself in lock queue for parallel recovery
of table data.

• MaxNoOfAttributes: Suggests total number of attributes stored in database (sum over all tables).

• MaxNoOfConcurrentIndexOperations: Total number of index operations that can execute
simultaneously on one data node.

• MaxNoOfConcurrentOperations: Maximum number of operation records in transaction
coordinator.

• MaxNoOfConcurrentScans: Maximum number of scans executing concurrently on data node.

• MaxNoOfConcurrentSubOperations: Maximum number of concurrent subscriber operations.

• MaxNoOfConcurrentTransactions: Maximum number of transactions executing concurrently
on this data node, total number of transactions that can be executed concurrently is this value times
number of data nodes in cluster.

• MaxNoOfFiredTriggers: Total number of triggers that can fire simultaneously on one data node.

• MaxNoOfLocalOperations: Maximum number of operation records defined on this data node.

• MaxNoOfLocalScans: Maximum number of fragment scans in parallel on this data node.

• MaxNoOfOpenFiles: Maximum number of files open per data node.(One thread is created per file).

• MaxNoOfOrderedIndexes: Total number of ordered indexes that can be defined in system.

165

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelnoderestart
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelshutdown
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelstartup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-loglevelstatistic
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-longmessagebuffer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxallocate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxbufferedepochs
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxbufferedepochbytes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskdatalatency
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeed
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedothernoderestart
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxfkbuildbatchsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdmloperationspertransaction
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxlcpstartdelay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofattributes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentindexoperations
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentoperations
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentscans
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrentsuboperations
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofconcurrenttransactions
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocaloperations
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooflocalscans
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofopenfiles
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooforderedindexes

Data Node Configuration Parameters

• MaxNoOfSavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

• MaxNoOfSubscribers: Maximum number of subscribers.

• MaxNoOfSubscriptions: Maximum number of subscriptions (default 0 = MaxNoOfTables).

• MaxNoOfTables: Suggests total number of NDB tables stored in database.

• MaxNoOfTriggers: Total number of triggers that can be defined in system.

• MaxNoOfUniqueHashIndexes: Total number of unique hash indexes that can be defined in
system.

• MaxParallelCopyInstances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

• MaxParallelScansPerFragment: Maximum number of parallel scans per fragment. Once this
limit is reached, scans are serialized.

• MaxReorgBuildBatchSize: Maximum scan batch size to use for reorganization of table partitions.
Increasing this value may speed up table partition reorganization but impacts ongoing traffic as well.

• MaxStartFailRetries: Maximum retries when data node fails on startup, requires StopOnError =
0. Setting to 0 causes start attempts to continue indefinitely.

• MaxUIBuildBatchSize: Maximum scan batch size to use for building unique keys. Increasing this
value may speed up builds of unique keys but impacts ongoing traffic as well.

• MemReportFrequency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

• MinDiskWriteSpeed: Minimum number of bytes per second that can be written by LCP and
backup.

• MinFreePct: Percentage of memory resources to keep in reserve for restarts.

• NodeGroup: Node group to which data node belongs; used only during initial start of cluster.

• NodeGroupTransporters: Number of transporters to use between nodes in same node group.

• NodeId: Number uniquely identifying data node among all nodes in cluster.

• NoOfFragmentLogFiles: Number of 16 MB redo log files in each of 4 file sets belonging to data
node.

• NoOfReplicas: Number of copies of all data in database.

• Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to 0 permits system to
determine use of interleaving by data node process; 1 means that it is determined by data node.

• ODirect: Use O_DIRECT file reads and writes when possible.

• ODirectSyncFlag: O_DIRECT writes are treated as synchronized writes; ignored when ODirect is
not enabled, InitFragmentLogFiles is set to SPARSE, or both.

• RealtimeScheduler: When true, data node threads are scheduled as real-time threads. Default is
false.

• RecoveryWork: Percentage of storage overhead for LCP files: greater value means less work in
normal operations, more work during recovery.

• RedoBuffer: Number of bytes on each data node allocated for writing redo logs.

166

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofsavedmessages
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofsubscribers
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofsubscriptions
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftables
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooftriggers
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnoofuniquehashindexes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxparallelcopyinstances
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxparallelscansperfragment
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxreorgbuildbatchsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxstartfailretries
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxuibuildbatchsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-memreportfrequency
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-mindiskwritespeed
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-minfreepct
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegroup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodegrouptransporters
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodeid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nooffragmentlogfiles
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-numa
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirect
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-odirectsyncflag
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-realtimescheduler
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-recoverywork
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-redobuffer

Data Node Configuration Parameters

• RedoOverCommitCounter: When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

• RedoOverCommitLimit: Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

• RequireEncryptedBackup: Whether backups must be encrypted (1 = encryption required,
otherwise 0).

• RequireCertificate: Node is required to find key and certificate in TLS search path.

• RequireTls: Require TLS-authenticated secure connections.

• ReservedConcurrentIndexOperations: Number of simultaneous index operations having
dedicated resources on one data node.

• ReservedConcurrentOperations: Number of simultaneous operations having dedicated
resources in transaction coordinators on one data node.

• ReservedConcurrentScans: Number of simultaneous scans having dedicated resources on one
data node.

• ReservedConcurrentTransactions: Number of simultaneous transactions having dedicated
resources on one data node.

• ReservedFiredTriggers: Number of triggers having dedicated resources on one data node.

• ReservedLocalScans: Number of simultaneous fragment scans having dedicated resources on
one data node.

• ReservedTransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node.

• RestartOnErrorInsert: Control type of restart caused by inserting error (when StopOnError is
enabled).

• RestartSubscriberConnectTimeout: Amount of time for data node to wait for subscribing API
nodes to connect. Set to 0 to disable timeout, which is always resolved to nearest full second.

• SchedulerExecutionTimer: Number of microseconds to execute in scheduler before sending.

• SchedulerResponsiveness: Set NDB scheduler response optimization 0-10; higher values
provide better response time but lower throughput.

• SchedulerSpinTimer: Number of microseconds to execute in scheduler before sleeping.

• ServerPort: Port used to set up transporter for incoming connections from API nodes.

• SharedGlobalMemory: Total number of bytes on each data node allocated for any use.

• SpinMethod: Determines spin method used by data node; see documentation for details.

• StartFailRetryDelay: Delay in seconds after start failure prior to retry; requires StopOnError =
0.

• StartFailureTimeout: Milliseconds to wait before terminating. (0=Wait forever).

• StartNoNodeGroupTimeout: Time to wait for nodes without nodegroup before trying to start
(0=forever).

• StartPartialTimeout: Milliseconds to wait before trying to start without all nodes. (0=Wait
forever).

167

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-redoovercommitcounter
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-redoovercommitlimit
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requireencryptedbackup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requirecertificate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-requiretls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedconcurrentindexoperations
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedconcurrentoperations
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedconcurrentscans
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedconcurrenttransactions
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedfiredtriggers
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedlocalscans
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedtransactionbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-restartonerrorinsert
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-restartsubscriberconnecttimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerexecutiontimer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerresponsiveness
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-serverport
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-sharedglobalmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-spinmethod
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-startfailretrydelay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-startfailuretimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-startnonodegrouptimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-startpartialtimeout

Data Node Configuration Parameters

• StartPartitionedTimeout: Milliseconds to wait before trying to start partitioned. (0=Wait
forever).

• StartupStatusReportFrequency: Frequency of status reports during startup.

• StopOnError: When set to 0, data node automatically restarts and recovers following node failures.

• StringMemory: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

• TcpBind_INADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

• TimeBetweenEpochs: Time between epochs (synchronization used for replication).

• TimeBetweenEpochsTimeout: Timeout for time between epochs. Exceeding causes node
shutdown.

• TimeBetweenGlobalCheckpoints: Time between group commits of transactions to disk.

• TimeBetweenGlobalCheckpointsTimeout: Minimum timeout for group commit of transactions
to disk.

• TimeBetweenInactiveTransactionAbortCheck: Time between checks for inactive
transactions.

• TimeBetweenLocalCheckpoints: Time between taking snapshots of database (expressed in
base-2 logarithm of bytes).

• TimeBetweenWatchDogCheck: Time between execution checks inside data node.

• TimeBetweenWatchDogCheckInitial: Time between execution checks inside data node (early
start phases when memory is allocated).

• TotalSendBufferMemory: Total memory to use for all transporter send buffers..

• TransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data allocated
for each data node.

• TransactionDeadlockDetectionTimeout: Time transaction can spend executing within data
node. This is time that transaction coordinator waits for each data node participating in transaction to
execute request. If data node takes more than this amount of time, transaction is aborted.

• TransactionInactiveTimeout: Milliseconds that application waits before executing another part
of transaction. This is time transaction coordinator waits for application to execute or send another
part (query, statement) of transaction. If application takes too much time, then transaction is aborted.
Timeout = 0 means that application never times out.

• TransactionMemory: Memory allocated for transactions on each data node.

• TwoPassInitialNodeRestartCopy: Copy data in 2 passes during initial node restart, which
enables multithreaded building of ordered indexes for such restarts.

• UndoDataBuffer: Unused; has no effect.

• UndoIndexBuffer: Unused; has no effect.

• UseShm: Use shared memory connections between this data node and API node also running on this
host.

• WatchDogImmediateKill: When true, threads are immediately killed whenever watchdog issues
occur; used for testing and debugging.

• AutomaticThreadConfig: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation.

168

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-startpartitionedtimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-startupstatusreportfrequency
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stringmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-tcpbind_inaddr_any
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochs
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochstimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpoints
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpointstimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweeninactivetransactionabortcheck
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenlocalcheckpoints
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenwatchdogcheck
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenwatchdogcheckinitial
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-totalsendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactiondeadlockdetectiontimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactioninactivetimeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-transactionmemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-twopassinitialnoderestartcopy
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-undodatabuffer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-undoindexbuffer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-useshm
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-watchdogimmediatekill
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-automaticthreadconfig

API Node Configuration Parameters

• ClassicFragmentation: When true, use traditional table fragmentation; set false to enable
flexible distribution of fragments among LDMs. Disabled by AutomaticThreadConfig.

• EnableMultithreadedBackup: Enable multi-threaded backup.

• MaxNoOfExecutionThreads: For ndbmtd only, specify maximum number of execution threads.

• MaxSendDelay: Maximum number of microseconds to delay sending by ndbmtd.

• NoOfFragmentLogParts: Number of redo log file groups belonging to this data node.

• NumCPUs: Specify number of CPUs to use with AutomaticThreadConfig.

• PartitionsPerNode: Determines the number of table partitions created on each data node; not
used if ClassicFragmentation is enabled.

• ThreadConfig: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty
string; see documentation for syntax and other information.

A.3 API Node Configuration Parameters

• ApiVerbose: Enable NDB API debugging; for NDB development.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.

• ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

• AutoReconnect: Specifies whether an API node should reconnect fully when disconnected from
cluster.

• BatchByteSize: Default batch size in bytes.

• BatchSize: Default batch size in number of records.

• ConnectBackoffMaxTime: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting
to 0. If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is
used instead.

• ConnectionMap: Specifies which data nodes to connect.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are
supported: 0, 240, and 3840.

• DefaultOperationRedoProblemAction: How operations are handled in event that
RedoOverCommitCounter is exceeded.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for API nodes; see manual
for allowed values.

• HostName: Host name or IP address for this SQL or API node.

• Id: Number identifying MySQL server or API node (Id). Now deprecated; use NodeId instead.

• LocationDomainId: Assign this API node to specific availability domain or zone. 0 (default) leaves
this unset.

169

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-classicfragmentation
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-enablemultithreadedbackup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxsenddelay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-nooffragmentlogparts
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-numcpus
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-partitionspernode
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-apiverbose
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-arbitrationdelay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-arbitrationrank
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-autoreconnect
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchbytesize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-connectbackoffmaxtime
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-connectionmap
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaulthashmapsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaultoperationredoproblemaction
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-executeoncomputer
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-extrasendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-heartbeatthreadpriority
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-hostname
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-id
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-locationdomainid

Other Node Configuration Parameters

• MaxScanBatchSize: Maximum collective batch size for one scan.

• NodeId: Number uniquely identifying SQL node or API node among all nodes in cluster.

• StartConnectBackoffMaxTime: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this API node.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

A.4 Other Node Configuration Parameters

• HostName: Host name or IP address of this computer.

• Id: Unique identifier for this computer.

• AllowUnresolvedHostNames: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only.

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by TCP connection.

• HostName2: Name or IP address of second of two computers joined by TCP connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of TCP connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is
considered overloaded.

• PreferIPVersion: Indicate DNS resolver preference for IP version 4 or 6.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all TCP signals between nodes for errors.

• Proxy:

• ReceiveBufferMemory: Bytes of buffer for signals received by this node.

• RequireLinkTls: Read-only; is set to true if either endpoint of this connection requires TLS.

• SendBufferMemory: Bytes of TCP buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.

• TcpSpinTime: Time to spin before going to sleep when receiving.

• TCP_MAXSEG_SIZE: Value used for TCP_MAXSEG.

• TCP_RCV_BUF_SIZE: Value used for SO_RCVBUF.

• TCP_SND_BUF_SIZE: Value used for SO_SNDBUF.

• TcpBind_INADDR_ANY: Bind InAddrAny instead of host name for server part of connection.

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

170

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-maxscanbatchsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-nodeid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-startconnectbackoffmaxtime
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-totalsendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-api-definition.html#ndbparam-api-wan
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-computer-definition.html#ndbparam-computer-hostname
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-computer-definition.html#ndbparam-computer-id
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-allowunresolvedhostnames
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-checksum
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-group
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-hostname1
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-hostname2
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-nodeid1
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-nodeid2
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-nodeidserver
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-overloadlimit
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-preferipversion
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-presendchecksum
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-proxy
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-receivebuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-requirelinktls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-sendsignalid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcpspintime
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_maxseg_size
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_rcv_buf_size
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcp_snd_buf_size
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-tcp-definition.html#ndbparam-tcp-tcpbind_inaddr_any
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-checksum

MySQL Server Option and Variable Reference for MySQL Cluster

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by SHM connection.

• HostName2: Name or IP address of second of two computers joined by SHM connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of SHM connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is
considered overloaded.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all SHM signals between nodes for errors.

• SendBufferMemory: Bytes in shared memory buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files.

• ShmKey: Shared memory key; when set to 1, this is calculated by NDB.

• ShmSpinTime: When receiving, number of microseconds to spin before sleeping.

• ShmSize: Size of shared memory segment.

• Signum: Signal number to be used for signalling.

A.5 MySQL Server Option and Variable Reference for MySQL
Cluster

• Com_show_ndb_status: Count of SHOW NDB STATUS statements.

• Handler_discover: Number of times that tables have been discovered.

• ndb-applier-allow-skip-epoch: Lets replication applier skip epochs.

• ndb-batch-size: Size (in bytes) to use for NDB transaction batches.

• ndb-blob-read-batch-bytes: Specifies size in bytes that large BLOB reads should be batched
into. 0 = no limit.

• ndb-blob-write-batch-bytes: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

• ndb-cluster-connection-pool: Number of connections to cluster used by MySQL.

• ndb-cluster-connection-pool-nodeids: Comma-separated list of node IDs for connections
to cluster used by MySQL; number of nodes in list must match value set for --ndb-cluster-connection-
pool.

• ndb-connectstring: Address of NDB management server distributing configuration information
for this cluster.

• ndb-default-column-format: Use this value (FIXED or DYNAMIC) by default for
COLUMN_FORMAT and ROW_FORMAT options when creating or adding table columns.

• ndb-deferred-constraints: Specifies that constraint checks on unique indexes (where these
are supported) should be deferred until commit time. Not normally needed or used; for testing
purposes only.

171

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-group
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-hostname1
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-hostname2
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-nodeid1
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-nodeid2
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-nodeidserver
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-overloadlimit
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-presendchecksum
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-sendbuffermemory
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-sendsignalid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-shmkey
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-shmspintime
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-shmsize
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-shm-definition.html#ndbparam-shm-signum
https://dev.mysql.com/doc/refman/9.6/en/server-status-variables.html#statvar_Com_xxx
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Handler_discover
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-applier-allow-skip-epoch
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-batch-size
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-read-batch-bytes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-blob-write-batch-bytes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-cluster-connection-pool
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-cluster-connection-pool-nodeids
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-connectstring
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-default-column-format
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-deferred-constraints

MySQL Server Option and Variable Reference for MySQL Cluster

• ndb-distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• ndb-log-apply-status: Cause MySQL server acting as replica to log mysql.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective
only if server is started with --ndbcluster option.

• ndb-log-empty-epochs: When enabled, causes epochs in which there were no changes to be
written to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-empty-update: When enabled, causes updates that produced no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-exclusive-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events
is not possible.

• ndb-log-orig: Log originating server id and epoch in mysql.ndb_binlog_index table.

• ndb-log-row-slice-count: Number of slices to be calculated by this server when subscribing to
NDB table change event streams used for writing binary logs.

• ndb-log-row-slice-id: ID of virtual slice (of NDB table change event streams) subscribed to by
this server.

• ndb-log-transaction-dependency: Make binary log thread calculate transaction dependencies
for every transaction it writes to binary log.

• ndb-log-transaction-id: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

• ndb-log-update-minimal: Log updates in minimal format.

• ndb-log-updated-only: Log updates only (ON) or complete rows (OFF).

• ndb-log-update-as-write: Toggles logging of updates on source between updates (OFF) and
writes (ON).

• ndb-mgm-tls: Whether TLS connection requirements are strict or relaxed.

• ndb-mgmd-host: Set host (and port, if desired) for connecting to management server.

• ndb-nodeid: NDB Cluster node ID for this MySQL server.

• ndb-optimized-node-selection: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

• ndb-tls-search-path: Directories to search for NDB TLS CAs and private keys.

• ndb-transid-mysql-connection-map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

• ndb-wait-connected: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

• ndb-wait-setup: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

• ndb-allow-copying-alter-table: Set to OFF to keep ALTER TABLE from using copying
operations on NDB tables.

• Ndb_api_adaptive_send_deferred_count: Number of adaptive send calls not actually sent by
this MySQL Server (SQL node).

172

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-distribution
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-apply-status
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-empty-epochs
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-empty-update
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-exclusive-reads
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-fail-terminate
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-orig
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-row-slice-count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-row-slice-id
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-transaction-dependency
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-transaction-id
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-minimal
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-updated-only
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-as-write
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-mgm-tls
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-mgmd-host
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-nodeid
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-optimized-node-selection
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-tls-search-path
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-transid-mysql-connection-map
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-connected
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-wait-setup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-allow-copying-alter-table
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count

MySQL Server Option and Variable Reference for MySQL Cluster

• Ndb_api_adaptive_send_deferred_count_session: Number of adaptive send calls not
actually sent in this client session.

• Ndb_api_adaptive_send_deferred_count_replica: Number of adaptive send calls not
actually sent by this replica.

• Ndb_api_adaptive_send_deferred_count_slave: Number of adaptive send calls not actually
sent by this replica.

• Ndb_api_adaptive_send_forced_count: Number of adaptive sends with forced-send set sent
by this MySQL Server (SQL node).

• Ndb_api_adaptive_send_forced_count_session: Number of adaptive sends with forced-
send set in this client session.

• Ndb_api_adaptive_send_forced_count_replica: Number of adaptive sends with forced-
send set sent by this replica.

• Ndb_api_adaptive_send_forced_count_slave: Number of adaptive sends with forced-send
set sent by this replica.

• Ndb_api_adaptive_send_unforced_count: Number of adaptive sends without forced-send
sent by this MySQL Server (SQL node).

• Ndb_api_adaptive_send_unforced_count_session: Number of adaptive sends without
forced-send in this client session.

• Ndb_api_adaptive_send_unforced_count_replica: Number of adaptive sends without
forced-send sent by this replica.

• Ndb_api_adaptive_send_unforced_count_slave: Number of adaptive sends without forced-
send sent by this replica.

• Ndb_api_bytes_received_count: Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

• Ndb_api_bytes_received_count_session: Quantity of data (in bytes) received from data
nodes in this client session.

• Ndb_api_bytes_received_count_replica: Quantity of data (in bytes) received from data
nodes by this replica.

• Ndb_api_bytes_received_count_slave: Quantity of data (in bytes) received from data nodes
by this replica.

• Ndb_api_bytes_sent_count: Quantity of data (in bytes) sent to data nodes by this MySQL
Server (SQL node).

• Ndb_api_bytes_sent_count_session: Quantity of data (in bytes) sent to data nodes in this
client session.

• Ndb_api_bytes_sent_count_replica: Qunatity of data (in bytes) sent to data nodes by this
replica.

• Ndb_api_bytes_sent_count_slave: Qunatity of data (in bytes) sent to data nodes by this
replica.

• Ndb_api_event_bytes_count: Number of bytes of events received by this MySQL Server (SQL
node).

• Ndb_api_event_bytes_count_injector: Number of bytes of event data received by NDB
binary log injector thread.

173

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_deferred_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_forced_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_adaptive_send_unforced_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_received_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_bytes_sent_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_event_bytes_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_event_bytes_count_injector

MySQL Server Option and Variable Reference for MySQL Cluster

• Ndb_api_event_data_count: Number of row change events received by this MySQL Server
(SQL node).

• Ndb_api_event_data_count_injector: Number of row change events received by NDB binary
log injector thread.

• Ndb_api_event_nondata_count: Number of events received, other than row change events, by
this MySQL Server (SQL node).

• Ndb_api_event_nondata_count_injector: Number of events received, other than row change
events, by NDB binary log injector thread.

• Ndb_api_pk_op_count: Number of operations based on or using primary keys by this MySQL
Server (SQL node).

• Ndb_api_pk_op_count_session: Number of operations based on or using primary keys in this
client session.

• Ndb_api_pk_op_count_replica: Number of operations based on or using primary keys by this
replica.

• Ndb_api_pk_op_count_slave: Number of operations based on or using primary keys by this
replica.

• Ndb_api_pruned_scan_count: Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

• Ndb_api_pruned_scan_count_session: Number of scans that have been pruned to one
partition in this client session.

• Ndb_api_pruned_scan_count_replica: Number of scans that have been pruned to one
partition by this replica.

• Ndb_api_pruned_scan_count_slave: Number of scans that have been pruned to one partition
by this replica.

• Ndb_api_range_scan_count: Number of range scans that have been started by this MySQL
Server (SQL node).

• Ndb_api_range_scan_count_session: Number of range scans that have been started in this
client session.

• Ndb_api_range_scan_count_replica: Number of range scans that have been started by this
replica.

• Ndb_api_range_scan_count_slave: Number of range scans that have been started by this
replica.

• Ndb_api_read_row_count: Total number of rows that have been read by this MySQL Server
(SQL node).

• Ndb_api_read_row_count_session: Total number of rows that have been read in this client
session.

• Ndb_api_read_row_count_replica: Total number of rows that have been read by this replica.

• Ndb_api_read_row_count_slave: Total number of rows that have been read by this replica.

• Ndb_api_scan_batch_count: Number of batches of rows received by this MySQL Server (SQL
node).

• Ndb_api_scan_batch_count_session: Number of batches of rows received in this client
session.

174

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_event_data_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_event_data_count_injector
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_event_nondata_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_event_nondata_count_injector
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pk_op_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_pruned_scan_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_range_scan_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_read_row_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count_session

MySQL Server Option and Variable Reference for MySQL Cluster

• Ndb_api_scan_batch_count_replica: Number of batches of rows received by this replica.

• Ndb_api_scan_batch_count_slave: Number of batches of rows received by this replica.

• Ndb_api_table_scan_count: Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

• Ndb_api_table_scan_count_session: Number of table scans that have been started, including
scans of internal tables, in this client session.

• Ndb_api_table_scan_count_replica: Number of table scans that have been started, including
scans of internal tables, by this replica.

• Ndb_api_table_scan_count_slave: Number of table scans that have been started, including
scans of internal tables, by this replica.

• Ndb_api_trans_abort_count: Number of transactions aborted by this MySQL Server (SQL
node).

• Ndb_api_trans_abort_count_session: Number of transactions aborted in this client session.

• Ndb_api_trans_abort_count_replica: Number of transactions aborted by this replica.

• Ndb_api_trans_abort_count_slave: Number of transactions aborted by this replica.

• Ndb_api_trans_close_count: Number of transactions closed by this MySQL Server (SQL
node); may be greater than sum of TransCommitCount and TransAbortCount.

• Ndb_api_trans_close_count_session: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) in this client session.

• Ndb_api_trans_close_count_replica: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_close_count_slave: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_commit_count: Number of transactions committed by this MySQL Server (SQL
node).

• Ndb_api_trans_commit_count_session: Number of transactions committed in this client
session.

• Ndb_api_trans_commit_count_replica: Number of transactions committed by this replica.

• Ndb_api_trans_commit_count_slave: Number of transactions committed by this replica.

• Ndb_api_trans_local_read_row_count: Total number of rows that have been read by this
MySQL Server (SQL node).

• Ndb_api_trans_local_read_row_count_session: Total number of rows that have been read
in this client session.

• Ndb_api_trans_local_read_row_count_replica: Total number of rows that have been read
by this replica.

• Ndb_api_trans_local_read_row_count_slave: Total number of rows that have been read by
this replica.

• Ndb_api_trans_start_count: Number of transactions started by this MySQL Server (SQL
node).

• Ndb_api_trans_start_count_session: Number of transactions started in this client session.

175

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_scan_batch_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_table_scan_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_abort_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_close_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_commit_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_local_read_row_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_session

MySQL Server Option and Variable Reference for MySQL Cluster

• Ndb_api_trans_start_count_replica: Number of transactions started by this replica.

• Ndb_api_trans_start_count_slave: Number of transactions started by this replica.

• Ndb_api_uk_op_count: Number of operations based on or using unique keys by this MySQL
Server (SQL node).

• Ndb_api_uk_op_count_session: Number of operations based on or using unique keys in this
client session.

• Ndb_api_uk_op_count_replica: Number of operations based on or using unique keys by this
replica.

• Ndb_api_uk_op_count_slave: Number of operations based on or using unique keys by this
replica.

• Ndb_api_wait_exec_complete_count: Number of times thread has been blocked while waiting
for operation execution to complete by this MySQL Server (SQL node).

• Ndb_api_wait_exec_complete_count_session: Number of times thread has been blocked
while waiting for operation execution to complete in this client session.

• Ndb_api_wait_exec_complete_count_replica: Number of times thread has been blocked
while waiting for operation execution to complete by this replica.

• Ndb_api_wait_exec_complete_count_slave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

• Ndb_api_wait_meta_request_count: Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_meta_request_count_session: Number of times thread has been blocked
waiting for metadata-based signal in this client session.

• Ndb_api_wait_meta_request_count_replica: Number of times thread has been blocked
waiting for metadata-based signal by this replica.

• Ndb_api_wait_meta_request_count_slave: Number of times thread has been blocked waiting
for metadata-based signal by this replica.

• Ndb_api_wait_nanos_count: Total time (in nanoseconds) spent waiting for some type of signal
from data nodes by this MySQL Server (SQL node).

• Ndb_api_wait_nanos_count_session: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes in this client session.

• Ndb_api_wait_nanos_count_replica: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes by this replica.

• Ndb_api_wait_nanos_count_slave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

• Ndb_api_wait_scan_result_count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_scan_result_count_session: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

• Ndb_api_wait_scan_result_count_replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

• Ndb_api_wait_scan_result_count_slave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

176

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_trans_start_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_uk_op_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_exec_complete_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_meta_request_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_nanos_count_slave
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count_replica
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_api_wait_scan_result_count_slave

MySQL Server Option and Variable Reference for MySQL Cluster

• ndb_autoincrement_prefetch_sz: NDB auto-increment prefetch size.

• ndb_clear_apply_status: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

• Ndb_cluster_node_id: Node ID of this server when acting as NDB Cluster SQL node.

• Ndb_config_from_host: NDB Cluster management server host name or IP address.

• Ndb_config_from_port: Port for connecting to NDB Cluster management server.

• Ndb_config_generation: Generation number of the current configuration of the cluster.

• Ndb_conflict_fn_epoch: Number of rows that have been found in conflict by NDB$EPOCH()
NDB replication conflict detection function.

• Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication
NDB$EPOCH2() conflict detection function.

• Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDB$EPOCH2_TRANS() conflict detection function.

• Ndb_conflict_fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

• Ndb_conflict_fn_max: Number of times that NDB replication conflict resolution based on "greater
timestamp wins" has been applied to update and delete operations.

• Ndb_conflict_fn_max_del_win: Number of times that NDB replication conflict resolution based
on outcome of NDB$MAX_DELETE_WIN() has been applied to update and delete operations.

• Ndb_conflict_fn_max_ins: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations.

• Ndb_conflict_fn_max_del_win_ins: Number of times that NDB replication conflict resolution
based on outcome of NDB$MAX_DEL_WIN_INS() has been applied to insert operations.

• Ndb_conflict_fn_old: Number of times that NDB replication "same timestamp wins" conflict
resolution has been applied.

• Ndb_conflict_last_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

• Ndb_conflict_last_stable_epoch: Most recent epoch containing no conflicts.

• Ndb_conflict_reflected_op_discard_count: Number of reflected operations that were not
applied due error during execution.

• Ndb_conflict_reflected_op_prepare_count: Number of reflected operations received that
have been prepared for execution.

• Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared.

• ndb_conflict_role: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

• Ndb_conflict_trans_conflict_commit_count: Number of epoch transactions committed
after requiring transactional conflict handling.

• Ndb_conflict_trans_detect_iter_count: Number of internal iterations
required to commit epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

177

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_autoincrement_prefetch_sz
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_clear_apply_status
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_cluster_node_id
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_config_from_host
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_config_from_port
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_config_generation
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_epoch
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_epoch2
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_epoch2_trans
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_epoch_trans
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_max
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_max_del_win
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_max_ins
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_max_del_win_ins
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_fn_old
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_last_conflict_epoch
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_last_stable_epoch
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_reflected_op_discard_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_reflected_op_prepare_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_refresh_op_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_conflict_role
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_trans_conflict_commit_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_trans_detect_iter_count

MySQL Server Option and Variable Reference for MySQL Cluster

• Ndb_conflict_trans_reject_count: Number of transactions rejected after being found in
conflict by transactional conflict function.

• Ndb_conflict_trans_row_conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

• Ndb_conflict_trans_row_reject_count: Total number of rows realigned after being found
in conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any
rows included in or dependent on conflicting transactions.

• ndb_data_node_neighbour: Specifies cluster data node "closest" to this MySQL Server, for
transaction hinting and fully replicated tables.

• ndb_default_column_format: Sets default row format and column format (FIXED or DYNAMIC)
used for new NDB tables.

• ndb_deferred_constraints: Specifies that constraint checks should be deferred (where these
are supported). Not normally needed or used; for testing purposes only.

• ndb_dbg_check_shares: Check for any lingering shares (debug builds only).

• ndb-schema-dist-timeout: How long to wait before detecting timeout during schema
distribution.

• ndb_distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• Ndb_epoch_delete_delete_count: Number of delete-delete conflicts detected (delete operation
is applied, but row does not exist).

• ndb_eventbuffer_free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

• ndb_eventbuffer_max_alloc: Maximum memory that can be allocated for buffering events by
NDB API. Defaults to 0 (no limit).

• ndb_extra_logging: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

• Ndb_fetch_table_stats: Number of times table statistics were fetched from tables rather than
cache.

• ndb_force_send: Forces sending of buffers to NDB immediately, without waiting for other threads.

• ndb_fully_replicated: Whether new NDB tables are fully replicated.

• ndb_index_stat_enable: Use NDB index statistics in query optimization.

• ndb_index_stat_option: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

• ndb_join_pushdown: Enables pushing down of joins to data nodes.

• Ndb_last_commit_epoch_server: Epoch most recently committed by NDB.

• Ndb_last_commit_epoch_session: Epoch most recently committed by this NDB client.

• ndb_log_apply_status: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its
own server ID.

• ndb_log_bin: Write updates to NDB tables in binary log. Effective only if binary logging is enabled
with --log-bin.

178

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_trans_reject_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_trans_row_conflict_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_conflict_trans_row_reject_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_data_node_neighbour
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_default_column_format
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_deferred_constraints
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_dbg_check_shares
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-schema-dist-timeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_distribution
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_epoch_delete_delete_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_free_percent
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_max_alloc
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_extra_logging
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_fetch_table_stats
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_force_send
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_fully_replicated
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_enable
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_option
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_join_pushdown
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_server
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_apply_status
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_bin

MySQL Server Option and Variable Reference for MySQL Cluster

• ndb_log_binlog_index: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

• ndb_log_cache_size: Set size of transaction cache used for recording NDB binary log.

• ndb_log_empty_epochs: When enabled, epochs in which there were no changes are
written to ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or
log_slave_updates is enabled.

• ndb_log_empty_update: When enabled, updates which produce no changes are written
to ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or
log_slave_updates is enabled.

• ndb_log_exclusive_reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb_log_orig: Whether id and epoch of originating server are recorded in mysql.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

• ndb_log_transaction_id: Whether NDB transaction IDs are written into binary log (Read-only).

• ndb_log_transaction_compression: Whether to compress NDB binary log; can also be
enabled on startup by enabling --binlog-transaction-compression option.

• ndb_log_transaction_compression_level_zstd: The ZSTD compression level to use when
writing compressed transactions to the NDB binary log.

• ndb_metadata_check: Enable auto-detection of NDB metadata changes with respect to MySQL
data dictionary; enabled by default.

• ndb_metadata_check_interval: Interval in seconds to perform check for NDB metadata
changes with respect to MySQL data dictionary.

• Ndb_metadata_detected_count: Number of times NDB metadata change monitor thread has
detected changes.

• Ndb_metadata_excluded_count: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize.

• ndb_metadata_sync: Triggers immediate synchronization of all changes between NDB dictionary
and MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values
to be ignored. Resets to false when synchronization is complete.

• Ndb_metadata_synced_count: Number of NDB metadata objects which have been
synchronized.

• Ndb_number_of_data_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

• ndb-optimization-delay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

• ndb_optimized_node_selection: Determines how SQL node chooses cluster data node to use
as transaction coordinator.

• Ndb_pruned_scan_count: Number of scans executed by NDB since cluster was last started
where partition pruning could be used.

• Ndb_pushed_queries_defined: Number of joins that API nodes have attempted to push down to
data nodes.

• Ndb_pushed_queries_dropped: Number of joins that API nodes have tried to push down, but
failed.

179

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_binlog_index
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_cache_size
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_empty_epochs
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_empty_update
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_exclusive_reads
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_orig
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_id
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_transaction_compression_level_zstd
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_check_interval
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_detected_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_excluded_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_metadata_sync
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_metadata_synced_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_number_of_data_nodes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-optimization-delay
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_optimized_node_selection
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_pruned_scan_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_pushed_queries_defined
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_pushed_queries_dropped

MySQL Server Option and Variable Reference for MySQL Cluster

• Ndb_pushed_queries_executed: Number of joins successfully pushed down and executed on
data nodes.

• Ndb_pushed_reads: Number of reads executed on data nodes by pushed-down joins.

• ndb_read_backup: Enable read from any replica for all NDB tables; use
NDB_TABLE=READ_BACKUP={0|1} with CREATE TABLE or ALTER TABLE to enable or disable
for individual NDB tables.

• ndb_recv_thread_activation_threshold: Activation threshold when receive thread takes
over polling of cluster connection (measured in concurrently active threads).

• ndb_recv_thread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified
as hexadecimal. See documentation for details.

• Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica.
When this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet
been detected.

• ndb_replica_batch_size: Batch size in bytes for replica applier.

• ndb_report_thresh_binlog_epoch_slip: NDB 7.5 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5:
Threshold for number of epochs to lag behind before reporting binary log status.

• ndb_report_thresh_binlog_mem_usage: Threshold for percentage of free memory remaining
before reporting binary log status.

• ndb_row_checksum: When enabled, set row checksums; enabled by default.

• Ndb_scan_count: Total number of scans executed by NDB since cluster was last started.

• ndb_schema_dist_lock_wait_timeout: Time during schema distribution to wait for lock before
returning error.

• ndb_schema_dist_timeout: Time to wait before detecting timeout during schema distribution.

• ndb_schema_dist_upgrade_allowed: Allow schema distribution table upgrade when connecting
to NDB.

• Ndb_schema_participant_count: Number of MySQL servers participating in NDB schema
change distribution.

• ndb_show_foreign_key_mock_tables: Show mock tables used to support
foreign_key_checks=0.

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is
one of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication
SQL thread is stopped. See documentation for further information.

• Ndb_slave_max_replicated_epoch: Most recently committed NDB epoch on this replica. When
this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been
detected.

• Ndb_system_name: Configured cluster system name; empty if server not connected to NDB.

• ndb_table_no_logging: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered
to use NDBCLUSTER persists for table's lifetime.

• ndb_table_temporary: NDB tables are not persistent on disk: no schema files are created and
tables are not logged.

180

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_pushed_queries_executed
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_pushed_reads
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_read_backup
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_recv_thread_activation_threshold
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_recv_thread_cpu_mask
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_replica_max_replicated_epoch
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_replica_batch_size
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_report_thresh_binlog_epoch_slip
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_report_thresh_binlog_mem_usage
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_row_checksum
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_scan_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_schema_dist_lock_wait_timeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_schema_dist_timeout
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_schema_dist_upgrade_allowed
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_schema_participant_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_show_foreign_key_mock_tables
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_slave_conflict_role
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_slave_max_replicated_epoch
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_system_name
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_table_no_logging
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_table_temporary

MySQL Server Option and Variable Reference for MySQL Cluster

• Ndb_trans_hint_count_session: Number of transactions using hints that have been started in
this session.

• ndb_use_copying_alter_table: Use copying ALTER TABLE operations in NDB Cluster.

• ndb_use_exact_count: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

• ndb_use_transactions: Set to OFF, to disable transaction support by NDB. Not recommended
except in certain special cases; see documentation for details.

• ndb_version: Shows build and NDB engine version as an integer.

• ndb_version_string: Shows build information including NDB engine version in ndb-x.y.z format.

• ndbcluster: Enable NDB Cluster (if this version of MySQL supports it). Disabled by --skip-
ndbcluster.

• ndbinfo: Enable ndbinfo plugin, if supported.

• ndbinfo_database: Name used for NDB information database; read only.

• ndbinfo_max_bytes: Used for debugging only.

• ndbinfo_max_rows: Used for debugging only.

• ndbinfo_offline: Put ndbinfo database into offline mode, in which no rows are returned from
tables or views.

• ndbinfo_show_hidden: Whether to show ndbinfo internal base tables in mysql client; default is
OFF.

• ndbinfo_table_prefix: Prefix to use for naming ndbinfo internal base tables; read only.

• ndbinfo_version: ndbinfo engine version; read only.

• replica_allow_batching: Turns update batching on and off for replica.

• server_id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be
less than 2 to power of this value.

• skip-ndbcluster: Disable NDB Cluster storage engine.

• slave_allow_batching: Turns update batching on and off for replica.

• transaction_allow_batching: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

181

https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#statvar_Ndb_trans_hint_count_session
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_use_copying_alter_table
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_use_exact_count
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_use_transactions
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_version
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndb_version_string
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndbcluster
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_skip-ndbcluster
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_skip-ndbcluster
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_ndbinfo
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_database
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_max_bytes
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_max_rows
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_offline
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_show_hidden
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_table_prefix
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_version
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_replica_allow_batching
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_server_id_bits
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#option_mysqld_skip-ndbcluster
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_slave_allow_batching
https://dev.mysql.com/doc/refman/9.6/en/mysql-cluster-options-variables.html#sysvar_transaction_allow_batching

182

Index

A
abort backup command, 146

backupid option, 146
active option

list certs command, 145
add hosts command, 75

hosts option, 75
add package command, 84, 87

hosts option, 84
add process command, 134

sequential-restart option, 135
added option

create certs command, 144
start process command, 141

agent
backing up and restoring, 54, 153
configuration, 15
defined, 2, 2
distribution, 7, 8
distribution layout, 8
installing, 7
restoring, 55
starting, 28
starting (Linux), 29
starting (Windows), 30
stopping (Linux), 29
stopping (Windows), 31

all option
list certs command, 145

architecture, 1, 2
attributes

case-sensitivity, 65
summary table, 161

autotune command, 100
dryrun option, 101
sequential-restart option, 101
template option, 100
writeload option, 100

B
backup

commands, 146
backup agents command, 153

hosts option, 153
backup cluster

Effect on delete cluster command, 93
encrypted backups, 148

backup cluster command, 147
backupid option, 147
snapshotend option, 147
snapshotstart option, 147
waitcompleted option, 147
waitstarted option, 147

backup images, 147
backup option

show status command, 96
backup status, 96
backupid option

abort backup command, 146
backup cluster command, 147
restore cluster command, 151

backups
creating, 54, 147, 153
removing, 147
restoring to a cluster with fewer data nodes, 51

basedir option
add package command, 84

bind-port option
mcmd, 21

bind_address option
mcmd, 21

bootstrap option
mcmd, 21

C
ca option

create certs command, 144
change log-level command, 77

hosts option, 77
change process command, 137

limitations, 157
sequential-restart option, 138

changing data node processes, 137
client

commands in, 64
defined, 2, 3
executing scripts with, 71
importing, 36
mysql client commands in, 70
starting, 31

client commands, 64
abort backup, 146
add hosts, 75
add package, 84, 87
add process, 134
autotune, 100
backup, 146
backup agents, 153
backup cluster, 147
case-sensitivity in, 65
change log-level, 77
change process, 137
cluster, 88
collect logs, 78
command-specific, 70
common options, 68
configuration, 104
create certs, 144
create cluster, 88
create site, 79
delete backup, 150
delete cluster, 92
delete package, 86

183

delete site, 80
get, 107
help, 75
identifiers in, 65
import cluster, 153
import config, 154
importing clusters, 153
information, 69
list backups, 149
list certs, 145
list clusters, 93
list hosts, 81
list nextnodeids, 93
list processes, 139
list sites, 81
list warnings, 84
online help, 69
options, 64, 67
package, 84
process, 134
remove hosts, 76
remove process, 143
reset, 119
restart cluster, 93
restore, 146
restore cluster, 150
results returned by, 68
rotate log, 77
set, 125
show settings, 82
show status, 94
show variables, 134
show warnings, 83
site, 75
start cluster, 98
start process, 140
status, 96
stop agents, 83
stop cluster, 100
stop process, 141
syntax, 64
TLS connections, 144
update process, 142
upgrade cluster, 101
version, 83

cluster
defined, 1

cluster backups
aborting, 146
creating, 47
deleting, 150
listing, 149
restoring, 47
restoring from, 150

cluster option
show status command, 95

cluster processes
adding, 134

cluster status, 95
clusters

autotuning, 100
creating, 34, 34, 88
creating for import, 90
importing, 36, 153, 154
listing, 93
removing, 92
restarting, 93
starting, 98
stopping, 100
upgrading, 101

collect logs command, 78
command status, 96
common terms, 1
concurrent client sessions unsupported, 157
config option

mcmd, 21
configuration

derivation of attributes, 104
configuration attributes, 104

command-line-only, 106
defined, 2
for TCP connections, 130
getting, 107
how determined by MySQL Cluster Manager, 105
levels applying, 104
mandatory, 105
read-only, 106
resetting, 119
setting, 125
show variables, 134

configuration commands, 104
configuration data

importing, 154
configuration file, 15
configuration parameters (see configuration attributes)
configuration variables (see configuration attributes)
connecting to agent

with mcm client, 32
with mysql client, 32

copy-port option
mcmd, 21

core-file option
mcmd, 21

create certs command, 144
added option, 144
ca option, 144
keys option, 144

create cluster command, 88
--import option, 90
assignment of node IDs in, 90

create site command, 79
hosts option, 80

D
data-folder option

mcmd, 22

184

delete backup command, 150
delete cluster command, 92
delete package command, 86

hosts option, 86
delete site command, 80
deployment (example), 3
disable-indexes option

restore cluster command, 151
disable-metadata option

restore cluster command, 151
dryrun option

autotune command, 101
import cluster command, 154
import config command, 154

E
epoch option

restore cluster command, 151
eventual consistency, 4
exclude-databases option

restore cluster command, 151
exclude-intermediate-sql-tables option

restore cluster command, 152
exclude-missing-columns option

restore cluster command, 152
exclude-missing-tables option

restore cluster command, 152
exclude-tables option

restore cluster command, 151
extra-config option

mcmd, 22

F
filename option

mcmd, 22
filesystem-password-file option

set command, 126
force option

common use, 68
upgrade cluster command, 103

G
get command, 107

filtering output, 114
include-defaults option, 111
with multiple attributes, 115

H
help command, 75
help for commands, 70
help option

common use, 69, 70
mcmd, 22

hostinfo option
show settings command, 82

hosts
defined, 1

hosts option
add hosts command, 75, 76
add package command, 84
backup agents command, 153
change log-level command, 77
create site command, 80
delete package command, 86
remove hosts command, 76
rotate log command, 78
stop agents command, 83

I
identifiers, 65

case-sensitivity, 65
spaces in, 66

import cluster command, 36, 38, 153
import config command, 36, 38, 154
import option

create cluster command, 90
importing clusters

basic procedure, 36
creating for import, 90
example, 38
limitations, 159

include-databases option
restore cluster command, 152

include-defaults option
get command, 111

include-stored-grants option
restore cluster command, 152

include-tables option
restore cluster command, 152

initial option
mcmd, 24
start cluster command, 99
start process command, 141

installation, 7
IPv6

and hostnames (Windows), 157

K
keys option

create certs command, 144

L
level option

mcmd, 24
limitations, 5, 157

backup, 158, 158
change process command, 157
client, 157, 158, 158
cluster imports, 159
concurrent usage, 157
IPv6, 157
MySQL server variables, 158
MySQL user variables, 158
relating to MySQL Server, 157

185

replication, 158
restarts, 159
syntax, 159
Windows, 157

list backups command, 149
list certs command, 145

active option, 145
all option, 145
retired option, 145

list clusters command, 93
list commands command, 69
list hosts command, 81
list nextnodeids command, 93
list processes command, 139
list sites command, 81
list warnings, 84
logging

configuring, 77
logging_folder option

mcmd, 25
logs

obtaining, 78
rotating, 77

lossy-conversions option
restore cluster command, 152

M
management site

defined, 1
management sites

adding hosts, 75
creating, 79
deleting, 80
listing, 81
listing hosts, 81
removing hosts, 76

max_total_connections option
mcmd, 25

mcm client
and mysql client, 31

mcmd, 29
bind-port option, 21
bind_address option, 21
bootstrap option, 21
config option, 21, 22
copy-port option, 21
core-file option, 21
data-folder option, 22
filename option, 22
help option, 22
initial option, 24
level option, 24
logging_folder option, 25
max_total_connections option, 25
mcmd-user option, 26, 26
mcmd_password option, 25
pid-file option, 26
ssl_ca option, 26

ssl_cert option, 27
ssl_cipher option, 27
ssl_key option, 27
ssl_mode option, 27
unknown_config_option option, 28
version option, 28
xcom-port option, 28

mcmd-user option
mcmd, 26, 26

mcmd.exe, 30
mcmd_password option

mcmd, 25
multiple client sessions, 157
mysql client commands, 70
mysql-cluster-manager (OBSOLETE, see mcmd), 29
mysqld options, 157

N
ndb_mgm (MySQL NDB Cluster command-line client)

using with MySQL Cluster Manager, 134
no-binlog option

restore cluster command, 152
no-restore-disk-objects option

restore cluster command, 152
node IDs

and create cluster command, 90
listing, 93

nodeid option
upgrade cluster command, 103

O
obtaining MySQL Cluster Manager, 7
operation option

show status command, 96

P
package option

create cluster command, 89
upgrade cluster command, 101

packages
defined, 2
listing, 84, 87
registering, 84
removing, 86

parallelism option
restore cluster command, 152

pid-file option
mcmd, 26

process option
show status command, 97

process status, 97
processes

changing, 137
commands, 134
defined, 1
listing, 139
removing, 143

186

starting, 140
status, 97
stopping, 141
updating, 142

processhosts option
add process command, 134
create cluster command, 89

progress of action
check using the show status command, 98

progress option
show status command, 98

progress-frequency option
restore cluster command, 152

progressbar option
show status command, 98

promote-attributes option
restore cluster command, 152

Q
quorum requirement, 4

R
ReceiveBufferMemory, 124, 130
remove hosts command, 76

hosts option, 76
remove process command, 143
remove-angel option

update process command, 143
removeangel option

import cluster command, 154
removedirs option

delete cluster command, 92
remove process command, 143

replication, 158
setup, 56

reset command, 119
and attribute name, 119
and TCP connections, 124
order of operands, 123
performed with set, 130
process level, 120
scope, 119
sequential-restart option, 124

restart cluster command, 93
sequential-restart option, 94

restore (from backup)
commands, 146

restore cluster
encrypted backups, 153

restore cluster command, 150
backupid option, 151
disable-indexes option, 151
disable-metadata option, 151
epoch option, 151
exclude-databases option, 151
exclude-intermediate-sql-tables option, 152
exclude-missing-columns option, 152

exclude-missing-tables option, 152
exclude-tables option, 151
include-databases option, 152
include-stored-grants option, 152
include-tables option, 152
lossy-conversions option, 152
no-binlog option, 152
no-restore-disk-objects option, 152
parallelism option, 152
progress-frequency option, 152
promote-attributes option, 152
rewrite-database option, 152
skip-broken-objects option, 153
skip-nodeid option, 153
skip-table-check option, 153
skip-unknown-objects option, 153

retired option
list certs command, 145

retry option
import config command, 155
upgrade cluster command, 103

rewrite-database option
restore cluster command, 152

rolling restarts, 159
rotate log command, 77

hosts option, 78

S
scripts (MySQL Cluster Manager client), 71
SendBufferMemory, 124, 130
sequential-restart option

add process command, 135
autotune command, 101
change process command, 138
reset command, 124
restart cluster command, 94
set command, 126

set command, 125
and TCP connection attributes, 130
filesystem-password-file option, 126
instance level, 126
paths used with (Windows), 129
performing reset, 130
restart option, 133
scope, 126, 127
sequential-restart option, 126
undoing effects of, 119
verifying effects, 127
with multiple attributes, 128
with multiple processes, 128

set option
add process command, 136
upgrade cluster command, 103

show settings command, 82
show status command, 94

backup option, 96
cluster option, 95
no option, 94

187

operation option, 96
process option, 97
progress option, 98
progressbar option, 98

show variables, 134
show warnings, 83
skip-broken-objects option

restore cluster command, 153
skip-init option

start cluster command, 99
skip-nodeid option

restore cluster command, 153
skip-table-check option

restore cluster command, 153
skip-unknown-objects option

restore cluster command, 153
snapshotend option

backup cluster command, 147
snapshotstart option

backup cluster command, 147
ssl_ca option

mcmd, 26
ssl_cert option

mcmd, 27
ssl_cipher option

mcmd, 27
ssl_key system option

mcmd, 27
ssl_mode option

mcmd, 27
start cluster command, 98

initial option, 99
skip-init option, 99

start process command, 140
starting and stopping nodes

and ndb_mgm (MySQL NDB Cluster command-line
client), 134

stop agents command, 83
hosts option, 83

stop cluster command, 100
stop process command, 141
syntax issues, 159

T
template option

autotune command, 100
terminology, 1
TLS connections

create certs command, 144
list certs command, 145

U
unknown_config_option option

mcmd, 28
update process command, 142
upgrade cluster command, 101
upgrades

MySQL NDB Cluster, 159

V
verbose option

add process command, 135
create cluster command, 90

version command, 83
version option

mcmd, 28

W
waitcompleted option

backup cluster command, 147
waitstarted option

backup cluster command, 147
writeload option

autotune command, 100

X
XCom, 4
xcom-port option

mcmd, 28

188

	MySQL Cluster Manager 9.6.0 User Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Overview of MySQL Cluster Manager
	1.1 MySQL Cluster Manager Terminology
	1.2 MySQL Cluster Manager Architecture
	1.3 Basic Operational Concepts for MySQL Cluster Manager
	1.3.1 Quorum Requirement
	1.3.2 Eventual Consistency

	Chapter 2 What Is New in MySQL Cluster Manager 9.6
	Chapter 3 MySQL Cluster Manager Installation, Configuration, Cluster Setup
	3.1 Obtaining MySQL Cluster Manager
	3.2 Supported Platforms and MySQL NDB Cluster Versions
	3.3 MySQL Cluster Manager Installation
	3.3.1 Installing MySQL Cluster Manager on Unix-like Platforms
	3.3.1.1 Installing MySQL Cluster Manager Using Tarballs
	3.3.1.2 Installing MySQL Cluster Manager Using RPM Packages

	3.3.2 Installing MySQL Cluster Manager on Windows Platforms
	3.3.2.1 Installing the MySQL Cluster Manager Agent as a Windows Service

	3.3.3 Setting the MySQL Cluster Manager Agent User Name and Password

	3.4 MySQL Cluster Manager Configuration File
	3.5 Upgrading MySQL Cluster Manager

	Chapter 4 Using MySQL Cluster Manager
	4.1 mcmd, the MySQL Cluster Manager Agent
	4.2 Starting and Stopping the MySQL Cluster Manager Agent
	4.2.1 Starting and Stopping the Agent on Linux
	4.2.2 Starting and Stopping the MySQL Cluster Manager Agent on Windows

	4.3 Starting the MySQL Cluster Manager Client
	4.4 Setting Up MySQL NDB Clusters with MySQL Cluster Manager
	4.4.1 Creating a MySQL NDB Cluster with MySQL Cluster Manager

	4.5 Importing MySQL NDB Clusters into MySQL Cluster Manager
	4.5.1 Importing a Cluster Into MySQL Cluster Manager: Basic Procedure
	4.5.2 Importing a Cluster Into MySQL Cluster Manager: Example
	4.5.2.1 Preparing the Standalone Cluster for Migration
	4.5.2.2 Verify All Cluster Process PID Files
	4.5.2.3 Creating and Configuring the Target Cluster
	4.5.2.4 Testing and Migrating the Standalone Cluster

	4.6 MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager
	4.6.1 Requirements for Backup and Restore
	4.6.2 Basic MySQL NDB Cluster Backup and Restore Using MySQL Cluster Manager
	4.6.2.1 Simple backup
	4.6.2.2 Simple complete restore
	4.6.2.3 Partial restore—missing images
	4.6.2.4 Partial restore—data nodes added
	4.6.2.5 Restoring a Backup to a Cluster with Fewer Data Nodes

	4.7 Backing Up and Restoring MySQL Cluster Manager Agents
	4.8 Restoring a MySQL Cluster Manager Agent with Data from Other Agents
	4.9 Setting Up MySQL NDB Cluster Replication with MySQL Cluster Manager
	4.10 Using Encrypted Connections for MySQL Cluster Manager Agents and Clients
	4.11 Using TLS Connections for NDB Clusters

	Chapter 5 MySQL Cluster Manager Client Commands
	5.1 Online Help and Information Commands
	5.2 MySQL Cluster Manager Site and Agent Commands
	5.2.1 The add hosts Command
	5.2.2 The remove hosts Command
	5.2.3 The change log-level Command
	5.2.4 The rotate log Command
	5.2.5 The collect logs Command
	5.2.6 The create site Command
	5.2.7 The delete site Command
	5.2.8 The list sites Command
	5.2.9 The list hosts Command
	5.2.10 The show settings Command
	5.2.11 The stop agents Command
	5.2.12 The version Command
	5.2.13 The show warnings Command
	5.2.14 The list warnings Command

	5.3 MySQL Cluster Manager Package Commands
	5.3.1 The add package Command
	5.3.2 The delete package Command
	5.3.3 The list packages Command

	5.4 MySQL Cluster Manager Cluster Commands
	5.4.1 The create cluster Command
	5.4.2 The delete cluster Command
	5.4.3 The list clusters Command
	5.4.4 The list nextnodeids Command
	5.4.5 The restart cluster Command
	5.4.6 The show status Command
	5.4.7 The start cluster Command
	5.4.8 The stop cluster Command
	5.4.9 The autotune Command
	5.4.10 The upgrade cluster Command

	5.5 MySQL Cluster Manager Configuration Commands
	5.5.1 The get Command
	5.5.2 The reset Command
	5.5.3 The set Command
	5.5.4 The show variables Command

	5.6 MySQL Cluster Manager Process Commands
	5.6.1 The add process Command
	5.6.2 The change process Command
	5.6.3 The list processes Command
	5.6.4 The start process Command
	5.6.5 The stop process Command
	5.6.6 The update process Command
	5.6.7 The remove process Command

	5.7 MySQL Cluster Manager TLS Connection Commands
	5.7.1 The create certs Command
	5.7.2 The list certs Command

	5.8 MySQL Cluster Manager Backup and Restore Commands
	5.8.1 The abort backup Command
	5.8.2 The backup cluster Command
	5.8.3 The list backups Command
	5.8.4 The delete backup Command
	5.8.5 The restore cluster Command
	5.8.6 The backup agents Command

	5.9 MySQL Cluster Manager Cluster Importation Commands
	5.9.1 The import cluster Command
	5.9.2 The import config Command

	Chapter 6 MySQL Cluster Manager Limitations and Known Issues
	6.1 MySQL Cluster Manager Usage and Design Limitations
	6.2 MySQL Cluster Manager 9.6.0 Limitations Relating to the MySQL Server
	6.3 MySQL Cluster Manager Limitations Relating to MySQL NDB Cluster
	6.4 Syntax and Related Issues in MySQL Cluster Manager

	Appendix A Attribute Summary Tables
	A.1 Management Node Configuration Parameters
	A.2 Data Node Configuration Parameters
	A.3 API Node Configuration Parameters
	A.4 Other Node Configuration Parameters
	A.5 MySQL Server Option and Variable Reference for MySQL Cluster

	Index

